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GWAS Identifies Risk Locus for Erectile Dysfunction
and Implicates Hypothalamic Neurobiology
and Diabetes in Etiology

Jonas Bovijn,1,2,14,* Leigh Jackson,3,14 Jenny Censin,1,2,14 Chia-Yen Chen,4,5,14 Triin Laisk,6,7,14

Samantha Laber,1,2,14 Teresa Ferreira,1 Sara L. Pulit,1,8,9 Craig A. Glastonbury,1 Jordan W. Smoller,5

Jamie W. Harrison,10 Katherine S. Ruth,10 Robin N. Beaumont,10 Samuel E. Jones,10 Jessica Tyrrell,10

Andrew R. Wood,10 Michael N. Weedon,10,14 Reedik Mägi,6,14 Benjamin Neale,4,5,14

Cecilia M. Lindgren,1,2,8,14 Anna Murray,10,14,* and Michael V. Holmes11,12,13,14

Erectile dysfunction (ED) is a common condition affecting more than 20% of men over 60 years, yet little is known about its genetic

architecture. We performed a genome-wide association study of ED in 6,175 case subjects among 223,805 European men and identified

one locus at 6q16.3 (lead variant rs57989773, OR 1.20 per C-allele; p¼ 5.713 10�14), located betweenMCHR2 and SIM1. In silico analysis

suggests SIM1 to confer ED risk through hypothalamic dysregulation. Mendelian randomization provides evidence that genetic risk of

type 2 diabetes mellitus is a cause of ED (OR 1.11 per 1-log unit higher risk of type 2 diabetes). These findings provide insights into the

biological underpinnings and the causes of ED and may help prioritize the development of future therapies for this common disorder.
Erectile dysfunction (ED) is the inability to develop or

maintain a penile erection adequate for sexual inter-

course.1 ED has an age-dependent prevalence, with 20%–

40% of men aged 60–69 years affected.1 The genetic archi-

tecture of ED remains poorly understood, owing in part to

a paucity of well-powered genetic association studies. Dis-

covery of such genetic associations can be valuable for

elucidating the etiology of ED and can provide genetic sup-

port for potential new therapies.

We conducted a genome-wide association study (GWAS)

in the population-based UK Biobank (UKBB) and the Esto-

nian Genome Center of the University of Tartu (EGCUT)

cohorts and hospital-recruited Partners HealthCare Bio-

bank (PHB) cohort. Subjects in UKBB were of self-reported

white ethnicity, with subjects in EGCUT and PHB of Euro-

pean ancestry, as per principal components analyses (Sup-

plemental Material and Methods).

ED was defined as self-reported or physician-reported ED

using ICD10 codes N48.4 and F52.2, or use of oral ED

medication (sildenafil/Viagra, tadalafil/Cialis, or vardena-

fil/Levitra), or a history of surgical intervention for ED

(using OPCS-4 codes L97.1 and N32.6) (Supplemental Ma-

terial and Methods). The prevalence of ED in the cohorts

was 1.53% (3,050/199,352) in UKBB, 7.04% (1,182/

16,787) in EGCUT, and 25.35% (1,943/7,666) in PHB
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(Table S1). Demographic characteristics of the subjects in

each cohort are shown in Table S2. The reasons for the

different prevalence rates in the three cohorts may include

a higher median cohort age for men in PHB (65 years,

compared to 59 years in UKBB and 42 years in EGCUT;

Table S2), ‘‘healthy volunteer’’ selection bias in UKBB,2 a

lack of primary care data availability in UKBB, and intercul-

tural differences, including ‘‘social desirability’’ bias.3,4

Importantly, we note that the assessment of exposure-

outcome relationships remains valid, despite the preva-

lence likely not being representative of the general popula-

tion prevalence.

GWASs in UKBB revealed a single genome-wide

significant (p < 5 3 10�8) locus at 6q16.3 (lead variant

rs57989773, EAFUKBB [C-allele] ¼ 0.24; OR 1.23; p ¼
3.0 3 10�11). Meta-analysis with estimates from PHB (OR

1.20; p ¼ 9.84 3 10�5) and EGCUT (OR 1.08; p ¼ 0.16)

yielded a pooled meta-analysis OR 1.20; p ¼ 5.71 3

10�14 (heterogeneity p value ¼ 0.17; Figures 1A–1C).

Meta-analysis of all variants yielded no further genome-

wide loci. Meta-analysis of our results with previously

suggested ED-associated variants also did not result in

any further significant loci (Supplemental Material and

Methods; Table S3), nor did X chromosome analysis in

UKBB.
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Figure 1. 6q16.3 (Lead Variant rs57989773) Is an Erectile Dysfunction-Associated Locus and Exhibits Pleiotropic Phenotypic Effects
(A) Genome-wide meta-analysis revealed a single genome-wide significant locus for ED at 6q16.3. Only variants with a p value for
association of <0.005 are shown. The red line indicates the genome-wide association significance threshold (set at 5 3 10�8).
(B) Six genome-wide significant variants at 6q16.3 are in high LD.
(C) The association of rs57989773 with ED shows a consistent direction of effect across the three cohorts and across clinically and ther-
apy defined ED in UKBB. Estimates are per C-allele. Boxes represent point estimates of effects. Box sizes are drawn proportional to the
precision of the estimates. Lines represent 95% confidence intervals.
(D) PheWAS reveals sex-specific associations of rs57989773 with waist-hip ratio and blood pressure. A PheWAS of 105 predefined traits
using the lead ED SNP rs57989773 found associations with 12 phenotypes at p < 4.8 3 10�4 (surpassing the Bonferroni-corrected
threshold of 0.05/105; Table S4). All allelic estimates are aligned to the ED risk allele (i.e., C-allele of rs57989773). Due to the nature
of the ED phenotype and previously reported sex-specific effects in theMCHR2-SIM1 locus,5 sex-specific analyses were performed in sig-
nificant traits. Diastolic blood pressure (DBP) and systolic blood pressure (SBP) are included here (despite not meeting the Bonferroni-
corrected threshold in the original analysis) due to previous reports of effects on blood pressure in individuals with rare, coding variants
in SIM1. Sexual heterogeneity was found to be present (surpassing a Bonferroni-corrected threshold of 0.05/7 for the number of traits
where sex-specific analyses were conducted) for DBP (p valueheterogeneity ¼ 6.52 3 10�3), SBP (p valueheterogeneity ¼ 3.73 3 10�3), waist
to hip ratio (WHR; p valueheterogeneity ¼ 2.39 3 10�6), and WHR adjusted for BMI (p valueheterogeneity ¼ 1.77 3 10�5). This plot shows
sex-specific estimates only for traits showing presence of sexual heterogeneity. Continuous traits were standardized prior to analysis
to facilitate comparison. Boxes represent point estimates of effects. Box sizes are drawn proportional to the precision of the estimates.
Lines represent 95% confidence intervals.
The association of rs57989773 was consistent

across clinically and therapy defined ED, as well as

across different ED drug classes (Figures 1C and S1).

No further genome-wide significant loci were iden-

tified for ED when limited to clinically or therapy

defined case subjects (2,032 and 4,142 case subjects,

respectively).
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A PheWAS of 105 predefined traits (Table S4) using the

lead ED SNP rs57989773 found associations with 12

phenotypes at a p value < 5 3 10�4 (surpassing the

Bonferroni-corrected threshold of 0.05/105), including

adiposity (nine traits), adult height, and sleep-related

traits. Sex-stratified analyses revealed sexual dimorphism

for waist-hip ratio (WHR; unadjusted and adjusted for
3, 2019



body mass index) and systolic and diastolic blood pressure

(Figure 1D; Table S5).

The lead variant at the 6q16.3 locus, rs57989773, lies in

the intergenic region between MCHR2 and SIM1, with

MCHR2 being the closest gene (distances to transcription

start sites of 187 kb for MCHR2 and 284 kb for SIM1). Con-

ditional and joint analysis (Supplemental Material and

Methods) revealed no secondary, independent signals in

the locus. Previous work has implicated the MCHR2-SIM1

locus in sex-specific associations on age at voice-breaking

and menarche.5 The puberty timing-associated SNP in

the MCHR2-SIM1 region (rs9321659; �500 kb from

rs57989773) was not in LD with our lead variant (r2 ¼
0.003, D’ ¼ 0.095) and was not associated with ED (p ¼
0.32) in our meta-analysis, suggesting that the ED locus

represents an independent signal.

To identify the tissue and cell types in which the causal

variant(s) for ED may function, we examined chromatin

states across 127 cell types6,7 for the lead variant

rs57989773 and its proxies (r2 > 0.8, determined using

HaploReg v.4.1) (Supplemental Material and Methods).

Enhancer marks in several tissues, including embryonic

stem cells, mesenchymal stem cells, and endothelial cells,

indicated that the ED-associated interval lies within a reg-

ulatory locus (Figure 2A; Table S6).

To predict putative targets and causal transcripts, we

assessed domains of long-range three-dimensional chro-

matin interactions surrounding the ED-associated interval

(Figure 2B). Chromosome conformation capture (Hi-C) in

human embryonic stem cells8 showed that MCHR2 and

SIM1 were in the same topologically associated domain

(TAD) as the ED-associated variants, with high contact

probabilities (referring to the relative number of times

that reads in two 40-kb bins were sequenced together)

between the ED-associated interval and SIM1 (Figures 2B

and S2). This observation was further confirmed in endo-

thelial precursor cells,9 where Capture Hi-C revealed strong

connections between the MCHR2-SIM1 intergenic region

and the SIM1 promoter (Figure 2C), pointing toward

SIM1 as a likely causal gene at this locus.

We next used the VISTA enhancer browser10 to examine

in vivo expression data for non-coding elements within the

MCHR2-SIM1 locus. A regulatory human element (hs576),

located 30-kb downstream of the ED-associated interval,

seems to drive in vivo enhancer activity specifically in

the midbrain (mesencephalon) and cranial nerve in

mouse embryos (Figure 2D). This long-range enhancer

close to ED-associated variants recapitulated aspects of

SIM1 expression (Figure 2D), further suggesting that

the ED-associated interval belongs to the regulatory land-

scape of SIM1. Taken together these data suggest that

the MCHR2-SIM1 intergenic region harbors a neuronal

enhancer and that SIM1 is functionally connected to the

ED-associated region.

Single-minded homolog 1 (SIM1) encodes a transcrip-

tion factor that is highly expressed in hypothalamic neu-

rons.11 Rare variants in SIM1 have been linked to a pheno-
The Americ
type of severe obesity and autonomic dysfunction,12,13

including lower blood pressure. A summary of the

variant-phenotype associations at the 6q16 locus in hu-

man and rodent models is shown in Table S7. Post hoc

analysis of association of rs57989773 with autonomic

traits showed nominal association with syncope, ortho-

static hypotension, and urinary incontinence (Figure S3).

The effects on blood pressure and adiposity seen in indi-

viduals with rare coding variants in SIM1 are recapitulated

in individuals harboring the common ED-risk variants at

the 6q16.3 locus (Figure 1D), suggesting that SIM1 is the

causal gene at the ED-risk locus. SIM1-expressing neurons

also play an important role in the central regulation of

male sexual behavior as mice that lack the melanocortin

receptor 4 (encoded byMC4R) specifically in SIM1-express-

ing neurons show impaired sexual performance on

mounting, intromission, and ejaculation.14 Thus, hypo-

thalamic dysregulation of SIM1 could present a potential

mechanism for the effect of theMCHR2-SIM1 locus on ED.

An alternative functional mechanism may be explained

by proximity of the lead variant (rs57989773) to an argi-

nase 2 processed pseudogene (LOC100129854), a long

non-coding RNA (Figure 2A). RPISeq15 predicts that the

pseudogene transcript would interact with the ARG2 pro-

tein, with probabilities of 0.70–0.77. Arginine 2 is involved

in nitric oxide production and has a previously established

role in erectile dysfunction.16,17 GTEx expression data18

demonstrated highest mean expression in adipose tissue,

with detectable levels in testis, fibroblasts, and brain.

Expression was relatively low in all tissues, however, and

there was no evidence that any SNPs associated with the

top ED signal were eQTLs for the ARG2 pseudogene or

ARG2 itself.

As a complementary approach, we also used the Data-

driven Expression Prioritized Integration for Complex

Traits and GWAS Analysis of Regulatory or Functional

Information Enrichment with LD correction (DEPICT

and GARFIELD, respectively; Supplemental Material and

Methods)19,20 tools to identify gene-set, tissue-type, and

functional enrichments. In DEPICT, the top two prioritized

gene-sets were ‘‘regulation of cellular component size’’ and

‘‘regulation of protein polymerization,’’ whereas the top

two associated tissue/cell types were ‘‘cartilage’’ and

‘‘mesenchymal stem cells.’’ None of the DEPICT enrich-

ments reached an FDR threshold of 5% (Tables S8–S10).

GARFIELD analyses, which assesses enrichment of GWAS

signals in regulatory or functional regions in different

cell types, also did not yield any statistically significant

enrichments, therefore limiting the utility of these ap-

proaches in this case.

ED is recognized to be observationally associated with

various cardiometabolic traits and lifestyle factors,21,22

including type 2 diabetes mellitus (T2D), hypertension,

and smoking. To further evaluate these associations, we

first conducted LD score regression23,24 to evaluate the

genetic correlation of ED with a range of traits. LD score

regression identified ED to share the greatest genetic
an Journal of Human Genetics 104, 157–163, January 3, 2019 159



Figure 2. Functional Analysis of 6q16.3 Implicates SIM1 in ED Pathogenesis
(A) ED-associated signal overlaps regulatory annotations in embryonic stem cells. Chromatin state annotations for the ED-associated
region across 127 reference epigenomes (rows) for cell and tissue types profiled by the Roadmap Epigenomics Project.6,7 Grey vertical
lines indicate the position of the ED-associated variant (rs57989773) and its proxies that are in LD r2 > 0.8 determined using HaploReg
v4.134 (rs17789218, rs9496567, rs78677597, rs9496614, and rs17185536). The lead variant is in proximity to ‘‘RP3-344J20.1,’’ an argi-
nase 2 processed pseudogene (LOC100129854).
(B) The ED-associated interval is functionally connected to SIM1 in embryonic stem cells. The 3DGenome Browser9 was used to visualize
chromosome conformation capture (Hi-C) interactions contact probabilities in human embryonic stem cells,8 revealing high contact
probability between the ED-associated region (highlighted in yellow) and SIM1 at 40-kb resolution. The heatmap values on a color scale
correspond to the number of times that reads in two 40-kb bins were sequences together (blue, stronger interaction; white, little or no
interaction).
(C) TheMCHR2-SIM1 intergenic region forms functional connections to the SIM1 promoter in endothelial progenitors. The 3D Genome
Browser9 was used to visualize Capture Hi-C in endothelial precursors.35 Light blue vertical line indicates position of the ED-associated
interval.
(D) TheMCHR2-SIM1 intergenic region harbors a neuronal enhancer. Top: position of human element hs576 (blue vertical line) and the
ED-associated variant rs57989773 and its five proxies in r2> 0.8 (rs17789218, rs9496567, rs78677597, rs9496614, rs17185536). hs576 is
flanked by genesMCHR2-AS1 and SIM1. This panel was generated using the UCSC genome browser.36 Bottom: expression pattern of hu-
man element hs576 in a mouse embryo at e11.5. Expression pattern shows that hs576 drives in vivo enhancer activity specifically in
mesencephalon (midbrain) and cranial nerve. Embryo image was obtained from the VISTA enhancer browser, with permission from
the investigators.10
correlation with T2D, limb fat mass, and whole-body fat

mass (FDR-adjusted p values < 0.05; Table S11).

Next we performed Mendelian randomization25 (MR)

analyses to evaluate the potential causal role of nine pre-

defined cardiometabolic traits on ED risk (selected based
160 The American Journal of Human Genetics 104, 157–163, January
on previous observational evidence linking such traits to

ED risk21), i.e., T2D, insulin resistance, systolic blood pres-

sure, LDL cholesterol, smoking heaviness, alcohol con-

sumption, body mass index, coronary heart disease, and

educational attainment (Tables S12–S15). MR identified
3, 2019



genetic risk to T2D to be causally implicated in ED: each

1-log higher genetic risk of T2D was found to increase

risk of ED with an OR of 1.11 (95% CI 1.05–1.17, p ¼
3.53 10�4, whichmet our a priori Bonferroni-corrected sig-

nificance threshold of 0.0056 [0.05/9]), with insulin resis-

tance likely representing a mediating pathway26 (OR 1.36

per 1 standard deviation genetically elevated insulin resis-

tance, 95% CI 1.01–1.84, p ¼ 0.042). Sensitivity analyses

were conducted to evaluate the robustness of the T2D-ED

estimate (Figure S5, Table S13), including weightedmedian

analyses (OR 1.12, 95% CI 1.02–1.23, p ¼ 0.0230), leave-

one-out analysis for all variants (which indicated that

no single SNP in the instrument unduly influenced the

overall value derived from the summary IVW estimate27),

and a funnel plot (showing a symmetrical distribution of

single-SNP IV estimates around the summary IVW causal

estimate). The MR-Egger regression (intercept p ¼ 0.35)

provided no evidence to support the presence of direc-

tional pleiotropy as a potential source of confounding.28

We also identified a potential causal effect of systolic

blood pressure (SBP), with higher SBP being linked to

higher risk of ED (MR-Egger OR 2.34 per 1 standard devia-

tion higher SBP, 95% CI 1.26–4.36, p ¼ 0.007, with MR-Eg-

ger intercept [p ¼ 0.007] suggesting presence of directional

pleiotropy). LDL cholesterol (LDL-C) showed minimal ev-

idence of a causal effect (OR 1.07 per 1 standard deviation

higher LDL-C, 95%CI 0.98–1.17, p¼ 0.113), and there was

limited evidence to support a role for smoking heaviness or

alcohol consumption (Table S15). Genetic risk of coronary

heart disease (CHD) showedweak effects on risk of ED, sug-

gesting that pathways leading to CHD may be implicated

in ED (OR 1.08, 95% CI 1.00–1.17, p ¼ 0.061). Further,

we identified no causal effects of BMI (using a polygenic

score or a single SNP in FTO) or education on risk of ED.

Genetic variants may inform drug target validation

by serving as a proxy for drug target modulation.29 ED

is most commonly treated using phosphodiesterase 5

(PDE5) inhibitors such as sildenafil. To identify potential

phenotypic effects of PDE5 inhibition (e.g., to predict

side effects or opportunities for repurposing), we looked

for variants in or around PDE5A, encoding PDE5, which

showed association with the ED phenotype. Of all 4,670

variants within a 1 Mb window of PDE5A (chromosome

4:119,915,550–121,050,146 as per GRCh37/hg19), the

variant with the strongest association was rs115571325,

26 kb upstream of PDE5A (ORMeta 1.25, nominal

p value ¼ 8.46 3 10�4; Bonferroni-corrected threshold

[0.05/4,670] ¼ 1.07 3 10�5; Figure S6). Given the weak as-

sociation with ED, we did not evaluate this variant in

further detail.

We have gained insight into ED, a common condition

with substantial morbidity, by conducting a large-scale

GWAS and performing several follow-up analyses. By

aggregating data from 3 cohorts, including 6,175 ED-

affected case subjects of European ancestry, we identified

a locus associated with ED, with several lines of evidence

suggesting SIM1, highly expressed in the hypothalamus,
The Americ
to be the causal gene at this locus. Our findings provide

human genetic evidence in support of the key role of

the hypothalamus in regulating male sexual func-

tion.14,30–33

Mendelian randomization implicated risk of T2D as a

causal risk factor for ED with suggestive evidence for insu-

lin resistance and systolic blood pressure, corroborating

well-recognized observational associations with these car-

diometabolic traits.22 Further research is needed to explore

the extent to which drugs used in the treatment of T2D

might be repurposed for the treatment of ED. Lack of evi-

dence for a causal effect of BMI on ED risk in MR analysis

(using multiple SNPs across the genome) suggests that

the association of the lead SNP (rs57989773) with BMI

arises from pleiotropy and that the association of this

variant with ED risk is independent of its association

with adiposity.

In conclusion, in a large-scale GWAS of more than 6,000

ED-affected case subjects, we provide insights into the

biological underpinnings of ED and have elucidated causal

effects of various risk factors, including pathways involved

in the etiology of T2D. Further large-scale GWASs of ED are

needed in order to provide additional clarity on its genetic

architecture and etiology and to shed light on potential

new therapies.

Data Availability

Full summary statistics of the erectile dysfunction

genome-wide meta-analysis are available at the following

URL: http://www.geenivaramu.ee/tools/ED_AJHG_Bovijn_

et_al_2018.gz and at the LD Hub GWAShare Center at the

following URL: http://ldsc.broadinstitute.org/gwashare/.
Supplemental Data

Supplemental Data include 7 figures, 15 tables, and Supplemental

Material and Methods and can be found with this article online at

https://doi.org/10.1016/j.ajhg.2018.11.004.
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LMM/

EPACTS v3.3.0, https://github.com/statgen/EPACTS
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DEPICT v1, https://github.com/perslab/depict

GARFIELD v2, https://www.ebi.ac.uk/birney-srv/GARFIELD/

GCTA v1.26.0, http://cnsgenomics.com/software/gcta/#Overview

HaploReg, http://www.broadinstitute.org/mammals/haploreg/

haploreg.php

LD HUB v1.9.0, http://ldsc.broadinstitute.org/

MendelianRandomization v0.2.2 (R package), https://cran.

r-project.org/web/packages/MendelianRandomization/index.

html

METAL, http://csg.sph.umich.edu/abecasis/metal/

PLINK v1.9, www.cog-genomics.org/plink/1.9/

RPISeq v1.0, http://pridb.gdcb.iastate.edu/RPISeq/references.php

SNPTEST v2.5.2, https://mathgen.stats.ox.ac.uk/genetics_software/

snptest/snptest.html#introduction
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