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1 Introduction 

Satellites operate under severe conditions in space and unlike other man-made devices, it is not 

possible to perform repairing or maintenance activities on them while in space.  This means they 

have to be tested extensively on the ground before the launch campaign to ensure a successful 

launch and on-orbit operation [1]. Several types of thermal tests are required for development, 

performance validation, and to ensure the survivability of the spacecraft in operation. These tests 

can be performed in components, subsystems, and system levels. The thermal testing usually 

includes a thermal cycle test (TCT), thermal vacuum test (TVT), thermal balance test (TBT), and 

the vacuum bake-out test [2].  Thermal vacuum testing is a very important ground test that 

satellites must pass before launching. In the spacecraft thermal vacuum test process, the important 

parameters that need to be measured are the temperature of the relevant parts of the test equipment 

and spacecraft [3]. 

In order to test space equipment, there is a need for a controlled environment where the parameters 

affecting the pieces of equipment are controlled to simulate similar conditions as in the 

environment where the objects will be used. The environment where testing of the specimen is to 

be done has to be controlled so that the objects will be tested at various specific parameters [4]. 

A vacuum chamber is one of the facilities that allows selectively specified temperature and/or 

presuure values to be realized in a closed volume in a working range. It is ideal for testing various 

equipment under various thermal vacuum conditions. However, establishing with accuracy the 

metrological characteristics of these temperature-controlled environments can be very difficult as 

there are a lot of factors that lead to the uncertainty of the measurements [5]. As a result of this, 

it is required that the vacuum chamber is characterized to specifically validate the performance 

and the influence of all factors that affect the temperature in the vacuum chamber and to know it 

working condition [4]. In order to fulfil the requirements of the European Cooperation for Space 

Standardization (ECSS) standard for thermal vacuum testing, a reliable temperature measurement 

system is required.  

The main objective of this thesis is to considerably improve on the existing measurement system 

in use at the University of Tartu, Tartu Observatory (TO) while ensuring that the European 

Cooperation for Space Standardization (ECSS) guidelines are met. The goal includes: 

• selecting a temperature sensor suitable for use in the vacuum chamber,  
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• calibrating the chosen sensors with the existing temperature measurement system 

available at the Tartu Observatory,  

• compare the existing measurement system and the new measurement system,  

• perform tests to characterize the new measurement system both in the climatic and 

vacuum chamber. 

 

This thesis comprises of five chapters, chapter two gives a literature review of the subject, chapter 

three comprises of the calibration procedure and results, model equation and uncertainty 

associated with the whole work are given in chapter four while chapter five gives the conclusion. 
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2 Theoretical Background 

2.0 Requirements for Thermal vacuum testing 

For space equipment to qualify and get accepted for launching, it has to pass a series of pre-launch 

tests in qualification and acceptance requirements [6]. A thermal vacuum test is one of the tests 

done in both the qualification and acceptance stages. Thermal vacuum testing is performed for 

space segment equipment whose operation occurs in a space vacuum environment at any time of 

its lifetime [6]. It determines the ability of components, equipment or other articles to withstand 

rapid changes of ambient temperature and its ability to withstand the maximum and minimum 

temperatures it experiences during its operation. Thermal vacuum testing consists of thermal 

cycling the entire experiment assembly in an operating mode. This test is performed to detect 

problems early in the hardware development. It checks the functional capability of the electronic 

components in a simulated on-orbit temperature environment [4]. Some of the requirements that 

must be fulfilled for thermal vacuum testing are highlighted below: 

2.0.1 Rate of change of Temperature 

The rate of temperature change refers to the speed at which the temperature in the thermal vacuum 

increases or decreases while thermal cycling the specimen under test. For equipment to be 

launched in orbit the rate of temperature change is required to be less than 20 K/min [6]. 

2.0.2 Dwell Times 

Dwell times refer to the duration necessary to ensure that internal parts or subassembly of a space 

segment equipment have achieved thermal equilibrium, from the start of the temperature 

stabilization phase, i.e. when the temperature reaches the targeted test temperature plus or minus 

the test tolerance. For equipment to be launched in space, the specimen is required to be exposed 

to dwell times of at least 2 hours at each extreme temperature in thermal vacuum tests [4], [6]. 

2.0.3 Tolerance and Accuracy 

Tolerance is the limited or permitted range of values of a specified test level without affecting the 

test objectives. It is typically specified as deviation from a specified value or as an explicit range 

of allowed values. On the other hand, accuracy depicts the degree of closeness between a 

measured quantity value and its true value [6].  
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2.0.4 Extreme Temperatures 

Extreme operating conditions refer to conditions that a measuring instrument or measuring system 

is required to withstand without damage, and without degradation of specified metrological 

properties when it is subsequently operated under its rated operating conditions. Table 1 below 

shows the temperature range and some additional requirements [6]. 

 

Table 1: Allowable tolerance of test parameters [6]. 

Test Parameters Requirements 

Temperature Range 

(Requirement not from [6]) 

(-40……+150) °C. 

Temperature Accuracy 

Above 80 K ±2 K  

 

Temperature Rate of Change Maximum 20 K/min. 

 

Number of Cycles 4 cycles in qualification, 

3 cycles in acceptance (plus one more backup cycle that 

can be decided during a test). 

 

Vacuum Pressure 10-5 hPa or less. 

Pressure Tolerances 

> 1,3 hPa 

1,3 10‐3 hPa to 1,3 hPa 

< 1,3 10‐3 hPa 

Pressure Tolerances and Accuracy 

± 15 % 

± 30 % 

± 80 % 

 

According to the guideline above [6], no definite temperature range is given for thermal vacuum 

testing and as such, the customer requirements, requirements from the launch provider, or testing 

laboratory requirements may suffice. In this study, the temperature range of -40 °C to +150 °C is 

chosen based on the range in which vacuum testing is performed at the Laboratory of Space 

Technology at Tartu Observatory. Qualification and acceptance temperature limits are reached 
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when any equipment reaches its qualification and acceptance limits. The qualification and 

acceptance limits represent the maximum and minimum design temperature and a 5 °C margin 

[7]. 

2.1 Sensors. 

There are different varieties of sensors used for temperature measurement, but the common types 

used for space technology applications are Thermistors, Thermocouples, and Resistance 

Temperature Detectors (RTD) [8]. To select a suitable sensor for any application, there is a need 

to understand the working principles and pros and cons of each sensor. 

2.1.1  Thermocouple 

Thermocouples are the most widely used of all temperature sensors as their basic simplicity and 

reliability have an obvious appeal for many industrial applications [9]. The thermoelectric 

electromotive force is created in the presence of a temperature difference between two different 

metals or semiconductors. Thermocouple uses this effect, called the Seebeck effect [9], to detect 

the temperature difference between the two sources. A thermocouple circuit consists of two 

metals, e.g. copper and constantan as in the T-type thermocouple, with two junctions which are 

the test junction and the reference junction. Thermocouples have the widest temperature range of 

all the sensor technologies, -200 °C to +2315 °C and can be used in a wide variety of environments 

[10]. The accuracy is typically between 0.5 °C to 5.0 °C with an inhomogeneity error being the 

largest uncertainty contribution [9]. Figure 1 below shows a thermocouple setup with external 

reference junction [11]: 

 

Figure 1: Thermocouple temperature measurement circuit. 
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One major problem with the thermocouple is that for every connection made to a wire, a new 

junction is formed and hence a parasitic electromotive force (EMF) is generated as a result of the 

impurities of the lead wire, soldered connections and temperature non-uniformity [9]. 

Thermocouple temperature-EMF tables have the ice point, 0°C, as the reference temperature, and 

this traditional fixed-point temperature is preferred for accurate and reliable measurement [8].  It 

is not always possible to maintain the reference junctions (commonly called cold junctions) at the 

desired temperature during the calibration of a thermocouple, but if the temperature of the 

reference junctions is measured or monitored, it is possible to apply corrections to the observed 

EMF, which will yield a calibration with the desired reference-junction temperature [8], [9]. If 

the EMF of the thermocouple is measured with the reference junctions at temperature T, and 

calibration is desired with these junctions at temperature T0, the measured EMF may be corrected 

for a reference-junction temperature of T0 by adding to the observed value the EMF which the 

thermocouple would give if the reference junctions were at T0 and the measuring junction at T 

[8]. The above is mathematically explained in equation 1 below. 

 

 𝐸𝐶 = 𝐸𝑀 + 𝐸𝑅  (1) 

Where; 

EC is the EMF after applying reference junction correction. 

EM is the EMF with reference junction at T. 

ER is the EMF with measuring junction at T and reference junction at To. 

2.1.2 Resistance Temperature Detector (RTD) 

The resistance temperature detector is another type of temperature sensor which is available in a 

2, 3, and 4-wire configurations with identical basic components [11]. Resistance temperature 

detectors work in such a way that their resistance increases with a rise in temperature due to the 

positive temperature coefficient of electrical resistance of metals. Resistance temperature 

detectors are mostly made from platinum, nickel, or copper with the copper and nickel versions 

operating at lower temperature ranges and are less expensive than platinum. Their normal 

operation range is −200 °C to +700 °C. In this range, they are both more accurate and have more 

linear characteristics than thermocouples [9], [11]. The typical accuracy for RTDs is between 
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0.1 °C and 1.0 °C [9]. For interpolation between calibration points, there is a need to convert the 

data recorded for the reference thermometer from resistance in Ohms (Ω) to Temperature in 

degrees Celsius (°C). The most commonly used equation for this is the Callendar-Van Dusen 

equation. The Callendar-Van Dusen equation describes the correlation between the temperature 

and resistance of a Platinum thermometer are shown in equation 2 and 3 below [9]: 

For t < 0 °C: 

 𝑅𝑇 = 𝑅0[1 + 𝐴𝑇 + 𝐵𝑇2 + (𝑇 − 100)𝐶𝑇3] (2) 

For t > 0 °C: 

 𝑅𝑇 =  [1 + 𝐴𝑇 + 𝐵𝑇2] (3) 

Where: 

RT is the Resistance at temperature T 

R0 is the Resistance at temperature 0 °C 

T is the temperature in °C 

A, B, and C are the Callendar-Van Dusen equation coefficient. 

2.1.3 Thermistors 

Like the resistance temperature detector RTD, the thermistor is also a temperature-sensitive 

resistor. The typical temperature measurement range is from -100 °C to 300 °C. Among these 

three categories of temperature sensors, the thermistor by far has the largest parameter change 

with temperature [10]. Thermistors are generally composed of semiconductor materials. Although 

positive temperature coefficient units are available, most thermistors have a negative temperature 

coefficient which implies that their resistance decreases with an increase in temperature. The 

negative temperature coefficient can be as large as several percent per Celsius, allowing the 

thermistor to detect minute temperature which could not be observed by RTD or thermocouple 

[12]. The typical accuracy range for thermistors is between 0.1 °C to 1.5 °C. The temperature‐

resistance curve of thermistors can be described by different equations. The most commonly used 

equation is the Steinhart-Hart Equation 4 below [9]. 

 1

𝑇
= 𝐴 + 𝐵{ln( 𝑅)} + 𝐶{ln( 𝑅)}3 

(4) 
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where: 

T is the temperature in Kelvin, 

R is resistance in ohms, 

A, B, and C are the Steinhart coefficients. 

Table 2 below shows the comparison of thermistor with thermocouple and resistance temperature 

detector. 

Table 2: Comparison of three temperature sensors [5]. 

Temperature Sensors Pros Cons 

Thermocouples 

 

● Simple, low cost and rugged 

● No self-heating effects 

● Short response time to 

temperature variation. 

● Wide temperature range 

● Low sensitivity to 

small temperature 

changes 

● Low accuracy 

● Least repeatable 

● Parasitic EMF at a 

new junction 

RTDs ● Very high accuracy 

● Stability over a long time 

● Resistant to contamination 

● Slow response time 

● Sensitive to 

mechanical 

influences. 

● Self-heating effect 

● Fragile 

Thermistors ● Highly sensitive to small 

temperature changes. 

● Stable 

● Limited range of 

measurement 

● Self-heating effect. 

2.2 Metrological Traceability 

Metrological traceability is  defined as the property of a measurement result whereby the result 

can be related to a reference through a documented unbroken chain of calibrations, each 

contributing to the measurement uncertainty [13], [14]. In this work, traceability is achieved by 
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the direct comparison of the test thermocouples to the reference platinum thermometer (PT-100) 

which is traceable to SI through the standards of the National Metrology Institute 

(METROSERT). 

2.3 Measurement Uncertainty 

Measurement uncertainty is a quantitative indication of the quality of measurement results, 

without which they could not be compared meaningfully to each other. Uncertainty evaluation is 

essential to guarantee the metrological traceability of measurement results and to ensure that they 

are accurate and reliable [13]. Also, measurement uncertainty must be considered whenever a 

decision must be taken based on measurement results, such as in accepting/rejecting or pass/fail 

processes [15]. 

2.4 Calibration 

Calibration is an operation that, under specified conditions, in a first step, establishes a relation 

between the quantity values with measurement uncertainties provided by measurement standards 

and corresponding indications with associated measurement uncertainties and, in a second step, 

uses this information to establish a relation for obtaining a measurement result from an indication 

[13]. Calibration can be executed either on a measuring instrument (or system) or on a 

measurement standard. The calibration of a measuring instrument allows determining the 

deviation of the indication of the measuring instrument from a known value of the measurand 

provided by the measurement standard, with associated measurement uncertainty. In other words, 

the deviation of the indication of an instrument from the conventional “true value” of the 

measurand is established and documented [11]. There are technical and legal reasons why 

calibration is performed. Four main reasons for having an instrument calibrated are [11]: 

●  to establish and demonstrate metrological traceability,  

● ensure readings from the instrument are consistent with other measurements, 

● determine the accuracy of the instrument readings, and 

● establish the reliability of the instrument, i.e., that it can be trusted. 
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2.5 Methods of Calibrating Sensors. 

The method of calibration to be used in this project is the calibration by comparison method. and 

it entails calibrating the sensor in question against a reference which should exhibit an accuracy 

which is three to four times the accuracy of the sensor to be calibrated [5]. Both thermometers are 

placed into a single homogenous temperature source. When placing the thermometers, care should 

be taken to ensure a small distance between them and that the sensing element (meaning the 

measuring points) are at the same height. As a temperature source, liquid baths or dry-well 

calibrators are generally used [16]. 
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3 Methodology and Results 

3.0 Sensor Selection 

The sensor needed for this work is to be used in a vacuum environment, care must be taken to 

ensure that the sensor to be chosen can function well in a vacuum chamber. Resistance 

temperature detectors (RTD) require current to be passed through their sensing element and as 

such dissipate heat which in turn causes the temperature of the sensing element to increase and 

this self-heating effect is highly dependent on the immediate environment of the thermometer [9]. 

In a vacuum environment, no air, no convection, that means that the self-heating effect becomes 

very large and very difficult to quantify. This effect is even higher with thermistors as the 

resistance is even higher and thus the self-heating effect as well. Since this effect does not exist 

with thermocouples, then the thermocouple is deemed to be the most suitable sensor for this task. 

In this work, the thermocouple to be used needs to meet the following requirements: 

● Must be vacuum compatible and should be able to withstand the minimum and maximum 

temperature without contaminating the space segment element. 

● Should be able to work in the temperature range of -40 °C to +150 °C. 

● Accuracy of ±0.5 °C. 

● Fast response time, fast enough to meet the requirement of not less than 20 K/min. 

Different thermocouples like SE000-test accuracy type K thermocouple [17], SSU-MM type T 

thermocouple sensor [18], and the XF 1230-FAR Lab facility type T thermocouple was analyzed. 

While the SE000-test accuracy type K thermocouple is designed to work with a dedicated data 

logger which cannot be used in this work, the SSU-MM type T thermocouple sensor has a 

temperature range of -196 °C to 400 °C which is deemed to be too high for this task, the XF 1230-

FAR Lab facility type T thermocouple was chosen for this task. It has a working range from -75 

°C to 250 °C and the accuracy of the thermocouple is ±0.5 °C [19], which is small enough when 

compared to the  required accuracy with room for additional uncertainty. 

3.1 Sensor Cable 

In order to effectively carry out the temperature measurement in a vacuum, there is a need for a 

cable that can withstand the maximum and minimum temperature points (-40 °C and +150 °C) 

without damage and negligible outgassing. As a result, a Teflon insulated cable with a twisted 

lead and Class 1 cable specification in accordance with EN 60584-3:2008 is used[19]. This cable 
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is made with copper and constantan conductors with an exposed junction for higher sensitivity 

and quicker response. 

 

3.2 Hardware 

3.2.1 System Architecture for Existing Calibration setup. 

The diagram below shows the current set up used for calibrating thermocouples in the Laboratory 

of Space Technology at the Tartu Observatory. 

 

Figure 2: Existing system setup 

As seen in figure 2 above, the setup consists of a climatic chamber that serves as a thermal source 

for calibrating the test thermocouples, a D-Subminiature 50 (DB-50) adapter which serves an 

electrical interface for connecting the test thermocouples inside the climatic chamber to readout 

device located outside the climatic chamber. The USB-TEMP and the F100 precision 

thermometer are data acquisition devices for the test thermocouples and the reference PT-100 

respectively. The desired parameters in the climatic chamber are remotely set using a software 

known as the Simpati software installed on the computer [20]. 
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 3.2.2 Climatic Chamber 

A Weiss Technik WKL 64 Climatic chamber at Tartu Observatory was used to provide a 

controlled thermal environment for calibrating the thermocouples. It has an operational 

temperature range of -40 °C to +180 °C. The chamber has internal dimensions of height 400 mm, 

a width of 470 mm, and a depth of 345 mm [21].   

3.2.3 Data Logger 

A Multi-Sensor Temperature measurement USB-TEMP data logger manufactured by 

Measurement Computing Cooperation (MCC) is used in this task. It supports data acquisition 

from thermocouples, RTDs, and thermistors. It provides a 24-bit analog-to-digital converter for 

each pair of analog input channels while up to eight temperature sensors can be connected to the 

differential sensor input. The logger can read two samples per second. It can acquire temperature, 

resistance, and voltage data from the sensors [22]. Figure 3 below shows the picture of the data 

logger used in this task. 

 

Figure 3: Picture of the USB-TEMP 

3.3 Software  

To effectively calibrate the thermocouples, there is a need to design a means through which data 

can be logged from both the thermocouple and the reference PT 100 simultaneously. To achieve 

this, a python script was written and made available to the author. The script automatically stores 
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the data logged by the data acquisition device used for both the reference and the test 

thermocouple. 

3.3.1 Simpati Software 

For setting and controlling the temperature of the chamber, the Simpati software made available 

by the manufacturer of the climatic chamber was used. This software enables setting test 

parameters such as temperature, pressure, etc. remotely [20].  

3.4 Reference Platinum Thermometer (PT-100)  

RTD sensors are the elements that react almost linearly to the influence of temperature [10]. They 

are mostly made of platinum which is one of the best materials for sensors because of its high 

melting point, great temperature coefficient, small chemical activity, and stable thermometric 

characteristics. The reference PT-100 used in this work has the following specification.  

 

Table 4: Specifications of reference PT-100 [23]. 

Parameters Specifications 

Manufacturer Automatic System Laboratory (ASL) 

Serial Number P0111313-1-14 

Type T100-450-ID 

Measurement Range -200 °C to 450 °C 

Drift 0.003 °C 

Sheath Material 316 Stainless steel 

Expanded Uncertainty (k=2) 

-40 °C - +200 °C 

+200 °C - +250 °C 

 

 

0.02 °C 

0.04 °C 

Probe length and diameter 355 mm and 6.35 mm. 

Date of the last calibration 22.08.2018 
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3.5 F100 Precision Handheld Thermometer 

The F100 precision thermometer handheld thermometer is high precision temperature instrument 

designed for laboratory temperature measurement and calibrations applications. It is 

manufactured by the Automatic Systems Laboratory and with user selectable temperature 

measurement units in °C, °F, K and Ω. It consists of two input channels, a large LCD display for 

excellent viewing of temperature measurement values and settings, a USB communication 

Interface as standard for automated monitoring and calibration applications. The F100 can operate 

with 4-wire Platinum thermometers (PT-100) and virtually all thermistors [24]. 

3.6 Calibration of Sensor in the climatic chamber 

The thermocouples were calibrated by comparison to a standard reference thermometer (PT-100) 

traceable to the units of SI through the standards of the National Meteorology Institute 

(METROSERT). Before the calibration was carried out, the thermocouples were visually 

inspected for obvious mechanical defects and contamination, etc. Also, every thermocouple to be 

calibrated should be as homogenous as possible inhomogeneous thermocouples used under 

different conditions from which they were calibrated, especially different temperature gradients 

will give an erroneous result that could amount to systematic deviations of several degrees Celsius 

[16]. To achieve the best result, the thermocouples were heat-treated at the maximum immersion 

temperature of 150  °C for approximately 4-hours after which measurements were recorded from 

the highest to the lowest temperature points required for calibration [16]. The F100 standard 

thermometer was used for the acquisition of the data from the reference platinum thermometer 

(PT 100) while the USB data acquisition device was used for data acquisition from the test 

thermocouples. The specifications for both data acquisition devices are given in Table 5 below: 
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Table 5: Specifications of auxiliary read-out devices[22], [24]. 

 F100 Standard 

thermometer 

USB-TEMP 

Data logger 

Manufacturer ASL MCC 

Resolution 0.001 °C 24 bits 

Stability <0.005 °C / Year N/A 

Measurement range -200 °C to +850 °C -270 °C to 400 °C 

Accuracy 

Expanded Uncertainty, k=2 

±0.02 °C ±0.514 °C (-200 °C to 0 °C) 

±0.256 °C (0 °C to 600 °C) 

For effective calibration of the thermocouples, an equalization block made from a cylindrical 

copper rod with a diameter of 20 mm and 20 mm long was used for good conductivity. A 7 mm 

hole is on the equalization block where the reference probe with a diameter of 6.5 mm was 

inserted. Four thermocouples were then firmly placed around the equalization block using a 

kapton tape to ensure that there is good contact and effective heat transfer between the 

equalization block and the test thermocouples (see Figure 4). The kapton tape is ideal in vacuum 

environment as it exhibits a low outgassing property. The sensors and the equalization block were 

then placed inside the climatic chamber. The reference junction of the thermocouple was soldered 

to the D-subminiature (DB-50) adapter. A compensating cable whose other terminal was soldered 

to the other side of the DB-50 adapter was connected to the USB-TEMP. Temperature values and 

corresponding resistance values were then recorded from the USB-TEMP device and the F100 

standard thermometer for both the test thermocouples and PT 100 respectively at ten temperature 

points ranging from -40°C to 150°C. These points were chosen because thermal vacuum testing 

at Tartu Observatory is offered to clients in this range. Figure 4 below shows the sensor 

equalization block that was used, the arrangement of the sensors on the block, and the position of 

the equalization block in the climatic chamber before calibration. 
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Figure 4: Arrangement of sensors around the equalization block 

Data recorded for the test thermocouples at each temperature point was evaluated for 

autocorrelation which is the correlation between values of the same variable. This is necessary to 

detect non-randomness in the data and to identify an appropriate time series model if data is not 

random. To do this, consider the temperature measurement Y at time t, the lag k autocorrelation 

function is given in equation 5 as [25]: 

 
𝑟𝑘 =

∑ (𝑌𝑖 − 𝑌̅)(𝑌𝑖+𝑘 − 𝑌̅)𝑁−𝐾
𝑖=1

∑ (𝑌𝑖 − 𝑌̅)2𝑁
𝑖=1

 

 

(5) 

The autocorrelation equation above shows the correlation between values of the same variables 

at time ti, ti+k, and the number of measurements taken N. When autocorrelation is used to detect 

non-randomness, it is the first lag ‘lag 1’ i.e. k=1 that is usually of interest [25]. The 

autocorrelation coefficient for each of the four-thermocouple data was evaluated and the result is 

shown in table 6 below: 

Table 6: Lag 1 autocorrelation coefficient for thermocouples. 

 T1/ °C T2/ °C T3/ °C T4/ °C 

Autocorrelation 

function 

0.53 0.49 0.50 0.50 

Reference PT-100 Probe 

Sensors Equalization 

block 
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The value for correlation function rk is usually from 0 to 1 with data being highly correlated at 1 

[24]. The autocorrelation function calculated for the four thermocouples T1-T4 is deemed to be 

uncorrelated as it ranges from 0.49 to 0.53 which is enough for non-randomness. To minimize 

the drift in the measurement, temperature values recorded for the test thermocouples at each data 

points for all the set temperature points were subtracted from that of the reference thermometer. 

The average was calculated for each temperature point and the result presented in Table 7 below. 

Table 7: Correction values for calibrated thermocouples. 

Set 

Temperature 

/ °C 

(Tref-T1)/ 

°C 

(Tref-T2)/ 

°C 

(Tref-T3)/ 

°C 

(Tref-T4)/ 

°C 

Standard 

Deviation/ 

°C 

150 -1.26 -1.56 -2.03 -1.74 0.06 

120 -1.48 -1.73 -2.14 -1.94 0.02 

100 -1.56 -1.78 -2.12 -1.95 0.03 

80 -1.95 -1.96 -2.43 -2.43 0.02 

60 -2.20 -2.14 -2.59 -2.64 0.02 

40 -2.35 -2.25 -2.63 -2.72 0.02 

20 -2.51 -2.37 -2.63 -2.78 0.02 

0 -2.71 -2.54 -2.73 -2.86 0.03 

-20 -2.86 -2.70 -2.67 -2.79 0.04 

-40 -2.93 -2.78 -2.50 -2.63 0.02 

After a thermocouple has been calibrated, the next requirement is  convenient means of obtaining 

correction value for all other points, this is done by computing an equation through the calibration 

points by direct interpolation between the measurement points [8]. Figures 5a-5d below shows 
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the correction line for thermocouples T1-T4 while the dwell time in climatic chamber is presented 

in appendix 1. 

 

Figure 5a-5d: Correction lines for thermocouples T1-T4.  

From Figure 5a, the curve fit shows that for every temperature value taken with the thermocouple, 

the correction Tc=0.0095t-2.6647 must be applied. This correction can be applied by substituting 

whatever temperature value measured as t in the equation and correction applied accordingly. The 

error bars depict the type A uncertainty associated with the correction values at each temperature 

point and it achieved by calculating the standard deviation for the whole temperature value 

recorded at each temperature point after stabilization. Because the accuracy of the thermocouple 

according to the manufacturer’s specification is within ±0.5 °C, with an average systematic 

correction of -2 °C for all sensors and points, the system needs to be addressed with further 

analysis. To achieve this, some possible solutions were suggested, and they are listed below. 

• To connect thermocouples differently, and 

a: Thermocouple T1 b: Thermocouple T2 

c: Thermocouple T3 d: Thermocouple T4 
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• calibrate thermocouples with a new data logger. 

3.6.1 Direct Connection of Thermocouple to Data Logger. 

To ascertain the sources of error in the result of the previous calibration, the calibration set up 

was done differently and this involves connecting the thermocouple directly to the data logger as 

seen in figure 6 below.  

 

 

Figure 6: Direct connection of thermocouple to the USB-TEMP. 

 

Here, one thermocouple was connected directly to the USB-TEMP with the reference PT-100 

connection left as it was in the previous calibration, and measurements were taken at seven 

temperature points between -40 °C and 80 °C. The data was analyzed as done in the previous 

calibration and the results presented as in table 8 below: 
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Table 8: Correction values for calibrated thermocouple. 

Set Temperature/ °C (Tref-T)/ °C Standard Deviation/ °C 

80 -0.57 0.06 

60 -0.53 0.03 

40 -0.62 0.06 

20 -0.60 0.04 

0 -0.68 0.07 

-20 -0.56 0.05 

-40 -0.53 0.08 

The correction line below (see Figure 7) was plotted using table 8 presented above, the dwell time 

is also presented in appendix 2: 

 

Figure 7: correction line for direct connection of thermocouple. 
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With the direct connection of the thermocouples to the readout device, the error from the curve 

fit using this setup compared to that of the previous calibration set up has reduced (see Figure 5 

and 7). But for calibration in a vacuum chamber, the DB-50 adapter (see Figure 6a and 6b) used 

in the first calibration set up is required as it serves as an electrical interface for connecting the 

thermocouples (inside the vacuum chamber) to the USB-TEMP (outside the vacuum chamber). 

This is important because the USB-TEMP is not vacuum compatible as it is covered with plastic 

material and has an operating temperature range of 0 °C to 70 °C [21], therefore usage above this 

temperature range can lead to outgassing in vacuum which in turn can contaminate the vacuum 

chamber and the device under test. Due to the reasons above, the calibration by direct connection 

of the thermocouples cannot be used with the current data acquisition device available even 

though it is more accurate, as such, a new data acquisition device is required for a more accurate 

calibration of the thermocouples in the vacuum chamber. Figure 8a and 8b shows the position of 

the DB-50 adapter on the vacuum chamber. 

Figure 8 (a) and (b): Location of DB-50 adapter on the vacuum chamber. 

3.6.2 Thermocouple Calibration with a New Data Acquisition Module. 

In order to be able to calibrate the thermocouples in a vacuum, an alternative data acquisition 

module was used. This module enables the recording of temperature data from 16 channels 

simultaneously. Figure 9 below shows how the temperature measurement is done using the new 

data acquisition module. 

(a) (b) 
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Figure 9: Data acquisition process with new DAQ (Diagram by Mari Allik) 

From the block diagram above, the voltage of the hot junction is measured by the MCP 3424 

analog-digital converter chip while the temperature of the cold junction is measured by the MCP 

9800 temperature sensor chip. The temperature of the cold junction is converted to thermal 

voltage in digital form using an approximate equation embedded in the data acquisition device 

[26], [27]. The reference voltage which is built-in to the MCP 3424 AD converter also enables 

the correction of the voltage value measured at the hot and cold junctions of thermocouples. Then 

the cold junction is compensated, and the temperature of the hot junction is then logged. 

For calibration with the new data acquisition module, four thermocouples were connected as done 

in section 3.5.1 and the data for ten temperature points (-40 °C to +150 °C) were logged with the 

new data acquisition device. Figure 10 below shows the new data acquisition module. 

 

Figure 10: new data acquisition module 
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The data collected with the new device was collected and analyzed, the results are shown in 

table 9 below. 

Table 9: Correction data for the thermocouples with new DAQ 

Set 

Temperature 

/°C 

(Tref-T1) 

/°C 

(Tref-T2) 

/°C 

(Tref-T3) 

/°C 

(Tref-T4) 

/°C 

Standard 

Deviation/ °C 

150 0.17 0.14 0.32 0.34 0.06 

120 -0.16 -0.12 -0.13 -0.16 0.03 

100 -0.29 -0.28 -0.22 -0.36 0.06 

80 -0.41 -0.42 -0.50 -0.40 0.04 

60 -0.43 -0.44 -0.52 -0.43 0.07 

40 -0.59 -0.60 -0.68 -0.60 0.05 

20 -0.70 -0.71 -0.78 -0.72 0.07 

0 -0.78 -0.78 -0.86 -0.81 0.07 

-20 -1.18 -1.17 -1.29 -1.26 0.07 

-40 -1.10 -1.12 -1.22 -1.21 0.05 

 

Again, the correction line for thermocouples T1-T4 is shown in Figures 11a - 11d below. 
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Figure 11: Correction line for calibration with the new DAQ 

 

From the figure above (see figure 11a-11d), average systematic correction of about -1 °C still 

exist between all sensors and points. This systematic effect can be minimized by further 

improving the accuracy of the cold junction sensor of the data acquisition module.  

 

 

 

 

 

 

 

a: Thermocouple T1 b: Thermocouple T2 

c: Thermocouple T3 d: Thermocouple T4 
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4 Estimation of Measurement Uncertainty 

4.0 Uncertainty Estimation 

The uncertainty estimation associated with the whole work is in three parts, (i) uncertainty 

associated with the calibration of the thermocouples with the existing data acquisition device in a 

climatic chamber, (ii) uncertainty associated with the calibration of the thermocouples with the 

new data acquisition module also in a climatic chamber, and finally (iii) uncertainty associated 

with temperature measurement with the new data acquisition module in a vacuum chamber. 

Further information on the above-listed uncertainty parts is presented in the following paragraphs. 

4.1 Uncertainty of Calibration with USB-TEMP. 

In order to estimate the uncertainty associated with the calibration of the thermocouples using the 

existing data acquisition device (USB-TEMP) influences introduced by the various input devices 

were considered. These input devices include the test thermocouple and data acquisition device 

for test thermocouple, reference thermometer, F100 precision thermometer, and the thermal 

source. As a result, the temperature of the hot junction of the test thermocouple is presented in 

the form of a model equation in equation 6. 

 

 𝑇𝑋 = 𝑇𝐼𝑆 + 𝜕𝑇𝐼𝑆1 + 𝜕𝑇𝐼𝑆2 + 𝜕𝑇𝑅 + 𝜕𝑇𝑂𝑆 + 𝜕𝑇𝐹 + 𝜕𝑇𝐷 + 𝜕𝑇𝑅𝑋 

 

(6) 

Where; 

TX is the temperature of the hot junction of the thermocouple. 

TIS is the measurement signal. 

∂TIS1 is a correction due to the calibration of the thermocouple with a read-out device. 

∂TIS2 is a correction due to the resolution of a readout device. 

∂TOS is a correction due to cold junction reference temperature. 

∂TR is a correction due to parasitic EMF. 

∂TF is temperature correction due to the non-uniformity of the equalization block. 

∂TRX Temperature correction due to the repeatability of temperature measurements. 
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In the vein, the combined uncertainty of the temperature of the hot junction of the test 

thermocouple is as shown in equation 7. 

𝑢𝑐(𝑡𝑥) = √𝑢𝑟𝑒𝑠
2 + 𝑢𝑟𝑒𝑝

2 + 𝑢𝑝
2 + 𝑢𝑐𝑗

2 + 𝑢𝑑
2 + 𝑢𝑛𝑢

2 + 𝑢𝑎
2 + 𝑢𝑠

2 + 𝑢𝑟𝑒𝑓
2 + 𝑢𝑐𝑎𝑙

2 + 𝑢𝑟𝑒𝑠𝑑
2   

(7) 

Where; 

uc(tx) is the uncertainty associated with temperature measurement with USB-TEMP. 

𝑢res is uncertainty due to the resolution of the readout device. 

urep is the uncertainty due to the repeatability of temperature measurements. 

𝑢p is the uncertainty due to parasitic EMF. 

ucj is the uncertainty due to cold junction accuracy of read out device. 

𝑢d is the uncertainty due to the drift of reference thermometer. 

𝑢nu is the uncertainty due to the non-uniformity of the equalization block. 

ua is the uncertainty due to the accuracy of F100. 

us is the uncertainty due to the Stability of F100. 

uref is the uncertainty due to the resolution of F100. 

ucal is the reference thermometer standard uncertainty. 

uresd is the uncertainty due to the linear approximation of correction function. 

 

The repeatability of the temperature measurement was estimated by taking the temperature values 

at points (+150 °C, +20 °C, -40 °C). These points were chosen based on the maximum and 

minimum temperature, and at a point close to room temperature i.e. 20 °C. The repeatability of 

the temperature readings at each temperature point was estimated by calculating the standard 

deviation of repeated measurements using the existing data acquisition module with the equation 

8 below [14]. 

 

𝑠(𝑥𝑘) = √
1

𝑁 − 1
∑(𝑥𝑘 − 𝑥̅)2

𝑁

𝐾=0

 

 

(8) 

where:  

s(xk) is the standard deviation of the measurement values,  

xk is the individual measurement values,  

N is the number of measurements,  
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𝑥̅ is the mean of measurement values given by equation 9 [14]. 

 

 
𝑥̅ =

1

𝑁
∑ 𝑥𝑘

𝑛

𝑘=1

 
(9) 

where:  

N is the number of measurements,  

xk are individual measurement values. 

The repeatability of the temperature measurement with the existing data acquisition device is 

presented in Table 10 below. 

Table 10: Repeatability with USB-TEMP 

Calibration Points/ (°C) Repeatability/ (°C) 

+150 0.06 

+20 0.03 

-40 0.03 

 

The highest repeatability value from the three temperature points was used in the uncertainty 

budget. The resolution of the data logger (USB-TEMP) was used to estimate the uncertainty due 

to the resolution in reading temperature values from the sensors and it is given as 24 bits [22]. 

The resolution of the USB-TEMP is converted to voltage using the equation 10 below [22]. 

 

 
𝐿𝑆𝐵 =

𝐹𝑢𝑙𝑙 − 𝑆𝑐𝑎𝑙𝑒 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑅𝑎𝑛𝑔𝑒

2𝑁 − 1
 

 

(10) 

Where; 

LSB is the least significant bit 

N is the number of bits which is 24 bits in this case. 

The full-Scale voltage range is given as 2.5 V.  

The resolution of the USB-TEMP is therefore calculated as 0,298 µV while the uncertainty due 

to the cold junction accuracy of the USB-TEMP is ±0.5 °C [22]. The drift of the reference 

thermometer presented in the certificate is 0.003 °C [27]. The uncertainty due to the non-

uniformity of the equalization block was calculated by measuring the temperature difference of 

two thermocouples on the same equalization block and the gradient is given as 0.18 °C. The 
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accuracy, stability, and resolution of the F100 precision thermometer as in the manufacturer’s 

instruction manual is ±0.02 °C, 0.005 °C/year and 0.001 °C respectively [24]. The uncertainty 

contribution due to parasitic EMF from previous calibration experience is given as 1.15 µV [16].  

The sensitivity coefficient as taken from the reference table is given as 0.028 °C/µV [28]. The 

residual of the individual points in the calibration line fit was evaluated and the standard deviation 

of residual which is 0.081 °C was used as the uncertainty due to the linear approximation of 

correction function.  Table 11 below shows the uncertainty budget for calibration with the existing 

method. 

Table 11: Uncertainty budget for calibration with the existing method. 

Quantity Symbol Standard 

Uncertainty 

Distribution Sensitivity 

Coefficient 

Uncertainty 

Contribution 

(°C) 

Resolution of 

read-out device 
𝑢res 0.086 µV Rectangular 0.028 °C/µV 0.019 

Parasitic EMF 𝑢p 1.15 µV Rectangular 0.028 °C/µV 0.025 

Cold Junction ucj 0.29 °C Rectangular 1 0.29 

Non-uniformity of 

equalization block 
𝑢nu 0.10 °C Rectangular 1 0.10 

Repeatability urep 0.06 °C Normal 1 0.06 

Accuracy of F100 ua 0.01 °C Rectangular 1 0.01 

Stability of F100 us 0.003 °C Rectangular 1 0.003 

Resolution of 

F100 

uref 0.0006 °C Rectangular 1 0.0006 

The drift of 

reference PT-100 
𝑢d 0.002 °C Rectangular 1 0.002 

Linear 

approximation of 

correction function 

uresd 0.081°C Normal 1 0.081 

Standard 

thermometer 

standard 

uncertainty k=1  

ucal 0.01 °C Normal 1 0.01 

Combined 

Uncertainty 

uc  0.33 

Expanded 

uncertainty k=2 

U 0.6 
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4.2 Uncertainty of Calibration with New Data Acquisition Device. 

Estimation of the measurement uncertainty associated with the calibration of the thermocouples 

with the new data acquisition device is done as presented in section 4.1, but uncertainty 

contributions due to the existing data acquisition device are replaced with the uncertainty 

contributions due to the new data acquisition device. For the new data acquisition module, the 

temperature of the hot junction of the thermocouple is presented in the form of a model in equation 

11 below. 

  

𝑇𝑋 = 𝑇𝐼𝑆 + 𝜕𝑇𝐴1 + 𝜕𝑇𝐴2 + 𝜕𝑇𝑉 + 𝜕𝑇𝐹 + 𝜕𝑇𝑂𝑆 + 𝜕𝑇𝑅 + 𝜕𝑇𝑅𝑋 

 

(11) 

Where; 

TX is the temperature of the hot junction of the thermocouple. 

Tis is the measurement signal. 

∂TA1 is the correction due to the accuracy of the cold junction sensor. 

∂TV is the correction obtained from the reference voltage source. 

∂TF is the temperature due to the non-uniformity of the equalization block. 

∂TR is the correction due to the resolution of the DAQ. 

∂TRX is the correction due to the repeatability of the temperature measurements. 

Again, the combined uncertainty due to the calibration with the new data acquisition device is 

presented in equation 12 below. 

 
𝑢𝑐(𝑛𝑒𝑤) = √𝑢𝑎

2 + 𝑢𝑟𝑒𝑠
2 + 𝑢𝑟𝑒𝑝

2 + 𝑢𝑐𝑎𝑙
2 + 𝑢𝑎2

2 + 𝑢𝑠
2 + 𝑢𝑟𝑒𝑠2

2 + 𝑢𝑟𝑒𝑠𝑑
2  

(12) 

Where; 

ua is the uncertainty due to the accuracy of the cold junction sensor. 

ures is the uncertainty due to the resolution of the hot junction device. 

urep is the uncertainty due to the repeatability of the temperature measurement. 

ucal is the reference thermometer standard uncertainty. 

ua2 is the uncertainty due to the accuracy of the F100. 

us is the uncertainty due to the stability of the F100. 

uresd is the uncertainty due to the linear approximation of correction function. 

ures2 is the uncertainty due to the resolution of the F100. 
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The repeatability of the temperature measurement was done as in the previous section for three 

temperature points and the result presented in Table 12. 

 

Table 12: Repeatability for Calibration with new DAQ 

Calibration Points/ (°C) Repeatability/ (°C) 

+150 0.08 

+20 0.06 

-40 0.07 

 

The highest repeatability value for the temperature measurement is also used for the uncertainty 

estimation. The accuracy of the cold junction sensor ±1 °C while the resolution is given as 18 bits 

[26], [27]. The resolution is converted to voltage using equation 13 below [27]. 

 

 
𝐿𝑆𝐵 =

2𝑉𝑅𝐸𝐹

2𝑁
 

(13) 

Where; 

LSB is the least significant digit. 

Vref is the reference voltage given as 2.048 V. 

N is the number of bits which is 18 bits in this case. 

 

As a result, the resolution of the new data acquisition module is calculated as 15.625 µV. The 

uncertainties associated with the reference PT-100 and F100 are the same as listed in section 4.1. 

Again, the uncertainty due to residual of individual point is estimated as 0.081 °C. Table 13 below 

shows the uncertainty budget for calibration with new DAQ. 
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Table 13: Uncertainty budget for calibration with new DAQ 

Quantity Symbol Standard 

Uncertainty 

Distribution Sensitivity 

coefficient 

Uncertainty 

Contribution/ 

°C 

Accuracy of cold 

junction sensor 

ua 0.58 °C Rectangular 1 0.58 

Resolution of the 

data acquisition 

device 

ures 4.51 µV Rectangular 0.028 °C/µV 0.13 

Repeatability urep 0.080 °C Normal 1 0.08 

Linear 

approximation of 

correction function 

uresd 0.081 °C Normal 1 0.081 

Standard 

thermometer 

standard 

uncertainty k=1 

ucal 0.010 °C Normal 1 0.01 

Accuracy of F100 ua2 0.012 °C Rectangular 1 0.012 

Stability of F100 us 0.003 °C Rectangular 1 0.003 

Resolution of F100 ures2 0.0006 °C Rectangular 1 0.0006 

Combined 

Uncertainty 

uc(new)  0.61 

Expanded 

uncertainty k=2 

Uc 1.2 

4.3 Uncertainty Estimation for Temperature Measurement in Vacuum Chamber. 

The temperature of the hot junction of the test thermocouple due to the measurement of 

temperature in the vacuum chamber is presented in the form of a model in equation 14 below. 

 

 𝑇𝑋 = 𝑇𝐼𝑆 + 𝜕𝑇𝐴1 + 𝜕𝑇𝐴2 + 𝜕𝑇𝑉 + 𝜕𝑇𝑂𝑆 + 𝜕𝑇𝑅𝑋 + 𝜕𝑇𝑅𝑃 (14) 

Where; 

TX is the temperature of the Hot junction of the thermocouple. 

TIS is an indication of the new data acquisition module. 

∂TA1 is the correction due to the accuracy of the cold junction sensor. 

∂TA2 is the correction due to the resolution of the data acquisition device. 

∂TV is the correction obtained from the reference voltage source. 

∂TRx is the correction due to the repeatability of the measurement. 

∂TRP is the correction due to the reproducibility of the temperature measurements. 
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Similarly, the model equation for the combined uncertainty of temperature measurement in a 

vacuum is as presented in equation 15 below.  

 
𝑢𝑐 = √𝑢𝑟𝑝

2 + 𝑢𝑟𝑒𝑝
2 + 𝑢𝑎

2 + 𝑢𝑟𝑒𝑠
2 + 𝑢𝑟𝑒𝑠𝑑

2 + 𝑢𝑔𝑟𝑎𝑑
2 + 𝑢𝑐𝑎𝑙

2 + 𝑢𝑎2
2 + 𝑢𝑠

2 + 𝑢𝑟𝑒𝑠2
2  

(15) 

Where; 

ua is the uncertainty due to the accuracy of the cold junction sensor. 

ures is the uncertainty due to the resolution of the new data acquisition device. 

uresd is the uncertainty due to the linear approximation of correction function. 

ugrad is the uncertainty due to the temperature gradient between sensors. 

urep is the uncertainty due to the repeatability of the measurement. 

urp is the uncertainty due to the reproducibility of the measurement. 

ucal is the reference thermometer standard uncertainty. 

ua2 is the uncertainty due to the accuracy of the F100. 

us is the uncertainty due to the stability of the F100. 

ures2 is the uncertainty due to the resolution of the F100. 

 

The uncertainty due to the accuracy of the cold junction sensor is ±1 °C, while the resolution of 

the new data acquisition device as previously calculated according to equation 13 is 15.625 µV. 

The uncertainty due to the linear approximation of correction function was estimated by 

evaluating the residuals of individual calibration points and the standard deviation of residuals 

which is 0.084 °C was used. The temperature gradient (difference) between two closely mounted 

sensors (see figure 12) in a vacuum was evaluated and used to estimate the uncertainty due to 

temperature gradient. It is estimated by evaluating the difference between the temperature values 

measured from two closely mounted sensors and the average of the difference was calculated. 

The maximum value of 1.40 °C was also used. 

4.3.1 Repeatability Evaluation in Vacuum. 

To put the new data acquisition module to use in the vacuum, a relative measurement was carried 

out where 7 sensors were mounted on a plate made of anvil material which is turned such that it 

is facing the heat exchanger plate in the vacuum chamber with the sensors in between. As the new 

data acquisition module supports up to 16 channels, there is a need to confirm that the module 
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can handle temperature measurement with all these channels. As such, all the 7 available 

thermocouples which are of the same type and model was used. This also helps to see how good 

or bad the temperature measurement data from the thermocouples match up. A dow corning 

vacuum grease with a very low outgassing possibility was used to improve the contact between 

the sensors and the heat exchanger in the vacuum chamber. Figure 12 below shows the sensor set 

up before the repeatability measurement was carried out. 

 

 

Figure 12: Sensor position before repeatability measurement. 

 

In the picture, the sensors are kept closer together as much as possible to achieve spatial 

uniformity. The sensors are then connected to the data acquisition device, and temperature data 

was logged for a minimum of 5 hours after stabilization is achieved for three temperature points 

(+140, +20, and -40) °C as stabilization takes very long in a vacuum chamber. Again, the points 

were chosen based on the minimum, maximum, and the other point at room temperature. Three 

cycles of measurements were taken, and the standard deviation of the measurements was 

calculated using equation 7 to estimate the repeatability at each temperature point. The result is 

presented in Table 14 below. 
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Table 14: Thermocouple repeatability for each channel. 

Thermocouple Repeatability/ °C 

+140 °C +20 °C -40 °C 

T1 0.034 0.038 0.036 

T2 0.033 0.038 0.035 

T3 0.033 0.037 0.033 

T4 0.030 0.039 0.034 

T5 0.032 0.038 0.035 

T6 0.033 0.036 0.035 

T7 0.032 0.036 0.031 

 

In comparing the repeatability in the vacuum chamber with that of the climatic chamber using the 

new data acquisition module, the repeatability value of the measurement in the climatic chamber 

is seen to be higher which implies that better repeatability value can be gotten in the vacuum 

chamber with the new DAQ. To evaluate the uncertainty due to repeatability here, the highest 

repeatability value in table 14 is used as a worst-case scenario. 

4.3.2 Reproducibility 

Reproducibility tests have been performed by the author over multiple days. The reproducibility 

test is important to evaluate how well the results logged with the new data acquisition module are 

reproducible when measurements are done at different times. Reproducibility conditions were 

mainly the same over the whole measurement pool - same instruments with the same setup, except 

that the measurement was recorded at different days and time. The reproducibility set up is the 

same as the set up in section 4.3.1 except that temperature values was logged from the 

thermocouples at five different points representing the high, medium, and low-temperature points 

to cover a wide measurement range of +140 °C, +80 °C, +20 °C, 0 °C and -40 °C for three 

different measurement cycles. The highest repeatability value from the three cycles is used in 

computing the reproducibility at each temperature point. Also, more data points are needed here 

in order to see how reproducible the temperature measurements are at points order than the ones 

chosen for repeatability measurement.  The standard deviation of the data for thermocouple was 

calculated using equation 8 and the result is presented in Table 15 below. 
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Table 15: Reproducibility of  Temperature Sensor in Vacuum. 

Thermocouple Reproducibility / °C 

+140 °C +80 °C +20 °C 0 °C -40 °C 

T1 0.032 0.035 0.040 0.033 0.036 

T2 0.035 0.033 0.032 0.034 0.038 

T3 0.030 0.032 0.038 0.037 0.034 

T4 0.033 0.035 0.035 0.033 0.035 

T5 0.036 0.032 0.037 0.034 0.034 

T6 0.033 0.035 0.038 0.034 0.036 

T7 0.035 0.034 0.038 0.036 0.037 

 

As done in the previous sections, the highest reproducibility value in table 15 above is used in 

the uncertainty calculation. The uncertainty budget for temperature measurement in a vacuum 

presented in Table 16 below. 
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Table 16: Uncertainty budget for temperature measurement in a vacuum. 

Quantity Symbol Standard 

Uncertainty 

Distribution Sensitivity 

coefficient 

Uncertainty 

Contribution/ 

°C 

Accuracy of cold 

junction sensor 

ua 0.58 °C Rectangular 1 0.58  

Resolution of the 

data acquisition 

device 

ures 4.51 µV Rectangular 0.028 °C/µV 0.13 

Linear 

approximation of 

correction function 

uresd 0.084 °C Rectangular 1 0.084 

Gradient ugrad 0.80 °C Normal 1 0.80 

Repeatability urep 0.039 °C Normal 1 0.039 

Reproducibility urp 0.04 °C Normal 1 0.04 

Standard 

thermometer 

standard uncertainty 

k=1 

ucal 0.010 °C Normal 1 0.010 

Accuracy of F100 ua2 0.012 °C Rectangular 1 0.012 

Stability of F100 us 0.003 °C Rectangular 1 0.003 

Resolution of F100 ures2 0.0006 °C Rectangular 1 0.0006 

Combined 

Uncertainty 

uc  1.00 

Expanded 

uncertainty k=2 

U 2.00 
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5 Conclusions 

In this work, the temperature measurement system in a vacuum environment has been 

considerably improved. First, different temperature sensors were considered with ECSS standards 

in mind, and the thermocouple is deemed to be the most suitable temperature sensor for this task. 

After successfully selecting the suitable temperature sensor for vacuum application, the selected 

temperature sensor was calibrated using the existing measurement system available at the Tartu 

Observatory and it was discovered that the major source of uncertainty using this system is the 

soldered joint in the DB-50 adapter. Since this adapter is required for connecting the 

thermocouples inside the vacuum chamber to the data logging device (USB-TEMP) outside the 

vacuum chamber, for improved measurement results, an alternative method of data acquisition 

becomes necessary. As a result, a new data acquisition module that allows for data to be logged 

while being placed in a vacuum was made available to the author. While the new data acquisition 

gives better measurement results when used compared to the existing method, the accuracy of the 

data acquisition module can be further improved by ensuring that the influence due to the 

instability of the reference voltage source is estimated. Also, a more stable reference voltage 

source is recommended for future tests. 

Finally, the measurement and uncertainty model were designed for the calibration of the 

thermocouples with the existing data acquisition device (USB-TEMP), new data acquisition 

device, and the temperature measurement with the new data acquisition device in a vacuum 

chamber. The expanded uncertainties were found to be 0.6 °C for calibration with existing 

method, 1.2 °C for calibration of thermocouples with new data acquisition module and 2.0 °C for 

temperature measurement in a vacuum, all at 95% percent confidence level, k=2 which matches 

with the uncertainty requirement for thermal vacuum testing. 
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Appendices 

Appendix 1: Dwell Time for Calibration with USB-TEMP. 

 

 
 

 

 

 

Appendix 2: Dwell Time for Calibration with Direct Connection to Data Logger. 
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Summary:   

Thermal vacuum tests must be performed to ensure the survivability of the spacecraft during 

the development and performance validation stages. To carry out these tests, vacuum 

compatible temperature sensors are placed on different sub-systems of a spacecraft in a 

vacuum chamber.  For the reliability of this test, the temperature sensors to be used need to be 

calibrated.   

  

This work, therefore, aims at improving the temperature measurement system currently used 

for thermal vacuum testing at the Tartu Observatory, University of Tartu. A suitable vacuum 

compatible sensor was selected and calibrated in the climatic chamber using the existing 

measurement system available at the observatory and a new measurement system introduced 

in this work. Both measurement systems were characterized, and measurement and 

uncertainty models were designed and estimated for the measurements carried out both in the 

climatic chamber and in the vacuum chamber.  

 

Lühikkokuvõte:  

Termovaakumkatsetused on vajalikud, et kindlustada satelliidi vastupidavus vaakumile. 

Katsetel kinnitatakse vaakumis kasutatavad temperatuuriandurid vaakumkambrisse asetatud 

satelliidi alamsüsteemide külge. Katsetulemuste usaldusväärsuse tagamiseks peavad 

temperatuuriandurid olema kalibreeritud. 

 

Käesoleva töö eesmärgiks on parandada olemasolevat temperatuurimõõtmise süsteemi, mida 

Tartu Ülikooli Tartu observatooriumis vaakumkatsetuste läbiviimiseks kasutatakse. Katsete 

jaoks valitakse välja sobiv temperatuuriandur, mis kliimakambris kahe erineva süsteemiga 

kalibreeritakse. Kalibreerimisel kasutatatakse nii olemasolevat temperatuuri mõõtmise 

süsteemi kui ka uut temperatuuri mõõtmise süsteemi, mida käesolevas töös tutvustatakse. 

Mõlema mõõtmissüsteemi jaoks koostatakse mõõtemudel ning määramatuse mudel, et hinnata 

kliimakambris ja vaakumkambris teostatavate temperatuurimõõtmiste määramatust. 

 
 

 


