
UNIVERSITY OF TARTU 

Institute of Computer Science 

Computer Science Curriculum 

Maria Belinska 

Web application for managing Dag University 
Bachelor’s Thesis (9 ECTS) 

Supervisors: Helle Hein, PhD 

     Taavi Sangel, Stagnation Laboratory  

  

Tartu 2018 



2 

 

Web application for managing Dag University 

 

Abstract: 

The result of this thesis is an administrative application Dag Admin for Dag University. Dag 

University is a learning platform about cryptocurrencies, sales, marketing and personal 

growth. Dag Admin enables to manage content displayed in Dag University – courses, 

events, news, downloads and notifications. Also, some additional functionality like display-

ing events and downloads was added to Dag University. During the development, React, 

Node.js, GraphQL, TypeScript and MariaDB were used. 

Keywords: 

Web application, Dag University, Dag Admin, React, GraphQL, Node.js, TypeScript, Mar-

iaDB 

CERCS: P170 

 

 

Veebirakendus Dag University haldamiseks 

 

Lühikokkuvõte: 

Käesoleva töö raames arendati administreerimise rakendust Dag Admin portaalile Dag Uni-

versity. Dag University on õppeplatvorm krüptovaluuta, müügi ja turunduse õppimisele 

ning üldisele iseenda arendamisele. Dag Admin võimaldab hallata sisu, mis on nähtav Dag 

University lehel – kursuseid, üritusi, uudiseid, lisasid ning teavitusi. Samuti lisati uut funkt-

sionaalsust nagu ürituste ja lisade kuvamine portaalile Dag University. Arenduses kasutati 

tehnoloogiaid React, Node.js, GraphQL, TypeScript ning MariaDB. 

Võtmesõnad: 

Veebirakendus, Dag University, Dag Admin, React, GraphQL, Node.js, TypeScript, Ma-

riaDB  

CERCS: P170 

 



3 

 

Table of Contents 

 

1. Introduction ................................................................................................................... 4 

2. Comparison with existing solutions .............................................................................. 5 

3. Technologies ................................................................................................................. 6 

3.1 React ....................................................................................................................... 6 

3.2 GraphQL ................................................................................................................. 6 

3.3 TypeScript .............................................................................................................. 7 

3.4 Node.js .................................................................................................................... 8 

3.5 MariaDB ................................................................................................................. 9 

4. Application architecture and design ............................................................................ 10 

4.1 Functional requirements ....................................................................................... 10 

4.2 Non-functional requirements ................................................................................ 11 

4.3 Client-side solution ............................................................................................... 11 

Managing content ........................................................................................................ 11 

Verification system ..................................................................................................... 13 

Managing translations files ......................................................................................... 14 

Logging ....................................................................................................................... 15 

Displaying content in Dag University ......................................................................... 15 

4.4 Server-side solution .............................................................................................. 17 

Schema ........................................................................................................................ 17 

Resolver ....................................................................................................................... 18 

Queries ........................................................................................................................ 18 

Middlewares ................................................................................................................ 19 

Services ....................................................................................................................... 19 

4.5 Database model .................................................................................................... 20 

5. Conclusion and future work ........................................................................................ 21 

6. References ................................................................................................................... 22 

Appendix ............................................................................................................................. 23 

I. Source code .............................................................................................................. 23 

II. License .................................................................................................................. 24 

 



4 

 

1. Introduction                                                                                                                                                    

 

Today’s society is constantly changing and requiring new skills to be successful. The prob-

lem is that schools do not always keep up with the flow and tend to become outdated. Dag 

University has been developed to solve some of the shortcomings of traditional school sys-

tems.  For example, many subjects taught at schools do not contain important fields like 

sales, digital marketing, leadership and business owning. Or if they do, students are not 

provided opportunities to use these skills to make an income. Dag University covers these 

needs to get as useful education as possible. In addition, to make it more flexible for stu-

dents, the courses can be accessed from anywhere, anytime and any device. Because people 

have different learning styles, Dag University is providing different types of materials like 

videos, audio books, PDF-books and different problems to solve. [1] 

The problem was that for some modules there was no administration in Dag University. The 

purpose of this thesis was to add functionality to manage events, news, downloads, FAQs, 

verifications, languages, payments and translation files in Dag Admin. During the work, it 

was also necessary to change some code in Dag University so that the content displayed 

would be taken from database.  

The application was built considering modern and innovative technologies. For example, in 

front-end development, React was used – a JavaScript library for fast rendering with virtual 

DOM [2] and creating reusable components [3]. It was combined with TypeScript, which 

allows to add static type annotations and therefore makes code less error-prone [4]. In the 

backend, GraphQL and Node.js were used. GraphQL is an efficient data query language for 

sending data from server to client [5]. Node.js is fast and scalable [6] environment for mak-

ing server-side applications. For database management, MariaDB was used – a powerful 

and easy to use database [7], which has many performance improvements and optimizations 

compared to MySQL [8].  

The thesis also gives a detailed overview of Dag Admin application’s architecture and de-

sign. Client-side code consists of list and detail views. The API endpoints consist of schema, 

resolver and queries. In the schema, GraphQL types are defined, resolver handles the data 

that has to be changed to some other form and queries make SQL-statements to get the data 

from the database. Middlewares are for getting certain files when user hits a specific URL. 

Services are made to avoid the duplication of code and to access these functions throughout 

the project. There are also used various Node.js libraries, for example for finding differences 

between objects or for paginating pages. The reason to use third-party libraries is that it 

makes development cycle more convenient and faster, because there is no need to write the 

code that has already been created by somebody else.  

The thesis is organized as follows: Chapter 2 provides a comparison with existing solutions 

and points out what are the strengths of Dag University.  Chapter 3 gives a detailed overview 

of used technologies. It describes why they are used, what are their advantages and where 

are the drawbacks. Chapter 4 describes application’s architecture and design. There are 

screenshots of final applications as well as explanation how the backend works. Chapter 5 

summarizes what has been done during the work and offers new opportunities to continue 

the project. 



5 

 

2. Comparison with existing solutions                                                                                                                                                    

 

Dag University is specialized on providing content about cryptocurrencies, sales and digital 

marketing. The subjects are combined, materials are constantly updated and created by top 

experts in their fields. In addition, there are opportunities to use different learning methods 

like watching videos, reading PDFs, listening to mp3’s and solving different exercises.  

However, there are also other websites that offer courses on the same subjects. Some of 

them are Udemy, Coursera, Coincademy and LeanCryptography.  

One special feature in Dag University is an opportunity for team building. Users have the 

possibility to build their own team of sales people and start making income after short 

amount of time. Also, in Dag University, it is possible to trade new and fast cryptocurrency 

dagcoin, but also use other common cryptocurrencies like bitcoin. Moreover, Dag Univer-

sity offers free dagcoins for all students who pass the courses. It is also possible to become 

an affiliate and start earning commissions from 10% and up [1]. 

Dag University stands out for constantly organizing various events in different countries for 

the students to meet, get to know each other and to learn more hands-on about sales and 

cryptocurrencies. 

 



6 

 

3. Technologies 

 

3.1 React 

 

React is an open-source JavaScript library [3] for front-end development that enables to 

build complex user interfaces [9]. It is fast, simple and predictable [2]. React communicates 

with data mainly through props and state. Props enable to pass information through attrib-

utes from parent to child. State is used to hold variables, which value can change within the 

component. Each time the state is changed, the parts of page that have changed are reloaded. 

This is one of the most convenient feature for developers – there is no need to worry about 

data changing - every time a state is changed, the changes are displayed immediately.   

In React, it is convenient to create reusable components. The reason why to use them is that 

web pages often consist of similar pieces that tend to repeat. If some logic in page changes, 

developer has to change code only in one place. It also makes development much faster and 

less error-prone. Although each developer can create its own components, React libraries 

provide various premade components. 

Components main function is render() that contains information about what will be dis-

played on the page. It is called JSX and enables to use HTML tags in JavaScript that makes 

writing code more convenient and understandable. The example of JSX is presented on Fig-

ure 2.1. For rendering, React uses Virtual-DOM that makes web pages much faster [2]. 

Good performance indicators is one of the reasons why React is so popular.  

 

 

Figure 2.1 Example of JSX that enables to use HTML tags in JavaScript. 

 

 

3.2 GraphQL 

 

GraphQL is a data query language that is used for sending data from server to client. It is 

open-source, efficient and easy to use. [5] 



7 

 

GraphQL was build as an alternative to REST (Representational State Transfer). There are 

several aspects where GraphQL is better than REST. For example, there is no problem with 

over- or under-fetching [5], because it is possible to ask only for the data that is needed. It 

also eliminates some security risks, because the client does not get all the data. Moreover, 

there is less performance issues, because there is no overloading. The example of retrieving 

data with GraphQL is shown on Figure 2.2. 

 

 

Figure 2.2. Retrieving data with GraphQL. 

 

Another remarkable advantage of GraphQL is that there is no need to manually write docu-

mentations, it can be auto-generated from schemas. GraphQL schemas are strongly typed 

and editors give autocompletes when writing a query. In REST, on the other hand, working 

with different APIs can be unpredictable, because developers use different specifications, 

there are no common standards and documentations tend to become outdated [5].  

In GraphQL schemas, there are defined Queries and Mutations. Queries are for asking data 

and Mutations for changing data. All of them must have a return value type and developers 

can also add their own types. It is also possible to add enum and input types, parameters and 

determine whether a certain field is mandatory or not.   

 

 

3.3 TypeScript 

 

TypeScript is a superset of JavaScript, which means that all valid JavaScript is also valid 

TypeScript [4]. Because of that, it takes a little time to learn and start using TypeScript. It 

is open source and runs on every browser and OS [10]. The comparison between TypeScript 

and JavaScript is shown on Figure 2.3.  

Compared to JavaScript, TypeScript helps to find errors before running the code [10] and 

saves a lot of time because less debugging is needed. The most common errors that Type-

Script finds is that object is undefined, object does not contain certain attributes or the types 

are incompatible. 

TypeScript becomes very useful when refactoring code. During the development, Dag Ad-

min was refactored repeatedly – it means that some parts of code had to be improved or 



8 

 

changed. TypeScript shows immediately where code becomes broken and does not compile 

until errors are fixed.  

 

 

Figure 2.3. Comparison between TypeScript and JavaScript [11]. 

 

Although TypeScript makes in general code writing easier, it can also be time consuming 

to understand it in the beginning. Also, when using Node.js, the libraries used must be type 

annotated. Although many of these annotations can be installed, developers must often write 

these themselves. However, once programmer is used to TypeScript, it speeds the develop-

ment up and is especially useful against typing mistakes. It makes code safer [10] and 

shorter.  

TypeScript is suitable for this project because the codebase is getting larger with time and 

TypeScript makes it easier to manage.  

 

 

3.4 Node.js 

 

Node.js is an open-source environment for building server-side applications and is used by 

many large companies. Node.js uses asynchronous programming, which means that several 

operations occur in parallel. It is efficient regarding memory and time. [6] 

One benefit of Node.js is that the same language can be used both in client and in server. It 

means that some code can be shared and there is less switching as it would be with using 

Java or Ruby in the backend.  

Node.js community is active and constantly growing. It gives an opportunity to choose be-

tween many libraries that can be installed with NPM (Node.js Package Manager).  It is rec-

ommended to use them and write as few code as possible, because it reduces the probability 

of writing faulty code. Node.js and NPM make a good platform for developing high-perfor-

mance applications. [12] 

Although Node.js is a good solution for most applications, it is not meant for heavy-com-

puting apps. In addition, because Node.js uses JavaScript, it is important to be cautious and 

avoid common JavaScript bad practices like using too many nested callbacks. Moreover, 



9 

 

although there are many good packages that can be installed with NPM, not all are main-

tained well which can later cause bugs that are hard to debug.  

 

 

3.5 MariaDB 

 

MariaDB is a Relational Database Management System (RDBMS) that is fully open source. 

It is a fork of MySQL and was started by some core developers of MySQL. There are some 

new additions in MariaDB like performance improvements, optimizations, better testing and 

bug fixes that MySQL does not have [8]. 

MariaDB is for creating and managing relational databases. Like with other relational data-

base management systems, it is possible to change the data and its structure as well as an-

swer queries. To communicate with MariaDB, user has to write SQL statements (Structured 

Query Language). [13] 

MariaDB has quickly gained a large number of users with past few years and today it is 

powering many websites and companies. It is a powerful database and very easy to install 

and use. [7] 



10 

 

4. Application architecture and design 

 

4.1 Functional requirements 

 

Functional requirements describe the actions that users must be able to perform within the 

application. The requirements are listed in Table 1.  

 

Table 1. Functional requirements for Dag University and Dag Admin.  

ID Requirement  

1 In Dag Admin, administrators should be able to view, add, edit and delete news. 

2 In Dag Admin, administrators should be able to view, add, edit and delete events. 

3 In Dag Admin, administrators should be able to view, add, edit and delete downloads. 

4 In Dag Admin, administrators should be able to view, add, edit and delete FAQs. 

5 In Dag Admin, administrators should be able to view, upload and download transla-

tion files. 

6 In Dag Admin, administrators should be able to view, add, edit and delete languages. 

7 In Dag Admin, administrators should be able to view and filter payments by payment 

id, transaction id, payment method and payment status. 

8 In Dag Admin, administrators should be able to view and filter direct sales by date 

and amount. 

9 In Dag Admin, administrators should be able to view and filter volume points by 

from date and to date. 

10 In Dag Admin, administrator’s actions should be logged. There should also be an 

opportunity to see these logs and filter them by date, permission and action. 

11 In Dag Admin, some administrators should be able to view, add and delete other 

administrator accounts. They should also be able to choose which permissions each 

administrator has. 

12 In Dag University, news that are displayed should be taken from database. 

13 In Dag University, events that are displayed should be taken from database. 

14 In Dag University, downloads that are displayed should be taken from database. 



11 

 

15 In Dag University, FAQs that are displayed should be taken from database. 

 

 

4.2 Non-functional requirements 

 

Non-functional requirements describe the limitations of the application and expectations for 

the users. The requirements are following: 

1) Each page should not load more than one second. 

2) User should be able to learn how the system works within a day. 

3) User has to have an internet connection and web browser to use application. 

4) Applications should run on every OS. 

5) Dag University should run on every browser. Dag Admin’s support is focused on 

Google Chrome. 

6) Dag University has to be able to handle thousands of users and Dag Admin 20 users. 

7) User’s data must be protected. 

 

 

4.3 Client-side solution 

 

Managing content 

There are different types of content in Dag University that need to be administrated in Dag 

Admin – events, news, downloads, notifications, payments and FAQs. Each module con-

tains of two main views – list view and detail view. List view shows all the elements in the 

selected module. It also has a button in the top corner to add a new element. An example of 

list view is provided on Figure 4.3.1. 

 

 

Figure 4.3.1. List view of events. 

 

Detail view enables to add, edit and delete data. When clicked on ‘Add’ button in list view, 

it leads to detail view, which has blank fields that can be filled out. Some fields are already 



12 

 

pre-filled. It is also possible to choose the language in which the text is entered. For that, the 

user has to click on the flag icon and the list of all languages will be displayed (default 

language is English). For entering content information, there is an editor that gives an op-

portunity to style the text. When clicked on ‘Cancel’, the list view will be shown again. An 

example of adding new element is on Figure 4.3.2. 

 

 

Figure 4.3.2. Adding new element. 

 

In detail view, it is also possible to see and edit data of existing element. The view is quite 

similar to as adding a new element, except the fields are filled out. When clicked on ‘Edit’, 

all the fields become editable. There is also a button for deleting the element. Example of 

detail view can be seen on Figure 4.3.3. 

 

 

Figure 4.3.3. Detail view of an event. 

 



13 

 

Each time when making changes and trying to save them, the confirmation modal will pop 

up. It shows all the changes with previous and current values. The reason is to provide some 

extra check for administrators to be sure that the information they entered is correct. The 

example of confirmation modal is on Figure 4.3.4. 

 

 

Figure 4.3.4. Confirmation modal. 

 

There is also a need for uploading files since some modules like events and news have to 

display images. When some image has already been uploaded, it is possible to choose it 

under ‘Select’ tab. Example of uploading a file is on Figure 4.3.5. 

 

 

Figure 4.3.5. Uploading a file. 

 

Verification system 

Another functionality of Dag Admin is to verify users. The reason why users need to be 

verified is that it is possible to make payments within the Dag University’s application. To 

be verified, Dag University users enter their information with pictures of documents and 

administrators have to verify that the entered fields are correct. Verification system was 

redone several times, so it would be as convenient as possible for the administrators, since 

they have to verify thousands of users. Latest version is that correct document and fields are 

positioned side by side and it is possible to zoom the document. Below there are thumbnails 

of other documents and it also shows which ones are already verified. Verification system 

is shown on Figure 4.3.6. 

 



14 

 

 

Figure 4.3.6. Verifying user. 

 

Managing translations files 

Another important aspect is that there are many different languages that can be chosen when 

using Dag University. For displaying static information, administrators upload translation 

(.po) files that Dag University will use to display text. It is also possible to add new lan-

guages and choose whether a language is currently visible or not in Dag University. Trans-

lations view also shows all translation files that have been uploaded to Dag University and 

it is possible to download each version and restore to some previous state. Example of trans-

lation view is on Figure 4.3.7. 

  

 

Figure 4.3.7. Translations view. 

 

When uploading new translation, the confirmation modal will pop up with all the changes 

that have been made compared to the latest translation file. It shows translation keys and 



15 

 

below new values with green color and previous values with red color. The example is on 

Figure 4.3.8. 

 

 

Figure 4.3.8. Showing changes when uploading a new translation file. 

 

Logging  

There was also a need to log all actions administrators make that change the database. The 

reason is that there would be an opportunity to track later who has made certain change or 

how much work an administrator has done. In log view, there is shown an action, a permis-

sion with what the action was made, id of element, date and time. It is also possible to filter 

logs by different parameters like date, permission or choose how many items should be per 

page. Log view is shown on Figure 4.3.9. 

 

 

Figure 4.3.9. Log view of administrator. 

 

 

Displaying content in Dag University 

The modules that are editable in Dag Admin must also be viewable in Dag University. There 

are two main views – public and private. Public views are accessible for everyone, private 

views are only for those who have an account and are logged in. 

FAQs are both in public and private view. They consist of commonly asked questions and 

their answers. The examples are on Figure 4.3.10 and Figure 4.3.11. 



16 

 

 

Figure 4.3.10. FAQs in Dag University’s public view. 

 

Figure 4.3.11. FAQs in Dag University’s private view. 

 

Events are only seen when logged in. The view has three different sections – promoted 

events, upcoming events and past events. For each event, there is a poster, name and date. 

Events are shown on Figure 4.3.12.  

 

Figure 4.3.12. Events view in Dag University. 



17 

 

 

In Dag University, it is also possible to see downloads that are grouped by different catego-

ries. These are a list of files that can be useful for the users. The example is on Figure 4.3.13. 

 

Figure 4.3.13. Downloads view in Dag University. 

 

 

4.4 Server-side solution 

 

Server-side code consists of schemas, resolvers, queries, middlewares and services.  

 

Schema is a .qgl-type file that stands for GraphQL. It is a type-declaration file where type-

annotation are written for type-safety – it decreases the amount of errors found during 

runtime. There can be used both existing basic types like String, Int, Boolean as well as self-

written types. Exclamation mark stands for mandatory field, which means that object always 

has it. The example of schema file is shown on Figure 4.4.1. 

  

 

Figure 4.4.1. Example of schema file. 

 



18 

 

Schema also determines the structure of the data that is going to be received. Main types are 

Query and Mutation. Query is like a GET-method – used for fetching data and Mutation is 

like a POST-method – used for changing data. 

Great advantage of using GraphQL and not REST technologies is that it allows to ask only 

for the data that is needed – it makes it more secure, since not all data can be reached. 

 

Resolver is a .ts-file, which stands for TypeScript that enables to make code as type-safe as 

a code-writer wants. Resolver is a place to handle objects that need to be solved differently 

– each object, query and mutation can be resolved individually. The example of a resolver 

is shown on Figure 4.4.2. 

In current project, sometimes data needs to be parsed to some other form to be readable in 

the database. Also, in resolver, all the permissions are checked, so that users would not have 

access to views or actions they are not allowed to have. Moreover, resolver validates the 

input, for example, if the password is strong enough or if the user exists in database. In 

addition, it can transform data into desired shape, for example, to JSON.  

 

 

Figure 4.4.2. Example of resolver file. 

 

Queries is a .ts-file. It consists of various queries – SQL-statements. It communicates with 

the database – asks for information and changes it. There are also used different additional 

functions that make fetching from database quicker and safer. The example of queries is 

shown on Figure 4.4.3. 

Typical queries are for asking certain element by its id or by some other additional parame-

ters. Also, sometimes there are queries asking for all the rows that are in the table. As for 

mutations, there are queries for adding, updating and deleting elements. Tables are often 

joined, when getting information depends on several tables. 

 



19 

 

 

Figure 4.4.3. Example of queries file. 

 

Middlewares get in action when user hits a certain URL that is served by some middleware. 

It uses an Express Router to get and send HTTP requests. One way of using middleware is, 

for example, for fetching files. There is a file middleware that has an endpoint /files/:id. The 

middleware searches for the file with entered ID, converts it into a buffer, writes content 

type and length to header and sends it to the server.  The advantage of converting to buffer 

and specifying data length is that the browser can already start loading and showing some 

parts of the file without user having to wait too long until the whole file is loaded. Therefore, 

it creates a better user experience.  

Middlewares are also used to download files or authenticate users. The example of middle-

ware is shown on Figure 4.4.4. 

 

 

Figure 4.4.4. Example of middleware. 

  

Services are TypeScript-files that consist of one or several functions that are used through-

out the server code. This way can be avoided the duplication of code and it makes much 

more convenient to refactor the code. 

In current project, there are, for example, services for generating random string-number 

combinations, checking user permissions, logging user actions, formatting date-time and 

currencies. Example of a service is shown on Figure 4.4.5.  



20 

 

 

Figure 4.4.5. Example of service. 

 

 

4.5 Database model 

 

Below is the database model (Figure 4.5.1) for the functionalities that were created during 

the work. The model illustrates relationships between the tables.   

 

Figure 4.5.1. Database model.  

 

There are tables Events, News and Downloads that have a file id, which references to one 

file in the Files table. Payments, Direct sales and Volume points are all associated with one 

User, therefore they have an user id column. Each log in Logs table is linked with an ad-

ministrator in Administrators table. FAQs and Translations do not depend on other tables.  



21 

 

5. Conclusion and future work 

 

The purpose of this thesis was to develop web application for managing Dag University. It 

enables to administrate events, news, downloads, notifications, FAQs and other content that 

is displayed in Dag University. It also has a functionality to verify users, upload translation 

files and log user actions.  

In the process, additional functionality was added to Dag University, for example, display-

ing the information that can be inserted into Dag Admin, like news, events, downloads, 

FAQs in both public and private view.  

In the future, there are plans to make Dag Admin support also other Dag web applications 

like Merchant Finder (for finding businesses that accept dag payments) and SwipeX (for 

purchasing popular cryptocurrencies), so that they could all be easily managed in one appli-

cation. Main functionalities would be verifying users and companies as well as editing their 

information. 

 

 

 

 

 

 

 

 

 

 

 

 

  



22 

 

6. References 

 

[1] Dag University. https://daguniversity.com (25.04.18) 

[2] Fedosejev, A., 2015. React.js Essentials. Packt Publishing Ltd.  

[3] Vipul, A.M. and Sonpatki, P., 2016. ReactJS by Example-Building Modern Web Ap-

plications with React. Packt Publishing Ltd. 

[4] Jansen, R.H., 2015. Learning TypeScript. Packt Publishing Ltd. 

[5] Buna, S., 2016. Learning GraphQL and Relay. Packt Publishing Ltd. 

[6] Teixeira, P., 2012. Professional Node. js: Building Javascript based scalable software. 

John Wiley & Sons.  

[7] Bartholomew, D., 2013. Getting Started with MariaDB. Packt Publishing Ltd. 

[8] Mavro, P., 2014. MariaDB High Performance. Packt Publishing Ltd. 

[9] Gackenheimer, C., 2015. Introduction to React. Apress. 

[10] Ohri, S., 2017. TypeScript 2.x By Example. Packt Publishing Ltd. 

[11] DuneBook. https://www.dunebook.com/typescript-vs-javascript-why-typescript-is-

next-to-big-thing/ (25.04.18) 

[12] Resende, D., 2015. Node.js high performance. Packt Publishing Ltd.  

[13] Kenler, E. and Razzoli, F., 2015. MariaDB Essentials. Packt Publishing Ltd. 

 

 



23 

 

Appendix 

I. Source code 

As this work is a project of Stagnation Laboratory, source code is not publicly available. To 

receive the source code of the developed application, please contact the author via the fol-

lowing e-mail: maria@stagnationlab.com. 

 

 

mailto:maria@stagnationlab.com


24 

 

II. License 

 

Non-exclusive licence to reproduce thesis and make thesis public 

 

I, Maria Belinska, 

 

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to: 

 

1.1. reproduce, for the purpose of preservation and making available to the public, including 

for addition to the DSpace digital archives until expiry of the term of validity of the 

copyright, and 

 

1.2. make available to the public via the web environment of the University of Tartu, includ-

ing via the DSpace digital archives until expiry of the term of validity of the copyright, 

 

Web application for managing Dag University, supervised by Helle Hein and Taavi Sangel, 

 

2. I am aware of the fact that the author retains these rights. 

 

3. I certify that granting the non-exclusive licence does not infringe the intellectual property 

rights or rights arising from the Personal Data Protection Act.  

 

 

Tartu, 14.05.2018 

 

 

 

 


