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Application and Evaluation of LSTM Architectures for Energy Time-Series Fore-
casting

Abstract: Accurate energy forecasting is a very active research field as reliable informa-
tion about future electricity generation allows for the safe operation of the power grid and
helps to minimize excessive electricity production. As Recurrent Neural Networks outper-
form most machine learning approaches in time series forecasting, they became widely
used models for energy forecasting problems. In this work, the Persistence forecast and
ARIMA model as baseline methods and the long short-term memory (LSTM)-based
neural networks with various configurations are constructed to implement multi-step
energy forecasting. The presented work investigates three LSTM based architectures:
i) Standard LSTM, ii) Stack LSTM and iii) Sequence to Sequence LSTM architecture.
Univariate and multivariate learning problems are investigated with each of these LSTM
architectures. The LSTM models are implemented on six different time series which are
taken from publicly available data. Overall, six LSTM models are trained for each time
series. The performance of the LSTM models is measured by five different evaluation
metrics. Considering the results of all the evaluation metrics, the robustness of the LSTM
models is estimated over six time series.

Keywords:
Neural Networks, ARIMA, Persistence forecast, long short-term memory, Standard
LSTM, Stack LSTM, Sequence to Sequence LSTM, univariate time series forecasting,
multivariate time series forecasting, energy forecasting.

CERCS: P170 Computer science, numerical analysis, systems, control

LSTM-arhitektuuride rakendamine ja hindamine energia aegridade prognoosi-
miseks

Lühikokkuvõte: Täpsete prognooside koostamine on energiavaldkonnas väga aktiivne
uurimisvaldkond, kuna usaldusväärne teave tulevase elektritootmise kohta on oluline
elektrivõrgu ohutuse tagamisel ning aitab minimeerida liigset elektrienergia tootmist. Ku-
na rekurrentsed tehisnärvivõrgud ületavad aegridade prognoosimise täpsuses enamikke
muid masinõppe meetodeid, siis on need võetud ka energia prognoosimisel laialdaselt
kasutusele. Käesolevas töös on energiaprognooside tegemiseks rakendatud algoritme
Persistence ja ARIMA baasmeetoditena ning pika lühiajalise mäluga (LSTM) tehis-
närvivõrke erinevates konfiguratsioonides. Töö uurib kolme LSTM-põhist arhitektuuri:
i) standardne LSTM, ii) kahekihiline (stacked) LSTM ja iii) jadast-jadasse (sequence
to sequence) LSTM. Kõigi nende LSTM-arhitektuuridega uuritakse nii ühemõõtmelisi
kui ka mitmemõõtmelisi õpiülesandeid. LSTM-mudeleid treenitakse kuue erineva ava-
likult kättesaadava aegrea ennustamiseks, kusjuures iga aegrea jaoks treenitakse kuus
erinevat LSTM mudelit. LSTM-mudelite poolt tehtud ennustusi mõõdetakse viie erineva
hindamismõõdikuga. Lähtuvalt hindamise tulemustest neil kuuel aegreal hinnatakse
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LSTM-mudelite arhitektuuride robustsust.

Võtmesõnad:
Tehisnärvivõrgud, ARIMA, Persistence, pika lühiajalise mäluga võrgud (LSTM), stan-
dardne LSTM, kihiline LSTM, jadast-jadasse LSTM, ühemõõtmeline aegrea prognoosi-
mine, mitmemõõtmeline aegrea prognoosimine, energia prognoosimine.

CERCS:P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine
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List of Abbreviation

RES Renewable Energy Sources
ARIMA Auto-Regressive Integrated Moving Average
RNN Recurrent Neural Network
LSTM Long Short Term Memory
RMSE Root mean squared error
MAE Mean absolute error
SMAPE Symmetric mean absolute percentage error
S2S Sequence to Sequence
GA Genetic Algorithm
BPTT Back Propagation Through Time
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1 Introduction
Over the last decade, different projects have been undertaken in the field of energy
forecasting. The European Union Horizon 2020 EU-SysFlex project is one such effort to
identify issues and solutions associated with integrating large-scale renewable energy and
create a plan to provide practical assistance to power system operators across Europe [1].
To provide an accurate plan for power system operators, an important aspect to consider
is accurate energy forecasting. Accurate energy forecasting enables efficient operation of
power systems, preservation of the balance between supply and demand, reduction of
production cost, and management of future capacity planning [2]. Forecasting of load
and price of electricity, fossil fuels (natural gas, oil, coal) and renewable energy sources
(RES; hydro, wind, solar) are included in the energy forecasting [3]. Energy forecasting
is grouped into three categories depending on the forecast duration [4]: short-term,
medium term and long-term. Typical definitions are as follows: the short-term forecast
ranges between one hour and one week, medium-term forecast ranges between one
week and one year, and long-term forecasts span a time of more than a year. Short-term
forecasts serve for deciding on the use of power plants, optimization of the scheduling of
power systems, economic dispatch and electricity market [3]. Medium and long-term
forecasting is important for planning of building future sites or determining fuel sources
of power plants [3].

Forecasting problems are divided into a single-step and multi-step forecasting depending
on the future forecast steps [2]. In single-step and multi-step forecasting problems,
one step and multi-step ahead predictions are solved, respectively. The current work
is focused on multi-step short-term energy forecasting. Two learning problems are
investigated to implement multi-step forecasting: univariate and multivariate. Univariate
time-series forecasting is a problem comprised of one single series where the model
learns from the past values to predict the next values of the sequence. The difference
between univariate and multivariate forecasting problem is that multivariate models use
multiple input series for prediction.

Various machine learning methods have been considered for forecasting; these are divided
into traditional statistical techniques and deep learning based approaches. In this work,
the statistical model Auto-Regressive Integrated Moving Average (ARIMA), Persistence
forecast and deep learning methods with different configurations are implemented for
time-series forecasting. The ARIMA model and the Persistence forecast results are
considered as a baseline.

ARIMA is a statistical model used for analyzing and forecasting time series data. An
ARIMA model considers the dependent relationship between an observation and past
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values along with the error in the forecasting. In previous work, it was found that the
ARIMA model works better for linear and stationary time series data [5]. For short-term
forecasting, the ARIMA model has been applied by several researchers [6, 7].

The Persistence forecast is used to generate baseline results for time series forecasting
problems [8]. In the multi-step time series forecasting problem, the Persistence forecast
uses the previous time steps to predict an expected outcome for the next time steps.

Recently, considering complex non-linear patterns and large amounts of data, different
deep learning techniques have been applied to time series forecasting problems due to
their ability to capture data behavior. [9, 10]. Recurrent Neural Network is one type
of deep learning allows the use of multiple layers and helps to learn different feature
representations in data. Recurrent Neural Networks (RNN) allow learning patterns in
sequential data such as video, speech and time series. In this work, long short-term mem-
ory (LSTM)-based neural network is used, which is a variation of RNN and performs
considerable results for time series forecasting problems. Different LSTM architectures
are implemented and evaluated on publicly available data.

1.1 Problem Statement
The aim of this study is to explore different LSTM architectures over six different
time series and determine robust LSTM architectures for energy time series forecasting
problem. The LSTM architecture is called robust when the model does not necessarily
always have the best results for each time series, but it should not be much worse than
the best. The results of robust LSTM architectures should perform always better than
baseline results. The presented work investigates three variations of LSTM: i) Standard
LSTM, ii) Stacked LSTM and iii) LSTM based Sequence to Sequence (S2S) architecture.
Both univariate and multivariate forecasting problems are explored for each time series
and LSTM architecture. For baseline methods, only the univariate forecasting problem
has been learned.

The performances of baseline methods and LSTM models are measured by using five
evaluation metrics: root mean squared error (RMSE), mean absolute error (MAE),
symmetric mean absolute percentage error (SMAPE), bias, and correlation function.
These metrics help to explore the errors from different aspects. While deciding robust
LSTM architectures, all these evaluation metrics should be considered over all time
series.
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1.2 Study Outline
This thesis consists of five chapters in total. The structure of this thesis is given below:

– Section 2 highlights related work in the area of energy forecasting.
– Section 3 describes the forecasting methods, baseline approaches and LSTM
architectures, and the chosen evaluation metrics.
– Section 4 introduces the datasets, explains dataset preprocessing steps and dis-
cusses the results from the experiments.
– Section 5 summarizes the key findings of this work.

8



2 Related Work
The availability of a relatively large amount of energy data allows using different Artificial
Intelligence (AI) methods. A lot of work has been done in the area of short-term energy
forecasting [2]-[4]. Noticeably, Recurrent Neural Network (RNN) was widely used in this
research field as it is able to capture model nonlinearity. As RNN models outperformed
statistical machine learning models, autoregressive and moving-average models have
remained the baseline methods [12].

Daniel et al. [4] presented two univariate models namely, ARIMA and a Standard LSTM
for energy load forecasting. The results showed that LSTM model outperformed ARIMA
model in multi-step short-term load forecasting.

Various LSTM approaches have been implemented for univariate one-step ahead PV
forecasting [11]. Four different Standard LSTM and Stack LSTM models were applied
for PV forecasting using two various datasets. Standard LSTM models differ in using
various lags of previous time steps (one time step, three time steps, time steps as features)
and memory between batches. Stack LSTM model was built using two LSTM hidden
layer. The comparative analysis revealed that the Standard LSTM model with used the
lag three time steps had the best results for both datasets.

Shamsul et al. [2] presented the work for multivariate energy load forecasting. In this
work, Standard LSTM and Sequence to Sequence LSTM models results were investigated
for one-minute and one-hour time step resolution data. The results showed that the
standard LSTM architecture failed on load forecasting using one-minute resolution, the
S2S LSTM architecture performed well in both datasets.

Different machine learning approaches covering linear regression, k-nearest neighbors,
random forest, gradient boosting, ANN and extra tree regressor were also applied for
short-term electric load forecasting [12]. Salah et al. [12] presented a load forecasting
methodology using classical machine learning methods and LSTM network. The classical
machine learning models were trained for multivariate load forecasting, in turn, LSTM
network was trained for univariate load forecasting. Genetic algorithm (GA) was used
to find out optimal hyper-parameters such as the length of window size, the number of
hidden units and the number of hidden layers. The results showed that LSTM network
with optimal hyper-parameters performed better than classical machine learning models
and it had stable results for both short and medium-term load forecasting.
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3 Methodology
In the first section, we describe the general forecasting approach for multi-step univari-
ate and multivariate forecasting models. In Subsection 3.2, we introduce the baseline
methods and explain why we selected them. Subsection 3.3.1 explains the LSTM archi-
tectures which were chosen for this study. Lastly, the evaluation metrics are presented
and explained how they evaluated the predictions differently.

3.1 Forecasting Models
In this study, we consider both multi-step univariate and multi-step multivariate forecast-
ing techniques for energy forecasting. In this section, we discuss what is the multi-step
forecasting model, and how to implement multi-step forecasting for univariate and mul-
tivariate forecasting problems. We also give a general understanding of univariate and
multivariate forecasting models, explain the difference between them.

3.1.1 Multi-step Forecasting Model

For real forecasting problems, the main objective is not only to predict a value ahead
in time but also a certain time forecast horizon k. The forecast horizon is the span of
time into the future for which forecasts should be prepared. If the forecast horizon k
is bigger than one, this kind of forecasting is called multi-step forecasting and can be
implemented using two strategies [14]: i) the direct strategy - by explicitly training a
model to predict several steps ahead, or ii) the iterative method - by doing repeated
one-step ahead predictions up to the desired horizon. In this study, the forecast horizon is
defined as future 36 hours time steps and the direct strategy is applied for this multi-step
ahead prediction.

3.1.2 Multi-step Univariate Forecasting Model

In "classical time series", it is assumed that the following series members depend only
on a certain amount of its direct predecessors [14]. In this case, the forecasting problem
is comprised of one single series and called univariate forecasting problem. Suppose we
have historical data for some time series given like x1, ... , xn−1, xn. As there exist some
functional dependency between historical and future time series data points, the forecast
values x′n+1, x′n+1, ... , x′n+k for the k forecast horizon are a function of the preceding n
data points. This dependency is described in Eq. 1.

x′n+1, x
′
n+2, ..., x

′
n+k−1, x

′
n+k,= f(x1, ..., xn−1, xn) (1)

Here f might be any machine learning method. As a machine learning tool, the baseline
approaches and LSTM models are applied for the current forecasting problem.
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3.1.3 Multi-step Multivariate Forecasting Model

The multivariate forecasting model is an extended version of the univariate forecasting
model where the only difference is that future time series values not only depend on the
preceding values of the same series, but also the values of another time series. Suppose
we have the historical data for the time series as x1, ... , xn−1, xn and another time
series as y1, ... , yn−1, yn and there is a functional dependency among their members.
The task is to predict the future k values of the time series, which is x′n+1, x′n+1, ... ,
x′n+k. According to the multi-step multivariate forecast model, these future values are
predicted using the Eq. 2. Similar to the univariate model, f could be any machine
learning method.

x′n+1, x
′
n+2, ..., x

′
n+k−1, x

′
n+k,= f(x1, y1, ..., xn−1, yn−1, xn, yn) (2)

3.2 Baseline methods
In this study, due to their simplicity, the Persistence forecast and the ARIMA statistical
model are used as baseline approaches which provide a point of comparison with LSTM
architectures. The only univariate forecasting problem is explored with baseline methods.

3.2.1 Modelling Forecast Using Persistence

The Persistence forecast is a common reference model for the time series forecasting as it
provides a computationally inexpensive forecast [8]. Persistence introduces the concept
of "memory". The algorithm uses the value at the previous time step t to predict the
expected outcome at the next time step t+ 1. That is why this model gives better results
for the stationary time series. The performance of the persistence model depends on the
forecast horizon. The uncertainty for the future time steps is getting bigger when the
large forecast horizon is used.
The forecast technique of the Persistence forecast is described in Figure 1. To forecast
the next 36 hours, the last 24 hours of the historical data are used. Firstly, the next
24 hours are forecasted using the last 24 hours of the available data. Second, the data
between 12h and 24h are used to fulfill the next 12 hours forecast points. The forecasting
strategy is interpreted in Eq. 3. In the equation, x′n+1, x

′
n+2, ..., x

′
n+36 are the forecast and

xn−24, xn−23, ..., xn−1 are input data points.

x′n+1, x
′
n+2, ..., x

′
n+36 = (xn−24, xn−23, ..., xn−1, xn−24, xn−23, ..., xn−13) (3)

3.2.2 ARIMA Based Time Series Forecasting

ARIMA is the acronym for Auto Regressive Integrated Moving Average where each
component has a key characteristic [2]: AR (Autoregression), relying on a dependent
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Figure 1. The forecast strategy of the Persistence forecast for the next 36 hours.

relationship between an observation and some number of lagged observations; I (Inte-
grated), the number of differences of actual observations, needed to make the time series
stationarity; and MA (Moving Average), the number of lagged forecast errors in the
prediction equation.
These components are introduced in an ARIMA model as a set of parameters given as
ARIMA(p,d,q): p is the number of lag observations, d is the number of times that the
actual observations are differenced and q is the size of the moving average window.
The Auto Regressive model is shown in Eq. 4 where yt depends only on its own lags [2].

yt = α + β1yt−1 + β2yt−2 + ...+ βpyt−p (4)

yt is the current measured values at time t; α and βi are coefficients; and p is the
autoregressive component .
In the Moving Average (Eq. 5), yt depends only on its lagged forecast errors [2].

yt = εt + θ1εt−1 + θ2εt−2 + ...+ θpεt−p (5)

yt is the current measured values at time t; εt is the forecast error at time t, θi are
coefficients; and q is the moving average component.
As the ARMA model is the combination of the AR and MA terms, it is represented as a
formula in Eq. 6.

yt = α + β1t−1 + β2yt−2 + ...+ βpyt−p + εt + θ1εt−1 + θ2εt−2 + ...+ θpεt−p (6)

In the case of non-stationary time series, a transformation of the series is presented
by Box and Jenkins to make it stationary and it results the ARIMA model [13]. The
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measured values yt are replaced with the results of a recursive differencing process. The
first order differencing can be described as Eq. 7 [13].

yt = yt − yt−1 (7)

3.3 Time series forecasting using LSTM architectures
In this work, three different LSTM architectures are studied for the multi-step univariate
and multivariate time series forecasting. In the subsections below, we briefly describe
the simple Recurrent Neural Network (RNN) architecture, the LSTM unit as a variation
of RNN and the proposed LSTM architectures.

3.3.1 Recurrent Neural Network

In a traditional neural network, inputs and outputs are considered as independent of each
other. As the sequential pattern exists in time series data, such a neural network does not
give efficient results for the time series forecasting. As an alternative network, RNN is
more effective to learn the dependency between observations. It has been proved that
RNN shows considerable results for time series forecasting [19]. The simple architecture
and the unrolled version of RNN is shown in Figure 2 [18].

Figure 2. An unrolled recurrent neural network [18].

The simple RNN is a network with loops which allows persisting information to be
passed from one step of the network to the next. This looping process can be unrolled
as described in Figure 2. The process is illustrated for the time steps from 0, 1, 2 up to
time t: x0, x1, x2, ..., xt are the inputs, A is the hidden state, and h0, h1, h2, ..., ht are the
outputs. At hidden state is an activation function (normally tanh) which takes its input
from the hidden state of the previous step At−1 and the output of the current step xt .
This process is described in Eq. 8.

At = f(At−1, xt) (8)

RNNs use backpropagation through time (BPTT) to optimize weights during training.
BPTT uses the chain rule to go back from the latest time step to the previous steps and
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the gradients tend to get smaller and smaller while moving backward in the network.
That is why RNN has a vanishing gradient issue and it leads to the problem of learning
the long-term dependencies. To solve this issue, as a variation of RNN, LSTM network
was introduced by Hochreiter & Schmidhuber [15].

3.3.2 General overview of LSTM unit

LSTM networks are specially designed to learn long term dependency problems. The
traditional neural networks have neurons, in turn, LSTMs have memory cells that are
connected through layers. Each memory cell contains gates which handle information
flow into and out of the cell. There are three types of gates in the LSTM unit [2]: forget,
input and output. The task of each gate is listed as follows:

• Forget gate forgets the irrelevant parts from the previous state.

• Input gate selectively updates the cell state values.

• Output gate outputs the certain part of cell state.

The structure of the LSTM unit is shown in Figure 3.

Figure 3. LSTM unit [17].

As seen from Figure 3 and Eq. 9 - 12, the LSTM unit gets the information from the
previous state ht−1 and input xt, and uses the activation functions to decide which part
of the information to pass to the output and next LSTM unit.

it = σ(Wi · [ht−1, xt] + bi) (9)

ft = σ(Wf · [ht−1, xt] + bf ) (10)
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ot = σ(Wo · [ht−1, xt] + b0) (11)

C̃t = tanh(WC · [ht−1, xt] + bC) (12)

Ct = ft ⊗ Ct−1 + it ⊗ C̃t (13)

ht = ot ⊗ tanh(Ct) (14)

Eq. 9 - 11 describes three sigmoid functions (σ(x) =
1

1 + e−x
) where W ′s and b′s are

the parameters (weights and biases) for input, forget and output gates. ft, it and ot are
input, forget and output gates respectively. In Eq. 13, the tanh layer creates the vector of
new candidate value C̃t which is added to the cell state.
LSTM unit has two kinds of hidden states: "slow" state Ct and a "fast" state ht. The slow
state Ct is updated by summing the multiplication the forget gate ft by the previous cell
state Ct−1 and the multiplication the input gate it by the new candidate value C̃t. The ht
state is updated using the hyperbolic tangent function (tanh) of Ct state and ot output
gate.
The main preference of LSTM unit is that its cell state accumulates activities over time.
As derivatives of the error are summed over time, they do not vanish quickly [18]. In this
way, LSTMs can implement tasks over long sequences.

3.3.3 LSTM Model Architectures

In this work, we investigates three kinds of LSTM architectures: i) Standard LSTM,
ii) Stack LSTM and iii) Sequence to Sequence (S2S) LSTM. Both Univariate and
Multivariate forecasting problems are explored for each architecture. Each LSTM
architecture is explained as follows:

Standard LSTM Architecture The network has one input layer, one hidden LSTM
layer and an output layer. The architecture of the LSTM model is shown in Figure 4.
xt+1, xt+2, ..., xt+n are the inputs. n defines the window size which determines how
many previous values of the time series will be used during the training. Depending
on the forecasting problem (univariate or multivariate), there might be one or multiple
inputs for each LSTM cell. LSTM cells share the same amount of LSTM units. In this
architecture, many to one LSTM model [16] is applied where the output is generated
from the last LSTM cell. The output of the hidden LSTM layer is fully connected to the
last layer which generates the next 36 hours forecast measures.

Stacked LSTM architecture This LSTM architecture makes a difference from the
previous model using one more LSTM hidden layer (Figure 5). The configurations for the
input and first hidden layer are the same as in the Standard LSTM architecture. However,
in this architecture, each LSTM cell in the first hidden layer has its own output to pass
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Figure 4. Standard LSTM architecture.

the information to the second hidden layer. The output of the second hidden LSTM layer
is fully connected to the last layer which generates the next 36 hours forecast measures.

Figure 5. Stack LSTM architecture.

Sequence to Sequence LSTM architecture This architecture consists of two LSTM
networks: encoder and decoder. The encoder holds the input series and encodes them
in a fixed length vector, which is used as the hidden input state for the decoder (Figure
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6). The decoder LSTM cell inputs are set to zero. The output is generated from decoder
LSTM cell for each future time step.

Figure 6. Sequence to Sequence LSTM architecture.

3.4 Evaluation metrics
Five evaluation metrics are used to measure the performance of the models (Eq. 15 - 19):
the root-mean-square error (RMSE), the mean absolute error (MAE), the symmetric mean
absolute percentage error (SMAPE), the BIAS, and the correlation function between the
forecast and measured time series. The equations use x as a value of the measured and
x′ as a value of the forecast time series. Both time series have N samples.

RMSE(x′, x) =

√√√√ 1

N

N∑
n=1

(x′n − xn)2 (15)

MAE(x′, x) =
1

N

N∑
n=1

|x′n − xn| (16)

SMAPE(x′, x) =
100

N

N∑
n=1

|x′n − xn|
|x′n|+ |xn|

(17)

BIAS(x′, x) =
1

N

N∑
n=1

(x′n − xn) (18)
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Correlation(x′, x) =

∑N
n=1(x

′
n − x′n) ∗

∑N
n=1(xn − xn)√∑N

n=1(x
′
n − x′n)2 ∗

∑N
n=1(xn − xn)2

(19)

RMSE and MAE are one of the common metrics to measure the average error between
forecast and actual values. The RMSE is more sensitive to the outliers in the data as it
calculates the average of the squared errors. SMAPE interprets an average percentage er-
ror between 0% and 100%. The BIAS allows assessing whether the forecast is predicting
higher or lower values than the actual value on average. Lastly, the Correlation measures
the similarity of the behavior of the forecast and actual values.

18



4 Experiments and Results
In this section, we present the datasets and discuss the results of the experiments for the
multi-step short-term energy forecasting. The planned path for this study is described
in Figure 7. The proposed process can be seen as a framework of four processing
components, namely, data preparation and pre-processing, the baseline models training,
the LSTM models training and analyzing results. All these processing components are
explained in the their own sections.

Figure 7. The planned path for the multi-step short-term energy forecasting.

4.1 Datasets
The datasets for this study were chosen from three different data sources: UCI Machine
Learning Repository [20], Driven Data [21], and Open Power System Data [22]. We
selected those datasets because they cover electricity and weather data, they had appro-
priate time resolution and multiple time series to consider for multivariate forecasting
problem. In total, we worked with four different datasets. These datasets have different
sampling rates (ex: one-minute, ten-minute, one-hour). For simplicity, we downsampled
the time series with small frequency to fifteen-minute. As a result, we worked with
fifteen minute and hourly sampled datasets.
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The datasets from UCI Machine Learning Repository The two datasets were cho-
sen from UCI Machine Learning Repository: i) Beijing PM2.5 dataset [23], ii) Appliances
Energy Prediction dataset [24].

Beijing PM2.5 dataset This hourly dataset contains the PM2.5 (particle that affects
air pollution) data of the US Embassy in Beijing and weather data from Beijing Capital
International Airport. The dataset does not cover the electricity measurements, however
is worked to investigate the performances of the models. In this study, PM2.5 data
is used as a time series to forecast future values. The weather measurements (dew
point, temperature, pressure, wind speed, cumulated hours of snow and rain) are used in
multivariate forecasting. The dataset contains 2067 missing values for PM2.5. As PM2.5
starts with the missing value, these values are imputed using the next valid observation.
The dataset ranges from 2010-01-01 to 2014-12-31. The first six months of PM2.5 as
shown in Figure 8.

Figure 8. PM2.5 for the first six months.

In Figure 9, the monthly, weekly and hourly behavior of the time series is described. Box
plots of PM2.5 reveal that the average PM2.5 is almost constant across months (Figure
9a), weeks (Figure 9b) and quarters of days (Figure 9c). The quarters of days observe
PM2.5 for the 04.00-10:00, 10:00-16:00, 16:00-22:00 and 22.00-04.00 time ranges.

Appliances Energy Prediction dataset This data set is at 10 min resolution for about
4.5 months from 2016-01-11 to 2016-05-27. The dataset includes the Energy Consump-
tion of Appliances and Light fixtures in a house and weather information (humidity and
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Figure 9. Monthly (a), Weekly (b), Quarterly (c) behavior of PM2.5.

temperature inside a house and temperature, pressure, humidity, wind speed, dew point
outside). The frequency of the dataset is downsampled from 10 min to 15 minute. The
forecast measurements are the Energy Consumption of Appliances and Light fixtures and
the weather information is considered in the multivariate forecasting. The first thousand
instances of Energy Consumption of Appliances and Light are shown in Figure 10 and
Figure 11 respectively. As seen from the figures, both time series have drastic changing
characteristics.

Figure 10. The first thousand instances of Energy Consumption of Appliances.
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Figure 11. The first thousand instances of Energy Consumption of Light.

For both time series, the monthly, weekly and hourly behaviors are presented in Figure 12-
13 respectively. Figure 12 depicts that the average Energy Consumption of Appliances
are almost constant across months (Figure 12 (a)) and weeks (Figure 12 (b)), while
quarterly plot (Figure 12 (c)) shows lower consumption in the first and last quarters.

Figure 12. Monthly (a), Weekly (b), Quarterly (c) behavior of Energy Consumption of
Appliances.

Figure 13 (a) reveals that the average Energy Consumption of Light is around zero
and last two months have less consumption than first three months. Weekly Energy
Consumption of Light (Figure 13 (b)) shows that there is less consumption on Friday
and Saturday. Energy Consumption of Light increases in the third quarter due to night
time (Figure 13 (c)).
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Figure 13. Monthly (a), Weekly (b), Quarterly (c) behavior of Energy Consumption of
Light.

The dataset from Driven Data Four datasets are presented: train data - the historical
data about the energy consumption for building sites, metadata - additional information
such as surface area, the base temperature of the buildings, weather data - the temperature
data from several stations near each site, holidays data - public holidays name and date at
the sites. We only use energy consumption and weather data (temperature) for our study.
Both energy consumption and temperature data include missing values. These values
are imputed using the next valid observation in the series. The data is presented for 267
building sites. From 267 sites, 89 sites have daily, 89 sites have hourly and the last 89
sites have quarterly sampling rates. As we are interested in hourly and 15 minute time
series, we work with two sites which have hourly and 15 minute frequencies. Figure 14
and Figure 15 described hourly and 15 minute Energy Consumption for the first month
which have rise and falls periodically.
Box plot (Figure 16 (a)) shows that the average hourly Energy Consumption is less in
the first and last months. Weekly energy consumption (Figure 16 (b)) is getting decrease
to the end of the week. Figure 16 (c) reveals that more energy is consumed in the first
half of the day.
In contrast to hourly Energy Consumption, box plot (Figure 17 (a)) shows that the
average 15 minute Energy Consumption is more in the first and last months. Weekly
energy consumption (Figure 17 (b)) is getting decrease to the end of the week. Figure 17
(c) reveals that less energy is consumed in the third quarter of the day.
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Figure 14. Hourly Energy Consumption of the building site for the first month.

Figure 15. 15 minute Energy Consumption of the building site for the first month.
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Figure 16. Monthly (a), Weekly (b), Quarterly (c) behavior of hourly Energy
Consumption.

Figure 17. Monthly (a), Weekly (b), Quarterly (c) behavior of 15 minute Energy
Consumption.
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The dataset from Open Power System Datasets This dataset is at an hourly resolu-
tion for about 2 years from 01-12-2014 to 31-12-2016. The dataset includes the time
series of Load (Electricity) Consumption and weather information. The weather data
contains the weather measurements (wind speed, temperature, direct horizontal radia-
tion, diffuse horizontal radiation) from multiple weather stations. Load Consumption is
used as a forecast measurement and all weather information is considered as features in
multivariate forecast problem. Load Consumption for the first six months is described in
Figure 18.

Figure 18. Load Consumption for the first six months.

Figure 19 (a) shows that there is especially less Load Consumption in December. Weekly
average Load Consumption (Figure 19 (b)) is getting decrease to the end of the week.
Figure 19 (c) reveals that less electricity is consumed in night time of the day.

4.2 Dataset preparation
All selected time series need to be transformed to the input and output series before
fitting the model. The length of output series is defined as future 36 hours. As we work
with time series with 15 minute and hourly resolution, the size of the output equals to
144 or 36 time steps. As the learning techniques are different for the baseline methods
and LSTM models, two different data transformations are applied for the datasets.
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Figure 19. Monthly(a), Weekly(b), Quarterly(c) behavior of Load Consumption.

4.2.1 Dataset preparation for ARIMA

The transformation of the time series has been done in two steps. Firstly, the time series
was split to the training and testing parts using the train_test_split method [26] with
test_size fraction 0.2, setting shuffle parameter to False. As a result, the first 80% of the
time series as training and the last 20% is used as testing data. In the second step, the
training split is updated to implement 36 hours forecasting for all testing data. The first
training set is used to forecast the first 36 hours in the testing data. To implement further
36 hours forecasting for all testing data, one past value is added to the training data
iterating through the testing dataset and the next 36 hours are forecasted in each iteration.
The generation process of the training and output series is described in Figure 20. The
gray and orange areas correspond to the training and forecast data respectively. A training
window (in grey) expands over the entire history of a time series and is repeatedly tested
against forecasting window (in orange).

4.2.2 Dataset preparation for LSTM model

The transformation of the datasets for LSTM model has been done in three steps. In the
first step, the time series were scaled between the range 0 and 1 using MinMaxScaler
class [27]. MinMaxScaler is the first setting for scaling. For comparison purposes,

another method like
x−mean

std
could be investigated in the future work. In the data

preprocessing, scaling is the important step to achieve the fast learning and convergence
of the network [2]. In the second step, the dataset was split to the training and testing
parts using the same methodology in the dataset preparation for ARIMA. In the last step,
training and testing splits were divided to the input and output components using the
sliding window technique described in Figure 21. In the sliding window technique, the
previous n (window size) time steps are used as an input and the next k (forecast horizon)
time steps are used as an output variable. Sliding window technique is implemented to
enable supervised learning for LSTM network. After conversion the time series to the
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Figure 20. The time series transformation for ARIMA model.

supervised learning problem, we got the input shape in [samples, window size, features]
format, which is the required input format for the LSTM network. While implementing
the univariate forecasting, as we observe just one time series, the number of features
equals to one. In the multivariate time series, as we also consider some other time series
values, the size of features is more than one. All these data preprocessing steps were
applied for each time series.

Figure 21. The time series transformation for LSTM model.
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4.2.3 Dataset Preparation for Persistence

The time series is split to the training and testing parts are implemented as the same way
in ARIMA (Section 4.2.1). The training and testing splits are divided to the input and
output components using sliding window technique shown as implemented in Seection
4.2.2. To implement 36 hours forecasting, last 24 hours from the input data are used.

4.3 Experiments
4.3.1 ARIMA Model Formulation

In ARIMA model, the parameters p, d and q should be defined properly. In this work, the
optimal value of p, d and q parameters was explored in the range of [0, 1, 2, 4, 6], [0, 1, 2]
and [0, 1, 2, 4, 6] respectively. The smaller range was chosen for d parameter, as some of
time series are already stationary or there is a small trend pattern. The train split of each
time series was used to search for the optimal combination of these parameters. This
operation involves following steps:

• Split the train set to 50/50, 60/40, 70/30, 80/20 and 90/10 training/validation splits.

• Train ARIMA model for each training split considering all possible combination
of p, d and q parameters and make 36 hours time step forecasting.

• Calculate the average RMSE error from validation splits for each combination.

• Choose the combination which has minimum RMSE score.

Using this method, the optimal p, d and q parameters were calculated for each time series
as shown in Table 1:

Table 1. Chosen Optimal Hyper-parameters for each time series.

Time Series AR I MA
Beijing PM2.5 p=0 d=1 q=6
Energy Consumption of Appliances p=2 d=0 q=2
Energy Consumption of Light p=4 d=0 q=2
Driven data Energy Consumption(hourly) p=2 d=0 q=6
Driven data Energy Consumption(15 minute) p=2 d=1 q=2
Open System Datasets Load Consumption p=2 d=1 q=4

In conclusion, ARIMA(0,1,6) for Beijing PM2.5, ARIMA(2,0,2) for Energy Consump-
tion Appliances, ARIMA(4,0,2) for Energy Consumption Light, ARIMA(2,0,6) for
Driven hourly Energy Consumption, ARIMA(2,1,2) for Driven 15 minute Energy Con-
sumption, and ARIMA(2,1,4) is trained for Load Consumption.
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4.3.2 LSTM Models Formulation

Keras Deep Neural Network API [25] was used to build the LSTM models. The hyper-
parameters were chosen based on literature review as shown in Table 2.

Table 2. Chosen Hyper-parameters for LSTM models.

Hyperparameters Values
Activation Function RELU
Optimizer ADAM
Learning rate 0.005
Dropout rate 0.2
Batch size 64
Hidden units size 50
Epoch 150
Loss MSE

To increase the stability of the networks, Batch Normalization layer was applied for
hidden layer outputs after RELU activation. To overcome the overfitting issue, Dropout
layer was added with dropout fraction 0.2 after batch normalization. As a dropout
technique, the regular dropout function [28] is used which drops the linear transformation
of the inputs. In the future work, for comparison purposes, the recurrent dropout function
[28] could be applied which drops the linear transformation of the recurrent state. Both
batch normalization and dropout techniques have regularization effects. In the Standard
LSTM model, batch normalization and dropout layers were added after LSTM hidden
layer sequentially (Figure 22). In the Stack LSTM model, batch normalization and
dropout layers were applied after each LSTM hidden layer (Figure 24). In the S2S LSTM
model, batch normalization and dropout layers were applied after decoder LSTM hidden
layer (Figure 23).
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Figure 22. Standard LSTM model.

Figure 23. Encoder Decoder LSTM
model.
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Figure 24. Stack LSTM model.
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4.3.3 First Experimental Results

In total, six LSTM models were trained for each time series considering both univariate
and multivariate problems. Each model was trained for 150 epochs and saved by 50
epochs. As a result, the performances of the models were evaluated after 50, 100 and
150 epochs. To compare the results, the average RMSE errors of 36 hours forecast points
are used for each time series. As each time series had a different value range, the average
RMSE errors of the models were not comparable at the same plot. That is why the RMSE
scores were calculated based on scaled actual values and predictions. As there was still
a challenge to compare the results, the scaled average RMSE errors of the models are
divided to the scaled average RMSE errors of Persistence. In Figure 25, the average
scaled RMSE errors of models’ predictions are presented relative to Persistence. The
average scaled RMSE errors of Persistence predictions are set to 1 for each time series.
The best LSTM models were chosen based on the minimum average scaled RMSE errors
by epochs. In Table 3, the best LSTM models by epochs are described for each time
series.

Figure 25. In the result of the first experiment, the average scaled RMSE error relative to
Persistence.

Figure 25 shows that the ARIMA model outperforms the Persistence for each time series.
It can be seen that the LSTM models are not always better than baseline methods. To
improve the LSTM models performance, the early stopping technique was implemented
which is explained in the Subsection 4.3.4.
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Table 3. The best LSTM models by epochs for each time series.

4.3.4 Experimental results with Early Stopping

In this experiment, the early stopping technique was implemented to increase the perfor-
mance of the LSTM models. As early stopping requires validation data, the last 10% of
the training data was used as validation data. One more Stack LSTM model was trained
which uses the Batch Normalization and Dropout layers only after the second LSTM
hidden layer. In total, four models were trained for each time series considering both
univariate and multivariate problem cases for 300 epochs. The best model was saved
based on minimum validation loss during the training. The results are shown in Figure
26. We could achieve the improvement in the RMSE error for the models which had
worse results than Persistence in the first experiment. Generally, the performance of
Stack LSTM with one Batch Normalization and Dropout layers is about equal or worse
than Stack LSTM with two Batch Normalization and Dropout layers for time series.
However, Stack LSTM with one Batch Normalization and Dropout layers has definitely
better results for Driven Energy hourly (both univariate and multivariate problem cases)
and Energy Light (just multivariate problem case). As the performances of the LSTM
models are still worse than Persistence in some cases, the parameter tuning technique
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was applied in the next experiment. The Stack LSTM with oneBatch Normalization
and Dropout layers were trained for Driven hourly Energy Consumption and Energy
Consumption of Light time series as it performs better than than Stack LSTM with two
Batch Normalization and Dropout layers.

Figure 26. In the results of Early Stopping, the average scaled RMSE error relative to
Persistence.

4.3.5 Experimental results with Parameter tuning

In this experiment, the parameter tuning method was applied together with early stopping.
As tuning of all hyperparameters demands quite enough time, two important hyperpa-
rameters, the window size and the size of hidden units were tuned for each model. As
the window size has a role in the definition of the input shape, it is more prioritized
parameter in the parameter tuning. That is why, firstly the window size, then, the hidden
units size was tuned for each model. In the initial experiments, the previous 36 hours
were chosen as a window size to forecast the next 36 hours and the size of the hidden
units was defined as 50. In this experiment, the models were trained with 24 and 48
hours window sizes additionally. The size of the hidden units was tuned with additional
values 100 and 200.
Firstly, the window size was tuned. The average scaled RMSE results of models are
presented for each time series in Table 4. The minimum average scaled RMSE errors by
window size are bold for each time series. It can be seen that the optimal window size
changes depending on the time series and model. In most of the cases, the Multivariate
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LSTM models use the window size smaller than the Univariate LSTM models. It might
happen because of the Multivariate LSTM models use additional features during the
training. Choosing the best performing LSTM models from Table 4, the average scaled
relative RMSE results are shown for each time series in Figure 27. The window size
tuning improved the RMSE errors especially for the univariate Standard LSTM in Driven
hourly Energy Consumption which had worse results than Persistence in the previous
experiments.

Table 4. Average scaled RMSE error for each time series by LSTM models and window
sizes.

After tuning the window size, the size of the hidden units was tuned with additional
values 100 and 200. The average scaled RMSE results of models are presented for each
time series in Table 5. While tuning of window size, as the models were trained with 50
hidden units, the optimal hidden units size stays as 50 for most of the models. In Figure
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Figure 27. In the result of parameter tuning, the average scaled RMSE error relative to
Persistence.

28, the average scaled relative RMSE result of each model are shown for each time series.
The best LSTM models were chosen from Table 6 based on the minimum average scaled
RMSE errors by the number of hidden units. The results show that the performance of the
univariate and multivariate LSTM models depends on the LSTM model architecture and
time series. Before it was expected that the multivariate LSTM models would outperform
the univariate LSTM models in onerall. However the experiments showed that, the
performance of the univariate and multivariate LSTM models is highly dependent on the
LSTM architecture, the time series, and hyperparameters.
It can be seen that despite parameter tuning, the Univariate S2S LSTM model can not
perform better results than baseline methods for Open System Load Consumption time
series. The Univariate Standard LSTM and Multivariate S2S LSTM models have worse
results than ARIMA model for the Driven hourly Energy Consumption and Energy
Consumption of Appliances respectively. On the other hand, after the window size
tuning, Multivariate Standard LSTM, Univariate Stack LSTM and Multivariate Stack
LSTM results were already better than baseline methods. The tuning of the hidden units
improved the results for these models just a little. It proves that the Multivariate Standard
LSTM, Univariate Stack LSTM and Multivariate Stack LSTM are more stable respect to
Univariate Standard LSTM, Univariate S2S LSTM and Multivariate S2S LSTM models.
To analyze the Multivariate Standard LSTM, Univariate Stack LSTM, and Multivariate
Stack LSTM deeply, the other evaluation metrics were calculated for each time series.
For each model, the average of the RMSE, MAE, SMAPE, BIAS, and correlation of the
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Table 5. Average scaled RMSE error for each time series by LSTM models and sizes of
hidden units.
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Figure 28. In the result of hidden units size tuning, the average scaled RMSE error
relative to Persistence.

36 hours forecast points are shown in Table 6. The best-averaged results are bold for
each time series. Generally, it can be seen from the high SMAPE errors that 36 hours
forecasting does not work properly for Beijing PM2.5, Driven Energy 15 min, Energy
Appliances, and Energy Light time series. According to the BIAS, the LSTM models
mostly underestimate the predictions for all time series except for Beijing PM2.5. The
high average score of the correlation for Open System Load Consumption and Driven
hourly Energy Consumption proves that the predictions for the 36 hours forecast points
are correlated to the actual values. The overall scores of the evaluation metrics shows
the univariate Stack LSTM model is more robust than the other two LSTM models. In
Subsection 4.4, the predictions results of the univariate Stack LSTM are discussed for
each time series.
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Table 6. Average scaled evaluation metrics results of Multivariate Standard LSTM,
Univariate Stack LSTM and Multivariate Stack LSTM for each time series.
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4.4 Prediction results for time series
For better understanding of the quality of the predictions for each time series, the
predictions are presented from the results of the Univariate Stack LSTM model together
with Persistence and ARIMA models. The prediction results are described for each time
series in their own sections. For each time series, five different figures are presented: i) the
36 hours time steps predictions of the Persistence, ARIMA, and Univariate Stack LSTM
models for one particular sample, ii) the first time step predictions of the Univariate Stack
LSTM model from 500 samples, iii) the last time step predictions of the Univariate Stack
LSTM model from 500 samples, iv) the scatter plot of the actual values and predictions
of the Univariate Stack LSTM model for the 36 hours forecast points, v) the RMSE
errors from the Univariate Stack LSTM model for the 36 hours forecast points.
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4.4.1 Predictions for Open System Load Consumption

In Figure 30 (a), the 36 hours time steps predictions of Persistence, ARIMA and Uni-
variate Stack LSTM models are described for one particular sample. The time series
on the left side of the vertical black line is the historical data of the last 48 hours. The
predictions of the models and the true values of the time series are depicted with different
colors which are labeled on the figure. Generally, it can be seen that the predictions can
follow the trends in the time series. As expected, the Univariate Stack LSTM model
predictions are more accurate than the baseline methods. In Figure 30 (b) and (c), the
first time step and the last time step predictions of the Univariate Stack LSTM model are
shown for 500 samples. Figure 30 (b) proves that the model can understand the patterns
in the time series, and has accurate results for the first time step. The predictions for
the last time step of the samples (Figure 30 (c)) are still meaningful, but they are less
accurate especially for the weekends. This issue could be solved by introducing the
weekends as additional input features to the model. The scatter plot (Figure 29 (a)) shows
the actual values and predictions for all 36 hours forecast points (with light color), only
first time step (with blue color), and last time step (with green color) from all samples. It
can be seen that there is a linear relationship between the actual and predicted values and
it proves that the model can do meaningful predictions for the further time steps. Figure
29 (b) describes that the RMSE scores increase linearly as the model can not predict the
results accurate enough for the further time steps.

(a) The scatter plot of the actual values and pre-
dictions

(b) The RMSE errors for the 36 hours forecast
points

Figure 29. The scatter plot of the actual values and predictions from the Univariate Stack
LSTM model (a) and the RMSE errors from the Univariate Stack LSTM model (b) for
the 36 hours forecast points of Open System Load Consumption.
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Figure 30. The 36 hours time steps predictions of the Persistence, ARIMA, and Univariate
Stack LSTM models for one particular sample (a), the first time step predictions (b) and
the last time step predictions (c) of the Univariate Stack LSTM model from 500 samples
of Open System Load Consumption.
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4.4.2 Predictions for Beijing PM2.5

In Figure 32 (a), the 36 hours time steps predictions of the Persistence, ARIMA, and
Univariate Stack LSTM models are presented for one particular sample. The figure shows
that the Univariate Stack LSTM model predictions can not follow the exact pattern for the
whole forecast horizon, but have the near results to the true value at the first and last time
steps. As the Persistence forecast use the values from the last 24 hours, the predictions
are not appropriate to the next 36 hours. The ARIMA model has constant predictions for
the whole forecast horizon. The first time step and the last time predictions of Univariate
Stack LSTM from 500 samples are described in Figure 32 (b) and (c) respectively. It can
be seen that the model has accurate predictions for the first time step, in turn, for the last
time steps, there is no correlation between actual and predicted values of the samples.
As the time series has no periodic pattern, it makes difficult for the model to do accurate
predictions for the whole forecast horizon. Figure 31 (a) shows the actual values and
predictions for all 36 hours forecast points (with light color), only first time step (with
blue color), and last time step (with green color) from all samples. It can be seen that
the actual values and predictions are in linear behavior for the first time steps from all
samples but when the actual values are too high, the model can not predict those points
accurately. As we discussed in Figure 32 (c), the scatter plot also shows that there is no
correlation between actual and predicted values for the last time steps of the samples.
In conclusion, the predictions for the last time steps spread out and in quite less linear
behavior with actual values. As seen also from Figure 31 (b), there is a fast increase in
the RMSE error for the further time steps.

(a) The scatter plot of the actual values and pre-
dictions

(b) The RMSE errors for the 36 hours forecast
points

Figure 31. The scatter plot of the actual values and predictions (a) and the RMSE errors
from Univariate Stack LSTM (b) for the 36 hours forecast points of Beijing PM2.5.
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Figure 32. The 36 hours time steps predictions of the Persistence, ARIMA, and Univariate
Stack LSTM models for one particular sample (a), the first time step predictions (b) and
the last time step predictions (c) of the Univariate Stack LSTM model from 500 sample
of Beijing PM2.5.
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4.4.3 Predictions for Driven Hourly and 15 minute Energy Consumption

Predictions for Driven hourly Energy Consumption In Figure 34 (a), the 36 hours
time steps predictions of Persistence, ARIMA, and Univariate Stack LSTM models are
described for one particular sample. It can be seen that the Univariate Stack LSTM
and ARIMA models can follow the trend for the true values. Figure 34 (b) and (c)
describes the first and the last time step predictions of Univariate Stack LSTM from 500
samples. Generally, the figures show that both the first and the last time step predictions
are correlated with actual values, but the model has a problem to do accurate predictions
for the weekends. This issue could be solved by introducing the weekends as additional
input features to the model. On the other hand, the model do less accurate predictions
for Saturday rather than Sunday. The predictions for Sunday is more accurate as while
doing the prediction for Sunday, the model looks back last 48 hours and that includes
Saturday. However, just weekdays are used for the predictions for Saturday. Figure 33
(b) shows the actual values and predictions for all 36 hours forecast points (with light
color), only first time step (with blue color), and last time step (with green color) from
all samples. The scatter plot confirms that there is a correlation between the actual and
predicted values but less accurate for the further time steps. Figure 33 (c) shows the
RMSE scores from Univariate Stack LSTM for the whole forecast horizon.

(a) The scatter plot of the actual values and pre-
dictions

(b) The RMSE errors for the 36 hours forecast
points

Figure 33. The scatter plot of the actual values and predictions of the Univariate Stack
LSTM model (a) and the RMSE errors from the Univariate Stack LSTM model (b) for
the 36 hours forecast points of Driven hourly Energy Consumption.
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Figure 34. The 36 hours time steps predictions of the Persistence, ARIMA, and Univariate
Stack LSTM models for one particular sample (a), the first time step predictions (b) and
the last time step predictions (c) of the Univariate Stack LSTM model from 500 samples
of Driven hourly Energy Consumption.
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Predictions for Driven 15 minute Energy Consumption As this time series is in 15
minute resolution, the 36 hours forecasting covers the future 144 time steps. In Figure 36
(a), the 36 hours predictions of Persistence, ARIMA, and Univariate Stack LSTM models
are presented for one particular sample. The ARIMA model has constant predictions
after one particular time step. The outcome of Persistence is in the same behavior with
true values but they do not overlap. The predictions of the Univariate Stack LSTM model
tries to follow spikes and downs but they are not accurate enough. This behavior can be
seen from Figure 36 (b) and (c) which shows the first and the last time step predictions
of Univariate Stack LSTM from 500 samples. Figure (c) shows that the predictions for
the last time step are far from the actual values. Figure 35 (b) shows the actual values
and predictions for all 36 hours forecast points (with light color), only first time step
(with blue color), and last time step (with green color) from all samples. It can be seen
that the predictions for the first time steps form all samples are linear behavior with
actual values but they are less confident. Generally, the scatter plot confirms the quality
of the predictions are low especially for the further time steps. The RMSE errors from
Univariate Stack LSTM for each 144 time steps are depicted in Figure 35 (c). As the
time series has a pattern of spikes and falls, the fluctuations happen in the RMSE errors
during the whole forecast period.

(a) The scatter plot of the actual values and pre-
dictions

(b) The RMSE errors for the 36 hours forecast
points

Figure 35. The scatter plot of the actual values and predictions of the Univariate Stack
LSTM model (a) and the RMSE errors from the Univariate Stack LSTM model (b) for
the 36 hours forecast points of Driven 15 minute Energy Consumption.

48



Figure 36. The 36 hours time steps predictions of the Persistence, ARIMA, and Univariate
Stack LSTM models for one particular sample (a), the first time step predictions (b) and
the last time step predictions (c) of the Univariate Stack LSTM model from 500 samples
Driven 15 minute Energy Consumption.
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4.4.4 Predictions for Energy Consumption of Appliances and Light

Predictions for Energy Consumption of Appliances In Figure 38 (a), the 36 hours
predictions of Persistence, ARIMA, and Univariate Stack LSTM models are described
for one particular sample. Univariate Stack LSTM model follows the patterns in the time
series but can not do accurate predictions when the time series has high spikes. Figure
38 (b) and (c), which shows the first and the last time step predictions of Univariate
Stack LSTM from 500 samples, confirms this fact. It can be seen that when the actual
values are high, the model’s predictions are far from true values. It might be related to
the drastic changing characteristics in the training data. Figure 37 (b) shows the actual
values and predictions for all 36 hours forecast points (with light color), only first time
step (with blue color), and last time step (with green color) from all samples. The scatter
plot (Figure 37 (a)) also describes that the model can not do accurate predictions for
the high actual values in the time series. Figure 37 (b) presents the RMSE errors from
Univariate Stack LSTM for 144 time steps. The fluctuations in the middle time steps
might be related to the high changing patterns in the time series.

(a) The scatter plot of the actual values and pre-
dictions

(b) The RMSE errors for the 36 hours forecast
points

Figure 37. The scatter plot of the actual values and predictions of the Univariate Stack
LSTM model (a) and the RMSE errors from the Univariate Stack LSTM model (b) for
the 36 hours forecast points Energy Consumption of Appliances.
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Figure 38. The 36 hours time steps predictions of the Persistence, ARIMA, and Univariate
Stack LSTM models for one particular sample (a), the first time step predictions (b) and
the last time step predictions (c) of the Univariate Stack LSTM model from 500 samples
Energy Consumption of Appliances.
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Predictions for Energy Consumption of Light This time series has a similar pattern
to Energy Consumption of Appliances where time series has a drastic changing character-
istic. Differently from the other time series, there are six unique values in this time series.
In Figure 40 (a) the 36 hours predictions of Persistence, ARIMA, and Univariate Stack
LSTM models are presented for one particular sample. The Persistence and ARIMA
model predictions are off from the actual time series. The Univariate Stack LSTM model
does not perform well due to the changing characteristic in the time series. Figure 40 (b)
and (c) describe the first and the last time step predictions of Univariate Stack LSTM
from 500 samples. It can be seen the model tries to follow the trend for the first time
steps of the samples but can not predict accurate results. The predictions for the last time
step are off from the actual values. Figure 39 (b) shows the actual values and predictions
for all 36 hours forecast points (with light color), only first time step (with blue color),
and last time step (with green color) from all samples. The poor quality of the predictions
can be also seen from the scatter plot. In Figure 39 (b), the RMSE errors from Univariate
Stack LSTM are described for each 144 time steps. The results show that after one
particular time steps, the RMSE errors do not increase for the further time steps.

(a) The scatter plot of the actual values and pre-
dictions

(b) The RMSE errors for the 36 hours forecast
points

Figure 39. The scatter plot of the actual values and predictions of the Univariate Stack
LSTM model (a) and the RMSE errors from the Univariate Stack LSTM model (b) for
the 36 hours forecast points Energy Consumption of Light.

52



Figure 40. The 36 hours time steps predictions of the Persistence, ARIMA, and Univariate
Stack LSTM models for one particular sample (a), the first time step predictions (b) and
the last time step predictions (c) of the Univariate Stack LSTM model from 500 samples
Energy Consumption of Light.
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5 Conclusion
The purpose of the presented work was to investigate the effectiveness of LSTM based
neural networks for energy time series forecasting. In this work, three different LSTM
based univariate and multivariate models were built and optimized for 36 hours energy
forecasting. For comparison purposes, the Persistence and ARIMA model were imple-
mented as the baseline methods. Both univariate and multivariate forecasting problems
were explored with LSTM models, in turn, the only univariate forecasting problem was
considered for baseline methods. All models were trained for the three hourly and 15
minute time-step resolution data. Before the training, the data cleaning and scaling
methods were applied for each time series. The time series was split training testing parts
to validate the results of the models. The five different evaluation metrics were used to
measure the performances of the models from different sides.

The optimal hyperparameters were chosen for the ARIMA model based on training/vali-
dation splits. Initially, the LSTM models were trained with hyperparameters according to
the literature review. The early stopping and hyperparameter tuning were used to further
improve the performances of the LSTM models. To implement the early stopping, the
last 10% of the train data was used as validation data. The early stopping technique
improved noticeably the performances of the LSTM models which had worse results than
baseline methods initially. In the next steps, the window size and the size of the hidden
units were tuned sequentially for each LSTM model. The results revealed the Univariate
LSTM models perform better with bigger window sizes, in turn, the Multivariate LSTM
models use the smaller window size for most of the time series due to usage of additional
features. It was explored that the performance of the univariate and multivariate LSTM
models depends on the LSTM architecture, hyperparameters, and time series and it is
hard to claim that whether the Univariate or Multivariate LSTM model is more stable.

The analysis of the errors revealed that despite the parameter tuning, the performance
of the Univariate Standard LSTM, Univariate S2S LSTM, and Multivariate S2S LSTM
models are still worse than baseline methods in a few cases. In turn, even after tuning
of the window size, the Multivariate Standard LSTM, Univariate Stack LSTM, and
Multivariate Stack LSTM models performed better than the baseline methods for all time
series. To compare the stability of the models, all evaluation metrics were analyzed for
the Multivariate Standard LSTM, Univariate Stack LSTM, and Multivariate Stack LSTM
models. The univariate Stack LSTM model shows the best results for three time series
over all evaluation metrics and had near results to the best performance for the other time
series. In conclusion, the Univariate Stack LSTM model was chosen as a robust model
due to the stable results over all time series.
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The predictions from the Univariate Stack LSTM model were studied for each time series.
The results showed that the model could follow the trends on each hourly and 15 minute
sampled time series but gave less accurate results for 15 minute sampled time series. It
was assumed that it happened because of the changing characteristic of the time series.

During the analysis of the predictions, we noticed that the days of the weeks are important
to do more accurate forecast. As future work, the feature engineering can be applied
to consider the time features (months, days, hours) in the Multivariate LSTM models.
Another objective could be to implement the parameter tuning methods such as Grid
Search or Genetic Algorithm to find out the optimal combination of the hyperparameters
for the LSTM models.
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