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ABSTRACT 
 
In this thesis, the scale dependence of landscape metrics and the relationship 
between landscape metrics (Edge Density (ED), Patch Density (PD), Mean 
Shape Index (SHAPE_MN), Mean Euclidean Nearest Neighbor Distance 
(ENN_MN), Contagion (CONTAG), Patch Richness Density (PRD), and 
Shannon’s Diversity Index (SHDI)) and river water quality indicators (BOD7, 
CODKMnO4 values, total-N, total-P concentrations) were analyzed in 24 
catchments in Estonia. We used the Estonian Basic Map (1:10,000), Estonian 
Base Map (1:50,000) and CORINE Land Cover Map (1:100,000). The spatial 
autocorrelation (Moran’s I) of raster format soil maps (1:10,000; 10m pixel 
size) in 35 study areas representing all landscape regions in Estonia was also 
studied. The carbonate concentration of soils, volumetric soil moisture (%) and 
the depth of the groundwater table were taken into consideration in compiling 
the scale of contrast of 17 soil groups. A simple characteristic based on spatial 
correlograms: a half-value distance lag, hI=0.5 – a distance where Moran’s I 
drops below 0.5 was also introduced. In scale analysis, we calculated landscape 
metrics on artificial and real landscapes. Scale analysis showed that the 
responses of landscape metrics to changing grain size vary among landscapes 
and metrics. In finding relationships between landscape metrics and water 
quality indicators, multiple regression analysis showed that for BOD7, total-N 
and total-P, the most important predictor was the proportion of urban areas. 
However, for total-N, Edge Density and for BOD7, Patch Density were also 
important predictors. Catchments with complex landscape configurations have 
lower nitrogen and organic matter runoff. Mean Shape Index and Contagion 
were the most important predictors for CODKMnO4, but as the Mean Shape Index 
is also positively correlated with the proportion of natural areas, and Contagion 
is positively correlated with the proportion of agricultural land use, then the 
relationship between CODKMnO4 and landscape metrics is most likely not causal. 
Knowledge about the land-water relationship can be used in watershed 
management planning. Spatial correlation analysis showed that the spatial 
autocorrelation decreased very rapidly in the case of heights with very hetero-
geneous landscape pattern, showing low values of hI=0.5 (<100m). In uplands 
and depressions the spatial autocorrelation also decreased quite rapidly (hI=0.5 
<200m). In most of the plains, coastal lowlands, sea islands and inland 
paludified lowlands, the values of Moran’s I did decrease slowly with 
increasing lag, being >200m. Thus spatial correlograms of soil cover can be 
used for the characterization of human-influenced landscape (land-use) pattern. 
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1. INTRODUCTION 
 
Urbanization, industrialization and intensive agriculture result in rapid 
landscape change, in losses of ecological capacities, biodiversity, and in the loss 
of historically valuable cultural landscapes. Scientists and environmental 
managers alike are concerned about broad-scale changes in land use and 
landscape pattern and their cumulative impact on hydrological and ecological 
processes. Therefore there is an increasing need for sustainable landscape 
planning and management. Indicators are needed to evaluate how far planning 
objectives have come, and to improve decision making. 

Hundreds of landscape metrics have been developed for the quantifying of 
landscape pattern. The term “landscape metrics” is generally used for all 
measures that quantify the spatial pattern of landscape, from topographic 
measures (Vivoni et al., 2005) to proportions of land use/cover, and shape and 
area metrics (Li et al., 200; Palmer, 2004). Spatial pattern is represented and 
quantified in a number of different ways (Table 1). Most of the landscape 
pattern analysis is performed on categorical maps which tend to ignore the 
spatial variation within spatial units and trends in system properties across 
landscapes (Gustafson, 1998). A large number of metrics have been developed 
to quantify spatial heterogeneity on categorical maps. These metrics fall into 
two general categories: those that evaluate the composition of the map without 
reference to spatial attributes, and those that evaluate the spatial configuration 
of system properties, requiring spatial information for their calculation 
(McGarigal and Marks, 1995; Gustafson, 1998). Most of these are covered by 
the computer program FRAGSTATS (McGarigal and Marks, 1995). Since the 
emergence of FRAGTATS in 1993, the measures and methods incorporated in 
this software have been very widely used in characterizing patterns (Li et al., 
2001; Corry, 2004), detecting land use changes (Egbert et al., 2002; Li et al., 
2004; Southworth, 2004) and predicting ecological processes (Bender et al., 
2003; Coulson et al., 2005; Fearer et al., 2007).  
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Table 1. Methods for representing and quantifying spatial pattern (Gustafson, 1998). 

Representation/data 
type 

Description Quantification 

Categorical maps  Qualitative data  
Non spatial Composition Number of categories, proportions, 

diversity (richness, evenness) 
Spatial Configuration Size, shape, patch density, connectivity, 

fractal dimension, contagion, etc. 
Dot maps, isarithmic 
maps 

Quantitative data Trend surface, correlogram, 
semivariogram, fractal dimension, 
autocorrelation indices, interpolation (e.g., 
kriging)  

 
Despite the many advantages of landscape metrics and their extensive use, there 
are also inherent limitations to landscape metrics (Li and Wu, 2004): many 
landscape metrics are correlated to each other (O’Neill et al., 1999; Hargis et 
al., 1998; Botequilha and Ahern, 2002); there are difficulties in interpreting 
landscape metrics (Gustafson, 1998; Hargis et al., 1998; Turner et al., 2001) and 
they are scale-dependent (Wickham and Riitters, 1995; Griffith et al., 2000; Wu 
et al., 2002). Two primary scaling factors affect measures of landscape pattern: 
grain is the resolution of the data (pixel size) and extent refers to the size of the 
area mapped or studied (Gustafson, 1998). As FRAGSTATS uses a raster 
model, some geometric generalization takes place, and the issue of optimal 
grain size becomes important. It is essential to find the optimal value for grain 
size for every study. The first part of the current thesis focuses mainly on how 
changing grain size influences the values of the landscape metrics calculated in 
FRAGSTATS. 

Several studies have shown that landscape pattern is an important factor 
influencing nutrient and organic matter runoff from catchments (Stålnacke et 
al., 1999; Arheimer and Brandt, 2000; Steegen et al., 2001; Davenport et al., 
2003; Buck et al., 2004). The composition of the landscape (land use/cover 
proportions) partly reflects human influence and, as many studies have shown, 
it can be used as a predictor for nutrient runoff from catchments (Steegen et al., 
2001; Wickham et al., 2003; Davies and Neal, 2007; Poor and McDonnell, 
2007). For example, if there is a high proportion of agricultural areas in the 
catchment, the nutrient runoff is higher due to more intensive fertilization. High 
levels of nutrient and organic matter loading can have adverse effects on both 
humans and aquatic ecosystems. In addition to land use proportions, however, 
the configuration of landscape pattern is also important, i.e. spatial arrangement 
of patches, especially riparian zones (Gergel, 2005). In the second part of the 
thesis I try to ascertain the relationships between landscape pattern and nutrient 
and organic matter runoff from catchments. I assume that nutrient and organic 
matter runoff from catchments is influenced by land use and landscape pattern. 

3
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Although FRAGSTATS enables one to calculate over a hundred landscape 
metrics, this popular software does not include indices on different spatial 
structure functions like correlograms and variograms, which are popular in 
geostatistics (Cressie, 1993). A classical estimator of spatial dependence is 
Moran’s I, (1948) which has also been proposed as a spatial analogy of 
autocorrelation used in time series analysis (Taylor, 1977). Correlograms form 
when plotting autocorrelation values (in our case Moran’s I) against distance 
classes (lag). Spatial correlograms have been used for the spatial analysis of 
several natural (Overmars et al., 2003; Camarero et al., 2006; Barbaro et al., 
2007) and social phenomena (Zmyslony and Gagnon, 1998; Wheeler, 2001). In 
the third part of the current thesis I studied the spatial autocorrelation (Moran’s 
I) of the Estonian soil map. Soil cover, as one of the most informative and 
integrative landscape factors, can be used for the analysis of landscape pattern. 
The relationship of soil properties to landscape character, as well as the 
relations of soil quality with characteristics of other landscape components, is 
one of the best studied issues in landscape research. Soils are organically related 
to topography, a fact that is well reflected in toposequent soil ordination in 
landscape transects and catenas (see Schimel et al., 1985, Imeson and Lavee, 
1996; Sommer and Schlichting, 1997). A toposequent soil spectrum determines 
soil wetness and moisture conditions (Wang et al., 2002; Blyth et al., 2004), as 
well as the spatial distribution of plant communities (Phillips et al., 2003; Fu et 
al., 2004), and is closely related to landscape fragmentation (Shoshany, 2002).  

If Moran’s I is used on discrete soil data, there arises the problem of how to 
take into quantitative consideration the qualitative differences in neighbouring 
soil patches. Gradients of soil characteristics are needed to make soil maps that 
are usable in spatial autocorrelation analysis. The contrast of soil cover is one of 
the parameters which can be used for this purpose, although most soil contrast 
studies consider the vertical contrast of soil horizons in terms of texture 
differences (e.g., clay-sand contrast; see Phillips, 2004). In the current study 
carbonate content, soil water regime, and the depth of the groundwater table 
were taken into consideration in compiling the scale of contrast (see Lõhmus, 
1984). 

We also propose Moran’s I correlograms and half-value distance lag as a 
new landscape metric that measures landscape pattern. Half-value distance lag 
also allows one to correlate Moran’s I with FRAGSTATS metrics to detect 
whether some of the FRAGSTATS metrics indirectly measure spatial auto-
correlation. 

The main objectives of the current thesis are: 1) to determine the 
relationships between landscape metrics and nutrient and organic matter runoff 
in catchments, and how these relationships are affected by the scale dependence 
of landscape metrics; 2) to estimate spatial autocorrelation in Estonian 
landscapes by using correlograms calculated on the basis of the soil map of 
various landscape regions in Estonia.  
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2. DATA AND METHODS 
 

2.1. Scale dependence of landscape metrics 
 
In order to examine the influence of spatial resolution on landscape metrics, we 
tested different artificial and real landscapes. The grain size (pixel size) was 
systematically changed from 10 m to 1000 m. The landscape metrics were 
analyzed using the FRAGSTATS computer program (McGarigal and Marks, 
1995). Many of the landscape metrics are correlated with each other (Griffith et 
al., 2000; Wu et al., 2002). Therefore we performed a correlation analysis and 
picked those landscape metrics that did not correlate significantly with the 
others (Uuemaa et al., 2005: Publication II). There was only one exception – 
Patch Density, which correlated with Edge Density, but is very often used. We 
used the following landscape metrics (Uuemaa et al., 2005: Publication II):  

• Edge Density (ED); 
• Patch Density (PD); 
• Mean Shape Index (SHAPE_MN); 
• Mean Euclidean Nearest Neighbour Index (ENN_MN);  
• Contagion (CONTAG);  
• Patch Richness Density (PRD); and  
• Shannon’s Diversity Index (SHDI).  

 
For details and metrics formulae see McGarigal and Marks (1995). 

We used eight artificial landscapes and three real landscapes (Uuemaa et al., 
2005: Publication II). The land use data for the real landscapes was derived 
from the Estonian Basic Map (1:10 000), the Estonian Base Map (1:50 000) and 
the CORINE Land Cover Map (1:100 000) (Table 2). As at the time of the 
analysis the Basic Map was not available for all the catchments studied in the 
nutrient runoff analysis (only the Porijõgi River catchment was covered), we 
used two additional areas with considerably different landscape patterns − 
“South Estonia” and “Northeast Estonia” (Fig. 1) − for the landscape pattern 
analysis. The South Estonian landscape is fragmented and dominated by agri-
cultural and urban areas, while the Northeast Estonian landscape is more 
homogenous and less influenced by human activities (Uuemaa et al., 2005: 
Publication II). The size of the study sites (Northeast Estonia and South Estonia; 
Fig. 1) was set at 15km×15km = 225 km2. The Porijõgi catchment has natural 
boundaries and a size of 241km2; a large part of it is located on the Otepää 
Heights, and the landscape is very fragmented and dominated by semi-natural 
grasslands and forests (Mander et al., 2000; Uuemaa et al., 2005: Publication 
II). 
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Table 2. Land use and land cover types in real landscapes and study catchments 
(Uuemaa et al., 2005: Publication II). 

Basic Map 
1:10,000 

Base Map 
1 :50,000 

CORINE Land 
Cover Map 
1:100,000 

New classification of 
CORINE Land Cover 

Map 
Lakes Lakes Lakes Natural areas 
Water courses Water courses Water courses Natural areas 
Forests Agricultural land Non-irrigated arable 

land 
Agricultural land use 

Small ponds Urban Urban Urban land use 
Young forests Mine Mine Other  
Cultivated 
grasslands 

Dump site Dump site Other 

Orchards Fen Inland marshes Fens, bogs and mires  
Fallow lands Peat field Bogs Fens, bogs and mires  
Buildings Wetland Deciduous forests Natural areas 
Graveyards Airport Green urban areas Urban land use 
Sparsely 
vegetated areas 

 Sport and Leisure 
facilities 

Urban land use 

Fens  Fruit trees and berry 
plantations 

Agricultural land use 

Arable lands  Pastures Agricultural land use 
Streets  Coniferous forest Natural areas 
Yards  Mixed forest Natural areas 
Natural 
grasslands 

 Natural grassland Natural areas 

Raised bogs  Moors and heath 
land 

Natural areas 

Recreational 
open space 

 Sparsely vegetated 
areas 

Natural areas 

Bushes  Bushes Natural areas 
Burnt woodland  Salt marshes Fens, bogs and mires 
Peat fields  Peat fields Other 
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Figure 1. Study areas and landscape regions of Estonia. Landscape regions are colored 
grey with white borders.  
 
 
2.2. Landscape metrics as indicators of river water quality 

 
In order to determine the relationships between landscape metrics and nutrient 
and organic matter runoff in catchments, we used the water quality data (BOD7 
and CODKMnO4 values, total-N and total-P concentrations in water samples 
from closing weirs of studied rivers, mg l–1) from the Estonian Environmental 
Monitoring Programme database. Fifty-seven catchments are included in the 
Environmental Monitoring Programme, but we were only able to use 24 (Fig. 
1), because many catchments extended almost all the way to Russia or Latvia. 
As in the interests of interpretability we decided to use correlation and multiple 
regression analysis to detect relationships between water quality data and 
landscape metrics, we were not able to use more than one subcatchment of the 
catchment, or the data points would not have been independent. 

The disadvantage of this data was its dependence on point pollution sources 
(towns, factories). However, the relation between biological oxygen demand 
(BOD7) and chemical oxygen demand (determined on the basis of potassium 
permanganate; CODKMnO4) helps to distinguish between anthropogenic 
(mostly point pollution) sources and natural/semi-natural sources of pollution 
(Uuemaa et al., 2007b: Publication I).  

4
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For landscape metrics calculation, we derived the land use and land cover 
maps of 24 catchments (Fig. 1) from the Estonian Base Map (1:50 000) and the 
CORINE Land Cover Map (1:100 000) (Table 2; Uuemaa et al., 2005: 
Publication II). Due to the computational limitations of FRAGSTATS, the 
spatial resolution for both maps was 30 m. To determine the initial relationships 
between water quality and landscape metrics, we used correlation analysis for 
both maps. The Estonian Base Map has less land cover types than the CORINE 
Land Cover Map, although the cartographical scale is larger, which may be one 
reason why the Base Map did not yield very good results. Therefore, in multiple 
regression analysis we used only the CORINE Land Cover Map. 

In order to ascertain the relationships between land use and water quality, we 
reclassified CORINE land cover types into four general groups: (1) the 
proportion of natural areas (NA) (forests, grasslands); (2) the proportion of 
agricultural land use (ALU); (3) the proportion of fens, bogs and mires (FBM); 
and (4) the proportion of urban land use (ULU) (Table 2; Uuemaa et al., 2007b: 
Publication I). These land use proportions were used in the regression analysis. 
Mining lands, dump sites and peat bogs were classified as Other and were not 
used in the analysis. The Estonian Base Map did not need reclassification 
because it had basically the same land use types as the new classification in 
table 2. 

The same landscape metrics were analyzed as in the scale dependence 
analysis. According to the Kolmogorov–Smirnov test for normality, in the case 
of the Estonian Base Map, none of the landscape metrics under consideration 
were normally distributed; therefore, the Spearman Rank Order Correlation was 
performed first. This analysis showed that the Estonian Base Map was not the 
best data for this analysis, because of its large level of generalization. Therefore 
stepwise multiple regression analysis was only used on the CORINE Land 
Cover Map. In the case of the CORINE Land Cover Map, all of the variables 
under consideration were normally distributed, except for one variable – total-P. 
Regressions were tested using an ANOVA test and the normality of residuals. A 
casewise plot of residuals was used to calculate the number of possible outliers. 
The regression models were validated through an examination of their 
predictability using an independent data set. In order to achieve this, we 
randomly selected four catchments out of 24 and performed stepwise multiple 
regression analysis on 20 catchments. A statistically significant regression 
model was found for every water quality parameter, and these models were 
validated on the four catchments that were initially left out of the analysis. The 
procedure was performed six times, and in each analysis we randomly selected 
four new catchments for the validation of the models. Repetitions were avoided, 
and therefore six different combinations were possible. For all predicted values, 
we calculated 95% prediction intervals using STATISTICA 6.0. The probability 
of entering variables into the stepwise regression model was set at p<0.01 and 
the probability of removing was set at p<0.05. For the statistical analysis of 
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data, the computer program STATISTICA 6.0 was used. The level of 
significance of α=0.05 was accepted in all cases. 
 
 

2.3. Spatial correlograms and half-value distance lag  
as the new landscape metrics 

 
In order to determine how soil correlograms describe the Estonian landscape 
pattern, we needed study areas that represent most of the Estonian landscape 
types, and therefore thirty-five new study areas were selected on the basis of 
Estonian landscape regions (Fig. 1). Landscape regions are geosystems that are 
determined by relief forms. Thus a region differs significantly from neigh-
bouring areas by its geological structure (Arold, 2005). Landscape regions can 
be grouped into six general groups: 1) accumulative heights (Otepää Height, 
Haanja Height, Karula Height and Vooremaa); 2) uplands with a bedrock core 
(Pandivere Upland and Sakala Upland); 3) inter-upland depressions (Valga 
Depression and Võru-Hargla Depression); 4) plains (Harju Plain, Viru Plain, 
Middle Estonian Plain, Ugandi Plain, Palumaa Plain and Irboska Plain);  
5) coastal lowlands and sea islands (The Gulf of Finland Coastal Lowland, 
West-Estonian Lowland, The Gulf of Riga Coastal Lowland, Saaremaa and 
Hiiumaa); 6) inland paludified lowlands (Alutaguse Lowland, Peipsi Lowland, 
Võrtsjärve Lowland, Kõrvemaa, Soomaa and Metsepole Lowlands).  

From some landscape regions, more than one study areas were chosen, and 
from four smaller landscape regions none of the study areas were chosen. Land 
use was also taken into consideration in choosing study areas. Of 35 study areas 
there were sites dominated by agricultural land use, forests, bogs or urban areas. 
Study areas were formed according to soil map sheets, i.e. each study area 
consists of a 3×3 soil map sheet. Each study area was 15×15km. 

Soil data was derived from the Estonian Soil Map (1: 10,000) converted into 
raster format using 10 m pixel size. We had to use reclassified soil data in order 
to take into quantitative consideration the qualitative differences in neigh-
bouring soil patches (elementary soil units, i.e. polypedons). Soil types were 
reclassified so that new type numbers could be used as contrast indexes (Table 3). 
For reclassification, a field survey manual for Estonian soil mapping was used 
(Kokk et al., 1973). Carbonate content, soil water regime and the depth of the 
groundwater table were taken into consideration in compiling the scale of 
contrast (see Lõhmus, 1984). In the case of soil types Mi and Mj, their difference 
(|i-j|) shows the contrast between these types. For example, the difference 
between Planosols and Endoeutric Albeluvisols is the same grade as that 
between Molli-Histic Gleysols and Histi-Hyperdystric Gleysol (Table 3). 
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Table 3. Scale of soil contrast (Uuemaa et al., 2007a: Publication III). 
No Soil types Soil symbols 

of WRB 
(2001) 

classification 

Symbols in 
Estonian 

classification 

1 Anthropic-, Urbic-, Spolic-, Regosols RG T 
2 Rendzi-Lithic Leptosols, Rendzic 

Leptosols, Skeletic Leptosols, 
Hyperskeletic Leptosols, Rendzic 
Leptosols+Calcaric Regosols 

LP Kh'; Kh''; Kr; Kk; 
K 

3 Eutric Arenosols, Albic Arenosols, Dystric 
Arenosols, Entic Podzols, Haplic Podzols 

AR; PZ L(k)I; L(k)II; 
L(k)III; LI; LII; 
LIII 

4 Hyperskeleti-Gleyic Leptosols, Skeleti-
Gleyic Leptosols, Skeleti-Gleyic 
Cambisols, Rendzi- Gleyic Leptosols+ 
Calcari-Gleyic Regosols, Endocalcaric 
Cambisols, Endocalcari-Gleyic Luvisols 

LP; CM; LV Kkg; Krg; Korg; 
Kg; Kog; KIg 

5 Skeletic Cambisol, Endocalcaric 
Cambisols, Endocalcaric Luvisols 

CM; LV Kor; Ko; KI 

6 Lithic-Gleyic Leptosols, Rendzi-Gleyic 
Leptosols, Calcari-Lithic Gleysols, 
Calcari-Abruptic Gleysols, Calcari-Histic 
Gleysols 

LP; GL Kh'g; Kh''g; Gh'; 
Gh''; Gh1 

7 Planosols + Stagnic Luvisols + Phaeozems PL; LV; PH LP 
8 Stagni-Gleyic Luvisols + Gleyic Planosols PL; LV LPg 
9 Umbric Gleysols, Stagnic Gleysols GL LkG; LPG 
10 Endoeutric Albeluvisols, Umbric 

Albeluvisols 
AB LkI; LkII; LkIII; E 

11 Eutri-Gleyic Arenosols, Albi-Gleyic 
Arenosols, Dystri-Gleyic Arenosols, 
Endogleyic Podzols, Gleyic Podzols, 
Cumulic Podzols 

ARg; PZg L(k)Ig; L(k)IIg; 
L(k)IIIg; LIg; 
LIIg; LIIIg; Lsg; 
Ls 

12 Skeleti-Calcaric Gleysols, Calcaric 
Gleysols, Skeleti-Mollic Gleysols, Mollic 
Gleysols, Eutric Gleysols 

GL Gr; Gkr; Gk; Gor; 
Go; GI 

13 Molli-Histic Gleysols, Eutri-Histic 
Gleysols, Calcari-Histic Gleysols 

GLh Go1, GI1, Gr1 

14 Hyposalic Regosols, Hyposali-Gleyic 
Fluvisols, Hyposalic-Histic Fluvisols, 
Haplic Fluvisols, Gleyic Fluvisols, Histic 
Fluvisols, Pachic+Cumulic Gleysols 

RG; FL; FLh; 
GL 

Ar; ArG; ArG1; 
Ag; AG; AG1; D; 
Dg; DG 

15 Eutri-Sapric Histosols, Eutri-Fluvic 
Histosols, Hyposali-Fluvic Histosol 

HS M; AM; Mr 

16 Gleyic-Histic Podzols PZh LG1 
17 Fibric Histosols, Dystri-Fibric Histosols HS S; R 

 



 17

An AUTOCORR module in Idrisi Kilimanjaro was used to calculate 
Moran’s I (Uuemaa et al., 2007a: Publication III). King’s case autocorrelation 
was calculated for study areas when lag h=10, 20, 30, …, 100, 120, …,200, 300, 
400, 500 and 1000m. Waterbodies and urban areas were masked out. We used 
the results to construct the graphs of I(h), which are called correlograms. 

We investigated the soil correlograms of the test areas and found these to be 
quite regular. In order to compare Moran’s I correlograms from different study 
areas, we introduced a simple characteristic of the half-value distance lag: hI=0.5 
– the distance lag where Moran’s I drops below 0.5. The value of Moran’s I 
may range from –1 to +1, but in our study areas the value only fell below 0 few 
times in cases of 1000m lag. Shortridge (2007) also found that “…While the 
theoretical range of I extends from roughly –1 to 1 for a raster map, in practice 
possible I values are much more restricted. The nature of the restriction is due to 
the rigid cell framework, which defines contiguity, as well as the relative 
proportions of ones to zeros in the binary raster. Unequal proportions of ones 
and zeros can result in minimal I values considerably larger than –1, and in 
many cases considerably larger than 0. Implications for the use of I on raster 
maps are considered, as is the potential relevance of negative spatial 
autocorrelation and its measurement.” Therefore we chose the half-value within 
the positive scale. We also correlate FRAGSTATS metrics with hI=0.5 in order to 
detect whether some of the FRAGSTATS metrics indirectly measure spatial 
autocorrelation. 

In addition to those landscape metrics that we used in scale dependence and 
nutrient runoff analysis, we tried to select those FRAGSTATS metrics that 
would most likely reflect or explain the behaviour of Moran’s I. The selection 
was based on the formulas and definitions of FRAGSTATS metrics. Metrics 
that were added to the analysis were: Mean Area Distribution (AREA_MN), 
Contrast-Weighted Edge Density (CWED) and Percentage of Like Adjacencies 
(PLADJ). For details and metrics formulae see McGarigal and Marks (1995). 
Only PRD that was used in scale dependence and nutrient runoff analysis was 
left out of the correlograms analysis, because SHDI very accurately reflects the 
number of land cover types. 

According to the Kolmogorov-Smirnov test for normality, most of the 
variables under consideration were not normally distributed. Therefore we cal-
culated Spearman ρ for relationships between hI=0.5 and FRAGSTATS metrics, 
and the significance of differences was analysed using the non-parametric 
Kruskal-Wallis test. For the statistical analysis of data, the computer programs 
STATISTICA 6.0 and Microsoft Excel 2000 were used. The level of significance 
of α = 0.05 was accepted in all cases.  
 

5
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3. RESULTS AND DISCUSSION 
 

3.1. Scale dependence of landscape metrics 
 

3.1.1. Artificial landscapes 
 
The behaviour of many metrics has not yet been evaluated (McGarigal et al., 
2002), and the analysis of artificial landscapes is one way to achieve a better 
understand not only of the scale dependence of landscape metrics but also of 
their behaviour. Since Gardner et al. (1987) introduced the concept of neutral 
models into landscape ecology, many have used them to investigate the 
behaviour of landscape metrics (Hargis et al., 1998; Li et al., 2005). In the 
current study the analysis of artificial landscapes helped to clarify the behaviour 
of landscape metrics and explain their scale dependence. 

The results showed that the value of PD does not change much before the 
grain size exceeds patch size. PD is very sensitive to the existence of small 
patches. However, the orientation of patches is also important in changing grain 
size. Orientation affects the connectedness of the patches, especially in the case 
of long and narrow patches. ED responses to changing grain size were similar to 
PD. This indicates that ED is mostly influenced by the same factors (size and 
number of patches) as PD. There are, however, some exceptions. When large 
and very complex patches dominate in the landscape structure, then PD is low 
but ED is high. In that case the PD does not decrease as much with increasing 
grain size as ED.  

With increasing grain size, values of SHAPE_MN started to approach 1.0, 
because the more grain size increases, the more the patches begin to consist of 
only one pixel. The decrease in the value of SHAPE_MN is more rapid if the 
landscape consists of small patches. 

The values of ENN_MN generally increase linearly with increasing grain 
size, because it measures distance (m) to the nearest neighbouring patch of the 
same type, based on shortest edge-to-edge distance, computed from cell center 
to cell center (McGarigal et al., 2002). However, if patches start to break apart 
into smaller patches with increasing grain size, then the value of ENN_MN may 
decrease. 

As the calculation of CONTAG is based on pixel adjacency proportions, it is 
very dependent on grain size (Li and Reynolds, 1993; Riitters et al., 1996; 
Ricotta et al., 2003). Given a particular patch mosaic, a smaller grain size will 
result in a proportional increase in like adjacencies and in an increase in the 
values of CONTAG. An analysis of artificial landscapes showed that CONTAG 
mostly decreases with increasing grain size. If, however, there are many small 
patches in a landscape structure and they begin to disappear with increasing 
grain size, then the value of CONTAG may increase. The reason for this is that 
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CONTAG also depends on the composition of the landscape. Therefore 
CONTAG does not always reflect the clumpiness of spatial patterns (He et al., 
2000).  

The behaviour of PRD and SHDI was similar as the grain size increased. 
Both metrics began to fluctuate as the number of patch types changed. Values of 
diversity metrics, especially PRD, are mostly determined by the number of 
patch types present in the landscape (McGarigal et al., 2002; Wu et al., 2002). 
Therefore their response to changing grain size depends on how the number of 
patch types varies in the landscape. 

 
 

3.1.2. Real landscapes 
 
Values of ED and PD decreased logarithmically with increasing grain size, and 
they had predictable responses across the different landscapes (Fig. 2). 
According to Wu et al. (2002), this is characteristic to Type I. However, Wu et 
al. (2002) found that these two metrics decreased in their values with power-law 
relationship, but the response to the increase in grain size was generally the 
same. Furthermore, our results also showed that the decrease in ED and PD 
depended on the configuration of the landscape. If the landscape pattern was 
very complex, then the decrease in the ED and PD was very rapid, and vice 
versa. Therefore the difference between landscapes disappears at some 
resolution. In our study it was approximately 400m.  

There was also the difference between values of ED and PD calculated on 
maps with different map scales (Fig. 2). At 400–500m the maps with different 
scale had almost the same values of PD and ED. Values of metrics calculated on 
large scale maps decrease more rapidly with changing grain size than values of 
metrics calculated on small scale maps. Topographic scale (generalization, 
classification) seems to have a significant effect on values of landscape metrics. 
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Figure 2. Effects of changing grain size on Type I (above), Type II (middle) and Type 
III (below) at different map scales in Porijõgi catchment (right) and landscape metrics in 
different study areas calculated on the Estonian Basic Map (left) (Uuemaa et al., 2005: 
Publication II) 
 
 
Diversity metrics PRD and SHDI decreased in a staircase-like fashion with 
increasing pixel size and, according to Wu et al. (2002), they belonged to Type 
II (Fig. 2). As PRD directly measures the number of patch types present in the 
landscape (McGarigal et al., 2002), it fluctuated as patch types appeared or 
disappeared in the landscape structure. The decrease in SHDI was not as 
obvious, because SHDI also depends on evenness. PRD and SHDI also showed 
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some increases in their values. This is explained by the influence of the 
aggregation method used. We used the central-point method. With the central-
point method, patch types are not eliminated permanently, i.e. patch types can 
reappear after elimination. If the majority rule is used, then there should not be 
increases in values of diversity metrics with increasing grain size. PRD and 
SHDI decreased stepwise at all map scales, but the dissimilarity between maps 
remained. Therefore diversity metrics depend mostly on classification scheme 
and not so much on generalization. 

SHAPE_MN, ENN_MN and CONTAG belonged to Type III, and they did 
not exhibit predictable responses to changing grain size (Fig. 2), although as 
said before, the two latter are directly dependent on grain size. SHAPE_MN and 
CONTAG decreased and ENN_MN increased quite monotonically until 200–
300m, and then their values began to fluctuate. Behaviour at different map 
scales was similar, and as in the case of Type II metrics, the dissimilarity 
between maps did not disappear.  

Wickham and Riitters (1995) found that landscape metrics should not be 
dramatically affected by the change in pixel size up to 80 m. We, on the 
contrary, found that metrics that belonged to Type I and III were most sensitive 
to the scale between 10–100m pixel size. Type II metrics (diversity metrics) are 
indeed relatively insensitive to pixel size until 200–300m resolution, because 
rare patch types then begin to disappear. However, the results may vary 
depending on actual landscape pattern and specific metrics. 

Thus I can conclude that landscape metrics’ dependence on grain size 
influences the relationships between the pattern and the process. In our study 
the 30m grain size is most likely optimal for the CORINE Land Cover Map and 
the Estonian Base Map for nutrient runoff analysis. For both maps there was no 
significant change in the values of landscape metrics from 10m to 30m grain 
size. Furthermore, the data for CORINE Land Cover Data is originally obtained 
at 30m resolution, and therefore there is no need for smaller grain size. 
However if we would have had the opportunity to use the Estonian Basic Map 
in nutrient runoff analysis, the 10m grain size would have been better than 30m, 
because the values of landscape metrics changed significantly from 10m to 
30m. In addition, the difference between the different study areas decreased.  
 
 

6
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3.2. Landscape metrics as indicators of river water quality 
 

3.2.1. BOD7 
 
Correlation analysis showed that high PD and ED values result in lower values 
of BOD7 (Fig. 3; Uuemaa et al., 2005: Publication II), which indicated the 
ability of a heterogeneous landscape to retain more organic matter. However, 
these results should be considered with care, because three catchments (the 
Pühajõgi, Purtse and Vääna) have a very high proportion of urban areas, which 
is probably the main reason why the values of BOD7 are very high (Fig. 3). If 
these three catchments are left out of the analysis, then the relationships are not 
statistically significant. Nevertheless, the trend that organic matter runoff is 
lower from landscapes with complex pattern can still be seen in Fig. 3. 
Regressions of FRAGSTATS landscape metrics and land use proportions 
explained up to 82% of the observed variation in BOD7, and the percentage of 
outliers was relatively low (Table 4). All of the regressions showed significant 
ANOVA tests. ULU and PD had the highest β values in most of the regression 
equations, which means that they contribute most to the prediction of BOD7 
values. ULU correlated positively and PD negatively with BOD7 (Fig. 3). 
Therefore lower amounts of BOD7 are washed out of the catchments with 
fragmented landscape pattern and low ULU. The importance of ULU in 
regression equations is easily explained by the fact that high values of BOD7 are 
usually caused by point pollution sources (Qualls and Richardson, 2003; 
Shanmugam et al., 2007) and indicate insufficient wastewater treatment, which 
is still a problem in North Estonian rivers (Fig. 3; Keskkonnaülevaade, 2005).  
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Figure 3. Relationships of Patch Density (PD) with BOD7 in the left (all catchments) 
and the proportion of urban land use (ULU) in the right (all catchments). The solid line 
is the linear regression equation, and the dashed lines indicate the 95% confidence 
intervals. 
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Model validation showed that the difference between predicted and measured 
values of BOD7 were small. Only in case of Purtse and Pudisoo catchments did 
the observed value not fall within the 95% prediction intervals (Table 5; 
Uuemaa et al., 2007: Publication I). The V model underestimates the value of 
BOD7 for the Purtse catchment, because there are lots of factories. For Pudisoo, 
the VI model calculated a higher value than measured (Table 5), because there is 
high FBM, which has a relatively high β value (Table 4; Uuemaa et al., 2007b: 
Publication I). 
 
 

3.2.2. CODKMnO4 
 
Different regression equations explained up to 94% of the variation in 
CODKMnO4 values, and all the regressions were statistically significant (Table 4). 
For CODKMnO4, the most important predictors were SHAPE_MN and 
CONTAG, which had the highest β values (Table 4). SHAPE_MN correlated 
positively and CONTAG negatively with CODKMnO4 (Uuemaa et al., 2005: 
Publication II; Uuemaa et al., 2007b: Publication I), which refers to the fact that 
higher amounts of humic and fluvic acids are washed out from more fragmented 
landscapes (high values of SHAPE_MN and low values of CONTAG). It is, 
however, more likely that SHAPE_MN and CONTAG are correlated with 
CODKMnO4, because SHAPE_MN is also positively correlated with NA and 
CONTAG is positively correlated with ALU (Figure 4; Uuemaa et al., 2005: 
Publication II), and it is well known that that organic matter losses are higher 
from natural areas, swamps, fens and bogs (Figure 4; Behrendt et al., 2002; 
Uuemaa et al., 2005: Publication II).  
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Figure 4. Relationships between natural areas (NA) and Mean Shape Index 
(SHAPE_MN) in the left (all catchments) and with CODKMnO4 in the right (all 
catchments). The solid line is the linear regression equation and the dashed lines 
indicate the 95% confidence intervals. 
 
Values of CODKMnO4 most likely do not depend directly on landscape 
configuration, because landscape metrics reflect the catchments’ land use, and 
CODKMnO4 had the strongest relationships with land use proportions (Uuemaa et 
al., 2005: Publication II). Therefore the model validation results (Table 5) were 
also not so good, because many predictors in CODKMnO4 regression equations 
did not have direct relationships with CODKMnO4. In the case of Tänassilma and 
Võhandu catchments, for example, the I model strongly overestimated 
CODKMnO4 values (Table 5), because they both have a very complex landscape 
pattern (high value of SHAPE_MN) (Uuemaa et al., 2007: Publication I), but 
not as high a proportion of FBM and NA, which are mostly the source of humic 
and fulvic acids. Regression model III very greatly underestimates the 
CODKMnO4 value for the Sauga catchment (Table 5), which has a very high FBM 
(Uuemaa et al., 2007: Publication I). However, ALU and NA have the highest β 
values apart from FBM. The V regression model gives a higher CODKMnO4 value 
for Valgejõgi. There is strong groundwater input in the Valgejõgi catchment, 
which probably dilutes the concentration of CODKMnO4. Furthermore, the 
seasonality in the values of COD KMnO4 and nutrients that is caused by rainy 
periods (Karakoç et al., 2003; Torrecilla et al., 2004; Nõges et al., 2007) may 
also influence the relationships between water quality data and landscape 
metrics (Buck et al., 2004), because we used averaged concentrations per year. 
The V model also underestimates the CODKMnO4 value for Kääpa catchment, 
because it has a very low ULU, which is not an important source for humic and 
fulvic acids, but is included in the model as a predictor for CODKMnO4. Model VI 
underestimates the CODKMnO4 value for the Seljajõgi catchment (Table 5), 
because it has high ALU (Uuemaa et al., 2007b: Publication I) that has high β 
values, although NA is a more important source for humic and fulvic acids. 
However, Zeilhofer et al., 2006 found that CODKMnO4 concentrations increased 



 28

significantly, receiving loads from sub-basins under intensive agricultural use 
where the main source of the CODKMnO4 is organic fertilizers. But as in Estonia, 
agricultural land use intensity decreased significantly in the 1990s, when most 
of the humic and fulvic acids were washed out of natural areas and fens.  
 
 

3.2.3. Total-N 
 
Regression equations did not explain the very high percent of the observed 
variation of total-N, but all of the regressions were significant, and the percent 
of outliers was zero in all cases (Table 4). The most important predictor for 
total-N was ULU. Fig. 5 shows that the close correlation between ULU and 
total-N (Uuemaa et al., 2005; 2007b: Publications II, I) is mainly caused by 
three catchments that have a very high ULU and also total-N. This confirms the 
results of Ahearn et al. (2005) who found that population density and nitrate-N 
loadings are related when waste water treatment plants are not built in the 
catchments. This indicates the insufficient wastewater treatment in the 
catchments, which is a critical problem in catchments that belong to the Gulf of 
Finland basin (Keskkonnaülevaade, 2005). Usually a very good positive 
correlation is found between total-N and the proportion of agricultural land use 
(Arheimer and Liden, 2000; Meynendonckx et al., 2006), because agriculture is 
one of the main sources of nitrogen. However, our results did not give 
significant correlations with ALU, probably because the substantial decrease in 
the use of fertilizers and livestock production has caused a reduction of nitrogen 
in river water in recent decades in Estonia since the collapse of the Soviet Union 
(Iital et al., 2003).  

FRAGSTATS landscape metrics were only predictors for total-N in two 
regression equations, and ED seemed to be the most important of these. ED 
correlated negatively with total-N (Fig. 5 and Uuemaa et al., 2005: Publication 
II), i.e. lower amounts of nitrogen are washed out of catchments with a more 
complex landscape pattern. Although ED also correlated negatively with ULU, 
the relationship between ED and total-N seems to be causal (Uuemaa et al., 
2005: Publication II). 
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Figure 5. The relationship between the proportion of urban land use (ULU) and total-N 
(all catchments) in the left, and the relationship between Edge Density (ED) and total-N 
(all catchments) in the right. The solid line is the linear regression equation, and the 
dashed lines indicate the 95% confidence intervals. 
 
 
The results of model estimation were good (Table 5). Only two values of total-
N did not fall between the 95% prediction intervals. Model IV underestimates 
nitrogen runoff from Vääna catchment, and model VI from Seljajõgi catchment. 
In both catchments, the high loads of nitrogen come from point source pollution 
(high ULU), but in Seljajõgi catchment there is also considerably high ALU 
(Uuemaa et al., 2007: Publication I). Regression equation IV does not take into 
account ULU, but there are several towns in the Vääna catchment. Therefore the 
model underestimates the value of total-N. Model VI gives a lower total-N value 
than that measured, because it does not take into account ALU, which is very 
high in the Seljajõgi catchment (Uuemaa et al., 2007b: Publication I). This 
shows that both ALU and ULU should probably be taken into consideration as 
predictors for total-N runoff from Estonian catchments, but landscape pattern 
also has an influence on total-N values. 
 
 

3.2.4. Total-P 
 
For total-P the most important predictor was ULU (Table 4). All regressions 
were significant but the percentage of outliers was relatively high, probably 
because values of total-P were not normally distributed. Outliers may artificially 
increase the value of a correlation coefficient, which is probably the case with 
the close correlation between total-P and ULU, which is caused by two 
catchments (Seljajõgi and Pühajõgi) that have very high values of ULU and 
total-P (Uuemaa et al., 2007b: Publication I). If these two catchments are left 
out of the analysis, there is no relationship between ULU and total-P. This 
points to the problem with phosphorus removal from wastewater from 

8
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industries and towns (Sliva and Williams, 2001). The insufficiency of waste-
water plants was a critical problem ten years ago (these analyses were per-
formed with water quality data from the years 1996–1998) in Northeast 
Estonian catchments. By the year 2005 the value of total-P in the Pühajõgi 
catchment has decreased fivefold due to the modernization of agricultural 
production, the construction and renovation of waste water treatment plants and 
structured legislative drafting. However, the concentrations of total-P are still 
near the critical level (0.1 mg P/l) for avoiding eutrophication in rivers 
(Keskkonnaülevaade, 2005). FRAGSTATS landscape metrics were not very 
important predictors for total-P (Table 4; Uuemaa et al., 2005: Publication II) 
because phosphorus probably mainly comes from point-pollution sources.  

The results of model estimation were not very good (Table 5). The diffe-
rence between measured and predicted total-P values were quite significant 
considering the actual total-P values. Regression model I heavily underesti-
mated the total-P value for the Pühajõgi catchment, because in that equation 
ULU is not included as a predictor for total-P, but there is high ULU (7.5%) in 
the Pühajõgi catchment. In the case of the Kunda catchment, the ED is 
relatively low, and in the regression equation the β value for ED is very high. In 
regression model II, the Loobu catchment has a high ENN_MN value that 
causes a very low predicted value of Total-P. Model IV overestimates the value 
of total-P for the Vääna catchment. The ULU is high in the Vääna catchment, 
but most of the wastewater coming from Tallinn (part of Tallinn belongs to 
Vääna catchment) is routed to the wastewater management plant and then 
discharged to the sea. Therefore relationships between total-P and ULU may 
lead to incorrect conclusions, as the wastewater plants where the drainage is 
routed may not be in the same basin (Ahearn et al., 2005). 

I can conclusively say that that land use proportions are the most important 
predictors for water quality. For BOD7, total-N and total-P, the proportion of 
urban areas was the most significant predictor, because in these study 
catchments organic matter, nitrogen and phosphorus runoff is strongly 
influenced by point-pollution sources. The relationships between water quality 
parameters and land use proportions can also reveal problems with wastewater 
treatment in catchments. Johnson et al. 1997 also found that human-influenced 
land cover types are positively related to N and P in surface waters, and Boyer 
et al., 2002 found that input of total-N is positively correlated with the 
proportion of agricultural areas and negatively with the proportion of forests. 
However, relationships between land use proportions and water quality should 
be considered carefully, because the proportions of land use types are not 
independent (King et al., 2005), since the increasing in the proportion of one 
type necessarily results in a decrease in the proportion of one or more other 
types (Van Sickle, 2003). In this study, land use proportions also correlated with 
several FRAGSTATS landscape metrics, and therefore in the case of some 
FRAGSTATS landscape metrics, it was difficult to determine whether the 
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relationships between water quality data and FRAGSTATS landscape metrics 
were causal or not. Nevertheless, landscape pattern played a significant role in 
predicting the values of water quality in catchments. Therefore these 
relationships should be taken into account in land-use planning in watersheds. 
Although regression equations used in this study should not be used in other 
catchments, the methods can be applied anywhere in Europe because of the 
availability of the CORINE Land Cover Map. 

 
 
3.3. Spatial correlograms and half-value distance lag  

as the new landscape metrics 
 
The correlograms for the study areas were quite different (Fig. 6). The general 
tendency was that heights and uplands had very abrupt correlograms, and 
lowlands and plains had more slanting correlograms. Therefore the values of 
hI=0.5 were also significantly lower in the case of heights and uplands than in the 
case of all other landscape regions. All six study areas from heights (except 
Vooremaa) had a value of hI=0.5 of less than 100m (Fig. 7), i.e. the spatial 
autocorrelation is very low. Vooremaa probably has higher values of hI=0.5 
because it is not a typical accumulative height. It is actually a drumlin field 
formed during the last glaciation that is 90–100m higher than the surrounding 
areas and is thus conditionally considered as a height. 

Most of the plains and lowlands had values of hI=0.5 higher than 200m, and in 
case of uplands and depressions the value of hI=0.5 was between 100m and 
200m. According to the correlograms and hI=0.5, the spatial autocorrelation in 
heights and uplands is significantly lower than in all other landscape regions.  
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Figure 6. Correlograms of study areas from different landscape regions. Typical 
examples were chosen from each landscape region: Otepää – heights; Pandivere – up-
lands; Võru-Hargla – depressions; Viru 2 – plains; Soomaa – inland paludified low-
lands; and West Estonia 2 – coastal lowlands and sea islands. 
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In some FRAGSTATS landscape metrics values (PD and ED) there was a 
relatively large interval where none of the study areas were presented (Fig. 8). 
Heights have PD values higher than 40, and all of the other landscape regions 
have PD values lower than 25. Therefore there is a very clear distinction 
between heights and the rest of the landscape regions. There are no landscapes 
with a definite complexity of landscape structure (25<PD<45 and 
165<ED<225; Uuemaa et al., 2007a: Publication III). Aunap et al. (2006) 
performed a similar analysis on land use data, and also found that the landscape 
pattern in heights and uplands is more fragmented (smaller patches) than in 
lowlands and plains.  
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Figure 7. Values of hI=0.5 of all study areas (Uuemaa et al., 2007a: Publication III). 
 
 
We also correlated several FRAGSTATS landscape metrics with hI=0.5 in order 
to detect whether some of the FRAGSTATS metrics indirectly measure spatial 
autocorrelation. All calculated FRAGSTATS landscape metrics correlated 
significantly with hI=0.5. As expected, the PD, ED and CWED had a very strong 
negative and AREA_MN and PLADJ a positive relationship with hI=0.5 
(Spearman ρ>0.8). This indicates the higher spatial autocorrelation in lands-
capes with large patches and low edge density and contrast of edges, i.e. very 
fragmented landscapes have low spatial autocorrelation (Uuemaa et al., 2007a: 
Publication III). Moran’s I relationship with mean patch size is also detected by 
Overmars et al. (2003). This relationship is also easily explained, as there are 
more pixels aggregated in larger patches, and Moran’s I describes the degree to 
which values in any pixel will be similar to the pixels surrounding it; the large 
patches have a high autocorrelation. 
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Figure 8. Values of the Patch Density (FRAGSTATS) of all study areas (Uuemaa et al., 
2007a: Publication III). 
 
 
We tested how the correlograms of soil describe Estonian landscapes, and found 
them to be quite characteristic to different landscape regions. I was, however, 
unable to find many studies that use Moran’s I for detecting spatial 
autocorrelation in soils or land use/cover. The most probable reason for this is 
that land use/cover and soil maps are usually categorical i.e. qualitative data 
(Table 1), and it is difficult to create an ordinal scale for soils or land use/cover 
(Uuemaa et al., 2007a: Publication III). One possibility for calculating spatial 
autocorrelation for land use is to use quantitative remote sensing data. For 
example, Read and Lam (2002) used unclassified remote sensing data to 
calculate Moran’s I and landscape metrics for detecting land cover changes in 
remote sensing data, and found that Moran’s I is good for the distinguishing of 
differing degrees of spatial complexity represented by land-cover types, and 
Southworth et al. (2004) used vegetation index (NDVI) in calculating Moran’s I 
for the investigation of land use changes in the western Honduras region.  

In order to create an ordinal scale of contrast, we reclassified soil types on 
the basis of the authors’ expert knowledge (Table 2). Nevertheless, the 
distribution of soils in toposequent transects (catenas) determines the logic of 
this ordering (see Sommer and Schlichting, 1997). The main soil types and 
forest site types in Estonia are also logical-statistically ordered in two crossing 
catenas (Lõhmus, 1984; Uuemaa et al., 2007a: Publication III), which support 
our assumptions concerning the scale of soil contrast. 

It is obvious that the results of all spatial analyses are scale–dependent, and 
the scale-dependence of FRAGSTATS metrics has been shown by several 
authors (Wu et al., 2002; Uuemaa et al., 2005: Publication II; Buyantuyev and 
Wu, 2007). Moreover, Qi and Wu (1996) demonstrate that Moran’s I is also 
dependent on grain size, and that changing the scale affects the amount of 

9
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autocorrelation found in the landscape pattern. Fortin (1999) pointed out that the 
intensity of spatial autocorrelation increases with quadrant size and reaches a 
plateau at a certain distance (200–225 m). In our study, correlograms showed 
that even though Moran’s I decreases (spatial autocorrelation is decreasing) 
with increasing lag, the different landscapes are still comparable. Even when the 
lag was 1000 m, the difference between landscapes with high and low spatial 
autocorrelation was considerable, which is not the case with FRAGSTATS 
metrics, where the difference between landscapes disappears at approximately 
400m (Uuemaa et al., 2005: Publication II). Furthermore, I could even say that 
correlograms and hI=0.5 seem to be better than FRAGSTATS landscape metrics 
for determining or/and describing differences between landscapes if one is 
uncertain about the optimal scale for certain analysis or due to different 
limitations uses larger than optimal grain size. We have been working at a scale 
that can be considered medium-range. If one works with more detailed maps or 
high resolution satellite images or, on the other hand, with large-scale material 
representing much larger territories, the relationships between the 
FRAGSTATS metrics and the autocorrelation parameters can differ (see 
Legendre and Fortin 1989). However, for practical landscape research and 
planning purposes, the medium scale is the most commonly used scale.  
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4. CONCLUSIONS 
 
In recent decades many landscape metrics have been developed and widely 
used. One of the essential research topics for landscape ecology is how to relate 
these landscape metrics to ecological processes and how the scale-dependence 
of spatial pattern affects relations between landscape metrics and ecological 
processes. This dissertation focuses on finding how commonly used landscape 
metrics respond to changing grain size and how this affects relationships 
between landscape metrics and nutrient and organic matter runoff in catch-
ments.  

The responses of landscape metrics to changing grain size varied signi-
ficantly among landscape metrics and across landscapes. This is mainly because 
of different factors that affect the behaviour of landscape metrics. Values of 
Edge Density (ED) and Patch Density (PD) decreased rapidly with increasing 
grain size. The reason for this is the simplification of edges and elimination of 
small patches. Landscapes of complex configuration have a greater decrease in 
their Edge Density and Patch Density values, reaching the same value as 
homogenous landscapes i.e. at some point of spatial resolution the difference 
between landscapes disappears. Mean Euclidean Nearest Neighbour Distance 
(ENN_MN) and Contagion (CONTAG) are directly dependent on grain size; 
therefore, they should be used and interpreted carefully in the case of changing 
grain size. Diversity metrics (PRD and SHDI) decreased in a staircase-like 
fashion with increasing grain size, because their value depends on the number 
of patch types, and SHDI is also influenced by the distribution of patches in the 
landscape. We found that for the CORINE Land Cover Map, 30m pixel size is 
optimal for analyzing the relationships between landscape metrics and water 
quality data. 

Land use proved to be the most important predictor for water quality, but 
landscape structure also played a significant role in predicting the values of 
water quality in catchments. For BOD7, total-P and total-N, the proportion of 
urban land use (ULU) was evidently the most significant predictor, because in 
catchments that belong to the Gulf of Finland basin, organic matter, nitrogen 
and phosphorus runoff is strongly influenced by point-pollution sources. The 
close relationships between ULU and water quality data also pointed to the 
problem with waste water treatment in many Estonian catchments. In addition 
to ULU, ED seemed to play an important role in predicting values of total-N. 
Lower amounts of total-N are washed out of catchments with complex lands-
cape patterns. For BOD7, PD was also an important predictor. Catchments with 
fragmented landscape patterns have lower organic matter runoff. Landscape 
configuration plays an important role in organic matter and nutrient runoff from 
catchments.  

Landscape metrics are easily computed with different software, and if scale 
is taken into consideration, then they can effectively be used as indicators for 
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the land-water relationship, which is important from the point of view of 
watershed planning and management. Although the regression models used in 
this study can only be used on these specific catchments, they still provide 
information about the role of land use and landscape configuration in river 
water quality. 

In addition to FRAGSTATS landscape metrics, we also used spatial corre-
lograms of soil cover characterizing the spatial pattern of Estonian landscapes. 
We also proposed the distance (lag) of spatial correlograms at which the 
Moran’s I value reaches 50% of the maximal value (hI = 0.5) in the positive scale 
as a new landscape metric for the characterization of landscape pattern. We 
found a positive spatial autocorrelation in the soil data. Soil correlograms for 
different landscape regions differed significantly. Landscapes with flat 
topography (lowlands and plains) mostly have slanting spatial correlograms and 
high hI = 0.5 value i.e. high spatial autocorrelation. Hilly landscape types (heights 
and uplands) have rapidly decreasing spatial correlograms and low hI = 0.5 
values, i.e. low spatial autocorrelation. We could find a representative spatial 
correlogram for each landscape region in Estonia. As the spatial autocorrelation 
for different landscapes was still considerably different, even in the case of 
1000m lag, then correlograms and hI = 0.5 are good for the description of lands-
cape pattern if the optimal scale for certain analysis is not known. However, 
there is a need for further analysis of the behaviour of Moran’s I on real land 
use/cover because the spatial autocorrelation of landscape pattern may differ 
due to urban areas. 
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SUMMARY IN ESTONIAN 
 

Maastikuindeksid jõgede veekvaliteedi ja  
maastikumustri indikaatorina 

 
Maastikumustri hindamiseks on välja töötatud väga palju erinevaid maastiku-
indekseid. Tänapäeval on maastikuökoloogia üheks oluliseks uurimisülesandeks 
leida, kuidas saab maastikuindekseid seostada ökoloogiliste protsessidega. Kuna 
kõik ruumianalüüsi tulemused sh ka maastikuindeksite väärtused sõltuvad 
skaalast, siis avaldab see mõju ökoloogiliste protsesside ja maastikumusti vahe-
liste seoste analüüsi tulemustele. 

Käesolevas töö eesmärgiks oli 1) leida kas ja kuidas maastikumuster mõju-
tab toitainete ja orgaaniliste ainete väljakannet valglatest ning kuidas neid 
seoseid mõjutab maastikuindeksite sõltumine piksli suurusest ; 2) hinnata 
ruumilist autokorrelatsiooni Eesti maastikel kasutades muldkattele arvutatud 
korrelogramme.  

Maakasutuse/katte andmetena kasutati Eesti Põhikaarti (1 : 10 000), Eesti 
Baaskaarti (1 : 50 000) ning CORINE’i maakatte kaarti (1 : 100 000). Maastiku-
indeksid arvutati Fragstats-is ja ruumilise lahutuse analüüsis korreleeriti neid 
piksli suurusega ning indikaatorite analüüsis väljakande andmetega. Töös kasu-
tati väljakande andmetena Eesti jõgede riikliku hüdrokeemilise seire andmeid. 
Korrelogrammide arvutamiseks kasutati Eesti mullakaarti (1 : 10 000). Eesti 
maastikurajoonide järgi valiti 35 uurimisala, millele arvutati Morani I erinevate 
laagide (h=10, 20, 30, …, 100, 120, …,200, 300, 400, 500 ja1000m) korral. 

Tulemused näitasid, et maastikuindeksid sõltuvad piksli suurusest erinevalt. 
Eraldiste tiheduse (PD) ja servatiheduse (ED) väärtused langesid ühtlaselt piksli 
suurenedes, sest väiksesed eraldised hakkavad maastikust kaduma ning servad 
muutuvad siledamaks. Samuti täheldati keerukama maastiku mustriga alade 
puhul nende indeksite väärtuste kiiremat langust kui homogeensema maastiku 
mustriga aladel. Leiti, et keskmine lähima naabri kaugus (ENN_MN) ja 
koonduvus (CONTAG) sõltuvad otseselt piksli suurusest ja on seega väga 
tundlikud ruumilise lahutuse muutmisele. Mitmekesisuse indeksite (Shannoni 
mitmekesisuse indeks – SHDI ja eritüübiliste eraldiste tihedus – PRD) väärtu-
sed seevastu muutusid alles siis, kui erinevate maakasutuse/katte tüüpide arv 
maastikus hakkas vähenema. Kokkuvõttes leiti, et CORINE Maakatte kaardi 
jaoks on 30 m piksli suurus optimaalne analüüsimaks maastikuindeksite ja 
veekvaliteedi näitajate vahelisi seoseid. 

BHT7, Nüld ja Püld jaoks oli kõige olulisem faktor linnade osakaal valglas. 
Tõenäoliselt oli põhjuseks asjaolu, et Kirde-Eesti jõgede veekvaliteet on väga 
palju mõjutatud punktreostusallikate poolt. Samas viitab tugev toitainete ja 
orgaaniliste ainete väljakande seos linnade osakaaluga puudulikule reovete 
puhastusele. Lisaks linnade osakaalule oli BHT7 jaoks oluliseks näitajaks ka 
eraldiste tihedus (PD), mis viitas sellele, et keerukama maastiku mustriga 

10
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valglatest on orgaaniliste ainete väljakanne väiksem. Nüld puhul viitas sarnasele 
tendentsile servatihedus (ED). Seega võib öelda, et orgaaniliste ainete ja 
toitainete väljakanne valglast on mõjutatud nii maakasutuse kui ka maastiku-
indeksite poolt. Kuigi antud töös kasutatud regressiooni mudeleid ei saa 
kasutada teistes valglates, saab antud meetodeid rakendada igalpool mujal 
Euroopas tänu CORINE maakatte kaardi olemasolule. 

Eesti maastike iseloomustamiseks kasutati Morani I korrelogramme nind 
pakuti välja ka uus maastiku mustrit iseloomustav näitaja — korrelogrammide 
poolestuskaugus (hI=0.5) kui ruumilise autokorrelatsiooni laag, mille puhul 
Morani I väärtus jõuab 50%-ni maksimumväärtusest positiivses skaalas. Maas-
tikurajoonide jaoks arvutatud korrelogrammid erinesid üksteisest oluliselt. 
Madaliku alade puhul Morani I väärtus langes aeglaselt ning hI=0.5 väärtus oli 
väga kõrge so ruumiline autokorrelatsioon oli kõrge. Samas künklikel aladel 
langesid autokorrelatsiooni väärtused laagi kasvades väga kiiresti ning hI=0.5 
väärtused olid madalad. Kõikide Eesti maastikurajoonide jaoks leiti iseloomulik 
mullakaardile arvutatud korrelogramm. Korrelogramme ja hI=0.5 on maastiku-
mustri hindamisel otstarbekas kasutada siis, kui optimaalne piksli suurus antud 
uurimuse jaoks ei ole täpselt teada, sest erinevad maastikumustrid jäävad 
võrreldavaks ka 1000m laagi korral. 

Maastikuindekseid saab edukalt kasutada maastikumustrite hindamiseks ja 
iseloomustamiseks. Tänu nende indikatsiooniväärtusele jõgede veekvaliteedi 
osas on neid võimalik kasutada ka valglate veemajanduskavade koostamisel.  
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