
U N I V E R S I T Y O F T A R T U

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Computer Science

Raimond-Hendrik Tunnel

Computer Graphics Learning Materials

Master's Thesis (30 ECTS)

Supervisors: Konstantin Tretyakov, MSc

Anne Villems, MSc

TARTU 2015

Computer Graphics Learning Materials

Abstract:

This thesis provides an overview of the learning material and a custom learning environment

created for the Computer Graphics (MTAT.03.015) course in the University of Tartu. It

describes a modular layout, that mixes a top-down and bottom-up approaches, in which the

course was organized. The created material also includes interactive examples that satisfy

engagement level 4 requirements. The specification and implementation details of the custom

learning environment called CGLearn are given. Thesis concludes with the analysis of the

feedback questionnaire answered by the students participating in the course and using the

material.

Keywords

Computer graphics, teaching, education, learning environment, interactive examples.

Arvutigraafika õppematerjal

Lühikokkuvõte:

Selles lõputöös on antud ülevaade Tartu Ülikooli aine Arvutigraafika (MTAT.03.015) jaoks

koostatud õppematerjalist ja õppekeskkonnast. Kirjeldatud on aine modulaarset ülesehitust,

mis rakendab kombineeritud ülevalt-alla (ing. k. top-down) ja alt-üles (ing. k. bottom-up)

lähenemisi. Loodud õppematerjal sisaldab endas interaktiivseid näiteid, mis vastavad

hõivatuse taksonoomia 4ndale tasemele. Õppekeskkonna CGLearn spetsifikatsioon ja

implementatsiooni detailid on kirjeldatud. Töö lõpus on kursusel osalenud õpilaste hulgas läbi

viidud tagasiside küsitluse tulemuste analüüsiga.

Võtmesõnad:

Arvutigraafika, õpetamine, haridus, õppekeskkond, interaktiivsed näited.

Table of Contents
1. Introduction..6

2. The Course..9

2.1. Lectures..11

2.2. Practice Sessions and Tasks..12

2.3. Projects...13

2.4. Grading...14

3. The CGLearn Learning Environment...15

3.1. Requirements..15

3.1.1. Functional...15

3.1.2. Non–Functional..16

3.2. Existing Solutions...17

3.2.1. Courses page...17

3.2.2. Moodle..18

3.2.3. Udutu..19

3.2.4. Conclusion..20

3.3. Implementation...20

3.3.1. Back End...21

3.3.2. Front End..36

3.4. Functionality...49

3.4.1. Student..49

3.4.2. Teacher..52

4. The Material...55

4.1. Basic I...56

4.1.1. Computer Graphics...57

4.1.2. Introduction to Geometry...58

4.1.3. Geometry and Transformations I..59

4.1.4. Geometry and Transformations II...62

4.1.5. Frames of Reference and Projection...64

4.1.6. Shading and Lighting..67

4.1.7. Textures and Sampling..70

4.1.8. Blending..72

4.2. Basic II...73

3

4.2.1. Modeling and File Formats...74

4.2.2. Environment Mapping..74

4.2.3. Curves...76

4.2.4. Ray Tracing, Space Partitioning, BVH...82

4.2.5. Global Illumination...84

4.2.6. Shadows..85

4.3. Game Engines...87

5. The Tasks..88

5.1. Basic I...89

5.1.1. Computer Graphics...89

5.1.2. Introduction to Geometry...90

5.1.3. Geometry and Transformations I..92

5.1.4. Geometry and Transformations II...94

5.1.5. Frames of Reference and Projection...94

5.1.6. Shading and Lighting..95

5.1.7. Textures and Sampling..97

5.1.8. Blending..99

5.2. Basic II...100

5.2.1. Modeling and File Formats...100

5.2.2. Environment Mapping..101

5.2.3. Curves...102

5.2.4. Procedural Generation..103

5.2.5. Ray Tracing, Space Partitioning, BVH...104

5.2.6. Global Illumination...105

5.2.7. Shadows..106

6. The Flashcards..107

6.1. Basic I...107

6.1.1. Computer Graphics...107

6.1.2. Introduction to Geometry...107

6.1.3. Geometry and Transformations I..108

6.1.4. Geometry and Transformations II...108

6.1.5. Frames of Reference and Projection...109

4

6.1.6. Shading and Lighting..109

6.1.7. Textures and Sampling..109

6.1.8. Blending..110

6.2. Basic II..110

6.2.1. File Formats and Modeling...110

6.2.2. Environment Mapping..110

6.2.3. Curves...111

6.2.4. Procedural Generation...111

6.2.5. Ray Tracing, Space Partitioning, BVH...111

6.2.6. Global Illumination...112

6.2.7. Shadows..112

7. Results and Discussion...113

7.1. Questionnaire..114

7.1.1. Lectures...114

7.1.2. Practice Sessions and Homework Tasks...116

7.1.3. CGLearn Environment..118

7.2. Exit Cards...119

7.2.1. Introduction to Computer Graphics..120

7.2.2. Introduction to Geometry...121

7.2.3. Geometry and Transformations..121

7.2.4. Frames of Reference and Projection...122

7.2.5. Shading and Lighting..122

7.2.6. Textures and Sampling..123

7.2.7. Blending..123

7.2.8. Curves...124

7.2.9. Procedural Generation..124

7.2.10. Ray Tracing, Space Partitioning, BVH...125

7.2.11. Global Illumination...125

8. Summary...126

9. References..128

Appendix..133

License..148

5

1. Introduction

Computer graphics is a computer science subject taught in both undergraduate and

graduate levels in different universities ([1] and [2]). In the University of Tartu, Institute of

Computer Science, the Computer Graphics (MTAT.03.015) course has been an elective 6

ECTS credits course in different Master curricula [3] from 2002/2003 to 2007/2008. In

reality, the course has been conducted only as an optional course on the fall of 2005 and

2013, and spring of 2015. Latter was done for the work of this thesis. The previous and

current layouts, learning activities, and the grading system of the course are described in

detail in chapter 2.

When studying computer graphics, it is important that the students get an understanding of

different graphics algorithms. Facilitating the understanding and skills effectively is a

subject of much debate. For computer graphics, educators have proposed interactive

examples to demonstrate different algorithms to students and have them experiment with

their parameters. One such way is proposed by Naiman in [4]. That included a collection of

interactive examples, called teaching modules, and a library routine for creating them.

Authors conclude that the primary benefit for the students was, that instead of relying only

on static text and imagery, they were exposed to dynamic material, that increased interest,

attention and comprehension. The modules by Naiman, were implemented in C and thus

were suitable for demonstrating the concepts in a computer lab, during practice sessions.

With the growing popularity of the World Wide Web, Klein et al proposed a web-based

collection of such interactive examples in [5]. Authors state that computer graphics topics

could not be adequately presented with traditional education methods at the time. Their

solutions consisted of HTML pages and interactive Java applets. The conclusion was that

this approach allowed students to prepare, catch-up and deepen the understanding of the

subjects without the need to install specific software.

Another approach with an e-learning focus by Capay and Tomanova [6] proposed

interactive examples implemented in Adobe Flash. They used the examples mainly during

the weekly lessons, but also noted the possibility of students interacting with them during

individual study. Authors describe their use of the learning management system Moodle [7]

in their computer graphics course.

All of those proposed examples had aspects that made them not entirely suitable for the

6

current Computer Graphics course. The C library would have restricted students to only

interact with the examples in a computer lab, without having them to compile the examples

for their own platforms. Java and Flash applets proposed by the other two articles had an

intrinsic problem of relying on third-party plugins to run in a browser. During the last two

decades, we have seen the decline of both technologies on the web. Although at the time

when those approaches were proposed there was not much of an alternative for graphics.

During the work on this thesis, a specialized online learning environment called CGLearn

(https://cglearn.codelight.eu) was created. The environment enables students to read the

material of the course, interact with different computer graphics examples, submit

solutions to practice tasks, facilitates communication relating to the feedback on those

solutions, and enables them to see their results in comparison to the statistical

representation of overall results. CGLearn's back end is implemented in PHP and front end

(together with the interactive examples) uses JavaScript. The specific requirements and the

implementation is described in chapter 3.

Previously the Computer Graphics course did not have online material available to the

students, besides the lecture slides and practice session work-sheets [8]. There were

references to material of similar computer graphics courses in other universities, other

online material related to computer graphics, and a number of text books. During the work

of this thesis, a collection of materials was written in CGLearn that approximates the

layout of the topics covered during the course. Material includes interactive examples

accompanying many of the algorithms and concepts described there. The description of the

material and the interactive examples is given in chapter 4.

CGLearn also includes practical tasks for the students. The tasks include a description of

an algorithm or a technique, the expected outcome and a base-code. Solutions could be

presented by students in both JavaScript or C++. The nature of the tasks and their overview

is given in chapter 5.

In order to allow students to test themselves on the material, an implementation of

flashcards was added to CGLearn. Flashcards are based on the SuperMemo 2 algorithm [9]

and are described more in chapter 6.

Assessment of the CGLearn learning environment and the course material was made in a

form of a feedback questionnaire. Because at the time of writing this thesis the course was

7

https://cglearn.codelight.eu/

still ongoing, the results reflect mostly the students' experiences so far. The questionnaire

consists of questions about the course organization, lectures, practice session tasks,

material and functionality in CGLearn.

Lectures were additionally assessed by analyzing exit cards. These are cards, where

students had to write an answer to two general questions about what they learned during

the lecture, and what else would interest them. This technique is further explained in the

thesis. The results of both the questionnaire and exit cards are described in chapter 7.

Appendix includes tables and illustrations that were too large to fit in the main text. If the

reader has trouble finding a correct illustration or table, it may be in the Appendix. There is

also a brief description of the files accompanying this thesis.

The reader is expected to know the terminology covered by the Master's program of

Computer Science, High-Performance Computing specialty, in addition to the basic

terminology of computer graphics and web development.

8

2. The Course

The CGLearn environment was constructed with a certain layout of a computer graphics

course in mind. That course (MTAT.03.015) was conducted in the spring of 2015. Parts of

the system were also developed and tested during the Computer Graphics Seminar

(MTAT.03.305) course that took place in the Fall of 2014 and together with the Computer

Graphics course in the Spring of 2015.

The previous Computer Graphics course was conducted in the fall of 2013 by Konstantin

Tretyakov and Ilya Kuzovkin, without a clear indication of the next time it would run. That

time the course received a very high average feedback score of 4.7 from the students.

Course comprised of weekly lectures and practice sessions on different computer graphics

topics. Homework tasks were in C++, with either Allegro library for 2D graphics or

OpenGL for 3D graphics. Students were graded based on a score, computed from the

solutions to weekly homework tasks, a course project and the exam.

Because of the uncertainty of this course's next conduction, some of the students, who

passed last time (me, Margus Luik, Ats Kurvet) teamed up with a modeling expert (Timo

Kallaste) and a couple of other people interested in computer graphics (Jaanus Jaggo,

Benson Muite) to create a good collection of materials and conduct the course.

Generally there has been a debate among educators, about how to teach computer graphics.

One distinction is between a top-down and a bottom-up approach. Different educators have

provided pros and cons for both ways [10]. The top-down approach usually starts, by

introducing students to higher level software and libraries, moving down to specific

algorithms and their implementation in the process. The bottom-up starts by first

introducing the standard graphics pipeline and low-level algorithms, moving up to higher

level software that uses them. Major arguments pro top-down approaches include the goal

of the students to achieve an accountable result (eg a computer game) and to see, where

and understand, how graphics are used in modern applications. In contrast, an argument

against the top-down approach would be that students will lack the understanding of the

basic low-level algorithms, because learning them may seem tedious after having already

learned a lot of high-level techniques [11].

In this course this problem is tackled by introducing a mixed approach. The benefits of a

9

top-down or bottom-up approach are largely student-dependent. That is why this course

will start in a bottom-up way, but mid-semester students have a choice to either continue

on the bottom-up path, or, alternatively, continue the course by learning higher level

techniques in the modeling software Blender and the game engine Unreal Engine 4. This

could very broadly still be classified as a bottom-up approach, but in the traditional

manner, the high level software would be covered (if at all) only in a couple of last weeks.

This was also the case with this course in the Fall of 2013. With the changed structure,

students have the entire 8 weeks to get to know that software, while still other students (or

even possibly the same ones, if they are interested) can continue on the bottom-up path and

keep learning the different low-level graphics algorithms.

This is achieved by dividing the course to three modules:

• Basic I – Begins with low level algorithms and focuses on geometry,

transformations, lighting, texturing and blending.

• Basic II – Continues with a variety of different graphics algorithms.

• Game Engines – Introduces students to Blender and Unreal Engine 4 and teaches

the basic high-level techniques in them.

Each module lasts approximately eight weeks. Semester

starts with the Basic I module and mid-semester

students can choose to continue with Basic II, Game

Engines or with both of them (Illustration 1).

Continuing with both of the latter modules is an option

for students, who are willing to spend more time to learn

about the material from different perspectives simultaneously.

The course material is kept in two places. The CGLearn system holds the material with

interactive examples, tasks with their scores, feedback and statistics, overall result

progress, flashcards to help the students learn the material. The course page located at the

Institute of Computer Science's Courses domain [12], holds the organizational and contact

information, lecture slides, course schedule, project pages, external links. There is also a

mailing list for general communication between the participants of the course and the

educators.

10

Illustration 1: Hierarchy of the
three modules.

In the rest of this chapter, thesis continues with an overview of the lectures, practice

sessions and tasks, and the grading in the course. This is to explain the didactic approaches

in those aspects of the course, and how the course was organized to support the modular

layout.

2.1. Lectures

The lectures in the course cover mainly the basic ideas and concepts in computer graphics.

During the first seven weeks, the lectures follow the topics of the Basic I module, covering

it entirely. On the eighth week, there is a recapitulation lecture to go over the important

aspects covered so far; help the students, who might have fallen behind on some specific

topics; organize the projects. On the ninth and tenth week there are higher level lectures on

the topics of Modeling and Game Engines, and Data Visualization. After that, until the

fourteenth week, lectures will follow the topics of Basic II. That should be useful also for

the students, who have chosen the Game Engines module. This is because several ideas in

computer graphics need to be understood and applied also in

a higher level software. The fifteenth week is for additional

topics that the students can request and the conclusion of the

course. The last week's lecture is dedicated entirely for the

project presentations by students themselves. Refer to Table

15 in the Appendix for a complete list of the topics.

Generally the lecture slides are constructed and lectures

conducted in a supportive manner. This means that, although

the key concepts are introduced and often derived, the main

goal of the lectures is to look at the material in CGLearn

from another perspective, discuss it together in a more

student-oriented approach.

To favor this kind of discussion and alternative thinking

among students, the lecture slides often contain questions or

puzzles that students are asked to try and answer. These are

indicated on the slides with greenish question marks

(Illustration 2). They also serve as key points for the students,

11

Illustration 2: Question
mark that appears on the
lecture slides.

Illustration 3:
Exclamation mark that
appears on the lecture
slides.

who have not attended the specific lecture and are looking at the slides afterwards. This

also helps the students to recapitulate important thoughts from the lectures.

Another mark that appears on some of the slides is a red exclamation mark (Illustration 3).

That indicates the most important concepts that the students should know about. Often

times the amount of new information can be too much for the students to prioritize and

organize. These marks help to indicate the ideas that should be learned first and foremost.

This does not mean that other concepts are not important, but just indicates the concepts

that give the most benefit in order to understand further topics.

At the end of each regular lecture, there are two questions asked from the students:

• What did you learn today?

• What more would you like to know?

Students are asked to write the answers to those questions on a small sheet of paper in

approximately 5 to 10 minutes. This technique is described by Karm in [13], where it is

called a door pass or exit card. These cards serve multiple purposes. First, the students

themselves can look back at the lecture, and summarize the covered material. Secondly, the

educator will get feedback on the quality of the lecture. Thirdly, it gives an opportunity for

the students to ask questions anonymously. During the lectures, it turned out that many

students wrote questions on the card, but were reluctant to ask them directly during the

lecture. The questions were addressed and further explanation given to the students via a

mailing list inside the ongoing week.

2.2. Practice Sessions and Tasks

There are two practice sessions occurring each week. During the first seven weeks, one of

them is the JavaScript practice session, and another is the C++ practice session. The first

one was conducted by me and the second one by Margus Luik. On the eighth week, both

practice sessions cover an introduction to modeling software and were be conducted by

Timo Kallaste.

After that, the first practice session is for the Basic II module and the second one is for the

Game Engines module. In the Basic II module, me and Margus Luik conduct different

topics and the choice of a programming language depends on the students preference. At

12

that point students should have enough experience in their chosen language, to be able to

grasp the ideas taught in the session and apply them themselves. The Game Engine module

practice sessions were conducted by Ats Kurvet and Timo Kallaste, depending on the

specific topic there.

The main goal of the practice sessions is to help the students understand the tasks in

CGLearn and show them the initial steps towards progress in those tasks. This is

didactically very important that the students should be able to see some progress made and

estimate the effort required to make it. It is also important that the key ideas behind the

techniques described in the tasks are universally understood among the students. Of

course, there are other channels (eg the course mailing list) for the students to ask help

about the tasks, but the practice session is considered to be the prime source for that.

Solutions to tasks can be uploaded to CGLearn and corresponding instructors can grade

and send feedback for them. If a student has made mistakes in the solution, they have a

possibility to resubmit a solution and thus maximize their points. There are two deadlines

for the tasks. Basic I has a deadline mid-semester for all of its tasks. Basic II and Game

Engines modules have a deadline in the end of the semester, one week before the exam.

This gives students a freedom to plan their own time. Students are different and some are

more self-learners, who prefer to do all of the tasks in one go. Others benefit more from a

constant activity with the material and need to keep themselves on track each week. This

freedom of deadlines should alleviate the problem of some students having a busy week

with their other studies and thus not having enough time to complete the tasks in one week.

2.3. Projects

During the course, students are required to complete a project. There are no strict

requirements for the actual nature of the project, rather than it be related to computer

graphics. This allows students to pick their favorite topics and fix the scope according to

their skills. Doing a project should help students consolidate the material learned and

practiced. It also tests their ability to synthesize a solution for a given computer graphics

problem. This is the highest level cognitive domain in Bloom's revised taxonomy [14]. It

should also be quite rewarding for the students to create and see the solution to their own

problem.

13

2.4. Grading

Grading for the course is done via a scoring system that distributes 100 points among the

different gradable aspects of this course. There are also some opportunities to earn bonus

points and achieve the overall score over 100.

During the course, the majority of the points accumulate from the tasks in different

modules. Each module gives in total 20 points, and additionally some number of bonus

points for extra tasks. Normally the student should be able to earn 40 points from the Basic

I module and from either the Basic II or Game Engines module. If a student chooses to

continue with both Basic II and Game Engines modules simultaneously, then a total of 60

points can be earned from the tasks.

The course project contributes 30 points to the score. These 30 points are given to every

student from the start, but they will lose points if they miss important deadlines for the

project. This approach was also taken in the last time with this course and was found to be

effective.

The final exam contributes another 30 points and tests the general knowledge and

understanding of the covered material. Participation in the exam is not mandatory, if a

student has already earned a sufficient amount of points from other activities, then the

student is considered to have worked enough for the grade that the current score would

provide.

14

3. The CGLearn Learning Environment

This chapter first describes the different requirements that were considered, while

analyzing the need for a custom environment. Based on the requirements, a couple of other

learning environments were compared and analyzed. The same requirements logically

guided the development of the system. After this, the implementation is described in

separate sections for back end and front end. This chapter also includes the implementation

description for the interactive examples. Those are also considered to be a part of the

learning material in the next chapter.

3.1. Requirements

This section describes the primary requirements that were considered when comparing

different existing systems. These requirements also served as main goals for the

development. Although additional features and functionality was added, the main

requirements were always the same. That additional functionality could also be formulated

as requirements, but it seems clearer, to describe them in the Functionality section instead.

3.1.1. Functional

These are the main functional requirements that were considered in the start of this project.

3.1.1.1 Authentication

Student authentication had to be as easy as possible. It would have been a chore for the

students to create another user account specifically for this system. It would have also been

insecure and even more tedious to allow students to submit solutions and specify their

student number of other indicator in the process.

This meant that authentication had to be based on the university's credentials.

3.1.1.2 Material

The system had to allow easy writing and reading of the computer graphics related

materials. The material needed to be grouped and categorized in some logical hierarchy.

Because the course was planned to have a mixed bottom-up and top-down approach that

15

included different modules, then this kind of modular structure of topics and their

corresponding materials was a clear goal.

3.1.1.3 Interactive Examples

Successful teaching should include interactive (engagement level 4, see [15]) examples for

students of most of the material and concepts covered. This meant that each material

should have several interactive computer graphics examples accompanying it. System had

to support the creation of such custom examples and provide an easy inclusion of them

inside the material.

3.1.2. Non–Functional

3.1.2.1 Platform

After the development started, the platform of choice was Ubuntu 14.04 with Apache

HTTP Web Server 2.4.9, PHP 5.5, MySQL 5.5. This was the setup in the server, where the

project is hosted on, and suits the project's requirements nicely.

3.1.2.2 Browser Support

The entire system had to work with the latest version of Chrome browser [16] and the

version that was in the lab computers in the institute. The examples should be runnable on

the university laptops that have at least the integrated Intel HD 4000 graphics adapter.

3.1.2.3 Response Time

All functionality in the system should have a sufficiently low response time. No strict limit

for the requests was made, but the estimate is that no student request should take more than

2 seconds (with the exception of a file upload). To account for this requirement in

CGLearn, most of the database queries were monitored and indexed. Additional steps can

be taken to ensure the responsiveness, these include enabling PHP-s APC [17] cache and

using the Require.js optimizer [18] to minify and combine JavaScript.

16

3.2. Existing Solutions

The need for a custom system arose from the main requirements to be able to construct a

modular course and implement specific interactive JavaScript examples for the material.

System, that would support them, should also support the basic requirements for a standard

course. These would include student authentication, the functionality to submit solutions

for tasks, student and teacher being able to exchange feedback for the solutions, a grading

system that is easy to use for the teacher, and visible and transparent for the students.

Couple of choices for already existing learning environments were considered, when

analyzing the need for custom development. Those included the use of a Courses page, the

learning management systems Moodle and Udutu.

3.2.1. Courses page

The Institute of Computer science has a Courses domain, where most of the courses have a

page that serve as the communication point between the students and the teachers.

Teachers have the ability to modify the course pages, which are based on PmWiki [19].

Usually this ability is utilized to provide lecture and practice session materials for the

students, convey the general descriptive and organizational information of the course,

provide additional links and references. Those pages allow free access for course materials

to anyone from outside the university, which is certainly a plus.

Often times, the students are also able to submit homework solutions via the page and

additionally can have their own sub-pages, which they have to modify (write lecture notes,

project descriptions etc).

Submitting the homework solutions using the current system has three major problems.

First, it consists only of a file upload and a comment field. When a student uploads a new

solution, the previous one, together with the previous comment, will get overwritten. This

creates a situation, where asking the student to correct their insufficient solution, while

preserving the history of the previous submission, is impossible. Secondly, the system also

does not have a way to actually grade the solutions. Usually the grades are entered to a

separate spreadsheet by the teachers manually, which creates an overhead and is prone to

human error. The third problem is that, because this is just a file upload, with no specific

17

database built around it, asking students for additional information about the solution (eg,

how much time it took, how difficult it was), would consist of students writing the answers

as text. That creates a lot of unnecessary work for the teacher to do statistics and estimate

the current tempo and difficulty of the course.

Although creating interactive custom JavaScript examples, would have been possible in

that system (as it is done in MathWiki [20]), it would have probably taken the same

amount of time, as implementing the entire system from the scratch, with a specific

purpose.

Another problem would have been with material creation. The PmWiki markup language

is too limiting for applying a consistent style of some accepted front-end framework (such

as Bootstrap).

A Courses page is still used in the Computer Graphics course for providing the

organizational and descriptive information. This offers a quick access to the schedule for

the students registered in the course, and an overview for all other students. Lecture slides

are added to the course page, because most of the students are used to that, and it is

effective to provide students a way of exchanging material they are familiar with.

We also use the course page for the sub-pages of student projects. Each team gets their

own page that they have to write a description of the project to. This serves as a good

public page to advertise both their project, and the course itself.

3.2.2. Moodle

University of Tartu uses the learning platform Moodle [7] to conduct some of the courses.

Moodle provides a very extensive set of didactic tools to facilitate learning, and thus

should be considered when a specific layout of the course is in mind.

Regarding the main requirements of this course, the modular layout of the materials would

have been certainly possible in Moodle. Unfortunately creating custom JavaScript

examples would have not been possible without extensive communication with the support

and specific feature requests. Moodle only supports material with engagement level 3

(responding), while our requirement was engagement level 4 (changing).

There were also additional problems with the use of Moodle that arose from secondary

18

requirements. Unfortunately, the solutions submitted for tasks in Moodle, can not be

grouped by the teacher in a way that filters the solutions that need a response (see Table 1).

Those solutions would be the ones that are submitted and ungraded. Moodle allows to

filter solutions that are not submitted (does not matter, if graded or ungraded), and also the

solutions that are ungraded (does not matter, if a solution is submitted or not). This creates

a lot of overhead for the teacher to manually filter out the solutions that need to be graded

among the ones that are not submitted.

Table 1: Possible filters in Moodle. It is not possible to
filter only the submitted and ungraded submissions. It is
possible to filter with A the ungraded submissions, and
with B the submitted solution, but not the intersection.

Graded Ungraded

Not submitted Not applicable A

Submitted B A, B

Another problem was that the Flashcards didactic tool had an insufficient design and

problematic functionality for the teacher. The design included instant switching of

flashcards and turning them over. This kind of switching, without a corresponding

animation, can confuse the students about what is actually going on. Furthermore, the

design included a gray background for the card, which meant that the contents with a black

font were not brought out in an easily readable way. Functionality problems included the

generation of 40 dummy flashcards upon the initial creation, which the teacher then had to

either fill or manually delete one-by-one. Although, this problem was not solved in

CGLearn, the overhead caused from it in Moodle, did not outweigh the decrepit view of

the flashcard to the students.

3.2.3. Udutu

Another learning management system that is advertised to allow conditional branching of

the learning material is called Udutu [21]. While experimenting with the different features

that Udutu provides (especially the TreeView course map), I managed to create a situation,

where publishing the material resulted in a system error.

Also, there is no documentation on how to add custom JavaScript to the materials. The

Frequently Asked Questions section [22] does mention that there is an API and an ability

19

to create custom JavaScript, but I could not find publicly available documentation for it.

Generally, Udutu does provide a lot of different possibilities for engagement level 3

(responding) interactions. The responses to such engagements can direct students to

different parts of the material, depending on the correctness of the response. Although that

would be beneficial for the learning process, it does not fit with the requirements.

3.2.4. Conclusion

The examined existing solutions did provide many different tools that would generally

enhance the learning process and give courses more value. The specific learning

management systems (Moodle and Udutu) provide educators with the ability to create

engagement level 3 (responding) interactive material. Although certainly better then just

engagement level 1 (no viewing) or engagement level 2 (viewing), they do fall short for

my requirement of being able to modify parameters and see different effects.

The Courses page would have allowed the creation of content with a higher engagement

level, but it would have created a lot of overhead for simpler things, like exchanging

feedback with students or doing result statistics. Because of the PmWiki formatting

language, creation of simple content is easy, but more complex formatting would include a

lot of overhead, compared to actual HTML and CSS.

Both the Courses page and Moodle would have satisfied the authentication requirement.

Because of different problems with each of the examined learning environments, a custom

environment called CGLearn was built from scratch.

3.3. Implementation

CGLearn was implemented in PHP-s Laravel Framework 4.2 [23], using a MySQL

database and Doctrine 2 ORM [24]. Authentication is done via Shibboleth Service Provide

Apache module [25]. Front end is based on Require.js [26] for modular script loading. It

uses jQuery 2.1 [27] and Bootstrap 3.4 [28]. Interactive examples are done with Three.js

r70 [29] and formulas are shown with the latest version of MathJax [30]. Statistics charts

use HighCharts [31] and modal popups are created with FancyBox 2.1.5 [32]. Specific

benefits and design choices are discussed in more detail in the corresponding subchapters.

20

As with any web environment, it consists of a back end and a front end. The specific

structure of both parts is described in the following sections. This description should give

an overview of the architecture decisions and also serves as partial documentation for the

system.

3.3.1. Back End

Server side of the application was implemented in PHP using the Laravel Framework

version 4.2. Although currently version 5.0 has been released, 4.2 was the latest release at

the start of the development. Choice of the Laravel Framework over Zend Framework was

made because Laravel is considered to be suitable for non-enterprise level web

development. It also follows the convention over configuration principle, which means that

less time can be spent on writing the different configurations, compared to Zend that uses

the configuration over convention principle [33].

With that in mind, Laravel 4 by default is lacking in some areas that would benefit the

current project. One of those is that out of the box it does not support modular

development without specific additional effort. An extension [34] for Laravel 4 modules

was added to the project to get that support.

A second concern was with the Eloquent ORM that is the official ORM for Laravel.

Eloquent follows the active record pattern, which means that the domain objects and

database queries are bundled together in single classes. This usually comes down to

personal preference, but for me it seems more logical to use the data mapper pattern, which

has the domain objects mapped to the database, and separate repository classes handle the

queries for those objects. For this reason the Doctrine ORM was added to the project and a

specific package that allows Laravel to communicate with Doctrine [35] was included.

Application is hosted on a Linode [36] instance that runs Ubuntu 14.04 [37] and the

Apache HTTP Web Server 2.4.9 [38]. The instance belongs to a web-development

company Blue Lynx OÜ [39]. Reason for using their server lies in a better responsiveness

and familiarity of that company compared to similar services provided by the university.

The entire project also uses a private Git repository, hosted in the same server.

21

3.3.1.1 Application

Application is divided into two modules and a general part that is common for both of

them. That general part consists of the domain objects (called entities) and their

corresponding repositories. There is also general user-specific functionality in the form of

a few controllers and services. Event listeners that deal with sending e-mails, are similarly

general for both modules.

There are two use cases that occur for both students and teachers. The first one is the initial

landing page, which has the request redirected to the students landing page. This is because

generally teachers are also interested in ending up in the material sections visible to the

students, instead of the teacher's administration panel. The second use case is logging out

that, upon success, shows a same page for both of the user groups.

With that in mind, the teacher's group is more of an extension of the student's group.

Teacher users have most of the same functionality, to view and navigate the material. They

do, however, have restrictions to submit solutions. Compared to students, teachers have

access to the administration panel that includes additional functionality related to course

management and educating.

Detailed descriptions of the student and teacher modules will illustrate more of the

different functionality those user groups have in CGLearn.

3.3.1.1.1 Student Module

This module has functionality related to displaying the course material, creating task

submissions and feedback, showing results. This functionality is available for all users of

the system, who have authenticated themselves via Shibboleth. Although a couple of

specific functions, such as submitting solutions for tasks, are restricted to students only.

Controllers

Controllers for parsing requests from routes commonly prefixed with student/ prefix. Their

actions in this module are explained in an alphabetical order.

22

FlashcardController

Is responsible for parsing the requests related to flashcards.

Actions:

• index($slug) – Parses the request to fetch the user-specific deck of flashcards for a

given module (specified by the slug). Returns a view with all the flashcards ready

for display for the current user.

• answer() – Parses an Ajax request that needs to include id of the answered

flashcard and score that specifies the student's response to it. Returns a JSON

response that has a new number of flashcards for this module. This is used to

update the number of flashcards in the left menu.

HomeController

Has actions that deal with functionality available on the main landing page of students.

Also includes profile viewing and editing actions.

• index() – Parses the request for the landing page of students. Returns a view

containing the current course information for the current student.

• profile() – Parses the request for the profile view. Returns the current student's

profile view. Could be extended for showing the profiles of other students, but this

has not been a main concern of the system.

• profileEdit() – Allows the current student to edit the profile. Parses the requests for

showing the editing form and saving new profile data, which is also validated. For

GET requests the editing form is shown. In the case of a successful edit, the

response is redirected to the profile route.

• logout() – Parses the logout request: clears the session and redirect to Shibboleth's

logout URL.

• changeCourse() – Parses the request to change a course. On a successful change,

the chosen course is saved to be the active course for the current student and a

student is redirected to the landing page.

• changeCourseModule() – Parses an Ajax request that specifies a chosen course

23

module to be the active course module for the current student. Returns a JSON with

a success flag.

MaterialController

Has actions that deal with showing of different parts of the material.

• index() – Parses the request to show the main view of the material. The current

course is used to show its description and the modules in it. The left material menu

is constructed and a current course module is used to open a specific module in it.

• topic($slug) – Parses the request to show a specific topic inside the material. The

slug parameter of a topic is used to fetch the topic. Response is a view without the

layout, because topics are loaded via Ajax.

ResultController

Has actions that deal with the results table viewing.

• index() – Parses the request to show the results table. Also calls functions to

populate and update the results table. Results are fetched and the response is

modified so that only the current user has a correct name in the results table. Other

students will get a fake name.

StatsController

Has actions that deal with the statistics plots viewing.

• index() – Parses the request to show the statistics page. Calls functions to fetch the

corresponding statistics and also to update the statistics.

TaskController

Has actions that deal with the viewing and submitting of tasks or their feedback.

• index() – Parses the request to show the tasks tree. Current course is used to fetch

the corresponding modules and a tasks tree is generated based on the ordering of

modules, topics, materials and task dependencies.

• details($slug) – Parses the request to show the details for one task, specified by the

24

slug. Also shows the data about different submissions to this task, by the current

student. Includes a submission form is the current user is a student.

• addSubmission($slug) – Parses the request to add a submission to the task specified

by the slug. Submission data is validated and the submission.create event is fired.

Response is redirected to the task details route.

• downloadSubmission($id) – Parses the request to download a submission made by

the current user and specified by the id. Current user is validated and a download

response, that has the contents of the submitted file, is returned.

• commentSubmission($id) – Parses the request to add a comment to the submission

of a current user and specified by the id. Comment and the current user are

validated and on success, the response is redirected to the task details route.

Services

Services encapsulate the business logic used by the students' actions. Services and their

functionality is explained in an alphabetical order, with the respect to namespaces. Most

services have a get($id) and getBySlug($slug) methods that are not explicitly mentioned

here.

Many functions also have the user as an optional parameter. If nothing is assigned there,

then usually the current user is fetched as the user. Also, here only the public functions are

described. Many services also have protected functions that are being used by the public

functions.

Some of the functionality described here, may be actually performed by the repositories

that the services call.

CourseService

Deals with business logic related to courses.

• getCurrentCourse(AbstractUser $user = null) – Gets the current course for either

the specified user or the current user, if none is specified. First the session is probed

to see, if there is a current course id specified there, if there is that course is

returned. Secondly user preferences are probed to get a current course from the

25

database, if it is there, then that course is returned. Finally, is none of those

methods found a current course, a default course is returned from this service.

• getDefaultCourse() – Finds the first course from the database that has the isHidden

flag as false.

• setCurrentCourse(AbstractUser $user = null, Course $course) – Sets the current

course to the session and the database of the current user.

• getActiveCourses() – Returns an ArrayCollection of all courses that have the

isHidden flag as false.

• getCourseGradeFromScore($score) – Converts a score into a grade letter. If the

score is above 100, the letter „A“ is returned. If the score is below 50, the letter „F“

is returned. Otherwise the score is divided by 10 and a value from an array

containing the letters from „A“ to „F“ is fetched by taking the key

10−ceil ($ score) .

Course/ResultService

Has the logic to display the course results to students. This service extends the

AbstractResultService in the general part of the application.

• getCourseStudentResultsByCourseForStudent(Course $course, AbstractUser

$student) – Fetches the results from the parent service and creates a Faker. Next it

goes through the results, detaches them from the ORM, and whenever the results

are for a different student, replaces the name by a fake name generated by the

Faker. Then returns the modified results.

FlashcardService

Has the logic for the flashcards.

• initialize(Module $module, AbstractUser $user = null) – Checks if the user has the

flashcards generated for the specified module. If they are not, then generates the

user flashcards, based on the flashcards assigned to this module. The current date

with the time specified as 00:00 is assigned as the nextDate for each user flashcard.

• getForDisplay(Module $module, AbstractUser $user = null) – Gets the flashcards

26

for the user that have the nextDate less than the current time.

• countForDisplay(Module $module, AbstractUser $user = null) – Counts the

flashcards for the user that have the nextDate less than the current time.

• saveAnswer(UserFlashcard $userFlashcard, $score) – Takes into account the

score, given by the user for this flashcard, to calculate the new nextDate based on

the SuperMemo 2 algorithm [9].

ModuleService

Has different getters for modules.

• getRootModules(Course $course) – Gets the root modules in the module tree for

the specified course.

StatsService

Has the logic for constructing the statistics.

• getTasksWithCurrentSubmissions() – Gets the tasks that a current user has

submitted a solution to. That submission is assigned to be that task's only

submission.

• getTasksWithExtremeScores() – Gets tasks, and assigns the submissions with a

minimum and maximum score to be their only submissions.

• getTasksWithExtremeDifficulties() – Gets tasks, and assigns the submissions with a

minimum and maximum difficulties to be their only submissions.

• getTasksWithExtremeTimes() – Gets the tasks, and assigns the submissions with a

minimum and maximum time estimates to be their only submissions.

TaskService

Has the logic that deals with tasks.

• getTasksByCourse(Course $course = null) – Gets all the tasks for the course (or the

current course, if none is specified).

• updateAverages(ArrayCollection $tasks) – Goes through the ArrayCollection and

27

checks, which tasks have the flag averagesNeedUpdate set. For those tasks, the

average values for the score, difficulty and time estimate are calculated and

updated.

• getMainTasksInTopic(Topic $topic) – Gets the tasks in a topic that have no

prerequisite tasks.

• getSuccessorsInSameMaterial(Task $task) – Gets the tasks that have the given task

as a prerequisite, and also are assigned to the same material.

• hasPrerequisitesMet(Student $student = null, Task $task) – Checks, if the student

has the prerequisites met in order to submit a solution for the given task. If there

are preceeding tasks that are set as a prerequisite for this task, and a student has not

submitted a solution for them, this function returns false.

Task/SubmissionService

Has the logic that handles task submissions.

• getLatestSubmission(Student $student = null, Task $task) – Finds the latest

submission of the student to the task.

• save(Task\Submission $submission = null, $data) – Saves a new task submission.

Sets the corresponding values from the data array, sets the averagesNeedUpdate

flag in the task, sets the uploadable file info to the entity. Also checks if there have

been previous submissions to the same task by the same student. If so, those are

updated to no longer be the latest.

• getTotalPointsInModule(Module $module) – Gets the total number of points, the

current student has received in the specified module.

Task/Submission/FeedbackService

Has the logic to handle task submission feedback.

• save(Feedback $feedback = null, $data) – Saves the feedback information.

TopicService

Has no specific logic, besides just a getter for a topic by slug.

28

3.3.1.1.2 Teacher Module

This module has the functionality to modify the course materials, grade task submissions

and create feedback, modify course results and students. Some limited actions do not have

a programmatic functionality in the system. For example, the creation of teachers is done

by hand. Those features could be further developed to become a part of this module, but

currently, they were not that essential.

Controllers

Those controllers parse the requests commonly originating with a teacher/ prefixed routes.

Such routes have a further authentication filter (besides Shibboleth) assigned to them, to

allow access only to a limited number of users – those that are teachers.

Most controllers have an index(), edit($slug) and update($slug) actions. Those are for

displaying a list of the entities, displaying the editing form and saving the updated data.

Controllers that have only that functionality are: CourseController, FlashcardController,

MaterialController, ModuleController, TopicController. These follow a common structure

and are not individually described here. Other controllers are described in an alphabetical

order.

Course/ResultController

Has the actions for showing and editing the results table.

• index($courseSlug) – Parses the request to show the results table, for the course

specified by the slug. Also calls populate and update functions on it.

• modulePartial($courseSlug, $moduleSlug) – Shows a results table for one module,

specified by the slug, in a course, specified by the slug. This action returns a view

that is in a popup layout, because it is shown in a Fancybox modal.

• update($courseSlug, $resultId) – Parses the Ajax request to update the score in one

of the results. The new score is saved, and a new total score is also calculated.

Action returns a JSON response that has the updated data for the row in the results

table.

29

Course/StudentController

Has the actions for assigning specific students registered in the system, with a specific

course. This is needed to generate the results for the students for a course.

• index($courseSlug) – Parses the request to show all the students currently assigned

to the course specified by the slug.

• import($courseSlug) – Parses the request to assign students to the course, based on

a CSV exported from the Study Information System (SIS) [40]. The CSV data

needs to be in the payload of the request. Response redirects to the import.result

route.

• importResult($courseSlug) – Parses the request to show the results of a CSV

import. Response has a view that shows the number of found students, not found

students and added students.

Task/SubmissionController

Has the actions for listing the submissions, grading them, exchanging feedback,

downloading solutions.

• indexNew() – Parses the request to list the submissions that need a response from

the teacher. Response view has that list.

• details($id) – Parses the request to see the detail view of the submission specified

by the id. Also marks the feedback assigned to this submission as read by the

teacher. Response includes a view that has the detail view of that submission.

• download($id) – Parses the request to download a solution specified by the id.

Response returned is a download, with the contents of the solution file.

• comment($id) – Parses the request to add a new comment to the submission. Fires

the feedback.create event. Response redirects to the details route.

• bulkDownloadNew($topicId = null) – Parses the request to download all the

submissions that need a response from the teacher. If a topic id is specified, it filters

only the submissions in the corresponding topic. This action fetches all the

corresponding submissions from the database, then finds their files in the file

30

system. Those files will be unpacked (if they are packed with ZIP or RAR). After

this a file tree structure is created that lists the tasks in the first level, students in the

second level. The solution files are moved to the corresponding folders and the

entire tree is then archived again to a bulk.zip file. The contents of that file are

downloaded in the response.

• grade($id) – Parses the request to assign a grade to a submission specified by the

id. On success, the submission.grade event is fired. Response redirects to the

submission details route.

• gradeAndComment($id) – Parses the request to assign a grade and create a

feedback in the same time. This request comes from the Quick Grade functionality

in the new submissions list. On success, the submission.gradeAndComment event is

fired. Response JSON has the success flag, new score and the id of the submission

indicated. Based on those, the row in the new submissions list is later updated.

StudentController

Has only the index() action that displays the list of all student users in the system.

TaskController

In addition to the actions described above, it has also actions for adding new tasks and

deleting tasks.

• add() – Parses the request to add a new task. Request must have a material

specified in the payload. Returns a response with a form that asks information

about the task.

• insert() – Parses the request to add a new task. Request must have a payload that

specifies the details of that task. That payload is validated and on success, the task

is created. Response then redirects to the task index.

• delete($slug) – Parses the request to remove a task, specified by the slug. This

action returns a confirmation view.

• remove($slug) – Parses the request to remove a task, specified by the slug. This

action removes the task.

31

TeacherController

This controller has actions that start or end specific modes available for the teacher user.

• startGhost($id = null) – Starts a ghost mode for the user, specified by the id. If no

id is specified, an arbitrary id of a dummy student is picked. Ghost mode allows the

teacher to see the student view from the perspective of a specific student.

• endGhost() – Ends the ghost mode.

• startDebug() – Starts the debug mode. That mode has a PHP debugbar [41]

available and debugging enabled for each subsequent request.

• endDebug() – Ends the debug mode.

Services

Services here specify the business logic only available for the teachers. Most services

again, have the common get($id), getBySlug($id), getAll() functions. Also here there is a

save(Entity $entity, $data) function that occurs often. This function allows to edit the data

of a specified entity and saves it to the database.

Services, with only that functionality are: CourseService, Course/ResultService,

FlashcardService, MaterialService, ModuleService, TopicService. Services, with

additional functionality are described in more detail.

Course/StudentService

Allows to get and add students for a course.

• getAllByCourse(Course $course) – Finds all of the students, who are assigned to

the given course.

• getByCourseAndStudent(Course $course, Student $student) – Finds the

Course/Student entity for the specified course and student.

• addMany(Course $course, $students) – Assigns the given students to a course, if

they are not already assigned. Returns, how many of the given students were

assigned.

32

Task/SubmissionService

Has additional functions to get the submissions.

• getAllLatest(Task $task = null, Topic $topic = null) – Gets the latest submissions,

given a task and a topic. If the task or a topic is missing, filtering is not performed.

• getAllLatestNew(Task $task = null, Topic $topic = null) – Gets the latest

submissions that need a response from the teacher. If a task and a topic are given,

the results are filtered.

• getLatestSubmissionsInModule(Student $studnet, Module $module) – Gets the

latest submissions for a student for all tasks inside a specified module.

Task/Submission/FeedbackService

Has an additional function to mark the feedback read.

• readFeedback($submissions) – Marks the feedback read by the teacher for all the

submissions given.

StudentService

Has an additional function to find students based on the data from a CSV file exported

from SIS.

• getFromImport($csv) – Tries to find a student based on the data in the CSV, where

each row conveys the data for the student in the format outputted from SIS. First it

tries to find a student by the first and last names. If there are multiple occurrences

of the students with a same first and last name, then this fails. If the name look-up

has failed, then it tries to find a student based on one of the two e-mails outputted

from SIS. If this also fails, then there is currently no way to locate the student from

CGLearn. Function outputs an array, with keys found and notFound. Found

students include all the entities of students that were found. Not found array

includes all the rows of the CSV that failed.

33

TaskService

This service has additional functions for finding specific tasks and deleting tasks.

• getAllSortedInMaterials() – Gets the tasks in the alphabetical order of the topic's,

material's and task's titles.

• getTasksByCourseAndModule(Course $course, Module $module) – Gets the tasks

beloning to the specified course and the module.

• getTasksByTopic(Topic $topic) – Gets the tasks in the corresponding topic.

• delete(Task $task) – Tries to delete a task and set the preceding task of the next

tasks to the predecessor of the current task. When a task has submissions, this

function will fail. Currently, tasks are hard-deleted. Further development could be

done, to make them soft-deletable.

TeacherService

Has additional functions for getting specific teachers.

• getTeachersForSubmission(Submission $submission) – Gets the teachers that are

responsible for the specified submission.

• getTeachersForCurrentCourseModule(Module $module) – Gets the teachers

assigned to the specified module and the current course.

• isAuthorized() – Returns a boolean, specifing if the current user should be allowed

to access the teacher module. This is used in the authentication filter.

3.3.1.2 Database and ORM

As mentioned before, because of the logical separation of entities and repositories in the

data-mapper pattern, Doctrine 2 ORM was chosen instead of Eloquent ORM. Relational

database MySQL 5.5 is used to store the data. MySQL Workbench 6.1 [42] was used to

construct and modify the database model (Illustration 84 in Appendix), thus effectively

also the domain model.

34

In addition to Doctrine's own annotations, an

extension package called Doctrine Extensions [43]

was used to include support for tree structures

(Tree), slugs (Sluggable), file uploads (Uploadable),

sorting (Sortable) and timestamps (Timestampable).

The domain model consists of Doctrine entities,

which are generally constructed and mapped

according to the database model. There are some

aspects that can not be easily read from the database

model. Those specifics are described in the

following sections.

3.3.1.2.1 AbstractUser, Teacher and Student

All users that log into the system via Shibboleth, are

children of the AbstractUser class. By default they

will become instances of the Student class. If they do

not have a mapping to the Student class, but instead

to the Teacher class, then they are considered to be

teachers. This is achieved via the class-table inheritance [44] of Doctrine. The users table

is joined to the teacher or student table, based on the specified discr value. This allows the

data common to all users (their university username, e-mail, etc) and associations

(preferences, logins) stored in one table and the corresponding role determined by the

specific inheritance.

Similar pattern is used for the AbstractResult, ModuleResult and TaskResult classes.

3.3.1.2.2 PresentableTimestampsTrait

Because the datetime values are stored in the UTC timezone, there is a need for a

conversion of the datetime values, when actually showing them to the users. With Laravel's

own Eloquent ORM, this would be solved by using Carbon extension for the PHP-s

DateTime class [45]. Instead of trying to integrate Carbon and Doctrine, there is a

PresentableTimestampsTrait that is cloning the DateTime inside the entity, setting the

35

Illustration 4: File tree inside the
entities folder.

correct timezone and returning a new DateTime object. This trait assumes that the entity

has already the Timestamps trait that creates the createdAt property.

3.3.2. Front End

Design of the front end uses the Bootstrap framework. This causes the style to be generally

uniform and pleasingly clean. For the sliders in the interactive examples, a slider plugin

[46] was added. That plugin was extended with the liveSlider class, to allow the on slide

update event to be triggered after a time interval. Otherwise, the slide event was triggered

too often, when sliding the slider, and that caused slowness in performance.

Mathematical formulas and constructions were written in

Latex and rendered with MathJax library. That library is

included to fetch the newest version directly from their

source. This has once caused a bug in one of their

releases [47] to propagate to CGLearn. On the other

hand, newer features, like the faster HTML+CSS

renderer and other tweaks, have also been updated

without additional effort. MathJax seems to be a stable

library, when the use of Latex is considered. They can be

trusted not to deviate from the standard Latex formatting

in their newer releases.

All of the JavaScript is loaded dynamically with

Require.js. Reason for its use is that, because there are

pages loaded via Ajax that have different interactive

examples in them, the JavaScript of the examples should

also be dynamically loaded. It would be a waste of

resources, if the page would load all of the examples in

on the initial load, because most of the users do not need

all that code during their session. Another way would be

to manually configure the different pages to also load

specific JavaScript. Require.js provides a clean and

structured way to do just that.

36

Illustration 5: File tree of the
JavaScript files inside
modules and pages folders.

Entire custom JavaScript is grouped under three categories: pages, modules and examples.

3.3.2.1 Pages and Modules

Specifying JavaScript modules for different pages is one of the practices of Require.js [48].

Each page, that needs some specific JavaScript, has only the corresponding page module

required in the HTML. This way it does not matter, if the page is loaded via Ajax or not.

Within the corresponding page module, the corresponding functionality modules are

required. For example, the left menu in the material page is handled with MaterialSidebar

module. So the materials.js page module has in it the dependency of the MaterialSidebar

module and creation of a new MaterialSidebar instance.

The modules specify a component or a small piece of functionality in the front end. That

has its own dependencies and implements a specific functionality for that component.

Pages specify the modules, that a specific HTML page has in it.

3.3.2.1.1 Common

Has in it currently only the listener for the form that changes the course in the upper left

corner of the page. Whenever the select value in that form is changed, the surrounding

form is submitted.

3.3.2.1.2 Edit

Initializes the TinyMCE [49] editing for textareas with a corresponding class. This

component is used extensively in the teacher's area of CGLearn. All the material can be

written and modified through TinyMCE.

3.3.2.1.3 Examples

Has dependencies for the RendererFactory, FullScreenUtils and PauseUtils modules. This

is the module that starts and runs all of the interactive examples. Whenever the init()

function of this module is called, it will search under the #material-content selector, for all

the elements matching a .example-box selector. The data-example-slug attribute of the

matched elements is then used to require the corresponding example from the examples

folder.

37

For each of the examples, a renderer is asked from the renderer factory. This is because,

there is a limited number of renderers (WebGL contexts), that can be created.

After constructing an instance of the example, a THREE.Scene is created and an array

named meshes from the example is probed. If there is no such array, there should be an

attribute mesh in the example. Those attributes need to contain the objects that will be

added to the scene.

Example must also define an addControls() method that gets called to add the specific

controls to the HTML element containing the example. At this point, the <canvas> element

from the renderer is also added to the HTML and the FullscreenUtils and PauseUtils are

called to have them add their own controls if the example allows them.

If the example provides a camera attribute and it holds an instance of THREE.Camera,

then its value is used for the camera. Otherwise it may also hold a keyword orthographic,

in which case a default orthographic camera is constructed. If none of those cases

happened, then a default perspective camera is constructed.

Next, the animation event loop is made. In it there are checks to see if the example still

needs time to load (isReady flag) or is paused (isPaused flag). Also, if the example is in

full screen, then the FullScreenUtils are called to render it. Otherwise the usual

renderer.render(scene, camera) is called.

Before reaching the end of the animation loop's iteration, the example is probed for a

method update. If there is such a method, then it will be called after the initial rendering by

the Examples module. This update method can be (and is) used to specify different

animations and movement inside the example itself. At times it also happens, that the

example needs to do more rendering passes. The update method is also provided the

renderer, scene and the camera objects for such cases.

There is also a clear method in the Examples module for the case, when the page, that

included some examples, will be unloaded. Because loading and unloading of the material

is done via Ajax, then we need to stop the previous event loops and free the renderers.

38

3.3.2.1.4 Flashcards

This module provides the functionality for the flashcards. The init() method will find all

elements matching .flashcardWrapper from the element that matched #flashcardsWrapper.

For all of the flashcard elements, event listeners are bound for the turn button and score

buttons. On pressing the turn button, the flashcard is rotated 180° around the y axis. On

pressing the score button, the score request is sent via Ajax in the background, while the

card is moved upwards and transparency increased. When that animation has ended, the

next element, that matched the .flashcardWrapper selector is shown. If the last card was

answered, then another specific element is shown, that indicates the end of the deck.

3.3.2.1.5 FullScreenUtils

The FullScreenUtils module adds a button above the examples, that allows the example to

be viewed in full screen mode, if it is supported by the corresponding browser. When that

button is pressed, the full screen mode for the example is set. The controls, that were

specified by the example, are moved to the top left part of the screen and shown on top of

the render.

In the full screen mode, there are some possibilities for most of the examples. The default

is that the smaller render is done on a texture and that texture is then rendered full screen,

with either the nearest neighbour or bilinear interpolation. Reason for this is that often

times some of the examples need to preserve the relative size of their objects. For example,

to show with a projector in the lectures.

Second option is to switch the actual rendering to have the dimensions of the entire screen.

This causes 2 pixel thick lines to actually be 2 pixels thick. Depending on the example, it

may improve the quality, or it may not, as is the case with the procedural noise example. In

that example, the noise is sampled so that the result would look good on the smaller

resolution. There are two examples, the ray tracing and path tracing, for which in the full

screen mode, changing to the actual fulls screen rendering of the example, is disabled. This

is because, those examples are already computation heavy and the complexity depends on

the number of pixels. Examples can set an array fullscreenModes, to specify, which modes

they want enabled or disabled for them.

39

3.3.2.1.6 LiveSlider

This is the module that extends the Bootstrap Slider plugin. It provides the ability to

specify the timedUpdate key in the configuration, when initializing a slider. This timed

update listener is called if the slider gets a slide or slideStop event. It checks, if an interval

has passed from the last call, and if so, runs the function that was specified in the

configuration. Otherwise it clears the interval and sets a new one. Currently the time for

the interval is specified to be 350 milliseconds.

Without this there was a problem with the MathJax matrix that needed to be updated when

the student changes the parameters for a transformation. The update of the MathJax matrix

slowed down the browser considerably, when it was called more often.

3.3.2.1.7 MaterialSidebar

Module binds click listeners to the left sidebar in the materials page. Data attributes of the

elements are read, to determine the correct URL-s to send Ajax requests to.

First listener is for the headings of different panels in the sidebar. Those headings change,

which module is opened. When the student opens another module, a request is sent that

changes the current course module for the student. This means that if a student refreshes

the page or comes back in the next session, the correct module will be opened in the

sidebar.

Second, the topic links are listened to. When the student clicks on the topic, a loading bar

is shown and a request is sent to fetch the contents. If at that point, student clicks on

another topic, then the previous request is aborted and a new one is created. After the topic

material is loaded, the loading image is hidden again, and the sublinks for the materials

under that topic in the menu are shown, others are hidden. Also the Examples module is

initialized and cleared during this process.

Third listener is for the flashcards link. When other links actually have the listener

disabled, if they are already opened (do prevent multiple requests, if users double-click on

the links), then for the flashcards the listener will be enabled again, after the flashcards

have loaded. This is because, if the student goes through the flashcards deck and had some

cards that were left in the current deck, then the deck can be reloaded, by pressing the

flashcards link in the menu.

40

3.3.2.1.8 Matrix

This module replaces the Latex of a matrix in a specific container by a new Latex

containing the representation of a new THREE.Matrix4. Because Three.js holds their

matrices in a row-major format, the received matrix is also transposed prior to constructing

the Latex. This is because, in the course we are teaching the column-major representation.

There is also a check in here that finds if already an update for the same matrix was queued

and not yet parsed by MathJax. This is achieved, by setting a specific class for the

container and queuing another job for MathJax after the matrix update. That next job will

remove the indicator class. This is because, we are actually modifying a buffer element,

not the container which already holds a rendered matrix. When MathJax renders the buffer

element, only then, the buffer is swapped against the real container. This is the double-

buffering pattern, often used in rendering and it avoids the problem of showing non-

rendered Latex, whenever we change the matrix.

3.3.2.1.9 PauseUtils

The PauseUtils module checks if an example has an attribute canPause. If it is there, then

this module adds another button in the top right, next to the full screen button. That other

button is the pause button, and it allows the example to be paused, which means that

rendering of it is no longer called.

It also binds listeners to the controls of the example. When those are used, then the

example becomes unpaused, otherwise a result of the change would not be visible. This

could be further developed to render only one frame, when the controls are changed. It

would, however, needs some refactoring to have a separate counter (which could also be

paused) for the ticks in the examples.

The pause button is very useful for the ray tracing and path tracing examples. Those

examples actually start in the paused mode, because of their performance.

41

3.3.2.1.10 PointUtils

The PointUtils module allows to create draggable points in the example. It works with

examples that have an orthographic camera that looks at the xy-plane and the points will

be located at z=0.5 . Dragging occurs with a ray cast into the scene, to determine a point

under the mouse. When a point is determined, it will be assigned as a hoverPoint to the

example. When the user clicks on the point, then it will be assigned as a clickPoint.

It also assigns different colors for the point, depending on the states. The usual color of the

point is assigned as the drag color. The hover color and drag color are respectively 0.85

and 0.7 times of that color.

This module is used for the examples under the Curves topic. Those examples have the

control points and parameters of the curve as draggable points in the example. This allows

direct modification of the curve parameters by the students.

3.3.2.1.11 QuickGrader

This module is used in the teacher's pages, specifically in the submissions list. In the

submissions list, there are buttons to open the submission to see the details, and for quick

grading. When the teacher clicks on the Quick Grade button, then a select and a textarea

are opened right under the current row. This allows to quickly assign the score and a

comment for the submission.

3.3.2.1.12 RendererFactory

Three.js renderes for the examples are created from this module. This is because there is a

limited number of WebGL contexts that can be simultaneously active during one session,

so renderers are re-used for all the examples.

There is a dynamic pool that collects the renderers that were created, but are no longer

used. When a new renderer is needed, then it is first popped from that pool. If the pool is

empty, then a new instance is created. There is currently no limit to the size of the pool, but

the limit of active WebGL contexts limits the number of examples one material can have.

That hard limit is specific to the GPU and browser that is being used.

42

3.3.2.1.13 Tasks

This module is responsible for the task tree in the Tasks page. It allows users to open and

close different modules. Also, each task has a Fancybox modal popup assigned to it, so the

tasks would open in the same page. The modal is configured to use an iframe to open the

task details, because that view is also used to submit solutions to the tasks. Submitting

requires the page to reload and a new request to be sent, thus only the iframe in the modal

will do that. Of course, there are ways to send files via Ajax, but for simplicity that

functionality is currently implemented that way.

3.3.2.1.14 TaskStats

The TaskStats module can receive the values for the task titles, the score, difficulty and

time estimates for the current user, the average and the extremes. After receiving those

values, it initializes HighCharts plots in specific containers for the score, difficulty and

time estimate.

Student's own score is represented with a line chart that has a filled white marker in the

point values. Extremes are shown as an area range chart without any markers. Averages are

again a line chart, but do not have markers either.

3.3.2.1.15 Utils

This module groups some general functions that are used in several other modules. Those

currently include:

• millis() – Uses the JavaScript's Date object to return a number of milliseconds from

the year 1970.

• fixed(value) – Converts the value into a fixed precision format.

• toRad(value) – Converts the value, interpreted as degrees, into radians.

43

3.3.2.2 Examples

Interactive examples that accompany the

material form a big part of the JavaScript in

CGLearn (Illustration 6). All the examples

follow a similar structure that allows the

Examples module to load, initialize and render

them.

Usual dependencies for the examples include

jQuery for manipulating the HTML DOM, when

adding the controls; Three.js for creating the

graphical part of the example; Utils module, to

use the millis() and toRad() methods. LiveSlider

module to include sliders with the controls of the

example. Specific shader files that are loaded

with the help of Require.js text loading plugin

[50]. Examples that show a transformation

matrix, also depend on the Matrix module. Some

examples that have Latex near their controls,

require the MathJax.

Example's constructor is responsible for creating the meshes that will be shown in the

example; configuring or creating the camera; assigning different properties that can be

used later in the instance. Constructor gets the exampleContainer parameter that holds the

HTML element surrounding the example. This is usually assigned as a property of the

instance and used later, when adding the controls for the example.

The mandatory functions that an example needs to implement, include the addControls()

and update(renderer, scene, camera) methods. First one is responsible for adding different

controls under the rendering area of the example and binding listeners to them. Second one

is used to either modify the transformations each frame, or render secondary passes.

Other properties include canPause, isPaused, fullscreenModes that configure the

corresponding modes of the example.

Most of the examples in one topic generally include the same basic structure, with just

44

Illustration 6: File tree of the
examples.

different specific calculations applied. Controls usually modify the calculation parameters

to show the behavior of a certain algorithm. Next the thesis describes main approaches of

the examples in different topics.

3.3.2.2.1 Basic I

Here the implementation details of examples created for the Basic I module are described.

Geometry and Transformations

Examples here specify a THREE.Line object with a THREE.LineMaterial that has a white

color and line width of 1. Depending on the example if may be a box or a triangle.

Controls generally modify the position, rotation, scale properties of the object. In the case

of shear, the elements in the transformation matrix are modified directly.

Those examples use the Matrix module to display the model matrix of the object.

Shading and Lighting

Although, Three.js has shaders for Phong lighting and allows to specify either smooth

(Phong) or flat shading, there is no Blinn lighting model and Gouraud shading available.

Generally the examples here include custom shaders that implement all of the required

lighting and shading models.

Frames of Reference and Projection

For the orthographic and perspective projection, the corresponding Three.js cameras are

used. In the case of the oblique projection, an orthographic camera is used and the

projection matrix of the camera changed accordingly.

Examples here show the current projection matrix under the rendering area.

Textures and Sampling

The examples with a textured cube and a texture quad load the textures in the usual way

with a THREE.ImageUtils.loadTexture() method. The textures are also mapped to the

objects in a standard fashion. The offset parameter, in the case of the checkerboard texture

rendered on a quad, is increased each frame to create the movement of the texture.

45

The sampling example that shows the sampling of a function with ever increasing

frequency, uses a custom shader that samples that function.

Blending

The example in this topic was implemented by Jaanus Jaggo. It uses custom shaders to

reverse the projection transformation from the depth values, in order to show the linear

depth values for each fragment.

3.3.2.2.2 Basic II

Here the implementation details of examples created for the Basic II module are described.

Environment Mapping

The cube map example uses the THREE.CubeCamera object to render the scene from

inside the central mesh. The sphere map example also uses the THREE.CubeCamera to

create an initial reflective sphere in the object. Then it renders that scene with an

orthographic camera, to generate a sphere map. Custom shaders are used to sample the

reflected values from that sphere map.

Curves

Examples here include the PointUtils module to create interactable (draggable) points

inside the examples. The interpolating cubic curve, Hermite and Cardinal spline examples

use the predetermined blending functions for the curve. Bezier spline example constructs

the curves via the geometric interpretation of the de Casteljau's algorithm, by recursively

dividing the segments at a given t∈[0..1] . B-Spline and NURBS examples construct the

blending functions recursively directly by the de Casteljau's algorithm using the knot

vector.

Procedural Generation

The Perlin noise example sends to the custom shaders a texture with random monochrome

values in it. In the fragment shader that texture is sampled 6 times with a specified level of

zoom. Those 6 samples are then mixed together with specified coefficients. This algorithm

is described in [51].

46

The Lindenmayer-system example iterates the system, based on 4 rules, the number of

times specified. The probability of each rule can also be specified. After iterating the

system enough times, the resulting word is then converted to a hierarchical line mesh,

where each line has the red color.

Particle systems and Boids example use a THREE.PointCloud object to define the particle

mesh. The Boids algorithm is an adaptation based on the pseudo-code in [52].

Ray Tracing, Space Partitioning, BVH

The ray trace rendering example creates a data texture to send the geometry information

into the custom shaders. For each fragment the geometry information is read, to test the

intersections with all of the triangles in the geometry. The Möller-Trumbore ray-triangle

intersection algorithm is used that. The nearest intersection is found. If that nearest

intersection belongs to the reflective sphere, then another ray is cast, to determine the color

value of the fragment. If a ray hits the light source, then the color white is returned.

Otherwise the diffuse light is calculated, based on a normal, also sampled from the data

texture.

Global Illumination

Path tracing example follows a similar structure, as the ray trace renderer example from

the previous topic. Difference is that a number of bounces is specified (when that is

changed, new shaders are compiled, those have a different number of bounces in them). At

each intersection, where a ray has not reached the number of bounces, a random direction

from the hemisphere surrounding the surface normal is found. This is done, by generating

a random vector [53] and testing if it lies inside the hemisphere around the normal. If it

does, it is normalized and returned. If it is not, then another random direction is tried, this

goes on for 15 times, after which the function returns the last value. GLSL does not allow

infinite loops and within 15 times it is sufficiently probable that a suitable vector is found.

The random ray is traced recursively until the number of bounces is reached or the ray

intersects a light source. At each hit with the diffuse geometry, a diffuse reflection is

calculated. Here no ray is traced to the light source, because this example should not

include shadows.

47

Shadows

The global illumination shadows example has the path tracer from the previous topic

extended to also shoot shadow rays towards the light source. There are 4 shadow rays shot

to 4 random positions on the area light source. Based on the number of shadow rays hit,

the diffuse light reflection is taken into account with less weight. If all 4 rays hit, then no

diffuse light is considered, each miss increases the consideration by 25%.

Although Three.js has shadow mapping implemented in the library, it only works for

directional and spot lights. In order to have a point light in the center of the scene that casts

shadows with shadow mapping, a cube camera was used to render 6 shadow maps. The

resolution of that cube camera can be changed via the controls. The cube map is then sent

to a custom shader that gets sampled for each fragment by its world coordinates (because

our light source is in the center of the world). For each of the cameras belonging to the

cube camera, the projection matrix is multiplied with the view matrix, the result is sent to

the shaders for normal rendering. During the latter, each fragment has its position found in

the spaces of all 6 cameras. If the position is inside the view volume of the specific

camera, the depth value is saved and compared with the value in the cube map.

Three.js removed their shadow volume implementation in r43 in favor of shadow mapping

[54]. The shadow volume algorithm was implemented by changing the projection matrix to

have a far plane at infinity. The edges of all meshes were found and silhouette edges are

detected each frame. The shadow volume consists of three parts: light/front cap, dark/back

cap, sides. In order to construct those meshes, the vertices of the original object are

duplicated and scaled a bit down. The vertices belonging to the silhouette, are duplicated

again and faces between both of them, are constructed. After this, the duplicated vertices of

the silhouette and the dark cap vertices are extruded to infinity. Because Three.js sends the

vertex coordinates as triplets, another attribute was added to specify the w. When

rendering, the depth-pass version of the shadow volume algorithm was used.

48

3.4. Functionality

This section describes the current functionality of the system. Besides giving an overview

of the features, it also serves as a general user manual.

3.4.1. Student

Students are able to log in, while authenticating themselves via the University's

authentication system that uses Shibboleth. The Service Provider part of Shibboleth was

configured for CGLearn and use of it confirmed with University's IT department.

Shibboleth gives the basic information about

the students: their name, e-mail, role in the

university. Unfortunately, it does not give the

student number, nor tells whether the students

are registered to this course or not.

Students have a profile page, where they can

change their e-mail, to which grade

notifications and feedback is sent to. They can

also disable the e-mails sent to them by the

system (Illustration 7).

Everyone, who has authenticated themselves, can view all the material of the active

courses. Currently, there are two active courses in the system: the Computer Graphics

(spring 2015, MTAT.03.015) course and the Computer Graphics Seminar (spring 2015,

MTAT.03.305) course. The dropdown in the upper left corner allows to switch between

them.

In the right corner, there are links to

the pages inside the system: Material,

Tasks, Results, Stats. The last link

shows the username and allows the

user to go to their profile page or log

out (Illustration 8).

49

Illustration 8: Screenshot of the top right corner.
Students do not have the Start Ghost and Start
Debug links.

Illustration 7: Screenshot of the profile
edit view.

3.4.1.1 Material

Material of the course is navigated via the left

sidebar that groups different topics into modules.

The modules can be closed and opened in the

sidebar. The opened module shows the list of

topics in that module. When a topic is opened, a

list of materials under that topic also appears

(Illustration 9). The last module opened, is

remembered by the system as the current course

module.

The opened material starts with the topic's title and

introduction (description). Usually the introduction

ends with a couple of definitions that the student

should pay attention to in that material.

Next come the different materials under that topic.

They have a title and the content. Often the content

of the materials (as well as the topic itself) includes

illustrations. Occasionally there is an interactive

example inside the material, those are aligned to

right and come in various lengths. The rendering

area and the width of the example is always the

same.

Students can scroll down to read the material,

interact with the examples inside the material.

They can also navigate the material using material

links under the opened topic in the right sidebar.

When they want to switch the material, they can

click on another topic or open another module.

50

Illustration 9: Left sidebar. Basic I
module and the topic Geometry and
Transformations I is opened.
Materials under that topic are
Linear Transformations, Scale,
Rotation and Shear. Basic II and
Game Engines modules are currently
closed.

3.4.1.2 Tasks

The tasks page shows the tasks tree. The first hierarchy is based on the hierarchy of

modules. Basic I is the root node and Basic II and Game Engines modules are the child

nodes. Each of those nodes can be opened by clicking on the title. Only one module in the

same level can be opened at a time. This means that when Basic II is opened, Game

Engines is closed and vice versa.

Opened module shows a brief description of that module and the instructors responsible

for grading and instructing the tasks. Tasks are then laid out one topic at a time. Inside one

topic, there can be tasks in multiple rows, depending on the dependencies of tasks. Tasks

with preceding requirements are in one row.

Each task has also the task number in the top left corner of the box and the average time

spent by the students in the top left corner. In the center is the task's title, and under that

there is a progress bar showing the amount of points earned for that task.

If the progress bar is red, then this task has not been submitted, but could be if the student

solves it. If the progress bar is yellow, then the task is submitted, but not yet graded by an

instructor. Green progress bar indicates that the score is given and displays the amount of

points received by the student. Blue progress bars are under tasks that the current student

has missing prerequisites for, i.e. they have not submitted a solution for the preceding task

yet (Illustration 85 and Illustration 86 in the Appendix).

When a task is opened, a modal popup is displayed with task's description and a form to

submit a solution (Illustration 87 in the Appendix). Task description generally includes the

overview of the technique required and the goal postulated for the task. Students have the

ability to submit multiple solutions with corrections (even after initial points and feedback

is given). Different texts show in what status the submissions are. The feedback and

discussion between the student and the instructor is also shown above that form

(Illustration 88 in the Appendix).

51

3.4.1.3 Statistics

The statistics page shows three plots. The first plot shows the average score, minimum and

maximum scores, and the score of the current student for all the current tasks in the course

(Illustration 89 in the Appendix). The second shows the same indicators for the difficulty

estimations (Illustration 90 in the Appendix) and the third one is for the time estimations

(Illustration 91 in the Appendix).

3.4.1.4 Results

Results table shows the overall table of scores from both the different modules and from

the specific gradable results (project and the exam) in the course. The names in the table

are fake and rows gray (Illustration 92 in the Appendix). The current student has a black

row and a real name. Overall total and a grade based on that total are shown in the last

columns.

3.4.2. Teacher

Users that are given the rights of a teacher, can access the teacher's part of CGLearn. From

there they can edit different parts of the material, assign scores and feedback for the

submitted solutions, import students to a course, go into ghost mode of a specific student

or view a complete results table. The different functionality can be accessed by a menu in

the top right corner (Illustration 10).

3.4.2.1 Material

Editing any textual part of the material is done via a TinyMCE editor field. There are

different listings of the specific parts of the material (courses, modules, topics, materials,

flashcards, tasks) that allow editing (Illustration 93 in the Appendix). The editor itself is

configured with the basic buttons to force a similar style of the material (Illustration 94 in

the Appendix). More advanced options would create a lot of overhead for the teacher

editing the material. Specific elements or styles can also be added by editing the source

HTML directly (TinyMCE provides a tool in the Tools menu for that).

52

Illustration 10: Top right menu in the teacher module.

Adding an example in the material consists of first creating the example in JavaScript and

GLSL, after which the example needs to be added to the Git repository. To add a finished

example to the material, a <div> element with a specific style needs to be created. There is

a button in the Tools menu for that as well.

Adding images to the material works in a similar fashion. The support for image and file

upload is not configured in TinyMCE, because all the teachers have access to the Git

repository, thus uploading it via browser will take them the same amount of time and

effort.

3.4.2.2 Submissions

In the submissions view it is important to show only the submissions that need a response

from the teacher. There is also an additional filter available to filter by topic. That filter

also shows how many new submissions there are in each topic. On the right there is a Bulk

Download button (Illustration 95 in the Appendix). Clicking that makes the server repack

all the new solutions into another archive that has a well structured folder system. The first

level has the tasks and the second level has the students, who have submitted solutions for

the task. Depending on the number of pending tasks, this process may take some time for

the server.

Each submission can also be individually downloaded. On each row there is the essential

information about the submission. Part of the last comment from the student is also shown

there. Each row has a button for opening the solution in another view, to see the feedback

and task description in more detail. Alternatively, the teacher can click the Quick Grade

button, and assign a grade and a comment right then and there (Illustration 96 in the

Appendix). That data is sent via Ajax, thus the teacher can continue grading other solutions

without the page refreshing.

3.4.2.3 Results

For teachers, the entire results table is shown with all the correct names of the students

(Illustration 97 in the Appendix). That table also allows the teacher to assign points for

additional gradable results associated with that course. Currently these include the project

and the exam. This table can be accessed by a blue Results button under the course list.

53

3.4.2.4 Student Import

In order to associate students with a course in CGLearn, an import functionality is

implemented. Associating every student by hand would take too much time from the

teacher. Instead, a list of students can be exported from the Study Information System

(SIS) and the result used to search CGLearn for the corresponding users. That import

functionality tries to match students by their name (if this would be ambiguous for some

name, or no such student is found), then it will try by using the two e-mails also provided

by SIS.

The result of the import shows how many students were found, how many were not found,

and how many were actually new associations. This also means that the teacher can import

the same CSV multiple times and only the new associations are created.

54

4. The Material

The created material for the Computer Graphics course is organized in 4 layers of

hierarchy (Illustration 11). The root node is the course, under which are the modules. The

modules group under them a number of topics with a common larger goal (e.g. “get the

basic understanding of the essential computer graphics techniques”).

Each topic covers a smaller aspect of that goal. Examples include a topic for texturing and

sampling, or a topic for shadows. Topics also have a description, which explains the main

ideas covered by the topic.

Under the topics, there are smaller sections called materials, those focus on a single

technique or concept. Inside a material there are descriptions, illustrations, formulas and

interactive examples.

Part of this thesis work was to create most of the material for the topics under Basic I and

Basic II modules. Two topics were written by Jaanus Jaggo and Timo Kallaste under those

modules. The Game Engines module consists entirely of the material written by Ats Kurvet

and Timo Kallaste.

The aim of the material was to provide a clear, interesting and familiar source of

information on the topics covered in the modules under the course. Online material that

55

Illustration 11: Overview of the hierarchy of materials.

follows the course structure is an important aspect of learning. Interactive examples should

consolidate the students' understanding of the material. This is because, they allow students

to directly manipulate the covered ideas and techniques – they can see the results right

away, and do not have to imagine them. This corresponds to level 4 engagement

(changing) in the engagement taxonomy proposed by Naps et al [15].

The material is written partially in a problem-oriented approach. This means that a

problem statement (e.g. “we want to specify a more granular surface color”) is first

postulated. Then some logical approaches towards solving the problem are made.

Depending on the problem, the approach may highlight specific properties or drawbacks of

an algorithm (e.g. as it is with shadow mapping) or focus on a rigorous formulation (e.g.

material under the Curves topic).

Topic introductions list a number of key definitions that the students should pay attention

to. Usually the definitions are prerequisites for understanding the subsequent material.

Different new terms in the material, which are also explained, are linked to corresponding

Wikipedia articles for further reading. This is important so that students can form an

extensive network of ideas and relate the material to other sources. Often there are also

links (references) to more thorough external sources that cover the material from another

perspective or in more detail. Most of those external sources are also mentioned in the

forthcoming text of this thesis.

4.1. Basic I

Basic I module covers the most basic topics in computer graphics. Those focus on the

different transformations and light computations. The aim of this is to introduce to students

the essentials, without which doing standard 3D graphics would be impossible. This

module should also allow students to understand that a large part of 3D graphics consists

of trigonometry, geometry and algebra, which they have studied in previous courses like

Algebra and Geometry (MTMM.00.271), Algebra I (MTMM.00.307).

A strong foundation in those topics gives a better understanding of more advanced topics.

For example, in Basic II the topic of ray tracing requires students to have a good

understanding of 3D geometry; the topic of shadows will enhance the projection matrix

and requires students to understand projection.

56

4.1.1. Computer Graphics

The introductory topic titled “Computer Graphics” will give a general overview of the

areas, where computer graphics is applied. It talks about the layout of graphics

programming using API-s like OpenGL and WebGL. Furthermore, it includes an

introduction to the affine Euclidean space, which will be needed in the geometry topics.

4.1.1.1 Introduction

We start by describing the role of graphics libraries,

graphics API-s and the GPU. This is done in the

context of a JavaScript application. An example of a

graphics library is Three.js. An example of a

graphics API is WebGL. It is described how the

library uses the API to send calculations to the GPU.

The material ends with an example of a rotating 3D

approximation of a sphere that has the night map of

the Earth as a texture, bump mapping based on the texture and rotating clouds based on

Perlin noise blended to the texture (Illustration 12). The object also moves along a

predefined curve. That example is briefly described in the material and should give a good

overview, what can be achieved with mostly the techniques in Basic I.

4.1.1.2 Technologies

Because the course focuses on both a C++ and JavaScript application, this material gives a

comparison between them.

We introduce the notion of a C++ application that has the code executed on a relatively

low level, which makes it an ideal choice for computation-heavy real time applications

such as computer games. C++ can use OpenGL API to communicate with the graphics card

and there exists a 2D graphics library Allegro, which is often used to make 2D games.

The following material introduces JavaScript, which is usually run in a web browser and

thus is not as efficient as compiled C++ code. On the other hand, the Web allows other

people to run the code without the need to specifically download it or compile it

themselves. Hence, this would serve another target audience and graphics on the web can

57

Illustration 12: Example with a
texture,. bump mapping, blending,
noise generation, rotation and
curve following.

be done with WebGL API and optionally the use of Three.js graphics library.

4.1.1.3 Related Math

This material could be quite long and some sources, such as [55], have an entire chapter

dedicated to it. To keep the material concise and related for the students, it contains only an

overview of the affine Euclidean space, explains the difference between position and

direction vectors and shows how to create shapes by taking linear combinations of position

vectors. Most notably, it is shown how a convex combination of 4 specific position vectors

can define a square.

4.1.2. Introduction to Geometry

This topic delves more into the notion of coordinate systems and vectors. It lays out the

various notions in the field of geometry that are most important and essential for computer

graphics. Lastly, it describes what properties different polygons can have and how can you

represent polygons with only triangles.

In the end of the description of this topic several definitions are stated. This is a recurring

theme for most of the topics and should give students a clear overview, which terms will

be important and how do they relate to the following material.

4.1.2.1 Coordinate Systems

Here the material shows that the directions of the basis of a coordinate system need to be

agreed upon. It is shown that the idea of a character moving 3 units left and 4 units up,

may be quite ambiguous, if we have not agreed upon our coordinate system handedness

and what directions different basis vectors actually denote.

Together with a left-handed and right-handed coordinate systems we show that the positive

direction of an angle also depends on the handedness. This is an important concept that

should be considered each time there will be calculations with angles in the latter material.

To further connect the student's previous understanding with the current material and to

refresh the geometric thinking, the Gram-Schmidt orthogonalization process is also briefly

shown in this material.

58

4.1.2.2 Points and Vectors

This material shows the difference between position vectors (that in computer graphics are

called points) and direction vectors (that in computer graphics are called just vectors). It

mentions the importance of distinguishing between the two and states how homogeneous

coordinates are used to do that.

4.1.2.3 Polygons

Generally to render a meaningful shape in computer graphics, it should be constructed

from polygons (with a few exceptions). The material shows that the order of the points can

be specified to uniquely fix a certain polygon. Depending on the order and the actual

points, we can get simple or non-simple polygons. Simple polygons can be considered to

be convex or concave. Convex polygons should relate to the convex combination from the

previous topic and it is explained that triangles, being the most simple polygons, will

always be convex.

The material also explains that polygons can have a front face and a back face. This is

important from the graphics perspective, because it allows us to effectively ignore the back

faces of polygons without usually sacrificing the visual result.

Lastly, the triangle strip and the triangle fan are shown. It is told that these are often used

to construct larger polygons out of triangles.

4.1.3. Geometry and Transformations I

The topic starts with an example that shows how to scale a triangle with respect to the

origin by two. It provides the three vertices of the triangle in a 2D coordinate system and

asks the student to think what needs to be done to scale the shape. It is shown that

multiplying both of the coordinates with 2, the new coordinates would form a scaled shape.

Then it follows that multiplication with a particular matrix will achieve that

transformation.

After this it is mentioned that one could also think about the basis vectors and how the

transformation would affect those. When doing transformation it is often useful to think of

the transformation applied to the basis vectors, instead of a more complex geometric

object.

59

4.1.3.1 Linear Transformations

Because this topic covers only the linear transformations (that do not need homogeneous

coordinates), the notion of linearity of a transformation is defined and proved. It is shown

that all matrices with fixed elements will define a linear transformation on a vector space.

This should give students an understanding that there can be as many different

transformations, as there are different matrices.

4.1.3.2 Scale

Next, the scale transformation, that was also part of the example in the topic's introduction,

is defined and shown. The coefficients in the matrix

can either shrink, enlarge or keep scale the same for

the different coordinates / basis vector directions.

This material has the first transformation example

accompanying it (Illustration 13). It presents a square

that can be transformed with the scale

transformation. The example has two sliders

underneath it, which allow the user to change the

scale coefficients for x and y in the matrix. The

matrix presented is a 4×4 matrix that has the 2D

linear transformation in the top-left 2×2 part. The

full affine transformation matrix for a 3D space (

4×4) is shown, because later examples will modify

the different parts of it. This provides students

already a general way of thinking about the

transformations, without the need to build the full

matrix step-by-step.

60

Illustration 13: Scale
transformation example with the
full affine transformation matrix
shown. Example has sliders for
the x and y scale coefficients.

4.1.3.3 Rotation

The scale transformation is followed by the rotation

transformation, because it shows another common

linear transformation. Material could introduce the

shear transformation before rotation, but shear may

not be that relatable to students at first.

For rotation, the specific matrix is derived by

rotating the standard basis vectors by an angle α.

This should give students an understanding how

rotation is achieved using trigonometry. Otherwise

the nature of the rotation matrix may become a

missing link for the students.

It is specified that rotation is a linear transformation

only when we fix the angle α. That will cause the

elements of the matrix to become specific real

numbers, thus the proof of linearity has the

satisfying conditions.

Rotation is also accompanied by a example, where

students can change the angle α for a rotation of a

2D square around the z axis (Illustration 14).

4.1.3.4 Shear

Lastly, the shear transformation is introduced. It is

mentioned that this transformation will find a use

later in the material. At this point students should

acknowledge that such a transformation exists.

The example allows the student to do the shear-x

and shear-y transformations in 2D by specifying the

angle ϕ by which a corresponding axis gets tilted.

61

Illustration 14: Rotation
transformation example that has a
slider for rotating the square
around the z axis.

Illustration 15: Shear
transformation example. Allows
students to specify ϕ for shear-x
and shear-y transformations.

4.1.4. Geometry and Transformations II

This topic will extend the linear transformations to affine transformations to include the

translation. It also covers the notion that the order, in which transformations are applied

matters and affects the final result. Lastly, it shows a scene graph and explains how a stack

of matrices can be used to save and load transformation matrices, when traversing through

the scene graph.

The introduction starts by explaining that our goal is to move our geometry away from the

origin, to some specified locations in the space. When doing that, the transformations still

need to be applied in the correct order. This should give students an initial goal, to which

the material provides answers to.

4.1.4.1 Translation

The material starts with a simple example of a 1D world located on the y=1 line.

Students are faced with a problem to translate all of the objects in that world. This means

that the objects should all change their position by a same, fixed amount, regardless of

their previous position. They should also stay on the

y=1 line.

It is shown that if we apply shear-y transformation

on the 2D world, then the y coordinate of all the

objects stays the same, but x will change by a fixed

amount. This is the basis of the construction of the

4×4 augmented affine transformation matrix that

has followed all the interactive transformation

examples so far. Explanation continues, how a

translation in 2D could be a shear-xy in 3D. The

translation in 3D will be the shear-xyz in 4D.

The example in this material allows the student to

move a 2D square located on the z=1 plane, by

applying shear-xy on it (Illustration 16).

62

Illustration 16: Translation
example that allows student to
translate using shear-xy.

4.1.4.2 Multiple Transformations

After introducing all the main transformations, it is

logical to talk about applying many of them

sequentially. First it is shown that because matrix

multiplication is commutative, we can multiply all

the transformations together and then apply to the

vertices. This is the main reason why we use

matrices to represent transformations in computer

graphics.

Next, this material shows that extra care should be

taken with the order in which the transformations

are applied. It is done by an example, where one

transformation is rotation by 90° around the z axis,

and the second transformation is a translation by

(1, 2, 0) . Using matrix multiplication, those two

transformations produce a different matrix, when

multiplied together in a different order. It is

emphasized that the transformations are applied

from right to left.

The example shows a triangle that has a translation

and rotation transformations applied to it. The

example allows to specify different x and y

translations and an α for the rotation. There are two

buttons that specify in which order those

transformations are applied. Given the same

transformation, the resulting triangle will be

different depending on the order.

4.1.4.3 Matrix Stack

Here the material explains that there is usually a

dependency between different objects in the scene.

This dependency means that some transformations

63

Illustration 17: Multiple
transformations example. Order of
the specified translation and
rotation can be changed.

Illustration 18: Example that has
the smaller triangles as children of
the bigger one. Rotating the bigger
one also rotates the smaller ones
around it.

might be the same for some objects, but those objects may have their own extra

transformations.

This is illustrated by an example with two triangles located around a third, larger one.

Whatever transformation is applied to the third triangle, should also be applied to the first

two. The smaller triangles, however, can have their own transformations.

In order to multiply the transformations of one of the smaller triangles to the current

transformation, while still keeping a copy of the previous transformation, a stack can be

used. In the material there are illustrations that show how to use a stack while traversing

the scene graph.

The interactive example shows the recently described two smaller triangles around a third,

bigger one. Student can manipulate the rotation of the bigger triangle, which effectively

also rotates the smaller ones together with it. Another slider allows to modify only the

rotation of the smaller triangles (Illustration 18).

4.1.5. Frames of Reference and Projection

Having covered different transformations, this topic describes the important frames of

reference used in computer graphics. There are different key coordinate systems that make

up the standard graphics rendering process. Transformation matrices transform the

coordinates from one to another. One of the last such transformations is the projection

transformation. There are different types of projections, which are also covered together

with the matrices for them.

4.1.5.1 Frames of Reference

Frames of reference are described in the order that goes from our 3D space to the actual

2D screen coordinates. The object's local space was already shown in the previous

material, where geometry was described around some central origin of that object.

The next logical step is to specify a world coordinate system in which the different objects

are located. The world space is described as a space into which objects are transformed

with their own modeling transformations.

From the world space, we move on to the camera space. The transformation matrix is

derived from the camera's lookAt, up vectors together with its position. For simplicity we

64

assume that the up vector is already orthogonal to the lookAt vector. The derivation of the

right vector includes a reference to the Gram-Schmidt process, although in its simplest

form, we are only taking the cross product. This should show the students an application of

the cross product. After this, we apply the inverse translation and the inverse camera's

model transformation in a reverse order. For the students this should connect with the order

of transformations described in the previous topic.

The clip space and the canonical view volume are illustrated for the perspective projection.

It is mentioned that for an orthographic projection the initial view volume would be just a

cuboid. In order to achieve the canonical view volume for the perspective projection, the

homogeneous point normalization needs to be performed. Material mentions that the

perspective projection matrix changes the w coordinate of the homogeneous points and the

GPU does the division itself to get to the canonical view volume.

Lastly, a transformation from the canonical view volume into screen space is shown.

Although this transformation is performed automatically inside the standard graphics

pipeline by the GPU, from the student's perspective it is good to see that it is just a matrix

that does scaling and translation.

4.1.5.2 Projections

The material shows three different projections:

orthographic, oblique and perspective.

First, the orthographic projection is derived, because

it is the simplest. The derivation assumes that the

projection is symmetric, because that also simplifies

the resulting matrix.

The interactive example shows a rotating wireframe

cube projected with an orthographic projection.

There is a slider to zoom the cube. It is important for

the student to see that no depth perspective is

happening with orthographic projection. The front

and back faces of the cube are of the same size

(Illustration 19).

65

Illustration 19: Orthographic
projection example.

Secondly, forms of oblique projection are covered.

This is because the oblique projection is directly

derived from the orthographic projection. Here the

general oblique projection is shown, together with

the cabinet and cavalier projections. Students should

be able to relate this directly with engineering

drawing classes from high school or the way people

usually draw a cube on any 2D plane.

Interactive example shows a stationary cube and

allows the student to modify the two angles in the

shear-xy for the general oblique projection. There

are also modes for the cabinet and cavalier

projections, where the student can modify the one

free angle.

Lastly, the perspective projection is derived from the field-of-view (FOV) parameter and

the aspect ratio, as it usually is with perspective projection. The derivation includes similar

triangles and shows, why we need to divide every coordinate with -z. This should illustrate

that we can not represent this as another affine

transformation, but have to use the homogeneous

coordinate and the point normalization (w-division,

perspective division).

It is also shown that we need to transform the

existing z coordinate in order to preserve the depth

information. Specific scale and translation values

are derived in the material. Side-effect of those is

that the depth values will become non-linear. That is

illustrated by a table that shows the depth values for

a case, when near=1 and far=10 .

The example will show two cubes that rotate around

the world origin (Illustration 21). Students can

change the FOV or the value of the near plane. This

66

Illustration 20: Oblique projection
example.

Illustration 21: Perspective
projection example.

example should illustrate that with perspective projection we actually do get the

perspective effect that is natural in the real world. The cube in the front will seem bigger

than the cube in the back. Moving the near plane further away, will illustrate that some

parts of the cubes may be clipped by it, because they will be closer to the camera than the

corresponding value.

4.1.6. Shading and Lighting

With different transformations and frames of references covered, students should now be

ready to think enough about geometry to apply light calculations on it. This topic covers

the different shading and lighting models. The terminology is usually not that consistent

about this. The material uses the term shading to denote the choice, where to apply light

calculations, and lighting to denote, what light calculations would actually be performed.

The introduction mentions that usually light calculations include some values interpolated

from the vertex shader to the fragment shader. Definitions include the directional light

source and the point light source. In the material only the directional light source is

considered, because calculations with a point light source are generally the same.

4.1.6.1 Shading Models

Three possibilities for shading are described and

illustrated. Those include:

• Flat shading (per-polygon)

• Gouraud shading (per-vertex)

• Phong shading (per-fragment)

For all of those, the surface normals are shown on

the illustrations. It is described that depending on

the shading model, the total number of

computations varies. That is because historically

different shading models have seen a different

amount of use.

There is an example that shows an approximation of

67

Illustration 22: Example with a
sphere and a cube shaded with
flat, Gouraud and Phong shadings
and diffuse lighting. Sliders are
moved so that the objects have a
redish color.

a sphere and a cube shaded with all three shading models and the diffuse reflection. It

should be visible from the example that for a cube, the flat shading would be the preferred

choice, because there is no visible difference. In contrast, if we want to calculate correct

lighting for the sphere, then both the flat and Gouraud shading will produce an undesired

result. The example has sliders to vary the color of the objects. These should illustrate that

understanding this material gives students the ability to create differently colored objects

with correct light calculations (Illustration 22).

4.1.6.2 The Lambert Lighting Model

The Lambert lighting model models the diffuse reflection of light from the surface. It also

assumes that light reflects to all directions with an equal probability. This is illustrated in

the material by describing a photon going inside the material, bouncing around there, and

finally getting reflected in a random direction.

The amount of light reflected depends on the amount of light received by a surface unit.

This is illustrated by a beam of light, one unit wide, hitting a surface at different angles. On

a more perpendicular angle, there will be more light on the unit surface, on a grazing

angle, the beam covers a wider area.

The cosine of that angle needs to be calculated. The material describes how the dot product

can be used to easily achieve that. This should show students a very useful application of

the dot product. The same formula for diffuse light

reflection is written out for the red, green and blue

channels. It should be more graspable that way,

rather than if they were written as a vector equation

on the channels that uses also other vectors from

our affine space.

4.1.6.3 Ambient Light

Next, the notion of ambient light is introduced. It is

explained that usually light will bounce around all

over the scene and illuminate every point by some

amount. In the previous example there was no

68

Illustration 23: Example of a cube
and a sphere that have the ambient
term together with the diffuse
term.

ambient term added and students were asked to take a closer look at the parts of the

objects, where no light was directly shining upon.

The ambient term is introduced to the lighting calculations and there is an example of a

sphere and a cube that now also have the ambient term included (Illustration 23). As

before, students can change the color of the material.

4.1.6.4 The Phong Lighting Model

The third part of the simplest lighting models is the specular term. The material explains

that very few surfaces actually absorb and then diffusely scatter all the light. Many of the

surfaces reflect some portion of the light directly, and only some portion gets diffusely

scattered.

The material describes the Phong's specular term that uses a cosine of the angle between

the reflected light direction and the viewer direction. The cosine function is plotted and it

is shown that we need to raise it to a power in order to get a small highlight.

This specular term together with the diffuse and ambient terms make up the Phong's

lighting model that is now presented as a complete formula for all three color channels.

The example shows a specular highlight on a sphere

and asks the user to move the slider so that the

specular highlight would be small enough.

Furthermore, it is explained that the specular

reflection should usually have a white color, not the

same color as the diffuse or ambient terms

(Illustration 24). The example also demonstrates that

and asks students to configure the colors so that the

specular highlight is visible. Color sliders indicate a

full red on the left and full white on the right. When

both the specular and diffuse color are full red, then

the specular is not visible. The correct configuration

would have the diffuse color on red and the specular

color on white.

69

Illustration 24: Example with
configurable shininess power S,
diffuse and specular colors
varying from red to white.

4.1.6.5 The Blinn-Phong Lighting Model

The last material in this topic describes the Blinn-

Phong lighting model. The illustration shows the

halfway vector between the light and the viewer

direction vectors. It is also mentioned and

referenced that the Blinn-Phong model produces

more realistic specular highlights at grazing angles.

Further description explains that in some cases

(orthographic projection, directional light source)

the halfway vector can be precalculated, thus

increasing the performance of the fragment shader.

The example compares the Phong's specular

highlight with the Blinn-Phong specular highlight

(Illustration 25). It has a slider for the shininess, the

color and also for the directional light's direction. The latter is needed to move the light

source to a grazing angle.

4.1.7. Textures and Sampling

After students have learned about the light

calculations of a shape with color values specified

either per shape, per polygon or per vertex, a natural

thing to learn next would be texture mapping that

allows to specify more granular patterns inside a

polygon.

Introduction to this topic also includes an example

with a cube that has a face on one side colored blue

and the opposite face colored red (Illustration 26).

This creates a gradient on the other faces. This example should show the students, what

can be achieved with the material covered this far.

Next, the introduction describes that we could map a mathematical function to a polygon,

70

Illustration 25: Example that
compares the Blinn-Phong and
Phong specular highlights on an
approximation of a sphere.

Illustration 26: Example of a cube
with a gradient.

but similarly we can map an image (that can also be thought as a function) to it.

4.1.7.1 Interpolation

The most important part of texture mapping is how we interpolate the values between the

texels. That is why this material is written quite extensively, has a lot of illustrations and is

divided to upscaling and downscaling segments.

With upscaling we introduce the nearest neighbour and bilinear interpolations. Upscaling is

covered before downscaling, because with upscaling we mostly have only those two

options. Of course there are other interpolation techniques, like bicubic, but those are more

costly than the prior two. Also interpolating values for upscaling should be more easily

graspable because we always have only 4 neighbours from which to interpolate from.

With downscaling the nearest neighbour and bilinear interpolation are also shown first, but

after that there is an example, where sampling only the 4 neighbours will produce an

undesired result. That gives way for the mipmap material.

4.1.7.2 Mipmap

This material covers the idea that we can pre-downscale the image so that, when sampling

points that cover a larger area than the 4 neighbours provide, we can use the already

downscaled and averaged mipmaps. The same problematic example from before is shown

a solution with mipmaps.

Next the trilinear interpolation is described with an illustration.

Together with a description of anisotropic filtering

there is an example of a checkerboard pattern that is

viewed at a grazing angle (Illustration 27). The

example has buttons to either use no mipmapping,

use the bilinear filtering with the nearest mipmap or

use the trilinear filtering, where the results from two

nearest mipmaps are linearly interpolated.

Explanation of that example is also provided and it

describes the different artifacts that occur with no

mipmapping, the bilinear filtering and without

71

Illustration 27: Checkerboard
pattern viewed at a grazing angle.

anisotropic filtering.

This material ends with a brief overview of texture atlases and a possible color bleed that

can occur if mipmapping is used together with them. There is a reference there to an article

[56] that describes the topic in more detail for the students, who find that interesting.

4.1.7.3 Aliasing

The last material in this topic describes the effect of

Moire aliasing, which occurs when we sample a

high frequency pattern with a too low sampling rate.

This is illustrated by undersampling a sine wave and

getting another (alias) sine wave as a result.

The example here is of a function that increases in

frequency as it is sampled further away from 0.

There is a slider that specifies the step, at which we

sample this increasing pattern. When the sampling

rate is too small and frequency gets higher,

noticeable Moire patterns will appear (Illustration 28).

4.1.8. Blending

This topic was written by Jaanus Jaggo, who also

implemented an example occurring here. The main

goal of the blending topic is to provide an overview

and understanding of the process of rendering

different fragments behind each other and mixing

together the color values.

4.1.8.1 Depth Buffer

The material points out the perspective projection

matrix derived in the Projections material. It should

relate to the students that we tried to bring the z

value along, when doing a projection. The

calculations for the z value are written out and it is

72

Illustration 28: Example of a
function with increasing frequency
sampled at a low enough sample
rate to produce Moire aliasing.

Illustration 29: Example
illustrating the depth buffer.

up to the students to see that those are the same calculations that were done with the

matrix, and the w-divide afterwards.

Then the z values are normalized to a range [0..1] and mapped on an integer buffer. The

naterial also recapitulates that in the case of perspective projection there is a lot of

precision near the camera and it decreases away from the camera. Result of that can be an

effect known as z-fighting.

Example here shows the depth buffer values that are mapped to a displayable range

(Illustration 29). Students have a choice to see the depth buffer values either in a non-linear

or linear mapping. There are also sliders to move the camera away from the objects in the

scene, and change the near and far planes.

4.1.8.2 Color Blending

After covering the depth buffer, students should have an understanding, how fragments are

determined to be in front of each other. This forms the base for the description of the

general blending formula presented in this material. That formula is used to demonstrate

the conventional alpha blending, premultiplied alpha blending, additive blending and

multiplicative blending.

4.2. Basic II

This module consists of a variety of different topics that need a good understanding of the

Basic I topics to proceed with. There is no single focus, rather it is a collection of computer

graphics related topics that students can find useful in their further studies of the field. The

choice of topics was mainly made based on the topics covered previously (Fall,

2013/2014) in this course.

The topics connect with a variety of different other subjects, for example Curves topic

needs a base understanding of derivatives from Calculus I (MTMM.00.179) and curve

fitting from either Numerical Methods (MTMM.00.005) or Scientific Computing

(MTAT.08.010). The Procedural Generation topic includes a bit about formal grammars

that are usually taught in the Automata, Languages and Compilers (MTAT.05.085) course.

With Ray Tracing and Global Illumination topics we exceed the real-time performance

limits of the GPU, which are seen in the Parallel Computing (MTAT.08.020) course. The

73

Space Partitioning material includes data structures that are often covered in the Advanced

Algorithmics (MTAT.03.238) course.

After going through this module, students should be able to investigate different modern

computer graphics algorithms themselves with less effort than it would take otherwise.

4.2.1. Modeling and File Formats

This topic was written by Timo Kallaste. The reason for it being the first topic in this

module is that the students at this point have modeled their geometry using simple

geometric primitives. It serves as a fitting continuation for them to now be able to import

models made in a specific modeling software and see that the transformations and lighting

calculations apply to those models as-well.

From the organizational perspective of the course, the practice session is the same for the

Basic II and Game Engines module students. The latter will start to then delve further into

different modeling techniques and game engine possibilities.

4.2.1.1 OBJ

This material describes the OBJ file format that is often used to model static geometry. In

the material it is emphasized that the reason lies in the fact that OBJ does not keep the

object's hierarchy. This should relate to the scene graph topic for the students.

4.2.1.2 FBX and Collada

The material here describes the more complex file formats that do preserve the object's

hierarchy and also allows other data, like animations, to be stored and transferred.

4.2.2. Environment Mapping

The Environment Mapping topic first introduces the notions of the sky box and the sky

dome. The description is again written in a problem-oriented fashion, where the question

is, how to fill the background of our scene with something meaningful. Mapping a texture

to the sky box or a sky dome is already considered environment mapping. The further

material shows how to create reflective objects by mapping the existing environment onto

them.

74

4.2.2.1 Cube Map

This material describes first our goal to create a reflective object in the scene. In order to

further illustrate that, the derivation of reflecting an incident vector from a point is given.

The material then describes that sampling the reflection directly from the sky box is an

approximation. The images on the sky box are considered to be infinitely far away and

thus the location, where we reflect the incident vector, can be considered to always be the

center of the scene. In order to solve that, a cube camera (6 perspective cameras) can be

situated in the object's center and the scene can be rendered from that every frame. Those

will create another cube map, from which we can sample to make the object reflective. The

material has illustrations of that and also mentions that this has drawbacks for self-

reflections.

The example accompanying the material is a scene,

where a cube map of Tallinn's Town Hall Square is

mapped to the sky box, there is a reflective sphere

and the camera moves around that sphere

(Illustration 30). The images of the cube map are

taken by E. Persson [57]. Student has a possibility

to try out a cube or a tube shape instead of the

sphere. There is also an effect that creates a number

of floating colored spheres in the scene. This should

show that in order to get also the reflections of

those colored spheres, we do have to render the

scene with the cube camera. Otherwise we do not

know, how they currently look from the reflective

sphere's perspective.

75

Illustration 30: Example of a cube
map, where a number of colorful
spheres are floating around. They
are also seen from the reflection.

4.2.2.2 Sphere Map

There is also a brief material on the sphere map that

describes the technique and why it was historically

used first. The comparison with a cube map is

provided.

The example enables the student to rotate the camera

via a slider and turn on and off the sphere map

regeneration. If the regeneration is turned off, and

the camera is rotated 180°, then the sphere map has

visible loss of detail and a blind spot exactly behind

the sphere, opposite of where the previous sphere

map was rendered from (Illustration 31). The

example also allows the student to actually see the

rendered and mapped sphere map.

4.2.3. Curves

So far students had only seen rough approximations of curved surfaces. In reality, many

things are modeled using curves and curved surfaces. Also, with the advent of tessellation /

geometry shaders, the construction and properties of curves have become important topics.

Introduction starts by describing the tessellation,

again in a problem-oriented approach. Then it offers

a solution in the way of an interpolating cubic

polynomial curve, together with the derivation of it.

During that, the algorithm for constructing a curve,

given a number of constraints and the parameter

vector, is also presented.

After constructing the curve, a notion of a spline is

introduced and the focus shifted to constructing

many curves that fit together in some smooth way.

This is also, where the formal definition of

76

Illustration 31: Sphere map
example, where the sphere map
regeneration is turned off and the
camera is rotated so that the loss
of detail and a blind spot is visible.

Illustration 32: Example of two
manipulatable cubic interpolating
polynomial curves. The entire
spline is not C1 -smooth.

smoothness of a curve (or spline) is given.

The example has the previously constructed cubic interpolating polynomial curve. Student

can drag the red control points around to change the shape of the curve. There is also a

slider that adds another 3 control points and another interpolating cubic curve (the next

segment of a spline) to it. It is visible that with this construction, generally the spline will

not be C1 -smooth.

4.2.3.1 Hermite and Cardinal Curves

Students are reminded that for the entire spline to be

C1 -smooth, the derivatives at the knots need to

match. Another set of constraints are constructed to

satisfy that condition and a spline is found with the

same method as before. This shows the students that

modifying the constraints will create another curve,

while the actual construction process stays the same.

In the Hermite curves part, the constraints on the

derivative are taken by specifying two of the

parameters to indicate the derivatives. This means

that the derivatives can be modified, by changing the

parameters.

The example shows such a spline, where students

can modify the parameters for the control points and

the parameters for the derivatives directly

(Illustration 33). As seen from the example, and also

described in the text, constructing such a spline is a

bit unintuitive.

That problem is tackled with Cardinal curves, where

the derivatives are calculated from the previous and

the next control points. This shows the students that

it is possible to use control points, through which the

curve generally interpolates, to find and constrain

77

Illustration 33: Hermite spline
example. Students can interact
with the control points (red) and
the derivative parameters (yellow)
directly, by dragging the
corresponding points.

Illustration 34: Cardinal spline
example. Yellow lines indicate the
derivatives, curve passes all but 2
of the control points.

the derivatives automatically.

A special case of Cardinal curves, the Catmull-Rom curve, is also described.

The example includes a Cardinal spline that has the found derivatives shown on it, but

modifying them means modifying the interpolated control points. This should be more

intuitive to control the shape of the of the spline and still keeping it C1 -smooth. There is

also the tension slider, where tension=0 creates the Catmull-Rom spline.

4.2.3.2 Bezier Curve

This material starts with the geometrical construction

of the cubic Bezier curve. It shows to the students

that it is also valid to come up with a constructive

algorithm for something. That construction can lead

to the same conclusion as the mathematical

derivation would. The material does exactly that.

The de Casteljau's algorithm is presented together

with an analysis that derives the basis and constraint

matrices of the Bezier curve.

Important properties of the Bezier curve, affine

invariance and boundedness by the convex hull, are

emphasized.

The example presents a Bezier spline, where the degree of the curves can be changed. It is

explained that in the example each segment is maximally smooth, but the entire spline is

only C0 . Brief description, how to construct smoother splines, is given and there are extra

references ([58] and [59]) for further reading. One of the tasks also includes constructing a

smoother cubic Bezier spline. Example also has an animate button that shows the steps of

the de Casteljau's algorithm.

78

Illustration 35: Bezier spline
example that is running an
animation of de Casteljau's
algorithm for a cubic spline.

4.2.3.3 B-Spline Curve

Here students are given a closer look at the blending

functions, derived and used before. The material

explains that if we create higher degree blending

functions recursively, a smoother approximating

curve can be constructed. That is the basis of

constructing the B-Spline. It is explained that if we

take the blending functions to be of high enough

degree, then we can create a smooth enough curve. It

is also explained that if we repeat the knots at the

endpoints, when constructing such a curve, we can

make it interpolate the endpoints, without losing

smoothness. A more detailed description of this

construction is referenced in [60].

The example illustrates such a technique and shows

manipulatable B-Spline curves up to the 7th degree.

The knot vector is also shown and a button can be

used to toggle the repetition of the end knots.

Furthermore, the actual blending functions are drawn

in the example, on the bottom left part (Illustration

36).

4.2.3.4 NURBS

The last material in the curves topic describes the

non-uniform rational B-spline curves. The material

on the B-Spline curves and Bezier curves should be

enough to show students that different weights can

be assigned to the control points, thus creating the

NURBS curve. It is mentioned that the NURBS

curves find a lot of use in modeling curved geometry.

This should give the students a background to

79

Illustration 36: B-Spline curve
example, where a 3rd degree
functions are used for blending.
The curve is C2 smooth. The
knots are repeated at the ends, the
curve interpolates the endpoints.

Illustration 37: NURBS curve
example. Different weights can be
changed for the control points.

understand the NURBS, when they come into contact with it in their further studies in the

computer graphics field. In the end of this material, there is a reference [61] to another

material that explains the same concepts from a bit different perspective.

The example is similar to the B-Spline curve example, but with different sliders to change

the weights of the control points (Illustration 37).

4.2.3.5 Procedural Generation

Procedural generation is a vast topic and there are many techniques that can be

implemented with a varying level of granularity. This is described in the introduction, and

here we just cover briefly the basic generation from noise, the Lindenmayer-systems and

the particle systems, including the Boids algorithm. Procedural generation falls under the

computer graphics, because here we focus mostly on

the visual results of the procedural generation.

Students have so far leaned about creating geometry

from simple geometric primitives, modeling it in a

specific modeling software, but generation of

complex geometry or textures procedurally is also a

valid and useful option.

4.2.3.6 Noise

This material describes first the basics of random

values, and then proceeds to describe value noise,

which can be though as a sum of interpolated

random values of different frequency. Illustrations

of that are shown and different uses of such

procedurally generated image are mentioned. The

source of that algorithm [51] is referenced. This is

proceeded by the description of Perlin noise and

Ken Perlin's original algorithm [62] is referenced.

The example of both value (Illustration 38) and

Perlin noise enable students to zoom into the

80

Illustration 38: Example of value
noise, which is a weighed sum of
differently sampled noise texture.

random texture with a varying level of zoom. It shows the sum of the different levels, each

level separately and also allows to specify, with which weight each of the levels are

considered in the sum.

4.2.3.7 L-Systems

Context free grammars are described and a

connection is mentioned between formal grammars

and their use of analyzing program code. The notion

of self-similarity is introduced. Analogy between

program code and procedural generation is stated.

From that, a derivation of the stochastic systems is

constructed and this results in context free L-

systems. Reference to Lindenmayer's original article

[63] is given and a simple example is also shown.

The example is based on that example and allows

the student to change the probabilities of rules, the

number of iterations, and to regenerate different

tree-like structures. The latter are drawn with red

lines and rotated around. It is mentioned that if the

probability of one of the rules would become 1, we

would no longer have a meaningful stochastic

system.

4.2.3.8 Particle Systems

The last material in the Procedural Generation topic

explains the notion of particle systems. These are

quite extensively used in computer graphics to

create a variety of effects. First a very simple idea of

an emitter and particles with a random lifetime is

introduced.

An example of that includes an emitter that moves

81

Illustration 40: Particle system
example. The lifetime, decay and
corresponding random ranges can
be modified. Emitter moves around
in a circle.

Illustration 39: Example of a L-
System. The currently generated
word is shown and sliders allow to
change the probabilities of rules
and the number of iterations.

around in a circle and emits particles from a pool. Each particle has a random direction and

a lifetime. Students can modify the lifetime and a random range, from which a value will

get added to the total lifetime. Similarly they can modify the decay value, from which the

particles will start to get more transparent (Illustration 40).

After this it is described that particles could also have rules, according to which they move

around. Also there could be a fixed number of particles that will always exist. This creates

the basis for the Boids algorithm, for which the rules of cohesion, separation and alignment

are described. Some further modifications and additions to the algorithm are referenced

([64] and [52]).

The example shows a flock of particles following the

rules of cohesion, separation and alignment

(Illustration 41). The student can modify the

importance of cohesion, by changing the coefficient,

the mass center is taken into account with. Repulsion

and Repulsion th. (threshold) sliders configure the

separation rule, and speed center modifies the

alignment rule. There is also a slider that implements

an additional rule of the particles following a certain

target. That target will move around in a circle. The

slider to control that rule is called Trajectory. In this

example, all the particles take into account all others

ie have a global neighbourhood. There are examples,

where only a certain radius is taken into account.

4.2.4. Ray Tracing, Space Partitioning, BVH

The Ray Tracing topic shows the students another way to render a scene, and also prepares

them for a global illumination technique called path tracing and detecting if an object is in

shadow. The introduction starts with the idea of rendering by casting rays into the scene for

each pixel, and draws a comparison that so far the rendering has been the other way

around. Ray-triangle intersection detecion is briefly mentioned and it is noted that this can

become slow if the geometry is not kept in a specific data structure.

82

Illustration 41: Example of the
Boids algorithm, with sliders to
modify each of the 3 base rules.
Also a slider to make the particles
follow a moving target.

4.2.4.1 Ray Casting

Material starts with a formal parametric definition of a ray and proceeds to derive the

Möller-Trumbore ray-triangle intersection algorithm [65]. The points in the triangle are

represented in Barycentric coordinates, with 2 degrees of freedom. These degrees are

represented as u and v. The derivation continues by equating the parametric representation

of a triangle and a ray. Next a system of linear equations is solved with Cramer's rule and a

scalar triple product is used to calculate the solutions using coordinates. Different tests for

the final solution are described. The original article that describes this is also referenced.

After this it is mentioned that we can use ray casting (casting a single ray and finding the

closest triangle it intersects) in a number of different situations. Especially, if we just want

to know, what other object is the closest in a certain direction from one object.

4.2.4.2 Ray Tracing

Ray tracing is explained in a problem-oriented

approach, where the problem is to model a reflective

surface. The idea of tracing a ray to the reflection, to

find the incident light, is described. Refractions

inside a semi-transparent material are also

mentioned. The Material deliberately ignores the

concept of shadow rays at this point.

The example consists of a ray traced scene, where

there is a moving reflective sphere inside. Because

this is a costly algorithm, a pause button is added to

the example and initially the example starts in paused mode. There are buttons to control

the existence and movement of the reflective sphere (Illustration 42).

4.2.4.3 Space Partitioning

This material briefly mentions space partitioning data structures: octree, K-D tree, binary

space partitioning. They are described by a problem-oriented approach, where we have 15

rays testing intersections with a 20-sided icosahedron. Each method has an illustration and

the total number of ray-triangle intersection tests is estimated. Material references a nearest

83

Illustration 42: Example of a ray
traced scene with a reflective
sphere.

neighbour search demo [66] that further illustrates the ideas behind the octree and K-D

tree.

4.2.4.4 Bounding Volume Hierarchy

Besides the space partitioning methods described in the previous material, in computer

graphics, we usually want to also create a bounding volume hierarchy. Benefits of this are

mentioned in this material.

4.2.5. Global Illumination

This topic starts by describing the local illumination done in the standard graphics pipeline

way of rendering and compares it to the actual global illumination. Specifically, the

ambient term is focused on. The material also mentions the Cornell Box scene. The

rendering equation is introduced, briefly described and illustrated.

4.2.5.1 Path Tracing

The algorithm of path tracing with direct lighting

[67], is described and illustrated in this material.

Different descriptions include the cases, when the

random ray: hits the light source, hits another object,

hits nothing. The recursive formula for this is shown

and, as before, the shadow rays are ignored.

The example has a path traced scene, where there is

an approximated sphere in the middle of a room.

Students should see that with bounces higher than 0,

the indirect illumination from the differently colored

walls, is shown on the floor, the back wall, the

ceiling and the sphere. Because this is again a

computationally heavy algorithm, the example

includes a pause button and starts paused. The

number of samples averaged together is shown

(Illustration 43). It is visible that if the number of samples is low, the render is noisy.

84

Illustration 43: Path trace
example that has rendered and
averaged together 831 samples.
The number of bounces for the
rays is 1. Indirect illumination
from the walls is visible on the
sphere, the floor, the back wall and
the ceiling.

4.2.5.2 Photon Mapping

This material mentions that there are different global illumination algorithms, like radiosity

and photon mapping. Then it describes and illustrates the main idea behind photon

mapping. Students should see that there are many quite different approaches for realistic

scene illumination.

4.2.6. Shadows

The Shadows topic was left last, because it is more clear if the students have already

covered global illumination (especially path tracing) before this. Reason being that with

global illumination we can easily get the correct shadows, thus it provides a good

comparison with the usual shadow algorithms.

The introduction describes the essence of shadows and illustrates them for an area, a point

and a directional light source. Definitions for umbra, penumbra and antumbra are given. A

material that includes different techniques for soft shadows in the case of a directional light

source [68], is referenced.

4.2.6.1 Global Illumination Shadows

This is where the idea of shadow rays is explained.

Students, having previously just seen path tracing,

should be able to connect the shadow rays with that

easily. It is illustrated that doing shadow rays for a

point light source, still does not give us soft

shadows, so an area light and random shadow rays

to it are used instead.

The example includes a modified path tracing

example, where there are shadow rays shot at the

area light source for each hit point. From this

example, students should be able to see the

penumbra and umbra parts of the shadow

(Illustration 44).

85

Illustration 44: Example of a path
tracer with shadows. The umbra
and penumbra of the cube are
visible on the floor.

4.2.6.2 Shadow Mapping

Here the current popularity of shadow mapping is mentioned. Then the material proceeds

with a problem-oriented approach to derive the shadow mapping algorithm. Illustrations

and descriptions are made for the point and directional light sources. Problems with the

anisotropic sampling of the shadow map and the need to specify a big enough view volume

for the shadow camera, are mentioned. The first problem can be solved with trapezoidal

shadow maps and their description [69] is referenced in the material.

The example is of a scene with two rotating green

spheres, rotated back wall and a yellow box. Each of

those casts a shadow from the point light source

located in the center of the scene (Illustration 45).

Controls allow students to see the different shadow

maps rendered with a cube camera from the light

source. The depth values are converted into a visible

range of monochrome colors. There are also controls

to change the resolution of the shadow maps.

Another button allows to take more samples from the

maps and seeing if the current fragment would be at

the edge of a shadow, in which case more of the light

is considered. Students should be able to see the

aliases on the edges of shadows and that they get

worse, if the shadow map resolutions are lower.

4.2.6.3 Shadow Volume

The last material in the Shadows topic describes the shadow volume technique that is also

called stencil shadows. Material begins with describing, how to find the silhouette edges of

a polygon from the light source. Then it proceeds with constructing the volume by

duplicating the vertices on the silhouette edges, making faces between them, and extruding

the duplicates with the dark cap away from the light. After this, students are asked to think,

how far should the dark cap be extruded.

The answer to this question is to infinity, after which, the projection matrix is enhanced to

86

Illustration 45: Shadow mapping
example. The aliasing on the edges
of shadows is visible. Currently a
128×128 sized shadow maps are
rendered.

have the far plane in infinity. Then it is explained how points in infinity can still be seen or

visualized in the projection. Students should be able to connect this material with the

perspective projection matrix presented in the Projections material.

Finally, the step-by-step shadow volume algorithm is presented.

The example has the same scene, as in the Shadow

Mapping material, but this time it implements the

shadow volume algorithm. Different buttons allow

to render the shadow volumes (which can have

configurable back or front face culling), the shadows

rendered with a white color, or the scene rendered

normally (Illustration 46). Students should be able to

grasp, how the shadow volumes actually look like,

when rendering the shadow volumes only. They

should also see that the edges of shadows here do

not produce aliasing that occurred in the shadow

mapping example.

4.3. Game Engines

The entirety of this module's material was written by Ats Kurvet and Timo Kallaste.

Details of that material are not part of this thesis. The aim of the module is to provide

students with a higher level approach to computer graphics in the form of using the

knowledge from the course in a modeling software Blender and a game engine Unreal

Engine 4. With that in mind, the material was constructed to support different key aspects

of the two pieces of software. Often the material covers similar aspects that are taught in

the lectures, for example Rigging and Animation topic is connected with the Curves topic,

because curves are used to specify how different animations are performed.

Overall freedom was given to Ats Kurvet and Timo Kallaste to construct the material in a

way that would benefit the students most from their perspective.

87

Illustration 46: Shadow volume
example. Normal rendering is
shown. The shadows do not have
aliasing on the edges, as was the
case with shadow mapping.

5. The Tasks

Initially the idea was to have tasks for each material, but when creating the tasks, it seemed

preferable to have tasks per topic. This creates more freedom to have different tasks that

are related to the topic, but can cover material that is not explicitly written under the

materials. The granularity of the material also would have not been suitable for the tasks.

In this thesis the focus is, again, on the tasks that are in Basic I and Basic II modules. The

creation of tasks in the Game Engines module was assigned to Ats Kurvet and Timo

Kallaste, with a freedom to create them as they saw fit.

The tasks start out with a description of the technique that is part of the solution. Often the

ideas under the material were repeated, but with a more practical perspective. For example,

in the Cube Chopper task, the idea of front- and back-facing triangles was important and

an illustration of a cube with indexed vertices was shown. Similarly, the descriptions had

references to external sources for additional reading.

After this, a goal of the task was stated. This included solid statements, what should be

done in the task. Together with the statements, there were also screenshots that showed,

how the final result should look like. This is important from the student's perspective,

because that way they can look at the screenshot and see right away, if their result

resembles it or not.

Finally, additional guidelines for JavaScript and C++ were given, together with the links

for the base code for both of them. Base code usually included a program that had missing

pieces of the parts required for the technique the task was based on. This allowed the

students to have some code that already worked (or would work with minor modifications)

and they could focus on the actual problem attributed to the task. The base code in

JavaScript was made by me (with the exception of the task Soft Particle Chopper, which

was made by Jaanus Jaggo), and most of the base code in C++ was made by Margus Luik.

The C++ base codes, were constructed as Code::Blocks [70] projects, which was the

choice of software in the course.

JavaScript solutions focused on Three.js, while still having the students first implement

some low-level algorithms, before using the corresponding classes from the library. The

goal of those tasks was to not only teach students computer graphics related algorithms,

88

but have them see that modern browsers can also easily render 3D graphics. The more

computation-heavy algorithms would become slow however, because of the bottleneck of

JavaScript that is interpreted by the browser.

C++ tasks were made with OpenGL 4+, using different libraries like GLM [71] and GLFW

[72]. This approach was meant to show students also a lower level approach to computer

graphics. Because students vary in their previous skills and further goals, it is important to

provide them with a couple of alternative ways, from which they can pick the one that suits

them the most.

5.1. Basic I

5.1.1. Computer Graphics

The first week started with 5 tasks that each had the

same problem, but used different environments. The

idea was to give students some initial experience with

both JavaScript and C++ technologies. All the tasks

consisted of finishing a function that draws an

equilateral triangle at a certain position. This problem

had the students first thinking about the geometry of

an equilateral triangle, and fixing the one degree of

freedom, they had, in order to specify one. Then it

showed an example of a software design question: if

one has to complete a function to draw an equilateral triangle at a given position, what

would be the most logical approach. There was even some discussion about that, if it

would be more logical to fix the inner radius, cirumradii or the side length.

5.1.1.1 Hello Canvas

The equilateral triangle was required to be drawn, using HTML canvas drawing functions.

This required students to browse the documentation and find out, what functions to use and

how to use them in order to draw a predetermined path.

89

Illustration 47: Equilateral
triangle required to be drawn in
one of the tasks in the first week.

5.1.1.2 Hello WebGL

The task introduced WebGL as a drawing context. This introduced the notion of shaders,

vertex arrays, and the normalized device coordinates. Students also had to consider the

aspect ratio of the viewport.

5.1.1.3 Hello Three.js

In contrast to WebGL, the Three.js graphics library wrapped many of the previous low-

level things. Students had to consider the THREE.Vector3 and THREE.Face3 classes, in

order to draw the triangle. Emphasis was put on the fact that the triangle face had to point

towards the screen, ie vertices be in the counter-clockwise order.

5.1.1.4 Hello Allegro

This introduced the 2D graphics programming library Allegro for the students. The task

illustrated an infinite event loop and Allegro functions for creating windows and drawing.

5.1.1.5 Hello OpenGL

The task showed the use of GLFW for creating windows and used older OpenGL 3.0, to

give students the background information, how graphics were done before the newer

OpenGL versions.

5.1.2. Introduction to Geometry

This week consisted of 2D graphics drawing, rasterization and Barycentric coordinates. We

used 2D graphics, because 3D was not required yet, and we wanted to give students the

experience of dealing with 2D. JavaScript tasks used the canvas drawing functions and C+

+ tasks used Allegro. In JavaScript, specific helper classes were constructed, to ease the

manipulation of points and colors.

5.1.2.1 Bresenham Line

This included the standard Bresenham line rasterization algorithm. The base-code was

structured to have students implement all the choices for a line (steep descending, steep

ascending, non-steep descending, non-steep ascending) in separate branches. The idea was

90

to show students that in some cases there are algorithms that need to be extremely fast and

thus the code can sometimes be less compact. This also introduced the idea of rasterization

for the students.

Some students did try out different implementations (including compact ones) in this task.

The performance of those solutions was compared against the recommended

implementation using jsPerf [73].

The base code included lines that were drawn with ordinary canvas or Allegro line drawing

functions and had the students to draw a similar picture with the Bresenham algorithm

(Illustration 48).

5.1.2.2 Bresenham Triangle

The task introduced students to the idea of Barycentric coordinates of a triangle. This was

an important idea to cover, before moving on to shader interpolated values in 3D graphics.

Students were asked to use a similar idea, as in the Bresenham's line, to rasterize the lines

between the vertices of a triangle. This should be done in a way, where at each iteration, a

vertical (or horizontal in C++) line could be constructed between two rasters. That line was

further rasterized. When rasterizing, the Barycentric coordinates were required to be

calculated and colors assigned to each vertex interpolated to a corresponding pixel.

The JavaScript base code included a rotation animation of a triangle, and the notion of an

event loop in JavaScript was introduced. It also included the outline of the triangle drawn

91

Illustration 48: Example output shown in the task description.
Left image has lines drawn with canvas drawing functions and
the right was the expected output from the Bresenham line
algorithm.

with canvas drawing functions for reference to the students Illustration 49. C++ code

included a triangle drawn in different positions.

5.1.2.3 Wu Line*

This task was requested by one of the students, and thus was created as a bonus task. No

base code was given, but task description included the instructions for rasterizing a line

with the Wu line algorithm and a reference, from where a pseudo-code could be found.

5.1.3. Geometry and Transformations I

This week marked the start of 3D graphics and also introduced the Chopper scene. This is

a scene that is prominent in a number of subsequent tasks. The idea was that students will

then be familiar with a one scene where they can try and implement different algorithms.

The Chopper scene includes a hangar with 3 walls, ceiling and floor modeled as rectangles.

In the center there is a helicopter that consists of a body and two rotating blades.

The topics Geometry and Transformation I and the Geometry and Transformation II were

covered in one week.

5.1.3.1 Cube Chopper

Students were asked to manually create a cube by specifying vertices and faces. That cube

would be basis of the body and the blades for the chopper. The cubes were to be assigned

in an hierarchy and different transformations applied to them, to make the result resemble a

92

Illustration 49: Still image of a triangle outline drawn with
canvas drawing functions for reference on the left and the
expected outcome from the task solution on the right.

chopper. Illustrations were provided to help the students specify the correct order of

vertices to make the faces face outwards. The chopper was colored with uniform colors

(Illustration 50).

For the JavaScript task, students were told to avoid the THREE.BoxGeometry in this task,

but consoled that they could use that in the subsequent tasks. In C++, OpenGL 4+ was

introduced together with the GLM library to create transformation matrices. A matrix stack

was used to specify the hierarchy. The function to draw the hangar walls, gave an example

of its use.

The blades were requested to have a rotation animation. This had the students think about

the time in which one iteration of the drawing loop takes place, and how to make the

rotation occur with a given speed, independent of the performance of a computer.

5.1.3.2 Flying Chopper

This task had the students try to implement some additional things that they would find

most interesting. Those included:

• Move the chopper by sampling some function.

• Learn how to fetch user input and transform the chopper according to it.

• Vary the speed of the blades rotation by the chopper's own movement.

• Manipulate the camera.

• Collision detection.

93

Illustration 50: Still of the chopper to be created in the
Cube Chopper task.

5.1.4. Geometry and Transformations II

This topic was covered together with the previous one.

5.1.4.1 Shader Chopper

This task had the students further research the shaders. Specifically the task consisted of

sending assigned colors for the vertices as attributes to the shaders, and interpolating the

fragment color based on the vertices. This should remind the students the Bresenham

Triangle task, where colors were also interpolated.

The task also required the blades to both have the darker ends in the middle and lighter

ends pointing outwards (Illustration 51). Solutions to this included rotating one of the

blade cubes 180°, or specifying another parameter in the shader's construction function that

switched the colors. The solution where one of the blades was scaled with a negative

coefficient in one axis, was wrong. This was explained to the students, who submitted that

solution, together with an illustration, why this was wrong.

5.1.5. Frames of Reference and Projection

This week lowered the pace of tasks a bit, for the students to think more about the material

covered so far. There was only one task that included the manipulation of different cameras

to get a feel of them.

94

Illustration 51: Still image showing the boxes of the
chopper being colored with gradients.

5.1.5.1 Projected Chopper

The task had the students change the field-of-view (FOV) parameter of the perspective

camera based on the user input. The task also posed a question, what happens if the FOV is

below 0°, or over 180°.

Secondly, an orthographic camera was supposed to be constructed and changed to show

the orthographic projection of the chopper from the top, front and side (Illustration 52).

Configuring the orthographic camera had the students also think about the world space, in

order to assign the correct up-vector for the camera. That alternation was switched every 3

seconds in the JavaScript code, or based on the user input in the C++ code. Idea was to

show the students the orthographic projection and remind them how it looks (because this

is often covered in engineering drawing classes in high-schools, especially the front, top

and side views of objects).

The result of the orthographic projection was to be shown in the bottom right corner. To

achieve this, students had to configure different view ports and enable scissor testing.

5.1.6. Shading and Lighting

Here the tasks consisted of implementing two different shading and lighting models and

also research and implement gamma correction.

95

Illustration 52: Perspective camera has the FOV changed
and an orthographic projection of the chopper from the top
is shown in the bottom right corner.

5.1.6.1 Shaded Chopper

Task was about calculating the lighting using Phong lighting model. This was done with

two shading models: the Gouraud (per-vertex, Illustration 54) and Phong (per-fragment,

Illustration 53). Alternation between them was based on user input.

Students had to think about the vertex and fragment shaders, and see, how values are

interpolated between them. Description of all the required shading and lighting models was

also restated with a practical approach in the task description.

In order to see the specular highlight more clearly, the chopper's body was replaced with an

approximation of a squashed sphere. There was also a question for the students, to explain,

why there is no specular highlight in the back wall with Gouraud shading.

5.1.6.2 Blinn Chopper

The task described the Blinn's specular term and asked the students to change the result of

the Phong shading from the previous solution to implement the Blinn lighting model.

5.1.6.3 Gamma Chopper

The task referenced the GPU Gems article on gamma correction [74] and asked the

students to read that. After that, gamma correction (with γ=2.2) was to be applied for the

colors in the previous solution. Because the scene colors were configured for no gamma

correction, then students were also first asked to do gamma decode on the inputs.

Results were described to have a more sharper edge between the directly illuminated and

not illuminated areas (Illustration 55 and Illustration 56). The areas with no direct

96

Illustration 54: Result of the Gouraud
shading.

Illustration 53: Result of the Phong
shading.

illumination were supposed to look lighter (because the ambient term would specify a

higher value in sRGB after the gamma correction).

5.1.7. Textures and Sampling

The Textures and Sampling topic did not include the chopper scene in order to focus more

on the described algorithms, and not the chopper.

5.1.7.1 UV Mapping

This task consisted of students specifying the UV mapping of a texture directly for the

vertices of a plane and then using the interpolated UV coordinates to sample from a texture

in the shader. The idea was to show that UV mapping an image to a quad is not

complicated and give students the experience of using textures and sampling them in the

shader. It was shown that we can interpolate different values between the shaders (not just

vec3-s).

The result should have had the texture

mapped to a quad such that the texture

is repeated 2 times in both the

horizontal and vertical directions. This

caused the students to specify the

repeat wrapping for the texture and

think, how the UV coordinates need to

be transformed to achieve the effect

(Illustration 57).

97

Illustration 55: Gouraud shading with
gamma correction.

Illustration 56: Phong shading with
gamma correction.

Illustration 57: Image of the UT logo UV
mapped to a quad in a way it repeats two times
in both directions.

5.1.7.2 Bump Mapping

Here the technique of bump mapping was described together with finite difference

schemes. Students had to pick one of the finite difference schemes to sample the bump

texture in the shaders. The gradient vector, that was calculated based on a chosen scheme,

needed to be applied to the surface normal and also used to sample the texture from a

shifted position.

The idea was to have students see that not all textures are used to just specify the granular

color of the surface. The resulting effect of this task was to have the surface changed

lighting calculations and also present an effect that the texture is applied on top of the

seemingly changed surface (ie deformed according to the deformations calculated from the

bump map).

The task also included instructions to make the quad rotate around the y-axis. This would

make it important to transform the gradient vector into the camera space, prior in applying

it to the normal used in the lighting calculations. If the quad would have been still, then the

x and y components of the gradient could have been made to match without the normal

matrix.

Different textures and bump maps were provided in the task to allow students to

experiment with simpler ones first (Illustration 58 and Illustration 59).

98

Illustration 58: Still image of the result
with one of the test textures and test
bump maps.

Illustration 59: Still image of the
result with a more complex bump map
and the UT logo texture.

5.1.8. Blending

The tasks in this topic were created by Jaanus Jaggo. The base code for the JavaScript was

also created by him. The base code for C++ was created by me.

The idea of the tasks was to use the depth values of fragments to experiment with different

blending in the context of a practical problem.

5.1.8.1 Soft Particle Chopper

Task consisted of the students adding smoke particles (transparent quads that had the

smoke texture applied to them) to the chopper scene. The naive approach of this would

have the texture clip be visible at the intersections of the quads and the scene objects

(Illustration 60).

Instructions were given to have the transparency increase based on the nearness of the

particle fragment's depth and the depth of the scene geometry at the same location. This

would create soft particles that had no visible clipping with the scene geometry

(Illustration 61).

The C++ code also introduced the need to sort the transparent objects in the scene based on

their values in the z-axis of the camera, from far to near.

99

Illustration 60: Still image that shows the
visible clipping of smoke particles with the
scene geometry.

Illustration 61: Still image of soft particles
that have their fragments' transparency
increased based on the nearness to the
scene geometry. No visible clipping.

5.1.8.2 Custom B. Chopper*

This task asked the students to experiment with other blending modes to create a custom

effect. The nature of the custom effect was left up to the students. An example was given

that had the smoke texture applied to a quad in front of the camera. Blending was

configured in a way, where the alpha value of the smoke texture indicated the opaqueness

of the surface. The goal of this effect was described to the students to create a vignette or

make it appear that the scene is looked through a dirty window (Illustration 62).

5.2. Basic II

Tasks in this module focus on a variety of computer graphics related topics. Those tasks

assume that the material and tasks in Basic I were understood by students. For example,

the Imported Chopper task assumes that a student understands the hierarchy in the object

graph and knows, how it should have a logical structure that encapsulates the different

parts of objects.

5.2.1. Modeling and File Formats

So far the students had created the objects in their scene using geometric primitives. This

week's goal consisted of seeing and understanding the basic ideas behind different file

formats that can be used to store 3D models.

100

Illustration 62: Still of an example of the use of
custom blending described to the students.

5.2.1.1 Imported Chopper

Task requests the students to import a chopper model (modeled by Timo Kallaste) to the

scene. The chopper comes in both the OBJ and Collada formats. The first one does not

convey the hierarchy of the object, so students have to reconstruct that. The Collada format

embeds the hierarchy data and students have to fetch the blades part of the chopper from

that (in order to make it rotate).

There is also a model that includes animations. That model is taken from a Three.js

example [75]. For the JavaScript task that model is in a JSON format native to Three.js.

The model has animations for idle, walk and run. The task is to use the Bernstein

polynomials to blend those three animations together, based on the movement speed of the

character. This teaches students to handle animations in their application and also

introduces curves a bit.

5.2.2. Environment Mapping

Environment mapping teaches a way, how to take into account the surrounding

environment, when considering the color of a surface. We focus on reflective surfaces here.

5.2.2.1 Reflected Chopper

This task asks the students to make the floor of the hangar reflective. The task consists of

creating another camera and mirroring it from the floor. The scene rendered from that other

camera should then be sampled to get the reflection values of the floor. This task is based

on an idea described by Lauris Kaplisnki to create a reflective water surface [76].

101

Illustration 63: Still image of the two imported
choppers (OBJ and Collada formats) and an
animated model of a marine.

Task should give the students a neat way to create a reflective surface. It recapitulates the

usage of cameras (from the Projected Chopper task) and texture sampling (from the UV

Mapping task).

5.2.3. Curves

This week practices the construction of certain curves.

5.2.3.1 Bezier Spline

The task requires students to calculate correct control points for C1 - and C2 -smooth

Bezier splines. Students are provided with a function (built in Three.js, added specifically

for C++) that constructs a cubic Bezier curve, given 4 control points. The base code

initially draws a C0 -smooth curve and students need to use the Stärk's construction ([77]

and [78]) to create smoother splines.

Students should be able to relate to derivatives of a function, based on the instructions in

the task description. This should show the importance of mathematically finding the

derivatives of a function at certain points.

When the students have constructed the smooth Bezier splines, they are also asked to

rotate the control points to illustrate the affine invariance of the Bezier curve.

Task's base code consists of two curves. One has randomly generated control points and

102

Illustration 64: Still image of the chopper in the hangar with
a reflective floor. Red rectangle denotes the light source.

the other is a test set of control points that specify the same Bezier spline as in [78].

5.2.4. Procedural Generation

In this topic there are two tasks. The one on the use of Perlin noise was created by Jaanus

Jaggo. There is another task on generating trees using Lindenmayer systems.

5.2.4.1 Perlin Planet

This task, created by Jaanus Jaggo, requires the students to

generate a 3D Perlin noise on the GPU. This shows a bit

different technique, than the one described in the

corresponding material. The task is to color the surface of a

sphere with 4 discrete colors, depending on the thresholded

values from the noise (Illustration 67). The result also

connects with the very first interactive example in the

material, where there was a sphere, resembling the Earth,

with Perlin noise used for the atmosphere. The technique

here, using the Perlin noise as a height map, illustrates another application of it.

103

Illustration 65: Solution that has a C1 -
smooth Bezier spline with the test control
points.

Illustration 66: Solution that has a C2

-smooth Bezier spline with the test
control points.

Illustration 67: Final
result of the Perlin Planet
task.

5.2.4.2 Lindenmayer Tree

Students are asked to implement a

0-context stochastic parametric Lin-

denmayer system. That system has

only one stochastic rule:

A
0. (3)

→F[+(a)FA][-(a)FA]A

A
0. (3)

→F[+(a)FA]A

A
0. (3)

→F[-(a)FA]A

The task description explains the

different symbols, their semantic

meaning for the tree, and their turtle graphics interpretation. Students should generate

words, based on those rules and starting from the axiom A , with a varying number of

iterations (Illustration 68). Then the interpretation of the symbols by the turtle graphics

approach is asked, in order to draw the trees. The result is a 2D tree, which means that the

canvas drawing is used for JavaScript and the Allegro library for C++.

5.2.5. Ray Tracing, Space Partitioning, BVH

Although this topic has a title comprising of three subjects, there is only one task for ray

tracing. Bounding volume hierarchy could be easily added to the ray tracing task. Space

partitioning techniques would require of a lot more work.

5.2.5.1 Ray Chopper

Students are asked to finish a similar ray trace renderer that is shown under CGLearn's

materials. The scene to be rendered is a similar chopper scene that was in the Cube

Chopper task (meaning that the chopper consists of cuboids), although with actual light

calculations (Illustration 69).

Students are asked to send a data texture to the shaders with the geometry. For each

fragment, a ray is constructed and intersection with the geometry is tested via Möller-

Trumbore ray-intersection testing algorithm [65], which the student should implement. For

104

Illustration 68: Lindenmayer trees generated with
the asked system. Different 5 results are shown for 4
varying number of iterations.

the closest intersection, the normal vectors also need to be fetched from the data texture.

After this the light calculations are applied.

5.2.6. Global Illumination

5.2.6.1 Path Trace

This task asks the students to build upon the code in the Ray Chopper task, in order to

render a scene using path tracing with direct illumination, described in [67]. The task asks

to implement a random reflect method that will create a random reflection vector given an

incident vector and a surface normal. The technique of creating random vectors inside a

cube and then picking those that also lie inside a sphere, is described and illustrated. If a

random vector points away from the normal, then an opposite vector can be taken.

There is also a description, how to use two textures (one for rendering to, and another to

sample from) in order to average the results between multiple rendering passes.

Students are asked to create a static scene instead of a moving chopper. That scene should

illustrate indirect illumination. The task shows example illustrations that depict a scene

with no bounces (only ray tracing and direct illumination, Illustration 70); the indirect

illumination resulting from a bounce (Illustration 71); final result, where the indirect and

direct illuminations are combined (Illustration 72).

105

Illustration 69: The chopper scene
rendered with a ray trace renderer.

5.2.7. Shadows

At the time of writing this thesis, the tasks in this final topic, were not yet completed.

106

Illustration 70: Direct
illumination only.

Illustration 71: Indirect
illumination only.

Illustration 72: Combined
result.

6. The Flashcards

In order to allow students to test themselves on the covered material, a didactic tool of

flashcards was implemented in CGLearn. Tool allows students to go through different

terms and questions covered during the modules. Together with each question, there is also

an answer on the other side of the flashcard. Students first see the question side

(Illustration 98 in the Appendix) and think about the answer for the question. When ready,

a student can turn over the flashcard and see the answer. After this, an estimate can be

given specifying how well the student knew the answer (Illustration 99 in the Appendix).

The tool is based on the SuperMemo 2 algorithm [9] that takes into account the estimates

given by individual students on individual flashcards. Based on the current and previous

estimates by the student, a next display date for that flashcard is calculated.

Decks of flashcards are grouped under the Basic I and Basic II modules. The first deck

includes 110 flashcards and the second 50 flashcards total. Such a grouping allows

students to focus on the topics covered during one module, while still having a sufficiently

large deck to provide a variation of topics.

6.1. Basic I

6.1.1. Computer Graphics

The flashcards created under this topic include a question about the areas of computer

graphics use, and questions about different technologies: OpenGL, Allegro, WebGL,

Three.js. There are also questions to name and describe different steps in the standard

graphics pipeline.

6.1.2. Introduction to Geometry

Here there are questions about simple, non-simple, convex and

concave polygons. Those questions depict a polygon (Illustration

73) and ask the student to categorize it. There is also a question to

describe some geometric properties of a triangle.

Next there are questions about different coordinates. Couple of

107

Illustration 73:
Polygon to
categorize.

questions denote a point in homogeneous coordinates and ask, what 3D point it represents.

There are also questions to find the

Barycentric coordinates of some points on a

triangle. Those depict a triangle in a Cartesian

coordinate system and a point X on the

triangle. Mostly the Barycentric coordinates

can be derived just by their definition.

Finally there are questions about simple

vector operations like the dot product, cross

product, vector-point addition and vector

normalization.

6.1.3. Geometry and Transformations I

The questions here present a scale, rotation or shear matrices and ask the students to

recognize them. Similar questions ask the students to construct a scale, rotation or a shear

matrix.

There are also questions about matrix multiplication commutativity and associativity

properties; and a question about the linearity of an transformation.

6.1.4. Geometry and Transformations II

Besides asking an analogous transformation

questions about the translation transformation,

the flashcards in this topic also asks to derive a

matrix, given a depicted transformation. An

illustration shows the standard basis and a

transformed bases (Illustration 75). This

question is about deriving the transformation

matrix, using the basis vectors of the

transformed standard basis as the columns, additionally adding the translation to the last

column.

There are also two questions that depict an hierarchical object and ask about the

108

Illustration 74: The Barycentric
coordinates of point X are asked.

Illustration 75: Flashcard asks what
matrix would do this transformation.

transformations required for a specific node.

6.1.5. Frames of Reference and Projection

There are questions that ask an explanation for specific matrices: model, view, normal and

projection. One question asks to name different frames of references that are used in

graphics. Two questions ask, how to construct the camera's view matrix, given either the

camera's model matrix or the lookAt, up vectors and the position.

Questions about projections ask about the different projections: orthographic, oblique and

perspective. Couple of questions are about recognizing or constructing parts of the

orthographic projection matrix.

6.1.6. Shading and Lighting

A number of questions ask the students to describe a color, which is given by its RGB

values. The values of different channels are in different notations ([0..1] , [0..255] ,

hexadecimal) in different questions.

The notions of a color and ambient, diffuse, specular reflections are covered. The different

reflections also have questions that ask, how to find them given a material, light source and

a viewer. Specular reflection has two questions about it, one for Phong and other for Blinn-

Phong lighting models. Three questions also ask about different shading models.

A couple of questions depict vectors

originating from a point towards

different objects. Those vectors are

needed for light calculations and

students are asked to name the

direction of an indicated vector.

6.1.7. Textures and Sampling

This topic includes questions about different interpolation methods: nearest neighbour,

linear, bilinear and trilinear.

There are also illustrations of certain texture sampling configurations that ask the students

to guess them. Specifically students are asked to distinguish between no use of

109

Illustration 76: Flashcard asks to name the
indicated reflected light vector.

mipmapping that produces Moire aliasing (Illustration 77), and bilinear filtering with

mipmapping that produces visible lines between mipmaps (Illustration 78).

6.1.8. Blending

Questions here ask about different buffers: framebuffer, color buffer, depth buffer; and also

about z-fighting. Two questions are about describing the conventional alpha blending and

premultiplied alpha blending. Then the questions ask to construct the general blending

function and different configurations of it.

6.2. Basic II

The flashcards in this module are about the general ideas described in the corresponding

materials.

6.2.1. File Formats and Modeling

The questions are about different formats (OBJ, Collada, FBX) and their properties. Three

questions ask directly about these formats. Two questions pose a problem of saving a

described mesh, and ask about which format is preferable. One question is about general

use of different formats.

6.2.2. Environment Mapping

Four questions here ask about the cube map, sphere map, sky

box and sky dome. Two questions present images of a cube map

and a sphere map (Illustration 79), and ask the student to

recognize them. The images are based on the cube map by E.

Persson that is also used in the interactive examples

accompanying the Environment Mapping topic in the material.

110

Illustration 77: No mipmapping is used,
Moire aliasing is visible.

Illustration 78: Mipmapping is used, but
lines between mipmaps are visible.

Illustration 79: One
flashcard asks to
recognize this sphere
map.

6.2.3. Curves

Questions about general terms include an approximating

curve, interpolating curve, Cn and Gn smoothness,

spline and blending functions. The answers to the

approximating and interpolating curve have

corresponding illustrations in them. Subsequent questions

ask the student to recognize different curves and splines

covered in the material. Those consist of recognizing an

Hermite, Catmull-Rom (Illustration 80) and Bezier

splines; B-Spline and NURBS curves.

6.2.4. Procedural Generation

Under this topic, there are creative questions, asking the student, what could be done with

Perlin noise, Lindenmayer systems and particle systems. Answers include some general

applications, but indicate that there are more

uses. Next there are specific questions about

procedural generation techniques. Those include

asking about the iteration count in the

Lindenmayer systems, the three main rules of

the Boids algorithm and what does the Boids

algorithm aim to emulate. The answer to the

question about the rules of the Boids algorithm,

shows an illustration of the rules (Illustration

81), together with individual descriptions.

6.2.5. Ray Tracing, Space Partitioning, BVH

The first questions ask about the parametric representations of a ray and a triangle, and

their use in the Möller-Trumbore ray-triangle intersection testing algorithm. Next, there is

a creative question about the use of ray casting. Final two questions are about the

performance of a ray trace based rendering and its optimizations.

111

Illustration 80: One flashcard
asks to recognize this
Catmull-Rom spline.

Illustration 81: Illustration on the
answer side of the question about the
rules of the Boids algorithm.

6.2.6. Global Illumination

One question asks the students to recognize the Cornell Box

scene from an image (Illustration 82). Next, a description of

the path tracing algorithm is given, and students are asked

for the name of the technique. Similarly one question asks

to name two global illumination algorithms. The answer to

that question, provides the names of three techniques. Two

questions include the terms local illumination and global

illuminations.

6.2.7. Shadows

Three questions ask the students to describe the umbra,

penumbra and antumbra parts of a shadow. There are two

questions about the umbra and penumbra that ask to

recognize them from an image (Illustration 83). One

question asks, which of the three given light sources

(directional, point, area) produce a penumbra.

Next, are the questions about different techniques. These

include a question to name two common shadow rendering

techniques. Answer to this question provides three

(projection shadows, shadow mapping, shadow volume). Two questions ask about the

main problems with shadow mapping and shadow volume algorithms. One question asks

about shadow rays, namely how to detect a shadow in a ray trace based rendering.

This concludes the overview of the flashcards created for the students. Overall goal was to

reinforce the ideas from the material and lectures. Thesis proceeds with the results of using

the material described so far and a discussion of those results.

112

Illustration 82: One
question asks to recognize
this Cornell Box scene.

Illustration 83: Students are
asked to name the indicated
part of the shadow.

7. Results and Discussion

The usefulness of this material and the CGLearn learning environment was assessed via a

feedback questionnaire. At the time of writing this thesis, the Computer Graphics course

was still in progress. This means that the feedback was given by the students prior to

completing the course and thus may reflect assessments of partial material. Secondary

feedback is planned to be asked during the exam, at which point the students should have a

complete experience of the material and CGLearn.

The lectures were additionally assessed, in the form of exit cards described by Karm in

[13]. The first question “What did you learn today?” aims to ask the students to describe,

how well did they understood the material presented in the lecture. Answers to this

question from the students, describe the quality and clarity of the lecture.

Students registered to the course (25 in total) were from different curricula (Table 2). The

attendance of lectures and responses to the questionnaire also varied. Initially there were

50 students registered, but by the time of writing this thesis, 25 had unregistered.

Table 2: Overview of the curricula of students registered to the Computer Graphics course
in spring 2015. Ordered by the number of students per curriculum, then by the levels of
study and year.

Curriculum Level of Study Year Count

Computer Science Bachelor's 1 1

2 5

3 4

Master's 1 6

Software Engineering Master's 1 1

2 1

Physics Master's 1 1

Doctorate 2 1

Mathematics Bachelor's 1 1

Information Technology Bachelor's 3 1

Teacher of Mathematics and Informatics Master's 1 1

Engineering and Technology Doctorate 1 1

Zoology and Hydrobiology Doctorate 3 1

113

7.1. Questionnaire

The questionnaire, comprising of 28 questions, was sent to the participants of the course on

19.04. Out of the 28 questions, 19 were quantitative and 9 textual. The questionnaire was

structured into 3 parts that asked about lectures, practice sessions and the CGLearn

environment. Participants had until 09.05 to fill in their answers. Both an online form and a

printed out questionnaire were used to gather results.

In the time period given to answer the questionnaire, 9 students filled in the online form,

and 1 preferred the printed out version. Generally the results indicated that the course and

its materials were really good. Some even mentioned that it is one of the best courses they

had taken in the University of Tartu. There were also comments about quite different

aspects that individual students found problematic.

Results and the questionnaire are in the corresponding folder accompanying this thesis.

The box plots of the quantitative question answers are shown in Illustration 100,

Illustration 101, and Illustration 102 in the Appendix. Box plots in those illustrations show

the extreme values at the end of the whiskers and the first and third quartiles are the start

and end of the box. This means that the estimations, which received at least 50% of the

answers, are covered by the box in the box plot.

7.1.1. Lectures

The attendance of lectures among the participants of the questionnaire was high: 8 students

attended 75%-100% of the lectures; 2 students marked the attendance 25% and 0%. Those

students, who attended the lectures, also found the traditional lectures very useful. The

Recapitulation and Conclusion lectures were not found that useful, with the average

usefulness estimated overall around 55%. The fact that some lectures were conducted by

different people was considered to be also on average 55% useful.

The textual answers explained the problems regarding the low participation of the students,

who answered the questionnaire. One student expressed that the lecture is not a suitable

format for learning, he or she learns more via individual practice rather than discussion.

Lectures were praised for the inclusion of a lot of examples (including the interactive

examples from CGLearn); good use of the blackboard; openness to questions and

discussion; involvement of students via questions about the material; use of the exit cards.

114

Critique was about the fact that some people do not like being asked questions about the

material, tempo of the explanations was a bit too fast, blackboard illustrations were

sometimes too unclear, few topics seemed to not fit into the course or were not

accompanied by a practical task, slides were considered to have too few pictures. One

student did not understand the usefulness of the second question (What more would you

like to know?) on the exit card. One of the guest lectures was assessed to have not been

very good.

Some of the critique is objective and should be taken into account for further conductions

of the course. For example, the use of the blackboard can certainly be improved to include

more clear illustrations. Tempo of the explanations can also be a bit corrected, but often the

lectures finished exactly on time, or even a couple of minutes later. This means that if the

lecture were conducted in a slower pace, then some of the material would need to be left

out of the lecture. Because some students found the lecture to be more understandable, if

they had previously read the material in CGLearn, then this form of study should perhaps

be more advertised, so that students can better follow the lectures.

Other critique seems to be not that objective. For example, when talking to some of the

students, none of them found that the slides had too few pictures. Rather the opinion was

contrary, there were always illustrations and pictorial examples following most of the

concepts.

The problem that some students disliked the questions and discussions in the lecture is a

challenging one. The initial approach was that if a student did not know an answer, then a

discussion is required in order to understand, where the student is lacking the

understanding that keeps him or her answering. This discussion would find out the current

level of the student, and help to build on top of that to reach the level required for the

question. This is contrary to other lectures, where often students are required to study on

their own if they are not on the same level as the lecture. Because lectures provide a

possibility for a two-way communication between the student and the educator, then the

first approach would initially seem to be preferable to both. Although in the light of the

feedback, this might merit reconsideration.

115

7.1.2. Practice Sessions and Homework Tasks

7.1.2.1 Practice Sessions

The attendance of practice sessions was high among the students, who participated in

giving the feedback: 9 of the students participated from 75% to 100% of the sessions; only

one student estimated the participation at 25%. The average usefulness of the practice

sessions was estimated at 75%. Although, the average is higher then the average usefulness

of the lectures, more students chose 75% and 50% estimations. The fact that some of the

practice sessions were conducted by different people, was estimated to have 70%

usefulness and the quartiles were roughly the same.

The textual feedback reflected some contradicting opinions. The practice sessions were

praised for the fact that we started doing the homework tasks in the classroom. This meant

that students had to spend less time getting to know the task and the base code. Students

considered the explanations given by the instructors to be very important. Sessions ran

smoothly and were engaging for the students. The base code was also praised for its

existence and comments in it. Some students found that the tasks were relatively

independent, which meant that they did not have to have the previous tasks done in order

to continue.

The critique from some students was about the dependencies of the tasks. Some students

found that the tasks should not be that independent and there should be a couple of bigger

tasks that get continued in each of the sessions. Other students felt that the tasks were too

dependent, and they found it hard to complete new tasks without doing the previous ones.

One student felt that the explanations given in the practice session restricted his or her

creativity and that it would be better to first have the students to try to solve the task

themselves. A couple of students found the explanations hard to follow. One reason for that

was the late time (16:00 – 18:00) of one of the practice sessions and the other was that it is

easy to sidetrack into debugging your own code, thus missing the subsequent explanations.

One of the first practice sessions felt rushed for one of the students, and there was also

critique for one of the instructors, who did not answer to student's e-mails and took a lot of

time to grade the solutions.

The practice session start time could certainly be improved (moved to an earlier time).

116

Although, there was another practice session (for the Basic I and Game Engines modules)

that did start at 12:00. For some reason that earlier time found a really low participation

rate. This might indicate that an early time might not be suitable for other students.

Some of the tasks did have a dependency with previous tasks, but those were often few in

number. Although some of the tasks were with a similar layout, there was no direct

dependency between them, and other students even liked the similarities and the fact that

some of the tasks gave a chance to recapitulate ideas from before.

Almost all of the tasks were available at least 2 weeks before the corresponding practice

sessions (ideally they would have been available at the start of the course). This should

have given the students enough time to try to solve the tasks themselves, and ask help in

the practice sessions, if needed. It is hard to imagine, why the students did not exercise the

possibility to try and solve the tasks beforehand (if they so pleased).

7.1.2.2 Homework Tasks

The percentage of solved homework tasks among the participants of the feedback was also

high: 8 students had solved from 75% to 100% of the tasks; 2 had done 25%, among those

1 student commented that he or she is still doing the tasks. The modular layout of the

course was considered to be quite helpful, with the average estimation of 77.5%. The base

code of the tasks received an average of 95% helpfulness estimation. The task deadlines

(one in the middle of the semester, and one in the end) for all the tasks, received mixed

feelings from the students, and got an estimated 77.5% average helpfulness. The possibility

to resubmit the solutions prior to the deadline was considered very helpful, and received

95% average estimation.

In the textual answers, many students praised the two deadline approach, and mentioned

that they had some busier weeks, where they would have otherwise not been able to submit

solutions. The base code and the comments (that specified step-by-step things needed to be

done) in it were also praised. The ability to resubmit and the feedback given to the

different solutions was considered to be really good. Students mentioned that this

encouraged them to fix the problems in their solutions and better understand the problem.

One student found that the descriptions of the tasks did not state the task requirements

clearly enough. A couple of students found that the connection between the tasks and the

117

corresponding lecture might have been too weak. Another student found that the tasks

covered a variety different topics, and thus required him or her to understand too many

new ideas.

One student found that he or she still does not feel competent in JavaScript and Three.js,

and thus finds it hard to understand the logic behind the code. Another student considered

that maybe the possibility to solve the tasks in different languages is too confusing for

students.

There was critique about the two deadline system from one student. He or she felt that the

lack of time management skills made him or her not being able to solve the tasks for the

deadline.

The feedback for the task description's clarity and base code's correctness is certainly

something to take into account. On the other hand, lot of the textual feedback seems to be

contradicting and indicates that some of the students misunderstand their possibilities. It

was often mentioned by the instructors that ideally the tasks should be solved in the

corresponding week. Doing so, also opened up the possibility to submit a fixed solution,

thus rewarding the ones who did submit the solutions in sensible time. Time management

is one of the skills that each student should possess. It is hard to say, why some students

start solving the tasks proportionally too late, thus also overestimating their skills. While

weekly deadlines would certainly alleviate that problem, they would, in fact, manage only

the symptoms and not help students to develop correct time and skill estimation for

themselves. The CGLearn environment even provides average time spent on each task, so

that students can better estimate, how much time they would need to solve it.

7.1.3. CGLearn Environment

The usefulness of the functionality in the CGLearn environment was very highly rated

(Table 3).

Flashcards and statistic charts got the lowest estimations. Regarding the flashcards, one

student commented that he or she has not used them yet. Because this questionnaire was

sent to the students before the end of the course, this result might not reflect the true

usefulness of that functionality. Although students are told to go through the flashcards

every couple of weeks, some of them will do it only on the weeks before the exam.

118

Table 3: Average estimates of the usefulness of CGLearn's functionality.

Functionality Average

Written material 80%

Interactive examples 85%

Flashcards 70%

Task tree 97.5%

Task descriptions 97.5%

Task feedback 97.5%

Statistic charts 70%

Results table 85%

The usefulness of the statistic charts is expected. Because of the different personalities of

the students, some might be more competitive or analyzing than others. For those, who

need a general overview of the task difficulties, time estimates and the scores received, the

statistic charts are more useful.

In the textual feedback, couple of students praised the environment, and stated that it is one

of the best environments, they have used for learning. The average time spent in the

environment per week was about 2 hours. This is excluding one student, who indicated that

he or she spends more then 8 hours per week in CGLearn.

7.2. Exit Cards

The last 5 – 10 minutes at the end of most of the lectures, were dedicated to students

answering two questions about the covered topic:

• What did you learn today?

• What more would you like to know?

One purpose of those questions, was to give feedback for the lecture's quality. Answering

the first question, shows how much of the new material students managed to understand. If

the student did not mention a topic covered in the lecture, then it might have been:

• already known,

• left unclear,

• hard to formulate.

119

The number of cards that included a certain topic can be regarded as a lower bound on the

number of students who learned it. Not mentioning a topic does not necessarily indicate

not learning it.

The second question gave a possibility to either ask additional questions about the covered

material, or propose new ideas, what to cover. All questions and misunderstandings were

addressed in the mailing list during the week following the lecture.

Next, the thesis provides an overview of the collected exit cards and the analysis of the

first question. In the time of writing this thesis, not all of the lectures have been conducted.

7.2.1. Introduction to Computer Graphics

In the end of the first lecture, 33 exit cards were written. The Table 4 lists the common

concepts that students mentioned in the answers to the first question.

Table 4: Overview of the common answers in the exit
cards for the lecture Introduction to Computer Graphics.

Term, idea, concept Count

Course organization 11

Coordinate system handedness 4

Polygons (convex and concave) 9

Triangle usefulness, vertex order, faces 10

Standard graphics pipeline 8

Students also mentioned that some of the terminology was new to them. Especially English

terminology and asked, if the Estonian translations could be added to the slides. This also

reflected from other answers, where students were unable to write polygon, and called it a

thingy or fancy word.

A couple of students noted that they did not learn anything new and indicated that most of

the material they were well aware of. One student described that it would have been better

for him to understand the material, if it would have started from vertices and then

gradually moved to edges, faces and polygons.

Many students liked that the course layout and organizational aspects were described in

detail.

120

7.2.2. Introduction to Geometry

The second lecture produced 18 exit cards.

Table 5: Overview of the common answers in the exit
cards for the lecture Introduction to Geometry.

Term, idea, concept Count

Points and vectors 10

Convex combination 6

Barycentric coordinates 6

Vector operations (dot, cross, box product) 4

Vector normalization 2

Some of the responses mentioned that most of it was recapitulation of the algebra and

geometry, they had learned in other courses before. Few indicated that it was good that the

algebra and geometry was described in the computer graphics context.

Two of students learned about vector normalization, and did not write anything else. This

may indicate a lack in the previous knowledge in algebra and geometry.

7.2.3. Geometry and Transformations

The third lecture had 13 exit cards.

Table 6: Overview of the common answers in the exit
cards for the lecture Geometry and Transformations.

Term, idea, concept Count

Transformations 8

Homogeneous coordinates 2

Matrix stack 1

A large number of the exit cards mentioned that they learned about transformations,

although it varied, what exactly about the transformations was new. Several cards indicated

that they learned to distinguish between linear and affine transformations.

121

7.2.4. Frames of Reference and Projection

This lecture had 8 exit cards. The number of students participating in the lectures, had

decreased a lot.

Table 7: Overview of the common answers in the exit
cards for the lecture Frames of Reference and Projection.

Term, idea, concept Count

Frames of reference (different spaces) 6

Projections (orthographic, perspective) 5

Most of the cards mentioned different spaces and different projections. A couple of cards

mentioned that the derivation of different transformation and projection matrices was

learned, but needed some time and experience to really understand.

7.2.5. Shading and Lighting

Fifth lecture produced 10 exit cards.

Table 8: Overview of the common answers in the exit
cards for the lecture Shading and Lighting.

Term, idea, concept Count

Shading models (flat, Gouraud, Phong) 4

Lighting models (ambient, diffuse, Phong) 6

Color spaces (sRGB) 5

Almost all the cards indicated that students learned something new about the shading and

lighting models. In a couple of cases, it was not exactly worded, what did they learn. One

card consisted only of a question about projects, and did not answer the questions about the

material. This indicates that often students do have questions and will write them down,

given a chance, but are reluctant to ask them in person.

122

7.2.6. Textures and Sampling

This lecture had 9 exit cards.

Table 9: Overview of the common answers in the exit
cards for the lecture Textures and Sampling.

Term, idea, concept Count

Textures (incl mapping) 3

Texture sampling / filtering 5

Mipmapping 3

Two of the cards stated that the students now are aware what some of the graphics options

in computer games actually do. Number of cards mentioned texture scaling, it is a bit

unclear, if this means that the student learned about up-scaling, down-scaling, interpolation

techniques and mipmapping, or just some of them.

7.2.7. Blending

The Blending lecture had 8 exit cards.

Table 10: Overview of the common answers in the exit
cards for the lecture Blending.

Term, idea, concept Count

Depth buffer 4

Conventional and premultiplied alpha 2

Blending modes 4

Couple of the cards stated that they had been using the covered techniques for a while, but

did not know how they actually work.

123

7.2.8. Curves

There were 7 exit cards in the Curves lecture.

Table 11: Overview of the common answers in the exit
cards for the lecture Curves.

Term, idea, concept Count

Curves 2

Splines 2

Some of the cards only stated that they did not know much about the curves before, and

learned lots of new formulas. Although, these cards did not mention what exactly those

new formulas were and how did the students understand them. In contrast, another card

mentioned that most of the mathematics was just a review for him or her. One card

mentioned that the explanation in the lecture was complicated, and the student did not

understand how to use the blending functions to draw the curve. On another card it was

written that the student now understood where the Bernstein polynomials in the Imported

Chopper task came from.

One of the cards asked about clothoid splines. That question was answered in the mailing

list afterwards.

7.2.9. Procedural Generation

The Procedural Generation lecture produced 5 exit cards.

Table 12: Overview of the common answers in the exit
cards for the lecture Procedural Generation.

Term, idea, concept Count

Noise 3

Perlin noise 2

Lindenmayer system 1

Some of the cards just mentioned noise, others specified that they learned about Perlin

noise in particular. Some of the cards mentioned that they were reminded about the

concepts learned in the Automata, Languages and Compilers (MTAT.05.085) course. Only

one of the cards mentioned Lindenmayer systems for generating trees. One student wrote

124

that it is hard to understand the questions that another student asked in the lecture.

7.2.10. Ray Tracing, Space Partitioning, BVH.

The Ray Tracing lecture had 5 exit cards.

Table 13: Overview of the common answers in the exit cards
for the lecture Ray Tracing, Space Partitioning, BVH.

Term, idea, concept Count

Rays 4

Ray-triangle intersection 1

Space partitioning 2

One card specified that the Möller-Trumbore ray-triangle intersection algorithm was a bit

complicated for the student. That student asked about that after the practice session, where

the algorithm was explained again, and the student then understood it. Two of the cards

were very general, and told that some parts of the lecture were not understood (without

specifying the exact topics that were left unclear).

7.2.11. Global Illumination

In the Global Illumination lecture there were 4 exit cards.

Table 14: Overview of the common answers in the exit
cards for the lecture Global Illumination.

Term, idea, concept Count

Ray trace based global illumination 2

The Rendering Equation 2

One card specified that the student learned about the reflection of light. Another mentioned

just generally having learned about global illumination techniques and mentions that it

would be good to see those algorithms in practice. There was a question about global

illumination techniques in real-time games. One of the practice sessions in the Game

Engines module will answer that question.

This concludes the overview of exit cards received in the time of writing. Overall this

technique benefits both the students and educators. It helps students to systematically

formulate new concepts, provides feedback for the educator and serves as a

communication channel between them.

125

8. Summary

This thesis described the work done for an elective, 6 credits Computer Graphics

(MTAT.03.015) course aimed at the Master and Doctoral students in the Computer Science

curriculum. The thesis started with the description of the mentioned course and explained

the proposed modular layout for it. Next it was described, how the course was conducted

using a custom learning environment CGLearn, which is the main result of this thesis.

In the second chapter, titled CGLearn Learning Environment, the requirements for the

environment were written. Those requirements were compared against the functionality of

the previously existing and used solutions (Courses page, Moodle, Udutu). It was

concluded that none of the current solutions would fill the requirements with an acceptable

amount of effort. Thus the realization of a custom environment was accepted. The thesis

described the technical choices and implementation details of that custom environment.

These were described for both the back-end and front-end. For the former, the controllers

and services in the Student and Teacher modules were described. For the front-end, the

thesis first described the different JavaScript modules that were implemented and used.

After this, there were descriptions of the more complicated interactive examples inside the

material. The last part of the CGLearn chapter described the actual functionality available

for both the student and teacher users of the system. This included navigating and reading

the material, submitting homework task solutions, grading them, seeing the overall score

achieved.

The Materials chapter talked about the written material and the interactive examples used

in the course. The thesis focused on the Basic I and Basic II modules (together they

included 15 different topics), because the majority of the material in those were done as the

work of this thesis. The main goals of the material and the purposes that the interactive

examples served were described.

The Tasks chapter proceeded in describing the homework tasks in the Basic I and Basic II

modules. There were 22 tasks created in the scope of this thesis. In total there were 26

tasks (at the time of writing this thesis), 4 of them were created by other authors. Thesis

described the goals of the tasks, and the skills students should develop by solving the tasks.

The Flashcards chapter described the flashcards in CGLearn. There were 110 for the Basic

I module and 50 for Basic II. Flashcards for each of the topics were explained.

126

The seventh chapter, titled Results, first described the students, who participated in the

course. The results of the material and environment were assessed via a questionnaire.

Those results, as given by 10 of the participating students, were described in that chapter,

together with the analysis of the textual answers. An overview of the lectures was given via

the results of the exit cards. Exit cards were given to the students in the end of each lecture,

and they asked, what the students had learned and what else would interest them. Results

of mostly the first question are described in this thesis.

Reflecting on the work done, I conclude that the designed and implemented custom

learning environment CGLearn was quite useful for the students of the Computer Graphics

course. This is also conveyed in the results of the feedback questionnaire. From an

educators perspective, the creation of the environment together with the material and

interactive examples was sufficiently easy. The estimated time spent on that work by me

fits well into the requirements of a Master's thesis.

Future development of the environment is planned, and is currently on hold, because the

current course is still running and students are using the environment. In order to avoid

unexpected system failures that might hinder the current users, the subsequent

development will start after the course has finished. Further development includes a

preparation of the system for a next Computer Graphics course; creation of publicly

available pages with some parts of the material; inclusion of another server for file

(primarily the students' submissions) storage; fixes of known deficiencies.

First, thanks to all the students, who took part in this experimental course. Thanks to other

educators: Margus Luik, Jaanus Jaggo, Ats Kurvet, Timo Kallaste and Benson Muite; who

helped me conduct the course, e.g. gave some of the practice sessions and lectures,

previewed the lecture slides, proposed suggestions and help. Thanks to Indrek Kõnnussaar

and his company (Blue Lynx OÜ) server for hosting the CGLearn environment and

providing timely support always. Of course I need to thank my supervisor Konstantin

Tretyakov, who took the time to explain a number of questions I had about computer

graphics concepts and for conducting the Computer Graphics course last time. Thanks also

to Ilya Kuzovkin – the other conductor of the previous course – for inspiration. I thank my

other supervisor Anne Villems for giving me feedback and recommendations on how to

structure this thesis. Lastly, I thank the University of Tartu and the Institute of Computer

Science for letting me use this material and CGLearn in a real course.

127

9. References

[1] Stanford University, CS 148: Introduction to Computer Graphics and Imaging (Fall

2014), http://web.stanford.edu/class/cs148/ (14. 05. 2015).

[2] Department of Computer Science, Columbia University, Vision & Graphics,

http://www.cs.columbia.edu/education/ms/visionAndGraphics (14. 05. 2015).

[3] Institute of Computer Science, University of Tartu, Computer Graphics

(MTAT.03.015), https://www.is.ut.ee/rwservlet?

oa_aine_info.rdf+1006870+HTML+92522999797432876337+text/html (14. 05.

2015).

[4] Avi C. Naiman, Interactive Teaching Modules for Computer Graphics, ACM

SIGGRAPH, 1996.

[5] R. Klein, F. Hanisch, W. Straßer, Web-Based Teaching of Computer Graphics:

Conceptsand Realization of an Interactive Online Course, ACM SIGGRAPH, 1998.

[6] J. Tomanová, M Cápay, E-learning Support for Computer Graphics Teaching and

Testing, TELE-INFO, 2010.

[7] TÜ haridustehnoloogiakeskus, Tartu Ülikooli Moodle´i õpikeskkond,

https://moodle.ut.ee/ (14. 05. 2015).

[8] Institute of Computer Science, University of Tartu, Arvutigraafika / Computer

Graphics, 2013 Fall - Courses page, https://courses.cs.ut.ee/2015/cg/spring (14. 05.

2015).

[9] P. A. Wozniak, SuperMemo 2: Algorithm,

http://www.supermemo.com/english/ol/sm2.htm (14. 05. 2015).

[10] E. Angel, S. Cunningham, P. Shirley, K. Sung, Teaching Computer Graphics

withoutRaster-Level Algorithms, ACM SIGCSE Bulletin, 2006.

[11] Kelvin Sung, Peter Shirley, A Top-Down Approach to Teaching Introductory

Computer Graphics, ACM SIGGRAPH, Educators Program, 2003.

[12] Institute of Computer Science, University of Tartu, Arvutigraafika / Computer

Graphics, 2014 Springl, https://courses.cs.ut.ee/2015/cg/spring/ (14. 05. 2015).

[13] Mari Karm, Õppemeetodid kõrgkoolis, 2013, Sihtasutus Archimedes.

[14] D. R. Krathwohl, A revision of Bloom's taxonomy: An overview, Theory Into

Practice, vol 41, no 4, 2002.

128

[15] Naps et al, Exploring the Role of Visualization and Engagement in Computer Science

Education, ACM SIGCSE Bulletin, 2003.

[16] Google, Chrome Browser, https://www.google.com/chrome (14. 05. 2015).

[17] The PHP Group, Alternative PHP Cache , http://php.net/manual/en/book.apc.php (14.

05. 2015).

[18] J. Burke, K. Westin, K. Harsh, M. Medeiros, RequireJS Optimizer,

http://requirejs.org/docs/optimization.html (14. 05. 2015).

[19] P. R. Michaud., PmWiki, http://www.pmwiki.org/ (14. 05. 2015).

[20] J. Vajakas, A. Lissitsin, M. Johanson, S. Laur, D. Unruh, P. Laud, MathWiki,

http://mathwiki.cs.ut.ee/ (14. 05. 2015).

[21] Udutu, Udutu, http://www.udutu.com/ (14. 05. 2015).

[22] Udutu, FAQs, http://www.cedarlearning.com/resources_faqs.html (14. 05. 2015).

[23] T. Otwell, Laravel Framework, http://laravel.com/ (14. 05. 2015).

[24] Doctrine Team, Doctrine Project, http://www.doctrine-project.org/ (14. 05. 2015).

[25] Internet2 Consortium, Shibboleth, https://shibboleth.net/ (14. 05. 2015).

[26] J. Burke, K. Westin, K. Harsh, M. Medeiros, RequireJS, http://requirejs.org/ (14. 05.

2015).

[27] The jQuery Foundation, jQuery, https://jquery.com/ (14. 05. 2015).

[28] M. Otto, J. Thornton et al, Bootstrap, http://getbootstrap.com/ (14. 05. 2015).

[29] R. Cabello et al, Three.js, http://threejs.org/ (14. 05. 2015).

[30] D. Cervone, V. Sorge, C. Perfect, P. Krautzberger, MathJax,

https://www.mathjax.org/ (14. 05. 2015).

[31] Highsoft AS, Highcharts, http://www.highcharts.com/ (14. 05. 2015).

[32] J. Skarnelis, FancyBox, http://fancybox.net/ (14. 05. 2015).

[33] F. Heinze, Laravel vs. Zend Framework 2 comparison | vsChart.com,

http://vschart.com/compare/laravel/vs/zend-framework (14. 05. 2015).

[34] Creolab et al, Laravel Modules, https://github.com/creolab/laravel-modules (14. 05.

2015).

[35] M. van Wijngaarden et al, Doctrine 2 for Laravel,

https://github.com/mitchellvanw/laravel-doctrine (14. 05. 2015).

[36] Linode LLC, SSD Cloud Hosting - Linode, https://www.linode.com/ (14. 05. 2015).

[37] Canonical Ltd., Ubuntu, http://www.ubuntu.com/ (14. 05. 2015).

129

[38] The Apache Software Foundation, The Apache HTTP Server Project,

http://httpd.apache.org/ (14. 05. 2015).

[39] Blue Lynx OÜ, Codelight, http://codelight.eu/ (14. 05. 2015).

[40] University of Tartu, Study Information System, http://ois.ut.ee (14. 05. 2015).

[41] M. Bouroumeau-Fuseau et al, PHP Debug Bar, https://github.com/maximebf/php-

debugbar (14. 05. 2015).

[42] Oracle Corporation, MySQL Workbench, Oracle Corporation (14. 05. 2015).

[43] Atlantic18 et al, Doctrine2 Behavioral Extensions,

https://github.com/Atlantic18/DoctrineExtensions (14. 05. 2015).

[44] Doctrine Team, Inheritance Mapping: Class Table Inheritance, http://doctrine-

orm.readthedocs.org/en/latest/reference/inheritance-mapping.html#class-table-

inheritance (14. 05. 2015).

[45] B. Nesbitt et al, Carbon, https://github.com/briannesbitt/Carbon (14. 05. 2015).

[46] S. Petre et al, Slider for Bootstrap, http://www.eyecon.ro/bootstrap-slider/ (14. 05.

2015).

[47] StackOverflow, Mathjax equations displaying 3 times (Jekyll),

http://stackoverflow.com/questions/28726152/mathjax-equations-displaying-3-times-

jekyll (14. 05. 2015).

[48] S. Smith, Modular HTML components with RequireJS,

http://simonsmith.io/modular-html-components-with-requirejs/ (14. 05. 2015).

[49] Moxiecode Systems AB, TinyMCE, http://www.tinymce.com/ (14. 05. 2015).

[50] J. Burke, K. Westin, K. Harsh, M. Medeiros, RequireJs Text Resource Loader Plugin,

https://github.com/requirejs/text (14. 05. 2015).

[51] H. Elias, Perlin Noise, http://freespace.virgin.net/hugo.elias/models/m_perlin.htm

(14. 05. 2015).

[52] C. Parker, Boids Pseudocode, http://www.kfish.org/boids/pseudocode.html (14. 05.

2015).

[53] A. Gryc, Improvements to the canonical one-liner GLSL rand() for OpenGL ES 2.0,

http://byteblacksmith.com/improvements-to-the-canonical-one-liner-glsl-rand-for-

opengl-es-2-0/ (14. 05. 2015).

[54] R. Cabello et al, Three.js r43, https://github.com/mrdoob/three.js/releases/tag/r43

(14. 05. 2015).

130

[55] P. Shirley, M. Ashikhmin, S. Marschner, Fundamentals of Computer Graphics, 2009,

A K Peters/CRC Press.

[56] Nvidia, SDK White Paper: Improve Batching Using Texture Atlases,

https://developer.nvidia.com/sites/default/files/akamai/tools/files/Texture_Atlas_White

paper.pdf (14. 05. 2015).

[57] E. Persson, Tallinn, http://www.humus.name/index.php?page=Textures&ID=101 (14.

05. 2015).

[58] N. Dodgson , Bezier Curves,

http://www.cl.cam.ac.uk/teaching/2000/AGraphHCI/SMEG/node3.html (14. 05.

2015).

[59] C.-K. Shene, Derivatives of a Bézier Curve,

http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-

der.html (14. 05. 2015).

[60] C.-K. Shene, B-spline Basis Functions: Definition,

http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-

basis.html (14. 05. 2015).

[61] U. Assarsson , Curves and Surfaces,

http://www.cse.chalmers.se/edu/year/2011/course/TDA361_Computer_Graphics/Curv

es%20and%20Surfaces.pdf (14. 05. 2015).

[62] K. Perlin, Making Noise, http://www.noisemachine.com/talk1/index.html (14. 05.

2015).

[63] P. Prusinkiewicz, A. Lindenmayer, The Algorithmic Beauty of Plants,

http://algorithmicbotany.org/papers/abop/abop.pdf (14. 05. 2015).

[64] C. Reynolds, Boids, http://www.kfish.org/boids/pseudocode.html (14. 05. 2015).

[65] T. Möller, B. Trumbore, Fast, Minimum Storage Ray/Triangle Intersection, Journal

of Graphics Tools, 1997.

[66] R. Tunnel, A. Soikonen, J. Valdma, 2D Nearest Neighbor Search, http://nns.tume-

maailm.pri.ee/ (14. 05. 2015).

[67] P. Krishnamachari, Global Illumination in a Nutshell,

http://www.thepolygoners.com/tutorials/GIIntro/GIIntro.htm (14. 05. 2015).

[68] F. Boesch, Soft Shadow Mapping, http://codeflow.org/entries/2013/feb/15/soft-

shadow-mapping/ (14. 05. 2015).

131

[69] T. Martin, T.-S. Tan, Anti-aliasing and Continuity with Trapezoidal Shadow Maps,

http://www.comp.nus.edu.sg/~tants/tsm.html (14. 05. 2015).

[70] The Code::Blocks team, Code::Blocks, http://www.codeblocks.org/ (14. 05. 2015).

[71] G-Truc Creation, OpenGL Mathematics, http://glm.g-truc.net/0.9.6/index.html (14.

05. 2015).

[72] The GLFW Development Team, GLFW, http://www.glfw.org/ (14. 05. 2015).

[73] M. Bynens, jsPerf — JavaScript performance playground,

http://jsperf.com/bresenham-line/3 (14. 05. 2015).

[74] L. Gritz, E. d'Eon, The Importance of Being Linear,

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch24.html (14. 05. 2015).

[75] R. Cabello et al, Three.js / examples / animation / skinning / blending,

http://threejs.org/examples/#webgl_animation_skinning_blending (14. 05. 2015).

[76] L. Kaplinski, Reflective water with GLSL, Part I,

http://khayyam.kaplinski.com/2011/09/reflective-water-with-glsl-part-i.html (14. 05.

2015).

[77] H. Prautzsch, W. Boehm, M. Paluszny, Bézier and B-Spline Techniques, 2002,

Springer.

[78] D. L. Finn, MA 323 Geometric Modelling Course Notes: Day 18 Bezier Splines II,

https://www.rose-hulman.edu/~finn/CCLI/Notes/day18.pdf (14. 05. 2015).

132

Appendix

This appendix includes illustrations and tables that were too big to fit inside the thesis.

There is also an archive accompanying this thesis that includes:

• Questionnaire (with results)

• Lecture slides (including the ones from other lecturers for archiving purposes)

• Exit cards

• CGLearn's source code (with setup manual and database export)

133

Table 15: Schedule of lecture and practice session topics.

Week Event Conductor Topic

1

Lecture Raimond Tunnel Introduction to Computer Graphics.

Practice Raimond Tunnel Introduction to Allegro, OpenGL, HTML Canvas,
WebGL, Three.js.Practice Margus Luik

2

Lecture Raimond Tunnel Geometry and Vectors.

Practice Raimond Tunnel
Rasterization.

Practice Margus Luik

3

Lecture Raimond Tunnel

Transformations, Matrix Stack.Practice Raimond Tunnel

Practice Margus Luik

4

Lecture Raimond Tunnel

Frames of Reference, Projection.Practice Raimond Tunnel

Practice Margus Luik

5

Lecture Raimond Tunnel

Shading and Lighting.Practice Raimond Tunnel

Practice Margus Luik

6

Lecture Raimond Tunnel

Textures and Sampling.Practice Raimond Tunnel

Practice Margus Luik

7

Lecture

Jaanus Jaggo Blending.Practice

Practice

8

Lecture Raimond Tunnel Recapitulation.

Practice
Timo Kallaste Introduction to Maya and Blender.

Practice

9

Lecture
Ats Kurvet,
Timo Kallaste

Modeling and Game Engines.

Practice Margus Luik Model importing.

Practice Timo Kallaste Modeling and Texturing in Blender

10

Lecture Benson Muite Data Visualization.

Practice Margus Luik Environment Mapping.

Practice Timo Kallaste Rigging and Animation.
Continues on the next page.

134

Week Event Conductor Topic

11

Lecture
Raimond Tunnel Curves.

Practice

Practice
Margus Luik
Ats Kurvet

Introduction to Unreal Engine 4 and Unity 3D

12

Lecture
Jaanus Jaggo
Raimond Tunnel Procedural Generation.

Practice Jaanus Jaggo

Practice
Timo Kallaste
Ats Kurvet

Scripting and Blueprint.

13

Lecture Raimond Tunnel
Ray Tracing, Space Partitioning, BVH.

Practice Raimond Tunnel

Practice
Timo Kallaste
Ats Kurvet

Scripting Materials.

14

Lecture
Raimond Tunnel Global Illumination.

Practice

Practice
Timo Kallaste
Ats Kurvet

Materials, Effects, Animation.

15

Lecture Raimond Tunnel
Shadows. Conclusion.

Practice Margus Luik

Practice
Timo Kallaste
Ats Kurvet

Lightmass. Static vs Dynamic lighting.

16 Lecture Raimond Tunnel Project Presentations.

135

136

Illustration 84: Database model constructed in MySQL Workbench.

137

Illustration 85: Part of the tasks tree. Basic I module is opened. Student has
submitted all the tasks for the first week. The tasks Hello Allegro and Hello
OpenGL have not yet been graded by an instructor. Student has also not
submitted a solution for the Wu Line task.

138

Illustration 86: Part of the Basic I tasks tree, a continuation of the previous
illustration. Here it is visible that the student has to solve UV Mapping task
before the Bump Mapping task's solution can be submitted. Similarl case with
the Soft Particle Chopper and Custom B. Chopper* tasks. The latter has a
prerequisite that the former should have a solution submitted to. At the end of
the module, a total score earned by this student from this module is shown.

Illustration 87: Submission form for a task. Besides uploading a file and writing comments
about the solution, this form asks the student to assess the task's difficulty and spent time.

139

Illustration 88: Multiple submissions with corrections submitted for the same task. A
discussion between the student and the instructor is shown.

Illustration 89: Statistics for the task scores.

Illustration 90: Statistics for the task difficulties.

Illustration 91: Statistics for the task time estimates.

Illustration 92: Part of the results table. Other students have grayed rows and fake names.

Illustration 93: Course list. The Computer Graphics Seminar does not have any tasks, so the students do not have to be assigned to it in the system.
The button with a pencil icon opens the editing view of the course. This is similar for other lists aswell.

Illustration 94: Editing a material with TinyMCE.

Illustration 95: The top menu of the Submissions page. It allows filtering the new submissions via a certain topic. There is also a button for the Bulk
Download that downloads all the new submissions packed with a well-organized file structure.

Illustration 96: Two submitted solutions in the submissions table. The first one has the Quick Grade form opened. When selecting the correct score,
writing the comment and clicking on the Save Grade button, the form will close and the teacher can continue with the next solution.

Illustration 97: Results table in the teacher's module. The points for the project and the exam can be edited.

145

Illustration 98: Example of the question side of a flashcard.

Illustration 99: Example of the answer side of the flashcard. Buttons allow the student to
assess their previously considered answer.

146

Illustration 100: Box plots reflecting the answers for the lecture feedback.

Illustration 101: Box plots reflecting the answers for the practice sessions and
homework feedback.

147

Illustration 102: Box plots reflecting the answers for the CGLearn functionality
feedback.

License

Non-exclusive license to reproduce thesis and make thesis public

I, Raimond-Hendrik Tunnel (29.08.1989),

1. herewith grant the University of Tartu a free permit (non-exclusive license) to

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of

Tartu, including via the DSpace digital archives until expiry of the term of

validity of the copyright,

of my thesis

Computer Graphics Learning Materials,

supervised by Konstantin Tretyakov and Anne Villems,

2. I am aware of the fact that the author retains these rights.

3. This is to certify that granting the non-exclusive license does not infringe the intellectual

property rights or rights arising from the Personal Data Protection Act.

Tartu, 12.05.2015

148

	1. Introduction
	2. The Course
	2.1. Lectures
	2.2. Practice Sessions and Tasks
	2.3. Projects
	2.4. Grading

	3. The CGLearn Learning Environment
	3.1. Requirements
	3.1.1. Functional
	3.1.1.1 Authentication
	3.1.1.2 Material
	3.1.1.3 Interactive Examples

	3.1.2. Non–Functional
	3.1.2.1 Platform
	3.1.2.2 Browser Support
	3.1.2.3 Response Time

	3.2. Existing Solutions
	3.2.1. Courses page
	3.2.2. Moodle
	3.2.3. Udutu
	3.2.4. Conclusion

	3.3. Implementation
	3.3.1. Back End
	3.3.1.1 Application
	3.3.1.1.1 Student Module
	Controllers
	FlashcardController
	HomeController
	MaterialController
	ResultController
	StatsController
	TaskController

	Services
	CourseService
	Course/ResultService
	FlashcardService
	ModuleService
	StatsService
	TaskService
	Task/SubmissionService
	Task/Submission/FeedbackService
	TopicService

	3.3.1.1.2 Teacher Module
	Controllers
	Course/ResultController
	Course/StudentController
	Task/SubmissionController
	StudentController
	TaskController
	TeacherController

	Services
	Course/StudentService
	Task/SubmissionService
	Task/Submission/FeedbackService
	StudentService
	TaskService
	TeacherService

	3.3.1.2 Database and ORM
	3.3.1.2.1 AbstractUser, Teacher and Student
	3.3.1.2.2 PresentableTimestampsTrait

	3.3.2. Front End
	3.3.2.1 Pages and Modules
	3.3.2.1.1 Common
	3.3.2.1.2 Edit
	3.3.2.1.3 Examples
	3.3.2.1.4 Flashcards
	3.3.2.1.5 FullScreenUtils
	3.3.2.1.6 LiveSlider
	3.3.2.1.7 MaterialSidebar
	3.3.2.1.8 Matrix
	3.3.2.1.9 PauseUtils
	3.3.2.1.10 PointUtils
	3.3.2.1.11 QuickGrader
	3.3.2.1.12 RendererFactory
	3.3.2.1.13 Tasks
	3.3.2.1.14 TaskStats
	3.3.2.1.15 Utils

	3.3.2.2 Examples
	3.3.2.2.1 Basic I
	Geometry and Transformations
	Shading and Lighting
	Frames of Reference and Projection
	Textures and Sampling
	Blending

	3.3.2.2.2 Basic II
	Environment Mapping
	Curves
	Procedural Generation
	Ray Tracing, Space Partitioning, BVH
	Global Illumination
	Shadows

	3.4. Functionality
	3.4.1. Student
	3.4.1.1 Material
	3.4.1.2 Tasks
	3.4.1.3 Statistics
	3.4.1.4 Results

	3.4.2. Teacher
	3.4.2.1 Material
	3.4.2.2 Submissions
	3.4.2.3 Results
	3.4.2.4 Student Import

	4. The Material
	4.1. Basic I
	4.1.1. Computer Graphics
	4.1.1.1 Introduction
	4.1.1.2 Technologies
	4.1.1.3 Related Math

	4.1.2. Introduction to Geometry
	4.1.2.1 Coordinate Systems
	4.1.2.2 Points and Vectors
	4.1.2.3 Polygons

	4.1.3. Geometry and Transformations I
	4.1.3.1 Linear Transformations
	4.1.3.2 Scale
	4.1.3.3 Rotation
	4.1.3.4 Shear

	4.1.4. Geometry and Transformations II
	4.1.4.1 Translation
	4.1.4.2 Multiple Transformations
	4.1.4.3 Matrix Stack

	4.1.5. Frames of Reference and Projection
	4.1.5.1 Frames of Reference
	4.1.5.2 Projections

	4.1.6. Shading and Lighting
	4.1.6.1 Shading Models
	4.1.6.2 The Lambert Lighting Model
	4.1.6.3 Ambient Light
	4.1.6.4 The Phong Lighting Model
	4.1.6.5 The Blinn-Phong Lighting Model

	4.1.7. Textures and Sampling
	4.1.7.1 Interpolation
	4.1.7.2 Mipmap
	4.1.7.3 Aliasing

	4.1.8. Blending
	4.1.8.1 Depth Buffer
	4.1.8.2 Color Blending

	4.2. Basic II
	4.2.1. Modeling and File Formats
	4.2.1.1 OBJ
	4.2.1.2 FBX and Collada

	4.2.2. Environment Mapping
	4.2.2.1 Cube Map
	4.2.2.2 Sphere Map

	4.2.3. Curves
	4.2.3.1 Hermite and Cardinal Curves
	4.2.3.2 Bezier Curve
	4.2.3.3 B-Spline Curve
	4.2.3.4 NURBS
	4.2.3.5 Procedural Generation
	4.2.3.6 Noise
	4.2.3.7 L-Systems
	4.2.3.8 Particle Systems

	4.2.4. Ray Tracing, Space Partitioning, BVH
	4.2.4.1 Ray Casting
	4.2.4.2 Ray Tracing
	4.2.4.3 Space Partitioning
	4.2.4.4 Bounding Volume Hierarchy

	4.2.5. Global Illumination
	4.2.5.1 Path Tracing
	4.2.5.2 Photon Mapping

	4.2.6. Shadows
	4.2.6.1 Global Illumination Shadows
	4.2.6.2 Shadow Mapping
	4.2.6.3 Shadow Volume

	4.3. Game Engines

	5. The Tasks
	5.1. Basic I
	5.1.1. Computer Graphics
	5.1.1.1 Hello Canvas
	5.1.1.2 Hello WebGL
	5.1.1.3 Hello Three.js
	5.1.1.4 Hello Allegro
	5.1.1.5 Hello OpenGL

	5.1.2. Introduction to Geometry
	5.1.2.1 Bresenham Line
	5.1.2.2 Bresenham Triangle
	5.1.2.3 Wu Line*

	5.1.3. Geometry and Transformations I
	5.1.3.1 Cube Chopper
	5.1.3.2 Flying Chopper

	5.1.4. Geometry and Transformations II
	5.1.4.1 Shader Chopper

	5.1.5. Frames of Reference and Projection
	5.1.5.1 Projected Chopper

	5.1.6. Shading and Lighting
	5.1.6.1 Shaded Chopper
	5.1.6.2 Blinn Chopper
	5.1.6.3 Gamma Chopper

	5.1.7. Textures and Sampling
	5.1.7.1 UV Mapping
	5.1.7.2 Bump Mapping

	5.1.8. Blending
	5.1.8.1 Soft Particle Chopper
	5.1.8.2 Custom B. Chopper*

	5.2. Basic II
	5.2.1. Modeling and File Formats
	5.2.1.1 Imported Chopper

	5.2.2. Environment Mapping
	5.2.2.1 Reflected Chopper

	5.2.3. Curves
	5.2.3.1 Bezier Spline

	5.2.4. Procedural Generation
	5.2.4.1 Perlin Planet
	5.2.4.2 Lindenmayer Tree

	5.2.5. Ray Tracing, Space Partitioning, BVH
	5.2.5.1 Ray Chopper

	5.2.6. Global Illumination
	5.2.6.1 Path Trace

	5.2.7. Shadows

	6. The Flashcards
	6.1. Basic I
	6.1.1. Computer Graphics
	6.1.2. Introduction to Geometry
	6.1.3. Geometry and Transformations I
	6.1.4. Geometry and Transformations II
	6.1.5. Frames of Reference and Projection
	6.1.6. Shading and Lighting
	6.1.7. Textures and Sampling
	6.1.8. Blending

	6.2. Basic II
	6.2.1. File Formats and Modeling
	6.2.2. Environment Mapping
	6.2.3. Curves
	6.2.4. Procedural Generation
	6.2.5. Ray Tracing, Space Partitioning, BVH
	6.2.6. Global Illumination
	6.2.7. Shadows

	7. Results and Discussion
	7.1. Questionnaire
	7.1.1. Lectures
	7.1.2. Practice Sessions and Homework Tasks
	7.1.2.1 Practice Sessions
	7.1.2.2 Homework Tasks

	7.1.3. CGLearn Environment

	7.2. Exit Cards
	7.2.1. Introduction to Computer Graphics
	7.2.2. Introduction to Geometry
	7.2.3. Geometry and Transformations
	7.2.4. Frames of Reference and Projection
	7.2.5. Shading and Lighting
	7.2.6. Textures and Sampling
	7.2.7. Blending
	7.2.8. Curves
	7.2.9. Procedural Generation
	7.2.10. Ray Tracing, Space Partitioning, BVH.
	7.2.11. Global Illumination

	8. Summary
	9. References
	[1] Stanford University, CS 148: Introduction to Computer Graphics and Imaging (Fall 2014), http://web.stanford.edu/class/cs148/ (14. 05. 2015).
	[2] Department of Computer Science, Columbia University, Vision & Graphics, http://www.cs.columbia.edu/education/ms/visionAndGraphics (14. 05. 2015).
	[3] Institute of Computer Science, University of Tartu, Computer Graphics (MTAT.03.015), https://www.is.ut.ee/rwservlet?oa_aine_info.rdf+1006870+HTML+92522999797432876337+text/html (14. 05. 2015).
	[4] Avi C. Naiman, Interactive Teaching Modules for Computer Graphics, ACM SIGGRAPH, 1996.
	[5] R. Klein, F. Hanisch, W. Straßer, Web-Based Teaching of Computer Graphics: Conceptsand Realization of an Interactive Online Course, ACM SIGGRAPH, 1998.
	[6] J. Tomanová, M Cápay, E-learning Support for Computer Graphics Teaching and Testing, TELE-INFO, 2010.
	[7] TÜ haridustehnoloogiakeskus, Tartu Ülikooli Moodle´i õpikeskkond, https://moodle.ut.ee/ (14. 05. 2015).
	[8] Institute of Computer Science, University of Tartu, Arvutigraafika / Computer Graphics, 2013 Fall - Courses page, https://courses.cs.ut.ee/2015/cg/spring (14. 05. 2015).
	[9] P. A. Wozniak, SuperMemo 2: Algorithm, http://www.supermemo.com/english/ol/sm2.htm (14. 05. 2015).
	[10] E. Angel, S. Cunningham, P. Shirley, K. Sung, Teaching Computer Graphics withoutRaster-Level Algorithms, ACM SIGCSE Bulletin, 2006.
	[11] Kelvin Sung, Peter Shirley, A Top-Down Approach to Teaching Introductory Computer Graphics, ACM SIGGRAPH, Educators Program, 2003.
	[12] Institute of Computer Science, University of Tartu, Arvutigraafika / Computer Graphics, 2014 Springl, https://courses.cs.ut.ee/2015/cg/spring/ (14. 05. 2015).
	[13] Mari Karm, Õppemeetodid kõrgkoolis, 2013, Sihtasutus Archimedes.
	[14] D. R. Krathwohl, A revision of Bloom's taxonomy: An overview, Theory Into Practice, vol 41, no 4, 2002.
	[15] Naps et al, Exploring the Role of Visualization and Engagement in Computer Science Education, ACM SIGCSE Bulletin, 2003.
	[16] Google, Chrome Browser, https://www.google.com/chrome (14. 05. 2015).
	[17] The PHP Group, Alternative PHP Cache , http://php.net/manual/en/book.apc.php (14. 05. 2015).
	[18] J. Burke, K. Westin, K. Harsh, M. Medeiros, RequireJS Optimizer, http://requirejs.org/docs/optimization.html (14. 05. 2015).
	[19] P. R. Michaud., PmWiki, http://www.pmwiki.org/ (14. 05. 2015).
	[20] J. Vajakas, A. Lissitsin, M. Johanson, S. Laur, D. Unruh, P. Laud, MathWiki, http://mathwiki.cs.ut.ee/ (14. 05. 2015).
	[21] Udutu, Udutu, http://www.udutu.com/ (14. 05. 2015).
	[22] Udutu, FAQs, http://www.cedarlearning.com/resources_faqs.html (14. 05. 2015).
	[23] T. Otwell, Laravel Framework, http://laravel.com/ (14. 05. 2015).
	[24] Doctrine Team, Doctrine Project, http://www.doctrine-project.org/ (14. 05. 2015).
	[25] Internet2 Consortium, Shibboleth, https://shibboleth.net/ (14. 05. 2015).
	[26] J. Burke, K. Westin, K. Harsh, M. Medeiros, RequireJS, http://requirejs.org/ (14. 05. 2015).
	[27] The jQuery Foundation, jQuery, https://jquery.com/ (14. 05. 2015).
	[28] M. Otto, J. Thornton et al, Bootstrap, http://getbootstrap.com/ (14. 05. 2015).
	[29] R. Cabello et al, Three.js, http://threejs.org/ (14. 05. 2015).
	[30] D. Cervone, V. Sorge, C. Perfect, P. Krautzberger, MathJax, https://www.mathjax.org/ (14. 05. 2015).
	[31] Highsoft AS, Highcharts, http://www.highcharts.com/ (14. 05. 2015).
	[32] J. Skarnelis, FancyBox, http://fancybox.net/ (14. 05. 2015).
	[33] F. Heinze, Laravel vs. Zend Framework 2 comparison | vsChart.com, http://vschart.com/compare/laravel/vs/zend-framework (14. 05. 2015).
	[34] Creolab et al, Laravel Modules, https://github.com/creolab/laravel-modules (14. 05. 2015).
	[35] M. van Wijngaarden et al, Doctrine 2 for Laravel, https://github.com/mitchellvanw/laravel-doctrine (14. 05. 2015).
	[36] Linode LLC, SSD Cloud Hosting - Linode, https://www.linode.com/ (14. 05. 2015).
	[37] Canonical Ltd., Ubuntu, http://www.ubuntu.com/ (14. 05. 2015).
	[38] The Apache Software Foundation, The Apache HTTP Server Project, http://httpd.apache.org/ (14. 05. 2015).
	[39] Blue Lynx OÜ, Codelight, http://codelight.eu/ (14. 05. 2015).
	[40] University of Tartu, Study Information System, http://ois.ut.ee (14. 05. 2015).
	[41] M. Bouroumeau-Fuseau et al, PHP Debug Bar, https://github.com/maximebf/php-debugbar (14. 05. 2015).
	[42] Oracle Corporation, MySQL Workbench, Oracle Corporation (14. 05. 2015).
	[43] Atlantic18 et al, Doctrine2 Behavioral Extensions, https://github.com/Atlantic18/DoctrineExtensions (14. 05. 2015).
	[44] Doctrine Team, Inheritance Mapping: Class Table Inheritance, http://doctrine-orm.readthedocs.org/en/latest/reference/inheritance-mapping.html#class-table-inheritance (14. 05. 2015).
	[45] B. Nesbitt et al, Carbon, https://github.com/briannesbitt/Carbon (14. 05. 2015).
	[46] S. Petre et al, Slider for Bootstrap, http://www.eyecon.ro/bootstrap-slider/ (14. 05. 2015).
	[47] StackOverflow, Mathjax equations displaying 3 times (Jekyll), http://stackoverflow.com/questions/28726152/mathjax-equations-displaying-3-times-jekyll (14. 05. 2015).
	[48] S. Smith, Modular HTML components with RequireJS, http://simonsmith.io/modular-html-components-with-requirejs/ (14. 05. 2015).
	[49] Moxiecode Systems AB, TinyMCE, http://www.tinymce.com/ (14. 05. 2015).
	[50] J. Burke, K. Westin, K. Harsh, M. Medeiros, RequireJs Text Resource Loader Plugin, https://github.com/requirejs/text (14. 05. 2015).
	[51] H. Elias, Perlin Noise, http://freespace.virgin.net/hugo.elias/models/m_perlin.htm (14. 05. 2015).
	[52] C. Parker, Boids Pseudocode, http://www.kfish.org/boids/pseudocode.html (14. 05. 2015).
	[53] A. Gryc, Improvements to the canonical one-liner GLSL rand() for OpenGL ES 2.0, http://byteblacksmith.com/improvements-to-the-canonical-one-liner-glsl-rand-for-opengl-es-2-0/ (14. 05. 2015).
	[54] R. Cabello et al, Three.js r43, https://github.com/mrdoob/three.js/releases/tag/r43 (14. 05. 2015).
	[55] P. Shirley, M. Ashikhmin, S. Marschner, Fundamentals of Computer Graphics, 2009, A K Peters/CRC Press.
	[56] Nvidia, SDK White Paper: Improve Batching Using Texture Atlases, https://developer.nvidia.com/sites/default/files/akamai/tools/files/Texture_Atlas_Whitepaper.pdf (14. 05. 2015).
	[57] E. Persson, Tallinn, http://www.humus.name/index.php?page=Textures&ID=101 (14. 05. 2015).
	[58] N. Dodgson , Bezier Curves, http://www.cl.cam.ac.uk/teaching/2000/AGraphHCI/SMEG/node3.html (14. 05. 2015).
	[59] C.-K. Shene, Derivatives of a Bézier Curve, http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-der.html (14. 05. 2015).
	[60] C.-K. Shene, B-spline Basis Functions: Definition, http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-basis.html (14. 05. 2015).
	[61] U. Assarsson , Curves and Surfaces, http://www.cse.chalmers.se/edu/year/2011/course/TDA361_Computer_Graphics/Curves%20and%20Surfaces.pdf (14. 05. 2015).
	[62] K. Perlin, Making Noise, http://www.noisemachine.com/talk1/index.html (14. 05. 2015).
	[63] P. Prusinkiewicz, A. Lindenmayer, The Algorithmic Beauty of Plants, http://algorithmicbotany.org/papers/abop/abop.pdf (14. 05. 2015).
	[64] C. Reynolds, Boids, http://www.kfish.org/boids/pseudocode.html (14. 05. 2015).
	[65] T. Möller, B. Trumbore, Fast, Minimum Storage Ray/Triangle Intersection, Journal of Graphics Tools, 1997.
	[66] R. Tunnel, A. Soikonen, J. Valdma, 2D Nearest Neighbor Search, http://nns.tume-maailm.pri.ee/ (14. 05. 2015).
	[67] P. Krishnamachari, Global Illumination in a Nutshell, http://www.thepolygoners.com/tutorials/GIIntro/GIIntro.htm (14. 05. 2015).
	[68] F. Boesch, Soft Shadow Mapping, http://codeflow.org/entries/2013/feb/15/soft-shadow-mapping/ (14. 05. 2015).
	[69] T. Martin, T.-S. Tan, Anti-aliasing and Continuity with Trapezoidal Shadow Maps, http://www.comp.nus.edu.sg/~tants/tsm.html (14. 05. 2015).
	[70] The Code::Blocks team, Code::Blocks, http://www.codeblocks.org/ (14. 05. 2015).
	[71] G-Truc Creation, OpenGL Mathematics, http://glm.g-truc.net/0.9.6/index.html (14. 05. 2015).
	[72] The GLFW Development Team, GLFW, http://www.glfw.org/ (14. 05. 2015).
	[73] M. Bynens, jsPerf — JavaScript performance playground, http://jsperf.com/bresenham-line/3 (14. 05. 2015).
	[74] L. Gritz, E. d'Eon, The Importance of Being Linear, http://http.developer.nvidia.com/GPUGems3/gpugems3_ch24.html (14. 05. 2015).
	[75] R. Cabello et al, Three.js / examples / animation / skinning / blending, http://threejs.org/examples/#webgl_animation_skinning_blending (14. 05. 2015).
	[76] L. Kaplinski, Reflective water with GLSL, Part I, http://khayyam.kaplinski.com/2011/09/reflective-water-with-glsl-part-i.html (14. 05. 2015).
	[77] H. Prautzsch, W. Boehm, M. Paluszny, Bézier and B-Spline Techniques, 2002, Springer.
	[78] D. L. Finn, MA 323 Geometric Modelling Course Notes: Day 18 Bezier Splines II, https://www.rose-hulman.edu/~finn/CCLI/Notes/day18.pdf (14. 05. 2015).

	Appendix
	License

