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1. INTRODUCTION 

1.1. Climate change and its impact on northern forests 

Climate change scenarios forecast a 2–4 °C increase in air temperature and a  
5–40% increase in precipitation in boreal and northern temperate regions of 
Europe by the end of this century (IPCC, 2013; Jaagus and Mändla, 2014; 
Jungqvist et al., 2014; Kjellström et al., 2018; Lindner et al., 2014). These 
changes impact soil temperature and moisture, which are governing factors in all 
belowground processes. The dynamics of soil organic matter (SOM) and nutrient 
cycles and the resilience of the surrounding forest ecosystems are highly 
dependent on developments in tree fine root systems and root-associated fungal 
communities (Adamczyk et al., 2019; Clemmensen et al., 2015; Courty et al., 
2010; Jackson et al., 1997; Kieloaho et al., 2016). Therefore, gaining knowledge 
about tree root and rhizosphere community adaptations to soil warming and 
increased humidity is crucial for evaluating the resilience of different species to 
climate change and predicting forest carbon (C) and nutrient fluxes. 

While changes in air temperature are predicted to be highest in the coldest 
months in high latitudes, largest increases in soil temperature occur during the 
vegetation period, when there is no insulating snowcover (Jungqvist et al., 2014). 
Predicted annual mean soil temperature increases for three Canadian boreal 
forests were 1.3 °C (by year 2050) and 2.3 °C (by 2080) for the forest floor and 
1.4°C (by 2050) and 2.4 °C (by 2080) for mineral soil at 34 cm depth (predicted 
values are averaged for the three sites) (Houle et al., 2012). The same study 
predicts maximum increases as high as 5.2 °C for June in 2080 for mineral soil. 
Similar predictions have been made for Swedish boreal forests with an average 
increase of about 1.3–2.5 °C for most months of the year and a maximum increase 
of up to 4 °C in May in the northernmost area (Jungqvist et al., 2014; Oni et al., 
2017). 

The main growth-constraining factors in high-latitude and high-altitude 
forests are short growing season, low temperatures and for the former, low 
nitrogen (N) availability (Jandl and Schindlbacher, 2014; Ryan, 2013). Moderate 
warming could therefore initially benefit tree growth through prolongation of the 
growing season and mobilization of nutrients (Strömgren and Linder, 2002; Wu 
et al., 2011; Xu et al., 2012). However, excessive or long-term warming can cause 
depletion of soil water and nutrient supplies and result in retardation of growth 
and subsequently tree die-off. For Norway spruce, a threshold from a positive to 
a negative growth response has been recorded at a mean June air temperature of 
12–14 °C (Andreassen et al., 2006; Sidor et al., 2015). Experimental soil warming 
has been shown to bring about deeper rooting, a decrease in fine root biomass or 
an increase in fine root mortality (Leppälammi-Kujansuu, 2014; Nishar et al., 
2017; Wan et al., 2004). Accordingly, an increase in fine root turnover and 
decrease in fine root biomass has been exhibited to co-occur with increasing mean 
annual temperature in large-scale latitudinal studies (Gill and Jackson, 2000; 
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Leuschner and Hertel, 2003). Interestingly, it has been demonstrated for Norway 
spruce that the soil temperatures, where maximum root growth appears, are much 
higher than what they experience in either natural conditions or in warming 
experiments (Lahti et al., 2005; Lyr and Hoffmann, 1967). The negative warming 
effect on fine root biomass and lifespan that has been observed at higher 
temperatures in field experiments has been attributed to reduced soil moisture, 
enhanced root maintenance respiration, changes in soil fertility and chemical 
composition, or increased herbivore and pathogen activity (Nishar et al., 2017; 
Sidor et al., 2015; Wan et al., 2004). The size and direction of warming effects 
on root biomass, morphology and the EcM community depends largely on initial 
nutrient and water availability in the soil (Johnson et al., 2006; Leppälammi-
Kujansuu, 2014). For example, in high-latitude N-limited ecosystems, warming 
has increased EcM mycelial production and community diversity (Clemmensen 
et al., 2006; Treseder et al., 2016) and caused a shift towards taxa characterized 
by abundant extramatrical biomass and large proteolytic capacity and a reduction 
in taxa with high affinities for labile N (Deslippe et al., 2011). On the other hand, 
in an alpine forest, where warming resulted in higher inorganic N availability, an 
increase in the relative abundance of species that are known to tolerate high levels 
of N was reported (Lilleskov et al., 2011; Solly et al., 2017). 

Increases in air temperature co-occur with a rise in precipitation and air 
humidity at high latitudes (Dai, 2006; Willett et al., 2010). Over the recent 
decades (1976–2004), an increase in specific air humidity (g kg–1) of 1.5%–6.0% 
decade–1 has taken place over Eurasia (Dai, 2006). In the northern part of the 
Baltic Sea region, the largest increases in precipitation have been observed during 
the winter months and in June (Jaagus et al., 2018). Air humidity and precipitation 
are closely related to plant productivity, which has shown higher sensitivity to 
increased precipitation than to decreased precipitation (Wu et al., 2011). Higher 
air humidity may affect forests through a reduction in transpiration (Kupper et al., 
2011) and thereby limit the mass flow of soluble minerals in the soil and nutrient 
uptake of roots (Cramer et al., 2009). Indeed, lower foliar concentrations of N 
and phosphorus (P) have been recorded for silver birches and hybrid aspens 
grown in conditions of elevated air humidity (Sellin et al., 2017). The reduction 
in transpiration also leads to an increase in soil moisture (Hansen et al., 2013), 
which directly affects the growth environment of roots and soil microorganisms. 
Excess soil water can cause hypoxia, which can impact membrane transport in 
roots and impair the uptake and root-to-shoot transport of N compounds 
(Kreuzwieser et al., 2009; Liu et al., 2015). Furthermore, increasing humidity has 
been shown to increase pathogen damage (Sellin et al., 2017). Studies of tree fine 
root biomass variation in relation to varying precipitation show that although dry 
conditions induce a more rapid fine root turnover, then the standing stock of fine 
root biomass and soil organic carbon (SOC) increases towards the humid end of 
the gradient (Leuschner and Hertel, 2003; Meier and Leuschner, 2010). Similar 
findings of increased fine root biomass and a higher proportion of absorptive root 
biomass have been observed for silver birches growing in elevated air humidity 
(Rosenvald et al., 2014).  
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1.2. Fine roots and ectomycorrhizal fungi 

Fine roots (<2 mm in diameter) along with their ectomycorrhizal (EcM) 
symbionts are responsible for the water and nutrient uptake of trees. They are 
considered to be the most important component of below-ground C and nutrient 
fluxes, consuming up to 75% of fixed C and contributing up to 70% of the 
C stored in boreal forest soils (Clemmensen et al., 2013; Fogel and Hunt, 1983). 
Fine roots respond to changes in the growth environment with great plasticity, 
either through modifications in root biomass, root morphology or shifts in root-
associated microbial communities (Ostonen et al., 2011; Richardson et al., 2009; 
Rosenvald et al., 2011b; Truu et al., 2017; Valverde-Barrantes et al., 2015).  

Fine roots can be functionally divided into transport roots with secondary 
structure and absorptive roots with primary structure. Hereafter, I refer to the 
entire fine root compartment, which includes both absorptive and transport roots, 
as ‘fine roots’ and to the proportion of absorptive fine roots as ‘absorptive roots’. 
Absorptive roots, also known as short roots or ectomycorrhizal roots, are the first- 
to third-order roots (McCormack et al., 2015; Ostonen et al., 2007, 1999) that 
constitute the most active and predominant part of the fine root system, 
accounting for more than 75% of total fine root length and 60% of total fine root 
surface (Guo et al., 2004). In temperate and boreal forests, absorptive roots are 
prevalently (90–100%) colonized by ectomycorrhizal fungi (Kraigher et al., 
2007; Taylor et al., 2009), which in turn are associated with rhizosphere bacteria 
(Frey-Klett et al., 2007; Marupakula et al., 2016).  

Fine and absorptive roots exhibit several traits that determine nutrient uptake 
and root functioning, while providing information about root demographic patterns, 
soil fertility and plant stress status. A number of attempts have been made to 
incorporate these traits into frameworks of plant foraging strategies, although the 
results are far from conclusive. For example, high specific root length and area 
(SRL and SRA) have been thought to reflect the acquisitive or intensive strategy 
of enhanced resource uptake at lower biomass investments, high root cost 
efficiency and fast growth, which plants may employ either in conditions of soil 
resource scarcity or, on the contrary, in productive environments, where rapid 
acquisition of nutrients is essential to withstand competition (Comas and Eissenstat, 
2004; de la Riva et al., 2018; Holdaway et al., 2011; Lõhmus et al., 2006; Ostonen 
et al., 2007; Weemstra et al., 2016). Depending on the circumstances, an increase 
in SRL and SRA can be viewed either as means of acclimation or serve as 
indication of plant stress (Rosenvald et al., 2011b). High SRL and SRA are 
achieved through a reduction in either root tissue density (RTD) or root diameter 
(D). Both D and RTD have been linked to root survivorship and age (Hajek et al., 
2014; McCormack et al., 2012; Valverde-Barrantes et al., 2015; Weemstra et al., 
2016; Wells and Eissenstat, 2001), but appear to vary independently from each 
other due to differing dependence on factors, such as soil structure and fertility, 
mycorrhizal colonization and phylogeny (Bergmann et al., 2020; de la Riva et al., 
2018; Kramer-Walter et al., 2016; Valverde-barrantes et al., 2017). Another trait 
suggested to be of high importance in precision foraging and acclimation is 
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branching frequency, which is largely influenced by mycorrhizal association 
(Kong et al., 2014; Liese et al., 2017). In addition to altering root morphology, 
plants respond to varying nutrient availability through shifts in root biomass 
allocation. For example, higher investment in fine and absorptive root biomass 
has been shown to be common in nutrient poor forests and associated with the 
extensive foraging strategy (Helmisaari et al., 2007; Lõhmus et al., 2006; Ostonen 
et al., 2011). In small-scale nutrient patches, extensive fine root biomass 
accompanied by increased RTD has been reported and associated with the 
conservative syndrome of forming long-living roots (Valverde-Barrantes et al., 
2015).  

The identity of the fungal colonizer has a considerable effect on EcM 
absorptive root diameter, length and weight, thereby also influencing SRA and 
SRL (Makita et al., 2012; Ostonen et al., 2009; van der Heijden and Kuyper, 
2003), which is why changes in root morphology should not be addressed 
separately from developments in the EcM fungal community. Besides differing 
in their influence on root growth and shape, EcM fungal taxa exhibit contrasting 
foraging strategies with varying capacities of enzymatic activities, nutrient uptake 
and translocation, and maintenance costs to the host plant (Gorissen and Kuyper, 
2000; Lilleskov et al., 2002; Tedersoo et al., 2012; van der Heijden and Kuyper, 
2003; Velmala et al., 2014). The different ecological strategies of EcM fungi have 
been associated with exploration type and hydrophobicity (Lilleskov et al., 2011; 
Unestam and Sun, 1995). Hydrophilic morphotypes (prevalently concurring with 
contact-, short-distance and medium-distance smooth exploration types) have 
lower proteolytic capabilities and depend on the availability of labile N forms, 
thus representing the exploiting ruderal strategy (Hobbie and Agerer, 2010; 
Lilleskov et al., 2011; Tedersoo et al., 2012). These morphotypes prosper in humid 
environments and have been shown to tolerate waterlogging and oxygen 
deficiency better (Bakker et al., 2006; Stenström, 1991). On the other hand, 
hydrophobic morphotypes that form rhizomorphs and produce high extramatrical 
biomass characterize environments, where labile N is scarce and insoluble 
organic N-sources are widely dispersed and spatially concentrated. Hydrophobic 
rhizomorphs facilitate effective long-distance water transport, prevent leakage of 
solutes and are characteristic for stress tolerant species in cases of drought and 
consequent nutrient limitation (Hobbie and Agerer, 2010). In such conditions, the 
costly formation of high extramatrical biomass and exudation of extracellular 
enzymes, capable of decomposing complex organic substrates, is advantageous. 
Producing extensive hydrophobic hyphal mats may also drive out other 
microorganisms and thus render a competitive quality (Unestam and Sun, 1995). 
Undoubtedly, the effectiveness of a morphotype, whether hydrophilic and forming 
low extramatrical biomass or hydrophobic and forming high biomass, depends 
on the specific conditions and limiting resources. 

Extending the above-described inter-relatedness even further, shifts in root 
traits and fungal communities are reciprocally associated with changes in rhizo-
sphere bacterial communities (Friesen et al., 2011; Marupakula et al., 2016), the 
effect of which on plant performance and root traits has been shown to vary 
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largely on climatic gradients (Rutten and Gómez-Aparicio, 2018). Additionally, 
elevated air humidity has been shown to affect the rhizosphere microbial 
community directly via changes in soil moisture and pH, but also through changes 
in absorptive root D, branching frequency and SRL (Truu et al., 2017). For 
example, higher SRL and branching frequency indicate larger number of young 
metabolically active root tips, which may create better substrate supply and 
benefit specific groups of rhizosphere bacteria.  
 
 

1.3. Different approaches to studying the effects  
of climate change 

Different approaches are available for studying the effects of climate change, 
which all have their advantages and restrictions: field manipulation experiments, 
natural small-scale environmental gradients and large-scale latitudinal gradients. 

Field manipulation experiments enable us to study the ecosystems, species or 
genotypes of interest and identify causal effects, while maintaining a high degree 
of control over unwanted sources of variation. At the same time, the amount of 
treatment levels and the spatial and temporal span are usually limited, although 
exceptions do exist (Deslippe et al., 2011; Ryan, 2013; Schindlbacher et al., 2015). 
The short duration of most experiments increases the risk of under- or over-
estimating ecosystem responses (Walker et al., 2020), making it difficult to 
provide reliable predictions of long-term climate change effects. Underestimation 
of manipulation effects may arise from a delayed reaction of the ecosystem 
(especially regarding slow processes, such as changes in soil structure or shifts in 
community composition of long-lived species), while overestimation may occur 
when the studied system responds in a logarithmic or overshoot manner (Beier et 
al., 2012; De Boeck et al., 2015; Romero-Olivares et al., 2017). The spatial 
limitation of manipulation experiments also increases the chances of misinter-
preting the results, because only parts of the plant or studied system are exposed 
to the manipulated conditions, which enables unmanipulated parts of the system 
to compensate for any resource imbalances and environmental changes, or more 
broadly, due to the ‘island effect’ (Leuzinger et al., 2015). The small number of 
treatment levels of manipulation experiments is also problematic as it prevents 
the detection of more complex responses, thresholds and tipping-points (Kreyling 
et al., 2014). In addition, the treatment intensity employed by manipulation 
experiments is rarely allowed to reach such extremes that lead to mortality (Beier 
et al., 2012). 

Small-scale natural gradients offer solutions to some of the above-mentioned 
limitations. They allow us to investigate large and gradual changes over relatively 
small distances, while keeping other environmental factors (climate, elevation, 
soil type, photoperiodicity) unchanged. In case of natural geothermal temperature 
gradients, their large temperature ranges encompass the entire set of climate 
change predictions, which helps to reveal the shape of the warming response and 
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potential thresholds in acclimation ability (Leblans et al., 2017). However, 
geothermal studies are confined to volcanic environments. Also, although they 
may be long-persisting, which allows long-term observations, they are still 
created by an abrupt change in temperature, acting as a disturbance. The main 
limitation of both manipulation experiments and small-scale natural gradients is 
that they both act as ‘islands’ in ambient surroundings, which may obscure 
treatment effects. Regarding soil warming experiments, they do not imitate global 
warming in full, as heat originates from the ground, leaving the air mostly 
unwarmed (Leblans, 2016; O’Gorman et al., 2014). More generally, results from 
single-factor treatments should be extrapolated cautiously, as it has been shown 
that combinations of environmental factors can interact synergistically or antag-
onistically (Leuzinger et al., 2011; Wu et al., 2011). Nevertheless, single-factor 
studies allow us to identify causes behind the observed changes by reducing 
complexity (De Boeck et al., 2015). 

A valuable alternative to the small-scale manipulation and natural gradient 
experiments is studying latitudinal or altitudinal gradients as a proxy for climate 
change, i.e. the space-for-time approach. The advantage of using latitudinal 
gradients is their experimental realism and absence of the ‘island effect’, the lack 
of the initial abrupt change in temperature, and most importantly, their long-term 
character, which enables us to witness persistent changes and equilibrium states. 
At the same time, latitudinal gradients encompass different populations and cover 
a wide range of climates, soil types and other environmental factors that also 
significantly influence ecosystem functioning, making it harder to isolate causal 
effects and distinguish phenotypic plasticity from genetically determined dif-
ferences. Still, large-scale latitudinal studies facilitate predicting the direction in 
which our studied ecosystems could evolve in a warmer world, identifying the 
natural endurance limits of species and ecosystems of interest and discovering 
generality in ecosystem responses. Altogether, it is recommended to apply and 
compare the results of all the different types of experiments to make reliable 
predictions and generalisations about climate change outcomes. 

In this thesis, all three above-discussed approaches have been used to study 
the effects of soil warming and elevated air humidity on the fine roots and root-
associated microbial communities of spruce (Picea sitchensis Bong. Carr and 
Picea abies (L.) Karst.) and birch (Betula pendula Roth.). Spruce and birch were 
chosen for investigation because of their economical importance and wide 
distribution in temperate and boreal European forests (Caudullo et al., 2016; 
Houston Durrant et al., 2016; Hynynen et al., 2010), spruce species representing 
common late-successional and birch a pioneer tree species.  
 
 

1.4. Aims of the thesis 

The overall objective of this doctoral thesis was to analyse the effects of elevated 
air humidity and soil warming on the acclimation processes of fine roots and root-
associated microbial communities of birch and spruce, and compare these 
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findings to patterns witnessed on latitudinal gradients with particular emphasis 
on root-EcM fungi-bacteria interactions. In addition, latitudinal gradient studies 
were used to distinguish root traits that respond most plastically in the studied 
tree species. 

 
The specific aims were: 
1) To examine whether and how elevated air humidity affects silver birch 

absorptive root morphology and the root-colonizing EcM community in 
relation to different understory types; and whether the morphological reaction 
shows any temporal change (I). 

2) To find out whether and how soil warming affects spruce fine and absorptive 
root biomass allocation, absorptive root morphology and the root-colonizing 
EcM community; whether the response is similar in a man-made experiment 
and on a natural soil temperature gradient; and to analyse the response curves 
of the root traits up to the die-off edge of the trees (IV). 

3) To investigate spruce and birch fine root-rhizobiome acclimation patterns on 
latitudinal gradients and identify the absorptive root traits that are most 
responsive in acclimation for both genera (II, III). 

 
The main hypotheses were: 
1) Elevated air humidity causes a morphological stress response in absorptive 

roots and a shift in root-colonizing EcM fungal community composition. 
2) Soil warming induces a decrease in fine and absorptive root biomass 

allocation, which concurs with an increase in specific root area and length, 
and a shift in the community structure of EcM colonizers; root response to 
warming is similar in the man-made experiment and the natural soil 
temperature gradient. 

3) There are root traits, such as absorptive root biomass, that change similarly in 
both tree species along the latitudinal gradient and are driven primarily by 
environmental factors, while spruce and birch also show distinctive 
morphological acclimation patterns. 
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2. MATERIALS AND METHODS 

2.1. Description of study sites 

The effect of elevated air humidity on silver birch absorptive root morphology 
and the root-associated EcM community was studied on the FAHM (Free Air 
Humidity Manipulation) experimental site, which is situated at Rõka village in 
south-eastern Estonia (Kupper et al., 2011) (Table 1; Publication I). The effect of 
soil warming on spruce fine and absorptive root biomass and absorptive root 
morphology was studied on two sites: a man-made soil warming experiment in 
the Northern Limestone Alps, close to the village of Achenkirch, Austria 
(Schindlbacher et al., 2009); and a natural geothermal gradient (ForHot) close to 
Hveragerði in southern Iceland (Sigurdsson et al., 2016) (Table 1; Publication 
IV). At Achenkirch, we also identified the root-associated EcM community. The 
number and location of study stands on the latitudinal gradient are described in 
section 2.1.3. 

For all the sites included in this doctoral thesis, there were comprehensive 
background data of climate variables, stand characteristics and soil chemical 
characteristics available, of which the relevant variables are presented in Tables 
2 and 3. The full descriptions and references, how the measurements were 
conducted, are in the publications. 
 
Table 1. Background information about the soil warming and air humidification study 
sites (Publications I and IV).  

Site (tree species) Achenkirch 
(Picea abies)

ForHot (Picea 
sitchensis)

FAHM (Betula 
pendula) 

Location 47.581°N, 
11.639°E

64.008°N, 
21.178°W

58.4°N, 27.3°E 

Elevation, m a.s.l. 910 83–168 40–48 
MAT, °C 6.9a 5.2b 5.6c 
MAP, mm 1506a 1457b 650 
Stand age 130 50 3–5 
Soil typed Chromic 

Cambisol
Silandic Andosol Endogenic Mollic 

Planosol 
Stand basal area, m2 ha–1 35e 49 8 
Stand density, trees ha–1 487e 4461 10 000 

a Measured between 1992 and 2012 at Achenkirch village (7 km away at similar altitude); data from 
Zentralanstalt für Meteorologie und Geodynamik (ZAMG); reported by Schindlbacher et al. (2015). 
b Measured between 2003 and 2015 at the closest synoptic station at Eyrabakki (9 km south of 
Hveragerði); data from Icelandic Meteorological Office; reported by Sigurdsson et al. (2016). 
c Measured between 2009 and 2011 at the closest synoptic station at Ahja village; data from the 
Estonian Environment Agency. d IUSS Working Group WBR 2015. e Including only spruce. 
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2.1.1. The free air humidity manipulation (FAHM) 

The study site has been established on former agricultural land. One-year-old 
silver birch seedlings were planted in the experimental area in spring 2006. The 
site contains humidified (H) and control (C) plots (samples were taken from two 
H and two C plots). Humidification started on 1 June 2008 and has been carried 
out daily throughout all following growing seasons. Humidification took place if 
the ambient relative air humidity dropped <75% and wind speed was <4 m s–1. 
The FAHM system enabled an average increase in relative air humidity of 7% 
(maximum 18%) over the ambient level.  

To investigate the impact of soil biota and understory species composition on 
ecosystem functioning, two different types of ground vegetation were established 
in the plots, representing either disturbed forest vegetation, such as that usually 
recorded in recent clear-cut areas, or early-successional vegetation with low 
diversity and a strong dominance of a few grass species, such as that in abandoned 
arable fields (Kupper et al., 2011). The ‘forest’ understory was dominated by 
Ranunculus repens L., Lathyrus pratensis L., Festuca rubra L., and Veronica 
chamaedrys L. and consisted of 67 species. The grass understory comprised only 
31 species and exhibited strong dominance of Elymus repens (L.) Gould 
accompanied by Aegopodium podagraria L. 

 
 

2.1.2. The soil warming experiments 

The studied 130-year-old forest at the Achenkirch site was dominated by Norway 
spruce (Picea abies), inter-mixed with European beech (Fagus sylvatica) and 
silver fir (Abies alba). The amount of ground vegetation was negligible. In 2004, 
three spots were randomly selected on the site, where a warmed plot and an 
ambient plot were established, each with a size of 2×2 m. Warmed plots were 
equipped with resistance heating cables, which were buried in 3-cm-deep 
trenches and had a spacing of 7–8 cm. The soil temperature of each warmed plot 
was kept 4 °C above that of the adjacent ambient plot during the snow-free 
seasons, starting in spring 2005. The 4 °C warming level is in accordance with 
the soil temperature predictions made for the growing season in Canadian and 
Swedish boreal forests (Houle et al., 2012; Jungqvist et al., 2014).  

In southern Iceland, an earthquake occurred on May 29, 2008, which affected 
geothermal systems close to its epicenter. One such system at Reykir moved to a 
previously unwarmed area (Sigurdsson et al., 2016; Þorbjörnsson et al., 2009), 
where the new geothermal bedrock channels caused increasing temperature in the 
soil above by radiative heating (O’Gorman et al., 2014). This recently warmed 
area is covered by an unthinned Sitka spruce forest that was planted in 1966–
1967. In autumn 2012, twenty-five permanent experimental plots were 
established on five replicate transects in the stand (Figure S1 in IV). The transects 
were about 50 m in length and ranged from ambient soil temperature to about 
+10 °C. The location of the plots was chosen aiming for the long-term warming 
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levels of about 0, +1, +3, +5 and +10 °C warming (hereafter called levels A (un-
warmed ambient), B, C, D and E, respectively), although the realized annual 
temperature means were slightly lower (Table 3; Sigurdsson et al., 2016). Owing 
to the geothermal origin of soil warming, temperature also increased towards the 
deeper soil on average 2 °C per depth interval (0–5, 5–10 and 10–20 cm; 
Figures 1 and S2 in IV). Ground vegetation proliferated only starting from D or 
E plots, which was close to the warming-induced die-off edge in the spruce stand 
(Figure S1 in IV; O’Gorman et al., 2014). 
 
Table 3. Main site and soil characteristics per treatment in the soil warming experiments 
in 2013 (Publication IV). Abbreviations: AK – Achenkirch warming manipulation; FH – 
ForHot geothermal gradient; A – ambient, W – warming at Achenkirch; B–E – warming 
levels at ForHot; NE – not estimated. 
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AK A 10.5 8.0 35 14.9 NE 47.2 ~7 

AK W (+4) 14.6 (+4.1) 12.1 (+4.1) 35 16.0 NE 43.5 ~7 

FH A  8.2 5.8 48 17.3 0.58 31.2 5.3 

FH B (+1) 8.9 (+0.7) 7.1 (+1.3) 56 22.3 0.98 31.2 5.1 

FH C (+2) 10.2 (+2.0) 7.7 (+1.9) 50 19.5 1.22 31.3 5.1 

FH D (+4) 11.7 (+3.5) 8.7 (+2.9) 35 17.1 2.84 30.7 5.0 

FH E (+8) 15.9 (+7.7) 13.7 (+7.9) 27 16.6 82.2 45.0 5.2 

a Soil temperature (for long-term averages) was measured at 10cm. b Vegetation period at Forhot 
from May to August, vegetation period at Achenkirch from May to October. c For Achenkirch, 
mean October 2013 soil temperature is given. d Measured from 0–10cm depth throughout the 
growing season. e Measured from 0-5cm depth from April to June 2013. f Measured from 0-10cm 
of mineral soil in July 2013. 
 
 

2.1.3. The latitudinal studies 

Root acclimation patterns were investigated in two latitudinal studies, with the 
first study focusing on morphological plasticity of Norway spruce and silver birch 
absorptive roots (Publication II), and the latter study viewing acclimation patterns 
of the whole fine root-rhizobiome, including root-colonizing EcM fungi and soil 
and rhizosphere bacteria (Publication III). In the first study (II), the spruce stands 
covered a latitudinal range from 48 to 68°N, including 5 temperate, 3 hemiboreal, 
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and 6 boreal stands of ages from 30 to 140 years. The birch stands covered a 
latitudinal range from 53 to 66°N and a longitudinal range from 2°W to 51°E and 
included 6 native forest stands in boreal, 8 in hemiboreal, and 1 in the temperate 
zone (Figure 1 in II and Tables S1 and S2 in II). In the latter study (III), 10 silver 
birch and 15 Norway spruce forests covering a latitudinal range from 48 to 69°N 
were studied (Figure 1 in III and Tables S1 and S2 in III). 

The study sites for both tree species display gradients in climate (e.g. mean 
annual temperature and precipitation, growing season length) as well as in N 
deposition. The different fertility of studied spruce sites was reflected by soil C:N 
ratio. In general, the southern stands displayed higher fertility. Silver birch stands 
on native forest land all belonged to the fertile forest site types. 
 
 

2.2. Fine and absorptive root biomass and 
morphology: sampling and measurements 

Root samples were collected at the end of the growing season (September-
October) from the organic and 0–20-cm mineral soil layer. In the latitudinal 
studies, 10–15 soil cores (38 mm in diamater) were taken per site for fine root 
biomass (FRB; g m–2) estimations and 8–10 samples per site to study absorptive 
root morphology, EcM community and birch rhizosphere bacterial community. 
At the FAHM site, 8 samples were taken per experimental plot for morphological 
studies in three consecutive years (16 samples per treatment, altogether 32 
samples from the whole experimental site). Each plot comprised two quarters of 
different understory; four samples were collected from both quarters. At the 
ForHot site, one soil core (88 mm in diameter for 0–10-cm depth and 38 mm for 
10–20-cm depth) was taken per plot for morphological analyses and FRB 
estimation (5 samples per warming level, altogether 25 samples from the whole 
experimental area). For morphological studies, the soil cores were further divided 
into three soil layers: 0–5, 5–10 and 10–20 cm, because of the approximately 2 °C 
increase in soil temperature per layer. At the Achenkirch site, 5 soil cores (50 mm 
in diameter) were taken per plot for morphological studies and an additional 3 
soil cores per plot for FRB estimations, altogether 15 and 9 samples per treatment, 
respectively.  

To determine the number of absorptive roots per m2, the root tips of two or 
three fine root fragments (which accounted for at least 1/5 of a sample) were 
counted. Fine roots were then dried at 65 °C for 48 h to constant weight and 
weighed to ±0.05 mg accuracy. Absorptive fine root biomass (aFRB; g m–2) was 
calculated by multiplying the mean absorptive root weight by the root tip number 
per m2. The FRB and aFRB are presented per stand basal area (BA) to describe 
the functional relationship between the above- and below-ground parts of a forest 
stand and to facilitate comparison between sites with varying tree sizes and 
numbers. 
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For morphological analyses, 2–5 random subsamples of first-to-third-order 
absorptive roots were taken per sample (20–30 living root tips per subsample). 
All morphological parameters were measured and calculated for the subsample 
level. Absorptive root length, projection area and mean diameter (D; mm) of a 
subsample were measured using WinRHIZO Pro 2003b software. After measuring, 
absorptive roots were dried at 70 °C until constant weight and weighed with an 
accuracy of ±0.05 mg. The method for determining absorptive root morphological 
parameters: absorptive root length (L; mm), specific root area (SRA; m2 kg–1), 
specific root length (SRL; m g–1), root tissue density (RTD; kg m–3), and 
branching frequency (BW and BL; mg–1 and mm–1) is given in detail in Ostonen et 
al., 1999. 
 
 

2.3. Microbiological analyses 

2.3.1. Ectomycorrhizal community analysis:  
sampling and identification 

To determine the EcM community composition, the same amount of root samples 
were taken as described for root morphological sampling at the FAHM site (I), at 
the Achenkirch site (IV) and for all the sites in the latitudinal gradient (III). Root 
tips from three fine root fragments (5–7cm in length) were taken from each 
sample and subjected to morphotyping on the basis of mantle color, texture, and 
the presence of emanating hyphae and rhizomorphs. The relative abundance of 
each morphotype was estimated and all the morphotypes were assigned into 
exploration types (III, IV; Agerer, 2006) or classified as hydrophilic or hydro-
phobic (I). Two to three representative root tips of each morphotype per sample 
were subjected to DNA analysis. Fungal taxa were identified by use of sequence 
analysis of the nuclear rDNA Internal Transcriber Spacer (ITS) region (a detailed 
description is presented in Publication IV). Sequences were assigned to opera-
tional taxonomic units (OTUs) based on a 97.0% ITS barcoding threshold 
(Tedersoo et al., 2003). 

Extramatrical mycelium biomass per EcM root tip (µg cm–1) of each stand was 
calculated using biomass coefficients for different exploration types (calculations 
in Weigt et al., 2012, 2011) and the frequency of dominating EcM morphotypes 
(percentage of root samples colonized). 
 
 

2.3.2. Bacterial community analysis 

The abundance of bacterial communities in bulk soil was evaluated by bacterial 
16S rRNA gene copy numbers, using a quantitative polymerase chain reaction 
(qPCR). Bacterial community profiling was performed by sequencing bacterial 
16S rRNA gene fragments on the Illumina ® HiSeq 2000 (Illumina Inc., San 
Diego, CA, USA). The details about used primers, qPCR conditions, calculation 
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method, the preparation of amplicons for sequencing and bioinformatic analysis 
can be found in Publication III.  
 
 

2.4. Statistical Analyses 

Statistical analyses were carried out using STATISTICA 7.1 (StatSoft, 2005), 
R (R Core Team, 2013), PERMDISP (Anderson, 2004), CANOCO (ter Braak 
and Šmilauer, 2002) and EstimateS 9.1.0 (Colwell, 2013) software. The signi-
ficance level was set at α=0.05 for all the analyses. Root variables were checked 
for normality using the Kolmogorov-Smirnov, Lilliefors and Shapiro-Wilk tests; 
homogeneity of variance was assessed using Levene’s test. 

The effect of soil warming on FRB, aFRB and absorptive root morphological 
traits was checked with the t-test (for the Achenkirch data) and using simple linear 
regression analysis and one-way ANOVA (for the ForHot data) (IV). The warming 
response of FRB/BA, aFRB/BA and RTD on the soil temperature gradient was 
modelled by the Gompertz function. To determine which soil properties influenced 
absorptive root morphology and fine root biomass in addition to soil temperature 
at ForHot, partial correlations were found and all soil parameters that correlated 
with a given root trait with a probability level of p<0.1 were included in forward 
stepwise multiple regression analyses. In the latitudinal studies (II, III), linear and 
non-linear modelling tools were used to analyse relationships between root traits, 
environmental variables and latitude. When assessing the effect of tree species 
and forest zone on root traits; climate, soil and stand characteristics were used as 
covariates (III). Student’s t-test was applied to verify the differences in trait means 
and PI values between spruce and birch (II). Repeated measures ANOVA was 
used on repeatedly measured data to evaluate the influence of the study year and 
the effect of humidification and understory type over all years (I, II). Two-way 
ANOVA was employed to test the effect of humidification and understory type 
in each separate year (I). 

To detect and visualize relationships between root traits, sites, treatments and 
environmental parameters, redundancy analysis (RDA) was used (I–IV). To 
evaluate the effect of treatments and environmental factors and illustrate the dis-
similarities in EcM communities, the canonical correspondence analysis (CCA) 
was employed (I, IV). The significance of RDA and CCA results was tested with 
the Monte Carlo permutation procedure in CANOCO. At FAHM (I), the adonis 
function (vegan package in R) was used in addition to CCA to evaluate the effect 
of treatments, understory types and environmental factors on the fungal com-
munity species composition (whether a species appears in a sample or not). The 
difference in colonization percentages of hydrophilic and hydrophobic morpho-
types between the treatments and understory types was checked by two-way 
ANOVA. For the EcM community analyses at Achenkirch (IV), OTU accumu-
lation (rarefaction) curves and the minimum richness estimators, Chao1, Jackk-
nife1 and ACE were calculated to evaluate the sufficiency of sample size and to 
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estimate the proportion of unseen OTUs at the site. The differences in coloniza-
tion percentages of dominant genera and exploration types, OTU richnesses and 
Shannon diversity indices between the treatments were checked using the Mann–
Whitney U Test. The centroids and the dispersions of the two fungal communities 
were compared using PERMDISP. In the latitudinal study (III), Spearman rank 
correlation coefficients were used to describe the effects of root traits and 
environmental factors on EcM exploration types.  

To analyse the trilateral relationships between tree roots, soil bacterial and 
EcM community structure across the latitudinal gradient of silver birch stands, 
phylogenetic molecular ecological networks (pMENs) based on bacterial OTU 
data were constructed for bulk soil and rhizosphere by application of the 
Molecular Ecological Network Analyses Pipeline (MENAP) (Deng et al., 2012). 
Kendall rank correlation coefficients were calculated to test the relationships 
between bacterial community diversity parameters and root morphology and soil 
parameters, as well as to test the relationship between the bacterial OTU abund-
ances and stand geographical location (distance from the equator). Relationships 
between soil variables, root morphological parameters and the obtained network 
modules were analysed using RDA. In case of the network modules that were 
related to stand distance from the equator (Mantel test), the correlation of module 
OTU relative abundances to the stand distance from the equator was tested using 
linear regression analysis. Procrustes analyses, using ordinations of the bacterial 
(whole community and pMEN modules of the rhizosphere and bulk soil) and 
EcM fungal communities (at the functional group level), were applied to explore 
the relationships between bacterial and EcM fungal community structure in the 
studied forest soils. 
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3. RESULTS AND DISCUSSION 

3.1. The effect of elevated air humidity on birch fine 
roots and ectomycorrhizal community 

Humidification affected EcM root morphology significantly throughout the three 
study years (Figure 1). Within each study year, humidification had extensive 
influence in 2009 and 2010 (the second and third year of humidification); how-
ever, the number of morphological parameters that significantly differed between 
the treatments decreased greatly by 2011 (the fourth year of humidification) 
(Table 2 in I). Humidified birches reacted after the second year of humidification 
(in 2009) by forming absorptive roots with higher SRA and SRL, which was 
caused by lower values of RTD. This was especially pronounced in quarters with 
early-successional grasses, which seemed to have initially caused strong under-
ground competition and additional stress for the roots of silver birch by producing 
the predominant proportion of the total fine root biomass in humidified plots 
(Kukumägi et al., 2014). Also, leaf N concentrations were significantly lower in 
humidified plots than in control in 2009, indicating malnutrition, although the 
experimental plantation was established on fertile abandoned arable land. Our 
observations are in good agreement with the results of Rosenvald et al. (2011a), 
where high SRL and SRA values were symptomatic of low leaf N, reflecting a 
decrease in the nutritional status of birches. 

By 2010, after canopy closure, the biomass of understory vegetation dropped 
drastically, especially in the C plots, which were most disturbed by the mid-
summer drought, and the effect of understory on root morphology disappeared. 
Inversely to 2009, the RTD of control plots was lower than that of humidified 
plots after the dry summer of 2010, indicating that humidification mitigated the 
impact of limited precipitation. Nevertheless, roots in humidified plots were 
longer, thinner and had higher SRL and less root tips per unit of length in 2010. 
By the fourth year of humidification, the differences between the treatments were 
evident only in root diameter and BL – humidified birches were growing thinner 
roots with lower BL.  

Along with morphological studies, measurements of fine root biomass have 
been carried out on the FAHM experimental site. Four years of humidification 
resulted in significantly more fine root biomass and higher number of root tips 
per m2 in humidified plots (Rosenvald et al., 2014), while in 2007, before humidi-
fication commenced, there were no differences between treatments (K. Lõhmus, 
unpublished). By 2011, leaf N concentrations had also risen to be significantly 
higher in humidified plots, compared to control plots (Rosenvald et al., 2014). 
The initial morphological response of absorptive roots in humidified plots was 
complemented by a subsequent increase in fine root biomass, which together 
seem to have eliminated the obstruction in nutrient uptake. 
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Figure 1. Ordination biplot based on redundancy analysis (RDA) of absorptive root 
morphological parameters of silver birch, indicating the effect of humidification 
throughout three study years. Open triangles depict the overall means of the study years. 
The blue continuous circles group samples from humidified plots; the red dashed circles 
surround samples from control plots of each year. The means of each experimental quarter 
(n = 214 to 404 analysed absorptive roots) are indicated by dots. Abbreviations: C – control, 
H – humidification, G – early-successional grass understory, F – diverse ‘forest’ under-
story. Figure from Publication I. 
 
According to redundancy analysis, morphological parameters correlated signi-
ficantly with air and soil temperature and moisture of July and October, SOM, 
soil Ca, Mg, N concentration and soil pH. Altogether, these factors accounted for 
40.9% of the total variation in morphological root traits. 

Sequence analysis revealed 64 fungal taxa (OTUs), of which 44 were 
singletons, (i.e. occurring in one sample). Among these 64 OTUs, species-level 
identification could be provided to 32 taxa from 16 lineages. Overall, the most 
frequent OTUs were Paxillus involutus, Tomentella cinerascens and Tomentella 
sublilacina. Quarters with diverse ‘forest’ understory exhibited a non-significant 
trend of having more OTUs identified. Three years of humidification caused a 
significant shift towards the dominance of hydrophilic morphotypes in the fungal 
community (Figure 2). The mean colonization percentages of the hydrophilic 
morphotypes were 33% in control plots and 72% in humidified plots. The most 
abundant colonizers of humidified plots were representatives of the /tomentella-
thelephora lineage (Tomentella spp.), characterized by contact, short-distance, or 
medium-distance smooth exploration types and hydrophilic hyphae. This shift in  
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Figure 2. The species-environmental variables biplot of canonical correspondence 
analysis (CCA), which illustrates the shift in the EcM fungal community towards the 
dominance of hydrophilic morphotypes caused by humidification (Monte Carlo 
permutation test, p<0.05). Blue font color indicates hydrophilic morphotypes, red font 
color – hydrophobic morphoypes; black species produced both hydrophilic and hydro-
phobic morphotypes in different samples. Large triangles depict the treatments and the 
two understory types (C – control, H – humidification, F – diverse ‘forest’ understory, 
G – early-successional grass understory). Abbreviations: Cen geo – Cenococcum geo-
philum, Ent sin – Entoloma sinuatum, Ent nid – Entoloma nidorosum, Heb pus – 
Hebeloma pusillum, Heb sacc – Hebeloma sacchariolens, Heb sp – Hebeloma sp., Heb 
vel – Hebeloma velutipes, Ino curv – Inocybe curvipes, Lacc tort – Laccaria tortilis, Lact 
nec – Lactarius necator, Lact pub – Lactarius pubescens, Lec rig – Leccinum rigidipes, 
Pax inv – Paxillus involutus, Tom cin – Tomentella cinerascens, Tom ell – Tomentella 
ellisii, Tom subcl – Tomentella subclavigera, Tom subli – Tomentella sublilacina, Tom 
sp – Tomentella sp. Figure from Publication I. 

 
community composition coincides with the notion of low extramatrical biomass 
producing hydrophilic morphotypes proliferating in humid environments (Unestam 
and Sun, 1995) compared to hydrophobic fungi, whose complex extramatrical 
systems can be extremely disturbed by even brief drenching (Stenström, 1991). 
Tomentella spp. have also been shown to have high functional plasticity, explaining 
their high abundance and disturbance tolerance (Rineau and Courty, 2011). 
Among other enzymes, these species have exhibited high activities of cellobio-
hydrolase, β-glucosidase and laccase, but also produce acid phosphatase and 
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leucine aminopeptidase (Buée et al., 2007; Courty et al., 2005; Tedersoo et al., 
2012). These enzymes are essential in fresh litter degradation, which could be 
beneficial, as humidification has also been reported to increase understory root 
turnover (Lõhmus et al., 2019). 

When all environmental variables were analysed conjointly, the species 
composition of the EcM fungal community was significantly affected only by 
variation in soil pH and August soil water potential, so humidification influenced 
the species composition indirectly. 
 
 
3.2. The effect of experimental soil warming on spruce 

fine roots and ectomycorrhizal community 

At the ForHot site, soil warming reduced both FRB and aFRB significantly from 
753±171 (mean±SE) and 100±28 g m–2 at the ambient level, respectively, to 
50±27 and 8±7 g m–2 in the warmest plots (E; +8 °C), respectively. At Achenkirch, 
no significant temperature effect on neither FRB nor aFRB was revealed, 
although there was a similar trend of smaller biomass values in warmed plots. 
The sharp decline in FRB/BA started slightly below +4 °C (D plots), followed by 
a rapid decrease in aFRB/BA from +4 °C onwards and had reached a plateau by 
+6 °C (E plots) (Figure 3). This might partly explain the absence of a significant 
biomass response at the Achenkirch site, where the warming level was +4 °C 
above the ambient: at ForHot, there were also no significant differences in fine 
and absorptive root biomass between the ambient and D plots (+4 °C) yet. The 
other possible reason arises from differences in experimental setup: at Achenkirch, 
warming took place only during the growing season and only parts of the 
individual tree root system were exposed to it. At ForHot, spruces had to endure 
persistently warmer soils surrounding their whole root system throughout the 
year. Therefore, differences in the intensity, the seasonal duration and the spatial 
extent of warming may create the differences in the magnitude of the response of 
FRB and aFRB in different experiments. Nevertheless, a decrease in FRB or an 
increase in fine root mortality has also been documented in other soil warming 
studies (Majdi and Öhrvik, 2004; Nishar et al., 2017; Wan et al., 2004), agreeing 
with our findings. On absorptive root level, RTD followed a similar reduction as 
FRB and aFRB and could be indicative of faster root turnover as estimated by W. 
Borken et al. (unpublished data) for Achenkirch and P. Sigurðsson et al. 
(unpublished data) for ForHot. In respect of above-ground growth, stand basal 
area started decreasing from +3 °C onwards, which was due to increased tree 
mortality. 

Soil warming significantly affected absorptive root morphology at both sites 
and in the same direction: in warmer soils, spruces formed longer and less-
branched absorptive roots with higher SRL and SRA, and lower RTD. In contrast 
to RTD, which had significantly decreased at +4 °C at Achenkirch and started 
declining from +6 °C onwards at ForHot, significant changes in the other 
 



27 

 

Figure 3. The effect of soil warming on fine (filled circles) and absorptive root biomass 
(open circles) per stand basal area at the ForHot soil temperature gradient (means ± SE). 
Figure from Publication IV. 
 
morphological parameters (SRL, SRA, L and BL) appeared already from lower 
warming levels (+3 °C onwards). The decrease in BL and increase in L can be 
attributed to a shift from root tip formation to root elongation, which may partly 
be indicating a change in the fungal colonizer (Makita et al., 2012; Ostonen et al., 
2009; van der Heijden and Kuyper, 2003), while the reduction in RTD suggests 
reduced lifetime of absorptive roots, but also higher metabolic activity (Hajek et 
al., 2014; Ostonen et al., 2011; Wahl and Ryser, 2000). Whether the main driver 
of changes in root morphology is a shift in root colonizers or changes in root tip 
production and longevity is indistinguishable, as the former also affects the latter 
(Guo et al., 2008).  

RTD was distinct from the other morphological traits as it was extensively 
influenced by soil fertility, decreasing towards lower C:N (Table S2 in IV), and 
such a strong association has also been shown on the latitudinal gradient (III).  

At both sites, branching, absorptive root length and weight (W) experienced 
the largest variation among the morphological traits (CV varied from 27 to 47), 
followed by SRL and SRA (CV from 16 to 29). RTD and D varied the least (CV 
from 14 to 15). This coincides with observations from the latitudinal study (II), 
where branching, L and W displayed highest plasticity for Norway spruce (CV 
varied from 25 to 31; PI varied from 0.60 to 0.68) and are proposed to reflect high 
relevance in the acclimation process.  

The +4 °C increase in soil temperature at the Achenkirch site led to the 
formation of a more varied EcM community and a significant increase in the 
colonization of Tomentella spp. in warmed plots – a genus specialized for nutrient 
uptake in close vicinity of the roots and an affinity towards labile inorganic forms 
of N (Agerer, 2001; Cox et al., 2010; Kranabetter et al., 2015) (Figure 4).  
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Figure 4. The species-environmental variables biplot of canonical correspondence 
analysis (CCA), which illustrates the effect of warming on the EcM fungal community 
(singletons excluded) (Monte Carlo permutation test, p<0.01). Altogether, the plots 
explained 87% of variation in the EcM community structure. Red font color signifies 
OTUs that were found only in warmed plots, and blue font color represents OTUs present 
only in the ambient plots. The black OTUs were present in both treatments. Large 
triangles depict the experimental plots. W – warming, A – ambient, Cen geo – Cenococcum 
geophilum, Ino pet – Inocybe petiginosa, Ino pel – Inocybe pelargonium, Ino nit – Inocybe 
nitidiuscula, Ino sp – Inocybe sp., Bol lur – Boletus luridus, Tom fus – Tomentella 
fuscocinerea, Tom sp – Tomentella sp., Cort sub – Cortinarius subsertipes, Cort gla – 
Cortinarius glaucopus var olivaceus, Seb epi – Sebacina epigaea, Seb inc – Sebacina 
incrustans, Amp sp – Amphinema sp., Rus sp – Russula sp. Figure from Publication IV. 
 
Because Achenkirch is a N-rich site, soil warming did not result in any significant 
differences in soil N availability (Schindlbacher et al., 2015; Schnecker et al., 
2016). Instead, the need for other nutrients (P, K) might have been driving the 
changes in the EcM community. Nutrient cycling was presumably faster in the 
warmed plots at Achenkirch because of intensified fine root turnover and 
Tomentella spp. have been demostrated to exhibit high activities of enzymes that 
are essential in fresh litter degradation and P acquisition (Buée et al., 2007; Courty 
et al., 2005; Tedersoo et al., 2012). In addition to the increase in Tomentella spp. 
colonization, morphotypes forming long-distance exploration type (represented 
by Boletus luridus) were present only in the warmed plots, although in low 
abundance. Fungi characterized by long-distance exploration type have been 
generally associated with great enzymatic capabilities required to access nutrients 
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from SOM and fresh litter (Tedersoo et al., 2012). In addition, long-distance 
exploration types display higher drought tolerance (Lilleskov et al., 2009; 
Morgado et al., 2015; Wiklund et al., 1995), which may be especially beneficial as 
the frequency of dry spells is predicted to increase in the Alps (Gobiet et al., 2014). 

On the ForHot site, an investigation of the EcM fungal community (determined 
from meshbags) revealed an increase in the abundance of ascomycetes driven by 
Wilcoxina rehmii, a species that has been commonly observed after fire or logging 
and is suggested to possess elevated potential for necrotrophy and facultative 
saprotrophy (Rosenstock et al., 2019). Soil warming likely increased fine root 
turnover and mortality, creating favorable substrate for such taxa. Since the use 
of ingrowth mesh bags discriminates against fungi that do not produce abundant 
extramatrical mycelium, such as species of the contact exploration type, these 
results are not directly comparable to results obtained by sampling root tips. Also, 
the fungal community exhibited very low diversity, probably due to the scarcity 
of forest in Iceland and the non-native host species (Rosenstock et al., 2019). 
 
 

3.3. Patterns in tree root morphology,  
biomass and soil microbial community  

along the latitudinal gradient 

On the latitudinal gradient, both the proportion of aFRB of the total FRB and 
aFRB per stand BA increased towards the northern boreal forests for both spruce 
and birch, agreeing with findings from other latitudinal studies (Ostonen et al., 
2011; Zadworny et al., 2016). Even when the faster fine root turnover in 
temperate forests is taken into account, the investment to aFRB/BA is still more 
than four times higher in boreal forests (III). The absorptive roots of birches 
growing in the North were significantly thinner and had higher values of SRL, 
which was the root trait that exhibited highest plasticity for birch (Table 4 in II). 
Spruces growing in the North formed longer absorptive roots with higher RTD 
and lower BW, which was the trait that displayed highest plasticity for spruce. 
Also, spruce fine root longevity was significantly higher in the North.  

These results imply that tree species have different acclimation-indicative root 
traits in response to changing environments. Birch ensures morphological 
acclimation across forest zones by changing SRL of the absorptive roots, which 
is mainly (61%) determined by the variation in root diameter. Similarly, higher 
values of SRL and smaller root diameter were recorded for birches growing in 
mine areas in comparison to native birch forests (II). The sensitivity of SRL to 
the tree nutrient status and environmental stress has been shown for birch also in 
earlier studies (Rosenvald, 2011). The acclimation of spruce absorptive roots is 
based mainly on the variation of BW, which is chiefly (41%) determined by the 
variation of L (II).  

Silver birch as a pioneer species must have a broader tolerance to environ-
mental conditions across multiple environments; however, the mean PI of all 
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morphological traits did not differ between early-successional birch and late-
successional spruce. In addition, the morphology of the studied tree species became 
more similar towards southern forests (Figure 5), which can be explained by more 
fertile and closer to optimal growing conditions in the temperate forests (II).  

 
 
Figure 5. Mean values of (A) the diameter, (B) length, (C) branching frequency (root tip 
frequency per unit of weight – RTF) and (D) specific root length of birch and spruce in 
three forest zones: boreal, hemiboreal, and temperate. Average values and standard errors 
of the sample are shown. For birch forests, only stands that were older than 10 years and 
growing on native forest land were included and only one stand from the temperate zone 
was included. Figure from Publication II. 

 
The community structure of the dominating EcM fungi explained 47% of the 
variation in spruce and 57% of the variation in birch absorptive root morphology 
(III). For spruce, it has been shown that RTD decreases and SRA increases from 
contact- to long-distance exploration type and the proportion of morphotypes 
forming long-distance exploration type is higher in temperate forests compared 
to boreal forests (Ostonen et al., 2011). Although the estimations for extramatrical 
mycelium biomass per unit of absorptive root length were higher in southern 
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forests, taking into account the higher number of longer root tips in the North, the 
estimated extramatrical mycelium biomass was 2–4 times higher in the North. 

Regarding the structure and diversity of the bacterial community in the bulk 
soil and rhizosphere of silver birch forests, a latitudinal effect was found for one 
bulk soil module, where four bacterial phylotypes were negatively related to the 
distance from the equator. Soil characteristics had a strong effect on bacterial 
community structure, describing 48% of the bulk soil and 51% of the rhizosphere 
bacterial community variation. The driving soil factors were pH and P content. 
Soil C:N ratio was negatively correlated to the number of OTUs in the rhizo-
sphere, with a bacterial consortium (module H) containing Fluviicola gaining 
predominance in soils with higher N content. Bacteria from this genus prefer rich 
soils and are able to degrade persistent organic molecules in the rhizosphere 
(Song et al., 2016).  

Strong relationships were found between absorptive root morphology, EcM 
fungal community structure and bacterial community structure in the bulk soil 
and rhizosphere in birch stands. Out of root morphological traits, bacterial com-
munity structure and diversity were most related to variation in root weight, RTD 
and branching frequency, which suggests that a larger number of bacterial species 
were more evenly distributed around younger root tips, probably because of better 
substrate supply from the root (Folman et al., 2001). 

Overall, soil C:N ratio was found to explain most of the variability in 
absorptive root and extramatrical mycelium biomass, RTD, root N concentration 
and rhizosphere bacterial community structure. 
 
 
3.4. Possible sources of stress regarding soil warming, 

humidification and growing in the North 

The study sites for both tree species between latitudes 48 and 68°N displayed 
gradients in climate (e.g. mean annual temperature and precipitation, growing 
season length) as well as in N deposition. The varying fertility of the studied spruce 
sites was reflected by differences in soil C:N ratio. In general, the southern stands 
displayed higher fertility. Silver birch stands on native forest land belonged all to 
the fertile forest site types, so for this species other climate factors (low MAT, 
short growing season length) must have been limiting in the North. Both soil 
warming experimental sites exhibited optimal C:N values and sufficient soil 
water content, ruling N or water availability out as growth limiting factors. Thus, 
the possible sources of stress for spruces growing in warmed soils might have 
been soil nutrient imbalance, enhanced root metabolism and maintenance 
respiration, or higher pathogen and herbivore activities (Gill and Jackson, 2000; 
McCormack and Guo, 2014; Schindlbacher et al., 2009). At the FAHM site, 
elevated air humidity has been shown to affect trees through a number of con-
current mechanisms, such as impaired nutrient uptake, nutrient imbalance, 
increased soil moisture that may lead to hypoxia and metabolic stress, and higher 
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frequency of fungal pathogen damage (Sellin et al., 2017). In addition, the impact 
of higher air humidity was initially amplified by early-successional grass under-
story, which caused strong below-ground competition. 
 
 

3.5. General acclimation mechanisms to limiting 
growing conditions 

All studied species reacted to nutrient limitation or otherwise suboptimal growing 
conditions by actively modifying their absorptive root morphology, which was 
the first response both temporally (I) and in terms of treatment intensity (IV). At 
the FAHM site, morphological differences were largest in the first two study 
years (second and third year of treatment), being replaced by an increase in FRB 
by the third study year (fourth year of treatment). On the geothermal soil tem-
perature gradient, root morphology responded to smaller temperature increases, 
while FRB and aFRB decreased significantly at larger warming levels. At the 
same time, morphological changes proved to be persistent even after 9 years of 
warming in a 130-year-old forest (IV) and on the latitudinal gradient (II, III).  

A general morphological reaction to environmental stress was forming longer 
and less-branched absorptive roots with higher SRL and SRA (Figure 6). This 
was observed for all the species included in this thesis and also for Scots pine, 
which has been analysed thoroughly in Publication III, but omitted from this 
thesis. Also, thinner absorptive roots were produced in the North by birch and 
pine and in relation to humidification by birch. A similar acclimation pattern of 
forming thinner roots with higher SRL in cold habitats and in infertile growing 
conditions has been demonstrated to occur globally across a large number of 
species (Freschet et al., 2017; Holdaway et al., 2011; Kramer-Walter et al., 2016), 
which permits us to to conclude that the observed responses reflect general accli-
mation patterns to environmental stress and nutrient deficiency. Higher values of 
SRL and SRA have been shown to be indicative of malnutrition (Rosenvald, 2011) 
and are thought to reflect enhanced resource uptake at lower biomass invest-
ments, high root cost efficiency and fast growth (Comas and Eissenstat, 2004; 
Ostonen et al., 2011; Weemstra et al., 2016). Kramer-Walter et al. (2016) and 
Holdaway et al. (2011) reason that producing thinner roots with higher SRL may 
be useful when foraging for nutrients, which are spatially dispersed or display 
poor diffusivity, such as P, while forming thicker roots with lower SRL in 
productive environments may be beneficial as a thicker root cortex might support 
higher metabolic rates in fertile soils and have enhanced pathogen resistance, also 
necessary for growing in the warmer southern soils of our studied latitudinal 
gradient. Longer and less branched roots imply a shift from root tip formation to 
root elongation, increased soil exploration and a change in the EcM colonizers.  
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Figure 6. Main changes in absorptive root morphology (blue columns), absorptive root 
biomass (black columns) and the EcM fungal community (white columns) in A) the air 
humidification experiment, B) the soil warming experiments and C) northwards along the 
latitudinal gradient. Abbreviations: D – absorptive root diameter (mm), SRL – specific root 
length (m g–1), L – absorptive root length (mm), BL – branching per length (no mm–1),  
BW – branching per weight (no mg–1), RTD – root tissue density (kg m–3), aFRB/BA – 
absorptive root biomass per basal area (kg m-2), LDET – long-distance exploration type. 
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RTD stood out from the other morphological traits for its larger sensitivity to soil 
fertility, increasing towards soils with a higher C:N ratio both in the soil warming 
experiments (IV) and northwards on the latitudinal gradient (III), which is a 
shared response for a number of species (Kramer-Walter et al., 2016) and may 
reflect an alternatively advantageous strategy of forming longer-living roots in 
infertile and colder soils. On the other hand, experimental soil warming caused a 
reduction in tissue density, which indicates shorter lifespan in warmed soils. 
Shorter spruce fine root lifespan has also been reported in relation to experimental 
soil warming in Flakaliden and southwards along a latitudinal gradient in Finland 
(Leppälammi-Kujansuu et al., 2014b, 2014a). 

Both silver birch and Norway spruce responded to obstructed nutrient uptake, 
whether in northern forests with high soil C:N ratio or induced by air humi-
dification, by increasing FRB/BA and aFRB/BA (Rosenvald et al., 2014 and III). 
A proportional increase in root biomass, especially in the absorptive root fraction, 
has been shown to be a common pattern across a large number of species in colder 
conditions (Reich et al., 2014; Zadworny et al., 2016) and for Scots pine in our 
latitudinal gradient study (III).  

The higher proportion of fine root biomass in colder climate seems to be 
largely genetically determined (Last et al., 1983; Reich et al., 2014; Zadworny et 
al., 2016). It has also been shown, that tree genotype influences the root-colo-
nizing EcM community structure and absorptive root branching (Velmala et al., 
2013). Although attempts have been made to evaluate the contribution of 
intraspecific heritability to variation in root morphology (Salmela et al., 2020; 
Senior et al., 2019), the extent to which root morphological responses are under 
genetic control and how much they reflect phenotypic plasticity remains unclear. 
Answering this question calls for the common-garden approach and using clone 
trees in climate change manipulation experiments. For example, the latter method 
has been employed at the FAHM-site. 

The root associated microbial community – in the current work: EcM fungi 
and rhizosphere bacteria – showed high adaptability to changes in their growing 
environment. Regarding the EcM community, humidification led to an increase 
in the proportion of hydrophilic morphotypes and Tomentella spp. (I). In warmer 
soils, there was also a rise in the proportion of Tomentella spp. and fungi 
characterized by long-distance exploration type (species belonging to the /boletus 
lineage) (IV). These alterations in the EcM community could be related to 
increased root turnover concurring with both air humidification and higher soil 
temperatures. Both in the humidification experiment (Truu et al., 2017) and along 
the latitudinal gradient (III), multilateral relationships were observed between 
absorptive root morphology, functional types of colonising EcM fungi, and 
rhizosphere and soil bacterial community structure, which demonstrates that root-
rhizobiome acclimation is characterized by strong inter-relatedness between plant 
traits and soil microbe communities. 
 
 



35 

3.6. Implications for forest below-ground processes  
in relation to climate change 

It is possible that C allocation below-ground via fine roots will increase in a 
warmer world with elevated levels of air humidity and CO2 (Litton and Giardina, 
2008; Lõhmus et al., 2019; Rosenvald et al., 2014; Wu et al., 2011), but this does 
not necessarily implicate increased standing fine root biomass as root respiration 
and mortality is expected to increase alongside root production (Leppälammi-
Kujansuu et al., 2014b; Majdi and Öhrvik, 2004; Pendall et al., 2004; Pumpanen 
et al., 2012). Regarding standing fine root biomass, the effects of multiple climate 
factors, such as increased temperature and humidity that are discussed in this 
thesis, may interact by cancelling each other out (Leuzinger et al., 2011; Wu et al., 
2011). 

In addition to fine root litter, an important source of soil C is the fungal 
mycelium (Godbold et al., 2006; Wallander et al., 2004). Warming has been shown 
to cause an increase in the proportion of taxa that form larger extramatrical 
mycelial biomass (Deslippe et al., 2011; Ostonen et al., 2011; III, IV), while 
intensified fine root turnover and elevated soil moisture may favor hydrophilic 
and low-mycelial-biomass-forming taxa, such as Tomentella spp. (I, IV). 
However, predicting the C input into soil based on the proportion of different 
exploration types should be conducted with caution as it has been shown that 
species known to produce large extra-matrical mycelial biomass may direct more 
assimilated C into respiration rather than mycorrhizal biomass (Heinonsalo et al., 
2010). Also, differences in absorptive root biomass must be taken into account 
when assessing changes in fungal biomass. For example, it has been estimated 
that due to a larger amount of EcM root tips in the soil in humid conditions, the 
amount of C entering the soil as hyphae may still be almost twice as large 
compared to control, even with the larger proportion of low-biomass-forming 
hydrophilic morphotypes (Lõhmus et al., 2019).  

Extending the uncertainty regarding future carbon flows even further, the 
potentially higher fine root and mycelial litter inputs may not result in increased 
C sequestration in the soil, as SOM decomposition is also expected to intensify 
with warming, when soil moisture is not limiting (Liu et al., 2017; Pendall et al., 
2004; Walker et al., 2018). This may initially increase nutrient mobilization and 
enhance plant growth, but eventually result in the depletion of soil resources and 
lead to reduced plant and microbial growth (Andresen et al., 2016; Walker et al., 
2018). Elevated humidity and temperature have been shown to affect the soil 
bacterial community in such a way that changes in C metabolism, P and N 
turnover, mineral weathering and shifts in SOC quality can be assumed (Liu et al., 
2017; Truu et al., 2017; III). Possible nutrient imbalances may arise from these 
changes and inhibit plant growth, as has already been demonstrated for European 
forests (Penuelas et al., 2020). 

In order to make more accurate predictions about the effects of future climate 
on forest ecosystems, manipulation studies need to be run and monitored for 
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longer periods, as it has been shown that ecosystem responses often change in 
time (Andresen et al., 2016). Since most studies have focused on subsets of taxa, 
interactions or processes, there is still limited knowledge about how the eco-
systems respond as a whole (Walker et al., 2020). Also, the interactive effects of 
different climate change factors need to be comprehensively analysed, as they 
may not always be additive (Dieleman et al., 2012; Leuzinger et al., 2011; Wu et 
al., 2011). Furthermore, the mechanisms through which climate change factors 
influence ecosystems are not completely understood. For this reason, for 
example, an additional irrigation treatment has been established at the FAHM site 
to decipher, whether the humidification effect was caused by an increase in soil 
moisture, reduction in transpiration or some other factor. 
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4. CONCLUSIONS 

This thesis demonstrates how two climate-change factors – an increase in air 
humidity and soil warming – affect the fine roots and root-associated microbial 
communities of birch (Betula pendula) and spruce (Picea abies and P. sitchensis); 
and identifies root traits that change most plastically for both species. In this 
work, findings from field manipulation experiments and a small-scale natural soil 
temperature gradient are compared to patterns witnessed along latitudinal 
gradients.  

Birches and spruces responded to increased environmental humidity and 
warming through alterations in a number of root traits as well as shifts in the 
rhizosphere microbial community, and these changes were strongly inter-related. 
Absorptive root morphology proved to be very sensitive to environmental change. 
Morphological responses were detected before changes in fine root biomass 
allocation, both temporally (I) and in terms of warming intensity (IV). The similar 
root reactions, irrespective of tree species, stand age and location, or experimental 
approach, permit us to conclude that the observed responses reflect general 
acclimation patterns. 

A general morphological reaction to environmental stress (i.e. humidification, 
experimental soil warming, growing in the North) was forming longer and less-
branched absorptive roots with higher SRL and SRA. Higher values of SRL and 
SRA have been shown to be indicative of malnutrition and are thought to reflect 
enhanced nutrient uptake at lower biomass investments, while longer and less-
branched roots indicate a shift from root tip formation to root elongation and 
changes in the EcM colonizers. Both species responded to obstructed nutrient 
uptake, whether in northern forests with high soil C:N ratio or induced by air 
humidification, by increasing fine and absorptive root biomass. On the latitudinal 
gradient, the increase in root biomass was accompanied by an increase in root 
tissue density and fine root lifespan. Experimental soil warming, on the other 
hand, led to a decrease in root biomass and tissue density, indicating intensified 
root turnover. 

Although Norway spruce and silver birch showed similar patterns in 
absorptive fine root biomass along the latitudinal gradient and similar overall 
morphological plasticity, the root traits with highest plasticity differed between 
the species. For birch, the most plastic root trait was SRL, which was determined 
by variation in absorptive root diameter. Birch absorptive roots were significantly 
thinner and had higher SRL in the North and the same response emerged in 
relation to air humidification. For spruce, branching frequency (both per length 
and weight), absorptive root length and weight displayed highest plasticity, which 
is suggested to reflect higher relevance of these characteristics in the acclimation 
process. Thus, the set of root traits that are relied on in the acclimation process is 
distinctive to tree species. 

The EcM community showed high adaptability to changes in the environment. 
Humidification caused a shift towards the dominance of hydrophilic EcM 
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morphotypes and an increase in the abundance of Tomentella spp. In warmer 
soils, there was also a rise in the proportion of Tomentella spp. and fungi charac-
terized by long-distance exploration type. A similar increase in the proportion of 
long-distance exploration type was observed southwards along the latitudinal 
gradient for spruce. These shifts in the EcM community could partly be related 
to increased root turnover concurring with both air humidification and higher soil 
temperatures. The community structure of the dominating EcM fungi explained 
a large proportion of the variation in absorptive root morphology (47% for spruce 
and 57% for birch). For spruce, it has been shown that RTD decreases and SRA 
therefore increases from contact- to long-distance exploration type. 

Strong multilateral relationships were also found between absorptive root 
morphology, EcM fungal community structure and bacterial community structure 
in the bulk soil and rhizosphere in birch stands. Out of root morphological traits, 
bacterial community structure and diversity were most related to variation in root 
tip weight, RTD and branching frequency, which suggests that a larger number 
of bacterial species were more evenly distributed around younger root tips, 
probably because of better substrate supply from the root. Regarding abiotic 
factors, soil characteristics, such as C:N ratio, pH and P content, had strongest 
influence on the bacterial community structure. Overall, soil C:N ratio was the 
factor found to explain most of the variability in a number of absorptive root traits 
and microbial community structure along the latitudinal gradient. 

This thesis provides valuable knowledge about the prospective acclimation 
patterns of birch and spruce fine roots and rhizobiomes in relation to climate 
change and demonstrates the involvement of all the members and components of 
the root-rhizobiome complex in the forest acclimation process. Also, the novelty 
of the work is exploring the response curves of fine root traits along the soil 
warming gradient up to the die-off edge of the forest and the temporal dynamics 
of root responses to elevated humidity. The qualitative changes that we witness 
in the root-rhizobiome translate into quantitative changes in ecosystem nutrient 
fluxes and our results underline the need for future research to focus more on 
interactions within the root-rhizobiome, on the temporal dynamics in ecosystem 
responses and the interactive effects of different climate change factors. We 
emphasise the importance of studying the ecosystem in as much entirety as 
possible, since strong complementarity appears in the responses of different 
organism groups and plant traits to environmental change. 
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SUMMARY IN ESTONIAN 

Kliimamuutuste mõju kase ja kuuse peenjuurtele ning  
nendega seotud mikroobikooslustele 

Käesoleva sajandi lõpuks ennustatakse Põhja-Euroopa jaoks 2–4-kraadist õhu-
temperatuuri tõusu ning 5–40% suuremat sademete hulka (IPCC, 2013; Jaagus ja 
Mändla, 2014; Jungqvist jt, 2014; Kjellström jt, 2018; Lindner jt, 2014). Sellest 
tulenevalt on oodata keskmiselt 1,3–2,5-kraadist mullatemperatuuri tõusu (suvel 
maksimaalselt 4–5 kraadi) (Houle jt, 2012; Jungqvist jt, 2014; Oni jt, 2017) ja ka 
mullaniiskuse suurenemist, mis mõjutab oluliselt kõiki mullaprotsesse. Mulla 
aineringed ning ümbritseva metsaökosüsteemi elujõulisus sõltuvad suuresti 
muutustest puude peenjuurestikes ning juuri koloniseerivates seenekooslustes, 
millest võib pärineda kuni 70% mullasüsinikust (Clemmensen jt, 2013). Seetõttu 
on oluline mõista, kuidas puude juured ning nende risosfääris elavate seente, 
bakterite ja teiste organismirühmade kooslused mulla soojenemise ja niiskuse 
tõusuga kohanevad, mis omakorda võimaldab hinnata erinevate liikide vastu-
pidavust kliimamuutuste suhtes ning suurendada metsade süsiniku- ja toitainete 
voogude määramistäpsust. 

juhtejuurteks ja esmase ehitusega imijuurteks. Boreaalsetes ja parasvöötme-
metsades koloniseerivad imijuuri valdavalt (90–100%) ektomükoriisaseened 
(Kraigher jt, 2007; Taylor jt, 2009), mis on omakorda tihedalt seotud risosfääri-
bakteritega. Peen- ja imijuurte iseloomustamiseks kasutatakse juureparameetreid, 
nagu eripind, eripikkus, juurte kudede tihedus, diameeter, harunemine ja juurte 
biomass basaalpinna kohta, mis mõjutavad ja kirjeldavad toitainete omastamist, 
andes ühtlasi teavet juuredemograafia, mullaviljakuse ja taimede stressiseisundi 
kohta. Näiteks iseloomustavad eripind ja eripikkus (ehk imijuure pindala ja pikkus 
massiühiku kohta) juurte biomassi jaotust imava juurepinna moodustamisel. Seega 
peegeldavad eripinna ja -pikkuse suured väärtused intensiivset toitainete omasta-
mist väiksema juuremassi kohta ja kiiret kasvu. Taimed võivad juurte eripinda ja 
-pikkust suurendada nii toitainete vähesuse korral kui ka vastupidi, viljakates 
tingimustes, kus kiire toitainete omastamine on tugeva konkurentsi tõttu häda-
vajalik (Comas ja Eissenstat, 2004; de la Riva jt, 2018; Lõhmus jt, 2006; Ostonen 
jt, 2007; Weemstra jt, 2016). Suurt juurte eripinda ja eripikkust põhjustavad kas 
madal juurte kudede tihedus või väike juurediameeter. Mõlemat näitajat on 
seostatud juurte elueaga, kuid kuna neid mõjutavad tegurid, nagu mulla struktuur 
ja viljakus, mükoriisne kolonisatsioon ja fülogeneetiline taust, erineval määral, 
siis muutuvad nad enamasti üksteisest sõltumatult. Lisaks eelnevatele tunnustele, 
peetakse ebaühtlaselt paiknevate toitainete omastamisel oluliseks juurepara-
meetriks ka harunemist, mis sõltub suuresti juuri koloniseerivast seeneliigist (Kong 
jt, 2014; Liese jt, 2017). Morfoloogiliste muutustega paralleelselt reageerivad 
taimed varieeruvale toitainete kättesaadavusele muutustega peen- ja imijuurte 
biomassis, mis üldiselt ressursipuuduse korral suurenevad (Helmisaari jt, 2007; 

Peenjuured (läbimõõduga kuni 2 mm) jagunevad funktsionaalselt puitunud 



52 

Lõhmus jt, 2006; Ostonen jt, 2011). Juurte kasv ja morfoloogia sõltuvad märki-
misväärselt ka neid koloniseerivatest seeneliikidest, mis võivad üksteisest olu-
liselt erineda nii ensümaatilise aktiivsuse, toitainete omastamise ja jaotamise, kui 
taimepoolsete ülalpidamiskulude poolest (Gorissen ja Kuyper, 2000; Lilleskov jt, 
2002; Tedersoo jt, 2012; van der Heijden ja Kuyper, 2003; Velmala jt, 2014). 

Kliimamuutuste mõjude uurimiseks on mitmeid võimalusi: manipulatsiooni-
katsed, looduslikud väikeseskaalalised keskkonnagradiendid ja suureskaalalised 
laiuskraadigradiendid. Manipulatsioonikatsetes on võimalik uurida huvipakkuvaid 
ökosüsteeme, liike ja genotüüpe ning eristada põhjuslikke seoseid, hoides kaas-
neva ebasoovitava geneetilise ja keskkonnavarieeruvuse võimalikult madala. 
Samas on selliste katsete puhul töötluse tasemete hulk, katse ajaline kestvus ja 
ruumiline ulatus tavaliselt piiratud, mis tekitab „saare efekti“, ei võimalda tuvas-
tada ökosüsteemi taluvuspiire ning suurendab tulemuste põhjal ökosüsteemide 
tegelike reaktsioonide üle- või alahindamise riski (Beier jt, 2012; Leuzinger jt, 
2015; Walker jt, 2020). Looduslikud väikeseskaalalised keskkonnagradiendid 
(näiteks geotermaalsed mullatemperatuurigradiendid) võimaldavad uurida suuri 
järk-järgulisi muutusi, mis toimuvad suhteliselt väikesel maa-alal, välistades 
samuti muude keskkonnafaktorite (kliima, aluskivim jne) samaaegse muutumise. 
See-eest tekivad sellised gradiendid järsult ning mõjuvad algselt häiringuna. Nii 
geotermaalsed gradiendid kui eksperimentaalne mullasoojendamine ei imiteeri 
kliimamuutusi täielikult, kuna ümbritsevat õhku ei soojendata ning ikkagi esineb 
„saare efekt“ (Leblans, 2016; O’Gorman jt, 2014). Kahe eelneva katsetüübi 
puudujääke kompenseerivad mõnevõrra erinevatel laiuskraadidel tehtud 
uuringud (laiuskraadiuuringud), kus ajalisi muutusi prognoositakse ruumiliste 
seaduspärade põhjal. Laiuskraadiuuringute eelis on eksperimentaalne realism, 
„saare efekti“ ja algse häiringu puudumine ning keskkonnatingimuste pikaajaline 
kestvus, mis võimaldab vaadelda püsivaid muutusi ja tasakaaluolekuid. Siiski 
esineb neilgi puudusi: laiuskraadigradiendil muutub korraga palju keskkonna-
faktoreid (kliima, aluskivim, fotoperiodism jne), mis teeb põhjusliku seose 
eristamise keeruliseks. Ühtlasi on raske eristada, kuivõrd on täheldatud erine-
vused määratud geneetiliselt ja kuivõrd tuginevad fenotüübilisele plastilisusele. 
Kirjeldatud eripärade tõttu soovitatakse kliimamuutuste tagajärgede kohta usal-
dusväärsete ennustuste tegemiseks ülalkirjeldatud katsetüüpe kombineerida. 

Käesoleva doktoritöö eesmärk oli hinnata eksperimentaalselt suurendatud 
õhuniiskuse ja nii eksperimentaalselt suurendatud kui looduslikult tõusnud 
mullatemperatuuri mõju kuuse (Picea spp.) ja arukase (Betula pendula) peen- ja 
imijuurtele ning neid koloniseerivatele seenekooslustele ja võrrelda saadud 
tulemusi laiuskraadigradientidel ilmnevate kohanemisstrateegiatega. Laiuskraadi-
uuringutes hinnati puuliigispetsiifilisi erinevusi peen- ja imijuurte reaktsioonides, 
pöörates tähelepanu ka samaaegsetele seene- ning bakterikoosluste muutustele. 
Õhuniiskuse tõusu mõju arukase imijuurte morfoloogiale ja neid koloniseerivale 
seenekooslusele uuriti FAHM-katsealal Eestis (I), kus õhuniisutusest tingituna 
oli suhteline õhuniiskus keskmiselt 7% kõrgem kui kontrollaladel. Mullasoojene-
mise mõju hariliku kuuse (Picea abies) ja sitka kuuse (P. sitchensis) peen- ja 
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imijuurte biomassile ning imijuurte morfoloogiale uuriti kunstlikul mulla-
soojendamis-katsealal Achenkirchis Austrias ja looduslikul geotermaalsel 
mullatemperatuurigradiendil ForHot-katsealal Islandil (IV). Achenkirchi katse-
alal hoiti soojendatud katseringide mulda vegetatsiooniperioodi vältel 4 °C 
soojemana kui tavaoludes, ForHot mullatemperatuurigradiendi kõige soojemas 
katseringis oli mullatemperatuur ~10 °C soojem kui kontrollringis. Achenkirchi 
alal määrati ka imijuuri koloniseeriv seenekooslus. Laiuskraadiuuringud hõlmasid 
14 kuusikut laiuskraadivahemikus 48–68°N ja 15 kaasikut laiuskraadivahemikus 
53–66°N. Neil aladel hinnati muutusi imijuurte morfoloogias (II), peen- ja 
imijuurte biomassis, juuri koloniseerivas seenekoosluses ja mulla ning risosfääri 
bakterikoosluses (III).  

Laiuskraadigradiendil kasvavates puistutes esinesid gradiendid aasta kesk-
mises õhutemperatuuris ja sademete hulgas, vegetatsiooniperioodi pikkuses ning 
mullaviljakuses. Kuna kõik uuritud kaasikud kuulusid viljakatesse kasvukoha-
tüüpidesse, siis nende kasvu võis põhjapool piirata pigem lühike vegetatsiooni-
periood või madal temperatuur, erinevalt kuuskedest, mida võis mõjutada ka 
vähene lämmastiku kättesaadavus. Seevastu mõlemal mullasoojendamiskatsealal 
(Achenkirch, ForHot) oli mulla süsiniku-lämmastiku suhe (C:N) optimaalne ja 
mulla veesisaldus piisav, nii et lämmastiku või vee kättesaadavus ei saanud 
kuuskede kasvu pärssida. Kõrgem mullatemperatuur võis seevastu põhjustada 
suurema vajaduse teiste toitainete (fosfor, kaalium) järele, kiirendada juurte aine-
vahetust, võimendada juurehingamist või esile kutsuda suuremat patogeenide ja 
herbivooride aktiivsust (Gill ja Jackson, 2000; McCormack ja Guo, 2014; 
Schindlbacher jt, 2009). FAHM-katsealal, mis paikneb samuti viljakal mullal, on 
õhuniisutuse mõjul tuvastatud madalam ksüleemivoolu intensiivsus (Kupper jt, 
2011), mistõttu väheneb toitainete massivool mullast juurteni ja raskendub 
toitainete omastamine juurte poolt. Seda võib omakorda võimendada tugevat 
konkurentsi pakkuv alustaimestu või funktsionaalne struktuurimuutus mulla ja 
risosfääribakterite kooslustes (Truu jt, 2017). Suurendatud õhuniiskuse tingi-
mustes kasvanud arukaskedel on esialgu tõepoolest mõõdetud madalamat lehtede 
lämmastiku- ja fosforisisaldust (Sellin jt, 2013), millest võib järeldada puude 
kehvemat mineraaltoitainetega varustatust.  

Nii kuused kui kased reageerisid raskendatud toitainete kättesaadavusele ja 
ebasobivatele kasvutingimustele aktiivselt imijuurte morfoloogiat muutes, mis 
oli esmane reaktsioon ajaliselt (õhuniisutuskatses) ning ilmnes juba madalamatel 
soojenemistasemetel (mullatemperatuurigradiendil). Õhuniisutuskatses olid 
morfoloogilised erinevused suurimad esimesel kahel katseaastal ning kolman-
daks katseaastaks asendusid morfoloogilised erinevused niisutatud katseringides 
peenjuurte biomassi tõusuga. Geotermaalsel mullatemperatuurigradiendil olid 
olulised erinevused juuremorfoloogias välja kujunenud juba 3-kraadisel soojene-
misel, kuid peen- ja imijuurte biomass langes märkimisväärselt alles alates  
4-kraadisest soojenemisest. Samas nähtus Achenkirchi soojendamiskatsest ning 
laiuskraadiuuringutest, et morfoloogilised erinevused võivad olla vägagi püsivad. 
Üldine morfoloogiline reaktsioon keskkonnastressile (õhuniisutus, mullasoojen-
damine, põhjapoolsed suboptimaalsed kasvutingimused) väljendus pikemate, 
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vähemharunenud imijuurte moodustamises ning omastava pinna suurendamises 
juuremassiühiku kohta (ehk suuremas eripinnas ja -pikkuses). Mullasoojendus-
katsetes ning õhuniisutuskatse esimesel aastal kaasnes eelnimetatud muutustega 
ka juurte kudede tiheduse vähenemine, mis võib peegeldada juurte kiiremat elu-
tsüklit ja lühemat eluiga. Laiuskraadigradiendil oli põhjapoolsete puistute juurte 
kudede tihedus seevastu suurem, korreleerudes pikema juurte elueaga. Juurte 
kudede tihedus eristus teistest parameetritest tundlikkuse poolest mullaviljakuse 
suhtes, suurenedes kõrgemate C:N väärtuste suunas nii soojenduskatsetes kui 
laiuskraadigradiendil. Nii kuused kui kased reageerisid madalale toitainete kätte-
saadavusele (nii põhjapoolsetes väheviljakates tingimustes kui õhuniisutusest 
tulenevalt) peen- ja imijuurte biomassi suurendamisega. 

Kuigi kuusk ja kask reageerisid keskkonnamuutustele üldiselt samasuuna-
liselt, erinesid liigid kõige plastilisemate tunnuste poolest. Kase puhul tõusis 
kõige plastilisema parameetrina esile imijuurte eripikkus, mida mõjutas peamiselt 
juurte diameeter. Kase imijuured olid oluliselt peenemad ja suurema eripikkusega 
põhjapoolsetes puistutes ning sama reaktsioon ilmnes ka seoses õhuniisutusega. 
Peente suure eripinnaga juurte moodustamine võib olla vajalik hajutatult paikne-
vate ja väheliikuvate toitainete (näiteks fosforiühendite) efektiivsemaks omasta-
miseks, samas kui paksemate ja seetõttu väiksema eripinnaga juurte moodusta-
mine viljakates lõunapoolsemates kasvukohtades võib olla kasulik, kuna paksem 
juurekorteks võimaldab intensiivsemat ainevahetust ning suuremat vastupanu-
võimet patogeenidele (Holdaway jt, 2011; Kramer-Walter jt, 2016). Kuuse puhul 
varieerusid enim imijuurte harunemine, pikkus ja kaal. Pikemate vähemharu-
nenud juurte moodustamine (nii põhjas kui ka soojendatud muldadel) viitab 
intensiivsemale mullaruumi hõivamisele, vähenenud juuretippude moodusta-
misele ja juuri koloniseeriva seenekoosluse muutumisele.  

Juuri koloniseeriv seenpartner määras laiuskraadikatsetes 47% kuuse ja 57% 
kase imijuurte morfoloogilisest varieeruvusest. Kuuse puhul on näidatud, et 
juurte kudede tihedus väheneb ja eripind suureneb kontakt-mütseelitüübist (contact 
exploration type) kauglevi-mütseelitüübi (long-distance exploration type) suunas 
ning suurema hüüfimassiga kauglevi-mütseelitüüpi moodustavate seeneliikide 
osakaal on parasvöötme metsades suurem kui boreaalsetes metsades (Ostonen jt, 
2011). Kuigi lõunapoolsetes metsades tekib seetõttu mulda juurte pikkusühiku 
kohta rohkem hüüfimassi, on põhjapool suurema juuretippude arvu tõttu mullas 
paikneva mütseeli biomass siiski 2–4 korda kõrgem. Kunstlik 4-kraadine 
mullasoojendamine kutsus imijuuri koloniseerivas ektomükoriisakoosluses esile 
perekond Tomentella ohtruse tõusu ning toetas kauglevi-mütseelitüüpi moodus-
tavate liikide (Boletus luridus) esinemist. Õhuniisutus põhjustas nihke hüdro-
fiilsete morfotüüpide ja perekond Tomentella osakaalu suurenemise suunas. 
Tomentella liikidele on omane kõrge funktsionaalne plastilisus, mis seletab nende 
suurt ohtrust ja häiringutaluvust. Ühtlasi on nad võimelised tootma ensüüme, mis 
on vajalikud värske varise lagundamiseks. Sellised muutused ektomükoriisa-
koosluses võivad olla osaliselt seotud intensiivsema juurekäibega, mis ilmnes nii 
õhuniisutuse kui mullasoojenemise tingimustes. 
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Laiuskraadiuuringutes tuvastati olulised kolmepoolsed seosed juuremorfo-
loogia, juuri koloniseeriva ektomükoriisakoosluse ning mulla ja risosfääri 
bakterikoosluse vahel. Bakterikoosluse struktuur ja mitmekesisus seostusid 
morfoloogilistest parameetritest enim imijuurte keskmise tipumassi, kudede tihe-
duse ning harunemisega, mis viitab sellele, et noorte väikese tihedusega juure-
tippude ümber leidus rohkem bakteriliike, tõenäoliselt parema toitainete kätte-
saadavuse tõttu. Kõige tugevamalt mõjutasid bakterikooslust aga mullatingi-
mused, nagu C:N suhe, pH ja fosforisisaldus. Üleüldse oli piki laiuskraadi-
gradienti peamine imijuuri ja nendega seotud mikroobikooslusi mõjutav tegur 
mulla C:N suhe. 

Antud doktoritöö pakub väärtuslikku uut teavet kuuse ja kase peenjuurte ja 
risobioomide oodatavate kohanemismustrite kohta ning näitab, et keskkonna-
muutused kutsuvad esile komplementaarseid nihkeid kõigil peenjuurestiku tase-
metel. Esmakordselt kirjeldati juureparameetrite muutusi piki temperatuuri-
gradienti kuni puude suremispiirini ning jälgiti õhuniisutuse mõju ajalist 
dünaamikat imijuurte morfoloogiale. Käesolevalt on näidatud, kuidas suurenenud 
õhuniiskus ja soojem muld puude peenjuurestikke ja juuri koloniseerivaid 
mikroobikooslusi eraldiseisvalt mõjutavad. Süsinikuvoogude usaldusväärsemaks 
prognoosimiseks on aga praegusest enam teavet vaja koguda ka mitmefaktori-
listest katsetest, kuna erinevate kliimamuutusetegurite mõjud ei pruugi olla 
aditiivsed. Ühtlasi on kliimamuutuste uuringuid vaja teostada pikaajalisemalt, 
kuna ökosüsteemide reaktsioonid on sageli ajas muutuvad, ning vaadelda tuleks 
võimalikult suurt osa ökosüsteemi komponentidest ja protsessidest korraga, sest 
nagu antud töös nähtub – erinevate organismirühmade ja taimeparameetrite 
reaktsioonid keskkonnamuutustele on omavahel tugevalt seotud. 
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