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Muutuste üle kandmine deklaratiivsetest protseduursetesse
protessi mudelitesse

Lühikokkuvõte:
Debatt protseduuriliste ja deklaratiivsete keelte eeliste ja puuduste üle erine-

vate kasutusjuhtude korral on olnud tuline. Protseduurilised keeled on sobivamad
operatiivsete protsesside modelleerimiseks, deklaratiivsed keeli kasutatakse regu-
latsioonide/juhiste jaoks. Ometi tekib olukordi, kus on mõistlik kombineerida neid
keeli, et saavutada parem tulemus. Selle asemel, et sundida modelleerijaid õppima
uusi hübriidkeeli, peame me paremaks kahe spetsifikatsiooni eraldi hoidmist ja pa-
kume välja viisi kuidas protseduurilist mudelit automaatselt muuta nii, et see oleks
kooskõlas deklaratiivsete reeglitega. Nõudlus sellise lahenduse jaoks tekib, näiteks
kui organisatsioon peab muutma protsesse vastavalt muutuvatele välistele reeglite-
le. Üldiselt, on nii võimalik ära kasutada deklaratiivsete keelte paindlikust ja hoida
kõrgetasemelist tuge, mida pakuvad protseduurilised keeled. Lisaks, võrreldes origi-
naalset ja parandatud mudelit, on võimalik selgelt näha reeglite mõju. Käesolevas
lõputöös sõnastame me antud probleemi, loome teoreetilise vundamendi ja pa-
kume välja olekumasinatel põhineva lahenduse, mida me võrdleme olemasolevate
lahendustega mudelite parandamiseks ja protsesside avastamiseks.

Võtmesõnad: Mudeli parandamine, Mudeli kontrollimine, Deklaratiivsed ja Prot-
seduurilised mudelid.

CERCS: P175, Informaatika, süsteemiteooria

Propagating Changes between Declarative and Procedural
Process Models

Abstract:
The debate on advantages and disadvantages of declarative versus procedu-

ral process modelling languages for different usage scenarios has been intense.
Procedural languages are more suited for describing operational processes while
declarative ones for expressing regulations/guidelines, and in many situations the
need of combining the benefits of the two rises. Instead of forcing modellers to
use a hybrid language, we envisage to keep the two specifications separate and
propose a technique that automatically adapts procedural models so as to comply
with sets of declarative rules. This not only fits scenarios where, e.g., company
processes have to be modified according to changing external rules, but, more in
general, it presents a way to take advantage of the flexibility of declarative while
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maintaining the high level of support provided by procedural languages. Further-
more, by comparing the original and the resulting procedural models, the impact
of rules is clearly exposed. In this thesis, we frame the problem above by pro-
viding its theoretical characterisation and propose an automata-based solution,
which is then evaluated against approaches leveraging state-of-the-art techniques
for process discovery and model repair.

Keywords: Model repair, Model checking, Declarative and Procedural models.

CERCS: P175, Informatics, systems theory
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1 Introduction
A business process, as defined in [14], is a collection of activities, performed by peo-
ple or machines, that bring value to the customer. Business Process Management
(abbreviated as BPM) is a field that aims to improve, or more specifically discover,
analyse, redesign, execute and monitor those processes. To convey information
about the business processes diagrams are used to model the processes. Most of
the times, these models are created using procedural modelling languages such as
BPMN, YAWL or Petri nets. Business Process Model and Notation (BPMN) is
an industry standard for modelling business processes. BPMN consists of activ-
ity nodes and control nodes representing them [12]. Petri nets consist of circular
places, rectangular transitions and arcs connecting them. While BPMN is very
intuitive and understandable for a business analyst, Petri nets have a solid math-
ematical theory behind it, which is useful for analysis.

On the other side of the modelling spectrum, we have declarative languages,
which instead of explicitly modelling control flows, restrict the space of available
activities. Declarative process modelling offers more flexibility but less control
than procedural modelling. Examples of declarative process modelling languages
include declare and DCR graphs, both of which are based on templates repre-
senting relations between activities.

Suppose that we have banks that have hundreds of processes, which are mod-
elled using procedural process models and we have parliaments or governments
issuing laws and acts of legislation, which influence the everyday life of the banks,
yet tend to change frequently. Legislation can be modelled using declarative no-
tation. Both types of models are important for the bank but since they are on the
opposite end of the modelling spectrum, it is difficult to integrate the knowledge
that they represent.

The contrast between procedural and declarative process modelling languages
has originated, in the last few years, a stream of comparative investigations (see,
e.g., [27, 24]) to better understand their distinctive characteristics and to support
the choice of the most suitable paradigm to represent the scenario at hand. While
advantages and limitations of the two paradigms are still a matter of investiga-
tion, both in academic research and in industry, a trend has emerged to consider
hybrid approaches combining a mixture of procedural and declarative specifica-
tions. The motivations behind this trend rely on the surmise that many real-life
processes are characterised by a mixture of (i) less structured processes with a
high level of variability, which can usually be described in a compact way using
declarative languages such as declare [23] or DCR Graphs [17]; and (ii) more
stable processes with well structured control flows, which are more appropriate for
traditional procedural languages such as Petri nets [29].

Several recent efforts have therefore being devoted both to the automatic dis-

6



covery of hybrid processes (see, e.g., [21, 11]) and to the proposal of hybrid mod-
elling languages (see, e.g., [8, 34, 28]). Concerning hybrid modelling languages,
two different approaches can be observed: a first one devoted to obtaining a fully
mixed language, where the declarative and procedural notations are almost fused
together; and a second one where the declarative and procedural model parts are
kept separate so as not to hamper the perceptual discriminability of the various
model elements [22]. Examples of the first and second approaches are the BPMN-
D language proposed in [8] and the semantics of hybrid languages proposed in [28],
respectively.

Our work shares the motivations of [28] to keep the declarative and procedural
model parts separate. In fact, we push to the limit the observation that declara-
tive and procedural process modelling languages complement each other, and we
target a scenario in which a procedural (say, Petri nets) and a declarative (say,
declare) language are used side by side. This point of view is similar to the
one of the proposals where the BPMN process modelling language and the SRML
rule modelling language are used to respectively capture the control flow and the
regulatory perspective of a procedure [35]. This gives the modellers the freedom to
use the most suitable language for the part of the procedure at hand. In addition,
separating procedural and declarative specifications accommodates for situations
in which the procedural and declarative parts of the model are actually provided
by different parts of an organisation, or in which external regulatory constraints
need to be applied on top of internal procedural models (think for instance to
the adoption of governmental regulations to be applied to process models of an
organisation).

However, making sense of a model composed of two completely separate parts
can be challenging for users. In addition, since nowadays workflow systems are
mainly driven by procedural specifications, configuring these systems taking into
consideration both a procedural and a declarative model could become very prob-
lematic. For this reason, we aim at expressing such a combined model using only
the procedural notation. This is obtained by automatically adapting the procedu-
ral part so as to comply with the set of declarative rules. In particular, we first
frame the problem from a formal standpoint and focus on consistent combined
models, i.e., models where the declarative and procedural part do not conflict with
each other and hence admit a non-empty set of intersecting behaviours. Then, we
focus on a challenging aspect of this task: more than one change in the procedu-
ral model can be made to “solve the problem”, and different changes can lead to
adapted models showing different characteristics.

We address this challenge in three steps. First, we define a set of heuristics and
metrics to guide/evaluate the procedural process adaptation. Second, we propose
two automata-based techniques to compute the procedural model adaptation: one
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exploits the automated synthesis of Petri nets from automata, while the other
is a novel technique that adapts the original procedural part to accommodate
for declarative rules. Third, we illustrate a wide experimentation we carried out
to compare our automata-based solutions with alternative log-based approaches
leveraging state-of-the-art techniques for process discovery and model repair.

In detail, our contributions are the following: (i) we describe and define the
general problem (Section 4) of adapting procedural models to declarative rules and
we propose a combined model (Section 5) that maintains the declarative and pro-
cedural components of a process model separate. We use Petri (in fact workflow)
nets and declare for the two components of the model due to their well under-
stood formal bases (Section 2); (ii) we propose two automata-based techniques for
adapting the procedural part (Section 6). The two techniques are implemented in
a novel ProM plug-in (Section 7); (iii) we prove the effectiveness of our solution
with a comparison with other approaches based on existing (log-based) techniques
(Section 8). Additionally, we give an overview of the related work in Section 3 and
summarise the work in Section 9.
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2 Background
This section starts with the introduction of the field of Process Mining and how
it fits into BPM. It is important to have a general overview of the field since we
are using some of the concepts for adapting the models and the evaluation of our
approaches. Then we introduce the basic concepts of Petri nets, ltl𝑓 , declare
and automata. The rest of the thesis will be built upon these concepts.

2.1 Process Mining
BPM lifecycle consists of process identification, discovery, analysis, redesign, im-
plementation, monitoring and controlling [14]. Phases covering identification, dis-
covery, monitoring and controlling are supported by the field called Process Min-
ing. In [30] van der Aalst defines Process Mining as a field between data mining
and process modelling that discovers, monitors and enhances processes based on
the knowledge derived from the event logs produced by the information systems.
Process Mining is categorised into three types: discovery, conformance and en-
hancement.

Process discovery is used to produce a process model based on a given event
log without any previous knowledge. One of the first and simplest algorithms
for discovery is called 𝛼-algorithm. The main idea lies in finding patterns in the
event log and constructing a model based on that information. The drawbacks
of the algorithm are that it is not able properly handle complex and infrequent
behaviour. More advanced discovery algorithms include heuristic mining, genetic
mining, region-based mining and inductive mining. Heuristic mining algorithms
build upon the 𝛼-algorithm by taking into account the frequencies of the events
and handling more complex dependencies. Genetic mining algorithms build the
model iteratively and rely on randomisation to generate new alternatives. The idea
behind region-based approaches is to use either a transition system or a language
to construct the model. While inductive mining techniques use divide-and-conquer
methods and process trees.

Conformance checking is used to compare a process model with an event log
and to see whether the model deviates from the real executions. These deviations
can be detected, precisely located and used to detect fraud or inefficiencies in the
process or be used as a basis for repairing the model. Conformance checking is
done using replay, alignments or footprints. By replaying the event log on the
model we understand how much of the behaviour the model captures. Alignments
allow us to compare the model and the event log and precisely locate where the
two deviate from each other. Same can be done using footprints.

Process enhancement is used to extend or improve an existing model based on
an event log. One type of enhancement is model repair, in which case the event log
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is used to improve the model so that it would better reflect the reality. Another
type of enhancement is called extension, which is used to add information, taken
from the log to the model.

2.2 Petri net
We use Petri nets (PN) [29] to represent procedural process models, as they provide
the formal foundations of several procedural languages and are one of the standard
ways to model and analyse processes. A PN is a directed bipartite graph with two
node types: places (graphically represented by circles) and transitions (graphically
represented by squares) connected via directed arcs.

Definition 1 (Petri net). A Petri net is a triple (𝑃 , 𝑇 , 𝐹) where 𝑃 and 𝑇 are
the set of places and transitions respectively, such that 𝑃 ∩ 𝑇 = ∅ and 𝐹 ⊆
(𝑃 × 𝑇 ) ∪ (𝑇 × 𝑃) is the flow relation.

Transitions represent activities and places are used to model causal flow rela-
tions. The preset of a transition 𝑡 is the set of its input places: •𝑡 = {𝑝 ∈ 𝑃 ∣
(𝑝, 𝑡) ∈ 𝐹} and the postset of 𝑡 is the set of its output places: 𝑡• = {𝑝 ∈ 𝑃 ∣ (𝑡, 𝑝) ∈
𝐹}. Definitions of pre- and postsets of places are analogous. Places in a PN may
contain a discrete number of marks called tokens. Any distribution of tokens over
the places, formally represented by a total mapping 𝑀 ∶ 𝑃 ↦ ℕ, represents a
configuration of the net called a marking.

The expressivity of PNs exceeds, in the general case, what is needed to model
business processes, which typically have a well-defined starting point and a well-
defined ending point. This imposes syntactic restrictions on PNs, which result in
the following definition of a workflow net (WF-net) [29].

Definition 2 (Workflow-net). A Petri net (𝑃 , 𝑇 , 𝐹) is a workflow net if it has
a single source place 𝑠𝑡𝑎𝑟𝑡, a single sink place 𝑒𝑛𝑑, and every place and every
transition is on a path from start to end, i.e., for all 𝑛 ∈ 𝑃 ∪ 𝑇 , (𝑠𝑡𝑎𝑟𝑡, 𝑛) ∈ 𝐹
and (𝑛, 𝑒𝑛𝑑) ∈ 𝐹 , where 𝐹 is the reflexive transitive closure of 𝐹 .

The same concept of single-entry-single-exit point for the whole net is a prop-
erty that can be recursively applied to every net sub-component: the resulting
desideratum is the block-structuredness. A WF-net is block-structured if for ev-
ery node with multiple outgoing arcs (a split) there is a corresponding node with
multiple incoming arcs (a join), and vice versa, such that the fragment of the
model between the split and the join forms a single-entry-single-exit process com-
ponent [26].

A marking in a WF-net represents the workflow state of a single case. The
semantics of a PN/WF-net, and in particular the notion of valid firing, defines
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how transitions route tokens through the net so that they correspond to a process
execution. A transition 𝑡 ∈ 𝑇 is enabled in marking 𝑀 if each of its input places
•𝑡 contains at least one token, i.e., if {𝑝 ∈ 𝑃 ∣ 𝑀(𝑝) > 0} ⊇ •𝑡. When an enabled
transition 𝑡 in marking 𝑀 fires, the resulting marking 𝑀 ′ is such that one token
is removed from each of the input places •𝑡 and one token is produced for each
of the output places 𝑡•. Formally, we say that 𝑡 is a valid firing in 𝑀 and write
𝑀 𝑡→ 𝑀 ′ if 𝑡 is enabled in 𝑀 and 𝑀 ′ is such that, for each 𝑝 ∈ 𝑃 :

• 𝑀 ′(𝑝) = 𝑀(𝑝)-1 if 𝑝 ∈ •𝑡\𝑡•;

• 𝑀 ′(𝑝) = 𝑀(𝑝) + 1 if 𝑝 ∈ 𝑡•\•𝑡 or

• 𝑀 ′(𝑝) = 𝑀(𝑝) otherwise.

We distinguish two special markings: the initial marking 𝑀0 such that 𝑀0(𝑠𝑡𝑎𝑟𝑡) =
1 and 𝑀0(𝑝) = 0 for any 𝑝 ∈ 𝑃\{𝑠𝑡𝑎𝑟𝑡} and final marking 𝑀𝑓 such that
𝑀0(𝑒𝑛𝑑) = 1 and 𝑀0(𝑝) = 0 for any 𝑝 ∈ 𝑃\{𝑒𝑛𝑑}.

Definition 3 (𝑘-safeness). A marking of a PN/WF-net is 𝑘-safe if the number of
tokens in all places is at most 𝑘. A PN/WF-net is 𝑘-safe if the initial marking is
𝑘-safe and the marking of all cases is 𝑘-safe.

From now on we concentrate on 1-safe WF-nets, which generalize the class of
structured workflows and are the basis for best practices in process modeling [19].
We also use safeness as a synonym of 1-safeness.

i receive
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application
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data

ask to
recheck

ask for 
updates

send 
application o

assess 
loan risk check 

career

check 
medical 
history predict riskanalyse 

data

analyse 
application

Figure 1: A loan application modelled using Petri net.

Figure 1 shows a 1-safe block-structured WF-net, with a source place repre-
sented by 𝑖 and a sink place by 𝑜. When the token is in the state 𝑖 transition
labeled 𝗋𝖾𝖼𝖾𝗂𝗏𝖾 𝖺𝗉𝗉𝗅𝗂𝖼𝖺𝗍𝗂𝗈𝗇 can be fired. Then there are two mutually exclusive
branches of which one has to be taken. Upper branch contains an additional XOR
gateway, leading to another two mutually exclusive branches, meaning that once
the transition 𝖺𝗌𝗄 𝖿𝗈𝗋 𝗎𝗉𝖽𝖺𝗍𝖾𝗌 has been fired, 𝖺𝗌𝗄 𝗍𝗈 𝗋𝖾𝖼𝗁𝖾𝖼𝗄 cannot be fired any-
more, while the lower one contains an AND gateway, meaning that both transitions
𝖼𝗁𝖾𝖼𝗄 𝗆𝖾𝖽𝗂𝖼𝖺𝗅 𝗁𝗂𝗌𝗍𝗈𝗋𝗒 and 𝖼𝗁𝖾𝖼𝗄 𝖼𝖺𝗋𝖾𝖾𝗋 have to be fired.
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Definition 4 (WF-net language). Let 𝑊 = (𝑃 , 𝑇 , 𝐹) be a WF-net and 𝑇 ∗ the
set of all sequences (words) with symbols in 𝑇 . The language of W, i.e., the set of
executions accepted by 𝑊 , is set ℒ𝑊 ⊆ 𝑇 ∗ of net executions 𝑡1, 𝑡2, … 𝑡𝑛 for which

there exists a sequence of markings 𝑀0
𝑡1→ 𝑀1

𝑡2→ …
𝑡𝑛→ 𝑀𝑛 such that: 𝑀0 is the

initial marking; for each 𝑖 ∈ {1 … 𝑛}, 𝑀𝑖�1
𝑡𝑖→ 𝑀𝑖 is a valid firing and 𝑀𝑛 = 𝑀𝑓

is the final marking.

2.3 Linear-time Temporal Logic
Before we can introduce declarative modelling languages we have to mention
Linear-time Temporal Logic (ltl), introduced in [25], which is a modal temporal
logic for encoding the future of paths. ltl is a powerful and flexible method for
expressing declarative constraints.

Definition 5 (syntax of ltl). ltl formulae over the set P of propositional logic
are built using the following grammar:

𝜑 ∶∶= 𝑡𝑟𝑢𝑒 ∣ 𝑎 ∣ ¬𝜑 ∣ 𝜑1 ∧ 𝜑2 ∣ ○𝜑 ∣ 𝜑1𝒰𝜑2 with 𝑎 ∈ 𝑃 .

There are some additional common abbreviations used, including:

• Standard boolean abbreviations, such as true, false, ∨ (or) and → (implies).

• ⋄𝜑 which is the same as 𝑡𝑟𝑢𝑒 𝒰 𝜑, intuitively meaning that 𝜑 will eventually
hold.

• □𝜑 which is the same as ¬⋄¬𝜑, intuitively meaning that 𝜑 will always hold.

• 𝜑1𝒲𝜑2 which is the same as (𝜑1𝒰𝜑2) ∧ □𝜑1.

ltl was originally developed with an infinite-path semantics, but here we use
it for expressing business process executions which eventually terminate, hence we
focus on the finite-path variant (ltl𝑓) defined in [10]. The difference between ltl
and ltl𝑓 is in the semantics, the syntax is the same when dealing with either
infinite- or finite-paths.

Definition 6 (semantics of ltl𝑓). Given a finite trace 𝜋, ltl𝑓 formula 𝜑 is defined
as 𝑡𝑟𝑢𝑒 at an instant 𝑖 (for 0 ≤ 𝑖 ≤ 𝑛), written 𝜋 ⊨ 𝜑, as:

• 𝜋, 𝑖 ⊨ 𝑡𝑟𝑢𝑒.

• 𝜋, 𝑖 ⊨ 𝑎, for 𝑎 ∈ 𝑃 iff 𝑎 ∈ 𝜋(𝑖).

• 𝜋, 𝑖 ⊨ ¬𝜑 iff 𝜋, 𝑖 ⊭ 𝜑
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Figure 2: Intuitive semantics of ltl𝑓 , with 𝑥 meaning arbitrary value. Inspired
by [3]

• 𝜋, 𝑖 ⊨ 𝜑1 ∧ 𝜑2 iff 𝜋, 𝑖 ⊨ 𝜑1 and 𝜋, 𝑖 ⊨ 𝜑2.

• 𝜋, 𝑖 ⊨ ○𝜑 iff 𝑖 < 𝑛 and 𝜋, 𝑖 + 1 ⊨ 𝜑.

• 𝜋, 𝑖 ⊨ 𝜑1𝒰𝜑2 iff for some 𝑗 (𝑖 < 𝑗 < 𝑛) there is 𝜋, 𝑗 ⊨ 𝜑2 and for all
𝑘 (𝑖 < 𝑘 < 𝑗) there is 𝜋, 𝑘 ⊨ 𝜑1.

We say 𝜋 satisfies 𝜑, written 𝜋 ⊨ 𝜑, if 𝜋, 0 ⊨ 𝜑.
Figure 2 presents the semantics of ltl𝑓 in an intuitive manner with formulas

constructed from atomic propositions a, b. ltl𝑓 formulas are on the left, while
the circles indicate the states of the propositions, with x symbolising an arbitrary
value.

2.4 Declare
As for the declarative language, we focus on declare [23]. Unlike procedural
models, where all allowed executions must be explicitly represented, declare has
an open flavour where the agents responsible for the process execution can freely
choose how to perform the involved activities, provided that the resulting execu-
tion trace complies with the rules. Besides, it is grounded on a well-established
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semantics: given a set of activities 𝑇 , each declare rule is a ltl𝑓 formula over 𝑇
(with finite execution semantics) and the set of allowed finite executions are those
satisfying the formulas.

Definition 7 (rule language). Let 𝑇 be a set of activities and let Φ be the ltl𝑓
formula obtained as the conjunction of a set of declare rules. The language
of Φ, i.e., the set of executions compliant with Φ, is set ℒ𝐷 ⊆ 𝑇 ∗ of executions
𝑡1, 𝑡2 … 𝑡𝑛 such that 𝑡1, 𝑡2 … 𝑡𝑛 ⊨ Φ.

Name LTL Explanation
Absence ¬ ⋄ 𝖠 A must never occur.
Existence ⋄𝖠 A must occur at least once.
Response □(𝖠 → ⋄𝖡) If A is executed, then eventually

B must be executed.
Chain response □(𝖠 → ○𝖡) If A is executed, then B must be

executed next.
Alt. response □(𝖠 → ○(¬𝖠𝒰𝖡)) When A occurs, it must be fol-

lowed by B, without any A occur-
ring in-between.

Alt. precedence (¬𝖡𝒲𝖠) ∧ □(𝖡 → ○(¬𝖡𝒲𝖠)) When B occurs, it must have been
preceeded by A, without any B
occurring in-between.

Exclusive choice (⋄𝖠 ∨ ⋄𝖡) ∧ ¬(⋄𝖠 ∧ ⋄𝖡) A or B must occur, but not both.
Precedence ¬𝖡𝒲𝖠 B can occur only when A has oc-

curred.
Succession □(𝖠 → ⋄𝖡) ∧ (¬𝖡𝒲𝖠) B must occur after A and A must

occur before B.

Table 1: Table of Declare rules with ltl𝑓 translations [7]

Table 1 shows a selection of the most common declare templates with expla-
nations and ltl𝑓 translations.

Using the activity names from Figure 1, we can define the following declare
rules:

𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒(𝖺𝗌𝗄 𝖿𝗈𝗋 𝗎𝗉𝖽𝖺𝗍𝖾𝗌, 𝗉𝗋𝖾𝖽𝗂𝖼𝗍 𝗋𝗂𝗌𝗄), 𝑎𝑏𝑠𝑒𝑛𝑐𝑒(𝖺𝗌𝗄 𝗍𝗈 𝗋𝖾𝖼𝗁𝖾𝖼𝗄),
𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒(𝖺𝗌𝗄 𝖿𝗈𝗋 𝗎𝗉𝖽𝖺𝗍𝖾𝗌, 𝖼𝗁𝖾𝖼𝗄 𝗆𝖾𝖽𝗂𝖼𝖺𝗅 𝗁𝗂𝗌𝗍𝗈𝗋𝗒). (1)

Intuitively, these rules say that activity 𝖺𝗌𝗄 𝖿𝗈𝗋 𝗎𝗉𝖽𝖺𝗍𝖾𝗌 has to occur before 𝗉𝗋𝖾𝖽𝗂𝖼𝗍 𝗋𝗂𝗌𝗄
and 𝖼𝗁𝖾𝖼𝗄 𝗆𝖾𝖽𝗂𝖼𝖺𝗅 𝗁𝗂𝗌𝗍𝗈𝗋𝗒. While, 𝖺𝗌𝗄 𝗍𝗈 𝗋𝖾𝖼𝗁𝖾𝖼𝗄 should not occur in the process
execution.
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2.5 Automaton
Generally, a finite-state machine (the term automaton is also used in some cases)
is a construct showing changes of states based on a given input. While regular lan-
guages are recognized by finite-state machines. We can use finite-state machines
and regular languages to formally express the behaviour contained in both proce-
dural and declarative models. For that reason, we introduce finite-state machines,
regular languages and the relationships between them.

Definition 8 (Nondeterministic finite-state machine). A nondeterministic finite-
state machine is a tuple 𝐴𝑁 = (𝑆, Σ, 𝛿, 𝑠0, 𝐹 ), where 𝑆 is a finite set of states, Σ is
a finite set of symbols, called alphabet, 𝛿 is a transition function: 𝛿 ∶ 𝑆×Σ → ℘(𝑆),
𝑠0 ∈ 𝑆 is the initial state and 𝐹 ⊆ 𝑆 is the set of final states.

Definition 9 (Deterministic finite-state machine). A deterministic finite-state ma-
chine is a tuple 𝐴 = (𝑆, Σ, 𝛿, 𝑠0, 𝐹 ), where 𝑆 is a finite set of states, Σ is a finite
set of symbols, called alphabet, 𝛿 is a transition function: 𝛿 ∶ 𝑆 × Σ → 𝑆, 𝑠0 ∈ 𝑆
is the initial state and 𝐹 ⊆ 𝑆 is the set of final states.

As can be seen the difference between the deterministic finite-state machine
(DFSM) and nondeterministic finite-state machine (NFSM) is that the transition
function of the DFSM returns one state, while in case of the NFSM it returns a
set. Intuitively the difference is that for DFSM given a state and an input there is
a single next state, while in case of NFSM there might be zero or multiple possible
next states.

Before we can define the languages of the finite-state machine, we need to
define the execution path for the general finite state machine, be it deterministic
or nondeterministic.

Definition 10 (FSM execution paths). Given a finite-state machine 𝐴, we define
the set Π of paths (𝑠0, 𝜎1, 𝑠1), (𝑠1, 𝜎2, 𝑠2) … (𝑠𝑛-1, 𝜎𝑛, 𝑠𝑛) in A, where for each
𝑖 ∈ {1, … , 𝑛}, 𝑠𝑖 ∈ 𝑆 and 𝜎𝑖 ∈ Σ inductively as follows:

• Base: (𝑠0, 𝜎1, 𝑠1) ∈ Φ, if (𝑠0, 𝜎1, 𝑠1) ∈ 𝛿.

• Inductive: If (𝑠0, 𝜎1, 𝑠1), (𝑠1, 𝜎2, 𝑠2) … (𝑠𝑛-1, 𝜎𝑛, 𝑠𝑛) ∈ Π and (𝑠𝑛, 𝜎1, 𝑠𝑛+1) ∈
𝛿 then (𝑠0, 𝜎1, 𝑠1), (𝑠1, 𝜎2, 𝑠2) … (𝑠𝑛, 𝜎𝑛+1, 𝑠𝑛+1) ∈ Π

Definition 11 (FSM language). Given a finite-state machine 𝐴 and a set of its
paths Π, we define the language ℒ𝐴 ⊆ Σ∗ as the smallest set such that:

• if 𝑠0 ∈ 𝐹 then 𝜀 ∈ ℒ𝐴 and

• if (𝑠0, 𝜎1, 𝑠1), (𝑠1, 𝜎2, 𝑠2) … (𝑠𝑛-1, 𝜎𝑛, 𝑠𝑛) ∈ Π then (𝑎0, 𝑎1, … , 𝑎𝑛) ∈ ℒ𝐴.

15



In Definitions 10 and 11 we use the term finite-state machine to reference both
deterministic and nondeterministic finite-state machines since the definitions are
general enough to cover both cases.

In the literature, the word automaton is sometimes used to refer to a finite-
state machine whose accepting condition accommodate for infinite executions. As
we focus on finite executions, in the rest of the thesis, we use the words automaton
and deterministic finite-state machine as synonyms.

If a language ℒ is a ℒ(𝐴) for an automaton 𝐴, then ℒ is called a regular
language and 𝐴 accepts language ℒ [18].

It is important to note that every NFSM can be transformed into a DFSM
accepting the same language. While an NFSM recognising a specific language can
be represented using n states, it could take up to 2𝑛 states to represent a DFSM
of the same language.

Closure properties of regular languages tell us that regular languages are closed
under certain operations, meaning that if one (or more) languages are regular then
applying certain operations to them will result in languages that are also regular.
Closure properties allow us to say that the complement of the language, union,
intersection and difference of two languages are regular.

Suppose we have two automata 𝐴1 = (𝑆1, Σ, 𝛿1, 𝑠1, 𝐹1) and 𝐴2 = (𝑆2, Σ, 𝛿2, 𝑠2, 𝐹2)
and we want to take a union, intersection or a difference of languages ℒ1 and
ℒ2, which automatons 𝐴1 and 𝐴2 respectively accept, we need to construct a
cross-product automaton of 𝐴1 and 𝐴2. The resulting automaton is 𝐴𝐶𝑃 =
(𝑆𝐶𝑃 , Σ, 𝛿𝐶𝑃 , 𝑠0, 𝐹𝐶𝑃 ), where:

• 𝑆𝐶𝑃 = 𝑆1 × 𝑆2,

• 𝛿𝐶𝑃 = ((𝑝, 𝑞), 𝑎) = (𝛿1(𝑝, 𝑎), 𝛿2(𝑞, 𝑎)),

• 𝑠0 = (𝑠1, 𝑠2),

for every 𝑝 ∈ 𝑆1, 𝑞 ∈ 𝑆2, a ∈ Σ.

• 𝐴𝐶𝑃 accepts ℒ = ℒ1 ∪ ℒ2, if 𝐹𝐶𝑃 = {(𝑝, 𝑞) ∣ 𝑝 ∈ 𝐹1 ∨ 𝑞 ∈ 𝐹2}.

• 𝐴𝐶𝑃 accepts ℒ = ℒ1 ∩ ℒ2, if 𝐹𝐶𝑃 = {(𝑝, 𝑞) ∣ 𝑝 ∈ 𝐹1 ∧ 𝑞 ∈ 𝐹2}.

• 𝐴𝐶𝑃 accepts ℒ = ℒ1 − ℒ2, if 𝐹𝐶𝑃 = {(𝑝, 𝑞) ∣ 𝑝 ∈ 𝐹1 ∧ 𝑞 ∉ 𝐹2}.

In [10] authors show a way to transform ltl𝑓 into an automata. The result is
achieved by transforming a ltl𝑓 formula 𝜙 into a ldl𝑓 formula 𝜙′. ldl𝑓 is the
combination of LTL and regular expressions based on finite traces. Regular expres-
sions provide a declarative way of defining a language that an automaton accepts
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and are more expressive that ltl𝑓 [18]. Hence, also ltl𝑓 formulas can be rep-
resented using automata. Every ldl𝑓 formula is transformed into an alternating
automaton on words (AFW) which accepts a language consisting of traces making
𝜙′ true. Since AFW is a specific case of NFSM, it can be converted into NFSM
which in turn can be transformed into a DFSM. Figure 3 shows an automaton
generated from a set of declare rules described in (1).

0

[rd]
[ra]
[sa]
[ad]
[alr]
[cc]
[aa]
[]
[ca]

1
[afu]

2[pr]
[atr]
[cmh]

0

[rd]
[ra]
[sa]
[afu]
[ad]
[pr]
[alr]
[cc]
[aa]
[]
[ca]
[cmh]

[atr]
[rd]
[ra]
[sa]
[afu]
[ad]
[pr]
[alr]
[cc]
[aa]
[]
[ca]
[atr]
[cmh]

Figure 3: Automaton generated from ltl𝑓 formulae
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3 Related Work
The main ideas behind the topic of this thesis are the integration of procedural
and declarative models and the repair of procedural models. To understand the
state of the art behind these ideas, the following research questions were asked:

• How can declerative and procedural process models be integrated?

• What are the main methods for repairing a procedural process model?

The following key phrases were used to search the databases for relevant arti-
cles: “Model repair”, “Procedural and Declarative models”, “Model checking”. In
the next sections we report the findings.

3.1 Procedural vs declarative
Recent research has presented evidence about the synergies between imperative
and declarative approaches [27]. Reijers et al. [27] conducted a workshop in or-
der to find out whether declarative process modelling techniques could be used
in practice. In the opinion of the participants of the workshop, declarative lan-
guages inherently provide a higher level of abstraction than the procedural ones,
so they can be used to quickly change models by adding and removing constraints,
without redoing the entire models. Yet, declarative languages are not suitable
for well-structured processes, which can be easily modelled using procedural lan-
guages. In [24], Pichler et al. investigate procedural and declarative modeling
languages w.r.t. the model understanding and conclude that procedural models
are more understandable, though they concede that it might partially come from
the inexperience of the participants with the declarative languages. While declar-
ative languages are not as well-known as procedural ones, they do have certain
advatages, as shown in [27], therefore an area of interest are the hybrid languages
which combine the procedural and declarative languages.

Recently, several hybrid process modeling notations have been proposed. In
particular, De Giacomo et al. [8] propose a conservative extension of BPMN for
declarative process modeling, namely BPMN-D, and show that declare models
can be transformed into readable BPMN-D models. BPMN-D is a conservative
extension since it only adds constructs to BPMN, meaning that every BPMN-D
model can be transformed into a BPMN model. The translation of a declare
model into a BPMN-D model consists of two stages. Firstly, the declarative model
is transformed into a constraint automaton, which is a declaratively and more con-
cisely labelled finite-state machine (FSA) and, in the second stage, that automaton
is translated into a BPMN-D model. To translate the constraint automaton into
a BPMN-D model, the authors provide an algorithm that maps the automaton
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states into BPMN-D states and sequence flows, and automaton transitions into
BPMN-D transitions taking into account the constrains of the automaton.

Westergaard and Slaats [34] aim at combining declarative languages declare
and DCR graphs with a procedural language, Coloured Petri nets, to get an in-
tegrated approach, that combines positive aspects of both paradigms. The main
idea behind their approach is to identify transitions of the Petri net, tasks of the
declare model and events of DCR graph models and then add places and arcs
from Petri nets, constraints from declare and relations from DCR graphs to con-
strain the resulting model. An execution is considered to be accepting only if all of
the underlying models accept it. Additionally, they provide a step-wise semantics
to simulate their combined model. A recent implementation of this technique is
made available in CPN Tools 4.0 [33].

De Smedt et al. [11] extend the work in [34] by defining a semantics based on
mapping declare rules to Petri nets with Reset and Inhibitor Arcs. Additionally,
the authors investigate how difficult it is to combine different declare templates
with the procedural model. Lastly, they provide modelling guidelines for combining
the procedural and declarative constructs.

In [28], Slaats et al. present a formal semantics for a hybrid process modeling
notation. In their proposal, a hybrid process model is hierarchical, and each of
its sub-processes may be specified in either a procedural or declarative fashion. In
[21], Maggi et al. propose an algorithm for discoverying hybrid models from event
logs. The main idea behind their algorithm is to divide the log into structured
and unstructured groups of events and then use procedural mining techniques
on structured groups to discover procedural sub-processes and declarative mining
techniques on unstructured groups for discovering declarative sub-processes. Then
a top-level process is mined which allows combining the discovered procedural and
declarative sub-processes into a hybrid model.

3.2 Model repair
In [15], Fahland and van der Aalst addressed the problem of repairing procedural
process models based on the information retrieved from an event log. They aimed
at keeping the repaired model as similar as possible to the original model, while
capturing all the possible behaviors from the event log. The authors identified
the minimum amount of changes needed to replay the event log on the model by
aligning the two. Once the deviations have been identified the repair algorithm
consists of three parts - firstly, adding structured loops, secondly, adding sub-
processes and thirdly, removing unused nodes. Using these techniques resulted
in repaired models more similar to the original models than the ones achieved
through applying process discovery algorithms to the event logs.

Buijs et al. [4] use similarity to the original model to choose the most suitable
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model out of a set of candidate models mined from the event log. Since they are
rediscovering the model, they are not modifying the original model.

In [16], Gambini et al. provide an algorithm that takes as input an unsound
process model and returns a set of alternative models that contain less behavioral
errors than the original one. The technique is based on Multi-Objective Simulated
Annealing (MOSA). MOSA provides many advantages over other optimization
algorithms with the main one being that it does not get stuck in the local optimum
and can be used to provide a diverse set of resulting models.

In [1], Armas-Cervantes et al. argue that the log-based model repair approaches
suffer from an important limitation by adding too much behaviour to the model
and producing models that are over-generalised. They suggest a novel iterative
method that provides user with a graphical representation of the repair operations
with the highest impact. Differences between the model and the log are identified
by transforming both into graphs of events, with nodes being linked by the relations
between the events. Using the syncronised product of the two graphs deviations
between the log and the model are mapped into patterns which are then used for
visualising the problems for the users, who can manually repair them. Compared
to [15] their approach returns models that are still similar to the original but are
not as over-generalised.

Another source for repairing a model could be the model itself, which is inves-
tigated in a paper written by Lohmann and Fahland [20]. This can be done using
model checkers. Model checkers can check properties of process models expressed
in terms of temporal logic. In case of business processes the most well-known prop-
erty is soundness, which encompasses the lack of dead-locks, live-locks, dead code
and that the model is terminated correctly. Lohmann and Fahland investigate
the error paths of model checkers. They propose a way of reducing error paths
of model checkers by focusing on choices made during executions and removing
unnecessary information.

3.3 Discussion
Based on the literature we have examined we say that there is a real need for
integrating the procedural and declarative languages. The need does not stem
only from academia, the industry is interested as well [27]. For that reason, the
researchers have been looking at hybrid languages, which manifest in two different
ways. One option is to create a new mixed language comprised of the best features
of procedural and declarative (e.g. [8]), the other way is to combine them while
still keeping the specifications separate (e.g. [28, 21]).

Model repair has mostly been attempted by using the event logs to repair the
procedural process models [15, 1]. Additionally, there have been efforts to address
the behavioural and syntactical errors in the model [16, 20].
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To the best of our knowledge, the problem of adapting procedural process
models to declarative rules provides a completely new challenge for the BPM
community. In this thesis, we approach the problem from a logic-based perspective
and propose two initial solutions to it.
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4 Problem & Approach
In this section, we will introduce the problem at hand and describe our approach
to solving it.

4.1 Problem
Suppose we have a bank called Banco BPM (BBPM) with 100 branches in Italy,
Spain and Germany and a headquarters in Milan, Italy. It has assets of about
25 billion, equity 2 billion and profit of 100 million euros. As all other banks
in Europe, BBPM is a subject to government and European Union regulations.
Additionally, bank management can also make policy changes concerning the way
business is done. Since BBPM is a moderately big bank it has a lot of processes to
manage and whenever there are law or regulation changes affecting its processes
business analysts at BBPM have to manually identify the affected processes and
change the models to reflect the new reality. Since this is a complex and error-
prone work, the analysts are interested in a way of doing it either semi- or fully
automatically.

To elaborate, the problem we face is how do we integrate the reality of the
declarative business rules into procedural process models in a way that the end
result would preserve key properties (such as the similarity to the original model)
making it useful for the business analysts.

4.2 Approach
For the procedural process models, we use Petri nets while for declarative business
rules we use declare. We aim to combine the two into a combined model that we
want to represent using only procedural notation. This is useful for two reasons,
firstly, most of the workflow systems currently use procedural notations and it
would not be feasible to start changing them to take into account the declarative
specification, secondly, people are more used to the procedural languages, since
they have been used for a longer time and they are easier to comprehend.

We focus only on the cases where the procedural and the declarative models
do not conflict with each other. While this is, of course, a real possibility in the
real world, analysing the root causes of the clashes would require substantially
different techniques than the ones we currently propose.

We propose two techniques for dealing with consistent combined models, i.e.
when the procedural and the declarative part of the combined model do not con-
flict. We assume that the designers of the original models created them for specific
reasons, so we aim to keep the adopted model similar to the original and not add
any extra behaviour. Since the proposed techniques can return multiple results,
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we had to come up with a set of heuristics and metrics to choose the most suitable
result.
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5 Framework
We now formally define the semantics of our combined models, which are specified
by a procedural and a declarative part.

Definition 12 (combined model). Given a language of a workflow net ℒ𝑊 and a
language ℒ𝐷 which is compliant with Φ. A combined model is a couple 𝐶 = (𝑊, Φ)
where 𝑊 is a workflow net and Φ is the ltl𝑓 formula obtained as the conjunction
of a set of declare rules. The language ℒ𝑊∩𝐷 of 𝐶 is the set of executions
accepted by 𝑊 and compliant with Φ, formally ℒ𝑊∩𝐷 = ℒ𝑊 ∩ ℒ𝐷.

Example 1. Let the WF-net in Figure 1 describe the happy path of the procedural
part of a loan process. In this scenario, the processing of the application is split
in two parallel branches: one (the lower) dealing with major check concerning the
reliability of the applicant, and the other (the upper) focusing on mainly admin-
istrative checks. Let us assume that the bank strategic management office issues
some guidelines for their procedures so as to save money and time, which compose
the declarative specification of the loan process. In particular, the office decides
to (i) eliminate very minor activities such as 𝖺𝗌𝗄 𝗍𝗈 𝗋𝖾𝖼𝗁𝖾𝖼𝗄 and (ii) ensure that
the extremely costly activities 𝖼𝗁𝖾𝖼𝗄 𝗆𝖾𝖽𝗂𝖼𝖺𝗅 𝗁𝗂𝗌𝗍𝗈𝗋𝗒 and 𝗉𝗋𝖾𝖽𝗂𝖼𝗍 𝗋𝗂𝗌𝗄 are executed
only after the 𝖺𝗌𝗄 𝖿𝗈𝗋 𝗎𝗉𝖽𝖺𝗍𝖾𝗌 is performed. Such guidelines are defined, using the
declare rules, in (1), in Section 2.4. The overall model is the combination of
the procedural and declarative specifications.

As we already mentioned, our goal is now to propagate the behavior expressed
by the declarative part of the combined model to the procedural part. Let 𝐶 =
(𝑊, Φ) be a combined model, then Figure 4a and 4b graphically show the two
situations that may rise: either ℒ𝑊 and ℒ𝐷 have common executions, or they do
not, respectively. Figure 4a is the case of Example 1. Indeed, the execution

𝜋1 = (𝗋𝖾𝖼𝖾𝗂𝗏𝖾 𝖺𝗉𝗉𝗅𝗂𝖼𝖺𝗍𝗂𝗈𝗇, 𝖼𝗁𝖾𝖼𝗄 𝖺𝗉𝗉𝗅𝗂𝖼𝖺𝗍𝗂𝗈𝗇, 𝖺𝗌𝗄 𝖿𝗈𝗋 𝗎𝗉𝖽𝖺𝗍𝖾𝗌, 𝗋𝖾𝗍𝗋𝗂𝖾𝗏𝖾 𝖽𝖺𝗍𝖺, 𝖺𝗇𝖺𝗅𝗒𝗌𝖾 𝖽𝖺𝗍𝖺,
𝖺𝗌𝗌𝖾𝗌𝗌 𝗅𝗈𝖺𝗇 𝗋𝗂𝗌𝗄, 𝖼𝗁𝖾𝖼𝗄 𝗆𝖾𝖽𝗂𝖼𝖺𝗅 𝗁𝗂𝗌𝗍𝗈𝗋𝗒, 𝖼𝗁𝖾𝖼𝗄 𝖼𝖺𝗋𝖾𝖾𝗋, 𝗉𝗋𝖾𝖽𝗂𝖼𝗍 𝗋𝗂𝗌𝗄, 𝗌𝖾𝗇𝖽 𝖿𝗈𝗋𝗆)

satisfies both the WF-net in Figure 1 and the three declarative rules in (1), hence
𝜋1 ∈ ℒ𝑊∩𝐷. While execution

𝜋2 = (𝗋𝖾𝖼𝖾𝗂𝗏𝖾 𝖺𝗉𝗉𝗅𝗂𝖼𝖺𝗍𝗂𝗈𝗇, 𝖼𝗁𝖾𝖼𝗄 𝖺𝗉𝗉𝗅𝗂𝖼𝖺𝗍𝗂𝗈𝗇, 𝖺𝗌𝗄 𝗍𝗈 𝗋𝖾𝖼𝗁𝖾𝖼𝗄, 𝗋𝖾𝗍𝗋𝗂𝖾𝗏𝖾 𝖽𝖺𝗍𝖺, 𝖺𝗇𝖺𝗅𝗒𝗌𝖾 𝖽𝖺𝗍𝖺,
𝖺𝗌𝗌𝖾𝗌𝗌 𝗅𝗈𝖺𝗇 𝗋𝗂𝗌𝗄, 𝖼𝗁𝖾𝖼𝗄 𝗆𝖾𝖽𝗂𝖼𝖺𝗅 𝗁𝗂𝗌𝗍𝗈𝗋𝗒, 𝖼𝗁𝖾𝖼𝗄 𝖼𝖺𝗋𝖾𝖾𝗋, 𝗉𝗋𝖾𝖽𝗂𝖼𝗍 𝗋𝗂𝗌𝗄, 𝗌𝖾𝗇𝖽 𝖿𝗈𝗋𝗆)

satisfies the WF-net in Figure 1 but not the rules in (1), meaning 𝜋2 ∈ ℒ𝑊 \¬ℒ𝐷.
Execution

𝜋3 = (𝖺𝗌𝗄 𝖿𝗈𝗋 𝗎𝗉𝖽𝖺𝗍𝖾𝗌, 𝗉𝗋𝖾𝖽𝗂𝖼𝗍 𝗋𝗂𝗌𝗄)
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Figure 4: Graphical representation of the relationships between ℒ𝑊 and ℒ𝐷.

would satisfy the rules but not the WF-net and 𝜋3 ∈ ℒ𝐷\¬ℒ𝑊 .
In Figure 4b, all 𝑊 executions do not conform to the rules Φ, hence the model

is inconsistent. When this happens, the only way to regain consistency is to
change/extend one or both specifications in order to get a non-empty intersec-
tion, as depicted by Figure 4c. It is important to notice that, by doing this, the
semantics of the original net and rules changes deeply, as new executions, previ-
ously forbidden, are now included. Although such a task of regaining consistency
is interesting, we consider it a separate problem and we focus on the “core” case
of how to select a nonempty set of net executions compliant with the declarative
rules.

Given the above, let us assume the language ℒ𝑊∩𝐷 of 𝐶 = (𝑊, Φ) is not
empty. The problem we address is the following: ideally we want to find and
return a model 𝑊 ′ such that the set of accepted execution is ℒ𝑊 ′ = ℒ𝑊∩𝐷. For
(theoretical and practical) reasons that will be clear in the next section, computing
ℒ𝑊 ′ equal to ℒ𝑊∩𝐷 may not always be the most appropriate choice, and we
may aim at considering ℒ𝑊 ′ to be “as close as possible” to ℒ𝑊∩𝐷. This will
be done in terms of the relationships between ℒ𝑊 , ℒ𝐷 and ℒ𝑊 ′ depicted in
Figure 5 in the general case. Indeed, if we relax the assumption ℒ𝑊 ′ = ℒ𝑊∩𝐷,
the language of the new model ℒ𝑊 ′ may, in general, contain not only the desired
behaviors 𝛽 = ℒ𝑊 ∩ ℒ𝐷 ∩ ℒ𝑊 ′ , but also executions of the procedural model
not compliant with the declarative model 𝛼 = ℒ𝑊 ∩ ¬ℒ𝐷 ∩ ℒ𝑊 ′ , executions of
the declarative not accepted by the procedural 𝛾 = ¬ℒ𝑊 ∩ ℒ𝐷 ∩ ℒ𝑊 ′ and even
executions not compliant to the declarative and not accepted by the procedural
𝛿 = ¬ℒ𝑊 ∩ ¬ℒ𝐷 ∩ ℒ𝑊 ′ .

When we adapt model 𝑊 to 𝑊 ′, we are looking for a model that would allow
only for the behaviour described by the language ℒ𝑊∩𝐷. This means that apart
from not adding new behaviour, 𝑊 ′ should lose minimal amount of behaviour
(desideratum D1). Another key aspect of the repair process is the structural
similarity of 𝑊 and 𝑊 ′. By structural similarity we mean the (graph edit) distance
between 𝑊 and 𝑊 ′, as well as the capability of not altering, in 𝑊 ′, the relevant
properties characterising the original model 𝑊 , such as block-structurdness or the
activity duplication (desideratum D2). Unfortunately, behavioural and structural
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Figure 5: The relationships of languages ℒ𝑊 , ℒ𝐷 and ℒ𝑊 ′ .

similarity tend to be conflicting requirements. The more behaviour of 𝑊 ′ we are
able to replay (e.g. the whole ℒ𝑊∩𝐷), more it starts diverging from 𝑊 and lose
other structural properties, the less understandable it is for the business analysts.
Similarly, the more similar 𝑊 ′ is to the original 𝑊 (i.e. the more understandable
𝑊 ′ is), the more likely it is that 𝑊 ′ has lost behaviour that was in ℒ𝑊∩𝐷 or
behaviour has been added that was not it ℒ𝑊∩𝐷.
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6 Contribution
Given a combined model 𝐶 = (𝑊, Φ), the problem we want to address is to find
a WF-net 𝑊 ′ such that the set of accepted executions ℒ𝑊 ′ is as close as possible
to ℒ𝑊∩𝐷.

This problem is tackled in two separate steps: (1) first, ℒ𝑊∩𝐷 is computed,
and then (2) the WF-net is found. We exploit the well-known equivalence between
(regular) languages and automata and propose two automata-based approaches to
solve both steps.

To address step (1), we: (i) represent the procedural language ℒ𝑊 as the
reachability graph 𝐴𝑊 of 𝑊 ; (ii) represent the declarative language ℒ𝐷 as the
automaton 𝐴𝐷 for Φ and (iii) we exploit the well-known results of automata
theory (see, e.g., [18], briefly summarised in Subsection 2.5) to get ℒ𝑊∩𝐷 as the
automaton 𝐴𝑊∩𝐷 = 𝐴𝑊 ∧ 𝐴𝐷 obtained as the automaton synchronous product ∧
of 𝐴𝑊 and 𝐴𝐷. In the following, we will go through each of the above sub-steps
in detail.

Given a WF-net 𝑊 , its reachability graph is a graph-like representation of all
and only the net executions where nodes/states represent markings and transitions
represent firings. In general, such a graph may be infinite-states, as so is the set
of reachable markings. However, when considering safe nets, the set of marking is
clearly finite, hence their reachability graphs are finite-state machines. Figure 6
shows a fragment of a reachability graph1 of the procedural model described in
Example 1. While Figure 7 shows 𝐴𝑊 of Example 1. While the essence of Figures 6
and 7 is the same, the representation is different, since Figure 6 shows the markings
explicitly.

Definition 13 (Reachability graph). Let 𝑊 = (𝑃 , 𝑇 , 𝐹) be a workflow net. The
reachability graph of 𝑊 is a finite-state machine 𝐴𝑊 = (ℳ, Σ, 𝛿, 𝑀0, 𝐹 ), where:
ℳ is a set of markings; Σ = 𝑇 is the set of activities; 𝛿 = ℳ × 𝑇 → ℳ
is the transition function; 𝑀0 is the initial marking; 𝐹 = 𝑀𝑓 is the set of final
states/markings and ℳ and 𝛿 are defined by mutual induction as the (smallest) set
satisfying the following property: if 𝑀 ∈ ℳ then for each valid firing 𝑀 𝑡→ 𝑀 ′

in 𝑊 , (𝑀, 𝑡, 𝑀 ′) ∈ 𝛿 holds. With notational abuse, we write 𝑀 𝑡→ 𝑀 ′ for
(𝑀, 𝑡, 𝑀 ′) ∈ 𝛿.

It is immediate to see that ℒ(𝐴𝑊 ) = ℒ𝑊 . As for ℒ𝐷, we build the automa-
ton 𝐴𝐷 from Φ by exploiting the results and algorithms in [6], which guarantees
that ℒ(𝐴𝐷) = ℒ𝐷. Finally, we compute the intersection as the synchronous
product [18] of 𝐴𝑊 and 𝐴𝐷.

1Generated using WoPeD, available at: http://woped.dhbw-karlsruhe.de/woped/
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Figure 6: Fragment of the reachability graph of the running example.
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Figure 7: Automaton 𝐴𝑊 of Example 1

An intersection of two automatons is defined in Section 2.5 but in order to
proceed we need an intersection of two automata that keeps the information about
the markings of WF-net 𝑊 .

Definition 14 (Automaton intersection with markings). Let 𝐶 = (𝑊, Φ) be a
combined model, 𝐴𝑊 = (ℳ, Σ, 𝛿𝑊 , 𝑀0, 𝐹𝑊 ) be the reachability graph of 𝑊 and
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𝐴𝐷 = (𝑆, Σ, 𝛿𝐷, 𝑠0, 𝐹𝐷) the automaton for Φ. The automaton for the synchronous
intersection of 𝐴𝑊 and 𝐴𝐷 is 𝐴𝑊∩𝐷 = (𝑆𝑊∩𝐷, Σ, 𝛿𝑊∩𝐷, (𝑠0, 𝑀0), 𝐹𝑊∩𝐷, 𝑆𝑀),
where: 𝑆𝑊∩𝐷 = (ℳ × 𝑆) is the set of states; (𝑠0, 𝑀0) is the initial state;
𝛿𝑊∩𝐷 ⊆ 𝑆𝑊∩𝐷 × Σ → 𝑆𝑊∩𝐷 and it is such that ((𝑀𝑖, 𝑠𝑖), 𝑡𝑖, (𝑀 ′

𝑖 , 𝑠′
𝑖)) ∈ 𝛿𝑊∩𝐷 iff

(𝑀𝑖, 𝑡𝑖, 𝑀 ′
𝑖 ) ∈ 𝛿𝑊 ∧ (𝑠𝑖, 𝑡𝑖, 𝑠′

𝑖) ∈ 𝛿𝐷; 𝐹𝑊∩𝐷 ⊆ 𝑆𝑊∩𝐷 is the set of final states such
that (𝑀𝑖, 𝑠𝑖) ∈ 𝐹𝑊∩𝐷 iff 𝑀𝑖 ∈ 𝐹𝑊 ∧ 𝑠𝑖 ∈ 𝐹𝐷; 𝑆𝑀 ∶ 𝑆𝑊∩𝐷 → ℳ is a projection
function selecting the first component, i.e., the marking, from a given state.
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Figure 8: Automaton 𝐴𝑊∩𝐷 of Example 1

The rest of the Section describes step (2), that is, how to generate a WF-
net 𝑊 ′, whose language will be called ℒ𝑊 ′ , from 𝐴𝑊∩𝐷. Figure 8 shows 𝐴𝑊∩𝐷
generated as an intersection of the automata based on procedural (Figure 7) and
declarative models (Figure 3).

In order to accommodate different needs of 𝑊 ′, described in the end of Chap-
ter 5, we propose two approaches to solve the problem, one suited to address
desideratum D1, language similarity (see Section 6.1), and the other suited to
address desideratum D2, structural similarity (see Section 6.2).

6.1 Petri net synthesis
The basic idea of the PN synthesis [2] is to decide whether a given automaton is
isomorphic to the reachability graph of some Petri net. Intuitively, isomorphism
means that two automata are the same apart from the node labels. While there is
a finite amount of such nets, checking all of them is not a viable solution. Another
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way is to synthesise a candidate net from the automaton and check whteher its
reachability graph is isomorphic to the automaton. Such an approach is grounded
on the solid theory of regions: a region is a set of automaton states which are some-
how similar with respect to incoming and outgoing transitions. In the translation
algorithm, each region essentially becomes a place.

a
ab

b

c

(a)

a
b b c

(b)

Figure 9: Simple automaton and its complex synthesized Petri net.

Because of well-established theoretical foundations, PN synthesis is focused
on exactly realizing the language of the input automaton, hence it fulfills the
language similarity requirement. However, the resulting net 𝑊 ′ in general lacks
some other characteristics which are desirable in our scenario, such as: graph
similarity with the original net 𝑊 , block-structuredness and no duplicate activities.
As an example, for the simple automaton in Figure 9a, where the leftmost state
is the initial one and the double-circled one is the final, the synthesized net2 in
Figure 9b fails in all of the above: it is not a WF-net (it has two start places), it
has duplicate activities and it is not block-structured.
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send 
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history predict riskanalyse 

data

analyse 
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Figure 10: WF-net resulting from the application of Petrify to the net and rules
in Example 1.

Because of the formal specification of the problem we are able to successfully
able to employ PN synthesis. Figure 10 shows a Petri net resulting in applying
Petrify to the net and the rules in Example 1. Notice that the resulting net
is no longer block-structured as the original was. The violation of the block-
structuredness comes after the activitiy 𝖺𝗌𝗄 𝖿𝗈𝗋 𝗎𝗉𝖽𝖺𝗍𝖾𝗌. So while we are able to
achive desideratum D1, we are not able to achive D2.

2Obtained using petrify tool, available at: http://www.cs.upc.edu/~jordicf/petrify/
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6.2 ARNE: Automated Rule-to-Net Enactor
For the understandability limitation which PN synthesis suffers from, we imple-
mented a new tool, called arne, specifically tailored to return a WF-net 𝑊 ′ which:
(i) is graph similar to the original net 𝑊 , so as to easily identify the impact of the
rules; (ii) does not have duplicate activities and (iii) is block-structured. In order
to fulfill the above requirements, we are willing to possibly sacrifice on language
similarity.

We started with an understanding that we can use the automaton as a source
of information for the repair. Since we have met the hypothesis of the non-empty
intersection of the procedural and the declarative models, intuitively, all that has
to be done is the removal of exclusive branches and/or possible interleavings of the
parallel branches from the original net. We tried to use the automaton to identify
what part of the net causes non-conformance to the rules. We arrived at an initial
algorithm that is the last step (𝑓𝑙𝑎𝑡𝑡𝑒𝑛) of the current algorithm. Next, we tried
to figure out ways of improving the algorithm, in order to lose as little behaviour
as possible, and arrived at the current version of the algorithm.

The main idea behind this approach is starting from the original net 𝑊 and
try to remove the behaviours not compliant with the rules instead of building a
new net from scratch. Also, we exploit the fact that declare rules essentially
express loose precedence relationships between pairs of activities.

Let 𝐶 = (𝑊, Φ) be a combined model. We now show how arne returns a
WF-net 𝑊 ′ by detailing its steps. We set 𝑊 ′ = 𝑊 and modify 𝑊 ′ so as to satisfy
the problem specifications.

1 - intersect. The reachability graph 𝐴𝑊 of 𝑊 and the automaton 𝐴𝐷 for Φ
are built. The intersection 𝐴𝑊∩𝐷 of the two is computed, visible in Figure 8.

Figure 11: Automaton 𝐴𝑊∩𝐷 with semi-bad and bad states.
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Figure 12: Original net (a) and modified one (b) to accomodate 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒(𝑏, 𝑒)
with synchronization points.

2 - removeUnusedPlaces. By comparing the markings of 𝐴𝑊 and 𝐴𝑊∩𝐷,
we identify places in 𝑊 ′ that are never reached, and we eliminate them. This
essentially amounts to removing branches of exclusive choices that do not comply
with Φ. In the running example, presented in Figure 1, 𝖺𝗌𝗄 𝗍𝗈 𝗋𝖾𝖼𝗁𝖾𝖼𝗄 is removed.

3 - getProblemSets. In this step, we identify the markings and transitions
of 𝑊 ′ that may violate Φ and cluster them in sets, called problem sets, with
similar characteristics, so as to take care of each of them separately. Intuitively, a
problem set is a set of markings from which, by firing the same transition, the net
ends up in a marking violating the rules. We first reason on 𝐴𝑊∩𝐷 so as to find
bad states as explained below, and then, thanks to the function 𝑆𝑀 (associating
𝐴𝑊∩𝐷 states to 𝑊 ′ markings), we localize the bad markings in 𝑊 ′. Intuitively,
every 𝐴𝑊∩𝐷 state in 𝑆𝑊∩𝐷 from which no path to a final state exists is marked
as bad. On Figure 11 these states are coloured red. In order to formally define
them, we need the reachability relation between states 𝑅 ⊆ 𝑆𝑊∩𝐷 × 𝑆𝑊∩𝐷 as the
smallest set satisfying the following properties: (𝑠, 𝑠′) ∈ 𝑅 if ∃𝑎.(𝑠, 𝑎, 𝑠′) ∈ 𝛿𝑊∩𝐷
and if (𝑠, 𝑠′) ∈ 𝑅 ∧ (𝑠′, 𝑠″) ∈ 𝑅 then (𝑠, 𝑠″) ∈ 𝑅. Bad states are then defined
as: 𝐵 = {𝑠 ∈ (𝑆𝑊∩𝐷\𝐹𝑊∩𝐷) ∣ ∀𝑠′.(𝑠′ ∈ 𝐹𝑊∩𝐷 → (𝑠, 𝑠′) ∉ 𝑅)}. Also, we define
a semi-bad state 𝑆𝐵 = {𝑠 ∈ (𝑆𝑊∩𝐷\𝐵) ∣ ∃𝑠′, 𝑎.(𝑠′ ∈ 𝐵 ∧ (𝑠, 𝑎, 𝑠′) ∈ 𝛿𝑊∩𝐷)}.
On Figure 11 semi-bad states are coloured yellow. Essentially, every semi-bad
state has at least one transition leading to a bad state. Each problem set is the
set of semi-bad states sharing at least one common transition to a bad state:
𝑃𝑆𝑎 = {𝑠 ∈ 𝑆𝐵 ∣ ∀𝑠, ∃𝑎.(𝑠, 𝑎, 𝑠′) ∈ 𝛿𝑊∩𝐷 ∧ 𝑠′ ∈ 𝐵}. In the running example
we can see one problem set, identified by the activity 𝖼𝗁𝖾𝖼𝗄 𝗆𝖾𝖽𝗂𝖼𝖺𝗅 𝗁𝗂𝗌𝗍𝗈𝗋𝗒. It
consists of states numbered (Figure 11) 14, 18, 19, 36.

4 - addSyncPoints. This step modifies 𝑊 ′ by removing behaviors non-compliant
with Φ separately for each problem set. Since non-compliant exclusive branches
have already been removed by removeUnusedPlaces, the ones we tackle here are
due to (non-compliant) interleavings of two activities in two different branches.
We do that by computing synchronization points for each problem set: a start
synchronization point is a join-transition forcing the execution of two branches to
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Figure 13: WF-net resulting from the application of arne to the net and rules in
Example 1.

synchronize. The end synchronization point is a set of split-places allowing the
parallel execution to continue from where it was left. By analyzing the reacha-
bility relation for states in each problem set, we are able to identify the location
of synchronization points in 𝑊 ′. This allows us to remove as less interleavings
as possible but still satisfying the declarative rules. Figure 12 graphically shows
how addSyncPoints works when dealing with the declare rule 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒(𝑏, 𝑒).
In practice, finding synchronization points works as follows: firstly, we find a set
of states belonging to a problem set, from which it is not possible to reach any
other state of the same problem set. We call this set the last states of the problem
set 𝐿𝑆. Formally, 𝐿𝑆 = {𝑠 ∈ 𝑃𝑆𝑎 ∣ ∀𝑠, ∀𝑏.(𝑠, 𝑏, 𝑠′) ∈ 𝛿𝑊∩𝐷 ∧ 𝑠′ ∉ 𝑃𝑆𝑎}. Intu-
itively, each state in 𝐿𝑆 has at least two outgoing arcs, one to a bad state, another
to a good state. We take one of the states from 𝐿𝑆 and look at the transitions
leading to a good and a bad state. The transition leading to a good state will
become a source of the synchronization, while the transition leading to the bad
state will become the target. In Figure 11 the state belonging to 𝐿𝑆 is 36. An
arc going to a good state is labelled with 𝖺𝗌𝗄 𝖿𝗈𝗋 𝗎𝗉𝖽𝖺𝗍𝖾𝗌, while the one to the bad
state with 𝖼𝗁𝖾𝖼𝗄 𝗆𝖾𝖽𝗂𝖼𝖺𝗅 𝗁𝗂𝗌𝗍𝗈𝗋𝗒. If we attempted to synchronize using these two
transitions, we would get a non-block-structured model. To keep the model block-
structured we have to synchronize in PN branches that are on the same nesting
level. In the running example, the first such transition is 𝖺𝗌𝗌𝖾𝗌𝗌 𝗅𝗈𝖺𝗇 𝗋𝗂𝗌𝗄. Yet in
general, if we synchronize on an AND-split we would not get a block-structured
model. An alternative is to use hidden transitions. In this case we would have to
add two hidden transitions, as visible on Figure 13, which will allow us to keep
block-structuredness and keep more behaviour than other alternatives, such as
synchronizing before the AND-split.

5 - flattening. When, after adding synchronization points, the model still has
non-compliant behaviors and automaton does not provide enough information
for additional synchronization points, function 𝑓𝑙𝑎𝑡𝑡𝑒𝑛 is used, which essentially
“flats” the parallelism by concatenating parallel branches. To explain flattening,
we first introduce the concept of a semi-bad front. First level semi-bad front is a set
of semi-bad states from which it is possible to reach in one step a bad state. 2-nd
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level semi-bad fronts are a set of semi-bad states from which it is possible to reach
a n-1 semi-bad front in one step. Let the first front be denoted as 𝑆𝐵1 = 𝑆𝐵. In
this case 𝑆𝐵𝑛 = {𝑠 ∈ (𝑆\𝑆𝐵𝑛−1) |∃𝑠′, ∃𝑎.(𝑠′ ∈ 𝑆𝐵𝑛−1 ∧ (𝑠, 𝑎, 𝑠′) ∈ 𝛿𝑊∩𝐷)}. We
apply the 𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑖𝑛𝑔 on each semi-bad front until the model is complient with the
rules.

The essence of the 𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑖𝑛𝑔 function is finding places in one branch of
the net to connect them to the another branch of the net. We do this using
the pairs of semi-bad and bad states. We define the pair as 𝑆 ⊆ 𝑆𝐵 × 𝐵 =
{𝑠1, 𝑠2 |∃𝑎.(𝑠1, 𝑎, 𝑠2) ∈ 𝛿𝑊∩𝐷}. Additionally, we would like to define a function 𝑐𝑡
that takes a pair of semi-bad and bad states and outputs a transition connecting
them. 𝑐𝑡 ∶ 𝑆𝐵 × 𝐵 → ℘(𝑇 ). 𝑐𝑡(𝑠𝑏, 𝑏) = {𝑎 ∣ ∃𝑎.(𝑠𝑏, 𝑎, 𝑏) ∈ 𝛿𝑊∩𝐷}. Given an
automaton 𝐴𝑊∩𝐷 as defined in Definition 14 and a state 𝑠 ∈ 𝑆𝑊∩𝐷 we define
inductively a set of paths Π(𝑠, 𝑎) starting from 𝑠 as the set such that:

• 𝑠 ∈ Π(𝑠, 𝑎)

• if 𝑠
𝑎0→ 𝑠1

𝑎1→ ...
𝑎𝑛�1→ 𝑠𝑛 ∈ Π(𝑠, 𝑎) then ∀𝑠𝑛+1, 𝑎𝑛.(𝑠𝑛, 𝑎𝑛, 𝑠𝑛+1) ∈ 𝛿 implies

(𝑠
𝑎0→ 𝑠1

𝑎1→ ...
𝑎𝑛�1→ 𝑠𝑛

𝑎𝑛→ 𝑠𝑛+1) ∈ Π(𝑠, 𝑎)

Given Π(𝑠𝑏, 𝑎) and 𝑎 ∈ 𝑐𝑡(𝑠𝑏) we define a set of paths: Δ(𝑠𝑏, 𝑎) ⊆ Π(𝑠𝑏, 𝑎) ∣ 𝜋 ∈
Δ(𝑠𝑏, 𝑎) implies:

• 𝜋 is maximal.

• 𝑎 does not belong to 𝜋.

Given Δ(𝑠𝑏, 𝑎) we define the set 𝐸𝑆∆(𝑠𝑏,𝑎) of all ending states of paths, not
containing sink states, in 𝜋(𝑠𝑏, 𝑎). Because of maximality, we are sure that ∀𝑠 ∈
𝐸𝑆∆(𝑠𝑏,𝑎)∃𝑠′ ∣ (𝑠, 𝑎, 𝑠′) ∈ 𝛿. Now we have a state 𝑠 that represents a marking in
the net, which intuitively is the last marking before the problem occurs and a rule
becomes violated. Using 𝑠 and 𝑠′ we take the difference of the marking using the
function 𝑙𝑝 with a signature 𝑙𝑝 ∶ 𝐸𝑆∆(𝑠𝑏,𝑎) × 𝑆 → ℘(𝑃), while being defined as
follows: 𝑙𝑝(𝑠, 𝑠′) = {𝑝 ∣ 𝑆𝑀(𝑠)(𝑝) = 1 ∧ 𝑆𝑀(𝑠′)(𝑝) = 0}. We can use the places
returned by the 𝑙𝑝 to connect them to the transition that causes the problem,
essentially flattening a part of the net.

Algorithm 1 shows compactly the five steps described above.
The current implementation of arne does not account for some tighter de-

clare rules where the ltl𝑓 temporal operator next imposes a direct succession
(such as in 𝑐ℎ𝑎𝑖𝑛𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒), and for cases in which activities involved in loops
are mentioned in declare rules, which we plan to support as future work. In
case of rules containing next operator is far more difficult to extract information
from the automaton concerning the location of the problem than it is for the other
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Algorithm 1: arne algorithm
Data: 𝑊 + declare rules
Result: Repaired 𝑊 ′

1 𝐴𝑊∩𝐷 ←intersect(𝑊 , Φ);
2 𝑊 ′ ←removeUnusedPlaces(𝐴𝑊 , 𝐴𝑊∩𝐷);
3 if 𝑊 ′ is not compliant with declare rules then
4 set of 𝑃𝑆𝑎 ←getProblemSets(𝐴𝑊∩𝐷);
5 while set of 𝑃𝑆𝑎 is not empty do
6 𝐿𝑆 ←getLastStateOfTheProblemSet(𝑃𝑆𝑎);
7 for 𝑙𝑠 ∈ 𝐿𝑆 do
8 getSyncSourceAndTarget();
9 sync();

10 checkComplianceToRules();

11 if 𝑊 ′ is not compliant with declare rules then
12 set of 𝑆𝐵 ←getFronts();
13 while set of 𝑆𝐵 is not empty do
14 𝑆 ←getSemiBadBadPairs();
15 for 𝑆𝐵 × 𝐵 ∈ 𝑆 do
16 𝐸𝑆∆(𝑠𝑏,𝑎) ← 𝑔𝑒𝑡𝑃𝑎𝑡ℎ𝑠(𝑆𝐵, 𝑐𝑡(𝑆𝐵 × 𝐵));
17 getSourceAndTarget();
18 flatten();
19 checkComplianceToRules();
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types of rules. For that reason, other heuristics might be necessary for the rules
with the next operator. As for the cycles, when combined with declarative rules,
they may lead to ambiguous meaning. For example, the case of a rule specifying
that 𝑎 has to occur immediately after 𝑏 applied to a net having 𝑎 inside a loop
and 𝑏 outside. It can be confusing how many times can the loop be passed and 𝑎
executed and should 𝑏 be executed before each loop pass. Because of this, futher
investigations are required on how to handle cycles in the procedural models. One
possible way would be to limit, with a threshold 𝑘, the number of times the loops
could be passed through.

We close the section by showing the graphical representation of the WF-net
resulting by applying arne to Example 1 (Figure 13). It should be noted that in
the running example only the first four steps were taken, as the 𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑖𝑛𝑔 was
not needed.
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7 Implementation

External libraries ARNE ProM

jAutomata

FFLOAT

Framework
Contexts
Models

PetriNets

PNAnalysis

TransitionSystemsPNAutomatonBuilder

Tweety

LTLAutomatonBuilder

ModelRepairer

Synchroniser FlattenerPetrify

Figure 14: The architecture of arne ProM plug-in.

The two automata-based approaches, namely PN synthesis and arne, de-
scribed in Sections 6.1 and 6.2 respectively, were implemented in a novel ProM
plug-in.3 For the PN synthesis, we incorporated the existing petrify tool.4 The
arne algorithm detailed in Section 6.2 was implemented from scratch and it makes
use of the flloat library5 for the automata generation which implements the al-
gorithm in [6]. Figure 14 presents an overview of the system architecture of the
arne ProM plug-in. We use external libraries (s.t. jAutomata, flloat, Tweety)
and ProM libraries (s.t. PetriNets, PNAnalysis, TransitionSystems) to generate
automata. Other major components (s.t. ModelRepairer) are used for PN modi-
fications. flloat library was implemented using Java 8, while the ProM online
version only supports Java versions up to 7. Because of the incompatibility of
different versions of Java, it is not possible to distribute the plug-in through the
ProM package manager, but it can be run locally.

To convert a given Petri net into an automaton, code from the ProM plug-in
PNAnalysis6 was used.

3https://github.com/alaponin/AutomatedRuletoNetEnactorProMPlugin
4http://www.cs.upc.edu/~jordicf/petrify/
5https://github.com/RiccardoDeMasellis/FLLOAT
6https://svn.win.tue.nl/repos/prom/Packages/PNAnalysis/Trunk/src/org/

processmining/plugins/petrinet/behavioralanalysis/TSGenerator.java
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Figure 15: Input window of arne ProM plug-in.

Figure 16: Dialog window of arne ProM plug-in.

As shown in Figure 15, the plug-in takes as inputs a PN and a set of declare
rules. Next, the user is prompted with the possibility to choose between using
arne or petrify (Figure 16), based on whether she wants to preserve syntactical
similarity or keep all behaviors of the original model. The plug-in returns a repaired
process model as a PN (Figure 17). All repair operations presented in Tables 4
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Figure 17: Results window of arne ProM plug-in.

and 5 took around couple of seconds on a standard laptop.
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# of Routing
# of Places # of Transitions place transitions Loops

𝑊1-xor 30 40 12 4 No
𝑊2-and 24 26 6 4 No
𝑊3-loop 16 16 4 2 Yes

Table 2: Information about the procedural models

8 Evaluation
We now provide an evaluation of the automata based techniques presented in the
previous section. Overall, we did a comparative evaluation between the two au-
tomata based procedures (petrify and the arne algorithm), and two log-based
approaches leveraging state-of-the-art techniques for process discovery and model
repair. We are interested in answering two research questions concerning the char-
acteristics of the returned model by using the approaches above:
Q1: are the techniques effective in returning WF-nets whose behaviors only be-

long to the set of desired behaviors 𝛽, thus solving the problem as stated in
Section 6?

Q2: are the techniques only in 𝛽 able to satisfy the other problem desiderata (D1
and D2 mentioned in Section 5), i.e., similarity to the original procedural
net, block-structuredness and no duplicate activities?

8.1 Datasets, Procedure and Metrics
For the tool evaluation, we used three different procedural models (𝑊1 – 𝑊3),
each 𝑊𝑖 paired with different sets of declarative rules.

Table 2 illustrates some characteristics of the procedural models we use, while
Figures 18, 19, 20 (see Appendix I) provide images of said models, with the activity
names shortened for clarity. 𝑊1 is characterised by several (mutually exclusive)
alternative branches, 𝑊2 is characterised by a high parallelism degree and finally,
the distinctive feature of 𝑊3 is the presence of a loop. These distinctive features
are added to the process names (as in Table 2), when relevant to the discussion.

Each procedural model was paired with a number of different sets of declare
rules. The aim of the different sets is to challenge the algorithm with a number of
distinct declare patterns, combined in different ways and involving transitions
placed in different parts of the process. In Table 3 we report the rules used for the
process models. The prefix in the set name makes clear to which process the rules
refer to.

Thus, our dataset is composed of 11 entries, one for each suitable combination
of the three procedural models in Table 2 with the declarative rules above. For
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Name declare template LTL
𝑊1-𝐷1 alt. response, precedence (□(𝑔 → (∘(¬𝑔 𝒰 ℎ)))) ∧ (¬𝑟 𝒲 𝑠)
𝑊1-𝐷2 alt. precedence, response ((¬𝑔 𝒲 ℎ) ∧ (□(𝑔 → ∘(¬𝑔 𝒲 ℎ)))) ∧ (□(𝑎𝑔 → ⋄𝑎ℎ))
𝑊1-𝐷3 alt. precedence, response, absence ((¬𝑎𝑒 𝒲 𝑐) ∧ (□(𝑎𝑒 → ∘(¬𝑎𝑒 𝒲 𝑐)))) ∧ (□(ℎ → ⋄𝑔)) ∧ (¬ ⋄ 𝑦)
𝑊1-𝐷4 precedence, response, response (¬𝑎𝑒 𝒲 𝑐) ∧ (□(ℎ → ⋄𝑔)) ∧ (□(𝑟 → ⋄𝑠))
𝑊2-𝐷1 response, response (□(𝑑 → ⋄𝑜)) ∧ (□(𝑘 → ⋄𝑠))
𝑊2-𝐷2 response, precedence, absence (□(𝑔 → ⋄𝑞)) ∧ (¬𝑡 𝒲 𝑚) ∧ (¬ ⋄ 𝑙)
𝑊2-𝐷3 response, absence, precedence (□(𝑔 → ⋄𝑜)) ∧ (¬ ⋄ 𝑒) ∧ (¬𝑚 𝒲 𝑣)
𝑊2-𝐷4 response, alt. response, precedence (□(𝑘 → ⋄𝑠) ∧ (□(𝑑 → ∘(¬𝑑 𝒰 𝑟))) ∧ (¬𝑔 𝒲 𝑜)
𝑊3-𝐷1 precedence ¬𝑓 𝒲 ℎ
𝑊3-𝐷2 response □(𝑘 → ⋄𝑗)
𝑊3-𝐷3 alt. response □(𝑔 → (∘(¬𝑔 𝒰 𝑏)))

Table 3: Evaluation rules

instance, 𝑊1 has been used in four datasets, one for each pair from 𝑊1-𝐷1 to
𝑊1-𝐷4 of rules. Similarly for the others.

Log-based technique - discovery. The main idea is to select from Π𝑊 the
subset Π𝑊 ∩ ℒ𝐷 of traces satisfying also the ltl𝑓 formulae corresponding to the
declare rules in 𝐷. This is done by converting 𝐷 into an automaton [32] and
then checking which traces in Π𝑊 are accepted by said automaton. Intuitively,
Π𝑊 ∩ ℒ𝐷 corresponds to a random set of traces compliant with both 𝑊 and 𝐷
(and thus belonging to the intersection 𝛽 in Figure 5). We then discovered the
procedural 𝑊𝑑𝑠𝑐𝑣𝑟 model from log Π𝑊 ∩ ℒ𝐷 using the Heuristic miner [31].

Log-based technique - repair. We built the second log-based technique on
the work done by De Giacomo et al. [9]. The main problem of their work is taking
a event log trace 𝑡, aligning it to a declare rule 𝜙 and finding a trace 𝑡′ that
satisfies 𝜙. Trace 𝑡 is transformed into a trace automaton 𝑇 , while 𝜙 is converted
into a constraint automaton 𝐴. In order to find 𝑡′, 𝐴 is augmented into 𝐴′ that
accepts 𝑡′. Using the described technique we can take the set Π𝑊 , align its traces
to the declarative rules in 𝐷 and get the set Π𝐷 that is complient to 𝐷. We
then use the Repair Model (remove unused parts) ProM plug-in [15], described in
Section 3.2, to repair 𝑊 w.r.t. Π𝐷, thus obtaining a repaired 𝑊𝑟𝑝𝑟.

Procedure. For each (𝑊, 𝐷) of our dataset, we carried out the following steps:
• we computed two procedural models 𝑊petrify and 𝑊arne using the petrify and

the arne algorithms embedded in the implementation of the arne plug-in;
• we generated a set Π𝑊 ⊆ ℒ𝑊 of 2 000 traces for 𝑊 using the PLG2 tool

described in [5];
• using afromentioned log-based discovery technique on Π𝑊 we discovered the

model 𝑊𝑑𝑠𝑐𝑣𝑟.
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• starting from the set Π𝑊 generated previously, we used the log-based repair
technique, described above, to obtain a repaired 𝑊𝑟𝑝𝑟;

• for each returned model 𝑊𝑛𝑒𝑤 ∈ {𝑊petrify, 𝑊arne, 𝑊𝑑𝑠𝑐𝑣𝑟, 𝑊𝑟𝑝𝑟}, we per-
formed the following measurements:

– manually check whether the returned models still satisfy the block struc-
tured and the no-duplicates properties;

– measure the edit distance between the returned models and the original
procedural model;

– evaluate the percentage of desirable behaviors in 𝛽 retained by the re-
turned models w.r.t the original 𝑊 ;

– check whether the returned models also admit non desirable behaviors
in 𝛼, 𝛾, or 𝛿.

The net similarity between the returned models and the original procedural
model was measured using the Graph Edit Distance Similarity ProM plug-in [13],
while the measures concerning the behaviors in 𝛼, 𝛽, 𝛾, and 𝛿 where computed
using automata. Indeed, given the language-theoretical equivalences between lan-
guages and automata, we have that (cfr. Section 2): 𝛼 = ℒ(𝐴𝑊 ∧ ¬𝐴𝐷 ∧ 𝐴𝑊𝑛𝑒𝑤

),
𝛽 = ℒ(𝐴𝑊 ∧ 𝐴𝐷 ∧ 𝐴𝑊𝑛𝑒𝑤

), 𝛾 = ℒ(¬𝐴𝑊 ∧ 𝐴𝐷 ∧ 𝐴𝑊𝑛𝑒𝑤
) and 𝛿 = ℒ(¬𝐴𝑊 ∧

¬𝐴𝐷 ∧ 𝐴𝑊𝑛𝑒𝑤
) where 𝐴𝑊𝑛𝑒𝑤

is the reachability graph of 𝑊𝑛𝑒𝑤, ∧ is the automata
synchronous product operation and ¬ is the automata negation operation (simply
switching final and non-final states). More precisely:

• To check whether the returned models also admit non desirable behaviors
in 𝛼, 𝛾, or 𝛿 we introduce, with notational abuse, three boolean metrics
𝛼, 𝛾, and 𝛿 that are set to true (T) when the corresponding automaton is
empty, i.e., it does not accept any execution, or false (F) otherwise. E.g., if
𝐴𝛼 = 𝐴𝑊 ∧ ¬𝐴𝐷 ∧ 𝐴𝑊𝑛𝑒𝑤

is empty, it means that ℒ(𝐴𝛼) = 𝛼 = ∅ and the
boolean 𝛼 is set to true.

• To evaluate the percentage of desirable behaviors in 𝛽 retained by each re-
turned model 𝑊𝑛𝑒𝑤, we used the following metric (again, with notational
abuse):

𝛽 =
∣ (𝐴𝑊 ∧ 𝐴𝐷) ∧ 𝐴𝑊𝑛𝑒𝑤

∣
∣ 𝐴𝑊 ∧ 𝐴𝐷 ∣

where ∣ 𝐴 ∣ counts the number of different paths of automaton 𝐴 considering
each loop (if present) only once. The above metrics essentially computes the
number of behaviors/executions common to 𝑊 , 𝐷, and 𝑊𝑛𝑒𝑤 normalized by
the number of original behaviors of both 𝑊 and 𝐷.
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𝑊𝑑𝑠𝑐𝑣𝑟 𝑊𝑟𝑝𝑟

Name BS R S 𝛽 𝛼/𝛾/𝛿 BS R S 𝛽 𝛼/𝛾/𝛿
𝑊1-𝐷1 Yes No 0.55 0.64 T/F/T Yes No 0.87 1.00 F/T/T
𝑊1-𝐷2 Yes No 0.57 0.86 T/F/T Yes No 0.85 1.00 F/T/T
𝑊1-𝐷3 Yes No 0.58 1.00 T/F/F Yes No 0.85 1.00 F/T/T
𝑊1-𝐷4 Yes No 0.57 1.00 T/F/T Yes No 0.84 1.00 F/T/T
𝑊2-𝐷1 No No 0.60 0.00 T/T/T Yes No 0.82 1.00 F/T/T
𝑊2-𝐷2 No No 0.59 0.00 T/F/T Yes No 0.80 1.00 F/T/T
𝑊2-𝐷3 No No 0.62 0.04 T/F/F Yes No 0.83 1.00 F/T/T
𝑊2-𝐷4 Yes No 0.60 0.06 T/F/F Yes No 0.80 0.96 F/T/T
𝑊3-𝐷1 No No 0.62 0.03 F/F/F No No 0.85 1.00 F/T/T
𝑊3-𝐷2 No No 0.61 0.12 T/F/F No No 0.88 1.00 F/T/T
𝑊3-𝐷3 No No 0.62 0.10 F/F/F No No 0.82 1.00 F/T/T

Table 4: The results for log-based approaches.

𝑊arne 𝑊petrify

Name BS R S 𝛽 𝛼/𝛾/𝛿 BS R S 𝛽 𝛼/𝛾/𝛿
𝑊1-𝐷1 Yes No 0.79 1.00 T/T/T Yes No 0.80 1.00 T/T/T
𝑊1-𝐷2 Yes No 0.83 1.00 T/T/T Yes No 0.79 1.00 T/T/T
𝑊1-𝐷3 Yes No 0.81 1.00 T/T/T Yes No 0.74 1.00 T/T/T
𝑊1-𝐷4 Yes No 0.78 1.00 T/T/T Yes No 0.71 1.00 T/T/T
𝑊2-𝐷1 Yes No 0.79 0.15 T/T/T No No 0.74 1.00 T/T/T
𝑊2-𝐷2 Yes No 0.76 0.01 T/T/T No No 0.74 0.54 T/T/T
𝑊2-𝐷3 Yes No 0.79 0.01 T/T/T No No 0.74 1.00 T/T/T
𝑊2-𝐷4 Yes No 0.79 0.01 T/T/T No No 0.73 1.00 T/T/T
𝑊3-𝐷1 – – – – – No Yes 0.79 0.02 T/T/T
𝑊3-𝐷2 – – – – – No Yes 0.69 1.00 T/T/T
𝑊3-𝐷3 – – – – – No Yes 0.75 0.11 T/T/T

Table 5: The results for automata-based approaches.

8.2 Results
The results of our evaluation are reported in Tables 4 and 5, while models created
by arne are visible in Appendix I. The missing results for arne for model 𝑊3
are because it does not yet handle loops, which do appear in 𝑊3. For each of
the four methods, the table includes: whether the returned model is still block
structured (BS), it contains duplicate activities (R); its (edit distance) similarity
with the original PN (S); the measurement of retained desired behaviors (𝛽) of the
returned model and whether the returned model admits non desirable behaviors
in 𝛼, 𝛾, or 𝛿 (𝛼/𝛾/𝛿).

Concerning Q1 we can observe that automata-based techniques are the only
ones able to always guarantee 𝛼 = 𝛾 = 𝛿 = 𝑡𝑟𝑢𝑒. On the other hand, both
failing on these measures, log-based discovery and repair approaches provide fairly
different results. Discovery is, in fact, the worst technique to be used to solve
this problem: this is somehow not surprising as it does not take into account the
original PN, but it is exclusively based on a set of (random and non-exhaustive)
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execution traces in 𝛽. From this the lowest similarity S. A possible explanation for
the fluctuating metric 𝛼–𝛾 is that discovery algorithms attempt to generalize the
behaviors extracted from traces: thus, even if the discovery is done using traces
satisfying both the procedural and the declarative parts of the original model, the
generalization can introduce extra behaviors in 𝛼/𝛾/𝛿 as well as lose part of the
behaviours in 𝛽.

The repair based technique instead shows more consistent results. It scores
very well in S, 𝛽, and it only fails in 𝛼. This was expected: indeed, Repair
Model ProM plug-in is based on alignment, whose focus is on adding behaviors by
modifying the model (moves on the model) according to the log traces. When the
rules span parallel branches, then the Repair Model ProM plug-in is not able to
perform repair operations and the model stays the same (high S score). Then, by
using the removed unused part option, some of the unused parts, which all belongs
to 𝛼, are removed, but others are not.

We can then conclude that arne and petrify are the only techniques in 𝛽 (Q1).
The measurement of similarity (Q2), both in terms of syntactic edit distance S
and behaviors (𝛽), is therefore restricted to arne and petrify. Concerning S,
we can observe that it is constantly fairly high for both arne (0.76 � 0.83) and
petrify (0.71 � 0.80). Except for 𝑊1-𝐷1, for comparable values of 𝛽, arne shows
a higher value of S. The ability to retain all the desired behaviors (𝛽), instead,
varies greatly for the different datasets: for both techniques, we can observe that
it is either extremely low (close to 0) or extremely good (close to 1). The low
values of arne in adapting 𝑊2 can be explained by the fact that this algorithm
preserves - by construction – the block structured property of the net. Parallel
branches allow for many possibilities of interleaving activities, by synchronising
these branches we remove a lot of combinations. Comparing arne and petrify
on 𝑊2, we can observe that the price paid by arne in terms of behaviors 𝛽 to
maintain the block structured property corresponds to a gain in a higher similarity
S with the original net.

To conclude, our evaluation shows that automata-based techniques are the best
suited ones to return procedural process models which satisfy a set of declarative
business rules. Our first experiments show that arne should be chosen when the
priority is given to maintain block structured processes with no duplicate activities.
This results in highly similar WF-nets that nonetheless may lose a not negligible
amount of behaviors. Petrify may be chosen, instead, when maintaining these two
structural properties of the net is not crucial.
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9 Summary
In this thesis, we proposed a language to combine procedural and declarative mod-
els while keeping the procedural and the declarative parts separate. In addition,
we formulated the complex problem of how to adapt the procedural specifica-
tion to the declarative one. We tackled this problem with two automata-based
approaches: one based on the synthesis of Petri nets and one based on a novel al-
gorithm. The two-automata based approaches have been implemented in a ProM
plug-in and extensively tested against log-based approaches leveraging state-of-
the-art techniques for process discovery and model repair. The results emphasise
the soundness of the automata-based approaches, but also bring open questions
and an opportunity for future investigations. In particular, this thesis provides a
new challenging research perspective on how to deal with combined procedural and
declarative models which should be further expanded. As future work, we plan to
extend the functionalities of arne so as to cope with loops and declare rules
expressing strong relations between activities such as 𝑐ℎ𝑎𝑖𝑛𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒, to extend
our evaluation to real-life process models, and to investigate the issue of human
understandability of the adapted models versus other approaches to combined
models.

45



References
[1] Armas-Cervantes, A., Rosa, M. L., Menjivar, M. D., García-

Bañuelos, L., and van Beest, N. R. Interactive and incremental business
process model repair. April 2017.

[2] Badouel, E., Bernardinello, L., and Darondeau, P. Petri Net Syn-
thesis. Texts in Theoretical Computer Science. An EATCS Series. Springer,
2015.

[3] Baier, C., and Katoen, J.-P. Principles of Model Checking (Representa-
tion and Mind Series). The MIT Press, 2008.

[4] Buijs, J. C. A. M., La Rosa, M., Reijers, H. A., van Dongen, B. F.,
and van der Aalst, W. M. P. Improving Business Process Models Using
Observed Behavior. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013,
pp. 44–59.

[5] Burattin, A. PLG2: multiperspective process randomization with online
and offline simulations. In BPM Demos (2016), pp. 1–6.

[6] De Giacomo, G., De Masellis, R., Grasso, M., Maggi, F. M., and
Montali, M. Monitoring business metaconstraints based on LTL and LDL
for finite traces. In BPM (2014), pp. 1–17.

[7] De Giacomo, G., De Masellis, R., and Montali, M. Reasoning on
LTL on finite traces: Insensitivity to infiniteness. In AAAI (2014), pp. 1027–
1033.

[8] De Giacomo, G., Dumas, M., Maggi, F. M., and Montali, M. Declar-
ative Process Modeling in BPMN. Springer International Publishing, Cham,
2015, pp. 84–100.

[9] De Giacomo, G., Maggi, F. M., Marrella, A., and Patrizi, F.
On the disruptive effectiveness of automated planning for ltlf -based trace
alignment. In AAAI (2017), pp. 3555–3561.

[10] De Giacomo, G., and Vardi, M. Y. Linear temporal logic and linear
dynamic logic on finite traces. In IJCAI 2013, Proceedings of the 23rd Inter-
national Joint Conference on Artificial Intelligence, Beijing, China, August
3-9, 2013 (2013), pp. 854–860.

[11] De Smedt, J., De Weerdt, J., Vanthienen, J., and Poels, G. Mixed-
paradigm process modeling with intertwined state spaces. Business & IS Eng.
58, 1 (2016), 19–29.

46



[12] Dijkman, R. M., Dumas, M., and Ouyang, C. Semantics and analysis
of business process models in bpmn. Inf. Softw. Technol. 50, 12 (Nov. 2008),
1281–1294.

[13] Dijkman, R. M., Dumas, M., van Dongen, B. F., Käärik, R., and
Mendling, J. Similarity of business process models: Metrics and evaluation.
Inf. Syst. 36, 2 (2011), 498–516.

[14] Dumas, M., Rosa, M. L., Mendling, J., and Reijers, H. A. Fun-
damentals of Business Process Management. Springer Publishing Company,
Incorporated, 2013.

[15] Fahland, D., and van der Aalst, W. M. Model repair - aligning process
models to reality. Inf. Syst. 47, C (Jan. 2015), 220–243.

[16] Gambini, M., La Rosa, M., Migliorini, S., and Ter Hofstede, A.
H. M. Automated Error Correction of Business Process Models. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 148–165.

[17] Hildebrandt, T. T., Mukkamala, R. R., Slaats, T., and Zanitti,
F. Contracts for cross-organizational workflows as timed dynamic condition
response graphs. J. Log. Algebr. Program. 82, 5-7 (2013), 164–185.

[18] Hopcroft, J. E., Motwani, R., and Ullman, J. D. Introduction to
Automata Theory, Languages, and Computation, 3rd ed. Pearson/Addison
Wesley, Boston, 2007.

[19] Kiepuszewski, B., ter Hofstede, A. H. M., and Bussler, C. J.
On structured workflow modelling. In Seminal Contributions to Information
Systems Engineering. 2013.

[20] Lohmann, N., and Fahland, D. Where Did I Go Wrong? Springer
International Publishing, Cham, 2014, pp. 283–300.

[21] Maggi, F. M., Slaats, T., and Reijers, H. A. The Automated Discovery
of Hybrid Processes. Springer International Publishing, Cham, 2014, pp. 392–
399.

[22] Moody, D. L. The “physics” of notations: toward a scientific basis for
constructing visual notations in software engineering. IEEE TSE 35, 6 (2009),
756–779.

[23] Pesic, M., Schonenberg, H., and van der Aalst, W. DECLARE: Full
Support for Loosely-Structured Processes. In EDOC (2007), pp. 287–300.

47



[24] Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., and
Reijers, H. A. Imperative versus Declarative Process Modeling Languages:
An Empirical Investigation. Springer Berlin Heidelberg, Berlin, Heidelberg,
2012, pp. 383–394.

[25] Pnueli, A. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science (Washington, DC,
USA, 1977), SFCS ’77, IEEE Computer Society, pp. 46–57.

[26] Polyvyanyy, A., García-Bañuelos, L., Fahland, D., and Weske,
M. Maximal structuring of acyclic process models. Comput. J. 57, 1 (2014),
12–35.

[27] Reijers, H. A., Slaats, T., and Stahl, C. Declarative Modeling–An
Academic Dream or the Future for BPM? Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013, pp. 307–322.

[28] Slaats, T., Schunselaar, D. M. M., Maggi, F. M., and Reijers,
H. A. The Semantics of Hybrid Process Models. Springer International
Publishing, Cham, 2016, pp. 531–551.

[29] van der Aalst, W. M. P. The application of petri nets to workflow
management. Journal of Circuits, Systems and Computers 08 (Feb. 1998),
21–66.

[30] van der Aalst, W. M. P. Process Mining - Data Science in Action, Second
Edition. Springer, 2016.

[31] Weijters, A., and Aalst, W. Rediscovering Workflow Models from
Event-Based Data using Little Thumb. Integrated Computer-Aided Engineer-
ing 10, 2 (2003), 151–162.

[32] Westergaard, M. Better Algorithms for Analyzing and Enacting Declar-
ative Workflow Languages Using LTL. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011, pp. 83–98.

[33] Westergaard, M., and Slaats, T. Cpn tools 4: A process modeling tool
combining declarative and imperative paradigms. In BPM (Demos) (2013).

[34] Westergaard, M., and Slaats, T. Mixing Paradigms for More Com-
prehensible Models. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013,
pp. 283–290.

48



[35] Zur Muehlen, M., and Indulska, M. Modeling languages for business
processes and business rules: A representational analysis. Inf. Syst. 35, 4
(2010), 379–390.

49



Appendix

I. Procedural Models
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Figure 18: 𝑊1-xor
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Figure 19: 𝑊2-and
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Figure 20: 𝑊3-loop
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Figure 21: Resulting model of arne for rule 𝑊1-𝐷1
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Figure 22: Resulting model of arne for rule 𝑊1-𝐷2
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Figure 23: Resulting model of arne for rule 𝑊1-𝐷3
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Figure 24: Resulting model of arne for rule 𝑊1-𝐷4
57



Figure 25: Resulting model of arne for rule 𝑊2-𝐷1
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Figure 26: Resulting model of arne for rule 𝑊2-𝐷2
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Figure 27: Resulting model of arne for rule 𝑊2-𝐷3
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Figure 28: Resulting model of arne for rule 𝑊2-𝐷4
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