
UNIVERSITY OF TARTU

Faculty of Science and Technology

Institute of Technology

Dāvis Krūmiņš

Web-based learning and software development environment
for remote access of ROS robots

Bachelor's Thesis (12 ECTS)

Curriculum Science and Technology

Supervisors:

Associate professor of robotics engineering Karl Kruusamäe

Lecturer of robotics technology Veiko Vunder

Web-based learning and software development environment for remote

access of ROS robots

Abstract:

Remotely accessible robots with a web browser interface are a convenient way to introduce

robotics to new learners. Although different implementations exist, none of them can be easily

adapted to a custom ROS (Robot Operating System) robot. This thesis aims to develop a

generalised solution that can connect any ROS-based robot to the internet. A system is

proposed, where VNC (Virtual Network Computing) technologies are used as the primary

user interface, and Docker is used for deployment of multiple desktop environments. The

resulting solution can accommodate multiple simultaneous clients, each with their own robot.

Keywords: Remote access to robots, web application, Virtual Network Computing, Docker,

ROS

CERCS: T120 - Systems engineering, computer technology, T125 Automation, robotics,

control engineering

Veebipõhine õppe- ja tarkvaraarenduse keskkond ROS robotite

juurdepääsuks kaugteel

Lühikokkuvõte:

Veebibrauseri liidese kaudu kaugjuurdepääsetavad robotid on mugav viis robootika

tutvustamiseks uutele õppijatele. Kuigi leiduvad erinevad implementatsioonid, ei saa ühtki

neist lihtsasti kõigi ROS-i (Robot Operating System) robotitega ühendada. Selle lõputöö

eesmärk on välja töötada üldistatud lahendus, mis suudab ühendada mistahes ROS-põhise

roboti internetti. Välja on pakutud süsteem, kus peamise kasutajaliidesena kasutatakse VNC

(Virtual Network Computing) tehnoloogiaid ja Dockeri abil saab kasutada mitut

töölauakeskkonda. Lõplik lahendus suudab pakkuda mitut samaaegselt kasutuses olevat

klienti, millest igaüks on seotud eraldi robotiga.

Võtmesõnad: Kaugjuurdepääs robotitele, veebirakendus, Virtual Network Computing,

Docker, ROS

CERCS: ​T120 - Süsteemitehnoloogia, arvutitehnoloogia, T121 - Signaalitöötlus , T125 -

Automatiseerimine, robootika, juhtimistehnika

2

TABLE OF CONTENTS

ABBREVIATIONS 4

INTRODUCTION 5

1 LITERATURE REVIEW AND BACKGROUND 6
1.1 ROS (Robot Operating System) 7

1.1.1 Educational ROS robots 7
1.1.2 ROS networking 8

1.2 Different approaches in User Interface design 9
1.2.1 Custom web GUI for remote robot interaction 9
1.2.2 Code submission 13
1.2.3 CLI and IDE 16
1.2.4 Full desktop experience using Virtual Network Computing (VNC) 17

1.3 Security 19
1.3.1 Virtualization versus containerization 19
1.3.2 Review of a good practice example 21

1.4 Cloud robotics 23

2 REQUIREMENTS 25
2.1 Functional requirements 25
2.2 System requirements 25

3 DESIGN 26
3.1 Creating virtual environments 27
3.2 Remote desktop in-browser display 30
3.3 Server architecture 32

3.3.1 VNC client reverse proxies for multiple connections 32
3.3.2 Remote container management 33
3.3.3 Final system overview 35
3.3.4 Server hardware 36

4 DISCUSSION AND FUTURE WORK 38
4.1 Limitations 38
4.2 Future work 39

REFERENCES 40

APPENDIX 42
Source code 42
Video demonstration 42
Non-exclusive licence to reproduce thesis and make thesis public 42

3

ABBREVIATIONS

API - Application Programming Interface

CLI - Command Line Interface

CPU - Central Processing Unit

GNOME - GNU Network Object Model Environment

GUI - Graphical User Interface

GPU - Graphics Processing Unit

HTML - Hypertext Markup Language

HTTP - Hypertext Transfer Protocol

IDE - Integrated Development Environment

IP - Internet Protocol

IR - Infrared

JSON - JavaScript Object Notation

LAN - Local Area Network

MAC - Media Access Control

NIC - Network Interface Card

NPM - Node Package Manager

OS - Operating System

OSRF - Open Source Robotics Foundation

OWASP - Open Web Application Security Project

RAM - Random Access Memory

RFB - Remote Framebuffer

ROS - Robot Operating System

SDK - Software Development Kit

SLAM - Simultaneous Localization and Mapping

TCP - Transmission Control Protocol

TLS - Transport Layer Security

UI - User Interface

URL - Uniform Resource Locator

VLAN - Virtual Local Area Network

VM - Virtual Machine

VNC - Virtual Network Computing

VPN - Virtual Private Network

YAML - YAML Ain't Markup Language

4

INTRODUCTION

The nature of how education is distributed and received has changed significantly due to the

COVID-19 pandemic, with remote learning implementations being adapted [1]. This has

enabled actors in the education system to target wider audiences, with the physical location

not being a limitation anymore.

Although a lot of theoretical knowledge can be obtained using e-learning, it is difficult to

acquire the more significant practical experiences, especially in the more technical sciences

[2]. Regarding robotics, it has been reported that students feel more present, self-aware and

expressive when working with an actual physical entity instead of using other types of

distance learning tools [3].

Robotics in its nature is a multidisciplinary field, where electrical and mechanical engineering

is combined with computer science. While it is harder to incorporate the practical aspects of

the former into a remote classroom, off-site programming of robots is certainly possible.

Aspiring roboticists usually do not have a personal robot they can experiment with due to the

high costs associated with purchasing one, so it is important to democratise the learning

process. Remotely accessible robots would do just that by allowing anyone with internet

access to study how computer code gets translated into real-world actuation and sensing.

The goal of this thesis is to develop a prototype for a web application that would allow

learners to access and control a robot remotely over the internet. The user interface should be

easily understandable, but not too limiting in its offered features, i.e. it should leave room for

exploration. A virtual classroom with such a possibility would provide an engaging hands-on

experience that is usually missing in an e-learning environment.

5

https://www.zotero.org/google-docs/?g1Rj29
https://www.zotero.org/google-docs/?cfL4Hc
https://www.zotero.org/google-docs/?WOmRRM

1 LITERATURE REVIEW AND BACKGROUND

Robotics standards are important in consolidating the heterogeneous field of robotics

programming. With a common standard, developers can stop reinventing the wheel, re-use

code more often, and have a common benchmarking reference [4]. One such standard is the

open-source ROS (Robot Operating System) framework that is known for its extensibility,

and which is becoming increasingly popular in the robotics community [5]. One of the

reasons for the widespread adoption of ROS is the comprehensive learning tutorials written

for it [6]. Moreover, due to the fact that good programming practices need to be observed in

order to work with ROS successfully, there are good grounds for its adoption in education [7].

However, learning ROS can get easily tangled as the initial software setup is relatively

complicated and, thus, intimidating to potential learners, especially when starting from a

non-technical background. A web-browser environment that mimics the look and feel of an

actual ROS development system while requiring minimal setup from the learner could

potentially offer the much needed soft landing to learning software development for robots.

Furthermore, such a learning and development environment can be used to provide access to

physical robots, thus enhancing the learning experience beyond the limitations of robotic

simulations.

Thus, this chapter reviews solutions that offer a way to connect a ROS robot to the wider

network, and analyses the different paths that can be taken in implementing a web application

that would allow it. The existing approaches are mostly distinguished by who the

corresponding target audience is, meaning that the features available vary in their assumptions

about the user’s knowledge base.

Section 1.1 gives a brief overview of the essential ROS principles and terms that are used

throughout this work. Section 1.2 analyses different remote ROS learning and development

solutions that have already been implemented. Section 1.3 explores some of the security

measures that should be taken when exposing robots to the internet, while section 1.4

examines how cloud computing services could potentially be employed in building the web

application.

6

https://www.zotero.org/google-docs/?Qgewlz
https://www.zotero.org/google-docs/?YjqYLx
https://www.zotero.org/google-docs/?vU4By7
https://www.zotero.org/google-docs/?I8S0xB

1.1 ROS (Robot Operating System)

One of the reasons why ROS is so lauded is that it offers ready-made tools for commonly

encountered problems in robotics, and since ROS can be easily integrated within an existing

software framework it is often the developer’s top choice. ROS provides features such as

hardware abstraction, low-level device control and the primary goal of it is to facilitate code

reuse in the field of robotics [8]. The modular ROS infrastructure allows disparate processes

called nodes (potentially not even sharing a common programming language) to communicate

using a common message format. This means that even programs that were not initially meant

to be used within the ROS context can be adopted to it.

ROS nodes communicate with each other anonymously via named buses called topics, which

internally use unidirectional channels (Figure 1). A node publishing to a topic means that it

acts as the “talker” and is sending information to it using a predefined message format. If a

node subscribes to a topic it acts as the “listener” and reads the messages that other nodes

have published. The overseer that handles all the communication between the nodes in a ROS

application is called the ROS master, it enables nodes to locate each other and communicate

peer-to-peer [9]. It also holds the global program parameters in an accessible API

(Application Programming Interface).

Figure 1. The basic structure of how ROS handles communication between nodes [10]

1.1.1 Educational ROS robots

For the purpose of learning robotics and ROS, different entry-level robots have been

developed. A popular choice is the low-cost TurtleBot (Figure 2a) [11], a mobile robotics

7

https://www.zotero.org/google-docs/?WPQk6W
https://www.zotero.org/google-docs/?jx5ZZM
https://www.zotero.org/google-docs/?OczMk1
https://www.zotero.org/google-docs/?4TB45Z

platform with open-source software that facilitates learning of concepts such as robot

kinematics, obstacle avoidance and navigation. A robot with similar capabilities is Robotont

(Figure 2b) - an omni-directional mobile robot created for robotics research and teaching by

the IMS (Intelligent Materials and Systems) lab at the University of Tartu [12].

(a) (b)

Figure 2. (a) TurtleBot2, (b) Robotont

1.1.2 ROS networking

The communication between the ROS nodes happens over the standard TCP/IP protocol,

which means that it is possible to connect to multiple robots and control them all using a

single computer that is within the same network [13]. For example, the Robotont is usually

configured to host the ROS master and the user points to its IP address or hostname on their

own computer, which then grants them access to the nodes running on the Robotont [14]. By

default ROS master will communicate with anyone on the same local network, which makes

it comfortable to use, but needs to be taken into account when the goal is to open up the said

network to the wider area, while provisioning only a single robot [15].

8

https://www.zotero.org/google-docs/?db4zie
https://www.zotero.org/google-docs/?eASagf
https://www.zotero.org/google-docs/?jLz4lE
https://www.zotero.org/google-docs/?ipzoS3

1.2 Different approaches in User Interface design

In order to offer remote robot access to learners, there are multiple potential solutions that

differ depending on the complexity of the setup and ease-of-use. The web applications that

have been built can be broadly categorized into the following:

● Simple Graphical User Interfaces (GUI) that limit the user to specific pre-built

functionality.

● Platforms that allow the user to submit custom code.

● Environments that try to simulate on-site working conditions with more advanced IDE

(Integrated Development Environment) and CLI (Command Line Interface)

integrations.

● Full access to the remote machine's desktop environment.

Some of the qualities to be examined in these existing applications are ease-of-use, potential

learning outcomes, and vulnerability to malicious or error-prone users.

1.2.1 Custom web GUI for remote robot interaction

A website connected to ROS infrastructure can provide great remote robot control or

monitoring capabilities. Plenty of options exist for this specific purpose - Robot Web Tools

gives an overview of the open-source packages available [16]. Employing them makes it

possible to create custom user interfaces and pick which ROS nodes and topics the user will

be able to interact with. Platforms utilising these libraries usually aim to accommodate users

who have no prior experience in robotics or programming; learners are provided with either a

custom Visual Programming Language interface or a user-friendly GUI that appropriately

guides them through the learning process.

The two building blocks for ROS web integration are rosbridge [17] and roslibjs [18].

Rosbridge provides a JSON interface to ROS and gives the client a way to subscribe or

publish to topics and call services in an indirect manner. Roslibjs is a Javascript API that

abstracts the interaction with the rosbridge and provides a simple path to ROS functionality.

Specific examples of their usage in GUI-based ROS web applications will be examined

further.

Karaca & Yayan [19] created an algorithm-focused learning interface (Figure 3) for ROS with

the Blockly library [20]. Some of the programs that the users of this application can interact

with on a simulated robot include teleoperation, SLAM (Simultaneous Localization and

9

https://www.zotero.org/google-docs/?lJNyqO
https://www.zotero.org/google-docs/?Rz5kCc
https://www.zotero.org/google-docs/?gTv1bh
https://www.zotero.org/google-docs/?dITxfF
https://www.zotero.org/google-docs/?6Yw3Km

Mapping) and wandering. Concepts such as publishing and subscribing can be more easily

imparted to the learner, because the logical expressions are already present and no distracting

syntax errors are encountered.

Figure 3. Visual programming language (VPL) interface [19]

Another example comes from Rajapaksha et al. [21], where through a user-friendly GUI

students can run programs like mapping and object identification, with written explanations

providing information on what is occurring on the screen (Figure 4). The view of the

simulation is provided by gzweb - a graphics rendering client for the ROS simulation

environment Gazebo [22].

10

https://www.zotero.org/google-docs/?Hrlg7A
https://www.zotero.org/google-docs/?Il1WSj

Figure 4. Learning ROS by interactive demonstrations [21]

Pitzer et al. developed a remote lab for a physical PR2 robot that provides control capabilities

for teleoperation and pick-and-place object manipulation programs [23]. 3D visualisation of

robot pose combined with camera streams from different perspectives allow users to see their

commands being executed in real time (Figure 5). Additionally, there is a scripting interface

in the form of a text input field, where more advanced users can write custom Javascript code

utilising the roslibjs API, which gives them access to the active ROS topics and services

exposed by the rosbridge server. There is also a way to test custom code by linking an svn

repository, but very little details are provided on how it is achieved.

11

https://www.zotero.org/google-docs/?Eaw1ya

Figure 5. PR2 robot remote lab web interface [23]

Custom code input fields are provided by Lee for code written in the Processing visual

programming language [24]. The input is converted into Javascript code and has access to the

remote robot via roslibjs and rosbridge. With simple helper functions such as connect(),

publish() and subscribe() that simplify the syntax the user can indirectly interact with ROS

(Figures 6 and 7).

Figure 6. Example of a user defined Processing VPL function [24]

12

https://www.zotero.org/google-docs/?W4zcC3

Figure 7. The GUI of a web application for learning ROS through Processing VPL [24]

All of the aforementioned GUI-based learning environments are easy to use for beginners

being introduced to robotics and the usage of ROS. The last two examples are also

advantageous in that it is easy to ensure that no potentially-dangerous custom code is being

run on the remote endpoint, since the functionality is limited to select ROS topics and services

that the administrator has chosen to open to the web via rosbridge.

1.2.2 Code submission

An option to test custom code written in a programming language that is regularly employed

in robotics would give students a chance to develop more elaborate and applicable skills. Four

examples [25-28] of platforms providing such remote programming capabilities through code

submission will be examined in this section, but it has to be noted that only the last one [28] is

ROS-based. The usual workflow when using one of these applications involves reserving a

time slot during which testing and debugging of previously written code can take place in a

continuous manner (feedback is provided in the form of program/sensor data logs and remote

camera streams). It also has to be noted that allowing the execution of arbitrary code on the

server can create cybersecurity risks and the first three examples of this section [25-27] do not

address this issue.

13

https://www.zotero.org/google-docs/?XcjZlM

Almeida et al. sets up to accept Python programs for the Lego NXT robot [25]. The text code

is sent to the server (Figure 8), where before its execution only rudimentary syntax checks are

completed.

Figure 8. Raw text code submission [25]

In Grandi et al. a scalable framework incorporating session time booking is presented [26], it

also includes a Java based stand-alone simulation environment that can display a robot arena

in simple graphics (using tracking markers) if the user does not have enough bandwidth to

utilise the video stream (Figure 9). The scalability stems from the fact that the communication

with robots occurs directly with the robot’s firmware through byte code, where some bits are

reserved for addressing multiple board extensions.

Figure 9. The architecture of Grandi et al. framework [26]

14

https://www.zotero.org/google-docs/?FIqvT2
https://www.zotero.org/google-docs/?mCJ7tL

The submitted control code is transformed into bytes by the Local Software Agents and sent

to the robots over Bluetooth to the robot’s mainboard, where the firmware is configured to

respond to a set of amount of instructions (such as reading IR sensors and setting motor

speeds), which means that the user’s freedom is “locked” to those actions. How the submitted

code is processed is not described by Grandi et al.

Pickem et al. introduces a multi-robot, research-focused remote testbed in which the physical

safety of the robots in terms of collision avoidance is described as the top priority [27]. The

server employs a custom Monte Carlo algorithm to assess the frequency and severity of

collisions that can possibly occur between the swarm robots when the user submitted code

gets executed. The users can also access the same Matlab and Python simulation software for

testing purposes in an offline environment by way of local installation. Although not

described in detail, an option to add virtual robots that interface with the physical robots is

also available (Figure 10). Cybersecurity concerns were not addressed in this work, relying on

trusting the authorised personnel using this system.

Figure 10. The architecture of Pickem et al. framework [27]

Casañ et al. comes forth with a web-enabled ROS system called RPN (Robot Programming

Network), which provides a reliable way to execute a program created by a remote user

directly on the server [28]. The users of RPN can write their Python code in a

syntax-highlighting text field (Figure 11). Upon pressing “run” the written code is sent to the

server as a string, where it is put into a file inside a sandbox ROS package. The file is then

15

https://www.zotero.org/google-docs/?XIcoe8
https://www.zotero.org/google-docs/?nG7j7N

executed inside a VM (Virtual Machine) using rosrun, which strengthens the security of the

server’s computer. The feedback the user receives about their submission comes in the form

program’s log messages and optional rosbag recordings. Any error messages encountered are

displayed back to the user, and if the script hangs an option to stop the execution with a button

click is also available.

Figure 11. Code submission interface [28]

1.2.3 CLI and IDE

Some projects that enable remote robotics programming have chosen to incorporate modules

for direct interaction with the host machine on the premises, e.g. a terminal or a code editor.

This gives the learners a more realistic development environment for solving different tasks,

but requires more elaborate design and can consume a lot of time before the minimal viable

product (MVP) can be evaluated.

Kulich et al. offers students a NetBeans IDE extended with plug-ins for remote development,

it includes integrated visualisations of the remote robot and custom project templates [29]. A

simulation environment and a Unix CLI are also available. However, the process of how the

user written programs are executed is not divulged by the authors.

16

https://www.zotero.org/google-docs/?swUWqM

A commercial example of a web application for remote robotics programming is The

Construct Sim [30], which gives the possibility to use either simulation environments, enabled

by WebGL [31], or access and program a physical robot in real time. The Construct gives

users a custom UI (Figure 12) that has plenty of features to satisfy a learning developer’s

needs (terminal, IDE, feed of the simulation or real robot, educational materials).

Figure 12. The Construct Sim widget-based web interface [32]

1.2.4 Full desktop experience using Virtual Network Computing (VNC)

The examples described in sections 1.2.1 and 1.2.2 encapsulate some specific learning

outcome, whether it be the programming language used or robotics programming paradigms

learned. Scaling these systems can be done, but might require some notable overhauls or

additions.

In the case of ROS, which is used in conjunction with GNU/Linux, students should also

acquire proficiency in working with the command-line shell. Moreover, to better use the

acquired skills in an offline setting, the student should also become familiar with the specifics

of the operating system of the computer in use (file-management, processes, device

management etc.). The examples in section 1.2.3 do provide some of these features, but the

user is still required to learn the ins and outs of those specific graphical interfaces. A

simulation of the environment a student would use when working with a robot in an offline

17

https://www.zotero.org/google-docs/?KI0Uqz
https://www.zotero.org/google-docs/?BsK77n
https://www.zotero.org/google-docs/?3NpEL8

environment would make the learned skills substantially more useful. This can be achieved by

integrating the remote desktop view into a web-browser via VNC technologies.

OpenUAV developed by Anand et al. is an example of a remote robotics programming

platform that uses the VNC approach [33]. The whole system is simulation-based and cloud

infrastructure is used to achieve the required computational power for it. Figure 13 shows an

example of a Lubuntu desktop served by this platform - an environment where programs like

Gazebo can be accessed directly. Furthermore, photorealistic rendering using Unity is also

described in this work, which means it is especially critical that users are not required to carry

the computational burden - a valuable benefit of the web application.

Figure 13. Simulation of an autonomous probe deployment mission using OpenUAV [34]

18

https://www.zotero.org/google-docs/?IryiW8
https://www.zotero.org/google-docs/?4bGE0O

1.3 Security

In remote programming, giving users the capabilities to execute arbitrary commands on the

server can result in misuse (e.g. corruption of the OS filesystem), so certain measures need to

be taken to repel malicious actors. Isolating the session system in a virtual environment can

protect the main server. This section examines the possibilities of virtualization and looks at

how it has been applied in a remote lab context.

1.3.1 Virtualization versus containerization

Traditionally virtual machines (VMs) have been used in server consolidation, hosting,

software development and testing, more importantly they are secure and provide excellent

sandbox environments for students [35]. In order to use a virtual machine the host machine is

required to have a hypervisor installed - software or firmware that will share and manage the

host’s hardware for the VMs.

However, in recent years lightweight operating-system-level virtualization using the

open-source container technology Docker has been growing in popularity [36]. Containers

allow developers to create isolated applications without worrying about compatibility, because

the whole OS software can be reliably defined. Moreover, the resources are allocated directly

by the host operating system’s kernel which makes them more resource effective [37]. In

Docker the base application and all its dependencies are stored in an image, which is a

read-only template that serves as the starting point for a container. Docker makes it possible to

run many instances of an image without quickly running into hardware limitations, which is

crucial when multiple clients connect to the same server simultaneously and require an

allocation of their own container environments. Figure 14 provides an overview of the

differences between VMs and containers.

19

https://www.zotero.org/google-docs/?tcBFJE
https://www.zotero.org/google-docs/?juucJR
https://www.zotero.org/google-docs/?1nIS0T

Figure 14. Differences between VMs and containers
(a) type 1 hypervisor, (b) type 2 hypervisor, (c) a container [37]

Using ROS with Docker is not overly complicated since OSRF (Open Source Robotics

Foundation) provides images with ROS and Gazebo already installed [38]. These pre-built

images can potentially let new learners forgo the tedious installation process and environment

setup, and keep them engaged on the actual tasks. Furthermore, collaborative debugging is

quite easy since the whole setup can be neatly packaged in something called a Dockerfile - a

text file that contains all the commands for building an image [39].

A shared kernel accelerates development, increases performance, eases interaction with the

host’s file system and makes it easy to rapidly start and stop containers, however this tighter

integration makes Docker containers more insecure than VMs by introducing vulnerabilities

related to kernel exploits, resource starvation and shared namespace access [40]. Figure 15

shows an overview of these published by OWASP (Open Web Application Security Project).

20

https://www.zotero.org/google-docs/?snWllC
https://www.zotero.org/google-docs/?ytidHP
https://www.zotero.org/google-docs/?gdyzUm

Figure 15. OWASP overview of threats in Docker [41]

1.3.2 Review of a good practice example

An excellent example of a secure remote development lab with Kuka LBR iiwa 7 R800 robots

was found in Wiedmeyer et al., where it was mostly achieved using Docker [42]. The general

architecture of the project is a fully automated code submission web application, whose high

throughput allows room for a large user base. Multiple robot work cells enable parallel

execution of submitted jobs.

Users submit their code to the database corresponding to a specific project that is defined by

the on-site setup of the specific robot and the software packages that can be used in its context

(Figure 16). The users can view the status of the job, and once it successfully terminates log

files and video recordings are available.

Code validation

Firstly, the code is run in a Gazebo simulation (the models are also made available to the users

for testing on their personal computers), this step prevents malfunctioning code from running

on the physical robot and allows the user to correct their mistakes without wasting on-site

time. Secondly, the trajectories computed by the user’s code are checked for collisions using

the motion planning framework ‘MoveIt!’. If at any point the robot-specific system detects an

unfixable internal error, it terminates itself and awaits an operator for a safety check.

21

https://www.zotero.org/google-docs/?B1jtUl
https://www.zotero.org/google-docs/?cMT4jx

Network isolation

To create a secure environment for executing the compiled user’s source code a two container

system is defined - a client container and a proxy container. The client container runs the

code, while the proxy container is responsible for isolating the host and lab’s network from

said code (Figure 16).

Figure 16. KUKA Robot Learning Lab with user code isolation [42]

The client and the proxy containers reside on the same Docker network (Figure 16). The

proxy container, however, has a ROS master running on it and can also access the lab's

network; it has a project-specific interface for the client container that allows only select

registered nodes to be interacted with. The ROS master running in the proxy container syncs

up with the host master, which does the actual work. This elaborate setup ensures that the user

code is both hardware and network isolated, which means that a malicious user would have a

hard time causing damage.

22

https://www.zotero.org/google-docs/?8m6fjd

1.4 Cloud robotics

Cloud robotics is a novel concept that could offer easy access to composable ecosystems of

pre-packaged services [43]. Using already existing cloud infrastructure to instantiate and

access virtual machines has the following benefits:

- No expensive hardware needs to be acquired to run computationally heavy

applications like Gazebo

- Everything can be managed and monitored through a convenient browser interface

(Figure 17)

- Easy to scale up

Figure 17. Skytap virtual machine management interface [44]

An example of an IaaS (Infrastructure as a Service) company is Skytap, it specialises in cloud

automation and offers virtual machine management, development and testing services.

Furthermore, it has developed a way to easily access the desktop environment of the VM from

a web browser by using their own SRA (Secure Remote Access) client [44]. The VMs can

also be shared using a “sharing portal”, which is a URL-based access control feature that can

be used to set the session duration, authenticate users and set permissions (like allowing

starting and stopping of VMs) [45]. An application could potentially be built that integrates

23

https://www.zotero.org/google-docs/?NAPfTP
https://www.zotero.org/google-docs/?11gT8t
https://www.zotero.org/google-docs/?yR6IJO

Skytap’s API and provides links to the VMs within sharing portals. Remote access to the

robots could be enabled by creating a VPN (Virtual Private Network) link between the cloud

network and the local one, where the robots are stationed [46].

Some of the issues with using Skytap’s services would be dealing with platform changes that

tend to cause incompatibilities between the existing application code and the changing API

endpoints. Deprecation and new versions would compromise the application’s stability -

committing to a single cloud provider can backfire. Moreover, the instructions that would

need to be provided to the users on how to use the sharing portals could become outdated and

require updates. The closest Skytap’s servers are located in Germany, which can potentially

increase the latency of Estonian users when compared to locally-run servers. A hybrid

architecture for a remote learning web application is an interesting prospect, the

computationally-heavy robotics simulations could be done in the cloud, while the servers for

remote access to the real robots could be hosted locally, where the networking of robots is

easier to manage.

24

https://www.zotero.org/google-docs/?TnlUOP

2 REQUIREMENTS

This thesis is a part of a larger project that aims to create an online ROS course for beginners.

It would be beneficial if the students taking the course do not have to go through a

painstaking environment setup that can bring an end to any early excitement they might feel

about the learning prospect, so web technologies that could potentially avert such a case were

under consideration. Therefore, the aim of this thesis was to prototype a web application that

allows students to access physical ROS robots remotely, and in the process determine the

optimal specification for the server hardware.

2.1 Functional requirements

2.1.1 Browser-based access to a learning environment that mimics the Linux OS a

ROS developer uses.

2.1.2 The learning environment is preconfigured to connect with a physical mobile

robot.

2.1.3 The learning environment can also be used to validate ROS programs in a

Gazebo simulation.

2.1.4 The learning environments are available simultaneously for multiple learners.

2.1.5 A video feed is provided about the physical robot.

2.2 System requirements

2.2.1 Software

● Virtualization to enable multiple sandbox environments within a single server

computer

● ROS learning environment:

- ROS Noetic

- Ubuntu 20.04 (Focal)

- GNOME as the default desktop environment

2.2.2 Hardware

● Omni-directional mobile robotics platform Robotont:

- Intel Core i5 (7th Gen) 7260U (2 cores, up to 3.4 GHz)

- RAM DDR4 2133 MHz 4 GB

- GPU Intel Iris Plus Graphics 640

- Network: Intel Dual Band Wireless-AC 8265, IEEE 802.11a/b/g/n/ac

25

3 DESIGN

Taking into account the previously laid out requirements, the general architecture depicted in

Figure 18 was developed. It consists of the following key components:

● Remote desktop display software that can embed the client in a web browser.

● Virtualization - the management of “clean” desktop environments that will be served
over the internet.

● The backend and frontend frameworks for system automation and simple prototype
deployment.

Figure 18. The general components required for the system

The next sections will describe in detail what solutions were deemed to be most suitable for

each of the components and what approaches were used in implementing them. Section 3.1

looks into what virtualization solutions were prioritised, section 3.2 covers the investigation

done in finding the most appropriate remote desktop tool. Section 3.3 gives an account of the

server’s configuration and software, while section 3.4 describes the hardware.

26

3.1 Creating virtual environments

In order to provide users with sandbox environments where they can do whatever they desire,

and also to ensure that they are isolated from the server computer (where the operational

processes that should not be interfered with are located), some form of virtualization should

be present (see section 1.3). The first option considered was to use virtual machines,

management of which can be outsourced to cloud services (see section 1.4). Another prospect

was the use of Docker containers, similarly to Anand et al. [33] and Wiedmeyer et al. [42].

When it comes to containerization technologies Docker is by far the most comprehensive

software framework available. There is extensive documentation for it due to its widespread

adoption in cloud computing, where it enables easy deployment, management and scaling of

applications. What is equally valuable are the abundance of open source projects that

incorporate Docker and showcase the ins-and-outs of working with it, including the creation

of operable desktop environments for the containers [47], [48], [49], hence it was decided to

build upon it.

During the outlining of a Docker-based system, two problems were defined:

1) How to enable automation of a container’s lifecycle in a web-based context (i.e.

starting, stopping, monitoring them remotely)?

2) How to establish the container-robot network connections in the context of ROS

communication?

The principal control point from which the containers are booted is the Docker daemon

process, where a server is located that can be accessed through the Docker Engine API

(Figure 19); it enables management of containers, images, networks and data volumes

(sharing of files with the host system).

27

https://www.zotero.org/google-docs/?x4cD0O
https://www.zotero.org/google-docs/?L4nKv9
https://www.zotero.org/google-docs/?00VxQL
https://www.zotero.org/google-docs/?MIlPkK
https://www.zotero.org/google-docs/?Nb7NX7

Figure 19. Interaction layers for Docker [50]

Although the most common way to interact with this API is through the Docker CLI client, a

different approach needed to be taken in order to deal with the first problem. If the API was

exposed to the outside directly, it would introduce extra overhead in authentication and

authorization management, for the latter a plugin might even be required [51]. If a

multi-server system exists with multiple Docker hosts, such an option is not viable. For these

reasons it was decided to implement an API proxy, where only specific container operations

could be exposed and authentication/authorization could be managed centrally.

Next, in order to solve the second problem, the options that Docker provides in regard to

networking were examined [52]. The default bridge network driver is used in interconnecting

applications deployed in separate containers, which does not help in attaching them to a LAN.

An option exists to share the host’s network, but in that case there is potential only for a single

robot-connected container due to port conflicts. The most logical choice was to use the

macvlan network driver. It stands for MAC virtual LAN, and permits containers to appear as

separate network entities (Figure 20).

28

https://www.zotero.org/google-docs/?7CbiNl
https://www.zotero.org/google-docs/?a3GjHo
https://www.zotero.org/google-docs/?2pIQZN

Figure 20. MAC VLAN

The process of packet routing is as follows:

1) When the packets coming from the containers are sent out by the host computer, the

MAC address of the sender (host MAC) is changed to a virtual one. The router will

pass them along according to their target (the robot).

2) The robot will send back the response, but the router does not know where to forward

it, since the MAC address is spoofed, so it sends it to all of the connected devices.

3) Usually a network interface card (NIC) will drop any packets not addressed to it, but if

promiscuous mode is enabled then it will instead pass all of them to the computer’s

CPU, where the Docker macvlan network will distribute them accordingly.

29

3.2 Remote desktop in-browser display

A popular and well-established cross-platform remote desktop system is called VNC (Virtual

Network Computing). In its implementation the frames, which contain information about the

pixel locations and their color values, are read from a RAM store known as the framebuffer

and sent over the internet. VNC consists of two parts - the server and the client (Figure 21).

To integrate the VNC view into a web browser, the client is the component that needs to be

adapted.

Figure 21. The two components of VNC

In order to fulfil the requirements set for this thesis, both proprietary and open-source VNC

software was examined, with the focus on readily available browser integrations.

RealVNC is a commercially successful company that originated the RFB (Remote

Framebuffer) protocol. The VNC SDK (Software Development Kit) that it provides for

developers to create custom applications also offers the option to embed the VNC view into a

web browser [53]. The SDK was tested but was not found to be a viable solution. Firstly,

some serious latency issues were encountered, perhaps due to the fact that both the client and

the server needed to be connected via RealVNC’s cloud, where the browser implementation is

hidden. Secondly, a way to scale an application with the limited options this proprietary

software offered was not at all obvious.

The open-source VNC HTML client known as noVNC was considered next [54]. The project

is actively maintained and runs in any modern web browser. In the VNC protocol the client is

the one that dictates what encoding will be used, which means that the server is usually

required to support any pixel format the client needs; noVNC supports decoding of different

types: Raw, Tight, JPEG, TightPNG etc. The VNC server chosen to work in tandem with

noVNC was the general-purpose, highly performant TigerVNC [55]. The following encodings

were found to function in the communication between noVNC and TigerVNC: Raw, Hextile,

Tight, ZRLE. Due to the fact that both noVNC and TigerVNC can be easily integrated into a

30

https://www.zotero.org/google-docs/?PMM5zo
https://www.zotero.org/google-docs/?r8OkV7
https://www.zotero.org/google-docs/?K1j4zg

larger project, and offer plenty of features (e.g. in-built authentication), it was decided that

these components would be the backbone of the in-browser display of a remote desktop. The

source code for the Dockerfile defining an image with a TigerVNC server is found in

Appendix 1.

31

3.3 Server architecture

Having established the primary components to be used in the server, some due consideration

was required as to how to wire them together. This section introduces the technologies that

were chosen to aid in VNC/ROS container management, and reveals how each of the parts

was integrated with others.

3.3.1 VNC client reverse proxies for multiple connections

The base interface the users of the web application would use is the already mentioned

noVNC client (section 3.2) that uses the WebSockets protocol, which is the standard for

full-duplex real-time web applications. However, TigerVNC does not have support for it, as it

is a simple HTTP server, so a program called Websockify is used to translate the Websockets

traffic to TCP traffic (Figure 22).

Figure 22. Websockify - the WebSockets to TCP proxy

In the initial stages of testing, both the VNC client and server were being run inside the

Docker containers, each with their own Websockify instance. This, however, causes

unnecessary overhead, so the redundant clients were combined into a single host instance that

is capable of routing all the VNC traffic coming from the containers, each of which can be

distinguished by a URL token passed to Websockify.

32

To have all the containers available from a single entrypoint, it was important to find a way to

proxy the different container VNC paths. The most convenient tool for this was determined to

be Nginx, a versatile open-source web-server. Initially, when multiple VNC clients were

present, a separate path was used for each of them, but setting up individual proxies for an

unknown amount of containers is not scalable or maintainable, so these were eliminated with

the consolidation of the clients. Figure 23 shows the corresponding Nginx configurations for

these cases.

Specifying the target:

/novnc/vnc.html?token=robo-1
/novnc/vnc.html?token=robo-2

(a) (b)

Figure 23. Nginx configurations:
(a) Proxying individual VNC clients,

(b) Single Websockify instance with parameter routing

3.3.2 Remote container management

With the VNC part of the system being instituted, a way to give a user the privilege to start

their own container with a password-protected VNC server was required. For this purpose two

components needed to be introduced:

1) The front-end application served to the user

2) The back-end server responsible for responding to the user requests, and

communicating with the Docker Engine API

The language chosen for the back-end server was the ubiquitous JavaScript, with server-side

scripting made possible by the NodeJS runtime environment. The primary reason for this

being the multitude of open-source packages available via NPM (Node Package Manager) -

the world’s largest software registry [56].

33

https://www.zotero.org/google-docs/?Zi4qyK

Three packages were found to be particularly useful in enabling remote container

management (Table 1).

npm package Description

express [57] de facto standard server framework for NodeJS

dockerode [58] Abstraction of interactions with the Docker Engine API

docker-compose [59]
Creation of child processes to start containers using the

docker-compose configuration files

Table 1. The npm packages used in the back-end server

The minimalist Express framework allows to quickly bootstrap a NodeJS server capable of

responding to HTTP requests, while Dockerode provides a simple way to communicate with

the Docker Engine API on behalf of the client.

Docker Compose is a tool that allows to define the container startup configuration in a single

YAML file. Once the server receives a POST request for starting a container, a custom

docker-compose.yaml file then is generated that has the VNC password specified as an

environment variable. Docker Compose is interfaced with the homonymous docker-compose

package that with the help of NodeJS’s child_process module starts the container in a

subprocess. Once the container initialises, the environment password is accordingly passed to

TigerVNC. All further actions, e.g. container inspection and termination, are done via

Dockerode.

A front-end application with which to test the container management API was built based on

the ReactJS library that makes it simple to manage the application state; Figure 24 shows the

example interface. The noVNC client provides an option to autofill the VNC password by

passing it in the URL, so when a user has initialised the container using the provided “Start”

button, the link with the corresponding password token is returned within the “Connect”

button.

34

https://www.zotero.org/google-docs/?XYfmsj
https://www.zotero.org/google-docs/?qiuXqv
https://www.zotero.org/google-docs/?XZ3B6b

(a)

(b)

Figure 24. Fronted interface: (a) Container status table, (b) User actions

3.3.3 Final system overview

Figure 25 shows how all the parts described previously are interconnected. The main

entrypoint that consolidates the system is the Nginx web server which was introduced in

section 3.3.1. The primary purpose of the main application is to eventually transfer the user to

the noVNC client application, so the front-end and back-end components are there to support

this by way of authenticating users and giving them the authority to start up their own

environments. The source code for the server system’s software is available in Appendix 1.

35

Figure 25. The server system architecture

3.3.4 Server hardware

The server computer used in running the containers and testing the system was an MSI GE66

Raider 11UH; its hardware is specified in Table 2.

CPU 11th Gen Intel® Core™ i9-11980HK @ 2.60GHz × 16

GPU NVIDIA GeForce RTX 3080

RAM 32GB DDR4

Network Killer Gb LAN (Up to 2.5G); Killer ax Wi-Fi 6E

Table 2. The server computer's hardware

The load it could handle was tested by running eight containers all connected to a single robot

and displaying a depth map of its surroundings. Figure 26 shows a snapshot of the NGINX

Amplify server monitoring interface during this test, where it can be seen how the CPU

utilisation grows with each new mapping program started. The eight containers yielded a 90%

CPU load, at which point their performance was starting to degrade (low data display

framerate).

36

Figure 26. Testing the CPU load of the containers

The conclusion that can be made from this test is that in order to provide performant

containers to more than just a few users either a multi-server system needs to be devised with

more than a single Docker host or an even more powerful server computer must be acquired.

37

4 DISCUSSION AND FUTURE WORK

The objectives of this thesis were completely fulfilled - a prototype web application was

developed which gives remote learners the ability to program physical ROS robots with a

natural Linux OS interface. However, when considering the larger project this thesis was a

part of, some improvements can be done and additional features can be implemented.

4.1 Limitations

Currently it is possible to see the remote lab via the robot’s own Intel Realsense D435 camera.

It would be beneficial if the user could also see the robot itself, preferentially from multiple

different angles, which could be done by setting up video cameras and serving their stream

over the internet. This would enable the user to have the remote video in a separate browser

window, which would allow for a more convenient workflow.

Since ROS is a distributed computing environment, communication between a container and

the robot requires full, bi-directional connectivity on all ports. This was successfully achieved

by setting up a macvlan network configuration. However, this open local network also means

that there is nothing preventing one container from accessing other robots not intended for its

use, or interacting with other containers. Moreover, the containers were also opened up to the

host in order to enable communication with the VNC servers, so the Docker Engine API is

also freely available since no authentication is currently enabled for it. A possible solution to

prevent misuse is to implement a blacklist firewall, which would allow a single container to

only access a single robot, and in communication with the host whitelist only the VNC ports.

As a general preventive measure securing the Docker daemon socket with TLS (Transport

Layer Security) should be considered.

By default Docker containers have the undesired root privileges, so a configuration to run

them as a regular user was added. Yet, in comparison to other, more lightweight desktop

environments (e.g. LXQt, LXDE, XFCE) running GNOME inside a Docker container

requires systemd, the standard system and service manager for Linux operating systems. To

enable it in a Docker container SYS_ADMIN capabilities need to be granted and the host’s

cgroup needs to be mounted as a shared volume. Whether this introduces any dangerous

vulnerabilities and whether they can be avoided was not determined in the scope of this work.

38

4.2 Future work

This thesis was a part of a larger project, which aims to create a comprehensive online ROS

course for beginners. This means that a database would need to be added that could provide

the base for the user system, where default and administrator privileges could be

distinguished.

In order to automate the access to the remote robots and create a smooth user experience,

reservation of time slots for the robot use would need to be made possible with a booking

system.

Docker provides an easy way to save the state of the container in a new image via the

“committing” process, so to have the user environment persist (i.e. any files or programs they

might have created or installed), this needs to be incorporated into the container management

API and the prospective database.

It can be frustrating if a student encounters a problem with the remote robot, but is not able to

do anything about it (e.g. the robot gets stuck in some place), so some type of communication

protocol with the on-site personnel should be established.

39

REFERENCES

[1] K. Lamesoo & E. Tagamets, Emergency Remote Education in Higher Education
Institutions: Estonia’s Response to COVID-19. Methodology.;19:4

[2] T. Vaimann, M. Stępień, A. Rassõlkin and I. Palu, “Distance Learning in Technical
Education on Example of Estonia and Poland,” 2020 XI International Conference on
Electrical Power Drive Systems (ICEPDS), 2020, pp. 1-4, doi:
10.1109/ICEPDS47235.2020.9249317

[3] N. T. Fitter, N. Raghunath, E. Cha, C. A. Sanchez, L. Takayama and M. J. Matarić, “Are
We There Yet? Comparing Remote Learning Technologies in the University Classroom,”
in IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2706-2713, April 2020, doi:
10.1109/LRA.2020.2970939

[4] https://www.theconstructsim.com/need-robotics-standards/ (Accessed May 07, 2022)
[5] https://metrics.ros.org/misc_citations.html (Accessed Mar. 05, 2022)
[6] http://wiki.ros.org/ROS/Tutorials (Accessed May 07, 2022)
[7] Michieletto, Stefano & Ghidoni, Stefano & Pagello, Enrico & Moro, Michele & Menegatti,

Emanuele. (2014). Why teach robotics using ROS?. Journal of Automation, Mobile
Robotics & Intelligent Systems. 8. 60-68. 10.14313/JAMRIS_1-2014/8

[8] https://wiki.ros.org/ROS/Introduction (Accessed Mar. 05, 2022)
[9] http://wiki.ros.org/Master (Accessed Mar. 05, 2022)
[10] https://robolabor.ee/homelab/en/ros/subscribepublish (Accessed Mar. 05, 2022)
[11] https://www.turtlebot.com/ (Accessed May 18, 2022)
[12] https://robotont.github.io/html/files/overview.html (Accessed May 18, 2022)
[13] http://wiki.ros.org/ROS/NetworkSetup (Accessed Mar. 31, 2022)
[14]

https://robotont.github.io/html/files/setup_robot_pc.html#getting-the-robotont-and-pc-into
-the-same-ros-environment (Accessed Mar. 05, 2022)

[15] http://wiki.ros.org/Security (Accessed May 19, 2022)
[16] http://robotwebtools.org/ (Accessed Mar. 01, 2022)
[17] http://wiki.ros.org/rosbridge_suite (Accessed Mar. 01, 2022)
[18] http://wiki.ros.org/roslibjs (Accessed Mar. 01, 2022)
[19] M. Karaca and U. Yayan, ROS Based Visual Programming Tool for Mobile Robot

Education and Applications. 2020.
[20] https://developers.google.com/blockly/ (Accessed Apr. 10, 2022)
[21] D. D. Rajapaksha et al., ‘Web Based User-Friendly Graphical Interface to Control

Robots with ROS Environment’, in 2021 6th International Conference on Information
Technology Research (ICITR), Dec. 2021, pp. 1–6. doi:
10.1109/ICITR54349.2021.9657337

[22] http://gazebosim.org/gzweb (Accessed Apr. 10, 2022)
[23] B. Pitzer, S. Osentoski, G. Jay, C. Crick and O. C. Jenkins, “PR2 Remote Lab: An

environment for remote development and experimentation,” 2012 IEEE International
Conference on Robotics and Automation, 2012, pp. 3200-3205, doi:
10.1109/ICRA.2012.6224653

[24] Lee, Jihoon. “Web Applications for Robots using rosbridge.” Brown University, 2012
[25] T. O. Almeida, J. F. de M. Netto and M. L. Rios, “Remote robotics laboratory as support

to teaching programming,” 2017 IEEE Frontiers in Education Conference (FIE), 2017,
pp. 1-6, doi: 10.1109/FIE.2017.8190472

[26] R. Grandi, R. Falconi, C. Melchiorri, UniBot Remote Laboratory: A Scalable Web-Based
Set-up for Education and Experimental Activities in Robotics, 2011,
https://doi.org/10.3182/20110828-6-IT-1002.03103

[27] D. Pickem et al., “The Robotarium: A remotely accessible swarm robotics research
testbed,” 2017 IEEE International Conference on Robotics and Automation (ICRA),
2017, pp. 1699-1706, doi: 10.1109/ICRA.2017.7989200

[28] G. A. Casañ, E. Cervera, A. A. Moughlbay, J. Alemany and P. Martinet, “ROS-based
online robot programming for remote education and training,” 2015 IEEE International

40

https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w

Conference on Robotics and Automation (ICRA), 2015, pp. 6101-6106, doi:
10.1109/ICRA.2015.7140055

[29] M. Kulich, J. Chudoba, K. Kosnar, T. Krajnik, J. Faigl and L. Preucil,
“SyRoTek—Distance Teaching of Mobile Robotics,” in IEEE Transactions on Education,
vol. 56, no. 1, pp. 18-23, Feb. 2013, doi: 10.1109/TE.2012.2224867

[30] The Construct: A Platform to Learn ROS-based Advanced Robotics Online,
https://www.theconstructsim.com/ (Accessed 15.04.2022)

[31] Ricardo Tellez. “A thousand robots for each student: Using cloud robot simulations to
teach robotics”. In: Robotics in Education. Springer, 2017, pp. 143–155

[32] The Construct. “How to use Robox 24/7 ROS Remote Real Robot Lab” YouTube,
30.11.2020, https://www.youtube.com/watch?v=8Met5vzusig

[33] H. Anand et al., “OpenUAV Cloud Testbed: a Collaborative Design Studio for Field
Robotics,” 2021 IEEE 17th International Conference on Automation Science and
Engineering (CASE), 2021, pp. 724-731, doi: 10.1109/CASE49439.2021.9551638’.

[34] DREAMS Laboratory. “Jezero Crater initial world for NSF CPS Challenge Mars 2020
Edition in OpenUAV testbed” YouTube, 10.05.2020,
https://www.youtube.com/watch?v=w9bnfIWW09U

[35] Kolyshkin, Kirill. “Virtualization in linux.” White paper (2006)
[36]

https://www.docker.com/blog/docker-index-shows-continued-massive-developer-adoptio
n-and-activity-to-build-and-share-apps-with-docker/ (Accessed Mar. 03, 2022)

[37] Amit M Potdar, Narayan D G, Shivaraj Kengond, Mohammed Moin Mulla, “Performance
Evaluation of Docker Container and Virtual Machine”, Procedia Computer Science,
Volume 171, 2020

[38] https://hub.docker.com/r/osrf/ros/ (Accessed Mar. 06, 2022)
[39] White, Ruffin & Christensen, Henrik. (2017). ROS and Docker.

10.1007/978-3-319-54927-9_9
[40] T. Combe, A. Martin and R. Di Pietro, “To Docker or Not to Docker: A Security

Perspective,” in IEEE Cloud Computing, vol. 3, no. 5, pp. 54-62, Sept.-Oct. 2016, doi:
10.1109/MCC.2016.100

[41] https://github.com/OWASP/Docker-Security (Accessed May 23, 2022)
[42] W. Wiedmeyer, M. Mende, D. Hartmann, R. Bischoff, C. Ledermann and T. Kroger,

“Robotics Education and Research at Scale: A Remotely Accessible Robotics
Development Platform,” 2019 International Conference on Robotics and Automation
(ICRA), 2019, pp. 3679-3685, doi: 10.1109/ICRA.2019.8793976

[43] G. Toffetti and T. M. Bohnert, ‘Cloud Robotics with ROS’, in Robot Operating System
(ROS): The Complete Reference (Volume 4), A. Koubaa, Ed. Cham: Springer
International Publishing, 2020, pp. 119–146. doi: 10.1007/978-3-030-20190-6_5.

[44] https://help.skytap.com/accessing-vms-with-a-browser.html (Accessed May 03, 2022)
[45] https://help.skytap.com/sharing-portals.html (Accessed May 03, 2022)
[46] https://help.skytap.com/wan-create-vpn.html (Accessed May 03, 2022)
[47] https://github.com/fcwu/docker-ubuntu-vnc-desktop (Accessed Apr. 25, 2022)
[48] https://github.com/ConSol/docker-headless-vnc-container (Accessed Apr. 25, 2022)
[49] https://github.com/theasp/docker-novnc (Accessed Apr. 24, 2022)
[50] https://docs.docker.com.xy2401.com/engine/docker-overview/ (Accessed May 05, 2022)
[51] https://docs.docker.com/engine/extend/plugins_authorization/ (Accessed May 06, 2022)
[52] https://docs.docker.com/network/ (Accessed May 06, 2022)
[53] https://www.realvnc.com/en/news/control-computer-within-your-web-browser/

(Accessed Apr. 25, 2022)
[54] https://github.com/novnc/noVNC (Accessed Apr. 25, 2022)
[55] https://tigervnc.org/ (Accessed Mar. 04, 2022)
[56] https://docs.npmjs.com/about-npm (Accessed May 17, 2022)
[57] https://github.com/expressjs/express (Accessed May 17, 2022)
[58] https://github.com/apocas/dockerode (Accessed May 17, 2022)
[59] https://www.npmjs.com/package/docker-compose (Accessed May 17, 2022)

41

https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w
https://www.zotero.org/google-docs/?N4mJ3w

APPENDIX

1. Source code

https://github.com/unitartu-remrob/remrob-docker

https://github.com/unitartu-remrob/remrob-server

2. Video demonstration

https://www.youtube.com/watch?v=PbIzgEJhSUg

3. Non-exclusive licence to reproduce thesis and make thesis public

I, Dāvis Krūmiņš,

1. grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace digital

archives until the expiry of the term of copyright, my thesis

Web-based learning and software development environment for remote access of

ROS robots,

supervised by Prof. Karl Kruusamäe and PhD Veiko Vunder.

2. I grant the University of Tartu a permit to make the thesis specified in point 1

available to the public via the web environment of the University of Tartu, including

via the DSpace digital archives, under the Creative Commons licence CC BY NC ND

4.0, which allows, by giving appropriate credit to the author, to reproduce, distribute

the work and communicate it to the public, and prohibits the creation of derivative

works and any commercial use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in points 1 and 2.

4. I confirm that granting the non-exclusive licence does not infringe other persons’

intellectual property rights or rights arising from the personal data protection

legislation.

Dāvis Krūmiņš

27/05/2022

42

