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Abstract

Time series data are sometimes affected by multiple cycles of different lengths.

There can be a weekly cycle (better sales on Fridays), a monthly pattern

(better sales at the beginning of the month as people have more cash after

payday), and the effects of calendar seasonality (more tourists during sum-

mer, so better sales) might be present also. How to model multiple seasonality

in one model? In this thesis, one could compare, for example, TBATS models

(which allow multiple seasonalities) to alternative approaches

CERCS research specialisation: P160 Statistics, operations research, pro-

gramming, financial and actuarial mathematics.
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Time series decomposition, Exponential Smoothing.
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Magistritöö

Adedokun Abdul-Baaki Dolapo

Lühikokkuvõte

Aegridade andmeid mõjutavad mõnikord mitu erineva pikkusega tsüklit -

võib olla nädalane tsükkel (parem müük reedeti), kuu muster (Parem müük
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kuu alguses, kuna inimestel on pärast seda rohkem raha Palgapäev) ja aas-

taaegade mõju (suvel rohkem turiste) võib samuti olemas. Kuidas arvestada

mitut tsüklit ühes mudelis? Selles lõputöös saab võrrelda näiteks TBATS-i

mudeleid (mis võimaldavad mitut hooajalisust) alternatiivsete lähenemisvi-

isidega.

CERCS teaduseriala: P160 Statistika, operatsioonianalüüs, programmeer-

imine, finants- ja kindlustusmatemaatika.

Märksõnad: Aegridade prognoosimine, sessoonsed mudelid, BATS, TBATS,

eksponentsiaalne silumine.
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Introduction

Seasonality is defined as the presence of variations that occur at regular intervals

in a time series. Seasonality is the most significant component of time series, and

it has become increasingly crucial as the frequency of time series produced in

businesses has increased. Business time series data, for example, is collected and

recorded in a considerably shorter time frame. The number of web page visitors,

electricity consumption, and cash withdrawals from cash dispensers are all instances

of business time series data that was previously collected quarterly or monthly but

is now aggregated weekly, daily, or even hourly (Hyndman and Athanasopoulos

[10]).

With the rise of high-frequency data and time series with closely spaced time

intervals, a model capable of accurately modeling seasonal trends of time series is

required. Forecasting of time series with complex seasonality and varying lengths of

seasonality cycles is a difficult issue. As a result, in time series forecasting, detecting

and accommodating the seasonality effect is essential.

This research will present the capabilities of automatic forecasting with TBATS

models that account for seasonality using specific time series, e.g., with hourly data

collected over several years, and thus generates a medium-term forecast with the

specificity of a short-term forecast. It is ultimately one of the very few compre-

hensive models that address the entire forecasting process (from outliers’ solution

through decomposition and forecast to quantification accuracy). For this analysis

of time series with complex seasonality, we used hourly data on the weather tem-

perature in Estonia for six years, which made it possible to observe and use three

seasonalities.
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1 Literature Review

The choice of an appropriate model is one of the factors in determining correct

forecasts for a given phenomenon. Given the number of various models available,

our choice of the TBATS model may appear unusual. (Armstrong [1]), Box, Jenkins,

and Ljung [2], Brockwell and Davis [3]).

The most widely used general forecasting techniques, such as Exponential Smooth-

ing State Space Models (ETS,Hyndman et al. [9]), and Auto-Regressive Integrated

Moving Average (ARIMA, Box, Jenkins, and Ljung [2]) introduced in 1970, are un-

able to cope with such a long seasonal cycle and thus have limited applicability in

multiple seasonalities forecasting (Hyndman and Athanasopoulos [10]). As long as

the ARIMA and exponential smoothing methods are not utilized for very complex

time series, they are perfectly acceptable.

However, forecasts of more complicated time series require more advanced mod-

els that employ Bayesian procedures (Cottet and Smith [4]), Gaussian processes

(M.Blum and Riedmiller [14]), and a variety of other methods (Zhou, Ang, and

Poh [26]) depending on the data.

Multi-seasonality is one such feature. Most of these models are only suitable for time

series with one or two seasonalities. The TBATS1 model, which was introduced a

few years ago, is the solution to this problem (De-Livera, Hyndman, and Synder

[13])

There are four main approaches to dealing with seasonality in daily data in the

literature. Seasonality can be treated in one of four ways:

1. Ignoring it and building a non-seasonal model.

2. By using seasonal lags.

1TBATS: Trigonometric Seasonality, Box-Cox transformation ARIMA errors Trend
Seasonal components.
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3. By using seasonal indicator variables like Fourier terms or seasonal dummy

variables.

4. By deseasonalizing the series before forecasting.

Miswan, Said, and Hussin [15] proposed an ARIMA model for forecasting Malaysian

electricity load demand and compared it to a double exponential smoothing model.

The ARIMA model was found to be more suitable than the other time series

models. Nilgun and Betul [16] recently examined the TBATS and ARIMA models

for predicting airline passenger volumes at airports. Although the TBATS model

was complex, the results revealed that it performed well.

Power system price forecasting techniques are relatively recent procedures. Demand

was already predicted in centralized marketplaces [6]. Competition has generated

a new field of research, and various price forecasting algorithms are now in use.

Early publications by Skantze, Ilic, and Chapman [18] used jump-diffusion/mean

reversion models to model electricity prices. T. Nakashima and Niimura [20] imple-

mented fuzzy regression models that relate prices and demands to the Californian

market. While many of the models discussed above deal with daily data, there’s

also been an increase increasing attention to modeling hourly electricity prices.

Ramsay and Wang [17] employ neural networks to forecast prices in the England-

Wales pool, as well as in California by Gao et al. [5] and the Victorian market by

Szkuta, Sanabria, and Dillon [19].
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2 Model Overview

Using a model to predict future values based on previously observed values is

referred to as time series forecasting. Many scientists are familiar with time series

forecasting but often struggle with particular data types. One of these data types

is multi-seasonal data, whereby seasonal variations are frequent (e.g., hourly data

may contain a daily pattern, weekly pattern, and an annual pattern).

Holt-Winters (HW) exponential smoothing algorithms are commonly used to fore-

cast time series with single (additive or multiple) seasonal patterns, producing

excellent results. On the other hand, these models are unable to handle complex

seasonal time series with multiple seasonality, non-integer seasonality, and dual-

calender effects. Taylor [21] added a second seasonal component to the single sea-

sonal Holt-Winters model to handle time series with two seasonal patterns. This

necessitates the estimation of many values for the initial seasonal components,

especially when the seasonal patterns’ frequencies are high, which may result in

over-parameterization.

Simple seasonal trends, such as quarterly and monthly data, were evaluated. On the

other hand, higher frequency time series frequently show more complex seasonal

patterns. Daily data, for example, may have weekly and annual patterns. There are

three types of seasonality in hourly data: a daily pattern, a weekly pattern, and a

yearly seasonal pattern. Even weekly data might be difficult to estimate since it

often follows a yearly pattern with an average seasonal period of 365.25/7 ≈ 52.179.

With high-frequency data recording, numerous seasonal patterns are becoming

more frequent. The volume of calls at call centers, daily hospital admissions, re-

quests for cash at ATMs, use of power and water, and access to computer websites

are all instances of different seasonal patterns that might occur.

Furthermore, if the seasonal period is extended, the resulting model will likely have

more parameters. When one seasonal period is a multiple of the other, this becomes
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easier. According to the exponential smoothing model, the white noise process is

not serially correlated. In practice, this assumption is not always correct because

it might sometimes behave like an AR(1) process.

Hyndman et al. [9] presented ETS model improvements to accommodate a range

of seasonal trends and tackle the correlated error problem. To prevent nonlinear

difficulties, these authors limited the models to homoskedastic models, and when

there is a certain type of non-linearity, the Box-Cox transformation (Box and Cox,

1964) is implemented.

2.1 Box-Cox transformation ARIMA errors Trend Sea-

sonal components.

The BATS2 model is a Box-Cox transformation that uses an exponential smooth-

ing method and an ARIMA model to determine residuals. With minimal complex-

ity and redundancy, the BATS model estimates seasonal time-series data. BATS

is an acronym for Model Key Attributes for more complexity and redundancy: B:

Box-Cox Transformation A: ARIMA Errors T: Trend S: Seasonal Components.

Basic Holt-Winters additive and multiplicative techniques are among the most

commonly used seasonal models in the innovative state-space framework. Taylor

[21] modifies the Holt-Winters linear form to include a second seasonal component.

Box-Cox transformed observations with the parameter ω are represented by the

notation y
(ω)
t , where yt represents the observation at time t. To include T seasonal

patterns, we can expand exponential smoothing models as follows:

yt = lt−1 + bt−1 + s
(1)
t + s

(2)
t + dt (1)

2BATS Box-Cox transformation ARIMA errors Trend Seasonal components.
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y
(ω)
t =


yωt − 1

(ω)
; ω ̸= 0

log yt; ω = 0

(2)

y
(ω)
t = lt−1 + ϕbt−1 +

T∑
i=1

s
(i)
t−mi

+ dt (3)

l
(w)
t = lt−1 + ϕbt−1 + αdt (4)

b
(ω)
t = ϕbt−1 + βdt (5)

s
(i)
t = s

(i)
t−mi

+ γidt (6)

dt =

p∑
i=1

φidt−i +

q∑
i=1

θiεt−i + εt (7)

where m1, ...,mT denote the seasonal periods, lt is the local level in period t, bt

is the trend with damping in period t, s(i)t represents the ith seasonal component

at time t, dt denotes the residual ARMA(p, q) process and εt is a Gaussian white

noise process with zero mean and constant variance σ. The smoothing parameters

are given by α, β and seasonal smoothing γi for i = 1, ..., T .

Because the Box-cox transform can handle non-linear data and keep the variance

more or less constant, the BATS model outperforms the simple space model. The

auto-correlation problem can be solved using the residual ARMA model. They can

get the point prediction, but they can also get an interval forecast. Explanatory

variables cannot be added to the BATS model, which is one of its limitations. Multi-

season periods must be nested, and the parameter for high-frequency seasonality

will be quite large.
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2.2 Trigonometric Seasonality, Box-Cox transformation

ARIMA errors Trend Seasonal components.

De-Livera, Hyndman, and Synder [13] introduced an alternate method that fully

automates the usage of fourier terms in conjunction with an exponential smoothing

state space model and the Box-Cox transformation. There will be instances when

it produces poor outcomes, like with any automated modeling framework, but it

can be a beneficial method in specific circumstances.

A TBATS3 model differs from dynamic harmonic regression because seasonality

can change slowly over time in the TBATS model, while harmonic regression con-

ditions force seasonal patterns to repeat periodically without change. However, a

disadvantage of TBATS models is that they can be slow to estimate, especially

with long time series.

TBATS is a forecasting method for modeling time series data. The main purpose

is to use exponential smoothing to forecast time series with complex seasonal pat-

terns. TBATS is a time series model that helps you process data with multiple

seasonal patterns, that is, data that changes over time.

TBATS is superior to BATS because it can handle complex and multiple seasonal-

ity time series data. The TBATS model is an extension of the BATS model, which

is similar to the BATS model except that it does not include trigonometric regres-

sors. TBATS is an acronym for key model function. T: Trigonometric seasonality

B: Boxcox transformation A: ARIMA error T: Trend S: Seasonal component.The

forecast package’s tbats() command can be used to fit the TBATS model.

The TBATS (ω, ϕ, p, q,m1, k1, · · ·mT , kT ) model has its roots in the exponential

smoothing methods and the parameters are as follows: ω is the Box-Cox parameter,

ϕ is the damping parameter, p and q are the ARMA parameters, m1, · · · ,mT is the

seasonal periods, and ki is the number of harmonics necessary for the ith seasonal
3TBATS: Trigonometric Seasonality, Box-Cox transformation ARIMA errors Trend

Seasonal components.
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component. The Box-Cox transformation y
(ω)
t with parameter ω can be expressed

by the following equation:

Model:

y
(ω)
t =


yωt − 1

(ω)
; ω ̸= 0

log yt; ω = 0

(8)

y
(ω)
t = lt−1 + ϕbt−1 +

T∑
i=1

s
(i)
t−mi

+ dt (9)

lt = lt−1 + ϕbt−1 + αdt (10)

b
(ω)
t = (1− ϕ)b+ ϕbt−1 + βdt (11)

s
(i)
t = s

(i)
t−mi

+ γidt (12)

dt =

p∑
i=1

φidt−i +

q∑
i=1

θiεt−i + εt (13)

where y
(ω)
t is the time series at moment t (Box-Cox transformed), s(i)t is the ith

seasonal component at time t, lt is the local level in period t, bt is the trend with

damping in period t, dt denotes an ARMA(p, q) process for residuals, α and β

is the smoothing parameters, ϕ is the trend damping, φi and θi are ARMA(p, q)

coefficients and ε is the Gaussian white noise process with zero mean and constant

variance σ.

The trigonometric representation of seasonal components based on Fourier series

(West and Harrison [25], Harvey [7]) has been introduced for greater flexibility:
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Fourier Seasonal terms:

s
(i)
t =

(kj)∑
j=1

s
(i)
j,t (14)

s
(i)
j,t = s

(i)
j,t−1 cosλ

(i)
j + s

∗(i)
j,t−i sinλ

(i)
j + γ

(i)
1 dt (15)

s
∗(i)
j,t = s

(i)
j,t−1 sinλ

(i)
j + s

∗(i)
j,t−i cosλ

(i)
j + γ

(i)
2 dt (16)

λ
(i)
j =

2πj

mi
(17)

Model parameters T represents the amount of seasonalities, mi is the length of ith

seasonal period , ki is the amount of harmonics of ith seasonal period, s∗(i)j,t is the

stochastic level of the ith seasonal component, and s
∗(i)
j,t is the stochastic growth

of the ith seasonal component needed to describe seasonal changes over time , and

γ
(i)
1 , γ

(i)
2 is the seasonal smoothing pair for each time period for i = 1, ..., T .

Each seasonality is modeled with a trigonometric representation based on the

fourier series. 2(k1 + k2 + · · · + kT ) initial values is estimated in the TBATS

model. Another feature is the ability to model the seasonal effects of the non-

integer lengths. For example, in the light of a series of daily observations, a leap

year with a length of 365.25 can be modeled. TBATS can handle data with incor-

rect seasonal periods, non-overlapping periods, and high-frequency data. It can do

multiple seasonalities without increasing too many parameters and the weaknesses

of the TBATS model is that it cannot add explanatory variables.

The prediction accuracy of every forecasting technique should be evaluated. During

prediction, accuracy measures check for error between obtained and actual values.

The accuracy of forecast methods is usually measured using the Root Mean Squared

Error (RMSE) and Median Absolute Error (MAE) metrics.

Seasonal trends can be found in many different time series. Some patterns, most
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notably weekly series, have a non-integer period. For illustration, we will utilize

temperature data from Tartu, Estonia. If we had examined data from other regions,

we would have obtained similar results. For Tartu, Estonia, hourly temperature

data were obtained from 1 January 2016 to 31 December 2021. The data is collected

at the University of Tartu’s Laboratory of Environmental Physics. The station is on

the Institute of Physics building. This time series exhibit multiple seasonal patterns

with a high frequency. Figure 1 shows a daily seasonal pattern with period 24 and

a weekly seasonal pattern with period 24 ∗ 7 = 168 for Estonia daily temperatures.

An annual seasonal trend is present in a longer version of this series. Daily hospital

admissions, requests for cash at ATMs Machine, power and water usage, and access

to computer websites are also examples of multiple seasonal patterns.

Figure 1: Hourly Estonia Temperature Data from January 1st, 2016, to De-
cember 31st, 2021
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2.3 Model Estimation and Selection

In this section, estimation procedures for modeling complex seasonality with TBATS

as demonstrated by De-Livera, Hyndman, and Synder [13], finding initial values

for the procedures, and choosing the best model are discussed.

Maximum likelihood estimation

To compute the underlying model (9) likelihood function and obtain maximum

likelihood estimates (MLEs). On the assumption that εt ∼ N(0, σ2), the vector

containing the Box-Cox parameters, and smoothing parameters and ARMA coef-

ficients, is donated as υ as well as the initial states, x0, can be estimated from

the observed data, y = (y1, · · · , yn) by maximizing the likelihood. This indicates

that the transformed series density is y(ω)t ∼ N(w′xt−1, σ
2), implying that the data

density is as follows:

p(y
(ω)
t |xo, υ) =

n∏
t=1

p(εt) =
1

(2πσ2)
n
2

exp

(
−1

2σ2

n∑
t=1

ε2t

)

Therefore, using the Jacobian of the Box-Cox transformation, the density of the

original series is

p(y
(ω)
t |x0, υ, σ2) = p(y

(ω)
t |x0, υ, σ2)

∣∣∣∣∣det
(
∂y

(ω)
t

∂y

)∣∣∣∣∣ = p(y
(ω)
t |x0, υ, σ2)

n∏
t=1

yω−1
t

=
1

(2πσ2)
n
2

exp

(
−1

2σ2

n∑
t=1

ε2t

)
n∏

t=1

yω−1
t .

By setting the partial derivative of L with respect to σ2 to zero, the maximum
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likelihood estimate of the error variance is obtained.

σ̂2 = n−1
n∑

t=1

ε2t . (18)

As a result, the log likelihood is equal to

L(x0, υ, σ2) =
−n

2
log (2πσ2)−

∑n
t=1 ε

2
t

2σ2
+ (ω − 1)

n∑
t=1

log yt. (19)

The result is obtained by substituting (18) into (19), multiplying by -2, and omit-

ting constant terms.

L∗(x0, υ) = n log

(
n∑

t=1

ε2t

)
− 2(ω − 1)

n∑
t=1

log yt. (20)

To obtain maximum likelihood estimates, this quantity (20) can be minimized.

We’ll need some initial x0 and υ estimates to begin the optimization. If the data

requires a Box-Cox transformation, an initial value for the Box-Cox parameter ω

must be approximated first. This could be accomplished by inspecting the data

under various transformations or just starting with ω=0. (We discovered that us-

ing this initial value resulted in better model selection and forecasting than using

alternative initial values for ω.)

Let m∗ = ⌊max(m1,m2, · · · ,mT )⌋. Then, for the first few seasons of transformed

data, we construct a 2xm∗ moving average. Denote this by ft(t = m∗/2+1,m∗/2+

2, · · · ) let zt = y
(ω)
t − ft .

For TBATS models, the seasonal component is then approximated using

zt ≈
T∑
t=1

ki∑
j=1

a
(i)
j cos(λ

(i)
j , t) + b

(i)
j sin(λ

(i)
j , t), (21)

where a
(i)
j and b

(i)
j are estimated by regressing zt against the trigonometric terms.
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The ith seasonal component’s initial seasonal states can then be set to a
(i)
j and

b
(i)
j .In order to derive a

(i)
j and a

(i)
j for BATS models, we repeat the same tech-

nique but substitute ki with mi/2 for even frequencies and (mi1)/2 for odd fre-

quencies in equation (21).The initial seasonal state estimates are defined as ẑt =∑ki
j=1

[
â
(i)
j cos(λ

(i)
j , t) + b̂

(i)
j sin(λ

(i)
j , t)

]
using these values.

In the TBATS model, model selection is automated by minimizing the AIC.

AIC = L∗(xo, υ) + 2K

where xo is an estimate of the initial states vector and υ is an estimate of the vector

containing the Box-Cox transformation parameter, the dampening parameter, and

the ARMA process coefficients. K is the total number of all the parameters in υ

plus the number of seed states in xo.

Furthermore, rather than evaluating every possible combination, the number of

harmonics is chosen using a method that involves first approximating the seasonally

de-trended data with a regression, then gradually adding harmonics and testing

their significance until a model with a minimal AIC emerges.

According to De-Livera, Hyndman, and Synder [13], a two-step procedure is used

to determine the ARMA process’s order (p, q). First, a suitable model without an

ARMA component is chosen, and then the Hyndman and Khandakar [8] algorithm

is applied to the residuals of that model to estimate p and q. The selected first

model is then fit again with the ARMA errors components included. However, the

latter is only retained if the new augmented model has a lower AIC than the model

without the ARMA component.

The TBATS model also has the advantage of decomposing a complex seasonal se-

ries into trend, seasonal, and irregular components. The Exponential smoothing

state-space model with Box-Cox transformation, ARMA errors, Trend, and Sea-
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sonal components(BATS) is another model variation that might be considered an

extension of the ETS model to support more complex seasonal patterns.

De-Livera, Hyndman, and Synder [13] state that the BATS model has drawbacks,

including the inability to manage non-integer seasonal periods and the potential

for a large number of seed states in seasonal patterns with long seasonal periods.
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2.4 Facebook Prophet

Facebook Prophet4 is a powerful time series forecasting package for Python and

R. It takes care of the technicalities required to generate forecasts, such as model

selection and feature engineering. It was created by Facebook’s Core Data Science

team [23] and released open-source in December 2016. It provides multiple sea-

sonality modeling methods, ranging from the Auto-regressive Integrated Moving

Average (ARIMA) models to exponential smoothing via Holt’s Linear Exponential

Smoothing, Holt-Winters. Growth g(t), seasonality s(t), holidays h(t), and error et

are the sum of three time functions plus an error term (Taylor and Letham [22]).

y(t) = g(t) + s(t) + h(t) + εt (22)

The Growth Function:

The new concept introduced into Facebook Prophet is that the growth trend can

exist at any point in the data or be changed at "change points," as Prophet refers

to them. The growth function models the data’s general trend. Change points are

when the data shifts from one direction to another.

g(t) = (k + a(t)T δ)t+ (m+ a(t)γ) (23)

k is the increase rate, δ is the rate arrangements, m is the offset parameter, and

γj is set to sj δj to provide a continuous function in equation (23). Change points

can be detected automatically by Prophet by setting a sparse prior on δ. The

Fourier series, on the other hand, is used to incorporate daily, weekly, and annual

seasonalities. You can also customize the growth function and the amount of data

taken into account in automatic change point detection by adjusting the power of

the change points.

4https://github.com/facebook/prophet.
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The Seasonality Function:

A Fourier Series as a function of time is the seasonality function. The sum of several

successive sines and cosines is a simple way to think about it. Some coefficients are

multiplied by each sine and cosine term. In the instance of Facebook Prophet, this

sum can approximate practically any curve or the seasonality (cyclical trend) in

our data. It appears as follows:

s(t) =

N∑
n=1

(
an cos

(
2πnt

P

)
+ bn sin

(
2πnt

P

))
(24)

The Holiday/Event Function:

When a holiday or major event changes the forecast, the holiday function allows

Facebook Prophet to adjust forecasting. It requires a list of dates (there are built-in

dates of US holidays, or you can specify your dates). It can also explore a selection

of days around dates (think of the period between Christmas and New Year’s,

holiday weekends, Thanksgiving link to Black Friday/Cyber Monday, and so on).

Facebook uses Prophet to forecast metrics, including page load times, server uti-

lization, and future ad and product performance. It has also been used to forecast

in various fields, like finance and climate research. It has been used to model the

spread of infectious diseases, predict future stock price movements, forecasts the

number of customers who will visit a website in the coming weeks and election

results.

Prophet can be used with any time series data that has been stored in Hierarchical

Data Format version 5 (HDF5) format. The data must have a date and time index,

but other attributes can also index it. Multiple seasonalities are supported by the

package, which means that the time series data can have multiple seasonal cycles,

such as daily, weekly, quarterly, and yearly patterns in the same model by using a

factor to identify each data point. It also supports multiple input variables in the

same model and can handle time series with missing observations.
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Prophet’s forecasting method uses machine learning to predict the future, which

means that the model will adapt to new patterns. Prophet is trained with historical

data and uses that to predict what might happen in the future. The algorithm has

two steps: training and prediction. It is also easy to use and deploy, making it a

good candidate for production forecasting. Prophet has some great documentation

available on Github, including installation instructions for Python and R. Compa-

nies including Google, Airbnb, Lyft, New Relic, Stripe, Heroku, and Digital Ocean

use Prophet.

The Prophet model has advantages and disadvantages over other forecasting meth-

ods: it is a state-of-the-art algorithm but requires many data to work well. Prophet’s

main limitation is that it requires at least twice as much data to predict the number

of time steps in our forecast. For instance, one needs 6 months of data to make a

forecast for 3 months.

Prophet can handle non-stationary time series data and has several built-in mod-

els for ARIMA modeling (such as ARMA, ARIMAX, and ARIMA), exponential

smoothing (such as Holt Winters), seasonal adjustment (such as X-12-ARIMA-

SEATS and X-13-ARIMA-SEATS), and trend decomposition (such as HoltWinters

Trend).

Prophet also has several features that include

1. The ability to handle multiple time series at once (both fitting models and

calculating forecasts).

2. The ability to fit non-seasonal ARIMA models (and other types of models).

3. The ability to fit models with multiple seasonality (e.g., quarterly and monthly).

4. The ability to fit long-memory ARIMA (and other) models.

5. The ability to fit time series with a non-stationary mean, including the ability

to handle heteroskedasticity or variance changes.
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2.5 ETS State Space Models

The ETS5 model, which stands for Error-Trend-Seasonality, is a time series de-

composition model (Hyndman and Athanasopoulos [10]). It divides the series into

three parts: error, trend, and seasonality. When dealing with time-series data, it

is a uni-variate forecasting model. Trend methods model, exponential smoothing,

and ETS decomposition are some of the principles included in this model.

The ETS models are a class of time series models that have an underlying state

space model that includes a level component, a trend component (T), a seasonal

component (S), and an error term (E). The exponential smoothing techniques al-

gorithms generate point forecasts. The ETS (Error Trend and Seasonality, or Ex-

ponenTial Smoothing) models can generate prediction (or forecast) intervals in

addition to point forecasts. There are two models for each method: one with ad-

ditive errors and the other with multiplicative errors. If the smoothing parameter

values are the same, the model’s point forecasts are similar. However, they will

produce different prediction intervals.

Each method is labeled as ETS(·, ·, ·) for (Error, Trend, Seasonal components).

This label can also be thought of as ExponenTial Smoothing. Using the notation;

Error: Additive ("A") or multiplicative ("M"), Trend: None ("N"), additive ("A"),

multiplicative ("M"), or damped ("Ad" or "Md"), Seasonality: None ("N"), addi-

tive ("A") or multiplicative ("M"), the possibilities for each component (or state)

are: Error= {A, M}, Trend = {N, A, Ad} and Seasonal= {N, A, M}.

Simple Exponential Smoothing with Addictive Errors

Simple exponential smoothing is yet another name for the simplest of the ETS

models. It is equivalent to the (A, N, N) model in ETS terms, which is a model

with additive errors, no trend, and no seasonality. Holt’s technique has the following

state space formulation [10]:

5ETS: Error - Trend and Seasonality, or ExponenTial Smoothing
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yt = yt−i + εt (25)

lt = lt−i + αεt (26)

This state space formulation can be transformed into a new one, a forecast, and a

smoothing equation (as with all ETS models):

Forecast equation : ŷt|t−1 = lt−1 (27)

Smothing equation : lt = αyt−1 + (1− α)lt−1 (28)

The "error correction" form is obtained by rearranging the smoothing equation for

the level.

lt = lt−1 + α(yt−1 − lt−1) (29)

lt = lt−1 + αεt (30)

ŷt|t−1 is the forecast/expectation. The forecast corresponds to the preceding level

in the simple exponential smoothing model. The next level is calculated using

the second equation (smoothing equation) as a weighted average of the previous

level and the preceding observation.lt is the level (or the smoothed value) of the

series at time t and εt = yt−1 − lt−1 = ŷt − ŷt|t−1denotes the residual at time t,

εt ∼ NID(0, σ2).

Hyndman and Athanasopoulos [10] derived the innovative state space model for

each of the exponential smoothing methods in the same way. The equations for all

of the models in the ETS framework are listed in the table below.
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2.6 Evaluation Metrics

The models were compared using forecasting errors. When a model is tested on a N

data samples, several metrics can be used to evaluate its performance (J.Hyndman

and B.Koehler [12]), We evaluate the forecast accuracy of our models by means of

the Root Mean Squared Error (RMSE), and the Median Absolute Error (MAE)

defined as

MAE = Median
(∣∣et∣∣)

RMSE =

√√√√ 1

N

N∑
t=1

e2t

23



where:

et is the forecast error, et= yt − ŷt,

yt is the actual value,

ŷt is the forecast value.

Hyndman and Athanasopoulos [10] defined time series cross-validation as a statis-

tical method of evaluating model performance using training and test sets. The

method of cross-validating the time-series model that can be utilized is cross-

validation on a rolling basis. Begin by training the model with a small subset

of data, forecasting for later data points, and then evaluating the accuracy of the

forecasted data points. The same forecasted data points are included in the next

training dataset, and additional data points are forecasted.
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3 Experiment Framework and Forecasting Re-

sult

3.1 Datasets

When choosing a dataset for study, there are various elements to consider, including

availability, privacy, and data scale. Although there are few public datasets with

enough data points for forecasting complex seasonal time series, we were able to

locate the hourly weather dataset, which has seasonality in its temperature degree

pattern and no missing values. This dataset6 , used in this study, covers weather

temperature from January 2016 to the end of December 2021 as shown in figure

1. It contains a total of 52578 data points, and it has seasonal variations. It can

be seen from Figure 2, the daily visualization of the weather temperature between

June 1st 2017 to June 8th 2017 to reflect the weekly and daily seasonality in the

data.

The data set is divided into an in-sample period comprising the first 439818 ob-

servations (1st January 2016 to 31st December 2021), which represent the initial

training set, 13 iterations were carried out in total to train the model, and in each

iteration, an additional 500 new observations are included in the new training set.

An out-of-sample period composed of the 2160 observations will be used to assess

the forecasting abilities of the different models.

6First Data Source : https://meteo.physic.ut.ee/
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Figure 2: Daily Estonia Electricity Price Data from June 1st, 2017, to June
8th, 2017

The second dataset contains hourly electricity prices in four Baltic states: Latvia,

Lithuania, Finland, and Estonia. Forecasting electricity prices can assist the gov-

ernment in developing power production strategy. In this scenario, we choose hourly

electricity prices in Euro per megawatt (Euro/MWh) and they are plotted in Fig-

ure 3 for Estonia from January 1, 2016, to December 31, 2020. There are 43816

data points in this dataset7

There is a noticeable positive jump around the middle of the year 2020 and also at

the beginning of December 2020, it can be assumed that this period corresponds

to Christmas, and due to the holiday, there is a high demand creating a high

electricity price. A similar but much smaller effect can be seen at the beginning of

the year 2016, 2018 and also at the middle of the year 2019, which may be a similar

effect caused by the high usage of electricity in the winter season. A rising trend

beginning with October until February can also be seen, and this effect can be due

to colder weather creating increased consumption due to heating requirements.

7Second Data Source : https://dashboard.elering.ee/
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Figure 3: Hourly Estonia Electricity Price Data from January 1st, 2016, to
December 31st, 2020

To choose an appropriate forecasting model, data must first be analyzed. After

selecting a model, it can be implemented with training data and evaluated using

test data. The raw data from Figure 1 and 3 were evaluated.

This is how the forecasting exercise is set up. The in-sample data is used to estimate

the model of interest, and forecasts are computed for different horizon up to 2160

hours (3 months ahead forecast). For each model, two measures of forecast error are

calculated: Root Mean Square Error (RMSE) and Median Absolute Error (MAE).

3.2 Application of Models to Temperature Data

Firstly, time series data with a single seasonality are analyzed using ETS models.

The selected ETS model is ETS (A, Ad, N), also known as the damped trend

method with additive errors, which means additive error, damped addictive trend,

and no seasonality.

For hourly data, the model selection procedure led to the model: TBATS (1,
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{0,0}, —, <24,4>, <168,6>, <8760,6>). In this model, Box-Cox transfor-

mation equals 1 ( no Box-Cox transformation), ARMA (0,0) errors are present, the

no damping parameter, 4 Fourier pairs have a period of m1=24 (daily), 6 Fourier

pairs have a period of m2=168 (weekly), and 6 Fourier pairs have a period of

m3=8766 (annual) which can be written as

yt = lt−1 + bt−1 + s
(1)
t−1 + s

(2)
t−1 + s

(3)
t−1 + αdt

bt = bt−1 + βdt

s
(1)
t =

4∑
j=1

s
(1)
j,t

s
(1)
j,t = sj,t−1 cos

(
2πjt

24

)
+ s∗j,t−1 sin

(
2πjt

24

)
+ γ

(1)
1 dt

s
∗(1)
j,t = −sj,t−1 sin

(
2πjt

24

)
+ s∗j,t−1 cos

(
2πjt

24

)
+ γ

(1)
2 dt

s
(1)
t =

6∑
j=1

s
(2)
j,t

s
(2)
j,t = sj,t−1 cos

(
2πjt

168

)
+ s∗j,t−1 sin

(
2πjt

168

)
+ γ

(2)
1 dt

s
∗(2)
j,t = −sj,t−1 sin

(
2πjt

168

)
+ s∗j,t−1 cos

(
2πjt

168

)
+ γ

(2)
2 dt

s
(2)
t =

6∑
j=1

s
(3)
j,t

s
(3)
j,t = sj,t−1 cos

(
2πjt

8760

)
+ s∗j,t−1 sin

(
2πjt

8760

)
+ γ

(3)
1 dt

s
∗(3)
j,t = −sj,t−1 sin

(
2πjt

8760

)
+ s∗j,t−1 cos

(
2πjt

8760

)
+ γ

(3)
2 dt

where dt is an ARMA process (0,0), and α = 1.3034, β = 0, γ(1)1 = 0.0166, γ(2)1

= -5.9233, γ(3)1 = 0.0157, γ(1)2 = 0.0298, γ(2)2 = -0.0004, and γ
(3)
2 = -0.0027 are

smoothing parameters. The total number of initial seasonal values are 2(4+6 +6)
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is equal to 32.

The decomposition result is shown in Figure 4 of the historical hourly electricity

Price in Estonia using TBATS confirms the series is characterized by three sea-

sonalities (daily, weekly, and yearly). Each panel represents the original data, the

trend, the daily seasonality, the weekly seasonality, and the yearly seasonality, re-

spectively. However, the frequency of the first seasonal component (season 1) about

the length of the time series makes identification possible only after a graph for a

shorter period (e.g., one week) has been visualized. Taken as an example, the first

seasonal component for June 1st, 2017, to June 8th, 2017 (Figure 2) clearly shows

a daily cycle.

Figure 4: Decomposition of Historical Hourly Weather Ttemperature in Es-
tonia using TBATS.

Subsequently, the Prophet model was initialized, with in-sample data of 4 years

for training the model. The three figures from top to bottom are the growth trend,

weekly trend, yearly trend and daily trend provided by Prophet additive models,

respectively.

Figure 5 reveals an obvious peak in the annual trend of high temperature during
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Figure 5: Decomposition of historical hourly weather temperature in Estonia
using PROPHET.

summer from early June to late September, and the temperature was lowest from

December to February, which is during the winter period of the year. In addition,

according to the decomposition, the daily temperature is lowest during the night

and increases through daylight. For this purpose, two error components, RMSE and

MAE (explained in section 2.6) have been computed to check the out-of-sample

performances for different forecasting horizons(hour): h = 1, 6, 12, 48, 72, 720,

2160. Figure 6 represents the comparison between RMSE and MAE error measures

obtained by applying these selected models.

Table 1 and 2 show the model performance of predictions over different time hori-

zons up to 2160 (3 months) ahead forecast using the RMSE and MAE evaluation

metrics. From the results, it is evident that the TBATS is a better forecasting

model that performs better than all other models in terms of low error, better

fitting, and better forecasting than others while PROPHET also perform well on a

long term forecasts (up to about 3 month ahead) than ETS which has higher error

metrics.
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Forecasting horizon (hour)
Model 1 6 12 24 48 72 720 2160

ETS (A,Ad, N) 0.39 3.22 5.83 3.38 4.25 5.53 10.23 18.12
TBATS 0.17 1.73 2.51 1.63 2.87 2.99 8.57 5.84

PROPHET 5.36 4.43 4.35 5.19 4.55 4.57 6.55 7.86

Table 1: RMSE Performance Matrix of Selected Models to Historical Estonia
Temperature Data for Different Horizons

Forecasting horizon (hour)
Model 1 6 12 24 48 72 720 2160

ETS (A,Ad, N) 0.18 2.55 4.96 1.54 3.37 1.73 8.56 14.90
TBATS 0.17 1.37 1.90 1.63 2.87 3.00 8.57 5.85

PROPHET 4.31 3.30 2.91 3.94 2.06 3.45 6.05 5.78

Table 2: MAE Performance Matrix of Selected Models to Historical Estonia
Temperature Data for Different Horizons

(a) RMSE across different forecast
horizons comparing out-of-sample

performances

(b) MAE across different forecast
horizons comparing out-of-sample

performances

Figure 6: Forecasting Accuracy for Temperature from 1 to 2160 hours (i.e. 3
months)

Figure 7 and 8 illustrates the 3 months ahead forecast comparison based on the out-

of-sample data for our selected models. The TBATS model: TBATS (1, {0,0},

—, <24,4>, <168,6>, <8760,6>) retains the trend of the time series which

indicates that the TBATS model is best-suited to the data. The forecasts retained

all three seasonalities, making them more realistic for shorter and longer periods.
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Figure 7: Out-of-Sample Prediction Comparison of Selected ETS, TBATS,
and PROPHET Model.

Figure 8: Out-of-Sample Prediction Comparison of Selected ETS, TBATS,
and PROPHET Model.
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3.3 Application of Models to Electricity Price Data

The data reflects the (spot) electricity price recorded at one-hour (frequency) inter-

vals. A visual analysis of the data establishes strong, complex levels of seasonality.

Figure 3 plots the electricity price data for five years from January 1, 2016, to

December 31, 2020, and it is evident that the data exhibits the typical features of

electricity prices and contains several periods of extreme volatility and price spikes.

In this study, to evaluate the performance of the proposed model, three individual

models, such as ETS, TBATS, and PROPHET, were considered. The ETS and

TBATS models were implemented and optimized using the Forecast package for R

[11] while the prophet package for R [24] is used to model PROPHET.

Two subsets of the time series were generated: in-sample and out-of-sample (test-

samples). The in-samples were used to build the model, whereas the test samples

were used to assess the performance of the models. The in-sample contained 35040

(approximately four years) observations, and 8760 (a year) datapoint was used

as out-of-samples. The models are evaluated based on one-step-ahead (1 hour)

prediction up to 2160 (3 months). The selected models were used for performance

analysis by making the aforementioned experimental setup.

The selected ETS model is ETS(A, N, A), which means additive error, No trend,

and Addictive seasonality. A standard model selection procedure was followed to

obtain the TBATS (1, {0,0}, 0.8, <24, 5>) model and the estimated TBATS

model was derived by applying a Box-Cox transformation of 1 representing no use

of Box-Cox transformation, the order of ARMA error is (0, 0), a damping parameter

of 0.8 (essentially doing nothing), and five Fourier pairs/harmonics with seasonal

periods of 24. The decomposition of the electricity price time series is shown in

Figure 9. The forth panels exhibit the daily seasonal components accommodated

by the TBATS model which can be expressed as follows:.
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yt = lt−1 + bt−1 + st−1 + αdt

bt = bt−1 + βdt

st =
5∑

j=1

sj,t

sj,t = sj,t−1 cos

(
2πjt

24

)
+ s∗j,t−1 sin

(
2πjt

24

)
+ γ1dt

s∗j,t = −sj,t−1 sin

(
2πjt

24

)
+ s∗j,t−1 cos

(
2πjt

24

)
+ γ2dt

where α = 009560, β = -0.2078, γ1 = 0.0156, γ2 = 0.0009 are smoothing parameters.

Figure 9: Decomposition of historical hourly electricity price in Estonia using
TBATS.

Based on the current prediction framework, it is clear from the decomposition

results of PROPHET in Figure 10 that the weekly decomposition found weekdays

to be high electricity prices than weekends which shows a gradual decline.
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Figure 10: Decomposition of Historical Hourly Electricity Price in Estonia
using PROPHET.

Table 3 and 4 show the forecasting evaluation metrics (RMSE and MAE values)

of the selected time series forecasting models for different forecast time horizons as

h= 1 (1 hours), 6 (6 hours), 12 (12 hours), 24 (1 day), 48 (2 days), 72 (3 days),

720 (1 month), 2160 (3 months) ahead is generated.

Forecasting horizon (hour)
Model 1 6 12 24 48 72 720 2160

ETS (A,N,A) 5.91 17.32 25.07 13.74 10.13 9.82 11.79 21.72
TBATS 3.46 7.08 10.64 8.02 7.20 6.82 12.43 7.53

PROPHET 14.781 15.76 30.81 21.51 18.67 15.46 18.02 14.41

Table 3: RMSE Performance Matrix of Selected Models to Estonia Electric-
ity Price Data for Different Horizons

Figure 11 compares the out of sample forecasting accuracy of the selected ETS,

TBATS, and PROPHET models. The TBATS model provides much better fore-

casting accuracy than the other models. Experiment results in Figure 12 and 13

show the comparison of our model forecast with actual time series data, while ETS
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Forecasting horizon (hour)
Model 1 6 12 24 48 72 720 2160

ETS (A,N,A) 2.19 11.29 16.02 6.92 3.28 8.16 11.03 12.05
TBATS 3.46 7.08 10.64 8.02 7.20 6.82 12.43 7.53

PROPHET 9.26 12.58 12.29 18.65 13.52 8.37 13.01 6.89

Table 4: MAE Performance Matrix of Selected Models to Estonia Electricity
Price Data for Different Horizons

(a) RMSE across different forecast
horizons comparing out-of-sample

performances

(b) MAE across different forecast
horizons comparing out-of-sample

performances

Figure 11: Forecasting Accuracy for Electricity Price from 1 to 2160 hours
(i.e. 3 month).

and TBATS forecasts quite well compared with the original time series and can be

considered satisfactory.
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Figure 12: Out-of-Sample Prediction Comparison between Selected ETS,
TBATS, and PROPHET Model.

Figure 13: Out-of-Sample Prediction Comparison between Selected ETS,
TBATS, and PROPHET Model.
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Conclusions

In Today’s era, the complex seasonality frequently appears in long time series such

as daily, hourly, and weekly time series data. Due to the limitations of traditional

forecasting methods to handle complex seasonality, new state-space modeling meth-

ods like TBATS have become more important.

Real-time prediction with high accuracy depends on the model used for training

and testing automated forecasting procedure that integrates seasonality detection,

estimation, model selection, and forecasting for complex seasonality time series.

The TBATS, ETS, and PROPHET models are compared in this work, and their

ability to make short-term and long-term forecasts are investigated. Two error mea-

sures, RMSE and MAE, were studied at different forecasting horizons to compare

these models’ forecasting accuracy. The study analyses reveal complex seasonal

variation, and forecast values were produced and compared for different forecast-

ing horizons for up to 3-months using three selected models. By Examining the

accuracy metric values in Table 1 - Table 4, we conclude that in most cases, the

TBATS model outperforms the ETS and PROPHET, which has the least minimum

RMSE, and MAE values.

We have investigated the model’s performance using financial (electricity price)

and non-financial (temperature) time series. The real-life data allowed us to demon-

strate that the TBATS model outperforms ETS and PROPHET for long and short-

term forecast horizons as it can capture complex seasonality.

Hence, we conclude that the TBATS forecasting model can be used as an easy-

to-implement and automatic, strong baseline in complex time series forecasting

space.

38



References

[1] S. Armstrong. Principles of Forecasting: A Handbook for Researchers

and Practitioners. Third. Kluwer Academic Publishing, 2001.

[2] G. E. P. Box, G. M. Jenkins, and G. M Ljung. Time Series Analysis:

Forecasting and Control. Wiley, 2015.

[3] P. J. Brockwell and R. A. Davis. ,Introduction to Time Series and

Forecasting. Springer, 1996.

[4] R. Cottet and M. Smith. “Bayesian Modeling and Forecasting of Intra-

day Electricity Load”. In: Journal of Operational Research Society 98

(2003), pp. 839–849.

[5] F. Gao et al. “Forecasting power market clearing price and quantity

using a neural network method”. In: Power Engineering Summer Meet.,

Seattle, WA (2000), pp. 2183–2188.

[6] G. Gross and F. D. Galiana. “Short-term load forecasting”. In: IEEE

75 (1987), pp. . 1558–1573.

[7] Adrew C. Harvey. Forecasting, Structural Time Series Models and the

Kalman Filter. Cambridge University Press, 1989.

[8] R. J. Hyndman and Y. Khandakar. “Automatic time series forecasting:

The forecast package for R”. In: . Journal of Statistical Software 27

(2008). url: https://dx.doi.org/10.18637/jss.v027.i03.

[9] Rob J Hyndman et al. Forecasting with Exponential Smoothing: the

State Space Approach: The State Space Approach. Springer, 2008.

[10] Rob J. Hyndman and George Athanasopoulos. Forecasting: Principles

and Practice. Third. OTexts, 2018. url: https://otexts.com/fpp3/.

39

https://dx.doi.org/10.18637/jss.v027.i03
https://otexts.com/fpp3/


[11] Rob J. Hyndman and Yeasmin Khandakar. Automatic time series for

forecasting: the forecast package for R. Monash University, Department

of Econometrics and Business Statistics. 6/07. 2007.

[12] Rob J.Hyndman and Anne B.Koehler. Another look at measures of

forecast accuracy. International Journal of Forecasting. 2006, pp. 679–

688.

[13] A. M. De-Livera, R. J. Hyndman, and R. D. Synder. Forecasting time

series with complex seasonal patterns using exponential smoothing. Jour-

nal of the American Statistical Association. 2011, pp. 1513–1527. url:

https://www.tandfonline.com/doi/abs/10.1198/jasa.2011.

tm09771.

[14] M.Blum and M. Riedmiller. “Electricity Demand Forecasting Using

Gaussian Processes”. In: AAAI Press (2013), pp. 10–13.

[15] N. H. Miswan, R. M. Said, and N. H. Hussin. “Comparative Perfor-

mance of ARIMA and DES Models in Forecasting Electricity Load De-

mand in Malaysia”. In: International Journal of Electrical Computer

Sciences IJECS-IJENS 16 (2016), pp. 6–9.

[16] F Nilgun and M Betul. “Incorporating Explanatory Effects of Neigh-

bour Airports in Forecasting Models for Airline Passenger Volumes”.

In: Proceedings of 5th the International Conference on Operations Re-

search and Enterprise System (2016), pp. 178–185.

[17] B. Ramsay and A. J. Wang. “An electricity spot-price estimator with

particular reference to weekends and public holidays,” in: UPEC Manch-

ester, U.K (1997), pp. 371–374.

40

https://www.tandfonline.com/doi/abs/10.1198/jasa.2011.tm09771
https://www.tandfonline.com/doi/abs/10.1198/jasa.2011.tm09771


[18] P. Skantze, M. Ilic, and J. Chapman. “Stochastic modeling of electric

power prices in a multi-market environment”. In: Power Engineering

Winter Meet., Singapore (2000), pp. 1109–1114.

[19] B.R. Szkuta, L. A. Sanabria, and T. S. Dillon. “Electricity price short-

term forecasting using artificial neural networks”. In: IEEE Trans. Power

Syst 14 (1999), pp. 851–857.

[20] M. Dhalival T. Nakashima and T. Niimura. “Electricity market data

representation by fuzzy regresion models”. In: presented at the Power

Eng. Summer Meet., Seattle (2000).

[21] James W. Taylor. “Short-term electricity demand forecasting using

double seasonal exponential smoothing”. In: Journal of Operational Re-

search Society 54 (2003), pp. 799–805.

[22] S. Taylor and B. Letham. “Forecasting at Scale”. In: The American

Statistician 17 (2018), pp. 837–45. url: doi:10.1080/00031305.

2017.1380080.

[23] Facebook’s Core Data Science team. Prophet: Automatic Forecasting

Procedure. Github. 2016. url: https : / / github . com / facebook /

prophet.

[24] Facebook’s Core Data Science team. Prophet Forecasting At Scale. url:

https://facebook.github.io/prophet/.

[25] Mike West and Jeff Harrison. Bayesian Forecasting and Dynamic Mod-

els. Springer, 1997.

[26] P. Zhou, B. W. Ang, and K. L. Poh. “A Trigonometric Grey Predic-

tion Approach to Forecasting Electricity Demand”. In: Energy, Issue

31 (2006), pp. 2839–2847.

41

doi:10.1080/00031305.2017.1380080
doi:10.1080/00031305.2017.1380080
https://github.com/facebook/prophet
https://github.com/facebook/prophet
https://facebook.github.io/prophet/


Appendix 1: R code for data exploration and

visualisation

1 l i b r a r y ( f o r e c a s t ) ; l i b r a r y ( t i dyv e r s e ) ; l i b r a r y ( f o r e c a s t ) ; l i b r a r y (

xts ) ; l i b r a r y ( ggp lot2 ) ; l i b r a r y ( prophet ) ; i b r a ry ( l ub r i d a t e ) ;

l i b r a r y ( dplyr ) ; l i b r a r y ( s c a l e s ) ; l i b r a r y ( t i dy r ) ; l i b r a r y (pacman)

; l i b r a r y ( fpp2 ) ; r e qu i r e ( t s e r i e s ) ; l i b r a r y ( t i dy r )

2

3 #####################################

4 #Data 1 : Temperature Dataset#########

5 ####################################

6 #Read in Temperature datase t

7 data <− read . t ab l e ( f i l e = " the s i s da t a2 . txt " , sep =" , " , header =

TRUE)

8 #date manipulat ion

9 dat . xt s <− xts ( data$Temperature , as_datet ime ( data$Times ) )

10 ep<−endpoints ( dat . xts , on="hours " , k=1) #on= how your data i s

s p a c e d , k=how you want to c lub i t

11 dat . xt s . hour ly<−per iod . apply ( dat . xts , FUN=mean ,INDEX=ep )

12 df <− f o r t i f y ( dat . xt s . hour ly )

13 names ( df ) <− c ( "Date" , "Temperature" )

14 #convert temperature data in to mu l t ip l e s e a s o n a l i t y time s e r i e s

data

15 x11 <− msts ( dat . xt s . hourly , s e a sona l . p e r i od s=c (24 ,24 ∗ 7 ,365 ∗ 24) ,

s t a r t =2016)

16 autop lo t ( x11 , c o l o r="blue " ) + xlab ( "Year" ) + ylab ( "Temperature (

C ) " ) + labs ( t i t l e = "Hourly Estonia Temperature" , s u b t i t l e =

"January 1 s t 2016− December 31 s t 2021" )

17 #Seasona l Subs e r i e s Plot

18 g g s ub s e r i e s p l o t ( x11 ) + g g t i t l e ( " Seasona l Subs e r i e s p l o t : Hourly

Estonia Temperature" )+ xlab ( "Month" ) + ylab ( "Temperature" )

19 #Test f o r Autoco r r e l a t i on
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20 ch e ck r e s i dua l s ( x11 )

21 ##########################################

22 #Dataset 2− Estonia Energy Consumpotion###

23 ###########################################

24 #Read in yea r l y datase t from 2016−2021

25 data2 <− read . t ab l e ( f i l e = " e l e c t r i c i t y −nps p r i c e_20220408 (1 ) .

csv " , sep =" ; " , header = TRUE)

26 data3 <− read . t ab l e ( f i l e = " e l e c t r i c i t y −nps p r i c e_20220408 (2 ) .

csv " , sep =" ; " , header = TRUE)

27 data4 <− read . t ab l e ( f i l e = " e l e c t r i c i t y −nps p r i c e_20220408 (3 ) .

csv " , sep =" ; " , header = TRUE)

28 data5 <− read . t ab l e ( f i l e = " e l e c t r i c i t y −nps p r i c e_20220408 (4 ) .

csv " , sep =" ; " , header = TRUE)

29 data6 <− read . t ab l e ( f i l e = " e l e c t r i c i t y −nps p r i c e_20220408 (5 ) .

csv " , sep =" ; " , header = TRUE)

30 #bind a l l datase t

31 t o t a l <− rbind ( data2 , data3 , data4 , data5 , data6 ) #used to c r e a t e

t o t a l dataframe

32 #crea t e new dataframe o f dates and p r i c e s o f e l e c t r i c i t y

33 dfnew <− data . frame ( t o t a l $ Kuup ev . . Ee s t i . aeg . , t o t a l $NPS. Ee s t i )

34 names ( dfnew ) <− c ( "Date" , " Pr i c e s " )

35 dfnew$ Pr i c e s= gsub ( " , " , " . " , dfnew$ Pr i c e s ) #change decimal po int

from , to .

36 dfnew$ Pr i c e s = as . numeric ( as . cha rac t e r ( dfnew$ Pr i c e s ) )

37 dfnew$Date <− strpt ime ( dfnew$Date , format= "%d.%m.%Y %H:%M ")

38 format ( dfnew$Date , format="%Y−%m−%d %H:%M")

39 #mul t ip l e s e a s o n a l i t y f o r energy p r i c e data

40 x3 <− msts ( dfnew$ Pr ices , s e a sona l . p e r i od s=c (24) , s t a r t =2016)

41 #Some Exploratory Ana lys i s

42 #Normal Plot

43 autop lo t ( x3 , c o l o r="blue " ) + xlab ( "Year" ) + ylab ( " E l e c t r i c i t y

Pr i ce ( /MWh)" )+ labs ( t i t l e = "Hourly Estonia E l e c t r i c i t y

p r i c e " , s u b t i t l e = "January 1 s t 2016− December 31 s t 2020" )
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44 #Seasona l Plot

45 ggseasonp lo t ( x3 ) + g g t i t l e ( " Seasona l p l o t : Hourly Estonia

E l e c t r i c i t y p r i c e " )+ xlab ( "Month" ) + ylab ( " E l e c t r i c i t y Pr i ce "

)

46 #Seasona l Subs e r i e s Plot

47 g g s ub s e r i e s p l o t ( x3 ) + g g t i t l e ( " Seasona l Subs e r i e s p l o t : Hourly

Estonia E l e c t r i c i t y p r i c e " )+ xlab ( "Month" ) + ylab ( "

E l e c t r i c i t y p r i c e " )

48 #Test f o r Autoco r r e l a t i on

49 ch e ck r e s i dua l s ( x3 )
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Appendix 2: R code for ETS, TBATS and PROPHET

1 t r a i n1= subset ( x11 , end=24∗365∗ 5)

2 #Apply TBATS and f o r e c a s t

3 temptbats111<− tbat s ( t ra in1 , use . box . cox = NULL, use . trend = NULL,

use . damped . trend = NULL, s ea sona l . p e r i od s = NULL, use . arma .

e r r o r s = TRUE)

4 f c44 .8= f o r e c a s t ( temptbats111 , h=24∗365)

5 accuracy ( f c44 . 8 , x11 )

6

7 x12 <− msts ( dat . xt s . hourly , s e a sona l . p e r i od s=c (24) , s t a r t =2016)

8 t r a in10= subset ( x12 , end=24∗365∗ 5)

9 #Apply ETS and f o r e c a s t

10 temptbats222<− et s ( t r a in10 )

11 f c550 .8= f o r e c a s t ( temptbats222 , h=24∗365)

12 accuracy ( f c550 . 8 , x12 )

13 #######################################

14 ##Apply prophet to temperature datase t##

15 #######################################

16 s t a t s 1=data . frame (y=(df $Temperature )

17 , ds=df $Date )

18 s t a t s 1=aggregate ( s t a t s 1 $y , by=l i s t ( s t a t s 1 $ds ) ,FUN=sum)

19 colnames ( s t a t s 1 )<− c ( "ds" , "y" )

20 #Removing l a s t 8760(1 year ) rows from dataframe , s t o r i n g l a s t

measurements in a separa te vec to r .

21 s e r i e s 1=s t a t s 1 [ 1 : ( nrow ( s t a t s 1 ) −8760) , ]

22 actua l1=t a i l ( s ta t s1 , n=8760)

23 t r a i n1 = s e r i e s 1

24 t e s t 1 = actua l1

25 f u tu re1 . 8 = make_fu tu r e_dataframe ( model1 , pe r i od s = 24∗ 365)

26 f o r e c a s t 1 . 8 = pr ed i c t ( model1 , fu tu re1 . 8 )

27 #######################################

28 #Apply TBATS on e l e c t r i c i t y p r i c e Data##
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29 ######################################

30 t r a in20= subset ( x3 , end=24∗365∗ 4)

31 #Apply TBATS and f o r e c a s t

32 temptbats20<− tbat s ( t ra in20 , use . box . cox = NULL, use . trend = NULL,

use . damped . trend = NULL, s ea sona l . p e r i od s = NULL, use . arma .

e r r o r s = TRUE)

33 f c20 .8= f o r e c a s t ( temptbats20 , h=24∗365)

34 accuracy ( f c20 . 8 , x3 )

35 #######################################

36 #Apply ETS on e l e c t r i c i t y p r i c e Data##

37 ######################################

38 x4= t s ( dfnew$ Pr ices , f requency =24, s t a r t =2016)

39 t r a in30= subset ( x4 , end=24∗365∗ 4)

40 #Apply ETS and f o r e c a s t

41 e t s01<− et s ( t r a in30 )

42 f c e t s 0 1 .8= f o r e c a s t ( ets01 , h=24∗365)

43 accuracy ( f c e t s 0 1 . 8 , x4 )

44 ####################################

45 ##prophet with e l e c t r i c i t y p r i c e data

46 #####################################

47 s t a t s=data . frame (y=(dfnew$ Pr i c e s )

48 , ds=dfnew$Date )

49 s t a t s=aggregate ( s t a t s $y , by=l i s t ( s t a t s $ds ) ,FUN=sum)

50 colnames ( s t a t s )<− c ( "ds" , "y" )

51 # Removing l a s t 8760(1 year ) rows from dataframe , s t o r i n g l a s t

measurements in a separa te vec to r .

52 s e r i e s 1 0=s t a t s [ 1 : ( nrow ( s t a t s ) −8760) , ]

53 actua l10=t a i l ( s t a t s , n=8760)

54 t r a in10 = s e r i e s 1 0

55 t e s t 10 = actua l10

56 model10 = prophet ( t ra in10 , da i l y . s e a s o n a l i t y=TRUE)

57 fu ture10 . 8 = make_fu tu r e_dataframe ( model10 , pe r i od s = 24∗ 365)

58 f o r e c a s t 1 0 . 8 = pr ed i c t ( model10 , fu ture10 . 8 )
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59 ############################

60 #EVEALUATION METRICS

61 #########################

62 forecastM_tbat s=matrix (NA, 13 , 24∗3∗ 30)

63 forecastM_et s=matrix (NA, 13 , 24∗3∗ 30)

64 forecastM_prophet=matrix (NA, 13 , 24∗3∗ 30)

65

66 e r r o r s_tbat s=matrix (NA, 13 , 24∗3∗ 30)

67 e r r o r s_e t s=matrix (NA, 13 , 24∗3∗ 30)

68 e r r o r s_prophet=matrix (NA, 13 , 24∗3∗ 30)

69

70 f o r ( i in 1 : 13 ) {

71 # i=1

72 pr in t ( i )

73 currentTime=24∗365∗4+( i −1)∗500

74 t r a i n <− subset ( x3 , end=currentTime )

75 t e s t <− subset ( x3 , s t a r t=currentTime+1, end=currentTime+24∗3∗

30)

76 tbat s_i <− tbat s ( t ra in , use . box . cox = NULL, use . trend = NULL, use

. damped . trend = NULL, s ea sona l . p e r i od s = NULL, use . arma .

e r r o r s = TRUE)

77 # Up to 3 months f o r e c a s t

78 f o r e c a s t_tbat s <− f o r e c a s t ( tbat s_i , h=24∗3∗ 30)

79 forecastM_tbat s [ i , ] <−f o r e c a s t_tbat s $mean

80 e r r o r s_tbat s [ i , ] <− tes t −f o r e c a s t_tbat s $mean

81 pr in t ( " e t s " )

82 e t s_i <− et s ( t r a i n )

83 f o r e c a s t_e t s <− f o r e c a s t ( e t s_i , h=24∗3∗ 30)

84 forecastM_et s [ i , ] <− f o r e c a s t_e t s $mean

85 e r r o r s_e t s [ i , ]= te s t −f o r e c a s t_e t s $mean

86 pr in t ( "prophet " )

87 t r a in20 . 1 <− s t a t s [ 1 : currentTime , ]

88 colnames ( t r a in20 . 1 ) = c ( "ds" , "y" )
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89 prophet_i <− prophet ( t r a in20 . 1 )

90 f u tu r e <− make_fu tu r e_dataframe ( prophet_i , pe r i od s = 24∗3∗ 30 ,

f r e q = 3600)

91 f o r e c a s t_prophet <− pred i c t ( prophet_i , f u tu r e ) [ ( currentTime+1)

: ( currentTime+24∗3∗ 30) , ] $yhat

92 forecastM_prophet [ i , ] <− f o r e c a s t_prophet

93 e r r o r s_prophet [ i , ] <− tes t − f o r e c a s t_prophet

94 }

95 median ( abs ( e r r o r s_prophet [ , 3 ] ) )

96 median ( abs ( e r r o r s_e t s [ , 2 ] ) )

97 median ( abs ( e r r o r s_tbat s [ , 3 ] ) )

98

99 MAE_prophet=rep (NA, 24∗30∗ 3)

100 MAE_et s=rep (NA, 24∗30∗ 3)

101 MAE_TBATS=rep (NA, 24∗30∗ 3)

102

103 f o r ( i in 1 : ( 24 ∗30∗ 3) ) {

104 MAE_prophet [ i ]=median ( abs ( e r r o r s_prophet [ , i ] ) )

105 MAE_et s [ i ]=median ( abs ( e r r o r s_e t s [ , i ] ) )

106 MAE_TBATS[ i ]=median ( abs ( e r r o r s_tbat s [ , i ] ) )

107 }

108

109 RMSE_prophet=rep (NA, 24∗30∗ 3)

110 RMSE_et s=rep (NA, 24∗30∗ 3)

111 RMSE_TBATS=rep (NA, 24∗30∗ 3)

112

113 P=e r r o r s_prophet ∗∗2

114 E=e r r o r s_e t s ∗∗2

115 TB=e r r o r s_tbat s ∗∗2

116

117 f o r ( i in 1 : ( 24 ∗30∗ 3) ) {

118 RMSE_prophet [ i ]= sq r t (mean(P[ , i ] ) )

119 RMSE_et s [ i ]= sq r t (mean(E[ , i ] ) )
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120 RMSE_TBATS[ i ]= sq r t ( median (TB[ , i ] ) )

121 }

122

123 p lo t (RMSE_TBATS)

124 l i n e s (RMSE_ets , c o l =2)

125 l i n e s (RMSE_prophet , c o l =3)

126

127 data_long <− melt ( rsmemetric , id = "h" )

128 ggp lot ( data_long , aes ( x = f a c t o r (h) , y = value , co l ou r = var i ab l e

, group = va r i ab l e ) ) +

129 geom_l i n e ( )+geom_point ( )+labs (x = "h" ) +labs (y = "RSME" )+ labs (

t i t l e = "RSME Performace measures f o r 5 years " , s u b t i t l e =

"Estonia Hourly Temperature Data" ) +

130 theme ( legend . t i t l e = element_blank ( ) )+theme ( legend . p o s i t i o n = c

( 0 . 2 , 0 . 8 ) , l egend . background = element_r e c t ( f i l l = "white " )

)

131

132 data_mae <− melt ( maemetric , id = "h" )

133 ggp lot ( data_mae , aes ( x = f a c t o r (h) , y = value , co l ou r = var i ab l e ,

group = va r i ab l e ) ) +

134 geom_l i n e ( )+geom_point ( )+labs (x = "h" ) +labs (y = "MAE" )+ labs (

t i t l e = "MAE Performace measures f o r 5 years " , s u b t i t l e = "

Estonia Hourly Temperature Data" ) +

135 theme ( legend . t i t l e = element_blank ( ) )+theme ( legend . p o s i t i o n = c

( 0 . 2 , 0 . 8 ) , l egend . background = element_r e c t ( f i l l = "white " )

)

136

137 data_rsme2 <− melt ( rsmemetric2 , id = "h" )

138 ggp lot ( data_rsme2 , aes ( x = f a c t o r (h) , y = value , co l ou r =

var i ab l e , group = va r i ab l e ) ) +

139 geom_l i n e ( )+geom_point ( )+labs (x = "h" ) +labs (y = "RSME" )+ labs (

t i t l e = "RSME Performace measures f o r 4 years " , s u b t i t l e =

"Estonia Hourly E l e c t r i c i t y Pr i ce Data" ) +
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140 theme ( legend . t i t l e = element_blank ( ) )+theme ( legend . p o s i t i o n = c

( 0 . 2 , 0 . 8 ) , l egend . background = element_r e c t ( f i l l = "white " )

)

141

142 data_mae2 <− melt ( maemetric2 , id = "h" )

143 ggp lot ( data_mae , aes ( x = f a c t o r (h) , y = value , co l ou r = var i ab l e ,

group = va r i ab l e ) ) +

144 geom_l i n e ( )+geom_point ( )+labs (x = "h" ) +labs (y = "MAE" )+ labs (

t i t l e = "MAE Performace measures f o r 4 years " , s u b t i t l e = "

Estonia Hourly E l e c t r i c i t y Pr i ce Data" ) +

145 theme ( legend . t i t l e = element_blank ( ) )+theme ( legend . p o s i t i o n = c

( 0 . 2 , 0 . 8 ) , l egend . background = element_r e c t ( f i l l = "white " )

)
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Appendix 3.

Figure 14: Historical data and TBATS forecasts for the Estonia hourly
weather temperature (1 year ahead Forecast).

Figure 15: Historical data and PROPHET forecasts for the Estonia hourly
weather temperature (1 year ahead Forecast).
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Figure 16: Historical data and ETS forecasts for the Estonia hourly weather
temperature (1 year ahead Forecast).

Figure 17: Historical data and TBATS forecasts for the Estonia hourly Elec-
tricity Price (1 year ahead Forecast).
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Figure 18: Historical data and PROPHET forecasts for the Estonia hourly
Electricity Price (1 year ahead Forecast).

Figure 19: Historical data and ETS forecasts for the Estonia hourly Electric-
ity Price (1 year ahead Forecast).
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