ISSN 0494-7304 0132-053×

TARTU ÜLIKOOLI TOIMETISED

УЧЕНЫЕ ЗАПИСКИ ТАРТУСКОГО УНИВЕРСИТЕТА

ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS

928

FUNCTIONAL ANALYSIS AND THEORY OF SUMMABILITY

Matemaatika- ja mehaanikaalaseid tõid

TARTU ÜLIKOOLI TOIMETISED УЧЕНЫЕ ЗАПИСКИ ТАРТУСКОГО УНИВЕРСИТЕТА АСТА ЕТ COMMENTATIONES UNIVERSITATIS TARTUENSIS Alustatud 1893.a. VIHIK 928 ВЫПУСК Основаны в 1893.г.

FUNCTIONAL ANALYSIS AND THEORY OF SUMMABILITY

Matemaatika- ja mehaanikaalaseid tõid

Tartu 1991

Redaktsioonikolleegium:

Ü.Lepik (esimees), L.Ainola, K.Kenk, M.Kilp, E.Tiit, Ü.Lumiste, E.Reimers, G.Vainikko, V.Soomer

Vastutav toimetaja: V.Soomer

TABLE OF CONTENTS

A.	A	a s m a. Characterization of matrix transfor-	
		mations of summability fields.	3
J.	A	rhippainen. On commutative locally	
		m-convex algebras.	15
J.	В	oos, T. Leiger. Product and direct sum	
		of $L_{p}-K(X)$ -spaces and related $K(X)$ -spaces.	29
E.	K	o 1 k. The statistical convergence in Banach	
		spaces.	41
Ι.	L	e p a s s o n. T-dual spaces with rate and T-	
		sectionally summable spaces with rate in the	
		case of double sequences.	53
L.	L	o o n e. On cores of semicontinuous sequential	
		summability methods.	61
L.	L	o o n e. Inclusion between the cores concerning	
		weighted means and power series.	67
A.	M	onakov-Rog.ozkin. A description of	
		measure spaces with liftings.	73
E.	0	ja. Remarks on the dual of the space of	
		continuous linear operators.	89
۷.	S	oomer. Summability factors for strong	
		summability.	97
H.	Т	ürnpu. Weyl factors for summability with	
		speed of orthogonal series.	103

C Tartu Ülikool, 1991

ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS 1991, 928, 3-14

CHARACTERIZATION OF MATRIX TRANSFORMATIONS OF SUMMABILITY FIELDS Ants Aasma

Let c and by denote respectively the space of convergent sequences and the space of absolutely convergent sequences, let

$$\mathbf{r}^{\mathbf{o}} = \left\{ \mathbf{x} = (\mathbf{x}_{\mathbf{k}}) \mid \lim_{\mathbf{k}} \mathbf{x}_{\mathbf{k}} = 0 \right\}$$

and

$$\mathbf{bv}^{\mathbf{o}} = \left\{ \mathbf{x} = (\mathbf{x}_{\mathbf{k}}) \mid \mathbf{x} \in \mathbf{bv} \text{ and } \lim_{\mathbf{k}} \mathbf{x}_{\mathbf{k}} = 0 \right\}.$$

Furthermore, let $\mathbb{A} = (\prec_{nk})$ be a reversible matrix over \mathbb{C} , i.e. the system

$$z_n = \sum_{k} \alpha_{nk} x_k \tag{1}$$

(shortly $z_n = A_n x$) has unique solution for every convergent sequence (z_n) and $B = (\beta_{nk})$ be a matrix over \mathbb{C} . Moreover, let

$$s_{A} = \left\{ x = (x_{k}) \mid A_{n}x \text{ exists for each } n \in \mathbb{N} \right\},$$
$$c_{A} = \left\{ x = (x_{k}) \mid x \in s_{A} \text{ and } (A_{n}x) \in c \right\},$$

 (c_A, c_B) (respectively (bv_A, c_B) or (bv_A, bv_B)) be the set of matrices $M = (m_{a,b})$ over C for which the transformation

$$\mathbf{y}_{n} = \sum \mathbf{m}_{nk} \mathbf{x}_{k} \tag{2}$$

maps c_A into c_B (respectively bv_A into c_B or bv_A into bv_B) and let

$$\mathbf{b}_{\mathbf{M}} = \left\{ \mathbf{x} = (\mathbf{x}_{\mathbf{k}}) \mid \mathbf{x} \in \mathbf{s}_{\mathbf{M}} \text{ and } \sum_{\mathbf{k}=1}^{\infty} \mathbf{m}_{\mathbf{n}\mathbf{k}} \mathbf{x}_{\mathbf{k}} = \mathbf{O}(1) \right\}.$$

Necessary and sufficient conditions in order that M would belong to (c_A, c_B) , (bv_A, c_B) or (bv_A, bv_B) for a triangular matrix B are given in [1, 3, 4-6]. The aim of the present paper is to find sufficient conditions in order that

H would belong to (c_A, c_B) , (bv_A, c_B) or (bv_A, bv_B) for an infinite matrix B.

Further we shall need the following auxiliary results.

LEMMA 1 ([2], p. 257 - 258). Let $M = (m_{nk})$ be a matrix over C. In order that the series

$$\sum_{k} \left(\sum_{n} t_{n} m_{nk} \right) x_{k}$$
(3)

converges for every absolutely convergent series $\sum_{n} t_n$ it is necessary and sufficient that $(x_k) \in b_M$ and $m_{nk} = O_k(1)$.

At this, if the series (3) is convergent for each convergent series. $\sum t_{i}$, then

$$\sum_{k} \left(\sum_{n} \mathbf{t}_{n} \mathbf{m}_{nk} \right) \mathbf{x}_{k} = \sum_{n} \mathbf{t}_{n} \mathbf{M}_{n} \mathbf{x}.$$

LEMMA 2 ([7], p. 12 - 17 and 30 - 34). Let $\mathfrak{A} = (a_{nk})$ be a sequence-to-sequence transformation. In order that⁴ $\mathfrak{A} \in (c^{\circ}, c)$ (respectively $\mathfrak{A} \in (bv^{\circ}, c)$) it is necessary and sufficient that

1) there exist finite limits $\lim_{n \to \infty} a_{nk} = a_k$,

2) $\sum_{n=0}^{k} |a_{nk}| = 0(1)$ (respectively $\sum_{m=0}^{k} a_{nm} = 0(1)$).

At this, $\lim_{k} \Psi_{n} x = \sum_{k} a_{k} x_{k}$ for each $x = (x_{k}) \in c^{\circ}$ (respectively for each $x = (x_{k}) \in bv^{\circ}$).

LEMMA 3 ([7], p. 37). Let $\mathfrak{A} = (a_{nk})$ be a sequence-tosequence transformation. for $\mathfrak{A} \in (bv^{\circ}, bv)$ it is necessary and sufficient that

$$\Sigma |\mathbf{r}_{nk} - \mathbf{r}_{n-i,k}| = O(1)$$

where $r_{-a,k} \equiv 0$ and

$$r_{nk} = \sum_{l=k}^{\infty} a_{nl}$$

1. Let (η_n) and (η_{nk}) for fixed k be solutions of the system (1) in the case when $z_n = \delta_{nk}$ and $z_n = \delta_{nk}$

⁴Here and onwards (γ, \mathbf{v}) denotes the set of such matrixes, which transform the space of sequences γ into the space of sequences \mathbf{v} .

respectively (here $\delta_{nk} = 1$ if n = k and $\delta_{nk} = 0$ if $n \neq k$). Moreover, let

$$B_{nl} = \sum_{k} \beta_{nk} m_{kl}, \qquad B' = (B_{nl}),$$
$$\gamma_{ok}^{n} = \sum_{l=0}^{o} B_{nl} \eta_{lk}, \qquad M_{ok}^{n} = \sum_{l=0}^{o} m_{nl} \eta_{lk}$$

for each k,l,n,s $\in \mathbb{N}$. At the same time we use these notations in the case when all series above are convergent.

It is easy to see that the transformation (2) exists for each $x \in c_A$ ($x \in bv_A$) if and only if the numbers m_{nk} for fixed $n \in \mathbb{N}$ are convergence factors for c_A (respectively for bv_A). Therefore, by Theorems 5 and 6 from [8] we have

LEMMA 4. Let $A = (\alpha_{nk})$ be a reversible matrix and $M = (m_{nk})$ be a matrix over \mathbb{C} . For the existence of the transformation (2) for each $(x_k) \in c_A$ (respectively $(x_k) \in bv_A$) it is necessary and sufficient that

- 1) there exist finite limits $\lim_{n \to \infty} M_{nk}^n = M_{nk}$ and series $\sum_{n} m_{nl} \eta_l$ are convergent,
- 2) $\sum_{k} |\mathbf{M}_{ak}^{n}| = 0_{n}(1)$ (respectively $\sum_{k=0}^{n} \mathbf{M}_{ak}^{n} = 0_{n}(1)$).

It is easy to see that the equality

$$\sum_{k} \beta_{nk} \mathbf{y}_{k} = \sum_{k} B_{nk} \mathbf{x}_{k}$$
(4)

is true for a triangular matrix B if the transformation (2) exists. But in the case when B is not a triangular matrix it is not always so. Next we shall find the conditions for B and M in order that the equality (4) would be valid. By Lemma 1 we have

LEMMA 5. Let $A = (a_{nk})$, $B = (\beta_{nk})$ and $M = (m_{nk})$ be matrices over \mathbb{C} . If $\sum_{k} |\beta_{nk}| < \infty$ for each $n \in \mathbb{N}$ then the equality (4) holds for each $x \in c_{A}$ (respectively $x \in bv_{A}$) if and only if $m_{nk} = 0_{k}(1)$ and $c_{A} \subseteq b_{M}$ (respectively $bv_{A} \leq b_{M}$).

LEMMA 6. Let $A = (a_{nk})$ be a reversible matrix and $M = (m_{nk})$ be a matrix over \mathbb{C} . In order that $c_A \subseteq b_M$ it is necessary and sufficient that condition 1) of Lemma 4 and conditions

$$1) \sum_{k=0}^{\infty} m_{nk} \eta_k = 0(1)$$

and

2)
$$\sum_{k} |M_{ek}^{n}| = O(1)$$

are fulfilled.

by 2) (as

Proof. Necessity. Let $c_A \leq b_M$. Then the transformation (2) exists for each $x \in c_A$ by the definition of b_M and from $(\eta_n) \in c_A$ follows that $(\eta_n) \in b_M$. Therefore conditions 1) of Lemma 4 and 1) of Lemma 6 are fulfilled.

It is known (cf.[8], p.197) that the elements x_k of the sequence $x = (x_k) \in c_A$ (for a reversible matrix A) may be represented in the form

$$\mathbf{x}_{\mathbf{k}} = \mathbf{Z} \boldsymbol{\eta}_{\mathbf{k}} + \sum_{l} \boldsymbol{\eta}_{\mathbf{k}l} (\mathbf{z}_{l} - \mathbf{Z})$$
(5)

where $z_l = A_l x$, $Z = \lim_{t} z_l$ and $\sum_{l} |\eta_{kl}| < \infty$. Now, it is easy to see that the series $\sum_{l} \eta_{kl} (z_l - Z)$ are convergent. Therefore the equality

$$\sum_{k=0}^{\infty} m_{nk} x_{k} = Z \sum_{k=0}^{\infty} m_{nk} \eta_{k} + \sum_{k} M_{ok}^{n} (z_{k} - Z)$$
(6)
holds for each $x = (x_{k}) \in c_{A}$. Hence

$$\sum_{k} M_{ek}^{n} (z_{k} - Z) = O(1)$$

for each $(z_k - Z) \in c^{\circ}$ by condition 1) because A is reversible. As M_s° , defined by $M_s^{\circ}(x) = \sum_k M_{sk}^{\circ} x_k$ for each $x = (x_k) \in c^{\circ}$, are continuous linear functionals on c° by the principle of uniform boundedness we obtain that the sequence of norms of functionals M_s° is uniformly bounded. Consequently (cf.[9], p. 260), condition 2) holds.

Sufficiency. Let condition 1) of Lemma 4 and conditions 1) and 2) be fulfilled. Then condition 2) of Lemma 4 is also fulfilled. Hence (2) exists for each $(x_k) \in c_A$ by Lemma 4.

As the equality (6) holds for each $(x_k) \in c_A$, $(\eta_n) \in b_M$ by 1) and

$$|\mathbf{H}_{\bullet}^{n}(\mathbf{z}_{k} - \mathbf{Z})| \leq \sum_{k} |\mathbf{H}_{\bullet k}^{n}| |\mathbf{z}_{k} - \mathbf{Z}| = O(1)$$

(z, - Z) $\in \mathbf{c}^{\circ}$), we have $\mathbf{c}_{\bullet} \leq \mathbf{b}_{k}$.

LEMMA 7. Let $A = (a_{nk})$ be a reversible matrix and $M = (m_{nk})$ be a matrix over C. For $bv_A \leq b_M$ it is necessary

and sufficient that

$$\sum_{k=0}^{L} M_{ak}^{n} = O(1)$$

and conditions 1) of Lemma 4 and 1) of Lemma 6 are fulfilled.

Proof. As $A_n \eta = \delta_{nn}$ (where $\eta = (\eta_n)$) and $\sum_k |\delta_{nn} - \delta_{n-i,n-i}| = 1$ ($\delta_{-i,-i} = 0$) we have $\eta \in bv_A$. Therefore the proof of Lemma 7 is similar to the proof of Lemma 6.

THEOREM 1. Let $A = (a_{nk})$ be a reversible matrix, $B = (\beta_{nk})$ and $M = (m_{nk})$ be matrices over C. If $\sum_{k} |\beta_{nk}| < \infty$ for each $n \in \mathbb{N}$, $m_{nk} = 0_k(1)$ and condition 1) of Lemma 4 and conditions 1) and 2) of Lemma 6 are fulfilled then there exist finite limits $\lim_{k} \gamma_{nk}^{n} = \gamma_{nk}$. Moreover, if in addition

1) there exist finite limits $\lim_{n \to \infty} \gamma_{nk} = \gamma_k$,

2) there exists finite limit $\lim_{n} \Sigma B_{nk} \eta_{k}$,

3) $\Sigma |r_{nk}| = 0(1)$

then $M \in (c_A, c_B)$.

Proof. The equality (4) is true for each $x \in c_A$ by Lemmas 5 and 6. Consequently, it is sufficient to show that $c_A \leq c_B$. The elements x_k of the sequence $x = (x_k) \in c_A$ are of the form (5) because A is reversible. Hence the equality (compare with (6))

$$\sum_{k=0}^{\Sigma} B_{nk} x_{k} = Z \sum_{k=0}^{\Sigma} B_{nk} \eta_{k} + \sum_{k} \gamma_{ek}^{n} (z_{k} - Z), \qquad (7)$$

where $z_k = A_k x$ and $Z = \lim_k z_k$, holds for each $x \in c_A$. As

$$\sum_{r} |\beta_{nr}| \sum_{l=0}^{r} |m_{rl}\eta_{lk}| < \infty$$
(8)

for each $k, n, s \in \mathbb{N}$ and

$$\Sigma \left| \beta_{\rm pr} M_{\rm ek}^{\rm r} \right| = O_{\rm p}(1) \tag{9}$$

by condition 2) of Lemma 6 we have

$$\gamma_{\rm ek}^n = \sum_{\rm r} \beta_{\rm nr} M_{\rm ek}^r \tag{10}$$

and there exist finite limits $\lim_{s} r_{sk}^n = r_{nk}$ by condition 1) of Lemma 4. Moreover, the condition $\sum_{k} |r_{sk}^n| = O_n(1)$ is fulfilled because

2*

$\Sigma \left| \beta_{nr} \right| \Sigma \left| M_{ok}^{r} \right| = O_{n}(1)$

by condition 2) of Lemma 6. Therefore from (7) we obtain (by Lemma 2 and condition 2)) that the equality

$$\sum_{k} B_{nk} x_{k} = Z \sum_{k} B_{nk} \eta_{k} + \sum_{k} \gamma_{nk} (z_{k} - Z)$$
(11)

holds for each $x = (x_k) \in c_A$. At this, conditions 1) and 3) imply the existence of the finite limit $\lim_{B} \sum r_{nk}(z_k - Z)$ for each $x \in c_A$ by Lemma 2 (since $(z_k - Z) \in c^{\circ}$ for each $x \in c_A$). Consequently $c_A \subseteq c_B$, by 2). This means that $M \in (c_A, c_B)$.

THEOREM 2. Let $A = (a_{nk})$ be a reversible matrix, $B = (\beta_{nk})$ and $M = (m_{nk})$ be matrices over \mathbb{C} . If $\sum_{k} |\beta_{nk}| < \infty$ for each $n \in \mathbb{N}$, $m_{nk} = O_k(1)$ and condition 1) of Lemma 4, condition 1) of Lemma 6, condition of Lemma 7 and conditions 1) and 2) of Theorem 1 are fulfilled then there exist finite limits $\lim_{k \to \infty} \gamma_{nk}^{n} = \gamma_{nk}$. Moreover, if in addition

$$\sum_{l=0}^{k} r_{nl} = 0(1)$$

then $M \in (bv_A, c_B)$.

Proof. The equality (4) holds for each $x \in bv_A$ by Lemmas 5 and 7. Consequently, it is sufficient to show that $bv_A \subseteq c_B$. It is easy to see that the equality (7) is true for each $x \in bv_A$ since $bv_A \subseteq c_A$. As (8) is true (since $\sum |\beta_{nk}| < \infty$ for each $n \in \mathbb{N}$) and

$$|\mathbf{M}_{sk}^{n}| = |\sum_{l=0}^{k} \mathbf{M}_{sl}^{n} - \sum_{l=0}^{k-1} \mathbf{M}_{sl}^{n}| = O(1)$$

by Lemma 7 the conditious (9) and (10) are valid. Hence there exist finite limits $\lim_{n \to k} r_{nk}^n = r_{nk}$ by condition 1) of Lemma 4. Moreover, as

$$\sum_{r} |\beta_{nr}| \sum_{l=0}^{k} \sum_{i=0}^{\infty} |m_{ri}\eta_{il}| < \infty$$

for each k,n,s, ∈ N we have

$$\sum_{l=0}^{k} \gamma_{el}^{n} = \sum_{r} \beta_{nr} \sum_{l=0}^{k} M_{el}^{r}.$$

Thus the condition $\sum_{l=0}^{\infty} r_{sl}^n = O_n(1)$ holds by Lemma 7. Therefore (7) implies the equality (11) for each $x \in bv_A$ by Lemma 2 and condition 2) of Theorem 1. Hence, from condition 1) of Theorem 1 and from the condition of Theorem we obtain by Lemma 2 that there exists the finite limit $\lim_{k \to \infty} \sum r_{nk}^{n} (z_{k} - Z)$ for each $(x_{k}) \in bv_{A}$. For that reason $bv_{A} \leq c_{B}$, by condition 2) of Theorem 1. Consequently $M \in (bv_{A}, c_{B})$.

REMARK 1. If $B = (\beta_{nk})$ is a matrix which has the property $\sum_{k} |\beta_{nk}| = 0(1)$ then condition 3) of Theorem 1 and the condition of Theorem 2 are redundant.

By Lemma 3 we have

THEOREM 3. Let $A = (a_{nk})$ be a reversible matrix, $B = (\beta_{nk})$ and $M = (m_{nk})$ be matrices over \mathbb{C} . If $\sum_{k} |\beta_{nk}| < \infty$ for each $n \in \mathbb{N}$, $m_{nk} = 0_k(1)$ and condition 1) of Lemma 4, condition 1) of Lemma 6 and the condition of Lemma 7 are fulfilled then there exist finite limits $\lim_{k \to k} \gamma_{nk}^n = \gamma_{nk}$. Moreover, if in addition

1) $\sum_{n} |\sum_{l} (B_{nl} - B_{n-i,l})\eta_{l}| \leq \infty,$ 2) $\sum_{l} |\rho_{nk} - \rho_{n-i,k}| = O(1),$

where $\rho_{-1,k} \equiv 0$ and

$$P_{nk} = \sum_{l=k}^{\infty} \gamma_{nl},$$

then $M \in (bv_A, bv_B)$.

2. Let (p_n) be a sequence of non-zero complex numbers, $P_n = p_0 + \ldots + p_n \neq 0$ for each $n \in \mathbb{N}$, $P_{-1} = 0$ and $(R, p_n) \doteq (\prec_{nk})$ be the series-to-sequence Riesz method generated by (p_n) , i.e.

$$\mathbf{e}'_{nk} = \begin{cases} 1 - P_{k-i}/P_n & \text{if } k \leq n, \\ 0 & \text{if } k > n. \end{cases}$$

We note that (R,p_n) is a normal method. Therefore (R,p_n) has the inverse matrix $(R,p_n)^{-1} = (\eta_{nk})$ where (cf. [7], p.116)

$$\eta_{nk} = \begin{cases} P_k / P_k & \text{if } n = k, \\ -P_k (1/P_k + 1/P_{k+1}) & \text{if } n = k+1, \\ P_k / P_{k+1} & \text{if } n = k+2, \\ 0 & \text{if } n < k \text{ or } n > k+2. \end{cases}$$
(12)

Now we shall give some results for the case A = (R,p_)

THEOREM 4. Let (\mathbb{R}, p_n) be a conservative method, B = (β_{nk}) and M = (m_{nk}) . Moreover, let $\sum_{k} |\beta_{nk}| < \infty$ for each $n \in \mathbb{N}$. If²

1)
$$m_{p} = O(p_{p}^{-1}),$$

$$2) \sum_{k} |P_{k} \Delta \frac{\Delta m_{nk}}{P_{k}}| = O(1),$$

3) there exist finite limits $\lim_{n \to k} B_{nk} = B_{k}$,

4)
$$\sum_{k} |P_{k}\Delta \frac{\Delta B_{nk}}{P_{k}}| = 0(1)$$

then $M \in (c_{(R,p_n)}, c_B)$.

Proof. It is sufficient to show that all the assumptions and conditions of Theorem 1 are fulfilled. As (R,p_n) is a conservative method there exists a number M > 0 such that

$$\mathbf{R}_{n} = \sum_{k=0}^{n} |\mathbf{P}_{k}| < \mathbf{M} |\mathbf{P}_{n}|, \quad \mathbf{n} \in \mathbf{N}.$$

(cf. [7], Theorem 17.1). Hence

$$|\mathbf{P}_n/\mathbf{p}_n| > \frac{1}{M} + \mathbf{R}_{n-1}/\mathbf{H}|\mathbf{p}_n| > \frac{1}{M}, \quad n \in \mathbb{N}.$$

Consequently, from condition 1) we obtain

$$m_{n} = O(1).$$
 (13)

For that reason $m_{nk} = O_k(1)$ and the condition 1) of Lemma 6 is fulfilled (since $\eta_n = \delta_{no}(cf.[7], p. 58)$). Moreover, in that case by (12) we have

² Here and onwards $\Delta x_n = x_n - x_{n+4}$.

$$M_{\bullet k}^{n} = \begin{cases} M_{nk} & \text{if } k < s - 1 \\ M_{n, \bullet -i} - P_{\bullet -i} m_{n, \bullet +i} / P_{\bullet} & \text{if } k = s - 1 \\ P_{\bullet} m_{ne} / P_{\bullet} & \text{if } k = s, \\ 0 & \text{if } k > s \end{cases}$$

where

$$M_{nk} = P_k \Delta \frac{\Delta m_{nk}}{P_k}$$

and

$$\gamma_{nk} = P_k \Delta \frac{\Delta B_{nk}}{P_k}$$

Now it is easy to see that conditions 1) - 3 of Theorem 1 (by conditions 3) and 4)) and condition 1) of Lemma 4 are fulfilled. As

$$\sum_{k=0}^{n-1} P_k \Delta \frac{\Delta m_{nk}}{P_k} = \sum_{l=0}^{n-1} P_l \left(\sum_{k=1}^{n-1} \Delta \frac{\Delta m_{nk}}{P_k} \right) = \sum_{l=0}^{n-1} \Delta m_{nl} - \frac{\Delta m_{n0}}{P_0} \sum_{l=0}^{n-1} P_l =$$
$$= m_{n0} - m_{n,0+1} - \frac{P_0}{P_0} \Delta m_{n0}$$

we have

 $\frac{P_{e}}{P_{e}}\Delta m_{ne} = m_{no} - m_{n,e+i} - \sum_{k=0}^{e-i} \frac{\Delta m_{nk}}{P_{k}}.$ (14)

Therefore

$$P_{\Delta m_{p}}/p = O(1)$$
 (15)

by conditions 2) and (13). Onwards, it is easy to see that

$$\frac{P_{n-1}}{P_n} \frac{P_n}{m_{n,n+1}} = \frac{P_n}{P_n} \frac{P_n}{m_{n-1}} - \frac{P_n}{P_n} \frac{\Delta m_{n-1}}{m_{n,n+1}} - \frac{M_n}{m_{n,n+1}}$$
(16)

Consequently

$$\sum_{k} |\mathbf{M}_{ak}^{n}| \leq \sum_{k=0}^{n-1} |\mathbf{M}_{nk}| + |\frac{\mathbf{P}_{a-1}}{\mathbf{P}_{a}} \mathbf{m}_{n,a+1}| + |\frac{\mathbf{P}_{a}}{\mathbf{P}_{a}} \mathbf{m}_{na}| = O(1)$$

by conditions 1) - 2), (13) and (15). So the condition 2) of Lemma 6 is fulfilled too and $M \in (c_{(R,p_{-})}, c_{B})$ by Theorem 1.

THEOREM 5. Let (R, p_n) be a absolute convergence preserving method, $B = (\beta_{nk})$ and $M = (m_{nk})$ be matrices over \mathbb{C} . Moreover, let $\Sigma |\beta_{nk}| < \infty$ for each $n \in \mathbb{N}$ and conditions 1)

3*

and 3) of Theorem 4 be fulfilled. If

1) $P \Delta m_{p} = O(p_{p}),$

$$2) B_{1} = 0(1),$$

3)
$$P \Delta B = O(p)$$

then $M \in (bv_{(R,p_n)}, c_B)$.

Proof. It is sufficient to show that all the assumptions and conditions of Theorem 2 are fulfilled. It is clear that condition 1) of Lemma 4 is satisfied. We see that conditions 1) and 2) of Theorem 1 are also satisfied by condition 3) of Theorem 4 because $\eta_n = \delta_{no}$. As $(\mathbf{R}, \mathbf{p}_n)$ preserves absolute convergence, we have (cf.[7], Theorem 17.2)

$$P_{k-i} \sum_{n=k}^{\infty} \left| \frac{P_n}{P_n P_{n-i}} \right| = O(1).$$

Hence there exists a number M > 0 such that $|P_k/P_k| < M$ and so $|P_k/P_k| > 1/M$ independently of k. Consequently, from condition 1) of Theorem 4 we conclude that (13) holds. Therefore $m_{nk} = O_k(1)$ and condition 1) of Lemma 6 is fulfilled.

As equalities (14) and (16) hold then the condition of Lemma 7 is fulfilled by conditions (13) and 1). It is easy to see that the condition of Theorem 2 is also fulfilled. Indeed, the equality

$$\sum_{k=0}^{n-1} \sum_{k=0}^{\Delta B} \sum_{k=0}^{n} = B_{n,0} - B_{n,0+1} - \frac{P_{0}}{P_{0}} \Delta B_{n,0}$$
(17)

is true (compare with (14)). Consequently, by conditions 2) and 3) condition 1) of Theorem 2 is fulfilled. This implies that $M \in (bv_{(R,P_n)}, c_B)$ by Theorem 2.

REMARK 2. If $B = (\beta_{nk})$ is a matrix such that $\sum_{k} |\beta_{nk}| = 0(1)$ then condition 4) of Theorem 4 and conditions 2) and 3) of Theorem 5 are redundant.

THEOREM 6. Let (\mathbb{R}, p_n) be an absolute convegence preserving method, $\mathbb{B} = (\beta_{nk})$ and $\mathbb{M} = (m_{nk})$ be matrices over \mathbb{C} . Moreover, let $\sum |\beta_{nk}| < \infty$ for each $n \in \mathbb{N}$ and the condition

1) of Theorem 4 and condition 1) of Theorem 5 be fulfilled. If

1)
$$\Sigma |B_{pk} - B_{p-1,k}| = O(1)$$
,

$$2) \mathbf{P}_{\mathbf{k}} \boldsymbol{\Sigma} | \Delta(\mathbf{B}_{\mathbf{n}\mathbf{k}} - \mathbf{B}_{\mathbf{n}-\mathbf{i},\mathbf{k}}) | = O(\mathbf{p}_{\mathbf{k}}),$$

3) there exist finite limits $\lim_{n \to \infty} d_{nk} = d_n$, where

$$d_{nk} = B_{n,k+4} + \frac{P_k}{P_k} \Delta B_{nk},$$

then $M \in (bv_{(R,p_{a})}, bv_{B})$.

Proof. We shall show that all the assumptions and conditions of Theorem 3 are fulfilled. In the proof of Theorem 5 it has been shown that $m_{nk} = O_k(1)$ and condition 1) of Lemma 4, condition 1) of Lemma 6 and the condition of Lemma 7 are fulfilled. It is easy to see that condition 1) of Theorem 3 is fulfilled by condition 1) because $\eta_n = \delta_{no}$. Condition 2) of Theorem 3 is fulfilled too. Indeed, by (17) the equality

$$\sum_{l=0}^{k-1} \varkappa_{nl} = B_{no} - d_{nk}$$

is true. Therefore we have

 $\rho_{nk} = \sum_{l} \varkappa_{nl} - \sum_{l=0, k=1}^{k-1} \varkappa_{nl} = \lim_{k} (B_{no} - d_{nk}) - d_{nk} - d_{n$

$$(B_{no} - d_{nk}) = d_{nk} - d_{nk}$$

by condition 3). Onwards, by conditions 1) and 2) we obtain

$$\Sigma |d_{nk} - d_{n-1,k}| = O(1)$$

from which it follows by condition 3) that $\sum_{n=1}^{\infty} |d_n - d_{n-1}| < \infty$. For that reason

$$\begin{split} \sum_{n} |\rho_{nk} - \rho_{n-i,k}| &\leq \sum_{n} |d_{nk} - d_{n-i,k}| + \sum_{n} |d_{n} - d_{n-i}| = O(1). \\ \text{So condition 2) of Theorem 3 is fulfilled. Consequently,} \\ \mathbb{M} &\in (bv_{(\mathbb{R}, \mathbb{P}_{n})}, bv_{\mathbb{B}}) \text{ by Theorem 3.} \end{split}$$

References

1. Alpar, L., On the linear transformations of series

summable in the sense of Cesaro. Acta Math. Sci. Hungar., 1982, 39, No 1, 233-243.

- Russell, D. C., Inclusion theorems for section-bounded matrix transformations. Math. Z., 1970, 113, No 4, 255-265.
- Thorpe, B., Matrix transformations of Cesaro summable series. Acta Math. Hungar., 1986, 48, No 3-4, 255-265.
- Азсма А., О преобразовании полей суммируемости рядов. Тезиси докл. конф. Теоретические и прикладные вопросы математики. І. Тарту, 1985, 3-5.
- Басма А., Описание преобразовании полей суммируемости.
 Тезисы докл. конф. "Теоретические и прикладные вопросы математики." І. Тарту, 1985, 6-8.
- 6. Азсма А., Преобразования полей суммируемости. Уч. зап. Тарт. ун. та. 1978, 770, 38-50.
- Барон С., Введение в теорию суммируемости рядов. 2-е изд. Таллинн. Валгус. 1977, 279.
- Кангро Г., О множителях суммируемости. Уч. зап. Тарт. ун.-та. 1955, 37, 191-229.
- 9. Канторович Л., Акилов Г., Функциональный анализ. 2-е изд. М. Наука, 1977, 744.

Department of Mathematics Tallinn Teacher Training Institute 200101 Tallinn Estonia

> Received October 25, 1990 Revised version March 8, 1991

Summeeruvusväljade maatriksteisenduste iseloomustus Ants Aasma Resümee

Olgu A = (\prec_{nk}) -kompleksarvuline reversiivne maatriks, s.t. süsteemil (1) on ühene lahend iga koonduva jada (z_n) korral. Olgu B = (β_{nk}) ja M = (m_{nk}) kompleksarvulised maatriksid, c_A maatriksi A summeeruvusväli ja bv_A maatriksi A absoluutse summeeruvuse väli. Artiklis antakse piisavad tingimused selleks, et maatriksteisendus (2) teostaks kujutused $c_A + c_B$, bv_A + c_B ja bv_A + bv_B.

ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS 1991, 928, 15-28

ON COMMUTATIVE LOCALLY M-CONVEX ALGEBRAS Jorma Arhippainen

Let A be a commutative locally m-convex topological algebra over the complex numbers. We also assume that A has a unit element which will be denoted by e. Let $\mathcal{P} = \{n_{\lambda} \mid \lambda \in A\}$ be a family of seminorms which defines the topology in A. We assume that this topology is a Hausdorff topology, in other words, if $n_{\lambda}(x) = 0$ for all $\lambda \in A$ then x = 0. Furthermore we assume that $n_{\lambda}(e) = 1$ for all $\lambda \in A$. General properties of locally m-convex algebras can be found in [2,3,13] or in [15].

If $\lambda \in A$ then the following notations will be used: $N_{\lambda} = \{x \in A \mid P_{\lambda}(x) = 0\},$ $A_{\lambda} = A/N_{\lambda}$ is the quotient algebra of A by N_{λ} , A_{λ} is the completion of A_{λ} .

Obviously A_{λ} is a normed algebra with the norm defined by $n_{\lambda}(x + N_{\lambda}) = n_{\lambda}(x)$ for each $x + N_{\lambda} \in A_{\lambda}$. Furthermore, we shall denote by $\Delta(A)$ the set of all nontrivial continuous homomorphisms from A into C. The set $\Delta(A)$ will be provided by the relative $\sigma(A^{\prime}, A)$ -topology. Then $\Delta(A)$ is a completely regular space. As it is generally known this is the weakest topology for which each function $\hat{x} : \Delta(A) \rightarrow C$ defined by the equation $\hat{x}(\tau) = \tau(x)$ for each $\tau \in \Delta(A)$ is continuous whenever $x \in A$. The mapping $\mathcal{G} : x \rightarrow \hat{x}$ will be called the Gelfand mapping and $\Delta(A)$ the carrier space of A. Let $\hat{A} = \{\hat{x} \mid x \in A\}$. Then $\hat{A} \leq C(\Delta(A))$. For any set S we shall denote by cl(S) the closure of S. If I is an ideal of A then

 $h(I) = \{\tau \in \Delta(A) \mid x(\tau) = 0 \text{ for each } x \in I\}$

is the hull of I. The kernel k(E) of a subset E of $\Delta(A)$ is defined by

<u>1</u>*

 $\mathbf{k}(\mathbf{E}) = \{\mathbf{x} \in \mathbf{A} | \mathbf{\hat{x}}(\tau) = 0 \text{ for each } \tau \in \mathbf{E}\}$ and for the empty set we define $\mathbf{k}(\mathbf{\Theta}) = \mathbf{A}$.

1. Auxiliary results. If $\mathcal{P} = \{n_{\lambda} \mid \lambda \in \Lambda\}$ is a family of seminorms which generates the topology in A we will denote this topology by $T(\mathcal{P})$ and the corresponding topological algebra by $(A,T(\mathcal{P}))$. If $(A,T(\mathcal{P}_1))$ and $(B,T(\mathcal{P}_2))$ are two locally m-convex algebras with corresponding families of seminorms $\mathcal{P}_1 = \{n_{\lambda} \mid \lambda \in \Lambda_1\}$ (i = 1,2) then a mapping S : $(A,T(\mathcal{P}_1)) \neq (B,T(\mathcal{P}_2))$ will be called semi-isometric mapping if there is a bijection \mathcal{P} from Λ_1 onto Λ_2 such that

$$n_{\varphi(\lambda)}(Sx) = n_{\lambda}(x) \text{ for all } x \in A \text{ and } \lambda \in A_{1}.$$
 (1.1)

Semi-isometric mappings have, for example, the following properties:

LEMMA 1.1. Let $(A,T(\mathcal{P}_1) \text{ and } (B,T(\mathcal{P}_2))$ be two locally m-convex algebras and let $S : (A,T(\mathcal{P}_1) \rightarrow (B,T(\mathcal{P}_2)))$ be a semi-isometric algebra-homomorphism. Then

(a) S is continuous,

(b) S is a bijection from A onto $S(A) \subset B$,

(c) S^{-i} from $(S(A), T(\mathcal{P}_2))$ onto $(A, T(\mathcal{P}_1))$ is semi-isometric,

(d) S^{-1} is continuous.

The proof can be carried out by exactly the same fashion as for an isometric map between two normed algebras.

We shall say that two locally m-convex algebras are semi-isometrically isomorphic if there is a semi-isometrical isomorphism between these two algebras.

LEMMA 1.2. If $(A,T(\mathcal{P}_1)$ and $(B,T(\mathcal{P}_2))$ are two commutative semi-isometrically isomorphic locally m-convex algebras then the carrier spaces $\Delta(A)$ and $\Delta(B)$ are homeomorphic.

Proof. Let S be a semi-isometric linear isomorphism from $(A,T(\mathcal{P}_1))$ onto $(B,T(\mathcal{P}_2))$. For each $\tau \in \Delta(B)$ we denote by ω_{τ} the C-homomorphism defined by $\omega_{\tau}(x) = \tau(Sx)$ for each $x \in A$. Then it is easy to see that the mapping $\tau \rightarrow \omega_{\tau}$ is a homeomorphism from $\Delta(B)$ onto $\Delta(A)$.

Next we shall consider some properties of the carrier space $\Delta(A)$. One of the most fundamental results dealing with this subject is

LEMMA 1.3. Let $(\Lambda, T(\mathcal{P}))$ be a commutative locally m-convex algebra where $\mathcal{P} = \{n_{\lambda} \mid \lambda \in \Lambda\}$. Then

 $\Delta(A) = \bigcup \{K_{\lambda} \mid \lambda \in A\}$

where $K_{\lambda} = \Delta(A) \bigcap \overline{V}_{\lambda}^{o}$ is compact for each $\lambda \in A$ and $\overline{V}_{\lambda}^{o}$ is the polar of $\overline{V}_{\lambda} = \{x \in A \mid n_{\lambda}(x) \leq 1\}$.

Proof. See [2], p.227, or [5], p.28.

LEMMA 1.4. Let $(A,T(\mathcal{P}))$ be as in Lemma 1.2. Then $K_{\lambda} = = h(N_{\lambda})$ for all $\lambda \in \Lambda$.

Proof. By [15] we have $\Delta(A_{\lambda}) = \{\tau_{\lambda} \mid \tau \in K_{\lambda}\}$, where τ_{λ} is the mapping from A_{λ} into C defined by $\tau_{\lambda}(x + N_{\lambda}) = \tau(x)$ for each $x + N_{\lambda} \in A_{\lambda}$. On the other hand, we have $h(N_{\lambda}) = \{\tau \mid \tau_{\lambda} \in \Delta(A_{\lambda})\}$ by [13], Theorem 4.1. So we can see that $K_{\lambda} = h(N_{\lambda})$ for all $\lambda \in \Lambda$.

REMARK. We shall always assume that the family $\mathcal{P} = \{n_{\lambda} \mid \lambda \in \Lambda\}$ is saturated, in other words, if n_{1} , $n_{2} \in \mathcal{P}$ then $n_{M} = \max\{n_{1}, n_{2}\} \in \mathcal{P}$ where n_{M} is the seminorm of A defined by $n_{M}(x) = \max\{n_{1}(x), n_{2}(x)\}$ for each $x \in A$.

Let $\overline{V}_{M} = \{x \in A \mid n_{M}(x) \leq 1\}$ and $K_{M} = \Delta(A) \cap \overline{V}_{M}^{o}$. Then we have

LEMMA 1.5. $K_{M} = K_{1} \cup K_{2}$ where $K_{i} = \Delta(A) \cap \overline{V}_{i}^{o}$ with i = 1, 2.

Proof. Let $N_{M} = \{x \in A \mid r_{M}(x) = 0\}$. Then it is easy to see that $N_{M} = N_{1} \cap N_{2}$ where $N_{1} = \{x \in A \mid r_{1}(x) = 0\}$ with i = 1, 2. Thus,

 $K_{M} = h(N_{M}) = h(N_{1} | \Pi N_{2}) = h(N_{1}) | U h(N_{2}) = K_{1} | U K_{2}.$

COROLLARY 1.1. The family $\Re(\Lambda) = \{K_{\lambda} \mid \lambda \in \Lambda\}$ is closed under a finite union.

2. On function algebras. Let X be a completely regular space and let C(X) be the algebra of all continuous complex-valued functions defined on X. As it is generally known C(X) can be equipped by several kind of topologies, usually by the so-called *compact-open topology* which is defined by the family $\mathcal{P}(X) = \{n_{K} \mid K \in \mathcal{K}(X)\}$ of seminorms where

$$n_{K}(x) = \sup_{t \in K} |x(t)|$$

for each $x \in C(X)$ and $\Re(X)$ is the set of all compact subsets of X.

Let $\Re_0 < \Re(X)$ be a family of compact subsets of X with properties

$$U \{K \mid K \in \mathcal{K}_0\} = X$$
(2.1)

and

if
$$K_1, K_2 \in \mathfrak{X}_0$$
 then $K_1 \cup K_2 \in \mathfrak{X}_0$. (2.2)

If $\mathcal{P}_0 = \{r_K \mid K \in \mathcal{K}_0\}$ then we shall denote by $T(\mathcal{P}_0)$ the topology in C(X) generated by the family \mathcal{P}_0 . The properties of topological algebra $(C(X), T(\mathcal{P}_0))$ were considered in [16]. Obviously $T(\mathcal{P}_0)$ equals the compact-open topology if for each $K \in \mathcal{K}(X)$ there is $K_1 \in \mathcal{H}_0$ such that $K \subseteq K_1$. The properties of C(X) with the compact-open topology can be found, for example, in [7] or in [18]. In the following we shall give some results concerning the algebra $(C(X), T(\mathcal{P}_0))$.

LEMMA 2.1. Let X be a completely regular space. Then

- (a) $\Delta(C(X),T(\mathcal{P}_0)) = \{\tau_t | t \in X\}$ where $\tau_t(g) = g(t)$ for each $g \in C(X)$,
- (b) if I is a closed ideal of $(C(X),T(\mathcal{P}_0))$ then k(h(I)) = I,
- (c) if $n_{K_1} n_{K_2} \in \mathcal{P}_0$ and $n_{M} = \max\{n_{K_1}, n_{K_2}\}$ then $n_{M} = n_{K_1} \cup K_2$

Proof. For the proof of part (a) see [15], Example. 7.6. Part (b) can be proved in a similar fashion as the corresponding result for the compact-open topology (cf.[13], p.333). Part (c) is obvious. It is well known that C(X) with the compact-open topology is complete if and only if X is the so-called k_R -space. The space X is called a k_R -space if from $g|K \in C(K)$ for each $K \in \mathcal{K}(X)$ follows that $g \in C(X)$ (cf., for example, [2] or [6]). We shall call X a $k(\mathcal{K}_0)_R$ -space if the condition $g|K \in C(K)$ for each $K \in \mathcal{K}_0$ implies that $g \in C(X)$.

THEOREM 2.1. Let X be a completely regular space. Then $(C(X), T(\mathcal{P}_0))$ is complete if and only if X is a $k(\mathfrak{X}_0)_{R}$ -space.

Proof. Suppose that X is a $k(\mathfrak{N}_0)_R$ -space. Now it easy to see that $(C^X, T(\mathcal{P}_0))$ is complete when C^X is 13 the algebra of all C-valued functions defined on X. Obviously $(C(X),T(\mathcal{P}_0))$ is a closed subalgebra of $(C^X,T(\mathcal{P}_0))$ from which it follows that $(C(X), T(\mathcal{P}_0))$ is complete. Suppose now that $(C(X), T(\mathcal{P}_0))$ is complete and let $g \in C^X$ be a function for which $g | K \in C(K)$ for all $K \in \mathcal{R}_0$. Since each $K \in \mathcal{R}_0$ is compact and X is completely regular there is an extension $G_{y} \in C(X)$ of g for all K by Tietzes extension theorem (see [5], Theorem 5.1). The family π_0 is partially ordered by set inclusion. It is also directed because π_0 has property (2.2). So $\{G_K\}_{K \in \mathcal{K}_0}$ is a net in C(X). Obviously we have $\lim_{\mathbf{K}} \mathbf{G}_{\mathbf{K}} = \mathbf{g}$. Since $(C(\mathbf{X}), T(\mathcal{P}_{0}))$ is complete we can see that $g \in C(X)$. Thus X is a $k(\mathcal{K}_0)_{R}$ -space.

3. On functional representation of a locally m-convex algebra. It was earlier noted that $\hat{A} \subseteq C(\Delta(A))$ when A is a commutative locally m-convex algebra. If we now define a topology in $C(\Delta(A))$ by the family $\mathcal{P}(A) = \{n_{K_{\lambda}} \mid \lambda \in A\}$ of seminorms where

$$n_{K_{\lambda}}(g) = \sup_{\tau \in K_{\lambda}} |g(\tau)|$$

for each $g \in C(\Delta(A))$ and denote this topology by $T(\Lambda)$ then $(C(\Delta(A)), T(\Lambda))$ is a topological algebra of the same kind as was considered in Chapter 2. Namely, the family $\mathcal{K}(\Lambda)$ has by Lemmas 1.3 and 1.5 the following properties:

$$U \{K_{\lambda} \mid \lambda \in \Lambda\} = \Delta(\Lambda)$$
(3.1)

and

if $K_1, K_2 \in \mathfrak{K}(\Lambda)$ then $K_1, U, K_2 \in \mathfrak{K}(\Lambda)$. (3.2) Since \hat{A} is a subalgebra of $C(\Lambda(\Lambda))$ we can also equip it with

5*

the topology T(A). So we can next consider a locally m-convex algebra $(\widehat{A}, T(A))$.

LEMMA 3.1. Let $(A,T(\mathcal{P}))$ be a commutative locally m-convex algebra. Then the Gelfand mapping from $(A,T(\mathcal{P}))$ onto $(\hat{A},T(\Lambda))$ is continuous.

Proof. Since $|\tau(\mathbf{x})| \leq n_{\lambda}(\mathbf{x})$ for all $\tau \in \mathbf{K}_{\lambda}$, $\mathbf{x} \in \mathbf{A}$ and $\lambda \in \Lambda$ we have $n_{\mathbf{K}_{\lambda}}(\mathbf{x}) = \sup_{\tau \in \mathbf{K}_{\lambda}} |\mathbf{x}(\tau)| \leq n_{\lambda}(\mathbf{x})$ for all $\mathbf{x} \in \mathbf{A}$ and $\lambda \in \Lambda$ from which the result follows.

If each seminorm $n_{\lambda} \in \mathcal{P}$ has the property

$$n_{\chi}(x^2) = n_{\chi}(x)^2$$

for each $x \in A$ we shall call $(A,T(\mathcal{P}))$ a square algebra. For square algebras we have

THEOREM 3.1. Let $(A,T(\mathcal{P}))$ be a commutative locally m-convex algebra. Then $(A,T(\mathcal{P}))$ is a square algebra if and only if

 $n_{\lambda}(x) = n_{K_{\lambda}}(x)$ for all $x \in A$ and $\lambda \in A$. (3.3) Moreover, if $(A,T(\mathcal{P}))$ is a square algebra then the Gelfand mapping is a semi-isomorphism from $(A,T(\mathcal{P}))$ onto $(\hat{A},T(\Lambda))$.

Proof. If $(A,T(\mathcal{P}))$ is a square algebra then

 $n_{\lambda}((x + N_{\lambda})^2) = n_{\lambda}(x^2) = n_{\lambda}(x)^2 = (n(x + N_{\lambda}))^2$ for all $\lambda \in \Lambda$ and we can see that A_{λ} and therefore also \tilde{A}_{λ} are normed square algebras. In the proof of Lemma 1.4 we saw that $\Delta(A_{\lambda}) = \{\tau_{\lambda} \mid \tau \in K_{\lambda}\}$ for all $\lambda \in \Lambda$ where $\tau_{\lambda}(x + N_{\lambda}) =$ $\tau(x)$. Now the mapping $\tau + \tau_{\lambda}$ is a homeomorphism from K_{λ} onto $\Delta(A_{\lambda})$. As $\Delta(A_{\lambda})$ and $\Delta(\tilde{A}_{\lambda})$ are homeomorphic by Corollary 2.1 of [13] then the elements of $\Delta(\tilde{A}_{\lambda})$ will be denoted also by τ_{λ} . Now by using Theorem 5.1.2 of [9] we have

$$\dot{n}_{\lambda}(\mathbf{x} + \mathbf{N}_{\lambda}) = \sup_{\substack{\tau_{\lambda} \in \Delta(\widetilde{A}_{\lambda})}} |(\mathbf{x} + \mathbf{N}_{\lambda})^{\uparrow}(\tau_{\lambda})|.$$

But $(x + N_{\lambda})^{2}(\tau_{\lambda}) = \hat{x}(\tau)$ for all $\tau \in K_{\lambda}$. So

$$n_{\lambda}(\mathbf{x}) = n_{\lambda}(\mathbf{x} + \mathbf{N}_{\lambda}) = \sup_{\tau \in K_{\lambda}} |\hat{\mathbf{x}}(\tau)| = n_{\mathbf{K}_{\lambda}}(\hat{\mathbf{x}}).$$

Suppose now that the equality (3.3) holds. Then

$$n_{\lambda}(x^{2}) = n_{K_{\lambda}}(\hat{x}^{2}) = n_{K_{\lambda}}(\hat{x})^{2} = n_{\lambda}(x)^{2}$$

for all $\lambda \in \Lambda$ and $x \in \Lambda$ which shows that $(\Lambda, T(\mathcal{P}))$ is a square algebra.

If now (3.3) is valid then for each seminorm n_{λ} there is a unique seminorm $q_{\lambda} = n_{K_{\lambda}}$ such that $n_{\lambda}(x) = q_{\lambda}(x)$ for each $x \in A$. So, if $(A,T(\mathcal{P}))$ is a square algebra then the Gelfand mapping is a semi-isometric isomorphism from $(A,T(\mathcal{P}))$ onto $(\hat{A},T(\Lambda))$.

COROLLARY 3.1. Let $(A,T(\mathcal{P}))$ be a square algebra. Then $k(h(N_{\lambda})) = N_{\lambda}$ for all $\lambda \in \Lambda$.

Proof. We only have to show that $k(h(N_{\lambda})) \subseteq N_{\lambda}$. Let $x \in k(h(N_{\lambda}))$ be arbitrary. Then $\hat{x}(\tau) = 0$ for all $\tau \in h(N_{\lambda}) = K_{\lambda}$. Therefore

$$n_{\lambda}(\mathbf{x}) = n_{\mathbf{K}_{\lambda}}(\mathbf{x}) = \sup_{\tau \in \mathbf{K}_{\lambda}} |\mathbf{x}(\tau)| = 0.$$

So we can see that $x \in N_{\lambda}$ which completes the proof.

REMARK. Some properties of (A,T(A)) have been studied in [9].

4. On algebras with involution. Let $(A,T(\mathcal{P}))$ be a locally m-convex algebra and $x \rightarrow x^*$ be an involution in A. We say that $(A,T(\mathcal{P}))$ is a star algebra if

$$n_{\lambda}(\mathbf{x}\mathbf{x}') = n_{\lambda}(\mathbf{x})^{-1}$$

for each $x \in A$ and $\lambda \in A$. It is easy to see that a star algebra is a square algebra (cf. [2], p.222). Moreover, if $(A,T(\mathcal{P}))$ is a complete star algebra then each A_{λ} is complete (cf.[4] or [18], p.179). So, for a complete star algebra, each factor algebra A_{λ} is a B^* -algebra.

Next we shall consider the functional representation of algebra $(A,T(\mathcal{P}))$. This subject has been studied, for example, in the following papers [1,2,6,9,12,13,15,16,19].

THROREM 4.1. Let $(A,T(\mathcal{P}))$ be a commutative complete star algebra. Then the Gelfand mapping is semi-isometric isomorphism from $(A,T(\mathcal{P}))$ onto $(C(\Delta(A)),T(\Lambda))$.

Proof. By Theorem 3.1. the Gelfand mapping is a semi-isometric isomorphism from $(A,T(\mathcal{P}))$ onto $(\hat{A},T(A))$. So it suffices to prove that $\hat{A} = C(\Delta(A))$. This result has been proved in [9] or in [15] by using the so-called projective limits. For the properties of projective limits see, for example, [8] or [15]. We shall however use here a more direct method.

Let $g \in C(\Delta(A))$ be arbitrary. Since A_{λ} is a commutative B^* -algebra for all $\lambda \in \Lambda$ we have $\hat{A}_{\lambda} = C(\Delta(A_{\lambda}))$ for each $\lambda \in \Lambda$ by the Gelfand-Naimark Theorem (cf., for example, [10], p.277, or [17], p. 230-232).

Let now $\lambda \in \Lambda$ and $\tau \in K_{\lambda}$. Then as above there exists $\tau_{\lambda} \in \Delta(A_{\lambda})$ such that $\tau(x) = \tau_{\lambda}(x + N_{\lambda})$ for each $x \in \Lambda$. Moreover, let $\varkappa_{\lambda}(x) = x + N_{\lambda}$ for each $x \in \Lambda$. Then $\tau = \tau_{\lambda}(\varkappa_{\lambda}) = \varkappa_{\lambda}^{*}(\tau_{\lambda})$. As $g \circ \varkappa_{\lambda}^{*} \in C(\Delta(A_{\lambda}))$ then there exists an element $x_{\lambda} \in \Lambda$ such that $g \circ \varkappa_{\lambda}^{*} = (x_{\lambda} + N_{\lambda})^{2}$. Consequently, for each $\lambda \in \Lambda$ and $\tau \in K_{\lambda}$ we have

 $\begin{array}{l} g(\tau) = g \circ \varkappa_{\lambda}^{*}(\tau_{\lambda}) = (x_{\lambda} + N_{\lambda}) \ (\tau_{\lambda}) = \tau(x_{\lambda}) = x_{\lambda}(\tau). \end{array}$ The index set Λ can be partially ordered by setting $\lambda_{1} \leq \lambda_{2} \leftrightarrow n_{K_{\lambda}}(f) \leq n_{K_{\lambda}}(f) \ \text{for all } f \in C(\Delta(\Lambda)). \ \text{Then } \Lambda \ \text{is a} \\ \text{directed set by (3.2). So } \{x_{\lambda}\}_{\lambda \in \Lambda} \ \text{is a net in } (\hat{A}, T(\Lambda)). \ \text{Let} \\ \text{now } \mu \ \text{be a fixed element in } \Lambda. \ \text{It is easy to see that} \\ n_{K_{\mu}}(x_{\lambda} - g) = 0 \ \text{for all } \lambda \geq \mu. \ \text{Therefore } \lim_{\lambda \to \Lambda} x_{\lambda} = g. \end{array}$

Because $(A,T(\mathcal{P}))$ and $(A,T(\Lambda))$ are semi-isometrically isomorphic by Theorem 3.1 they can be identified as topological algebras and therefore from the completeness of $(A,T(\mathcal{P}))$ it follows that $(\hat{A},T(\Lambda))$ is also complete. So $(\hat{A},T(\Lambda))$ is a closed subalgebra of $(C(\Delta(A)),T(\Lambda))$ and since g is the limit of a net in $(\hat{A},T(\Lambda))$ we can see that $g \in \hat{A}$ which completes the proof.

REMARK. Since

$$(\mathbf{x} + \mathbf{N}_{\lambda})^{\hat{}}(\tau_{\Lambda}) = \overline{(\mathbf{x} + \mathbf{N}_{\lambda})^{*}(\tau_{\lambda})}$$

for all $\lambda \in \Lambda$ we can see that

$$(\mathbf{x}^*) (\tau) = \hat{\mathbf{x}}(\tau)$$

for all $x \in A$ and $\tau \in \Delta(A)$ where the bar denotes the complex conjugation. Thus, the Gelfand mapping is also a ^{*}-isomorphism.

Proof. This result can be shown by similar fashion as for commutative B^* -algebras.

COROLLARY 4.3. Let $(A,T(\mathcal{P}))$ be as in Corollary 4.2. Let I be a closed ideal of A and let A_0 be as in Corollary 4.1. Then

$$I = \bigcap \{I + N_{\lambda} \mid \lambda \in \Lambda_{0}\}$$

Proof. We only have to note that $h(I + N_{\lambda}) = h(I) \cap h(N_{\lambda}) = E_{\lambda}$ for all $\lambda \in \Lambda$ from which the result follows, since

 $I + N_{\lambda} = k(h(I + N_{\lambda})) = k(E_{\lambda}) = I_{\lambda}$ for all $\lambda \in A$.

COROLLARY 4.4. Let $(A,T(\mathcal{P}))$ be as in Corollary 4.1. Then A_{λ} is complete for each $\lambda \in \Lambda$.

Proof. It is easy to see that by Theorem 3.1 the mapping $x + N_{\lambda} \rightarrow x |h(N_{\lambda})$ where $x + N_{\lambda} \in A_{\lambda}$ is an isometric isomorphism from A_{λ} onto $C(h(N_{\lambda}))$ from which the result follows.

In Chapter 2 we gave the necessary and sufficient condition for algebra $(C(X,T(\mathcal{P}_0)))$ to be complete. By using Theorem 2.1 we obtain now the following result:

COROLLARY 4.5. A commutative star algebra $(A,T(\mathcal{P}))$ for which $\hat{A} = C(\Delta(A))$ is complete if and only if the carrier space $\Delta(A)$ is a $k(\mathcal{K}(\Lambda))_D$ -space.

5. On quotient algebras. Let $(A, T(\mathcal{P}))$ be a commutative locally m-convex algebra and let $I \subset A$ be a closed ideal. Then the quotient algebra A/I will also be a locally m-convex algebra if we define the topology in A/I by the family $\dot{\mathcal{P}}$ of seminorms where $\dot{\mathcal{P}} = \{\dot{n}_{\lambda} \mid \lambda \in \Lambda\}$ and

$$n_{\lambda}(x + I) = \inf_{y \in I} n_{\lambda}(x + y)$$

for all $x + I \in A/I$ and $\lambda \in \Lambda$. We shall denote this topology by $T(\hat{\mathcal{P}})$. Furthermore, we shall denote

$$N_{\lambda} = \{x + I \mid n_{\lambda}(x + I) = 0\},\$$

6*

THEOREM 4.2. Let $(A,T(\mathcal{P}))$ be a commutative star algebra for which $\hat{A} = C(\Delta(A))$. Then k(h(I)) = I for all closed ideals of A.

Proof. Let I be an arbitrary closed ideal of A. To prove the theorem it suffices to show that $k(h(I)) \subseteq I$. So let $x \in k(h(I))$. Then $\hat{x}(\tau) = 0$ for all $\tau \in h(I)$. If we now define the mapping $\tau \to \omega_{\tau}$ for each $\tau \in \Delta(A)$, where ω_{τ} is defined by $\omega_{\tau}(\hat{x}) = \tau(x)$ for each $x \in A$, then by Theorem 3.1 and Lemma 1.2 this mapping is a homeomorphism from $\Delta(A)$ onto $\Delta(\hat{A}) = -\Delta(C(\Delta(A)))$. Therefore we have

$$h(I) = \{\omega_{\perp} \mid \tau \in h(I)\}$$

where $\hat{I} = \mathcal{G}(I)$ is a closed ideal in $C(\Delta(A))$. From the condition $\omega_{\tau}(\hat{x}) = \tau(x) = \hat{x}(\tau) = 0$ for each $\tau \in h(I)$, it follows that $\hat{x} \in k(h(\hat{I}))$. As $k(h(\hat{I})) = \hat{I}$ by Corollary 8.3.1 in [10] then $\hat{x} \in \hat{I}$, so $x \in I$ whereas \mathcal{G} is an one-to-one mapping (cf. [2], p. 263).

COROLLARY 4.1. Let I be a closed ideal of a commutative star algebra $(A,T(\mathcal{P}))$ for which $\hat{A} = C(\Delta(A))$. Furthermore, let $\mathbb{E}_{\lambda} = h(I) \cap K_{\lambda}$ for each $\lambda \in \Lambda$ and let

$$\Lambda_0 = \{\lambda \in \Lambda \mid E_\lambda \neq \emptyset\}.$$

If we define $I_{\lambda} = k(E_{\lambda})$ then

$$I = \bigcap \{I_{\lambda} \mid \lambda \in \Lambda_{0}\}.$$

Proof. We have $I = k(h(I)) = k(U_{\lambda \in \Lambda_{n}} E_{\lambda}) = f_{\lambda \in \Lambda_{n}} k(E_{\lambda}) = f_{\lambda \in \Lambda_{n}} I_{\lambda}.$

We shall say that a locally m-convex algebra $(A,T(\mathcal{P}))$ is normal if the elements of \hat{A} separate any two disjoint closed subsets F_1 and F_2 of the carrier space $\Delta(A)$. It is easy to see that for a normal locally m-convex algebra the carrier space is a normal topological space. For normal star algebra we have

COROLLARY 4.2. Let $(A,T(\mathcal{P}))$ be a commutative normal algebra for which $\hat{A} = C(\Delta(A))$ and let I_1 and I_2 be two closed ideals in A. Then $I_1 \oplus I_2$ is also a closed ideal of A or $I_1 \oplus I_2 = A$.

$$\dot{\Psi}_{\lambda} = \{x + I \mid \dot{\rho}_{\lambda}(x + I) \leq 1\},$$
$$\dot{R}_{\lambda} = \Delta(A/I) \cap \overline{\dot{\Psi}_{\lambda}^{o}}.$$

If we define a mapping τ_{ω} for $\omega \in \Delta(A/I)$ as following

 $\tau_{i}(\mathbf{x}) = \omega(\mathbf{x} + \mathbf{I})$

for each $x \in A$ then by [13] (Theorem 4.1, p. 339) the mapping $\omega \to \tau_{(1)}$ is a homeomorphism from $\Delta(A/I)$ onto h(I).

THROREM 5.1. Let $(A,T(\mathcal{P}))$ be a commutative locally m-convex algebra and let I be a closed ideal of A. Then

 $\{\tau_{\omega} \mid \omega \in h(\dot{N}_{\lambda})\} = h(I) \cap K_{\lambda}$

for all $\lambda \in \Lambda$.

Proof. Let $\lambda \in \Lambda$ be fixed and $\omega \in h(\dot{N}_{\lambda})$ be arbitrary. Then we have $\omega(x + I) = 0$ for all $x + I \in \dot{N}_{\lambda}$. Now

$$\tau_{\omega}(\mathbf{u} + \mathbf{v}) = \omega(\mathbf{u} + \mathbf{v} + \mathbf{I}) = \omega(\mathbf{v} + \mathbf{I})$$

for each $u \in I$, $v \in N_{\lambda}$. But $|\omega(v + I)| \leq n_{\lambda}(v + I) \leq n_{\lambda}(v) = 0$. Thus, $\omega(v + I) = 0$ and we have $\tau_{\omega}(u + v) = 0$ for all $u \in I$, $v \in N_{\lambda}$ from which it follows that $\tau_{\omega} \in h(I + N_{\lambda})$. But $h(I + N_{\lambda}) = h(I) \cap h(N_{\lambda}) = h(I) \cap K_{\lambda}$.

Let now $\tau \in h(I) \cap K_{\lambda}$ be arbitrary. Since $h(I) = \{\tau_{\omega} \mid \omega \in \Delta(A/I)\}$ we can see that there is $\omega \in \Delta(A/I)$ such that $\tau = \tau_{\omega}$. It now suffices to prove that $\omega(x + I) = 0$ for all $x + I \in \dot{N}_{\lambda}$. Let $x + I \in \dot{N}_{\lambda}$. Then for each $\varepsilon > 0$ there is $y_0 \in I$ such that $n_{\lambda}(x + y_0) < \varepsilon$. So $|\omega(x + I)| = |\tau_{\omega}(x)| = |\tau(x)| = |\tau(x + y_0)| \le n_{\lambda}(x + y_0) < \varepsilon$ which completes the proof.

COROLLARY 5.1. Let A and I be as in Theorem 5.1. Then the mapping $\omega \rightarrow \tau_{\omega}$ is a homeomorphism from $h(\dot{N}_{\lambda}) = \dot{K}_{\lambda}$ onto $h(I) \cap K_{\lambda}$ for each $\lambda \in \Lambda$.

Next we shall consider the functional representation of the quotient algebra A/I. Let I be a closed ideal of algebra $(A, T(\mathcal{P}))$. Then the following notations will be used: $E_{\lambda} = h(I) \cap K_{\lambda}$ for each $\lambda \in \Lambda$, $\Lambda_0 = \{\lambda \in \Lambda \mid E_{\lambda} \neq \emptyset\}$ and $T(\mathcal{P}_0)$ is the topology in A/I generated by the family of seminorms $\dot{\mathcal{P}}_0 = \{n_{\lambda} \mid \lambda \in \Lambda_0^-\}$. Furthermore, we shall denote by $T(\Lambda_0^-)$ the topology in C(h(I)) generated by $\{n_{E_{\lambda}} \mid \lambda \in \Lambda_0^-\}$.

THEOREM 5.2. If $(A,T(\mathcal{P}))$ be a commutative normal star algebra for which $\hat{A} = C(\Delta(A))$ and I be a closed ideal of A then $T(\mathcal{P}_0)$ is a locally m-convex topology in A/I and the mapping

$$\mathbf{x} + \mathbf{I} + \mathbf{x} | \mathbf{h}(\mathbf{I}) \tag{5.1}$$

is a semi-isometric isomorphism from $(A/I,T(P_0))$ onto $(C(h(I)),T(A_0))$ such that

 $r_{\lambda}(x + I) = r_{E_{\lambda}}(x)$ for all $x + I \in A/I$ and $\lambda \in \Lambda_0$. (5.2) Furthermore, we have

$$\dot{n}_{\lambda}((x + I)(x + I)^{*}) = \dot{n}_{\lambda}(x + I)^{2} \text{ for all } x + I \in A/I \text{ and}$$

$$\lambda \in \Lambda_{0}.$$
(5.3)

Proof. Obviously $T(\dot{P}_0)$ has all the properties of a locally m-convex topology. We only have to prove that from the condition $\dot{P}_{\lambda}(x + I) = 0$ for all $\lambda \in \Lambda_0$ it follows that x + I = 0 or equivalently that $x \in I$. We shall show this after we have proved (5.2).

It is easy to see that the mapping $x + I \rightarrow x_1 h(I)$ is a linear homomorphism from A/I into C(h(I)). If $x_1 h(I) = 0$, then $\hat{x}(\tau) = 0$ for all $\tau \in h(I)$. So $x \in k(h(I)) = I$ by Theorem 4.2 from which it follows that x + I = 0 and we have shown that the mapping defined in (5.1) is an injection. To prove the surjectivity let $g \in C(h(I))$ be arbitrary. Since h(I) is a closed subset of normal space $\Delta(A)$ there is a function $G \in C(\Delta(A))$ by Tietzes extension theorem such that $G_1 h(I) = g$. Now $\hat{A} = C(\Delta(A))$. So there is $x \in A$ for which $\hat{x} = G$. Therefore

$$(\mathbf{x} + \mathbf{I})^{\prime}(\omega) = \mathbf{x}(\tau_{\omega}) = \mathbf{g}(\tau_{\omega})$$

for each $\omega \in \Delta(A/I)$ since $h(I) = \{\tau_{\omega} \mid \omega \in \Delta(A/I)\}$. This completes the proof of surjectivity.

Next we shall prove (5.2). If $x \in A$ and $y \in I$ then $n_{\lambda}(x + y) = n_{K_{\lambda}}(x + y) \ge n_{E_{\lambda}}(x + y) = n_{E_{\lambda}}(x)$ ($(y(\tau) = 0$ for all $\tau \in E_{\lambda}$ since $E_{\lambda} \subset h(I)$). Thus,

$$\hat{n}_{\lambda}(x + I) = \inf_{\substack{y \in I}} n_{\lambda}(x + y) \ge n_{\mathbb{E}_{\lambda}}(x).$$

Let now $\varepsilon > 0$, $x \in A$ and

 $U_{\lambda} = \{\tau \in \Delta(A) \mid |\hat{x}(\tau) - \hat{x}(\tau')| < \varepsilon \text{ for some } \tau' \in E_{\lambda} \}.$ Then U_{λ} is an open subset of $\Delta(A)$ and $E_{\lambda} \subset U$. Now for any $\tau \in U_{\lambda} \cap K_{\lambda}$ there is $\tau' \in E_{\lambda}$ such that $|x(\tau)| < |x(\tau')| + \varepsilon$. As $\Delta(A)$ is a regular space and h(I) is a closed subset of $\Delta(A)$ there is an open subset V of $\Delta(A)$ such that $h(I) \subset V$. It is easy to see that $W = (X \setminus (U_{\lambda} \cup V)) \cup (K_{\lambda} \setminus U_{\lambda})$ is a closed subset of $\Delta(A)$ and $W \cap h(I)$ is empty. Therefore by Urysohns lemma there is $y \in A$ for which $\hat{y}(\tau) = 1$ for each $\tau \in h(I)$ and $\hat{y}(\tau) = 0$ for each $\tau \in W$. Then $(xy)(\tau) = \hat{x}(\tau)$ for each $\tau \in h(I)$ and therefore $x - xy \in k(h(I)) = I$ for which x + I = xy + I. So

$$n_{\lambda}(\mathbf{x} + \mathbf{I}) = n_{\lambda}(\mathbf{xy} + \mathbf{I}) \le n_{\lambda}(\mathbf{xy}) = n_{\mathbf{K}_{\lambda}}(\hat{\mathbf{xy}}) = n_{\mathbf{U}_{\lambda} \cap \mathbf{K}_{\lambda}}(\hat{\mathbf{xy}}) =$$
$$= \sup_{\tau \in \mathbf{U}_{\lambda} \cap \mathbf{K}_{\lambda}} |\hat{\mathbf{x}}(\tau)| \le \sup_{\tau \in \mathbf{E}_{\lambda}} |\hat{\mathbf{x}}(\tau)| + \epsilon = n_{\mathbf{E}_{\lambda}}(\hat{\mathbf{x}}) + \epsilon$$

by Theorem 3.1. Thus $n_{\lambda}(x + I) \le n_{E}(x)$ which completes the proof of (5.2).^{λ}

Suppose that $\dot{P}_{\lambda}(x + I) = 0$ for all $\lambda \in \Lambda_0$. Then $\hat{x}(\tau) = 0$ for all $\tau \in E_{\lambda}$ where $\lambda \in \Lambda_0$. Because $\bigcup_{\lambda \in \Lambda} E_{\lambda_0} = h(I)$, we can see that $\hat{x}(\tau) = 0$ for all $\tau \in h(I)$ whence $x \in I$ which shows that $T(\dot{P}_0)$ is a Hausdorff topology. The result (5.3) follows from (5.2).

References

- Arens, R., A generalization of normed rings. Pac. J. Math., 1952, 2, 455-471.
- Beckenstein, E., Narici, L., Suffel, C., Topological algebras. North Holland Publishing Company, New York, 1977.
- Brooks, R., On commutative locally m-convex algebras. Duke Math. J., 1968, 35, 257-268.
- 4. Fragoulopoulou, M., Kadison transitivity for locally C*-algebras. J. Math. Anal. and Appl., 1985, 108, 422-429.
- 5. Dugundji, J., Topology, Allyn and Bacon. Boston, 1966.
- Hsia, Tao-Hsing, On semi-normed rings with involution. Izv. AN SSSR, 1959, 23, 509-528 (in Russian).
- Husain, T., Topology and Maps. Plunum Press, New York, 1977.
- Husain, T., Multiplicative functionals on topological algebras. Pitman Adv. Publ. Program, Boston, 1983.

7*

- 9. Inoue, A., Locally C^{*}-algebras. Mem. Sci. Kyushu Univ. (Ser.A), 1971, 25, 197-235.
- Larsen, R., Banach algebras. An Introduction, Marcel Dekker Inc., New York, 1973.
- Mallios, A., On the spectra of topological algebras. J. Funct. Anal., 1969, 3, 301-309.
- Mallios, A., On functional representation of topological algebras. J. Funct. Anal., 1970, 6, 468-488.
- Mallios, A., Topological Algebras. Selected Topics, Elsevier Science Publ. Company, New York, 1986.
- Malviya, B., On locally m-convex algebras. Math. Nachr., 1974, 60, 315-320.
- Michael, E., Locally multiplicatively-convex topological algebras. Mem. Amer. Math. Soc., 1952, 11.
- Morris, P., Wulbert, D., Functional representation of topological algebras, Pac. J. Math. 1967, 22, 323-337.
- Naimark, M., Normed Algebras. Wolters-Noorhof Publ. Groningen, 1972.
- Schmüdgen, K., Über LMC^{*}-Algebren, Math, Nachr., 1975, 68, 167-182.
- Wenjen, C., On semi-normed^{*}-algebras, Pac. J. Math., 1958, 8, 177-186.

Department of Mathematics University of Oulu Finland

Received August 11, 1990

Kommutatiivsetest lokaalselt m-kumeratest algebratest Jorma Arhippainen Resümee

Olgu A kommutatiivne lokaalselt m-kumer ühikuga C-algebra. Käesolevas töös uuritakse algebra A funktsionaalseid esitusi, Gelfandi teisenduse omadusi, kinniste ideaalide kirjeldusi ning faktoralgebra A/I funktsionaalseid esitusi kinnise ideaali I korral.

ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS 1991, 928, 29-40

Product and direct sum of L_{φ} -K(X)-spaces and related K(X)-spaces

Johann Boos and Toivo Leiger*

1. Let (X, τ) be a locally convex space. With X' and $X^{\#}$ we denote the topological dual of (X, τ) and the algebraic dual of X, respectively. A subset S of X is called *sequentially* τ -closed if $x_k \in S$ ($k \in \mathbb{N}$) and $x_k \longrightarrow a(\tau)$ implies $a \in S$ and sequentially τ -dense, if for each $a \in X$ there exists a sequence (x_k) in S with $x_k \longrightarrow a(\tau)$.

If S is any subspace of X then $\stackrel{\,\,{}_{\scriptstyle S}}{S}$ denotes the smallest sequentially τ -closed subspace of X containing S. Obviously, $\stackrel{\,\,{}_{\scriptstyle S}}{S}$ is the intersection of all sequentially τ -closed subspaces of X including S (see [3]).

2. As usually, $\omega(X)$ and $\varphi(X)$ denotes the set of all sequences $x = (x_k)$ in X and the set of all finite sequences in X, respectively. A subspace of $\omega(X)$ is called sequence space (over X).

A locally convex sequence space (E, τ_E) over X is a K(X)-space if the coordinate mappings

$$\pi_k: (E, \tau_E) \longrightarrow (X, \tau), \ x = (x_i) \longrightarrow x_k \qquad (k \in \mathsf{IN})$$

are continuous. In case of a sequence space E (over X) the β -dual is defined by

$$E^eta:=\left\{(\psi_k)\in\omega(X')\; \left|\;\; \sum_k\psi_k(x_k) \;\; ext{converges for each }\; x=(x_k)\in E
ight\}\,.$$

Each $(\psi_k) \in E^{\beta}$ defines a linear functional

$$\psi: E \longrightarrow \mathsf{IK} \ , \ x = (x_k) \longrightarrow \sum_k \psi_k(x_k) \ ;$$

therefore in case of $\varphi(X) \subset E$, this representation of ψ is uniquely determined and we may identify E^{β} as a subspace of $E^{\#}$. If E is a K(X)-space containing $\varphi(X)$ then

 $\varphi(X') \, \subset \, E^\beta \cap E' \, \subset \, E' \quad \text{and} \quad E' = \overline{\varphi(X')}^{\sigma(E',E)} \quad \text{thus} \quad E' = \overline{E^\beta \cap E'}^{\sigma(E',E)} \, .$

* During the preparation of this paper the authors were supported by the DAAD (Deutscher Akademischer.

DEFINITION (see [1]). Let E be a K(X)-space containing $\varphi(X)$. E has β -sequentially dense dual if $E^{\beta} \cap E'$ is sequentially $\sigma(E', E)$ -dense in E'.

E has a φ -sequentially dense dual if $\varphi(X')$ is sequentially $\sigma(E', E)$ -dense in E'. *E* is called L_{φ} -space, if $E' \cap \varphi(X') = E'$.

Obviously, any subspace of an L_{φ} -K(X)-space (E, τ) containing $\varphi(X)$ is an L_{φ} -K(X)-space, and E is also an L_{φ} -space if we replace τ by any weaker K(X)-topology.

3. Let X_{α} ($\alpha \in \mathcal{A}$) be linear spaces. For the product $X := \prod_{\alpha} X_{\alpha}$ one defines for each $\alpha \in \mathcal{A}$ the following linear operators:

 $pr_{lpha}: X \longrightarrow X_{lpha} \ , \ x := (x^{\delta}) := (x^{\delta})_{\delta \in \mathcal{A}} \longrightarrow x^{lpha} \ ,$

 $g_{\alpha}: X_{\alpha} \longrightarrow X, \ a \longrightarrow x = (x^{\delta}) \quad \text{with} \quad x^{\alpha} = a \quad \text{and} \quad x^{\delta} = 0 \quad \text{for} \quad \delta \neq \alpha \,.$

Furthermore, we put $X_0 := \bigoplus_{\alpha} X_{\alpha}$ where \bigoplus marks the direct sum.

For each $\alpha \in \mathcal{A}$ let $\langle X_{\alpha}, Y_{\alpha} \rangle$ be a (total) duality. Then we may identify Y_{α} and X_{α} as a subspace of $X_{\alpha}^{\#}$ and $Y_{\alpha}^{\#}$, respectively. In a natural way X and $Y_{0} := \bigoplus_{\alpha} Y_{\alpha}$ are a dual pair $\langle X, Y_{0} \rangle$ with the bilinear mapping \langle , \rangle defined by

$$\langle x,y
angle := \sum_{lpha \in \mathcal{A}_y} \langle x^lpha,y^lpha
angle$$

whereby on the right \langle , \rangle denotes the bilinear mapping of the duality $\langle X_{\alpha}, Y_{\alpha} \rangle$ and A_{y} is a finite subset of A such that $y^{\alpha} = 0$ for each $\alpha \in A \setminus A_{y}$. On the base of the statements

$$\langle pr_{\alpha}x, y^{\alpha} \rangle = \langle x, g_{\alpha}y^{\alpha} \rangle$$
 and $\langle a, pr_{\alpha}y \rangle = \langle g_{\alpha}a, y \rangle$

we get for each $\alpha \in \mathcal{A}$ the continuity of the projections

$$pr_{\alpha}: (X, \sigma(X, Y_0)) \longrightarrow (X_{\alpha}, \sigma(X_{\alpha}, Y_{\alpha})),$$
$$pr_{\alpha}: (Y_0, \sigma(Y_0, X)) \longrightarrow (Y_{\alpha}, \sigma(Y_{\alpha}, X_{\alpha})),$$

and of the injections

$$g_{\alpha} : (X_{\alpha}, \sigma(X_{\alpha}, Y_{\alpha})) \longrightarrow (X, \sigma(X, Y_{0})),$$
$$g_{\alpha} : (Y_{\alpha}, \sigma(Y_{\alpha}, X_{\alpha})) \longrightarrow (Y_{0}, \sigma(Y_{0}, X)).$$

Proving, for example, the continuity of the operator listed at last, we assume $x \in X$ and that $(a^{(\gamma)})_{\alpha\in\Gamma}$ is a net in $(Y_{\alpha}, \sigma(Y_{\alpha}, X_{\alpha}))$ converging to $a \in Y_{\alpha}$. Thus we get

$$\langle x, g_{\alpha} a^{(\gamma)} \rangle = \langle pr_{\alpha} x, a^{(\gamma)} \rangle \xrightarrow{\Gamma} \langle pr_{\alpha} x, a \rangle = \langle x, g_{\alpha} a \rangle$$

and therefore $g_{\alpha}a^{(\gamma)} \xrightarrow{\Gamma} g_{\alpha}a \ (\sigma(Y_0, X))$ which proves the weak continuity of the injection $g_{\alpha}: Y_{\alpha} \longrightarrow Y_0$.

On account of the continuity of the operators listed above, the spaces $(X_{\alpha}, \sigma(X_{\alpha}, Y_{\alpha}))$ and $(g_{\alpha}(X_{\alpha}), \sigma(X, Y_{0})|_{g_{\alpha}(X_{\alpha})})$ and the spaces $(Y_{\alpha}, \sigma(Y_{\alpha}, X_{\alpha}))$ and $(g_{\alpha}(Y_{\alpha}), \sigma(Y_{0}, X)|_{g_{\alpha}(Y_{\alpha})})$ are in each case algebraicly and topologically isomorphic.

PROPOSITION 1. The statement $\bigoplus_{\alpha} \sigma(Y_0, X) = \bigoplus_{\alpha} N_{\alpha}$

holds for all subspaces N_{α} of Y_{α} ($\alpha \in \mathcal{A}$).

Proof. First of all, we prove that $\bigoplus_{\alpha} \overset{i}{N_{\alpha}}$ is sequentially $\sigma(Y_0, X)$ -closed. If $y^{(n)} \longrightarrow y(\sigma(Y_0, X)))$ for $y^{(n)} \in \bigoplus_{\alpha} \overset{i}{N_{\alpha}}$ and $y = (y^{\alpha}) \in Y_0$ then we obtain $pr_{\alpha}y^{(n)} \in \overset{i}{N_{\alpha}}$, $pr_{\alpha}y^{(n)} \overset{n \to \infty}{\longrightarrow} y^{\alpha}(\sigma(Y_{\alpha}, X_{\alpha}))$, implying $y^{\alpha} \in \overset{i}{N_{\alpha}}$ ($\alpha \in \mathcal{A}$). Consequently, $y \in \left(\prod_{\alpha} \overset{i}{N_{\alpha}}\right) \cap Y_0 = \bigoplus_{\alpha} \overset{i}{N_{\alpha}}$ after which the sequential $\sigma(Y_0, X)$ -closedness of $\bigoplus_{\alpha} \overset{i}{N_{\alpha}}$ is verified. By that and $\bigoplus_{\alpha} N_{\alpha} \subset \bigoplus_{\alpha} \overset{i}{N_{\alpha}}$ we get $\underset{\alpha}{\bigcup} \overset{i}{N_{\alpha}} \subset \bigoplus_{\alpha} \overset{i}{N_{\alpha}}$.

To prove the converse inclusion we remark first of all that

$$\frac{\left|\int_{\alpha} \sigma(Y_0, X)\right|}{g_{\alpha}(N_{\alpha})} = g_{\alpha} \left(\frac{\left|\int_{\alpha} \sigma(Y_{\alpha}, X_{\alpha})\right|}{N_{\alpha}} \right)$$
(*)

is valid for each $\alpha \in \mathcal{A}$. Namely, $g_{\alpha}\left(\overrightarrow{N_{\alpha}}\right)$ is sequentially $\sigma(Y_{0}, X)$ -closed in Y_{0} because of the weak continuity of the projection $pr_{\alpha}: Y_{0} \longrightarrow Y_{\alpha}$; therefore we have $\overline{g_{\alpha}(N_{\alpha})} \subset g_{\alpha}\left(\overrightarrow{N_{\alpha}}\right) \subset g_{\sigma}(Y_{\alpha})$. Since $g_{\alpha}: (Y_{\alpha}, \sigma(Y_{\alpha}, X_{\alpha})) \longrightarrow (g_{\alpha}(Y_{\alpha}), \sigma(Y_{0}, X)|_{g_{\alpha}(Y_{\alpha})})$ is an algebraic and topological isomorphism, we have proved (*).

Now, let $y = (y^{\alpha}) \in \bigoplus_{\alpha} \overset{\smile}{N_{\alpha}}$. Then we may represent y by $y = \sum_{\alpha \in \mathcal{A}_{y}} g_{\alpha} y^{\alpha}$ whereby \mathcal{A}_{y} is a suitable finite subset of \mathcal{A} . On account of (*) we get

$$g_{\alpha}y^{\alpha}\in g_{\alpha}\left(\overset{\square}{N_{\alpha}}\right)=\overset{\square}{g_{\alpha}(N_{\alpha})}\subset\overset{\square}{\bigoplus}_{\alpha}N_{\alpha}.$$

Since $\bigoplus_{\alpha} N_{\alpha}$ is a subspace of $\bigoplus_{\alpha} Y_{\alpha}$ we obtain $y \in \bigoplus_{\alpha} N_{\alpha}$ with which the inclusion $\bigoplus_{\alpha} N_{\alpha} \supset \bigoplus_{\alpha} N_{\alpha}$ is verified.

In the following proposition we are dealing with the case $\mathcal{A} := IN$.

PROPOSITION 2. If
$$M_i$$
 $(i \in \mathbb{N})$ are subspaces of X_i then

$$\prod_i^{\sigma(X,Y_0)} = \prod_i^{\sigma(X_i,Y_i)} A_i$$

Proof. The inclusion $`\subset$ ' may be proved analoguously to the corresponding inclusion in **Proposition 1.** For a prove of the converse inclusion, first of all, we check the statement

 $\bigoplus_{i} \stackrel{\smile}{M_{i}} \text{ is sequentially } \sigma(X, Y_{0}) \text{-dense in } \prod_{i} \stackrel{\smile}{M_{i}}.$ (**)

Let $x = (x^i) \in \prod_i M_i$. Then $x^{[m]} := (x^1, \ldots, x^m, 0, \ldots)$ $(m \in \mathbb{N})$ are members of the subspace $\bigoplus_i M_i$. For any given $y \in Y_0$ there exists an $n \in \mathbb{N}$ such that $y^i = 0$ for i > n. Therefore,

$$\langle x^{[m]}, y \rangle = \sum_{i=1}^{\min\{n,m\}} \langle x^i, y^i \rangle \xrightarrow{m \to \infty} \sum_{i=1}^n \langle x^i, y^i \rangle = \langle x, y \rangle$$

and consequently $x^{[m]} \xrightarrow{m \to \infty} x (\sigma(X, Y_0))$. By it, (**) is proved.

With Proposition 1 we get

By it

$$\bigoplus_{i} \overset{\smile}{M_{i}} \overset{\sigma(X_{i},Y_{i})}{M_{i}} = \bigoplus_{i} \overset{\sigma\left(\bigoplus_{i} X_{i},\prod_{i} Y_{i}\right)}{M_{i}} \subset \bigoplus_{i} \overset{\smile}{M_{i}} \overset{\sigma(X,Y_{0})}{M_{i}} \subset \prod_{i} \overset{\smile}{M_{i}} M_{i}$$
and (**) we get the desired inclusion
$$\prod_{i} M_{i} \supset \prod_{i} M_{i}$$
.

4. Let X_{α} ($\alpha \in \mathcal{A}$) be locally convex spaces. We endow the product space $X := \prod_{\alpha} X_{\alpha}$ with the product topology, that is, with the coarsest topology such that all projections $pr_{\alpha}: X \longrightarrow X_{\alpha}$ ($\alpha \in \mathcal{A}$) are continuous. It is well-known that $X' \cong \bigoplus_{\alpha} X'_{\alpha}$, that means, X' is algebraicly isomorphic to the direct sum $\bigoplus_{\alpha} X'_{\alpha}$.

Now, for each $\alpha \in \mathcal{A}$ let F_{α} be a $K(X_{\alpha})$ -space containing $\varphi(X_{\alpha})$. We put

$$F^* := \prod_{\alpha} F_{\alpha} = \left\{ \chi^* = (\chi^{\alpha})_{\alpha} = \left((x_k^{\alpha})_{k \in \mathbb{N}} \right)_{\alpha \in \mathcal{A}} \mid \chi^{\alpha} := (x_k^{\alpha})_k \in F_{\alpha}, \ \alpha \in \mathcal{A} \right\}$$

and endow F^* with the product topology, too. Furthermore, we put $\chi_k := (x_k^{\alpha})_{\alpha}$ for $\chi^* \in F^*$ and

$$F:=\left\{\chi:=(\chi_k) \mid \chi^{\alpha}\in F_{\alpha}, \ \alpha\in \mathcal{A}\right\}.$$

Obviously, F together with

$$\chi + v := \left(\left(x_k^{\alpha} \right)_{\alpha} + \left(y_k^{\alpha} \right)_{\alpha} \right)_k, \quad \lambda \chi := \left(\lambda(x_k^{\alpha})_{\alpha} \right)_k \qquad (\chi, v \in F, \ \lambda \in \mathsf{IK})$$

is a vector space being algebraicly isomorphic to F^* . Namely, the mapping

$$J: F \longrightarrow F^*, \ \chi = \left((x_k^{\alpha})_{\alpha} \right)_k \longrightarrow \chi^* = \left((x_k^{\alpha})_k \right)_{\alpha}$$

is a linear bijection. On the linear space F we define a locally convex topology τ_F by the neighbourhood basis $\{J^{-1}(U_\beta) \mid \beta \in B\}$ whereby $\{U_\beta \mid \beta \in B\}$ is a neighbourhood basis of the product topology of F^* . Thus, with these topologies F and F^* are topologically isomorphic, too. Among other things we get by it

 $f\in F' \iff \exists f^*\in F^{*\prime}: f=f^*\circ J$ and, since $F^{*\prime}\cong \bigoplus F_{\alpha}'$,

$$f \in F' \iff f(\chi) = f^*(\chi^*) = \sum_{\alpha \in \mathcal{A}_f} f_\alpha(\chi^\alpha) \text{ for each } \chi \in F$$

where f_{α} is a continuous linear functional on F_{α} ($a \in A$) and A_f is a suitable finite subset of A such that $f_{\alpha} = 0$ ($\alpha \in A \setminus A_f$).

Obviously, F is a sequence space over $X = \prod_{\alpha} X_{\alpha}$ containing $\varphi(X)$. We are going to prove that (F, τ_F) is a K(X)-space. The coordinate mappings

$$\pi_k: F \longrightarrow \prod_{\alpha} X_{\alpha} \,, \; \chi = (\chi_i) \longrightarrow \chi_k = (x_k^{\alpha})_{\alpha} \qquad (k \in \mathsf{IN})$$

may be represented by $\pi_k = \pi_k^* \circ J$ whereby

$$\pi_k^*: F^* \longrightarrow \prod_{\alpha} X_{\alpha}, \ \chi^* \longrightarrow \chi_k \qquad (k \in \mathsf{IN}) \,.$$

For each $k \in \mathbb{N}$ the mapping π_k^* , therefore π_k , is continuous since for each $\alpha \in \mathcal{A}$ the projections $pr_\alpha: F^* \longrightarrow F_\alpha$ and the coordinate mapping $\pi_k^\alpha: F_\alpha \longrightarrow X_\alpha$ are continuous and since in the product space X convergence of nets is equivalent to coordinatewise convergence of nets. \Box

Now, we consider the β -Dual

9

$$F^{eta} := \left\{ (f_k) \in \omega(X') \mid \sum_k f_k(\chi_k) \text{ converges for all } \chi \in F \right\}$$

of F. Each $f_k = (f_k^{\alpha})_{\alpha} \in X' \cong \bigoplus_{\alpha} X'_{\alpha}$ may be represented by

$$f_k(\chi_k) = \sum_{\alpha \in \mathcal{A}_k} f_k^{\alpha}(x_k^{\alpha})$$

where $f_k^{\alpha} \in X_{\alpha}'$ and \mathcal{A}_k is a suitable finite subset of \mathcal{A} with $f_k^{\alpha} = 0$ ($\alpha \in \mathcal{A} \setminus \mathcal{A}_k$). Therefore, $(f_k) \in \omega(X')$ is a member of F^{β} if and only if the series $\sum_{k} \sum_{\alpha \in \mathcal{A}_k} f_k^{\alpha}(x_k^{\alpha})$ con-

verges for all $\chi = ((x_k^{\alpha})_{\alpha})_k \in F$. Each $(f_k) \in F^{\beta}$ defines a linear functional

$$\Phi : F \longrightarrow \mathsf{IK}, \ \chi \longrightarrow \sum_{k} f_{k}(\chi_{k}),$$

thus we have got the inclusion $\varphi(X') \subset F^{\beta} \cap F'$. Immediately, we may state

$$\varphi(X') = \bigoplus_{\alpha} \varphi(X'_{\alpha}).$$
⁽¹⁾

PROPOSITION 3.
$$F^{\beta} \cap F' = \bigoplus_{\alpha} (F_{\alpha}^{\beta} \cap F_{\alpha}').$$

Proof. If $\Phi \in F^{\beta} \cap F'$ then we have on one hand

$$\Phi(\chi) = \sum_k \sum_{lpha \in \mathcal{A}_k} f_k^{lpha}(x_k^{lpha}) \quad ext{ for each } \chi \in F$$

with $((f_k^{\alpha})_{\alpha})_k \in F^{\beta}$ and a suitably chosen finite subset \mathcal{A}_k of \mathcal{A} , and on the other hand

$$\Phi(\chi) = \sum_{\alpha \in \mathcal{A}_{\Phi}} \psi_{\alpha}(\chi^{\alpha}) \quad \text{for each } \chi \in F$$
(***)

where $\psi_{\alpha} \in F_{\alpha}'$ ($\alpha \in \mathcal{A}_{\Phi}$) and \mathcal{A}_{Φ} is a suitable finite subset of \mathcal{A} with $\psi_{\alpha} = 0$ ($\alpha \in \mathcal{A} \setminus \mathcal{A}_{\Phi}$). For a fixed $\alpha \in \mathcal{A}$ and $a \in F_{\alpha}$ we consider the sequence $\zeta = (\zeta_k) \in F$ such that $\zeta^* = (\zeta^{\delta})_{\delta \in \mathcal{A}} \in F^*$ satisfies $\zeta^{\alpha} = a \in F_{\alpha}$ and $\zeta^{\delta} = 0$ for $\delta \neq \alpha$. From the representations of Φ we get

$$\Phi(\zeta) = \psi_{lpha}(a) = \sum_k f_k^{lpha}(a_k) \qquad (a := (a_k) \in F_{lpha}),$$

that is $\psi_{\alpha} \in F_{\alpha}^{\ \beta}$. Using (***) we obtain $\Phi \in \bigoplus_{\alpha} (F_{\alpha}^{\ \beta} \cap F_{\alpha}')$.

Conversely, let $\Phi \in \bigoplus_{\alpha} (F_{\alpha}^{\ \beta} \cap F_{\alpha}')$. Then $\Phi \in F'$ and

$$\Phi(\chi) = \sum_{\alpha \in \mathcal{A}_{\Phi}} f^{\alpha}(\chi^{\alpha}) \text{ for each } \chi \in F$$

with $f^{\alpha} \in F_{\alpha}^{\ \beta} \cap F_{\alpha}'$ and suitable finite subset \mathcal{A}_{Φ} of \mathcal{A} . Since each $f^{\alpha} \in F_{\alpha}^{\ \beta}$ may be represented by

$$f^{\alpha}(\chi^{\alpha}) = \sum_{k} f^{\alpha}_{k}(x^{\alpha}_{k}) \text{ for each } \chi^{\alpha} \in F_{\alpha}$$

with $f_k^{\alpha} \in X_{\alpha}'$ $(k \in \mathbb{N})$ we obtain

$$\Phi(\chi) = \sum_{\alpha \in \mathcal{A}_{\Phi}} \sum_{k} f_{k}^{\alpha}(x_{k}^{\alpha}) = \sum_{k} \sum_{\alpha \in \mathcal{A}_{\Phi}} f_{k}^{\alpha}(x_{k}^{\alpha}) \text{ for each } x \in F,$$

thus $\Phi \in F^{\beta}$. Therefore, we have proved $\Phi \in F^{\beta} \cap F'$.

THEOREM 4.

- (a) F has β -sequentially dense dual if and only if this is true for F_{α} ($\alpha \in A$).
- (b) F has φ -sequentially dense dual if and only if this coincides for F_{α} ($\alpha \in A$).

(c) F is an L_{φ} -space if and only if F_{α} is an L_{φ} -space for each $\alpha \in \mathcal{A}$.

Proof. (a) First of all, we assume that F has β -sequentially dense dual, that is, $F^{\beta} \cap$ F' is sequentially $\sigma(F', F)$ -dense in F'. Let $\alpha \in \mathcal{A}$ be fixed and let $\psi_{\alpha} \in F_{\alpha}'$, then $g_{\alpha}\psi_{\alpha} \in \bigoplus_{\alpha} F_{\alpha}'$; thus we may choose a sequence $(\Phi^{(n)})$ in $F^{\beta} \cap F'$ such that $\Phi^{(n)} \longrightarrow$ $g_{\alpha}\psi_{\alpha}(\sigma(F', F))$. On account of the continuity of the projection $p_{\alpha} : \bigoplus_{\alpha} F_{\alpha}' \longrightarrow F_{\alpha}'$ we get $pr_{\alpha}\Phi^{(n)} \longrightarrow \psi_{\alpha}(\sigma(F_{\alpha}', F_{\alpha}))$ and therefore - since $pr_{\alpha}\Phi^{(n)} \in F_{\alpha}^{\beta} \cap F_{\alpha}'$ (see Proposition 3) that $F_{\alpha}^{\beta} \cap F_{\alpha}'$ is sequentially $\sigma(F_{\alpha}', F_{\alpha})$ -dense in F_{α}' . Thus F_{α} has β -sequentially dense dual.

Conversely, for each $\alpha \in \mathcal{A}$ let $F_{\alpha}^{\ \beta} \cap F_{\alpha}'$ be sequentially $\sigma(F_{\alpha}', F_{\alpha})$ -dense in F_{α}' . Furthermore, let $f \in F'$, that is

$$f(\chi) = \sum_{\alpha \in \mathcal{A}_f} f_{\alpha}(\chi^{\alpha})$$
 for each $\chi \in F$

with suitably chosen $f_{\alpha} \in F_{\alpha}'$ and finite set \mathcal{A}_f . For each $\alpha \in \mathcal{A}_f$ we may choose a sequence $\left(\psi_{\alpha}^{(n)}\right)$ in $F_{\alpha}{}^{\beta} \cap F_{\alpha}'$ such that $\psi_{\alpha}^{(n)} \xrightarrow{n \to \infty} f_{\alpha}\left(\sigma(F_{\alpha}', F_{\alpha})\right)$. Furthermore, we define $\left(\Phi^{(n)}\right)$ by

$$\Phi^{(n)} := \sum_{\alpha \in \mathcal{A}_f} g_{\alpha} \psi_{\alpha}^{(n)} \in \bigoplus_{\alpha} (F_{\alpha}^{\ \beta} \cap F_{\alpha}^{\ \prime}).$$

Obviously, $\Phi^{(n)} \longrightarrow f(\sigma(F', F))$. This proves $F^{\beta} \cap F'$ to be sequentially $\sigma(F', F)$ -dense in F'.

(b) The proof of (b) is based on (1) and runs up quite similar as the proof of (a).

(c) We assume F to be an L_{φ} -space and we fix $\alpha \in \mathcal{A}$. Let N_{α} be a subspace of $F_{\alpha}^{\#}$ containing $\varphi(X_{\alpha}')$ and being sequentially $\sigma(F_{\alpha}^{\#}, F_{\alpha})$ -closed in $F_{\alpha}^{\#}$, and let $N := \bigoplus_{\substack{\delta \in \mathcal{A} \\ \delta \in \mathcal{A}}} N_{\delta}$ where $N_{\delta} := \varphi(X_{\alpha}')$ for $\delta \neq \alpha$. From Proposition 1 we obtain

35

9*
$$\sum_{N} \stackrel{\omega \sigma}{} \left(\bigoplus_{\alpha} F_{\alpha}^{\#}, F \right) = \bigcup_{\delta} \stackrel{\omega \sigma}{} \stackrel{N \sigma}{} \left(\bigoplus_{\alpha} F_{\alpha}^{\#}, F \right) = \bigoplus_{\delta} \stackrel{\omega \sigma}{} \stackrel{N \sigma}{} \left(F_{\alpha}^{\#}, F \right) = N ;$$

therefore, N is sequentially $\sigma\left(\bigoplus_{\alpha} F_{\alpha}^{*}, F\right)$ -closed and because of $\bigoplus_{\alpha} F_{\alpha}^{*} \subset F^{*}$ also sequentially $\sigma(F^{*}, F)$ -closed. Since F is an L_{φ} -space we get from $N \supset \bigoplus_{\alpha} \varphi(X_{\alpha}')$ the inclu-

sion $N \supset F'$ which implies $N_{\alpha} \supset F_{\alpha}'$. Thus, we have proved the inclusion $\varphi(X_{\alpha}') \supset F_{\alpha}'$, that is, F_{α} is an L_{φ} -space.

Conversely, for each $\alpha \in \mathcal{A}$ let F_{α} be an $L\varphi$ -space. With Proposition 1 we get

$$\bigoplus_{\alpha} \varphi(X_{\alpha}')^{\sigma\left(\bigoplus_{\alpha} F_{\alpha}^{*}, F\right)} = \bigoplus_{\alpha} \varphi(X_{\alpha}')^{\sigma(F_{\alpha}^{*}, F_{\alpha})}$$

and on account of $\varphi(X_{\alpha}') \supset F_{\alpha}' \quad (\alpha \in \mathcal{A})$ we obtain

$$F' = \bigoplus_{\alpha} F_{\alpha}' \subset \bigoplus_{\alpha} \varphi(X_{\alpha}') = \bigoplus_{\alpha} \varphi(X_{\alpha}')^{\sigma} (\bigoplus_{\alpha} F_{\alpha}^{*}, F)$$

implying (see (1))

$$F' \subset \bigoplus_{\alpha} \varphi(X'_{\alpha}) = \varphi(X')$$

Thus F is an L_{φ} -space.

5. For each $\alpha \in X_{\alpha}$ let X_{α} be a locally convex space. We endow the direct sum $X_0 := \bigoplus_{\alpha} X_{\alpha}$ with the sum topology, that is the strongest locally convex topology such that each injection $g_{\alpha} : X_{\alpha} \longrightarrow X_0$ is continuous. If $\{U_{\beta}^{\alpha} \mid \beta \in \mathcal{B}\}$ denotes a neighbourhood basis of X_{α} for $\alpha \in \mathcal{A}$, then the absolutely convex hulls

$$\Gamma_{\alpha} g_{\alpha}(U_{\beta}^{\alpha}) := \left\{ \sum_{\alpha} \lambda_{\alpha} g_{\alpha} a^{\alpha} \mid \sum_{\alpha} |\lambda_{\alpha}| \leq 1, \ a^{\alpha} \in U_{\beta}^{\alpha} \right\}$$

of $\bigcup_{\alpha \in \mathcal{A}} g_{\alpha}(U_{\beta}^{\alpha})$ for $\beta \in \mathcal{B}$ form a zero neighbourhood basis of the sum topology (see [2], 18.5(1)). As everybody knows, $X_0^{\#}$ and $\prod_{\alpha} X_{\alpha}^{\#}$ as well as X_0' and $\prod_{\alpha} X_{\alpha}'$ are algebraicly isomorphic.

Now, let F_{α} be $K(X_{\alpha})$ -spaces containing $\varphi(X_{\alpha})$. We put

 $F_0^* := \bigoplus_{\alpha} F_{\alpha} = \left\{ \chi^* \in F^* \mid \chi^{\alpha} \neq 0 \quad \text{for (at most) finite many} \quad \alpha \in \mathcal{A} \right\}$

and

$$F_0 := J^{-1}(F_0^*)$$

where $J: F \longrightarrow F^*$ is defined as in section 4. Consequently, F_0 is a subspace of F, and $\chi := ((x_k^{\alpha})_{\alpha})_k \in F$ is a member of F_0 , if and only if there exists a finite subset \mathcal{A}_{χ} of \mathcal{A} such that $x_k^{\alpha} = 0$ for each $k \in \mathbb{N}$ and $\alpha \in \mathcal{A} \setminus \mathcal{A}_{\chi}$. A simple proof shows $\varphi(X_0) \subset F_0 \subset \omega(X_0)$. We endow F_0^* with the sum topology and define a locally convex topology on F_0 by the zero neighbourhood basis $\{J^{-1}(U_{\beta}) \mid \beta \in B\}$ whereby $\{U_{\beta} \mid \beta \in B\}$ is a zero neighbourhood basis of the sum topology on F_0^* . Therefore, F_0 and F_0^* are algebraicly and topologically isomorphic, which implies

$$f \in F_0' \iff \exists f^* \in F_0^{*\prime} : f = f^* \circ J$$
$$\iff f(\chi) = \sum_{\alpha \in \mathcal{A}_{\chi}} f_{\alpha}(\chi^{\alpha}) \qquad (\chi \in F_0)$$

where $f_{\alpha} \in F_{\alpha}'$.

PROPOSITION 5. F_0 is a $K(X_0)$ -space.

Proof. The coordinate mappings $\pi_k : F_0 \longrightarrow X_0$ may be represented by $\pi_k = \pi_k^* \circ J$ whereby

 $\pi_k^*: F_0^* \longrightarrow X_0, \, \chi^* \longrightarrow \chi_k \qquad (k \in \mathsf{IN}).$

We have to prove the continuity of $\pi_k^* (k \in \mathbb{N})$.

For that we fix $k \in \mathbb{N}$ and assume U to be a zero neighbourhood in X_0 with respect to the sum topology which has the form $U := \Gamma_{\alpha}g_{\alpha}(U_{\alpha})$, that is

$$U = \left\{ \sum_{\alpha} \lambda_{\alpha} g_{\alpha} x_{k}^{\alpha} \mid \sum_{\alpha} |\lambda_{\alpha}| \leq 1 , \ x_{k}^{\alpha} \in U_{\alpha} \right\} ,$$

where U_{α} is a zero neighbourhood in X_{α} . Furthermore, we put $V := \Gamma_{\alpha}g_{\alpha}(V_{\alpha})$, where $V_{\alpha} := \prod_{i} U_{\alpha}^{i}$, $U_{\alpha}^{k} := U_{\alpha}$ and $U_{\alpha}^{i} = X_{\alpha}$ for all $i \neq k$. Since F_{α} is a $K(X_{\alpha})$ -space V_{α} is a zero neighbourhood in F_{α} . Thus, V is a zero neighbourhood in F^{*} . Therefore, the statement of Proposition 5 is proved if $\pi_{k}^{*}(V) \subset U$ holds.

Each $\chi^* \in V$ may be represented by $\chi^* = \sum_{\alpha} \lambda_{\alpha} g_{\alpha} \chi^{\alpha}$ with $\sum_{\alpha} |\lambda_{\alpha}| \le 1$ and $\chi^{\alpha} = (x_i^{\alpha})_i \in V_{\alpha}$. Consequently, we get $x_i^{\alpha} \in U_{\alpha}^i$, thus $x_k^{\alpha} \in U_{\alpha}^i$. This implies $\pi_k^* \chi^* = \sum_{\alpha} \lambda_{\alpha} g_{\alpha} x_k^{\alpha} \in U$ for each $\chi^* \in V$.

For the following examinations, we consider the β -dual

$$F_0^{\ \beta} := \left\{ (f_k) \in \omega(X'_0) \mid \sum_k f_k(\chi_k) \text{ converges for each } \chi \in F_0 \right\}$$

of F_0 where $f_k \in X_0'$ has a representation of the type.

$$f_k(\chi_k) = \sum_{\alpha \in \mathcal{A}_{\chi}} f_k^{\alpha}(x_k^{\alpha}) \qquad (\chi = (\chi_k) \in F_0, \, k \in \mathbb{N})$$

with $f_k^{\alpha} \in X_{\alpha}'$ and a suitable finite subset \mathcal{A}_{χ} of \mathcal{A} . Obviously, we have $\varphi(X_0') \subset F_0^{\ \beta}$

and each $(f_k) \in F_0^{\beta}$ defines a linear operator

$$\Phi : F_0 \longrightarrow \mathsf{IK}, \chi \longrightarrow \sum_k f_k(\chi_k).$$

As one may check immediately, we have

$$\varphi(X_0') = \prod_{\alpha} \varphi(X_{\alpha}').$$

PROPOSITION 6.

(a)
$$F_0^{\ \beta} = \prod_{\alpha} F_{\alpha}^{\ \beta}$$
.

(b)
$$F_0^{\ \beta} \cap F_0^{\ \prime} = \prod_{\alpha} (F_\alpha^{\ \beta} \cap F_\alpha^{\ \prime}).$$

Proof. (a) Because of

$$\sum_{k} f_k(\chi_k) = \sum_{\alpha \in \mathcal{A}_{\chi}} \sum_{k} f_k^{\alpha}(x_k^{\alpha}) \qquad (\chi = (\chi_k) \in F_0)$$

we get $\Phi := (f_k) \in F_0^{\ \beta}$ if and only if the series $\sum_k f_k^{\alpha}(x_k^{\alpha})$ converges for each $\chi^{\alpha} = (x_k^{\alpha}) \in F_{\alpha}$ and $\alpha \in \mathcal{A}$. Since thereby Φ may be represented by

$$\Phi(\chi) = \sum_{\alpha \in \mathcal{A}_{\chi}} f^{\alpha}(\chi^{\alpha}) \qquad \left(\chi^* = (\chi^{\alpha}) \in F_0^*, \text{ that is } \chi \in F_0\right)$$

with

$$f^{\alpha}(\chi^{\alpha}) := \sum_{k} f^{\alpha}_{k}(x^{\alpha}_{k})$$

we obtain

$$\Phi \in F_0^{\ \beta} \iff \Phi \in \prod_{\alpha} F_{\alpha}^{\ \beta}.$$

The statement (b) follows from (a) and the identity $F_0' \cong \prod F_{\alpha}'$:

$$F_0{}^\beta \cap F_0{}' = \left(\prod_{\alpha} F_{\alpha}{}^\beta\right) \cap \left(\prod_{\alpha} F_{\alpha}{}'\right) = \prod_{\alpha} (F_{\alpha}{}^\beta \cap F_{\alpha}{}').$$

38

(2)

THEOREM 7.

- (a) F_0 has β -sequentially dense dual if and only if this is true for F_{α} ($\alpha \in A$).
- (b) F_0 has φ -sequentially dense dual if and only if this coincides for F_α ($\alpha \in \mathcal{A}$).
- (c) In case of $\mathcal{A} = \mathbb{IN}$ the space F_0 is an L_{φ} -space if and only if F_{α} is an L_{φ} -space for each $\alpha \in \mathbb{IN}$.

Proof. (a) First of all, we assume that F_0 has β -sequential dense dual, that is, $F_0^{\beta} \cap F_0'$ is sequentially $\sigma(F_0', F_0)$ -dense in F_0' . For a fixed $\alpha \in \mathcal{A}$ let $\psi_{\alpha} \in F_{\alpha'}$. Then $g_{\alpha}\psi_{\alpha} \in$ F_0' and therefore there exists a sequence $(\Phi^{(n)})$ in $F_0^{\beta} \cap F_0'$ such that $\Phi^{(n)} \xrightarrow{n \to \infty} g_{\alpha}\psi_{\alpha}$ $(\sigma(F_0', F_0))$. On account of the weak continuity of the projection $pr_{\alpha} : \prod_{\alpha} F_{\alpha'} \longrightarrow F_{\alpha'}$ we get $pr_{\alpha}\Phi^{(n)} \xrightarrow{n \to \infty} \psi_{\alpha} \ (\sigma(F_{\alpha'}, F_{\alpha}))$ and since $pr_{\alpha}\Phi^{(n)} \in F_{\alpha}^{\beta} \cap F_{\alpha'}$ according to Proposition 6(b), we have established that $F_{\alpha}^{\beta} \cap F_{\alpha'}$ is sequentially $\sigma(F_{\alpha'}, F_{\alpha})$ -dense in $F_{\alpha'}$. Thus, F_{α} has β -sequential dense dual.

Conversely, for each $\alpha \in \mathcal{A}$ let $F_{\alpha}^{\ \beta} \cap F_{\alpha}'$ be sequential $\sigma(F_{\alpha}', F_{\alpha})$ -dense in F_{α}' and let $f \in F_0'$, that is

$$f(\chi) \,=\, \sum_{\alpha \in \mathcal{A}_{\chi}} \, f_{\alpha}(\chi^{\alpha}) \qquad \left(\chi^{*} = (\chi^{\alpha}) \in F_{0}^{*} \,, \, \text{that is} \ \chi \in F_{0}\right)$$

with $f_{\alpha} \in F_{\alpha}'$. For each $\alpha \in \mathcal{A}$ we choose $(\psi_{\alpha}^{(n)})$ in $F_{\alpha}^{\beta} \cap F_{\alpha}'$ such that $\psi_{\alpha}^{(n)} \xrightarrow{n \to \infty} f_{\alpha}$ $(\sigma(F_{\alpha}', F_{\alpha}))$. Then for each $\chi \in F_0$ we obtain

$$\Phi^{(n)}(\chi) := \sum_{\alpha \in \mathcal{A}_{\chi}} \psi^{(n)}_{\alpha}(\chi^{\alpha}) \xrightarrow{n \to \infty} \sum_{\alpha \in \mathcal{A}_{\chi}} f_{\alpha}(\chi^{\alpha}) = f(\chi).$$

Because of $\Phi^{(n)} = (\psi_{\alpha}^{(n)})_{\alpha} \in F_0^{\ \beta} \cap F_0' = \prod_{\alpha} (F_{\alpha}^{\ \beta} \cap F_{\alpha}')$ (see Proposition 6(b)) we have established that $F_0^{\ \beta} \cap F_0'$ is sequentially $\sigma(F_0', F_0)$ -dense in F_0' .

(b) The proof of statement (b) runs up quite similar to the proof of (a), and therefore we omit it.

(c) First of all, we assume that F_0 is a L_{φ} -space and we fix a $k \in \mathbb{N}$. Furthermore let N_k be a sequentially $\sigma(F_k^{\#}, F_k)$ -closed subspace of $F_k^{\#}$ containing $\varphi(X_k')$. Furthermore, we put $N_i := \varphi(X_i')$ for $i \neq k$ $(i \in \mathbb{N})$ and define $N := \prod_i N_i$. According to Proposition 2 we get

$$N^{\sigma(F_{0}^{*},F_{0})} = \prod_{i} N^{\sigma(F_{i}^{*},F_{i})}_{i} = \prod_{i} N_{i} = N;$$

thus N is sequentially $\sigma(F_0^{\#}, F_0)$ -closed. Since F_0 is a L_{φ} -space we obtain $N \supset F_0'$ from the inclusion $N \supset \prod \varphi(X_i')$. By that and (2),

$$N_k = pr_k(N) \supset pr_k(F_0') = F_k',$$

therefore $\varphi(X_k) \supset F_k'$. This proves F_k to be an L_{φ} -space $(k \in \mathbb{N})$.

Conversely, for each $i \in IN$ let F_i be an L_{φ} -space. According to Proposition 2 we get

$$\prod_{i=1}^{m} \varphi(X_i') = \prod_{i=1}^{m} \varphi(X_i') \supset \prod_{i=1}^{m} F_i' = F_0'$$

Thus F_0 is an L_{φ} -space.

References

[1] J. Boos and T. Leiger. An inclusion theorem for K(X)-spaces (submitted for publication).

- [2] G. Koethe. Topological Vector Spaces I. Springer, Berlin-Heidelberg-New York, 1969.
- [3] Jinghui Qiu. A new class of locally convex spaces and the generalization of Kalton's closed graph theorem. Acta Math. Scientia 5, 389-397 (1985).

Johann Boos Fachbereich Mathematik und Informatik Fernuniversität -Gesamthochschule-Postfach 940 D–5800 Hagen BRD Toivo Leiger Lehrstuhl für Mathematische Analysis Universität Tartu 202400 Tartu Estland, UdSSR

Received December 17, 1990

 $L_{\varphi}\text{-}\mathrm{K}(\mathbf{X})\text{-ruumide}$ ning nendega sarnaste $\mathrm{K}(\mathbf{X})\text{-ruumide}$ otsekorrutis ja otsesumma

Johann Boos ja Toivo Leiger

Resümee

Käesolevas artiklis vaadeldakse lokaalselt kumeraid jadaruume F, mille elementideks on mingi lokaalselt kumera ruumi X elementide jadad $x = (x_k)$. Sellist ruumi nimetatakse K(X)-ruumiks, kui koordinaatoperaatorid $\pi_k : F \to X, x \to x_k \quad (k \in IN)$ on pidevad. Sel juhul sisaldab ruumi F (topoloogiline) kaasruum F' ruumi X kaasruumi X'

kõigi lõplike jadade hulga $\varphi(X')$. Olgu $\varphi(X')$ ruumi F algebralise kaasruumi $F^{\#}$ kõigi jadaliselt $\sigma(F^{\#}, F)$ -kinniste, hulka $\varphi(X')$ sisaldavate alamruumide ühisosa. K(X)-ruumi F

nimetatakse L_{φ} -ruumiks, kui $\varphi(X') \cap F' = F'$. Tõestatakse (teoreemid 4 ja 7), et suvalise arvu L_{φ} -ruumide otsekorrutis ning loenduva arvu L_{φ} -ruumide otsesumma on L_{φ} -ruumid. Analoogilised väited kehtivad ka selliste K(X)-ruumide F korral, kus vastavalt $\varphi(X')$ ja β -kaasruum F^{β} on jadaliselt $\sigma(F', F)$ -tihedad.

ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS 1991, 928, 41-52

THE STATISTICAL CONVERGENCE IN BANACH SPACES Enno Kolk

Introduction. The notion of statistical convergence was introduced by Fast [3] and has been investigated in the papers [1,5,7,10,11]. Following Freedman and Sember [4] the author [7], taking in Fast's definition of statistically convergent sequence and in Fridy's definition of statistically Cauchy sequence an arbitrary non-negative regular matrix A instead of Cesaro matrix C, introduced the notions of A-statistically convergent and A-statistically Cauchy sequences in normed spaces. Independently Maddox [10] introduced the statistical convergence in locally convex spaces.

In Section 2 of this paper it is proved that in a Banach space X the sets of A-statistically convergent and A-statistically Cauchy sequences coincide. It is also shown that a sequence $(x_k), x_k \in X$, converges A-statistically to $x_o \in X$ if and only if there exists an infinite index set $\{k_i\}$ with the A-density 1 such that the subsequence (x_{k_i}) converges to x_o . These results were presented in [7] and they generalize corresponding results of Fridy [5] and Salat [11] about number sequences (in the case $A = C_i$).

In Section 3 the relations between A-statistical convergence and strong A-summability defined by a sequence of moduli are studied. Our results extend some results of Connor ([1], Theorem 2.1, Corollary 2.2) and of Maddox ([10], Theorems 1 and 2).

1. Notation and preliminaries. Let X be a Banach space over the field K, where K = C or K = R. By s(X), m(X) and c(X) we denote the vector spaces of all X-valued sequences $x = (x_k) = (x_k)_{k \in \mathbb{N}}$, of all bounded sequences in X and of all convergent sequences in X, respectively. In the case X = K

41

we write s, m and c instead of s(X), m(X) and c(X).

Let $\lambda(X)$ and $\mu(X)$ be two subsets of s(X) and $A = (a_{nk})$ an infinite matrix with $a_{nk} \in \mathbb{K}$. If for each $x = (x_k) \in \lambda(X)$ the series

$$A_{n}x = \sum_{k} a_{nk}x_{k} = \sum_{k=1}^{\infty} a_{nk}x_{k} \quad (n \in \mathbb{N})$$

converge in X and the sequence

$$Ax = (A_x)$$

belongs to $\mu(X)$ then we say that A maps $\lambda(X)$ into $\mu(X)$ and write A: $\lambda(X) \rightarrow \mu(X)$.

A matrix A (or matrix map A) is called regular on s(X)if A: $c(X) \rightarrow c(X)$ and $\lim_{n} A_n x = \lim_{k} x_k$ in X for all $x \in c(X)$. It is known that a matrix A is regular on s(X) if and only if it is regular on s. The well-known Silvermann--Toepliz's theorem asserts that $A = (a_{nk})$ is regular on s if and only if (see [2], Theorem 4.1, II)

(R1)
$$\lim_{n \to \infty} a_n = 0$$
 ($\mathbf{k} \in \mathbb{N}$),

- (R2) $\lim_{n \to \infty} \sum_{k=1}^{\infty} a_{nk} = 1,$
- (R3) $\sup_{n} \sum_{k} |a_{nk}| < \infty$.

A matrix A is called uniformly regular if it satisfies the conditions (R2), (R3) and

(R4) $\lim_{n\to\infty} \sup_{n\to\infty} |a_{n\nu}| = 0$.

We denote by \mathcal{T} and \mathcal{UT} , respectively, the sets of all regular matrices and all uniformly regular matrices. We use also the notation

$$\begin{aligned} \boldsymbol{\mathcal{T}}^{+} &= \{ \mathbf{A} \in \boldsymbol{\mathcal{T}} : \mathbf{a}_{\mathsf{nk}} \geq 0 \}, \\ \boldsymbol{\mathcal{UT}}^{+} &= \boldsymbol{\mathcal{UT}} \boldsymbol{\bigcap} \boldsymbol{\mathcal{T}}^{+}. \end{aligned}$$

For example, the Cesaro matrix C, defined by

$$a_{nk} = \begin{cases} 1/n & \text{if } k \leq n, \\ 0 & \text{otherwise,} \end{cases}$$

is uniformly regular and non-negative, so $C_{i} \in ur^{+}$.

A sequence $x = (x_k) \in s(X)$ is said to be strongly A-summable with index p > 0 to $x_p \in X$ if (cf. [9])

$$\lim_{n} \sum_{k} a_{nk} \| x_{k} - x_{0} \|^{P} = 0.$$

The set of all strongly A-summable sequences in X is denoted

by $w_A^P(X)$. We write $w_A^P = w_A^P(\mathbb{K})$, $w^P(X) = w_{C_A}^P(X)$ and $w^P = w^P(\mathbb{K})$.

We recall that the modulus f is a function f: $[0,\infty) \rightarrow [0,\infty)$ such that (see [8])

- (i) f(t) = 0 if and only if t = 0;
- (ii) $f(t + u) \le f(t) + f(u)$ for all $t \ge 0$, $u \ge 0$;

(iii) f is increasing;

(iv) f is continuous from the right at 0.

Maddox [8,10] used the modulus f to construct the sequence space

$$w^{P}(f) = \{x \in s: \lim_{n \to \infty} n^{-s} \sum_{k} [f(|x_{k} - x_{o}|)]^{P} = 0 \text{ for some } x_{o}\}.$$

In [6] this idea was generalized by taking in place of one modulus a sequence of moduli $F = (f_k)$. Here we consider together with $w_A^P(X)$ a more general space

$$w_{A}^{P}(\mathbf{F}, \mathbf{X}) = \{ \mathbf{x} \in \mathbf{s}(\mathbf{X}) \colon \lim_{h \to \mathbf{k}} \sum_{k} a_{nk} [f_{k}(\|\mathbf{x}_{k} - \mathbf{x}_{k}\|)]^{P} = 0 \text{ for some } \mathbf{x}_{k} \in \mathbf{X} \}.$$

In the case where $x \in w_A^P(F,X)$ we write $w_A^P(F)-\lim x_k = x_0$. We write also $w_A^P(f,X)$ instead of $w_A^P(F,X)$ in the case where $f_k = f$ ($k \in \mathbb{N}$). Thus $w^P(f) = w_C^P(f,K)$ and $w^P = w^P(f)$ for f(t) = t.

In the following we mean by an index set a finite, or infinite subset $\{k_i\}$ of N with $k_i < k_{i+i}$. Thus an infinite index set $\{k_i\}$ is precisely the sequence (k_i) of indices. The set of all $k \in K$ with $k \leq n$ is denoted by $K(\leq n)$.

Let K = {k_i} be an index set and let ϕ^{K} be the characteristic sequence of K, i.e. $\phi^{K} = (\phi^{K}_{i})$, where

 $\phi_{j}^{\kappa} = \left\{ \begin{array}{cc} 1 & \text{if } j = k_{i} & (i \in \mathbb{N}), \\ 0 & \text{otherwise}. \end{array} \right.$

If ϕ^{κ} is C₄-summable then the limit

$$\lim_{n \to \infty} n^{-1} \sum_{j=1}^{n} \phi_{j}^{K}$$

is called the asymptotic density of K and is denoted by $\delta(\mathbf{K})$.

For a non-negative regular matrix A, following Freedman and Sember [4], an index set $K = \{k_i\}$ will be said to have A-density

$$\delta_{\mathbf{A}}(\mathbf{K}) = \lim_{n \to \infty} A_{n} \phi_{j}^{\mathbf{K}}$$

when $A\phi^{\kappa} \in c$. Thus

$$\delta_{\mathbf{A}}(\mathbf{K}) = \lim_{\mathbf{k} \in \mathbf{K}} \sum_{\mathbf{k} \in \mathbf{K}} a_{\mathbf{n}\mathbf{k}} = \lim_{\mathbf{k}} \sum_{\mathbf{k}} a_{\mathbf{n},\mathbf{k}_{\mathbf{k}}}.$$

Brudno (see [2], p. 155-156) proved the following result: for every $A \in \mathcal{T}^+$ there exists a normal matrix $A' \in \mathcal{T}^+$ such that $c_A \cap m = c_A \cap m$ and

$$\lim_{n \to \infty} A_n x = \lim_{n \to \infty} A_n x \quad (x \in c_n n),$$

where $c_A = \{x \in s: Ax \in c\}$ (a matrix $A = (a_{nk})$ is called, normal, if $a_{nk} = 0$ for k > n and $a_{nn} \neq 0$). By Brudno's theorem we may assume that the matrix A in the definition of A-density is normal.

In [3] the definition of statistical convergence was given: a sequence $x = (x_k) \in s$ is said to be statistically convergent to a number x_o if $\delta(K_c) = 0$ for every $\epsilon > 0$, where

$$K_{\varepsilon} = \{k: |x_{k} - x_{0}| \geq \varepsilon\}.$$

The notion of statistically Cauchy sequence was introduced by Fridy [5]: a sequence $x = (x_k) \in s$ is said to be statistically Cauchy if for every $\epsilon > 0$ there exists an index $n(\epsilon)$ such that $\delta(K_{m(\epsilon)}) = 0$, where

$$K_{n(\varepsilon)} = \{k: |x_k - x_{n(\varepsilon)}| \ge \varepsilon\}.$$

If we take here A-density instead of asymptotic density then we arrive to the following definitions [7]. A sequence $x = (x_k) \in s(X)$ is said to be A-statistically convergent to x_o , briefly $st_A(X)$ -lim $x_k = x_o$, if $\delta_A(L_c) = 0$ for every $\epsilon > 0$, where

 $\mathbf{L}_{\mathbf{c}} = \{\mathbf{k}: \| \mathbf{x}_{\mathbf{k}} - \mathbf{x}_{\mathbf{o}} \| \ge \epsilon\}.$

A sequence $x = (x_k) \in s(X)$ is said to be A-statistically Cauchy if for every $\epsilon > 0$ there exists an index $n(\epsilon)$ such that $\delta_{\alpha}(L_{w(\epsilon)}) = 0$, where

$$L_{\mu(\varepsilon)} = \{ \mathbf{k} \colon |\mathbf{x}_{\mathbf{k}} - \mathbf{x}_{\mu(\varepsilon)} | \ge \varepsilon \}.$$

By the symbol $st_A(X)$ we denote the set of all A-statistically convergent sequences in X and by $st^{\circ}(X)$ the set of all A-statistically null sequences in X.

It should be noted that A-statistical convergence is defined only for $A \in \tau^+$. It is clear that $c(X) \subset st_A(X)$. A theorem of Agnew (see [2], Theorem 8.5, III) shows that for

all $A \in \mathcal{UT}^+$ the inclusion $c(X) \in st_A(X)$ is strict.

2. A-statistically convergent and A-statistically Cauchy sequences in Banach space. Modifying the arguments of Salat [11], Lemma 1.1, we prove a useful lemma.

LEMMA 2.1 Let $(y_{k,j})$ be a double sequence in a Banach space X. The following two statements are equivalent:

(i) for every \$\varepsilon \$0\$ there exists an index n(\$\varepsilon\$) such that

$$\delta_{\mathbf{A}}(\{\mathbf{k}: \|\mathbf{y}_{\mathbf{k},\mathbf{n}(\boldsymbol{\varepsilon})}\| < \boldsymbol{\varepsilon}\}) = 1;$$

(ii) there is an infinite index set $K = \{k_i\}$ such that $\delta_A(K) = 1$ and for every $\epsilon > 0$ there exist indices $l(\epsilon)$ and $k_0 = k_0(\epsilon)$ such that $\|y_{k_1(\epsilon)}\| < \epsilon$ ($k \in K, k \ge k_0$).

Proof. If (ii) holds then

 $\mathbb{K}_{\mathbf{o}} = \{\mathbf{k} \in \mathbb{K} \colon \mathbf{k} \ge \mathbf{k}_{\mathbf{o}}\} \subset \{\mathbf{k} \colon \|\mathbf{y}_{\mathbf{k},\mathbf{l}(\mathbf{o})}\| < \epsilon\}$

and by $\delta_{A}(K_{O}) = 1$ we have

 $\delta_{\mathbf{A}}(\{\mathbf{k}: \|\mathbf{y}_{\mathbf{k},l(\varepsilon)}\| < \varepsilon\}) = 1.$

Thus (ii) implies (i) with $n(\epsilon) = l(\epsilon)$.

Next suppose that (i) is true. Then $\mathcal{S}_{A}(K_{m}) = 1 \ (m \in \mathbb{N})$ where

$$K_{m} = \{k: \|y_{k,n(1/m)}\| < \frac{1}{m}\}.$$

If we define

$$S_{j} = \bigcap_{\substack{m=1\\m=1}}^{m} K_{m} \qquad (j \in \mathbb{N})$$

then $S_{j} \supset S_{j} \supset \ldots$ and $\delta_{A}(S_{j}) = 1 \quad (j \in \mathbb{N}), \text{ i.e.}$
 $\lim_{\substack{n \in \mathbb{N}\\m=1}}^{m} A_{n}(S_{j}) = 1, \qquad (2.1)$

where

$$A_n(S_j) = \sum_{k \in S_j} a_{nk}.$$

Let us choose an arbitrary number $v_i \in S_i$ with $v_i > 1$. In view of (2.1) there exists a number $v_2 \in S_2$ such that $v_2 > v_i$ and

$$A_n(S_2) > \frac{1}{2} \quad (n \ge v_2).$$

Further, again by (2.1), there exists a number $v_{g} \in S_{g}$ with $v_{g} > v_{z}$ and

 $A_n(S_a) > \frac{2}{3} \quad (n > v_a)$

a.s.o. Thus we can construct by induction a sequence (v_j) of indices such that $v_i \in S_i, \ v_i < v_{i+i}$ and

$$A_{n}(S_{j}) > \frac{j-1}{j} \quad (n \geq v_{j}, \ j \in \mathbb{N}).$$
 (2.2)

Now we define

$$K = \bigcup_{j=0}^{\infty} (S_j \cap [v_j, v_{j+1})),$$

where $v_o = 1$ and $S_o = N$. Then for $v_j \le n \le v_{j+4}$ we have $K(\le n) > S_i(\le n)$. So by (2.2) we get

$$A_{n}(K) = \sum_{k \in K} a_{nk} > \sum_{k \in S_{i}} a_{nk} = A_{n}(S_{j}) > \frac{j-1}{j},$$

from which it follows that $\delta_{A}(K) = 1$.

Let $\varepsilon > 0$ and choose a number j_o with $1/j_o \le \varepsilon$. If k_o is the least element in $S_{j_o} \cap [v_{j_o}, v_{j_o+1})$ then by

$$S_j \subset S_j \subset K_j$$
 $(j \ge j_0)$

we have

 $\|y_{k,n(4/j_0)}\| < \frac{1}{j_0} \le \varepsilon \qquad (k \in \mathbb{K}, k \ge k_0).$

Thus (ii) holds with $l(\epsilon) = n(1/j_{n})$. The lemma is proved.

Let $x = (x_k)$ be a sequence in a Banach space X. For $y_{k,j} = x_k - x_j$ the statement (i) of Lemma 2.1 means that x is a A-statistically Cauchy sequence. At that time the equivalent statement (ii) means that x contains a Cauchy subsequence (x_{k_j}) with $\delta_A(\{k_j\}) = 1$. By completeness of X subsequence (x_{k_j}) must converge to an element $x_o \in X$. The same meaning has (ii) for $y_{k,j} = x_k - x_o$. But (i) states in this case that x is A-statistically convergent to x_o . Hence we have proved the following results.

THEOREM 2.2. In a Banach space X the sets of A-statistically convergent and A-statistically Cauchy sequences coincides.

THEOREM 2.3. The sequence $x = (x_k)$ converges A-statistically to x_0 in a Banach space X if and only if

there exists an infinite index set $K = \{k_j\}$ with $\delta_A(K) = 1$ such that the subsequence (x_k) converges to x_0 .

3. A-statistical convergence and strong A-summability. In this section we investigate the relations between A-statistical convergence and strong A-summability defined by a sequence $F = (f_{t_i})$ of moduli.

THEOREM 3.1. Let X be a Banach space and $F = (f_k)$ a sequence of moduli. Then

 $w^{p}_{A}(F)-\lim x_{k}=x_{0} \Rightarrow st_{A}-\lim x_{k}=x_{0} \quad (p>0, A \in \mathcal{F}^{+}) \quad (3.1)$ if and only if

(F1) $\inf f_{t}(t) > 0$ (t > 0).

Proof. If (F1) holds then there exists a number $s_0 > 0$ such that

 $f_{L}(t) \geq s_{n}$ (t > 0, k $\in \mathbb{N}$).

Let $\varepsilon > 0$. If $w_A^P(F)$ -lim $x_k = x_0$ and $L_{\varepsilon} = \{k: ||x_k - x_0|| \ge \varepsilon\}$ then

$$\sigma_n = \sum_{k} a_{nk} [f_k(\|x_k - x_0\|)]^P \ge s_0^P \sum_{k \in L_p} a_{nk},$$

whence

$$\sum_{\substack{k \in \mathbb{D}_{c}}} a_{nk} \leq s_{0}^{p} \sigma_{n} \qquad (n \in \mathbb{N}),$$

So by $\lim_{n \to \infty} \sigma = 0$ we get

$$\delta_{\mathbf{A}}(\mathbf{L}_{\boldsymbol{\varepsilon}}) = \sum_{\substack{k \in \mathbf{L}_{\boldsymbol{\varepsilon}}}} \mathbf{a}_{nk} = 0.$$

Thus st_{a} -lim $x_{b} = x_{a}$ and the sufficiency of (F1) is proved.

To prove necessity we suppose that (3.1) holds but (F1) fails. Then there exist a number $t_o > 0$ and an infinite index set K = {k_i} such that $k_{ini} > k_i + 1$ and

$$\lim_{k} f_{k}(t_{0}) = 0.$$
 (3.2)

For an arbitrary sequence of indices l_n ($n \in \mathbb{N}$) with $k_n < l_n < k_{n+1}$ we consider the infinite matrix $B = (b_{nk})$, where

$$b_{nk} = \begin{cases} 1/2 & \text{if } k = k_n \text{ or } k = l_n, \\ 0 & \text{otherwise.} \end{cases}$$

It is difficult to see that $B \in \mathcal{F}^+$ and $\delta_{\mathbf{R}}(\mathbf{K}) = 1/2.$ (3.3)

Now we define $y = (y_k)$ by $y_k = t_0 z$ for $k = k_i$ and $y_k = \theta$ otherwise, where $z \in X$, ||z|| = 1. Then $||y_k|| = t_0$, and so by (3.2) we get $\lim_{\mathbf{x}} \mathbf{f}_k(||y_k||) = 0$, whence $\lim_{\mathbf{x}} [\mathbf{f}_k(||y_k||)]^p = 0$. By regularity of B it follows that

$$\lim_{n \to \infty} \sum b_{nk} [f_k(|y_k^P||)] = 0,$$

i.e. $w_B^{p}(F)$ -lim $y_k = \Theta$. At that time for any ϵ with $0 < \epsilon \le t_0$ we have

 $L_{\varepsilon} = \{k: \|y_{k}\| \geq \varepsilon\} = K.$

From (3.3) it follows that $\delta_{B}(L_{\varepsilon}) = \frac{1}{2} \neq 0$, which implies st_{A} -lim $y_{k} \neq \theta$, contrary to (3.1). Thus (F1) must hold and the proof is complete.

If $f_k = f$ ($k \in \mathbb{N}$) for a modulus f then (F1) is automatically fulfilled. Thus we get

COROLLARY 3.2. Let f be a modulus. Then

 $w_{A}^{p}(f) - \lim x_{k} = x_{o} \Rightarrow st_{A} - \lim x_{k} = x_{o} \quad (p > 0, A \in \mathcal{F}^{+})$ in a Banach space X.

Maddox ([10], Theorem 1) proved Corollary 3.2 for a locally convex space X in the case p = 1 and $A = C_i$. Connor ([1], Theorem 2.1) examined the case where X = K, $A = C_i$ and f(t) = t.

THEOREM 3.3. The implication

 $st_{A}-\lim x_{k}=x_{0} \Rightarrow W_{A}^{P}(f)-\lim x_{k}=x_{0} \quad (p > 0, A \in \mathcal{UT}^{+}) \quad (3.4)$ holds in a Banach space X if and only if

- (F2) $\lim_{t \to 0} \sup_{t \to 0} f_{t}(t) = 0$,
- (F3) sup sup $f_{L}(t) < \infty$.

Proof. First we prove the necessity of (F2). By a theorem of Steinhaus (see [2], Theorem 4.4, III) for every

A $\leftarrow \mathcal{F}^{+}$ there exists a sequence $s = (s_k)$ of 0's and 1's which is not A-summable, i.e. the sequence As = (A_s) is not convergent. If we suppose that (F2) fails then there exist a number $\leftarrow > 0$, a positive null sequence (t) and an index set {k(i)} such that

$$f_{k(i)}(t_i) \ge (\varepsilon_0)^{i/p} \quad (i \in \mathbb{N}). \tag{3.5}$$

For an element $z \in X$ with ||z|| = 1 and for the index set $\{i_i\} = \{i: s_i = 1\}$ we consider the sequence $x = (x_k)$, where

$$\mathbf{x}_{\mathbf{k}} = \begin{cases} \mathbf{t}_{i} \mathbf{z} & \text{if } \mathbf{k} = \mathbf{k}(\mathbf{i}_{j}), \\ \mathbf{s} & \\ \boldsymbol{\Theta} & \text{otherwise.} \end{cases}$$

Then $\lim_{k} x_{k} = \theta$, and so $st_{k} - \lim x_{k} = \theta$. By (3.4) it follows that

$$\sigma_{n} = \sum_{k} a_{nk} [f_{k}(||x_{k}||)]^{p} \rightarrow 0 \quad (n \rightarrow \infty).$$
(3.6)

But according to (3.5) we have

$$\sigma_{n} = \sum_{j} a_{n,k(i,j)} [f_{k(i,j)}(t_{i,j})]^{p} \ge \varepsilon_{0} \sum_{k} a_{nk} s_{k} = \varepsilon_{0} A_{n} s.$$

Since $(A_n s)$ is not convergent, this implies $\lim_{n \to \infty} \sigma_n \neq \theta$, contrary to (3.6). Thus (3.4) implies (F2).

The necessity of (F3) we also prove by contradiction. Let $A \in \mathcal{UT}^+$. We may assume that A is normal, and so lim $a_{nn} = 0$. If (F3) is true then, using also a theorem of Agnew (see [2], Theorem 8.5, III), we find an index set $K = \{k_i\}$ with $\delta_A(K) = 0$ and numbers $0 < t_i < \ldots < t_i < t_{i+1} < \ldots$ such that

$$f_{k_i}(t_i) \ge (1/a_{k_i,k_i})$$
 (i $\in \mathbb{N}$). (3.7)

By Theorem 2.3 the sequence $x = (x_k)$ with $x_k = t_i z$ for $k = k_i$ and $x_k = \Theta$ otherwise, where $z \in X$, ||z|| = 1, converges A-statistically to Θ . So by assumption (3.4) we have $\lim_{n \to \infty} \sum a_{nk} [f_k(||x_k)]^P = 0$, which implies

$$\lim_{n \to \infty} a_n [f_1(\|x_1\|)]^P = 0.$$
 (3.8)

But in view of (3.7) we get

$$\mathbf{a}_{\mathbf{k}_{i},\mathbf{k}_{i}}[\mathbf{f}_{\mathbf{k}_{i}}(\mathbf{I}_{\mathbf{x}_{i}}^{*}\|)]^{\mathbf{P}} = \mathbf{a}_{\mathbf{k}_{i},\mathbf{k}_{i}}[\mathbf{f}_{\mathbf{k}_{i}}(\mathbf{t}_{i})]^{\mathbf{P}} \ge 1 \quad (\mathbf{i} \in \mathbb{N}),$$

contrary to (3.8). Thus the necessity of (F3) is also

proved

Let $\operatorname{st}_{k} - \lim x_{k} = x_{0}$ and choose $\varepsilon > 0$. We split the sum $\sigma_{n} = \sum_{k} a_{nk} \left[f_{k} (\|x_{k} - x_{0}\|) \right]^{p}$ into two sums Σ_{i} and Σ_{i} over $L_{\varepsilon} = \{ k: \|x_{k} - x_{0}\| \ge \varepsilon \}$ and $\{ k: \|x_{k} - x_{0}\| < \varepsilon \}$, respectively. Since by (F3) there exists a constant M > 0 such that $f_{\nu}(t) \le M$ ($k \in \mathbb{N}$, t > 0), we find

$$\Sigma_{\mathbf{i}} \leq M^{\mathbf{P}} \sum_{k \in \mathbf{L}_{\mathbf{c}}} a_{\mathbf{n}k}.$$

further, if we write $h(t) = \sup_{k} f_{k}(t)$, then by the increase of f_{k} we have

$$\Sigma_2 \leq h(\varepsilon) \sum_{k} a_{nk}.$$

Consequently, by $\sigma_{\mathbf{A}}(\mathbf{L}_{\varepsilon}) = 0$ and (F2) we get $\lim_{n \to \infty} \sigma_{n} \leq \mathbf{h}(\varepsilon)$. By (F2) it follows that $\lim_{n \to \infty} \sigma_{n} = 0$, i.e. $w_{\mathbf{A}}^{\mathbf{P}}(\mathbf{F}) - \lim_{n \to \infty} \mathbf{x}_{\mathbf{A}} = \mathbf{x}_{\mathbf{O}}$. The theorem is proved.

From Theorems 3.1 and 3.3 we deduce the following result.

COROLLARY 3.4. Let X be a Banach space and F = (f_k) a sequence of moduli. Then

$$st_{x}(X) = w^{p}(F, X) \quad (p > 0, A \in \mathcal{UT}^{+})$$

if and only if the conditions (11), (F2), and (F3) are satisfied.

In the case $f_k = f$ ($k \in \mathbb{N}$) the conditions (F1) and (F2) hold. Thus we get

Corollary 3.5. Let f be a modulus. Then $st_A(X)=w_A^P(f,X)$ (p > 0, $A \in \mathcal{UT}^+$) in a Banach space X if and only if f is bounded.

For p = 1 and $A = C_1$ Corollary 3.5 is contained in Theorem 2 of Maddox [10].

The next theorem characterizes the relation between A-statistical convergence and strong A-summability for bounded sequences.

THEOREM 3.6. The implication

 st_{A} -lim $x_{k} = x_{0} \Rightarrow w_{A}^{P}(F)$ -lim $x_{k} = x_{0}$ (p > 0, $A \in \mathcal{F}^{+}$) holds in m(X) if and only if (F2) is satisfied.

Proof. The necessity of (F2) is already proved in Theorem 3.3.

Assume that (F2) holds. Then

 $h(t) = \sup_{k} f'_{k}(t) < \infty \quad (t > 0). \tag{3.9}$ If st_-lim x_k = x₀ in X and $||x_{k}|| \le M$, then

 $f_{\iota}(\|x_{\iota} - x_{o}\|) \le f_{\iota}(M + \|x_{o}\|) \le h(M + \|x_{o}\|) < \infty,$

and $w_A^P(F)$ -lim $x_k = x_0$ follows from the proof of necessity in Theorem 3.3 with $h(M + \|x_0\|)$ instead of M. The proof is complete.

Using also Theorem 3.1 we get

COROLLARY 3.7. Let X be a Banach space and F = (f_k) a sequence of moduli. Then

 $st_A(X) \cap m(X) = w_A^P(F, X) \cap m(X) \quad (p > 0, A \in \mathcal{T}^+)$

if and only if (F1) and (F2) are satisfied.

In the case $f_k = f$ ($k \in \mathbb{N}$) from Corollary 3.7 we deduce

COROLLARY 3.8. For any modulus f we have

st $\bigcap m(X) = w^{p}(f, X) \cap m(X)$ (p > 0, A $\in \mathcal{T}^{+}$)

in a Banach space X.

Connor ([1], Corollary 2.2) proved this result in the case where X = K, $A = C_{a}$ and f(t) = t.

References

 Connor, J. S., The statistical and strong p-Cesaro convergence of sequences. Analysis, 1988, 8, 47-63.

- Cooke, R. G., Infinite Matrices and Sequence Spaces. Moscow, 1980 (in Russian).
- Fast, H., Sur la convergence statistique. Colloq. Math., 1951, 2, 241-244.
- Freedman, A. R., Sember, J.J., Densities and summability. Pacific J. Math., 1981, 95, 293-305.
- Fridy, J. A., On statistical convergence. Analysis, 1985, 5, 301-313.
- Kolk, E., Sequence spaces defined by a sequence of moduli. Abstracts of convergence "Problems of pure and applied mathematics". Tartu, 1990, 131-134.
- Kolk, E., Statistically convergent sequences in normed spaces. Reports of convergence "Methods of algebra and analysis". Tartu, 1988, 63-66 (in Russian).
- Maddox, I. J., Sequence spaces defined by a modulus. Math. Proc. Camb. Phil. Soc., 1986, 100, 161-166.
- Maddox, I. J., Spaces of strongly summable sequences.
 Quart. J. Math. Oxford (2), 1967, 18, 345-355.
- Maddox, I. J., Statistical convergence in locally convex space. Math. Proc. Camb. Phil. Soc., 1988, 104, 141-145.
- Salat, T., On statistically convergent sequences of real numbers. Math. Slovaca, 1980, 30, 139-150.

Department of Mathematical Analysis Tartu University 202400 Tartu Estonia

Received September 12, 1990.

Statistiline koonduvus Banachi ruumides Enno Kolk Resümee

Artikli esimeses osas tõestatakse autori poolt konverentsi teesides [7] sõnastatud teoreemid A-statistilise koonduvuse kohta. Teises osas uuritakse A-statistilise koonduvuse ning tugeva A-summeeruvuse vahekorda. ACTA BT COMMENTATIONES UNIVERSITATIS TARTUENSIS 1991, 928, 53-60

T-DUAL SPACES WITH RATE AND T-SECTIONALLY SUMMABLE SPACES WITH RATE IN THE CASE OF DOUBLE SEQUENCES Ivar Lepasson

1. Introduction. G. Kangro introduced the notions of space c_T^{λ} of simple sequences λ -convergent by the method T [5] and space m_T^{λ} of simple sequences λ -bounded by the method T [4]. S. Baron [1] has studied λ -boundedness in the case of double sequences. Starting with it we introduce the notion of spaces which are called r_T^{λ} - and β_T^{λ} -dual. Also we introduce the notions of λ -T-sectional boundedness (T^{λ}B) and λ -T-sectional boundedly convergence (T^{λ}K). In the present work we investigate the connections between these notions. In the case of simple sequences the analogous result has been proved by M. Buntinas [2] and in the case of simple sequences with rate by the author [6].

2. Definitions. Let $T = (t_{mnkl})$ be a triangular infinite matrix where $t_{mnkl} = 0$ when m < k or n < 1, let E be a Hausdorff locally convex double sequence space (1. c. d. s. s.) and $x = (x_{kl})$ a double sequence of real (or complex) numbers. We say that $E = [E; p_{mn}]$ is an FK-space if there is a finite number or a denumerable set of quasinorms $p_{mn}(x)$ with following properties:

1° when $p_{mp}(x) = 0$ then always $x = \theta_1$

2° E is perfect,

 3° when $x^{(r,o)} \rightarrow x$ in E then always $x_{kl}^{(r,o)} \rightarrow x_{kl}$ $(r, s \rightarrow \infty)$. Let $\lambda = (\lambda_{mn})$ be a double sequence of positive numbers, monotonically increasing both by the indices m and n. In this case λ is called a rate. A double sequence x is said to be λ-bounded if

$$\beta_{mn} = \lambda_{mn} (\mathbf{x}_{kl} - \lim_{R \to 0} \mathbf{x}_{kl}) = O(1),$$

 λ -convergent if there exists

lip Bmn

and λ -boundedly convergent if x is λ -bounded and λ -convergent. In this article the convergence means the convergence in Pringsheim's sense.

We define:

 $t^{mn} = (t_{mnkl})$ are double sequences;

where $e^{mn} = (\delta_{kl}^{mn})$ and $\delta_{kl}^{mn} = \begin{cases} 1, & \text{if } k = m \text{ and } l = n, \\ 0, & \text{otherwise}; \end{cases}$

 $c_{T}^{\lambda} = \{ x: \exists \lim_{m,n} r_{mn} \};$ $m_{T}^{\lambda} = \{ x: r_{mn} = 0(1) \};$ $bc_{T}^{\lambda} = \{ x: x \in c_{T}^{\lambda} \text{ and } x \in m_{T}^{\lambda} \};$ $\beta_{T}^{\lambda} = \{ x: \forall z \in E, x \cdot z \in bc_{T}^{\lambda} \};$ $F_{T}^{\lambda} = \{ x: \forall z \in E, x \cdot z \in m_{T}^{\lambda} \};$ $E_{T}^{\lambda} = \{ x: (t^{mn}x) \text{ is } \lambda \text{-bounded in } E \};$ $E_{T}^{\lambda} = \{ x: \forall f \in E', f(t^{mn}x) \text{ is } a \lambda \text{-boundedly con-} F_{T}^{\lambda} K$

vergent double sequence };

 $E_{T^{\lambda}K} = \{ x : \lambda_{mn}(y - y) \text{ is boundedly convergent in } E\};$ $E_{T^{\lambda}K} = \{ x : \exists f \in E', x_{kl} = f(e^{kl}), k, l \in \mathbb{Z}^{+}\};$ $E_{AD} \text{ is the closure of the span of the sequences } e^{mn};$

A double sequence x in E is said to have the property $T^{\lambda}B$ (T-sectional boundedness with the rate λ) if $x \in E_{T^{\lambda}B}$, $T^{\lambda}K$ (T-sectional bounded convergence with the rate λ) if

 $x \in E_{T^{\lambda}K}$ and the property $FT^{\lambda}K$ (functional T-sectional bounded convergence with the rate λ) if $x \in E_{T^{\lambda}K}$. If $E \in E_{T^{\lambda}B} (E = E_{T^{\lambda}K}, E \in E_{T^{\lambda}K}, E = E_{AD})$ then E is called $T^{\lambda}B$ -space ($T^{\lambda}K$ -space, $FT^{\lambda}K$ -space, AD-space). E is called $r_{T^{\lambda}}$ -space ($\beta_{T^{\lambda}}$ -space) if $E = E^{T^{\lambda}}$ ($E = E^{T^{\lambda}\beta}T^{\lambda}$). Each double sequence space E considered here will be assumed to contain all unit double sequences e^{kt} .

3. $\gamma_{\pi^{\lambda}}$ - and $\beta_{\pi^{\lambda}}$ - duality.

THEOREM 3.1. For each E, $E_{T^{\lambda}B} = (E^{\Phi})^{T^{\lambda}}$.

Proof. A subset of a l. c. d. s. s. is bounded if and only if it is weakly bounded. Hence, $x \in \mathbb{E}_{T^{\lambda}B}$ if and only if

 $\sup_{m,n} |f\{\lambda_{mn}(t^{mn}x - \lim_{m,n} t^{mn}x)\}| =$ $= \sup_{m,n} |\lambda_{mn}\{f(t^{mn}x) - \lim_{m,n} f(t^{mn}x)\}| < \infty, f \in E^{*} \leftrightarrow$ $\Leftrightarrow \sup_{m,n} |\lambda_{mn}(\sum_{k,l} t_{mnkl}x_{kl}y_{kl} - \lim_{m,n} \sum_{k,l} t_{mnkl}x_{kl}y_{kl})| < \infty,$ $\forall y \in E^{\Phi}.$

COROLLARY 3.2. For each E, $E_{\pi^{\lambda}B}$ is a $\gamma_{\pi^{\lambda}}$ -space.

COROLLARY 3.3. For each E $E \subseteq E_{T^{\lambda}B} \leftrightarrow E^{\Phi} \subseteq E^{T^{\lambda}} \leftrightarrow E^{T^{\lambda'}T^{\lambda'}} \subseteq E_{T^{\lambda}B}$

Proof. If $\mathbf{E} \subset \mathbf{E}_{\mathbf{T}^{\lambda}\mathbf{B}}$ then, for every $\mathbf{x} \in \mathbf{E}$ and $\mathbf{y} \in \mathbf{E}^{\boldsymbol{\Phi}}$, $\mathbf{x} \cdot \mathbf{y} \in \mathbf{m}^{\lambda}_{\mathbf{T}}$. Hence $\mathbf{E}^{\boldsymbol{\Phi}} \subset \mathbf{E}^{\mathbf{T}^{\lambda}}$. If $\mathbf{E}^{\boldsymbol{\Phi}} \subset \mathbf{E}^{\mathbf{T}^{\lambda}}$ then

$$E^{T\lambda^{\gamma}}T^{\lambda} \subset (E^{\bullet})^{\gamma}T^{\lambda} = E_{T^{\lambda}B}.$$
 While $E \subset E^{T\lambda^{\gamma}}T^{\lambda}$ then $E \subset E_{T^{\lambda}B}.$
THEOREM 3.4. For each E , $E_{TT^{\lambda}K} = (E^{\bullet})^{\beta}T^{\lambda}.$

Proof. We have $x \in E$ if and only if $\forall y \in E^{\Phi}$, $FT^{\lambda}K$ $\exists \lim_{m \to \infty} \lambda_{mn} (\sum_{k,l} t_{mnkl} x_{kl} y_{kl} - \lim_{m \to \infty} \sum_{k,l} t_{mnkl} x_{kl} y_{kl}) \iff \text{for every}$ $y \in E^{\Phi}, x \cdot y \in bc^{\lambda}_{T}.$

COROLLARY 3.5. For each E, $E_{FT^{\lambda}K} = E_{T^{\lambda}T^{\lambda}}^{\beta}T^{\lambda}$.

COROLLARY 3.6. For each E,

$$\mathbf{E} \subset \mathbf{E}_{\mathbf{FT}^{\lambda}\mathbf{K}} \longleftrightarrow \mathbf{E}^{\Phi} \subset \mathbf{E}^{\beta}\mathbf{T}^{\lambda} \longleftrightarrow \mathbf{E}^{\beta}\mathbf{T}^{\lambda\beta}\mathbf{T}^{\lambda} \subset \mathbf{E}_{\mathbf{FT}^{\lambda}\mathbf{K}}.$$

Proof. Similar to Corollary 3.3.

THEOREM 3.7. Suppose that is an FK-space and there exist $\lim_{m \to 0} m_{mnkl} \neq 0$. Then

(a)
$$\mathbb{E}^{\gamma} T^{\lambda} \subset \mathbb{E}^{\overline{\Phi}}$$
;
(b) $\mathbb{E}_{T^{\lambda}B} \subset \mathbb{E}^{T^{\lambda'}T^{\lambda'}}$ and $\mathbb{E}_{T^{\lambda}K} \subset \mathbb{E}^{T^{\lambda'}T^{\lambda}}T^{\lambda}$;
(c) $\mathbb{E} \subset \mathbb{E}_{T^{\lambda}B} \leftrightarrow \mathbb{E}^{\overline{\Phi}} = \mathbb{E}^{T^{\lambda}} \leftrightarrow \mathbb{E}^{T^{\lambda'}T^{\lambda}} = \mathbb{E}_{T^{\lambda}B}$;
(d) $\mathbb{E} \subset \mathbb{E}_{T^{\lambda}K} \leftrightarrow \mathbb{E}^{\overline{\Phi}} = \mathbb{E}^{\overline{T}^{\lambda}} \leftrightarrow \mathbb{E}^{T^{\lambda'}T^{\lambda'}} = \mathbb{E}_{T^{\lambda}B}$;
(e) $\mathbb{E} \subset \mathbb{E}_{T^{\lambda}K} \leftrightarrow \mathbb{E}^{\overline{\Phi}} = \mathbb{E}^{\overline{T}^{\lambda}} = \mathbb{E}^{T^{\lambda}} \leftrightarrow \mathbb{E} \subset \mathbb{E}_{T^{\lambda}B}$ and
 $\mathbb{E}^{\overline{P}}T^{\lambda} = \mathbb{E}^{T^{\lambda}}$.

Proof. (a) We have $\mathbf{E} \stackrel{\boldsymbol{\gamma}}{=} \mathbf{E} \stackrel{\boldsymbol{\gamma}}{=} \{ \mathbf{x} : \forall \mathbf{y} \in \mathbf{E}, \mathbf{x} \cdot \mathbf{y} \in \mathbf{m}_{\mathbf{T}} \},\$

thus (analogically with the case of simple sequences [2]) $\sum_{E}^{r} \sum_{r}^{\lambda} \sum_{e}^{r} \sum_{T} \sum_{e}^{\Phi}$.

(b) is a corollary from (a).

(c) The equivalences follow from Corollary 3.3, (a) and (b).

(d) The equivalences follow from Corollary 3.6., (a) and (b).

(e) If $E \subseteq E_{\lambda}$ and $E T^{\lambda} = E^{T^{\lambda}}$ then, by (o), $r_{T^{\lambda}} = F^{T^{\lambda}} = E^{T^{\lambda}}$ then, by (o), $E^{\Phi} = E^{T^{\lambda}}$. Thus $E^{T^{\lambda}} = E^{T^{\lambda}} = E^{\Phi}$. If $E^{T^{\lambda}} = E^{\Phi}$ then, by (d) $E \subseteq E_{FT^{\lambda}K}$ and $E^{T^{\lambda}} = E^{\Phi} = E^{T^{\lambda}} \leftrightarrow E \subseteq E_{T^{\lambda}B}$ and $E^{T^{\lambda}} = E^{T^{\lambda}}$.

For example, if E and F are sequence spaces, the multiplier space (E \rightarrow F) is the space of all sequences x such that, for all y in E, $x \cdot y \in F$. The multiplier spaces (E $\rightarrow c_T^{\lambda}$) and (E $\rightarrow m_T^{\lambda}$) are the $\beta_{T^{\lambda^{-1}}}$ and $r_{T^{\lambda^{-1}}}$ -duals of E, respectively. By theorem, if

$$\lambda = \frac{1}{(m+1)^{-1} + (n+1)^{-1}}$$

and $T = C^{ii}$ then m^{λ} is a $T^{\lambda}B$ -space (see [1]) and T

DEFINITION. Let p be a continuous seminorm on l. c. d. s. s. E. Then p_T^{λ} is a seminorm on E defined (analogously to the case of λ -bounded simple sequences [4]) by

 $p_{T}^{\lambda}(x) = \sup_{m,n} \{ p [\lambda_{mn}(t^{mn}x - \lim_{m \to \infty} t^{mn}x)]; p(\lim_{m \to \infty} t^{mn}x) \}.$

THEOREM 3.8. Suppose E is a BK - space and there exist $\lim_{m \to 0} t_{model} \neq 0$. Then \mathbb{E}^{Φ} is a BK - space and

$$(\mathbb{E}^{\Phi})_{T^{\lambda}B} = (\mathbb{E}_{AD})^{T^{\lambda}} \subset \mathbb{E}^{\Phi}.$$

Proof. If E is a BK-space, then E_{AD} is a BK-space with the norm of E. (E_{AD}) ' can be identified with E^{Φ} and hence E^{Φ}

is a BK-space (analogously to the case of simple sequences [2], Proposition 1 or [7]). Let $f_{mn} \in E'$ be defined by

$$f_{t_{z_{k,l}}^{mn}}(x) = \sum_{k,l} t_{mnkl} z_{kl} x_{kl},$$

then

$$z \in (E_{AD})^{T^{\lambda}} \iff \sup_{m,n} |\lambda_{mn}(f_{t^{mn}z}(x) - \lim_{m,n} f_{t^{mn}z}(x)| =$$
$$= \sup_{m,n} |\lambda_{mn}(\sum_{k,l} t_{mnkl} z_{kl} x_{kl} - \lim_{m,n} \sum_{k,l} t_{mnkl} z_{kl} x_{kl})| < \infty \quad \forall x \in E_{AD}.$$

Due to the uniform boundedness this is equivalent to the condition that $(t^{mn}z)$ is λ -bounded in E^{Φ} . Thus

$$(\mathbb{E}^{\Phi})_{T^{\lambda}B} = (\mathbb{E}_{AD})^{T^{\lambda}} \subset (\mathbb{E}_{AD})^{\Phi} = \mathbb{E}^{\Phi}$$

THEOREM 3.9. Let $\lim_{m, \mathbb{R}} t_{mnkl} = 1$. Suppose E is a BK-space and E = E_{AD}. Then E = E_X iff $E^{\Phi} \subset (E^{\Phi})_{T^{\lambda}B}$.

Proof. If $E = E_{AD}$, then $E = E_{T^{\lambda}K}$ if $E_{T^{\lambda}K} = E = E_{AD}$. By Theorem 3.7, (c), and Theorem 3.8 $E = E_{AD}$ and $E \subset E_{T^{\lambda}B}$ if and only if

$$(\mathbf{E}^{\Phi})_{\mathbf{T}^{\lambda}\mathbf{B}} = \mathbf{E}^{\mathbf{T}_{\lambda}\mathbf{T}} = \mathbf{E}^{\Phi}.$$

THEOREM 3.10. If there exists a FK-space which is also a $T^\lambda B$ - space, then $1 < bc_T^\lambda.$

Proof. If for every $e^{kl} \in \mathbb{E}_{T^{\lambda}B}$ then $\sup_{k \neq T} \sup_{k \neq T} |\lambda_{mn}(t_{mnkl} - \lim_{m \neq T} t_{mnkl})| < \infty$, then $\sup_{k \neq T} p^{\lambda}_{T}(t^{mn}) < \infty$. Thus $l \in bc^{\lambda}_{T}.(3.1,[3])$

References

1. Baron, S., Certain constructive spaces and multipliers of

double Fourier series. Analysis, 1987, 7, 153-172.

 Buntinas, M., On Toeplitz sections in sequence spaces. Math. Proc. Camb. Phil. Soc. 1975, 78, 451-460.

- Stieglitz, M., Tietz, H., Matrixtransformationen quasikonvexer Folgen. Hokkaido Math. J., 1977, 6, 10-15.
- Кангро Г., О множительях суммируемости типа Бора-Харди для заданной скорости. 1. АН ЭССР., Физ. мат., 1969. 18, 2, 131-145.
- Кангро Г., 0 λ-совершенности методов суммирования и ее применения. 1. Изв. АН ЭССР., Физ. мат., 1971. 20. 2, 111-120.
- Лепассон И. Т-дуальные пространства со скоростю и Т-суммируемость по отрезкам со скоростю в FK-пространотвах. Проблемы теоретической и прикладной математики. Тезисы докладов конференции, Тарту. 1990, 163-164.
- 7. Тыннов М., Сопряженные и дополнительные пространства. Уч. зап. Тарт. ун-та., 1970, 253, 202-204.

Department of Economic Mathematics Tallinn Technical University 200026 Tallinn Estonia

> Received December 4, 1990 Revised version March 8, 1991

Kiirusega T-duaalsed ruumid ja kiirusega lõike T-summeeruvad ruumid kahekordsete jadade korral Ivar Lepasson Resümee

Käesolevas artiklis on sisse toodud $r_{T^{\lambda}}$ - ja $\beta_{T^{\lambda}}$ duaalsete ruumide mõiste. Samuti on sisse toodud λ - T-lõike

tõkestatuse $(T^{\lambda}B)$, λ - T- lõike tõkestatult koonduvuse $(T^{\lambda}K)$ ja λ - T- lõike tõkestatult koonduvate funktsionaalide $(FT^{\lambda}K)$ mõisted. Töös uuritakse nendevahelisi seoseid.

ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS

1991, 928, 61-66

ON CORES OF SEMICONTINUOUS SEQUENTIAL SUMMABILITY METHODS Leiki Loone

This paper in an Englich version of the paper [5] which is unreadable by reason of unsatisfactory printing.

Let $A_m = (a_{mnk})$ (m = 0,1,...) be matrices, where $a_{mnk} \in \mathbb{R}$. A sequence of real numbers $x = (\xi_k)$ is called \sim -summable to a if

$$\lim_{m \in k} \sum_{m \in k} E_{k} = a \quad \text{uniformly in n} \quad (1)$$

(see [1]). Let Q be the set of all operators $q : \mathbb{N} \to \mathbb{N}$ and let $B_q = (a_{mq(m)k})$. It means that the set

$$\{B_{q} : q \in Q\}$$

is the family of all possible matrices which can be produced by selecting the first row of the matrix from the rows of the matrix A_1 , the second row from the rows of the matrix A_2 etc. The following theorem is due to Petersen (see [1]).

THEOREM 1. A sequence $x = (\xi_k)$ is \prec -summable to a iff for each $q \in Q$ it is B_q -summable to a.

Let m be the set of bounded sequences with the norm

$$\|\mathbf{x}\| = \sup_{\mathbf{k}} \|\boldsymbol{\xi}_{\mathbf{k}}\|.$$

Let K° be the set of all linear continuous functionals on m satisfying the following conditions:

 $1^{\circ} \langle e_{k}, f \rangle = 0 \quad \forall k = 0, 1, ..., 2^{\circ} \langle e, f \rangle = 1, 3^{\circ} ||f|| = 1,$

where $e_k = (0, \dots, 0, 1, 0, \dots)$ and $e = (1, 1, \dots, 1, \dots)$. This set K^o determines the Knopp's core in ∞ . This means that for an arbitrary bounded sequence x the set

$$K^{o}(\mathbf{x}) = \{\langle \mathbf{x}, \mathbf{f} \rangle : \mathbf{f} \in K^{o}\}$$

is the Knopp's core for x (see[3]). It is well-known that a sequence x converges to a number a iff its core $K^{\circ}(x)$ is a singleton which contains only a (see [2, Ch.6]).

Let ^tA be the conjugate matrix to a matrix A. The set

$$^{t}A(K^{o}) = \{^{t}Af : f \in K^{o}\}$$

determines A-summability in the sence of sequence x being A-summable to a iff the set

$$\{\langle \mathbf{x}, \mathbf{f} \rangle : \mathbf{f} \in {}^{\mathsf{t}} A(\mathbf{K}^{\mathbf{o}})\}$$

is a singleton which contains only a. The concept of the core $K_{a}(x)$ was introduced in [4], based on Theorem 1. This core is the set

$$\mathbf{K}_{\mathbf{x}}(\mathbf{x}) = \{ \langle \mathbf{x}, \mathbf{f} \rangle : \mathbf{f} \in \mathbf{K}_{\mathbf{x}} \},\$$

where

 $K_{a} = clco U \{{}^{t}B_{q}(K^{o}) : q \in Q\}.$ (2)

Here "clco" denotes the close and convex hull of the set. This core determines \prec -summability in m in the sence that a sequence x is \prec -summable to a iff $K_{a}(x)$ is a singleton which contains a (see [4]).

Let $\mathcal{U}_{-}(\tau_{0})$ be an arbitrary fixed left-hand neighbourhood of a number $\tau_{0} \in \mathbb{R}$. Suppose that for every $\tau \in \mathcal{U}_{-}(\tau_{0})$ there is a matrix $A(\tau) = (a_{nk}(\tau))$ such that

$$\sup_{n} \sum_{k} |a_{nk}(\tau)| < \infty \quad \forall \tau \in \mathcal{U}_{(\tau_0)}.$$

DEFINITION 1. It is said that a sequence $x = (\xi_k)$ is summable by a semicontinuous sequential summability method $(A(\tau))$ (for short: " $\prec(\tau)$ -summable") to a number a if

$$\lim_{\tau \to \tau_0^-} \sum_{k}^{\Delta} a_{nk}^{(\tau)\xi} = a$$

uniformly in n.

The set of all $\prec(\tau)$ -summable sequences is denoted by $c_{\sigma(\tau)}$. Semicontinuous sequential summability method $(A(\tau))$ is called regular if every convergent sequence is $\prec(\tau)$ -summable to the previous limit.

In special case of

$$a_{nk}(\tau) = a_k(\tau) \quad \forall n \in \mathbb{N}$$

the $\varphi(\tau)$ -summability method $(A(\tau))$ turns into ordinal semicontinuous summability method $(a_{\mathbf{k}}(\tau))$.

Let Ψ be the set of all sequences $(\tau_m) < u_{-}(\tau_0)$ which are convergent to τ_0 . It means that

 $\mathcal{U} = \{ \mathbf{w} = (\tau_{\mathbf{m}}) : \tau_{\mathbf{m}} \rightarrow \tau_{\mathbf{0}}, \tau_{\mathbf{m}} \in \mathcal{U}_{-}(\tau_{\mathbf{0}}) \quad \forall \mathbf{m} \in \mathbb{N} \}.$

Let $w = (\tau_m)$ be an arbitrarily fixed element from Ψ and let us define the \prec -method (A_m) where $a_{mnk} = a_{nk}(\tau_m)$. If a sequence x is \prec -summable by this \prec -method (A_m) we say for short that it is w-summable. The set which defines the core for the w-summability is denoted by K_{c_1} .

THEOREM 2. A sequence $x = (\xi_k)$ is $\omega(\tau)$ -summable to a number a iff it is w-summable to a for every $w \in \mathcal{V}$.

Proof. It follows from the concept of limit given by Heine.

COROLLARY 2.1. A sequence $x = (\xi_k)$ is $\mathsf{a}(\tau)$ -summable to a iff

$$K_{-}(\mathbf{x}) = \{a\} \quad \forall \mathbf{w} \in \mathscr{U}.$$

Let us introduce now the concept of core for the semicontinuous sequential summability method. This concept is based on Theorem 2.

DEFINITION 2. The core for the $\prec(\tau)$ -method $(A(\tau))$ is the core defined by the set

$$K = \operatorname{clco} \bigcup \{K_{n} : w \in \mathscr{W}\}, \tag{3}$$

THEOREM 3. The set $c_{\alpha(\tau)}$ coincides with the set of all sequences x for which the core K(x) is a singleton.

Proof. If $K(x) = \{a\}$, it follows from (3) that $K_{W}(x) = \{a\}$ for each w from \mathcal{V} . Hence, by Corollary 2.1, x is $\alpha(\tau)$ -summable.

Suppose now that x is $\prec(\tau)$ -summable to a and $\delta \in K(x)$. It means that in the set

there exist sequences (g_n) and (h_n) such that

 $\lim \langle \mathbf{x}, \lambda_n \mathbf{g}_n + (1 - \lambda_n) \mathbf{h}_n \rangle = \delta$

for some (λ_n) with $0 \le \lambda_n \le 1$ for all $n \in \mathbb{N}$. As $\langle x, g_n \rangle = a$ and $\langle x, h_n \rangle = a$ for every n, we have $\delta = a$. It means that $K(x) = \{a\}$ which gives us the desired result.

COROLLARY 3.1. If $x \in c_{\alpha(\tau)}$ and (1) holds then $K(x) = \{a\}$.

COROLLARY 3.2. The core which determines a semicontinuous summability method A = $(a_k(\tau))$ is the core defined by the set

 $K_{A} = clco \cup \{{}^{t}B_{w}(K^{o}) : w \in \mathscr{V}\}, \qquad (4)$ where $B_{w} = (b_{mk})$ and $b_{mk} = a_{k}(\tau_{m}).$

Proof. For an arbitrary $w = (\tau_m) \subset W$ the \prec -method $(A(\tau_m))$ is the matrix method $B_w = (b_{mk})$, where $b_{mk} = a_k(\tau_m)$. Hence, the set K given by the formula (3) has the form (4) and now Corollary 3.1 completes the proof.

THEOREM 4. An $\prec(\tau)$ -method A = $(a_{nk}(\tau))$ is regular iff 1° $\lim_{\tau \to \tau_{o^{-}}} \sup_{n} |a_{nk}(\tau)| = 0 \quad \forall k = 0, 1, ...,$ 2° $\lim_{\tau \to \tau_{o^{-}}} \sum_{k} a_{nk}(\tau) = 1$ uniformly in n, 3° $\sup_{n} \sum_{k} |a_{nk}(\tau)| < M$ for every $\tau \in \mathcal{U}_{-}(\tau_{0})$.

Proof is entailed by Theorem 2 if one applies to necessary and sufficient conditions for the regularity of the -method (see [4]).

THEOREM 5. The inclusion

$$K(\mathbf{x}) \subset K^{\mathbf{O}}(\mathbf{x}) \quad \forall \mathbf{x} \in \mathbf{m}$$
 (5)

holds iff

10	$\alpha(\tau)$ - method	is	regular.	(6	3	١
		-				

$$2^{\circ} \lim_{\tau \to \tau_{0}^{-}} \sup_{n} \sum_{k} |a_{nk}(\tau)| = 1.$$
(7)

Proof. The inclusion (5) is equivalent to the

inclusion $K < K^{\circ}$.

Necessity. Let $K \subset K^{\circ}$. Then $K(x) = K^{\circ}(x)$ for every $x \in c$. It means that the $\prec(\tau)$ -method is regular. It follows from the inclusion $K \subset K^{\circ}$ that $K_{w} \subset K^{\circ}$ for every $w \in \mathcal{V}$. Consequently,

 $\lim_{m} \sup_{n \in K} \sum_{k=n}^{\infty} |a_{nk}(\tau_{m})| = 1 \quad \forall \ (\tau_{m}) \subset \mathscr{V}$

(see [4]). The condition (7) follows now from the concept of limit given by Heine.

Sufficiency. If $\prec(\tau)$ -method is regular and (7) holds then for every $(\tau_m) \in \mathcal{V} \prec$ -method $(\mathbb{A}(\tau_m))$ is core-regular (see [4]). Then

The set K° is closed and convex, therefore

 $\label{eq:clco} \texttt{U} \ \{\texttt{K}_w \ : \ w \ \in \ \texttt{V}\} \ \subset \ \texttt{K}^o,$ it means that $\texttt{K} \ \subset \ \texttt{K}^o.$

COROLLARY 5.1. For a semicontinuous matrix method $A = (a_{t_i}(\tau))$ the inclusion

$$K_{A}(x) \subset K^{o}(x) \quad \forall x \in \mathcal{A}$$
 (8)

holds iff

1° method A is regular, 2° $\lim_{\tau \to \tau_o} \sum_{k} |a_k(\tau)| = 1.$

Let L(x) be the set of Banach limits of a sequence x. This set is the core of almost convergency of x (see [1;4]).

THEOREM 6. The inclusion

$$K(\mathbf{x}) \subset L(\mathbf{x}) \quad \forall \mathbf{x} \in \mathcal{R} \tag{9}$$

holds iff

 $1^{\circ} = (\tau)$ -method is regular,

 $2^{\circ} \lim_{\tau \to \tau_{o}^{-}} \sup_{n \in \mathbb{R}} \sum_{n \in \mathbb{R}} |a_{nk}(\tau)| = 1,$

 $3^{\circ} \lim_{\tau \to \tau_{0}^{-} n} \sup_{k} \sum_{n=1}^{\infty} |a_{nk}(\tau) - a_{nk+1}(\tau)| = 0.$

Proof is analoguous to the proof of Theorem 5. In the case we need the necessary and sufficient conditions for the inclusion $K_{\mu} \subset L$ (see [4]) instead of $K_{\mu} \subset K^{\circ}$ in Theorem 5.

References

- Petersen, G. M., Almost convergence and uniformly distributed sequences. Quart. J. Math., 1956, 7, 188-191.
- Кук Р., Безконечные матрицы и пространства последовательностей. Москва, 1960.
- Лооне Л., О рядах елементе отделямого локально выпуклого пространства. Уч. зап. Тарт. ун.-та. 1978, 227, 125-135.
- 4. Лооне Л., Ядро -суммируемости Патерсена. Уч. зап. Тарт. ун-та. 1978. 448. 46-51.
- Лооне Л., Полунепрерывные последовательностные методы суммирования и их ядра. Уч. зап. Тарт. ун-та. 1989. 846, 99-105.

Department of Mathematical Analysis Tartu University 202400 Tartu Estonia

Received April 30, 1990

Poolpidevad jadamenetlused ja nende tuumad Leiki Loone Resümee

Antud töös defineeritakse poolpideva jadalise summeeruvusmenetluse ja/sellega määratud tuuma mõiste (vt. definitsioonid 1 ja 2).

Selle tuuma järgi koonduvate jadade hulk ühtib $\sim(\tau)$ summeeruvate jadade hulgaga (vt. teoreem 3 ja järeldus 3.1.).

Kasutades teoreemi 2 ja tulemusi artiklist [4] antakse tarvilikud ja piisavad tingimused $\prec(\tau)$ -menetluse regulaarsuseks (teoreem 4). On antud ka tarvilikud ja piisavad tingimused sisalduvusteks (5), (8) ja (9).

ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS 1991, 928, 67-72

INCLUSION BETWEEN THE CORES CONCERNING WEIGHTED MEANS AND POWER SERIES Leiki Loone

Suppose throughout that (p_k) is a sequence of real numbers with $p_k > 0$ for all k = 0, 1, 2,Let

$$p(\tau) \simeq \sum_{k} p_{k} \tau^{k} < \infty \quad \forall \tau \in (0, 1)$$
 (1)

and let

$$\lim_{m} P_{m} = \infty, \qquad (2)$$

where

$$P_{m} = \sum_{k=0}^{m} P_{k}.$$

Let $x = (\xi_k)$ be a sequence of real numbers. The weighted mean summability method (R,p_k) and the power series method (J,p_k) are defined as follows.

We say that $x = (\xi_k)$ is (R, p_k) -summable to a number a if

$$\lim_{m \to \infty} \frac{1}{\sum_{k=0}^{m}} p_k \xi_k = a.$$

The set of all (R, p_k) -summable sequences is denoted by c_R , and the set of all (R, p_k) -bounded sequences is denoted by m_R . It means that

$$m_{\mathbf{R}} = \{ \mathbf{x} = (\boldsymbol{\xi}_{\mathbf{k}}) : \sup_{\mathbf{m}} \left| \frac{1}{\mathbf{P}_{\mathbf{m}}} \sum_{\mathbf{k}=0}^{\mathbf{m}} \mathbf{p}_{\mathbf{k}}^{\mathbf{\xi}} \mathbf{k} \right| < \infty \}.$$

We say that $x = (\xi_k)$ is (J, p_k) -summable to a if the series

$$\sum_{\mathbf{k}} \mathbf{p}_{\mathbf{k}^{\tau}}^{\mathbf{k}_{\xi}} \mathbf{k}$$
(3)

is convergent for every $\tau \in (0,1)$ and

$$\lim_{\tau \to 1^-} \frac{1}{p(\tau)} \sum_{k} p_k \tau^k \xi_k = a.$$

The set of all (J, p_k) -summable sequences is denoted by c_J .

The set of all $x = (\xi_k)$ for which the series (3) is convergent for every $\tau \in (0,1)$ is denoted by \circ_J .

Let $K^{o}(x)$ be the Knopp's core of the sequence $x = (\xi_{k})$ and let $K_{R}(x)$ be the Knopp's core of the sequence $y = (\eta_{m})$ where

$$\eta_{\rm m} = \frac{1}{P_{\rm m}} \sum_{k=0}^{\rm m} P_k \xi_k.$$

Let the set W be defined as follows

 $\mathcal{W} = \{ w = (\tau_m) : \tau_m \neq 1, \tau_m \in (0,1), m = 0,1, \ldots \}.$

For an arbitrary $w = (\tau_m) \in \mathcal{W}$ the Knopp's core of the sequence $y^* = (\eta_m^*)$, where

$$\eta_{m}^{*} = \frac{1}{p(\tau_{m})} \sum_{k=0}^{\infty} p_{k} \tau_{m}^{k} \xi_{k},$$

is denoted by K. (x).

DEFINITION 1. The core $K_J(x)$ of a sequence $x = (\xi_k) \in \phi_J$ is the set cloo $U \{K_w(x) : w \in \Psi\}$.

It is obvious that $x \in c_J$ iff $K_J(x)$ is a singleton.

The core concerning a semicontinuous summability method was defined in [3] only for the bounded sequences $x \in m$. Definition 1 gives the concept of the core for the method (J, p_n) in the space \circ_J . It is obvious that $m \subset \circ_J$. The next theorem shows the relations between those conceptions.

THEOREM 1. For every $x \in m$ the core $K_J(x)$ is identical to the core defined by the set

 $K = clco \ U \ \{{}^{t}B_{w}(K^{o}) : w \in \mathscr{V}\},\$

where

$$B_{w} = (b_{mk})$$
 and $b_{mk} = p_{k} \tau_{m}^{k} / p(\tau_{m})$.

Proof is entailed by Corollary 3.2 from paper [3] if one applies the Definition 1 in this paper.

It is well-known that $c_R \subset c_J$ (see [2]). This result can be strenghtened as follows.

THEOREM 2. The inclusion

$$K_{J}(x) \subset K_{R}(x) \tag{4}$$

holds for all x • o, n mR.

Proof. Let $A = (a_{mk})$ be the Riesz matrix i.e.

$$\mathbf{a}_{\mathbf{m}\mathbf{k}} = \begin{cases} \mathbf{p}_{\mathbf{k}} / \mathbf{P}_{\mathbf{m}} & \text{if } \mathbf{k} \leq \mathbf{m}, \\ \mathbf{0} & \text{if } \mathbf{k} > \mathbf{m}. \end{cases}$$

The inverse matrix $A^{-1} = (a_{mk})$ to Riesz matrix is as follows

$$\mathbf{a}_{mk} = \begin{cases} P_{m}/P_{m} & \text{if } k = m, \\ -P_{n-1}/P_{n} & \text{if } k = m-1, \\ 0 & \text{if } k < m-1 \text{ or } k > m \end{cases}$$

(see [4]). The inclusion (4) is equivalent to the following

 $K_J(x) \subset K^{\circ}(Ax)$. $\forall x \in \circ_J \cap m_R$ and this is identical to the inclusion

$$K_{J}(A^{-1}x) \subset K^{\circ}(x) \quad \forall x, \quad A^{-1}x \in \diamond_{J} \cap m_{\mathbb{R}}.$$
(5)

To prove that (5) holds we have to show according to Definition 1 that for all $w \in W$ the inclusion

$$K_{W}(A^{-4}x) \subset K^{o}(x) \quad \forall x, \quad A^{-4}x \in \circ_{J} \cap \mathcal{M}_{R}.$$
 (6)

holds. Let w be an arbitrarily fixed element from \mathscr{V} . Let C be the matrix method C = (c_{mk}) , where $c_{mk} = p_k \tau_m^k / p(\tau_m)$, and let G = (g_{mk}) be such that G = CA⁻¹. It means that

$$g_{mk} = \sum_{\nu} c_{m\nu} c_{\nu\nu} t_{\nu k} = \sum_{\nu} \frac{p_{\nu} \tau_{m}^{\nu}}{p(\tau_{m})} c_{\nu k} = \frac{p_{k} \tau_{m}^{\kappa} p_{k}}{p(\tau_{m}) p_{k}} - \frac{p_{k+1} \tau_{m}^{\kappa+1} p_{k}}{p_{k+1} p(\tau_{m})} =$$
$$= \frac{p_{k}}{p(\tau_{m})} \tau_{m}^{k} (1 - \tau_{m}).$$

It is obvious that the inclusion (6) holds if for all $w = (\tau_m)$ the method G is core regular in m i.e.

$$K^{\circ}(G_X) \subset K^{\circ}(X) \quad \forall x \in m,$$
 (7)

The necessary and sufficient conditions for (7) are as follows (see [5])

$$\int_{m \to \infty}^{\infty} \lim_{m \to \infty} g_{mk} = 0 \quad \forall k = 0, 1, ...,$$
 (8)

$$2^{\circ} \lim \Sigma g_{mk} = 1, \qquad (9)$$

$$3^{\circ} \lim_{m \to \infty} \sum_{k} |g_{mk}| = 1.$$
(10)

Since $(\tau_m) \in (0,1)$ and $p(\tau_m) \to \infty$ as $m \to \infty$, the equality (8) holds for any k = 0, 1, ... As $|g_{mk}| = g_{mk}$ the conditions (9) and (10) coincide.

$$\lim_{m} \sum_{k} g_{mk} = \lim_{m} \frac{1-\tau}{p(\tau_{m})} \sum_{k} P_{k} \tau_{m}^{k}.$$

We have chosen (p_{L}) such that (1) holds, therefore

$$\sum_{\mathbf{k}} \mathbf{P}_{\mathbf{k}} \boldsymbol{\tau}_{\mathbf{m}}^{\mathbf{k}} = \frac{1}{1 - \tau_{\mathbf{m}}} \sum_{\mathbf{k}} \mathbf{P}_{\mathbf{k}} \boldsymbol{\tau}_{\mathbf{m}}^{\mathbf{k}} = \frac{\mathbf{p}(\tau_{\mathbf{m}})}{1 - \tau_{\mathbf{m}}}$$

and consequently (9) is valid. It means that for an arbitrary w method G is core regular in m and due to it (4) holds for all $x \in \circ_J \cap m_R$.

COROLLARY 2.1. If

$$\lim_{\tau \to 1} \frac{p(\tau^2)}{p(\tau)} = 1$$
(11)

then

$$K_{J}(x) = K_{R}(x) \quad \forall x \in o_{J} \cap m_{R}.$$
(12)

Proof. It is known that if (11) holds then

$$(\chi_{\tau}(x) = K_{D}(x) \quad \forall x \in c_{\tau}$$

(see [1]). As $c_{\rm R} < c_{\rm J}$, it follows that $c_{\rm J} = c_{\rm R}$. Therefore, for all $w \in W$ the method G in the proof of Theorem 2 is equivalent to the convergency. As $g_{\rm mk} \ge 0$ for all m,k = 0,1,... this equivalence gives us

 $K^{o}(Gx) = K^{o}(x) \quad \forall x \in \mathcal{M},$ (see [4],p.125) and due to it (12) holds.

References

 Borwein, D., Meir, A., A. Tauberian theorem concerning weighted means and power series. Math. Proc. Cambr. Phil. Soc. 1987, 101, 283-286.

- Ishiguro, K., A Tauberian theorem for (J,p_n) summability. Proc. Japan Acad. 1964, 40, 807-812.
- Loone, L., On cores of semicontinuous sequential summability methods. Acta et comm. Univ. Tartuensis, 1991, 928, 61-66.
- Барон С., Введение в теорию суммируемости рядов. Теллини. 1977.
- Лооне Л. О рядах влемента отделямого локально выпуклого пространотва. Уч. зап. Тарт. ун-та. 1971, 277, 125-135.

Department of Mathematical Analysis Tartu University 202400 Tartu Estonia

Received November 3, 1990

Rieszi menetluse ja astmerea abil defineeritud poolpideva menetluse poolt määratud tuumade sisalduvus Leiki Loone

Resümee

Olgu (p_k) positiivsete reaalarvude jada. Olgu $p(\tau) = \sum_{k} p_{k} \tau^{k} < \infty \quad \forall \ \tau \in (0,1)$

ja olgu lim P_m = ∞, m kusjuures

$$P_m = \sum_{k=0}^m P_k$$

Me ütleme, et arvjada x = (ξ_k) on (R,p_k) -summeeruv artvuks 4 kui

$$\lim_{m \to \infty} \frac{1}{p_m} \sum_{k=0}^{m} p_k \xi_k = a.$$

Olgu mp köikide (R,pk)-tõkestatud jadade hulk, s.t.

$$m_{\mathbb{R}} = \{ \mathbf{x} = (\boldsymbol{\xi}_{\mathbf{k}}) : \sup_{m} | \frac{1}{\mathbb{P}_{m}} \sum_{\mathbf{k}=0}^{m} \mathbf{p}_{\mathbf{k}} \boldsymbol{\xi}_{\mathbf{k}} | < \infty \}.$$

Hulka, mis koosneb kõikidest jadadest $x = (\xi_k)$, mille
korral rida

on koonduv iga $\tau \in (0,1)$ korral, tähistame sümboliga \circ_J . Me ütleme,et jada $x \in (\xi_k)$ on (J, p_k) -summeeruv arvuks a, kui ta kuulub hulka \diamond_J , ja kui

$$\lim_{\tau \to 1^-} \frac{1}{p(\tau)} \sum_{k} p_k \tau^k \xi_k = a.$$

Antud töös defineeritakse tuuma mõiste poolpideva menetluse (J,p_n) jaoks ruumis °_J (vt. definitsioon 1)., Tõestatakse sisalduvus

$$K_T(x) \subset K_p(x) \quad \forall x \in \mathcal{M}_p \cap \mathcal{O}_T$$

ja sellest järelduv võrdus (12) tingimusel (11). Nendes seostes on $K_J(x)$ definitsioonis 1 antud tuum ja $K_R(x)$ on Rieszi menetlusega määratud tuum.

ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS 1991, 928, 73-88

A DESCRIPTION OF MEASURE SPACES WITH LIFTINGS Aleksander Monakov-Rogozkin

Since Fremlin [1] has constructed an example of a measure-complete locally determined Maharam measure space which is not decomposable (or equivalently has no lifting), the question arises how to describe all measure-complete decomposable spaces and their liftings. A solution of this problem is presented in Section 6 of this paper where a description of all measure-complete decomposable spaces with a given Stone space is obtained. Finally an example of a Maharam measure space with lifting which is neither measure--complete nor locally determined is given.

1. Notations and definitions. Throughout this paper we use the terminology of Fremlin's book [2], * is the end of the proof. For a measure space $\mathcal{T} = (\mathbb{T}, \Sigma, \mu)$ we put $\mathfrak{R}(\mu) = \{\mathbb{E} \in \Sigma: \mu\mathbb{E} = 0\}, \Sigma^{\widehat{\mathbf{f}}} = \{\mathbb{E} \in \Sigma: \mu\mathbb{E} < \infty\}. \text{ Let } \mathfrak{B}(\mu) = \Sigma/\mu$ be the associated measure algebra and $\pi_{\mu}: \Sigma \to \mathfrak{B}(\mu)$ the canonical homomorphism. We write also $\widetilde{\mathbf{E}}_{\mu}$ instead of $\pi_{\mu}(\mathbb{E})$ and $\mathbb{E} \subset \mathbb{G} \pmod{\mu}$ if $\widetilde{\mathbf{E}}_{\mu} = \widetilde{\mathbf{G}}_{\mu}$, $\mathbb{E}, \mathbb{G} \in \Sigma$. If there is no confusion, we use the notations π , $\widetilde{\mathbf{E}}$ and $\mathbb{E} \subset \mathbb{G}$.

A measure space $\mathcal T$ is a Maharam measure space if the following conditions are satisfied

1) \mathcal{T} is a semi-finite measure space, i.e. for every $\mathbf{E} \in \Sigma$ with $\mu \mathbf{E} > 0$ there is a set $\mathbf{B} \in \Sigma$ such that $\mathbf{B} \subset \mathbf{E}$ and $0 < \mu \mathbf{B} < \infty$;

2) $\mathfrak{S}(\mu)$ is a Dedekind complete Boolean algebra.

Let us note that in general we do not assume for a measure space to be complete. A semi-finite measure space is locally determined if $E \in \Sigma$ whenever $E \subset T$ and $E \cap T \in \Sigma$ for every $F \in \Sigma^{f}$. We say that a measure space \mathcal{F} is decomposable (strictly localisable) if there is a partition

73

 $\langle T_i \rangle_{i=1}$ of T into sets of finite measure such that

 $\Sigma = \{E : E \subset T, E \cap T_i \in \Sigma \text{ for each } i \in I\},\$

 $\mu \mathbf{E} = \sum_{i \in \mathbf{I}} \mu(\mathbf{E} \cap \mathbf{T}_i) \text{ for } \mathbf{E} \in \Sigma.$

Every decomposable space is Maharam and locally determined [2]. A complete locally determined measure space is decomposable iff there is a *lifting* of this space [3], i.e. a Boolean homomorphism $\rho : \mathfrak{L}(\mu) \to \Sigma$ such that $\rho(\tilde{T}) = T$, $\rho(\tilde{\Theta}) = \Theta$ and $\pi_{\mu} \bullet \rho = \operatorname{id}_{\mathfrak{L}(\mu)}$.

We say that two measure spaces \mathcal{T}_1 and \mathcal{T}_2 are measure-isomorphic if there is a measure-preserving isomorphism between their measure algebras.

Let $\mathcal{T} = (T, \Sigma, \mu)$ be a measure space and \mathcal{X} a subset of T. Put

 $\Sigma_{\chi} = \{E \cap X : E \in \Sigma\},\$

 $\mu_{\mathbf{Y}}\mathbf{F} = \inf \{\mu\mathbf{E} : \mathbf{E} \in \Sigma, \ \mathbf{E} > \mathbf{F}\}, \ \mathbf{F} \in \Sigma_{\mathbf{X}}.$

Then $\mathcal{X} = (X, \Sigma_{X}, \mu_{X})$ is a subspace of a measure space \mathcal{T} (cf.[1]).

Let $\mathcal{T} = (\mathbf{T}, \Sigma, \mu)$ be a measure space and $\boldsymbol{\varphi} : \mathbb{Y} \to \mathbb{T}$ a map from a nonempty set \mathbb{Y} into \mathbb{T} . Put $\mathbb{X} = \boldsymbol{\varphi}(\mathbb{Y})$,

$$E = \varphi^{-1}(\Sigma_{\chi}) = \{\varphi^{-1}(E) : E \in \Sigma_{\chi}\},$$
$$\eta(\varphi^{-1}(E)) = \mu_{\nu}E, \quad E \in \Sigma_{\nu}.$$

Then $\mathscr{Y} = (\Upsilon, \Xi, \eta)$ is a measure space which will be called a preimage of the space \mathscr{T} (under the map φ). It is clear that \mathscr{Y} is also a preimage of the subspace $\mathscr{X} = (\mathfrak{X}, \Sigma_{\mathfrak{X}}, \mu_{\mathfrak{X}})$ of \mathscr{T} under the surjective map $\varphi : \Upsilon \to \mathfrak{X}$.

2. The Stone space of Maharam measure space. Let $\mathcal{T} = (T, \Sigma, \mu)$ be a Maharam measure space and Q the Stone space of the Boolean algebra $\mathfrak{S}(\mu)$, i.e. an extremally disconnected Hausdorff topological space with a compact topology \ast such that the algebra \checkmark of all open-closed subsets of Q is isomorphic to $\mathfrak{S}(\mu)$. The isomorphism $\tau : \mathfrak{S}(\mu) \rightarrow \mathscr{A}$ transfers the measure μ onto \mathscr{A} . Let \mathscr{M}_Q be the collection of all subsets of the first category of Q and

 $\Omega = \{ A \land M : A \in \mathcal{A}, M \in \mathcal{M}_{\Omega} \},\$

where AAM denotes the symmetrical difference of the sets A and M. Then Ω is the σ -algebra of subsets of Q generated by A and \mathcal{M}_{Q} (see e.g. [4]) and there exists a unique extension of the measure $\nu = \tau(\mu)$ from A onto Ω . The space Q is "hyperstonean", in particular, every set from \mathcal{M}_{Q} is nowhere dense in Q. Now the topological measure space $Q = (Q, \Omega, \nu, \varkappa)$ is the *Stone space* of the Maharam measure space \mathcal{T} . It is clear that \mathcal{T} is measure-isomorphic to its Stone space.

Let $\mathfrak{M} = \mathfrak{M}(\mathfrak{Q})$ be the class of all Maharam measure spaces that have the same Stone space Q. The class \mathfrak{M} always contains a measure-complete decomposable spaces, e.g. the space $(\mathfrak{Q}, \Omega, \nu)$. For every $\mathfrak{G} \in \Omega$ there is a unique $A \in \mathscr{A}$ such that $A \stackrel{\sim}{} G \pmod{\nu}$ and the equality $\sigma_{0}(\widetilde{\mathfrak{G}}) = A$ defines the unique strong lifting σ_{0} of the space Q. In the paper [1] D. H. Fremlin has constructed an example of a measure-complete locally determined Maharam space which is not decomposable and thus has no liftings. Therefore the question arises how to describe all measure-complete decomposable spaces of a given class $\mathfrak{M} = \mathfrak{M}(\mathfrak{Q})$. We shall see that this problem is connected with the construction of all pairs (\mathcal{F}, ρ) where $\mathcal{F} \in \mathfrak{M}$ and ρ is a lifting of \mathcal{F} .

The notations of this section will be essentially used below.

Given a space $\mathcal{T} \in \mathfrak{M}$ one can obtain some new spaces belonging to the same class \mathfrak{M} . The assertions of the next proposition are well known.

PROPOSITION 1. Let $\mathcal{T} = (T, \Sigma, \mu)$ be a Maharam measure space and $(Q, \Omega, \nu, \varkappa)$ its Stone space.

(a) If the set $X \subset T$ is thick in the space \mathcal{T} then the corresponding subspace $\mathfrak{X} = (X, \Sigma_X, \mu_X)$ is measure-isomorphic to \mathcal{T} .

(b) The set $X \subset Q$ is thick in the space (Q, Ω, ν) iff it is dense in the topological space (Q, \varkappa) .

Let $\mathcal{T} = (T, \Sigma, \mu)$ and $\mathcal{Y} = (Y, \Xi, \lambda)$ be two measure-isomorphic spaces. We say that a measure-preserving isomorphism $u : \mathfrak{B}(\mu) \to \mathfrak{B}(\lambda)$ is generated by the map $\varphi : Y \to T$ if

$$u(\tilde{E}_{\mu}) = \left[\varphi^{-1}(E)\right]_{\lambda}$$
(1)

for every $E \in \Sigma$ (cf.[5]). Let us note that the formula (1)

75

defines a measure-preserving isomorphism between $\Re(\mu)$ and $\Re(\lambda)$ iff the following conditions are satisfied:

C.1) $\varphi^{-1}(E) \in \Xi$ for every $E \in \Sigma$;

C.2) $\lambda(\varphi^{-1}(\mathbf{E})) = \mu \mathbf{E}$ for every $\mathbf{E} \in \Sigma$;

C.3) for every $G \in \Xi$ there is a set $E \in \Sigma$ such that $\varphi^{-1}(E) \cong G \pmod{\lambda}$.

The next proposition follows immediately from the definition of a preimage of a measure space.

PROPOSITION 2. Let $\mathcal{Y} = (\mathbb{Y}, \mathbb{Z}, \eta)$ be the preimage of a space $\mathcal{T} = (\mathbb{T}, \Sigma, \mu)$ under the map $\varphi : \mathbb{Y} \to \mathbb{T}$ such that the set $\varphi(\mathbb{Y})$ is thick in the space \mathcal{T} . Then the map $u : \mathfrak{B}(\mu) \to \mathfrak{B}(\eta)$ defined by the equalities

$$u(\tilde{E}_{\mu}) = \left[\varphi^{-1}(E)\right]_{\eta}, \quad E \in \Sigma, \quad (2)$$

is a measure-preserving isomorphism of $\mathscr{Z}(\mu)$ onto $\mathscr{Z}(\eta)$. If \mathscr{T} is decomposable then so is \mathscr{Y} .

3. Pointwize maps connected with liftings. The example in Section 7 below shows that there are Maharam measure spaces with liftings which complete or even locally determined. Therefore we shall consider some constructions connected with liftings of Maharam spaces.

Let ρ be a lifting of a Maharam space $\mathcal{F} = (T, \Sigma, \mu)$ and $Q = (Q, \Omega, \nu, \varkappa)$ the Stone space of \mathcal{F} . For each $t \in T$ the set $\mathscr{N}_{\rho,t} = \{\widetilde{E} \in \mathscr{B}(\mu): t \notin \rho(\widetilde{E})\}$ is a maximal ideal of the Boolean algebra $\mathscr{B}(\mu)$ and we shall identify it with the point $z \in Q$. Thus we write $z = \mathscr{N}_{\rho,t}$ and we obtain a map $\varphi_{\rho}: T \neq Q$ where $\varphi_{\rho}(t) = \mathscr{N}_{\rho,t} = z$. In the following propositions we use the notations of the previous section.

PROPOSITION 3. Let ρ be a lifting of a Maharam measure space $\mathcal{F} = (T, \Sigma, \mu)$. Then the corresponding map φ_{ρ} : $T \rightarrow Q$ has the following properties:

(a) the set $\varphi_{\rho}(T)$ is dense in Q;

(b) $\rho(\tilde{E}) = \rho_{\rho}^{-4}(\tau(\tilde{E}))$ for every $E \in \Sigma$;

(c) $\varphi_{-1}^{-1}(U) \in \Sigma$ for every $U \in \mathcal{A}$;

(d) if $\mathbb{M} \subset \mathbb{Q}$ is such that the inner measure $\mu_{\mathbf{x}}(\varphi_{\mathcal{Q}}^{-1}(\mathbb{M})) = 0$, then $\mathbb{M} \in \mathcal{M}_{\mathbb{Q}}$;

(e) for every $M \in \mathcal{M}_Q$ the set $\varphi_{\rho}^{-1}(M)$ is locally negligible in the space \mathcal{T} .

NOTE. (a) is essentially due to [3], (b)-(e) are taken from [6].

PROPOSITION 4. Let ρ be a lifting of measure-complete decomposable space $\mathcal{T} = (T, \Sigma, \mu)$ and $Q = (Q, \Omega, \nu, \varkappa)$ the Stone space of \mathcal{T} . Put $X = \varphi_{\rho}(T)$. Then

(a) for $M \in \Omega$ we have $\nu M = 0$ iff $\mu(\varphi_{\Omega}^{-1}(M)) = 0$;

(b) $\varphi_{\Omega}^{-1}(G) \in \Sigma$ for every $G \in \Omega$;

(c) the map $\varphi_{\rho}: \mathbb{T} \to \mathbb{Q}$ generates a measure-preserving isomorphisms $v: \mathfrak{F}(\nu) \to \mathfrak{F}(\mu)$ and $g: \mathfrak{F}(\nu_{\chi}) \to \mathfrak{F}(\mu)$ whereas the map $\varphi_{0} = \tau \cdot v$ is the strong lifting of the space \mathbb{Q} .

NOTE. This result is taken from [3] and [6]. For the other properties of the map P_{ρ} and for the proof of the following theorem see also [6].

THEOREM 1. Let $\mathcal{T} = (T, \Sigma, \mu)$ be a Maharam measure space, (Q, Ω, ν, \varkappa) its Stone space and $\varphi : T \rightarrow Q$ a map with the following properties:

(i) $\varphi^{-1}(G) \in \Sigma$ for every $G \in \Omega$;

(ii) if $E \in \Sigma$ and $\mu E > 0$, then $E \cap \varphi^{-1}(\tau(\tilde{E}_{\mu})) \neq \emptyset$. Then the equalities

$$\rho(\tilde{\tilde{E}}_{\mu}) = \rho^{-1} \langle \tau(\tilde{\tilde{E}}_{\mu}) \rangle, \ E \in \Sigma,$$
(3)

define the lifting ρ of the space \mathcal{T} whereas $\varphi = \varphi_{\rho}$.

This theorem shows that any lifting ρ of the space \mathcal{T} is uniquely determined by the pointwise map φ : $T \rightarrow Q$.

4. Extremal extensions of measure space. We shall say that a measure space $\mathcal{T} = (\mathbf{T}, \boldsymbol{\Sigma}, \boldsymbol{\mu})$ is an *extremal extension* of a space $\mathcal{F}_0 = (T, \Sigma_0, \mu_0)$ if the measure μ extends μ_0 and for every $\mathbf{E} \in \Sigma$ there is a set $\mathbf{E}_0 \in \Sigma_0$ such that $\mathbf{E} \in \mathbf{E}_0 \pmod{\mu}$.

NOTE. It seems to be more natural to use the term "equivalent extension", but under the conditions of the previous definition the measure μ represents a well known extremal extension of measure μ_0 (of. e.g. [7], [8]).

The following proposition is an easy consequence of the above definition.

PROPOSITION 5. Let \mathcal{T} be an extremel extension of \mathcal{T}_0 . Then

(a) the spaces ${\mathcal T}$ and ${\mathcal T}_0$ are measure-isomorphic;

(b) \mathcal{T} is a semi-finite measure space iff \mathcal{T}_0 is;

(c) J is a Maharam iff J is.

NOTE. In (a) the isomorphism $w : \mathfrak{L}(\mu_0) \to \mathfrak{L}(\mu)$ is generated by the identity map $e : T \to T$.

For any measure space $\mathcal{T} = (\mathbf{T}, \mathbf{\Sigma}, \mu)$ its completion $\overline{\mathcal{T}} = (\mathbf{T}, \overline{\mathbf{\Sigma}}, \overline{\mu})$ is obviously an extremal extension of \mathcal{T} . A partial case of an extremal extension of a Maharam measure space \mathcal{T} is a locally determined version $\mathcal{T}^{\mathbf{O}} = (\mathbf{T}, \mathbf{\Sigma}^{\mathbf{O}}, \mu^{\mathbf{O}})$ of \mathcal{T} where

 $\Sigma^{\circ} = \{ E \subset T : E \cap F \in \Sigma \text{ for every } F \in \Sigma^{f} \},$ $\mu^{\circ} E = \sup \{ \mu(E \cap F) : F \in \Sigma^{f} \}, E \in \Sigma^{\circ} \}$

(see [1]). The same property has a complete locally determined version $\mathcal{T}' = (\mathbf{T}, \Sigma', \mu')$ of a Maharam space \mathcal{T} (see [1]) which may be defined as $(\overline{\mathcal{T}})^{\circ}$ or $(\overline{\mathcal{T}}^{\circ})$.

Now we shall describe how to construct an extremal extension of a measure space. For a family 5 of subsets of T we denote by sa5 the σ -algebra of subsets of T generated by 5.

PROPOSITION 6. Let $\mathcal{F}_0 = (T, \Sigma_0, \mu_0)$ be a measure space and \mathfrak{R} a family of subsets of T with the following properties:

78

(j) R is closed under at most countable unions;

(jj) every element of \Re is of inner measure zero. Set $\Sigma = \operatorname{sa}(\Sigma_0 \cup \Re)$. Then the measure μ_0 can be uniquely extended to the measure μ on Σ and the space $\mathcal{T} = (\mathbb{T}, \Sigma, \mu)$ is an extremal extension of \mathcal{T}_0 .

Conversely, if a space $\mathcal{T} = (\mathbb{T}, \Sigma, \mu)$ is an extremal extension of a space $\mathcal{T}_0 = (\mathbb{T}, \Sigma_0, \mu_0)$, then \mathcal{T} may be obtained from \mathcal{T}_0 and from a suitable family \mathfrak{N} as described above.

Proof. The first assertion is well known (see e.g. [9]). To prove the converse, denote $\mathfrak{N} = \mathfrak{N}(\mu)$. Then \mathfrak{N} satisfies (j) and (jj). Clearly $\operatorname{sa}(\Sigma_0 \cup \mathfrak{N}) \subset \Sigma$. For every $\mathbb{E} \in \Sigma$ there is a set $\mathbb{E}_0 \in \Sigma_0$ such that $\mathbb{E} \cap \mathbb{E}_0 \pmod{\mu}$. Now we have $\mathbb{E} = \mathbb{E}_0 \wedge \mathbb{N}$, where $\mathbb{N} \in \mathfrak{N}(\mu) = \mathfrak{N}$. Thus $\mathbb{E} \notin \operatorname{sa}(\Sigma_0 \cup \mathfrak{N})$ so that $\Sigma = \operatorname{sa}(\Sigma_0 \cup \mathfrak{N}) *$

REMARK. If \Re is a σ -ideal of subsets of T, then (jj) means that $\Re \bigcap \Sigma_0 \subset \Re(\mu_0)$. We have $\operatorname{sa}(\Sigma_0 \cup \Re) = \{A \land N : A \in \Sigma_0, N \in \Re\}$ and the extension μ of μ_0 is defined by $\mu(A \land N) = \mu_0 A$. In this case the measure space $\mathcal{T} = (T, \Sigma, \mu)$ is complete if one of the following sufficient conditions aresatisfied: (a) \mathcal{T}_0 is measure-complete; (b) $\Re(\mu_0) \subset \Re$ i.e. $\Re \cap \Sigma_0 = \Re(\mu_0)$. In this case $\Re = \Re(\mu)$.

THEOREM 2. Let $\mathcal{T}_0 = (\mathbf{T}, \boldsymbol{\Sigma}_0, \boldsymbol{\mu}_0)$ be a measure space and \mathfrak{R} a σ -ideal of subsets of \mathbf{T} such that $\mathfrak{R} \cap \boldsymbol{\Sigma}_0 = \mathfrak{N}(\boldsymbol{\mu}_0)$. Then the space $\mathcal{T} = (\mathbf{T}, \boldsymbol{\Sigma}, \boldsymbol{\mu})$, where $\boldsymbol{\Sigma} = \operatorname{sa}(\boldsymbol{\Sigma}_0 \cup \mathfrak{R})$ and $\boldsymbol{\mu}(\mathbf{A} \Delta \mathbf{N}) = \boldsymbol{\mu}_0 \mathbf{A}$ for $\mathbf{A} \in \boldsymbol{\Sigma}_0$, $\mathbf{N} \in \mathfrak{R}$, is a measure-complete extremal extension of the space \mathcal{T}_0 whereas $\mathfrak{R} = \mathfrak{N}(\boldsymbol{\mu})$. Conversely, if $\mathcal{T} = (\mathbf{T}, \boldsymbol{\Sigma}, \boldsymbol{\mu})$ is a measure-complete extremal extension of a measure-space $\mathcal{T}_0 = (\mathbf{T}, \boldsymbol{\Sigma}_0, \boldsymbol{\mu}_0)$, then it coincides with the extremal extension of \mathcal{T}_0 constructed by $\boldsymbol{\Sigma}_0$ and by the σ -ideal $\mathfrak{R} = \mathfrak{R}(\boldsymbol{\mu})$.

Proof. From Proposition 6 we obtain that the space $\mathcal{T} = (\mathbf{T}, \boldsymbol{\Sigma}, \boldsymbol{\mu})$ is an extremal extension of \mathcal{T}_0 . The equality $\mathfrak{R} = \mathfrak{R}(\boldsymbol{\mu})$ and thus the completeness of \mathcal{T} are both obvious.

Conversely, let \mathcal{T} be a measure-complete extremal extension of \mathcal{T}_0 . Put $\mathfrak{R} = \mathfrak{R}(\mu)$. Then \mathfrak{R} is a σ -ideal of

79

subsets of T, $\Re(\mu_0) \subset \Re(\mu) = \Re$, $\Sigma_0 \subset \Sigma$, the measure μ extends μ_0 and for each $E \in \Sigma$ there is a set $A \in \Sigma_0$ such that $\mu(A \land E) = 0$. Hence $\mu(A \backslash E) = \mu(E \backslash A) = 0$. Set $A \backslash E =$ = $N_1 \in \Re$, $E \backslash A = N_2 \in \Re$ and $N = N_1 \cup N_2 \in \Re$. Then $E = A \land N$. From this we conclude that

 $\Sigma \in \{A \triangle N : A \in \Sigma_0, N \in \mathfrak{N}\} = \operatorname{sa}(\Sigma_0 \cup \mathfrak{N}),$

Since the converse inclusion is obvious, we have $\Sigma = \operatorname{sa}(\Sigma_0 \cup \mathfrak{N})$. It is clear that $\mathfrak{N} \cap \Sigma_0 = \mathfrak{N}(\mu_0)$ and $\mu(A \Delta N) = \mu_0 A$ for every $A \in \Sigma_0$, $N \in \mathfrak{N}$.*

5. Constructing new spaces with liftings. Now we shall show how to construct new measure spaces with liftings using a given space \mathcal{T} with a lifting ρ .

PROPOSITION 7. Let X be a thick subset of a measure space $\mathcal{T} = (T, \Sigma, \mu)$. If \mathcal{T} has a lifting, then so has the space $\mathcal{X} = (X, \Sigma_{Y}, \mu_{Y})$.

Proof. Let ρ be a lifting of \mathcal{F} . Applying to Proposition 1 (or Proposition 2) we denote by $h: \mathscr{S}(\mu_{\chi}) \to \mathscr{S}(\mu)$ the measure-preserving isomorphism (induced by inclusion $\chi \subset T$). Let $\pi^*: \Sigma_{\chi} \to \mathscr{S}(\mu_{\chi})$ be the canonical homomorphism. Put $A^* = \pi^*(A)$ and

 $\rho'(\underline{A}^*) = \rho(\underline{h}(\underline{A}^*)) \cap \underline{X}, \quad \underline{A} \in \Sigma_{\underline{Y}}.$

It is easy to check that ρ' : $\mathfrak{S}(\mu_{\chi}) \to \Sigma_{\chi}$ is a lifting of the space $\mathcal{X}.$ *

PROPOSITION 8. Let $\mathcal{Y} = (Y, \Xi, \eta)$ be the preimage of a measure space $\mathcal{T} = (T, \Sigma, \mu)$ under the map $\varphi : Y \to T$ such that $\varphi(Y)$ is a thick subset of T. Let also $u : \mathfrak{L}(\mu) \to \mathfrak{L}(\eta)$ be the measure-preserving isomorphism generated by φ , and φ a lifting of the space \mathcal{T} . Then the equalities

 $\sigma(\tilde{G}_{n}) = \varphi^{-1}(\rho(u^{-1}(\tilde{G}_{n}))), \ G \in \Xi,$ (4)

define a lifting of the space y.

Proof. It is clear that $\sigma(\tilde{Y}_n) = Y$, $\sigma(\tilde{\varrho}_n) = \varrho$ and σ is

a Boolean homomorphism. Therefore we must prove only that $\pi_{\eta} \cdot \sigma = \operatorname{id}_{\mathfrak{S}(\eta)}$, in other words that $\sigma(\widetilde{\mathfrak{G}}_{\eta}) \sim \mathfrak{G} \pmod{\eta}$ for every $\mathfrak{G} \in \Xi$. Take a set $\mathbb{E} \in \Sigma$ such that $\mathfrak{G} = \varphi^{-1}(\mathbb{E})$. By Proposition 2, we have

$$\tilde{G}_{\eta} = \left[\widetilde{\varphi^{-1}(\mathbb{E})} \right]_{\eta} = u(\tilde{\mathbb{E}}_{\mu}),$$

whence $\tilde{E}_{\mu} = u^{-1}(\tilde{G}_{\eta})$ and

$$\begin{aligned} \sigma(\widetilde{\mathbf{G}}_{\eta}) \ \Delta \ \mathbf{G} \ &= \ \sigma(\widetilde{\mathbf{G}}_{\eta}) \ \Delta \ \varphi^{-1}(\mathbf{E}) \ &= \ \varphi^{-1}(\mathbf{E} \ \Delta \ \rho(\mathbf{u}^{-1}(\widetilde{\mathbf{G}}_{\eta}))) \ &= \\ &= \ \varphi^{-1}(\mathbf{E} \ \Delta \ \rho(\widetilde{\mathbf{E}}_{\mu})) \ . \end{aligned}$$

As $\mathbb{E} \Delta \rho(\mathbb{E}_{\mu}) \sim \mathcal{O}$ (mod μ), we conclude that $\sigma(\mathbb{G}_{\eta}) \sim \mathbb{G}$ (mod η).*

PROPOSITION 9. Let $\mathcal{T}_0 = (\mathbf{T}, \boldsymbol{\Sigma}_0, \boldsymbol{\mu}_0)$ be a measure space, $\mathcal{T} = (\mathbf{T}, \boldsymbol{\Sigma}, \boldsymbol{\mu})$ its extremal extension and $\mathbf{w} : \boldsymbol{\mathfrak{S}}(\boldsymbol{\mu}_0) \rightarrow \boldsymbol{\mathfrak{S}}(\boldsymbol{\mu})$ the measure-preserving isomorphism generated by the identity map $\mathbf{e} : \mathbf{T} \rightarrow \mathbf{T}$. Then for every lifting $\boldsymbol{\rho}_0$ of the space \mathcal{T}_0 there exists a unique lifting $\boldsymbol{\rho}$ of the space \mathcal{T} such that

$$\rho(\mathbf{E}_{\mu}) = \rho_0(\mathbf{w}^{-1}(\mathbf{E}_{\mu}))$$

for every $\mathbf{E} \in \Sigma$. Moreover, if $\tau : \mathscr{B}(\mu) \to \mathscr{A}$ and $\tau_0 : B(\mu_0) \to \mathscr{A}$ are the canonical maps then $w = \tau^{-1} \circ \tau_0$.

The proof is easy. Let us remark that for any lifting ρ of the space \mathcal{T} one can consider the map $\rho' : \Sigma \to \Sigma$ defined as follows

$$\rho'(\mathbf{E}) = \rho(\widetilde{\mathbf{E}}_{\mu}), \mathbf{E} \in \Sigma.$$

The map ρ' is called a *lifting* of the σ -algebra Σ (cf. [3]). Thus, Proposition 9 may be formulated as follows. Let $\mathcal{T}_0 = (\mathbf{T}, \boldsymbol{\Sigma}_0, \boldsymbol{\mu}_0)$ be a measure space and $\mathcal{T} = (\mathbf{T}, \boldsymbol{\Sigma}, \boldsymbol{\mu})$ its extremal extension. Then every lifting ρ'_0 of $\boldsymbol{\Sigma}_0$ can be uniquely extended to the lifting ρ'_0 of $\boldsymbol{\Sigma}$.

6. A description of Maharam measure spaces with liftings. Now we shall prove the main theorems.

PROPOSITION 10. Let a measure space $\mathcal{T} = (T, \Sigma, \mu)$ be an extremal extension of the preimage of some dense subspace

 $\mathfrak{X} = (\mathfrak{X}, \Omega_{\mathfrak{X}}, \nu_{\mathfrak{X}})$ of hyperstonean space $\mathfrak{Q} = (\mathfrak{Q}, \Omega, \nu, \varkappa)$ under some surjective map $\varphi : \mathfrak{T} \to \mathfrak{X}$. Then there is a lifting ρ of the space \mathcal{T} such that $\varphi = \varphi_{\rho}$.

Proof. Denote by $\mathcal{T}_0 = (\mathbf{T}, \boldsymbol{\Sigma}_0, \boldsymbol{\mu}_0)$ the preimage of the space X under the map φ : $\mathbf{T} + \mathbf{X}$. It is clear that \mathcal{T}_0 is also the preimage of the space Q. By Propositions 1, 2 and 5, the spaces $\mathcal{T}, \mathcal{T}_0, X$ and Q are measure-isomorphic. Consider the canonical maps $\pi : \Sigma \to \mathfrak{S}(\mu), \pi_0 : \Sigma_0 \to \mathfrak{S}(\mu_0)$ and the canonical isomorphisms $\tau : \mathfrak{S}(\mu) \to \mathfrak{K}, \tau_0 : \mathfrak{S}(\mu_0) \to \mathfrak{K}$. Let $\sigma_0 : \mathfrak{S}(\nu) \to \mathfrak{K}$ be the strong lifting of the space Q. Put $\mathbf{\tilde{E}} = \pi(\mathbf{E}), \mathbf{A}^* = \pi_0(\mathbf{A})$ for $\mathbf{E} \in \Sigma, \mathbf{A} \in \Sigma_0$. Let $u : \mathfrak{S}(\nu) \to \mathfrak{S}(\mu_0)$ be the measure-preserving isomorphism generated by φ .

$$P_0(\mathbf{E}^*) = p^{-1}(\sigma_0(\mathbf{u}^{-1}(\mathbf{E}^*))), \mathbf{E} \in \Sigma_0,$$

define a lifting of the space σ_0 . From the assertion (c) of Proposition 4 we obtain $\sigma_0 = \tau_0 \circ u$, so that $\sigma_0 \circ u^{-4} = \tau_0$ and

$$\rho_0 (\mathbf{E}^*) = \rho^{-1}(\tau_0(\mathbf{E}^*))$$

for every $E \in \Sigma_0$.

Let $w: \mathfrak{S}(\mu_0) \to \mathfrak{S}(\mu)$ be the measure-preserving isomorphism generated by the identity map $e: \mathbb{T} \to \mathbb{T}$. By Proposition 9, there is a unique lifting ρ of the space \mathcal{T} such that

$$\rho(\mathbf{E}) = \rho_0(\mathbf{w}^{-1}(\mathbf{E}))$$

for every $E \in \Sigma$. Since $w = \tau^{-1} \circ \tau_0$ we have $\tau_0 \circ w^{-1} = \tau$ and

$$\rho(\tilde{\mathbf{E}}) = \rho_0(\mathbf{w}^{-1}(\tilde{\mathbf{E}})) = \varphi^{-1}(\tau_0(\mathbf{w}^{-1}(\tilde{\mathbf{E}}))) = \varphi^{-1}(\tau(\tilde{\mathbf{E}})).$$
(5)

From (5) and the assertion (b) of Proposition 3 it follows that $\varphi^{-1}(U) = \varphi_{\rho}^{-1}(U)$ for every open-closed set $U \in \mathcal{A}$. The Stone space Q is a Hausdorff topological space and \mathcal{A} is a base of its topology. Therefore $\varphi = \varphi_{\rho} \cdot *$

THEOREM 3. Let $\mathcal{T} = (T, \Sigma, \mu)$ be a measure-complete locally determined Maharam measure space. The following assertions are equivalent:

(1) \mathcal{T} is decomposable.

(2) There is a lifting of the space \mathcal{T} .

(3) The space \mathcal{T} is an extremal extension of the preimage of some dense subspace $\mathfrak{X} = (\mathfrak{X}, \Omega_{\chi}, \nu_{\chi})$ of the Stone

space $Q = (Q, \Omega, \nu, \varkappa)$ of \mathcal{F} under some surjective map $\varphi : T \rightarrow X$.

Proof. (1) \Leftrightarrow (2) is well known (see e.g. [3]). (3) \Rightarrow (2) follows from Proposition 10.

Check that (2) \Rightarrow (3). Let ρ be a lifting of the space \mathcal{T} and φ_{ρ} : $T \neq Q$ the corresponding map. Put $X = \varphi_{\rho}(T)$ and $\mathcal{X} = (X, \Omega_{X}, \nu_{X})$. By Propositions 1 and 3, the set X is dense in Q. Let $\mathcal{T}_{0}, \Sigma_{0}, \mu_{0}$) be the preimage of the space \mathcal{X} under the map φ_{ρ} . Applying to Proposition 4 we obtain that $\varphi_{\rho}^{-1}(G \cap X) = \varphi_{\rho}^{-1}(G) \in \Sigma$ for every $G \in \Omega$ and therefore $\varphi_{\rho}^{-1}(G) \in \Sigma$ for every $G \in \Omega_{X}$ so that $\Sigma_{0} \subset \Sigma$. Clearly \mathcal{T}_{0} is also the preimage of Q under the map φ_{ρ} .

Consider the canonical homomorphism $\pi: \Sigma \to \mathfrak{X}(\mu)$ and put $\widetilde{E} = \pi(\mathbb{E})$, for $\mathbb{E} \in \Sigma$. By the assertion (b) of Proposition 3 we have $\rho(\mathfrak{X}(\mu)) \subset \Sigma_0$. Hence for each $\mathbb{E} \in \Sigma$ there is a set $\mathbb{E}_0 \in \Sigma_0$ such that $\mathbb{E} \sim \mathbb{E}_0 \pmod{\mu}$, namely we can take $\mathbb{E}_0 = \rho(\widetilde{E})$. Now we have only to prove that the measure μ extends μ_0 .

In fact, if E, $F \in \Sigma_0$ and $E \sim F \pmod{\mu}$, then $\mu(E \Delta F) = 0$. As $E \Delta F \in \Sigma_0$ there is a set $M \in \Omega$ such that $E \Delta F = \varphi_{\rho}^{-4}(M)$. By the assertion (a) of Proposition 4 we have $\nu M = 0$. This yields that $\mu_0(E \Delta F) = \nu M = 0$. Since $E \sim \rho(\tilde{E}) \pmod{\mu}$ for every $E \in \Sigma_0$, it follows that $E \sim (\tilde{E}) \pmod{\mu_0}$, whence $\mu_0 E = \mu_0(\rho(\tilde{E}))$.

Finally for every $\mathbf{E} \in \Sigma_0$ we have by Propositions 3 and 4 $\mu \mathbf{E} = \mu(\rho(\mathbf{\tilde{E}})) = \nu_{\mathbf{X}}(\varphi_{\rho}(\rho(\mathbf{\tilde{E}}))) = \mu_0(\varphi_{\rho}^{-1}(\varphi_{\rho}(\rho(\mathbf{\tilde{E}})))) = \mu_0(\rho(\mathbf{\tilde{E}})) = \mu_0 \mathbf{E}.$

Thus, the measure μ extends $\mu_0.*$

Since the completeness of a measure is not used in the proof of the implication (2) \Rightarrow (1) in Theorem 3, we have also the following theorem.

THEOREM 4. A locally determined Maharam measure space which has a lifting, is decomposable.

THEOREM 5. Let $\mathcal{F} = (\mathbb{T}, \Sigma, \mu)$ be a Maharam measure space and $\mathbb{Q} = (\mathbb{Q}, \Omega, \nu, \varkappa)$ its Stone space. The following assertions are equivalent:

(1) J is measure-complete and decomposable.

(2) I coincides with the complete locally determined

version of an extremal extension of the preimage of the Stone space Q under such map φ : $T \rightarrow Q$ that $\varphi(T)$ is a dense subset in Q.

Proof. (1) \Rightarrow (2) follows from Theorem 3. The implication (2) \Rightarrow (1) follows from Propositions 1, 2, 8, 9, Theorem 4 and the definition of complete locally determined version.*

From Theorem 5 it follows that every measure-complete decomposable space may be obtained in four steps at most: 1) take a suitable dense subset X of the corresponding Stone space, 2) take a preimage of the subspace $\mathcal{X} = (X, \Omega_X, \nu_X)$ under some surjective map $\varphi : T + X$, 3) take a suitable extremal extension of the previous space, 4) take the complete locally determined version of the last space.

In the paper [10] V. L. Levin has stated the question whether there always exists a separating lifting of the measure-complete decomposable space $\mathcal{T} = (T, \Sigma, \mu)$, i.e. such lifting ρ that for every $t_1, t_2 \in T$ $(t_1 \neq t_2)$ there is a set $E \in \Sigma$ with $t_1 \in \rho(E)$ and $t_2 \neq \rho(E)$. Clearly ρ is separating lifting iff the map e_{ρ} : T + Q is injective. Now we can easily see that the answer is in general "no". Let ${\mathcal T}$ be the preimage of a hyperstonean space (Q,Ω,ν,\varkappa) under a surjective map φ : $T \rightarrow Q$. Then \mathcal{T} is decomposable, but if card T > card Q, then there is no separating lifting of the space \mathcal{T} . The completion $\overline{\mathcal{T}}$ of \mathcal{T} is obviously a measure--complete decomposable space which has no separating liftings.

Finally we shall describe all Maharam measure spaces $\mathcal{F} = (\mathbf{T}, \Sigma, \mu)$ with a given Stone space $(\mathbf{Q}, \Omega, \nu, \varkappa)$ that have a lifting. Let \mathcal{D} be the σ -algebra of Baire sets in \mathbf{Q} and ν_0 the restriction of ν to \mathcal{D} . Then the space $(\mathbf{Q}, \mathcal{D}, \nu_0)$ has obviously the natural strong lifting $\sigma : \mathfrak{L}(\nu_0) + \mathscr{A}$ and $(\mathbf{Q}, \Omega, \nu)$ is an extremal extension of $(\mathbf{Q}, \mathcal{D}, \nu_0)$.

THEOREM 6. Let $\mathcal{T} = (\mathbb{T}, \Sigma, \mu)$ be a Maharam measure space, $Q = (Q, \Omega, \nu, \varkappa)$ its Stone space and (Q, \mathcal{D}, ν_0) the corresponding measure space with Baire sets as measurable ones. Then \mathcal{T} has a lifting iff it is an extremal extension of the preimage of

84

the space (Q, \mathcal{D}, ν_0) under such map $\varphi : T \to Q$ that $\varphi(T)$ is a dense subset of Q.

Proof. Let ρ be a lifting of \mathcal{F} and $\mathcal{F}_0 = (\mathbf{T}, \mathbf{\Sigma}_0, \mu_0)$ the preimage of $(\mathbf{Q}, \mathcal{D}, \nu_0)$ under the map $\boldsymbol{\rho}_{\rho} : \mathbf{T} \to \mathbf{Q}$. Then $\boldsymbol{\rho}_{\rho}^{-1}(\mathbf{G}) \in \boldsymbol{\Sigma}$ for every $\mathbf{G} \in \boldsymbol{\mathcal{D}}$ so that $\boldsymbol{\Sigma}_0 \subset \boldsymbol{\Sigma}$. It is clear that for every $\mathbf{E} \in \boldsymbol{\Sigma}$ there is a set $\mathbf{E}_0 \in \boldsymbol{\Sigma}_0$ such that $\mathbf{E} = \mathbf{E}_0$ (mod μ) (one can take $\mathbf{E}_0 = \rho(\mathbf{E}\mu)$).

Now we shall prove that μ extends μ_0 . If $\mathbf{E} \in \Sigma_0$ and $\mu \mathbf{E} = 0$ then $\mu_0 \mathbf{E} = 0$. In fact, $\mathbf{E} = \varphi_\rho^{-1}(\mathbf{A})$ for some $\mathbf{A} \in \mathcal{D} \subset \Omega$ and if we assume that $\mu_0 \mathbf{E} \neq 0$, then $\nu \mathbf{A} \neq 0$. In this case we have Int $\mathbf{A} \neq \emptyset$ and there is a set $\mathbf{G} \in \mathcal{A}$, $\mathbf{G} \neq \emptyset$, such that $\mathbf{G} \subset \mathbf{A}$. Then $\mathbf{E} \supset \varphi_\rho^{-1}(\mathbf{G}) = \rho(\mathbf{H})$ for some $\mathbf{H} \in \Sigma$ whereas $\rho(\mathbf{H}) \neq \emptyset$, whence $\mu\rho(\mathbf{H}) > 0$ and $\mu \mathbf{E} > 0$. Now we have $\mathbf{E} \frown \rho(\mathbf{E})$ (mod μ) for every $\mathbf{E} \in \Sigma_0$, i.e. $\mathbf{E} \bigtriangleup \rho(\mathbf{E}) \frown \emptyset$ (mod μ_0), i.e. $\mu_0 \mathbf{E} = \mu_0 \rho(\mathbf{E})$. Finally for every $\mathbf{E} \in \Sigma_0$ we obtain $\mu \mathbf{E} = \mu \rho(\mathbf{E}) = \nu(\tau(\mathbf{E})) = \nu_0 \varphi(\rho(\mathbf{E})) = \mu_0 \varphi_\rho^{-1}(\varphi_\rho(\rho(\mathbf{E}))) = \mu_0 \rho(\mathbf{E}) = \mu_0 \rho(\mathbf{E})$.

The converse assertion follows immediately from Propositions 1, 8 and 9.*

Let us remark that from Theorem 6 it follows that the spaces $(X, \mathcal{D}_X, \nu_0)$, where X is dense subset in Q, are the "poorest" spaces with liftings that have the given Stone space $(Q, \Omega, \nu, \varkappa)$.

7. **Example.** Let $Q = (Q, \Omega, \nu, \varkappa)$ be a hyprestonean extremally disconnected compact space with a sufficiently positive semi-finite measure ν and let us assume that ν is not σ -finite. Then there is a disjoint family $\langle Q_i \rangle_{i \in I}$ of open--closed subsets of Q with $\nu Q_i < \infty$, $i \in I$, such that

$$P(Q \setminus \bigcup_{i \in I} Q_i) = 0$$

(cf. [4]). Let T_1 and T_2 be two disjoint dense subsets of Q such that $T_1 \cup T_2 = Q$; note that $T_1, T_2 \in \Omega$. Denote by \mathfrak{N} the collection of all subsets of T_2 that have nonempty intersection with at most countable family of sets Q_1 . Then \mathfrak{N} is a σ -ideal of subsets of T_2 and Q. Consider the space $\mathcal{T} = (Q, \Sigma, \mu)$ where $\Sigma = \operatorname{sa}(\Omega \cup \mathfrak{N})$ and $\mu(E \Delta N) = \nu E$, $E \in \Omega$, $N \in \mathfrak{N}$, constructed as in Proposition 6 (see also the corresponding remark). The space \mathcal{T} is an extremal extension of the space Q and by Proposition 9, there is a lifting of the space \mathcal{T} . It is clear that \mathcal{T} is a measure-complete Maharam space.

Now we show that \mathcal{T} is not locally determined. We shall verify that the set T_2 is locally negligible (whence it is locally measurable), otherwise it is easy to see that $T_2 \in \mathfrak{N}$ and $T_2 \in \Sigma$.

Let $F \in \Sigma^{f}$, then $F = E \triangle N$ where $E \in \Omega^{f}$ and $N \in \Re$. By the definition of the σ -algebra Ω (see Section 2) we have also $E = A \triangle N$ where $A \in \mathscr{A}$, $\nu A < \infty$ and $H \in \Re(\nu) = \mathscr{A}_{Q}$. As the space Q is decomposable, there exists an at most countable set $J \subset I$ and a set $K \in \Re(\nu)$ such that

$$A = U (A \cap Q_i) U K.$$

We have

 $T_{2} \cap F = T_{2} \cap ((A \land H) \land N) = (T_{2} \cap A) \land (T_{2} \cap (H \land N)).$ Put L = $T_{2} \cap (M \land N)$. As $M \land N \in \mathfrak{N}(\mu)$ and \mathcal{F} is measurecomplete, we deduce that $L \in \mathfrak{N}(\mu)$. Now we have $T_{2} \cap F =$ = $(T_{2} \cap A) \land L$ and

Again because \mathcal{T} is measure-complete we have $T_2 \cap K \in \mathfrak{N}(\mu)$. As $T_2 \cap Q_i \in \mathfrak{N} \subset \mathfrak{N}(\mu)$ for each $i \in I$ and \mathfrak{N} is a σ -ideal, we obtain that $T_2 \cap A \in \mathfrak{N}(\mu)$. Therefore $T_2 \cap F \in \mathfrak{N}(\mu)$, consequently, $T_2 \cap F \in \Sigma$. Thus $T_2 \cap F \in \Sigma$ for every $F \in \Sigma^2$, but $T_2 \notin \Sigma$, which means that the space \mathcal{T} is not locally determined.

If we take the preimage $\mathcal{Y} = (Y, \Xi, \eta)$ of the space \mathcal{F} under a surjective but not injective map $\varphi : Y \to Q$, we obtain a Maharam measure space which has a lifting but is neither measure-complete nor locally determined.

References

- Fremlin, D. H., Decomposable Measure Spaces. Z. Wahr. verw. Gebiete, 1978, 45, 159-167.
- 2. Fremlin, D. H., Topological Riesz Spaces and Measure

Theory. Cambr. U.P., 1974.

- Jonescu Tulcea, A., Jonescu Tulcea, C., Topics in the theory of lifting. Springer, Berlin-Heidelberg -New York, 1969.
- 4. Kantorovitch, L. V., Akilov, G. P., Functional analysis. Nauka, Moskow, 1977. (in Russian)
- Sikorski, R., Boolean Algebras. Springer, Berlin Heidelberg - New York, 1964.
- Monakov-Rogozkin, A. K., On a certain way of compairing of liftings. Raboty po matematike i fizike, Tallinn, 1974, 15-34.(in Russian)
- Plachky, D., Extremal and Monogenic Additive Set Functions., Proc. Amer. Math. Soc., 1976, 45, 193-196.
- Maljugin, S. A., On the extremal extension of finitely additive measure. Matematiceskie zapiski, 1988, 43, No 1, 25-30. (in Russian)
- Meyer, P. A., Probability and Potentials. Waltham Massachusetts - Toronto - London, 1966.
- Levin, V. L., Convex integral functionals and the theory of lifting. Usp. Mat. Nauk., 1975, 30, No 1, 115-178. (in Russian)

Department of Mathematics Tallinn Teacher Training Institute 200101 Tallinn Estonia

Received August 12, 1991

Liftingut omavate mõõduga ruumide kirjeldus Aleksander Monakov-Rogozkin Resümee

Artiklis [1] on D. H. Fremlin konstrucerinud näite sellisest täieliku mõõduga lokaliseeruvast (artikli [10] mëttes) Maharami ruumist, mis pole rangelt lokaliseeruv ning seepärast ei oma liftingut. Käesolevas artiklis uuritakse liftinguga ruumide konstrueerimist ja antakse näiteks kõigi täieliku mëëduga rangelt lokaliseeruvate ruumide kirjeldus, millel on üks ja seesama Stone'i ruum. On toodud näide niisugusest Maharami ruumist, mis omab liftingut, kuid pole täielik mëëdu järgi ega lokaliseeruv. REMARKS ON THE DUAL OF THE SPACE OF CONTINUOUS LINEAR OPERATORS Eve Oja

1. Let L(E,F) and K(E,F) be the Banach spaces of continuous linear and compact operators from a Banach space E into a Banach space F. In [5] we obtained three decomposition theorems for the dual $L(E,F)^*$ into the direct sum of $K(E,F)^{\perp}$ and a subspace $K(E,F)^{\#}$ isometrically isomorphic to $K(E,F)^*$ in the case where E or F are closed subspaces in Banach spaces having certain variants of metric compact approximation property (MCAP in short).

The present note is an appendix to [5]. We shall prove a result announced in [5] in a slightly more general form. This permits us to deduce the quotient spaces variants of the composition theorems of [5]. This permits us also to show that the property "K(X,X) is an M-ideal in L(X,X)" is preserved by passing to closed subspaces of X which are as well quotients of X and which have the MCAP. This answers partially a question mentioned in [7].

2. Let X be a Banach space. Let I_X denote the identity on X. Let $j: E \to X$ denote the canonical injection for a closed subspace E of X, and let $q: X \to E$ denote the canonical surjection for a quotient E of X. The following result was announced in [5] for the subspace case.

PROPOSITION. Let X^* or X^{**} have the Radon-Nikodym property. Suppose that there is a net (A_{α}) in K(X,X) such that

 $\lim_{\alpha} A_{\alpha}^{*} x^{*} = x^{*} \quad \text{for all } x^{*} \in X^{*}. \tag{1}$ Let E be a closed subspace or a quotient of X. If E has the MCAP and the unique extension property (UEP in short), then there are a net $(P_m)_{m\in \Delta}$ of convex combinations of (A_m) and a net $(S_m)_{m\in \Lambda}$ in the unit ball of K(E,E) such that

$$\lim_{m \in \Delta} \|\mathbf{P}_m \mathbf{j} - \mathbf{j} \mathbf{S}_m\| = 0 \text{ or } \lim_{m \in \Delta} \|\mathbf{q}\mathbf{P}_m - \mathbf{S}_m \mathbf{q}\| = 0.$$
(2)

Proof. Let (T_{β}) be a net in the unit ball of K(E,E)such that $\lim_{\alpha} T_{\alpha} e = e$ for all $e \in E$. The w^{*}-compacteness of the unit ball of $L(E^{**}, E^{**}) = (E^* \circ E^{**})^*$ and the UEP permit us to conclude that $T_{\beta}^* \rightarrow I_*$ in the w^{*}-topology (cf. [2]. Theorem 2.2). Let $B_{(a,\beta)} = A_a j - jT_\beta$ in the subspace case or $C_{(\alpha,\beta)} = qA_{\alpha} - T_{\beta}q$ in the quotient case, where $\{(\alpha,\beta)\}$ is directed by the product ordering. Consider $X^{*} \otimes E^{**}$ and $E^* \oplus X^{**}$ as vector subspaces of $K(E,X)^*$ and $K(X,E)^*$ respectively. These subspaces are norm-dense since X^* and E^* (or E^{**} and X^{**}) have the Radon-Nikodym property (cf. e.g. [2], p.674). Therefore it is clear that $B_{(\alpha,\beta)} \rightarrow 0$ weakly in $K(\mathbf{E},\mathbf{X})$ for the subspace case, and $C_{(\mathbf{x},\beta)} \rightarrow 0$ weakly in K(X,E) for the quotient case. The convex combinations of these nets which converge to zero in norm (cf. [1], p.40) will give us the nets satisfying (2) (note that $\Delta = \{(\mathfrak{a}, \mathfrak{B})\} \times \mathbb{N} \}.$

3. Using Proposition, one can prove in the similar fashion the quotient spaces variants of Theorems 1 and 2 of [5]. For formulate these results, one must simply replace the word "closed subspace" by " quotient" in Theorems 1 and 2 of [5]. So we do not reformulate these results here and we mention only some of their corollaries.

COROLLARY 1. Let E be a Banach space and F a quotient or a closed subspace of $l_p(\Gamma)$ or d(w,p), 1 . If F hasthe CAP then <math>K(E,F) is an HB-subspace.

COROLLARY 2. Let F be a Banach space and E a quotient or a closed subspace of $l_p(\Gamma)$ or $d(w,p)^*$, 1 . If E hasthe CAP then <math>K(E,F) is an HB-subspace.

90

The following result is a generalization of Theorem 3 from [5] and Proposition 1.2 from [6]. For $A_{\perp} \in L(X,X)$ (where \prec is an index) we put $A^{\prec} = I_{Y} - A_{\perp}$.

THEOREM 1. Let X and Y be two Banach spaces such that X^* or X^{**} and Y^* or Y^{**} have the Radon-Nikodym property. Suppose that there are two nets (A_{α}) and (B_{β}) in the unit balls of K(X,X) and K(Y,Y) respectively, satisfying the conditions (1) and

$$B_{g}y \rightarrow y$$
 for all $y \in Y$, (3)

$$B_{G}^{*}y^{*} \rightarrow y^{*}$$
 for all $y^{*} \in Y^{*}$. (4)

Suppose moreover that there are $\lambda > 0$ and two functions N_i and N_2 on $[0,\infty) \times [0,\infty)$ such that N_2 is convex, $N_2(a,b) \leq N_2(c,d) \leq N_1(c,d/\lambda)$ for $a \leq c$, $b \leq d$, and that for all $\epsilon > 0$ there are \prec_0 and β_0 such that for all $\alpha > \alpha_0$ and $\beta > \beta_0$ we have

$$\begin{split} & \mathsf{N}_{\mathbf{x}}(\parallel \mathsf{A}_{\mathsf{ex}} \mathsf{x} \parallel \mathsf{H} \parallel \mathsf{A}^{\mathsf{ef}} \mathsf{x} \parallel) \leq (1 + \varepsilon) \parallel \mathsf{x} \parallel \mathsf{H} \mathsf{,} \\ & \mathsf{H} \mathsf{B}_{\mathsf{f}} \mathsf{y} + \mathsf{B}^{\mathsf{f}} \mathsf{z} \parallel \leq (1 + \varepsilon) \mathsf{N}_{\mathsf{z}}(\parallel \mathsf{y} \parallel \mathsf{,} \parallel \mathsf{z} \parallel) \end{split}$$

for all $x \in X$ and $y, z \in Y$. Let E and F be quotients or closed subspaces of X and Y respectively. If E and F have the MCAP and the UEP then K(E,F) has the property SU and $\|g\| + \lambda \|h\| \le \|f\|$ for $f = g + h \in L(E,F)^*$, $g \in K(E,F)^{\ddagger}$, $h \in K(E,F)^{\perp}$.

Proof. By Proposition, there are the nets (P_m) , (S_m) and (Q_n) , (T_n) corresponding to (A_n) and (B_{β}) respectively. In view of the nets variant of Theorem 2 in [11], we have to show that E with (S_m) and F with (T_n) satisfy (1) and (3), (4) respectively, which is obvious, and that

$$\overline{\lim_{m}} \quad \overline{\lim_{m}} \quad \|T_{n}SS_{m} + \lambda T^{n}TS^{m}\| \leq 1$$
(5)

for all S and T in the unit ball of L(E,F).

Let us first consider the case where F is a subspace. Then we have

$$\frac{1}{1} \parallel T SS + \lambda T^{n}TS^{m} \parallel \leq$$

 $\leq \overline{\lim_{n \to \infty}} \sup_{\|e\| < 1} \|Q_{n}SS_{m}e + \lambda Q^{n}TS^{m}e\| \leq \|e\| < 1$ $\leq \overline{\lim_{\beta}} \sup_{\|e\| < 1} \|B_{\beta}SS_{m}e + \lambda B^{\beta}TS^{m}e\|.$

Let ϵ be any positive number. Then for all $\beta > \beta_0$, m and $e \in E$, $\|e\| < 1$, we have

 $\|B_{\beta}SS_{m}e + \lambda B^{\beta}TS^{m}e\| \leq (1 + \epsilon) N_{p} (\|S_{m}e\|, \lambda\|S^{m}e\|).$

Denote $\epsilon_m = \|P_m j - jS_m\|$ if E is a subspace and $\epsilon_m = \|qP_m - S_m q\|$ if E is a quotient (we may suppose that $\epsilon_m < 1$). Then for some $x \in X$, $\|x\| \le 1$, and all m

$$\begin{split} & N_{2} \left(\| \mathbf{S}_{m} \mathbf{e} \|, \lambda \| \mathbf{S}^{m} \mathbf{e} \| \right) \leq N_{2} (\boldsymbol{\varepsilon}_{m} + \| \mathbf{P}_{m} \mathbf{x} \|, \lambda \boldsymbol{\varepsilon}_{m} + \lambda \| \mathbf{P}^{m} \mathbf{x} \| = \\ &= N_{2} (\boldsymbol{\varepsilon}_{m} (1 + \| \mathbf{P}_{m} \mathbf{x} \|) + (1 - \boldsymbol{\varepsilon}_{m}) \| \mathbf{P}_{m} \mathbf{x} \|, \boldsymbol{\varepsilon}_{m} (\lambda + \lambda \| \mathbf{P}^{m} \mathbf{x} \|) + (1 - \boldsymbol{\varepsilon}_{m}) \lambda \| \mathbf{P}^{m} \mathbf{x} \| \right) \leq \\ &\leq \boldsymbol{\varepsilon}_{m} N_{2} (1 + \| \mathbf{P}_{m} \mathbf{x} \|, \lambda + \lambda \| \mathbf{P}^{m} \mathbf{x} \|) + (1 - \boldsymbol{\varepsilon}_{m}) N_{2} (\| \mathbf{P}_{m} \mathbf{x} \|, \lambda \| \mathbf{P}^{m} \mathbf{x} \|) \leq \\ &\leq \boldsymbol{\varepsilon}_{m} N_{2} (3, 4\lambda) + (1 - \boldsymbol{\varepsilon}_{m}) N_{2} (\| \mathbf{P}_{m} \mathbf{x} \|, \lambda \| \mathbf{P}^{m} \mathbf{x} \|) . \end{split}$$

And since

 $\frac{\overline{\lim_{m}} \sup_{\|\chi\|\leq 1} \mathbb{N}_{2}(\|\mathbb{P}_{m}\chi\|, \lambda\|\mathbb{P}^{m}\chi\|) \leq \|\chi\| \leq 1$

 $\leq \overline{\lim_{\alpha}} \sup_{\|\mathbf{x}\| \leq 1} \mathbb{N}_{2}(\|\mathbf{A}_{\alpha}\mathbf{x}\|, \lambda \|\mathbf{A}^{\alpha}\mathbf{x}\|),$

we are done.

Let us finally suppose that F is a quotient. Let $\varepsilon < 1$ be any positive number. We have

$$\begin{split} \overline{\lim} & \|T_n SS_m + \lambda T^n TS^m\| \leq \\ \leq \overline{\lim} & \sup \|Q_n y + \lambda Q^n z\| \leq \\ \leq \overline{\lim} & \sup \|B_{\beta} y + \lambda B^{\beta} z\| \leq \\ \beta & \leq (1 + \epsilon) & \sup N_2(\|y\|, \lambda \|z\|), \end{split}$$

where the supremum is taken over all those y and z in Y that the canonical surjection sends to SS_e and TS^me respectively for some $e \in E$, $\|e\| < 1$, so that the conditions $\|y\| \le \|SS e^{\parallel} + \varepsilon$ and $\|z\| \le \|TS^m e^{\parallel} + \varepsilon$ are fulfilled. Since

$$\begin{split} \mathbb{N}_2(\|y\|, \ \lambda \|z\|) &\leq \mathbb{N}_2(\varepsilon + \|S_m \varepsilon\|, \ \lambda \varepsilon + \lambda \|S^m \varepsilon\|), \\ \text{we can conclude as above (supposing that } \varepsilon_m + \varepsilon < 1). \end{split}$$

REMARK. If X = Y in Theorem 1 then the hypotheses of the Radon-Nikodym property for X^* or X^{**} and of the UEP for E and F are superfluous. For, one can show similarly to Theorem 5 in [10] that K(X,X) has the property SU in L(X,X). But then X is Hahn-Banach smooth [4]. Therefore X^* has the Radon-Nikodym property [8] and all quotients and closed subspaces of X have the UEP [2].

Applying Theorem 1 with $N_i(a,b)=(a^P+b^P)^{i/P}$ and $N_2(a,b)=(a^Q+b^Q)^{i/Q}$ yields

COROLLARY 3. Let E be a quotient or a closed subspace of $l_p(\Gamma_4)$ or $d(v,p')^*$, and let F be a quotient or a closed subspace of $l_q(\Gamma_2)$ or d(w,q), where 1 and <math>1/p + 1/p' = 1. If E and F have CAP then K(E,F) is an M-ideal in L(E,F).

4. It was shown in [3] that a Banach space X with K(X) = K(X, X) being an M-ideal in L(X) = L(X, X) necessarily must enjoy the MCAP. It is clear from Corollary 3 that for quotients and closed subspaces of $l_p(\Gamma)$, 1 , the MCAP already ensures this property. In [7], there was mentioned the question whether the property "K(X) is an M-ideal in <math>L(X)" is preserved by passing to quotients and closed subspaces of X having the MCAP. By the following result, we give a partial affirmative answer to this question.

THEOREM 2. Let K(X) be an M-ideal in L(X). Let E be a quotient and F a closed subspace of X. If E and F have the MCAP then K(E,F) is an M-ideal in L(E,F). In particular, if E is a quotient as well as a closed subspace of X, and E has the MCAP, then K(E) is an M-ideal in L(E).

Froof. Since K(X) is an M-ideal in L(X), there is a

net (B_{β}) in the unit ball of K(X) satisfying the conditions (3), (4) and

$$\frac{\lim_{\beta} \| B_{\beta} A + B^{\beta} B \| \le 1}{\beta}$$

for all A and B in the unit ball of L(X) (cf. [9]). By Proposition, there are the nets (P_m) , (S_m) for E and (Q_n) , (T_n) for F corresponding to (B_{β}) . As in the proof of Theorem 1, it is sufficient to prove (5) (with $\lambda = 1$, for this time).

Let $q : X \rightarrow E$ and $j : F \rightarrow X$ be the canonical surjection and injection. Let ϵ be any positive number. Since

$$\overline{\lim} \, \|\mathbf{S}^{\mathsf{m}}\mathbf{q}\| = \overline{\lim} \, \|\mathbf{q}\mathbf{P}^{\mathsf{m}}\| \leq \overline{\lim} \, \|\mathbf{P}^{\mathsf{m}}\| \leq \overline{\lim} \, \|\mathbf{B}^{\mathsf{f}}\| \leq 1,$$

there is an m_o such that $\|S^mq\| \le 1 + \varepsilon$ for $m > m_o$. We have for $m > m_o$.

$$\begin{split} \overline{\lim_{n \to \infty}} & \| \mathbf{T}_{n} \mathbf{SS}_{m} + \mathbf{T}^{n} \mathbf{TS}^{m} \| \leq \\ \leq \overline{\lim_{n \to \infty}} & \| \mathbf{Q}_{n} \mathbf{jSS}_{m} + \mathbf{Q}^{n} \mathbf{jTS}^{m} \| \leq \\ \leq \overline{\lim_{\beta}} & \| \mathbf{B}_{\beta} \mathbf{jSS}_{m} + \mathbf{B}^{\beta} \mathbf{jTS}^{m} \| = \\ = \overline{\lim_{\beta}} & \| \mathbf{B}_{\beta} \mathbf{jSS}_{m} \mathbf{q} + \mathbf{B}^{\beta} \mathbf{jTS}^{m} \mathbf{q} \| \leq 1 + \varepsilon \,, \end{split}$$

and thus we are done.

References

- Day, M. M., Normed linear spaces. Berlin-Göttingen-Heidelberg :Springer, 1962.
- Godefroy, G., Saphar, P. D., Duality in spaces of operators and smooth norms on Banach spaces. Ill. J. Math., 1988, 32, 672-695.
- Harmand, P., Lima, A., Banach spaces which are M-ideals in their biduals. Trans. Amer. Math. Soc., 1984, 283, 253-264.
- 4. Lima, A., Uniqueness of Hahn-Banach extensions and

liftings of linear dependences. Math. Scand., 1983, 53, 97-113.

- Oja, E., Dual de l'espace des operateurs lineaires continus. C.R. Acad. Sci. Paris, 1989, 309, Ser. I, 983-986.
- 6. Oja, E., Werner, D., Remarks on M-ideals of compact operators on X . Math. Nachrichten (to appear).
- Paya-Albert, R., Werner, W., An approximation property related to M-ideals of compact operators. Proc. Amer. Math. Soc. (to appear).
- Smith, M. A., Sullivan, F., Extremely smooth Banach spaces. Banach spaces of analytic functions, p. 125-137, Lect. Notes in Math., No. 604. Berlin-Heidelberg-New York : Springer, 1977.
- Werner, W., Inner M-ideals in Banach algebras. Trans. Amer. Math. Soc. (to appear).
- Оя Э., О единственности продолжения линейных непрерывных функционалов по теореме Хана-Банаха. Изв. АН ЭССР. Сер. физ.-мат., 1984, 33, 424-438.
- 0я Э., Об изометричных свойствах подпространства компактных операторов в пространстве непрерывных линейных операторов. Мат. заметки. 1989, 45, 61-65.

Department of Mathematical Analysis Tartu University 202400 Tartu Estonia

Received June 4, 1990

Märkmeid pidevate lineaarsete operaatorite ruumi kaasruumi kohta Eve Oja Resümee

Tõestatakse üks autori artiklis [5] sõnastatud tulemus mõnevõrra üldisemal kujul. See lubab tuletada artikli [5] lahutusteoreemide jaoks faktorruumide variandid. See lubab ka osaliselt vastata ühele artiklis [7] püstitatud küsimusele järgmisel kujul.

TEOREEM 2. Moodustagu kompaktsete operaatorite alamruum K(X,X) M-ideaali kõigi Banachi ruumis X tegutsevate pidevate lineaarsete operaatorite ruumis L(X,X). Olgu E ruumi X faktorruum ja F ruumi X kinnine alamruum. Kui ruumidel E ja F on meetriline kompaktne approksimatsiooniomadus, siis K(E,F) on M-ideaal ruumis L(E,F).

ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS

1991, 928, 97-102

SUMMABILITY FACTORS FOR STRONG SUMMABILITY Virge Scomer

Let $A = (a_{nk}), a_{nk} \ge 0$, be an infinite matrix and let $p = (p_k)$ be a sequence of positive numbers. A sequence $x = (x_k)$ is called strongly A-summable (to 1) with exponent p if

$$\lim_{n}\sum_{k}a_{nk}|x_{k}-1|^{P_{k}}=0.$$

Let $\prec = (A_i)$ be a sequence of matrices $A_i = (a_{nik})$, $a_{nik} \ge 0$. A sequence $x = (x_k)$ is called strongly \prec -summable with exponent p if

$$\lim_{n} \sum_{k} a_{nik} | x_{k} - 1 |^{P_{k}} = 0$$

uniformly in i.The sets of strongly A-summable, strongly A-summable to zero, strongly \sim -summable and strongly \sim -summable to zero sequences are denoted respectively by $[c_A]^P$, $[c_A]^P$, $[c_A]^P$ and $[c_A]^P$.

REMARK. If
$$= (A)$$
, $A = (a_{nk})$, then $[c_{nk}]^{P} = [c_{A}]^{P}$.

The purpose of this paper is to characterize the sequences $\epsilon = (\epsilon_{\nu})$ which have the following properties:

$$x = (x_k) \in [c_{\alpha}]^p$$
 implies $\epsilon x = (\epsilon_k x_k) \in [c_{\alpha}]^q$ (1)
or

$$x = (x_k) \in [c_{\alpha}]_{\alpha}^{p}$$
 implies $\varepsilon x = (\varepsilon_k x_k) \in [c_{\alpha}]_{\alpha}^{q}$. (2)

We call a sequence $\epsilon = (\epsilon_k)$ satisfying (1), resp. (2), a summability factor (notation $(\epsilon_k) \in ([c_n]^p, [c_n]^q)$, resp. $(\epsilon_k) \in ([c_n]_p^p, [c_n]_q^q)).$

For $p = (p_k)$, $q = (q_k)$, $0 < q_k < p_k$ we have the following two theorems.

THEOREM 1. Suppose that
$$0 < q_1 < p_1 \le M < \infty$$
, $r =$

= $sup(q_k^{}/p_k^{})$ (1 and λ = $inf(q_k^{}/p_k^{})$) 0. If the conditions

9,

$$\sup_{n,i} \sum_{k} a_{nik} \left| \varepsilon_{k} \right|^{\frac{1-r}{r}} < \infty$$
(3)

and

$$\sup_{n,i} \sum_{k} a_{nik} |\varepsilon_k|^{\frac{1}{4-\lambda}} < \infty$$
 (4)

are fulfilled then $(\boldsymbol{e}_{k}) \in ([c_{\alpha}]_{o}^{p}, [c_{\alpha}]_{o}^{q}).$

Proof. Put $|x_k|^{p_k} = w_k$ and $\lambda_k = q_k/p_k$. Let $x = (x_k) \in [c_k]_0^p$, then

$$\lim_{n \to \infty} \sum_{k} \mathbf{a}_{nik} \left| \mathbf{x}_{k} \right|^{\nu_{k}} = \lim_{n \to \infty} \sum_{k} \mathbf{a}_{nik} \mathbf{w}_{k} = 0$$
(5)

uniformly in i. Define

$$u_{k} = \begin{cases} w_{k}, w_{k} \ge 1, \\ 0, w_{k} < 1, \end{cases}$$
$$v_{k} = \begin{cases} w_{k}, w_{k} < 1, \\ 0, w_{k} \ge 1, \end{cases}$$

and

Then $\mathbf{w}_{k} = \mathbf{u}_{k} + \mathbf{v}_{k}$, $\mathbf{w}_{k}^{\lambda} = \mathbf{u}_{k}^{\lambda} + \mathbf{v}_{k}^{\lambda}$. Now it follows that $\mathbf{u}_{k}^{\lambda} \leq \mathbf{u}_{k}^{r}$, $\mathbf{v}_{k}^{\lambda} \leq \mathbf{v}_{k}^{\lambda}$, and by Hölder's inequality we obtain $\sum_{k} \mathbf{a}_{nik} |\mathbf{e}_{k} \mathbf{x}_{k}|^{\mathbf{q}_{k}} = \sum_{k} \mathbf{a}_{nik} |\mathbf{e}_{k}|^{\mathbf{q}_{k}} \mathbf{w}_{k}^{\lambda} =$ $= \sum_{k} \mathbf{a}_{nik} |\mathbf{e}_{k}|^{\mathbf{q}_{k}} \mathbf{u}_{k}^{\lambda} + \sum_{k} \mathbf{a}_{nik} |\mathbf{e}_{k}|^{\mathbf{q}_{k}} \mathbf{v}_{k}^{\lambda} \leq$ $\leq \sum_{k} (\mathbf{a}_{nik} \mathbf{u}_{k})^{r} \mathbf{a}_{nik}^{1-r} |\mathbf{e}_{k}|^{\mathbf{q}_{k}} + \sum_{k} (\mathbf{a}_{nik} \mathbf{v}_{k})^{\lambda} \mathbf{a}_{nik}^{1-\lambda} |\mathbf{e}_{k}|^{\mathbf{q}_{k}} \leq$ $\leq \sum_{k} (\mathbf{a}_{nik} \mathbf{u}_{k})^{r} \mathbf{a}_{nik}^{1-r} |\mathbf{e}_{k}|^{\mathbf{q}_{k}} + \sum_{k} (\mathbf{a}_{nik} \mathbf{v}_{k})^{\lambda} \mathbf{a}_{nik}^{1-\lambda} |\mathbf{e}_{k}|^{\mathbf{q}_{k}} \leq$ $\leq \sum_{k} (\mathbf{a}_{nik} \mathbf{u}_{k})^{r} \left(\sum_{k} \mathbf{a}_{nik} |\mathbf{e}_{k}|^{\frac{q_{k}}{1-r}}\right)^{1-r} +$ $+ \left(\sum_{k} \mathbf{a}_{nik} \mathbf{v}_{k}\right)^{\lambda} \left(\sum_{k} \mathbf{a}_{nik} |\mathbf{e}_{k}|^{\frac{s-\lambda}{1-\lambda}}\right)^{1-\lambda} \leq$

$$\leq \left(\sum_{k} a_{nik} W_{k}\right)^{r} \left(\sum_{k} a_{nik} |\boldsymbol{e}_{k}|^{\frac{1}{1-r}}\right)^{1-r} + \left(\sum_{k} a_{nik} W_{k}\right)^{\lambda} \left(\sum_{k} a_{nik} |\boldsymbol{e}_{k}|^{\frac{q}{1-\lambda}}\right)^{1-\lambda}.$$

Now it follows by (5) that conditions (3) and (4) are sufficient for $(e_k) \in ([c_{\alpha}]_0^{p}, [c_{\alpha}]_0^{q})$. This completes the proof.

a.

Let e = (1, 1, 1, ...), then $e \in [c_n]^p$, e = e, and consequently from $(e_k) \in ([c_n]^p, [c_n]^q)$ it follows that $(e_k) \in [c_n]^q$, i.e. $([c_n]^p, [c_n]^q) \subset [c_n]^q$.

Let $x = (x_k) \in [c_n]^p$ and $\varepsilon = (\varepsilon_k) \in ([c_n]^p, [c_n]^q) < < [c_n]^q$. Then there exist some numbers 1 and η such that

$$\lim_{n}\sum_{k}a_{nik}|x_{k}-1|^{P_{k}}=0$$

uniformly in i and

$$\lim_{n}\sum_{k}a_{nik}|\varepsilon_{k}-\eta|^{q_{k}}=0 \text{ uniformly in i.} \qquad (6)$$

For $H = \sup q_k$ and $K = \max (1, 2^{N-4})$ we have (see [2])

$$|a_{k} + b_{k}| \leq K (|a_{k}|^{q_{k}} + |b_{k}|^{q_{k}}).$$
 (7)

It follows from (7) that

$$\sum_{k} a_{nik} \left| \varepsilon_{k} x_{k} - \eta 1 \right|^{q_{k}} = \sum_{k} a_{nik} \left| \varepsilon_{k} x_{k} - \varepsilon_{k} 1 + \varepsilon_{k} 1 - \eta 1 \right|^{q_{k}} \le$$

$$\leq K \left(\sum_{k} a_{nik} \left| \varepsilon_{k} (x_{k} - 1) \right|^{q_{k}} + \sup_{k} \left| 1 \right|^{q_{k}} \sum_{k} a_{nik} \left| \varepsilon_{k} - \eta \right|^{q_{k}} \right).$$

Since $(x_k - 1) \in [c_{\alpha}]_0^p$ it follows by Theorem 1 and by the condition (6) that conditions (3) and (4) are sufficient for $(\epsilon_k) \in ([c_{\alpha}]^p, [c_{\alpha}]^q)$. Thus we have proved

THEOREM 2. Suppose that $0 < q_k < p_k \le M < \infty$, $r = \sup(q_k/p_k) < 1$ and $\lambda = \inf(q_k/p_k) > 0$. Then conditions (3) and (4) are sufficient for $(\epsilon_k) \in ([c_{\perp}]^P, [c_{\perp}]^q)$.

REMARK. Using Hölder's inequality it is easy to show that in case sup $\sum a_{nik} < \infty$ the condition (4) follows from

(3). In this case every bounded sequence $(\epsilon_k) \in ([c_n]^p, [c_n]^q)$.

For $0 < p_{L} \leq q_{L}$ we have the following result:

THEOREM 3. Suppose that $0 < r \le p_k \le q_k \le M < \infty$. If $\epsilon_k = 0(1) a_k^{(q_k - p_k)/q_k p_k}$, (8)

where $a_k = \sup_{n,i} a_{nik}$, then $(\epsilon_k) \in ([c_n]^p, [c_n]^q)$.

Proof. Let $x = (x_k) \in [c_{a}]^p$. Then there exists 1 and K_x such that $a_k |x_k - 1|^{P_k} < K_x$ for all k. Since $0 < r \le p_k$, there exists a number K_x so that

$$a_{k}^{1/p_{k}} |x_{k} - 1| < K_{1}^{1/p_{k}} < K_{0}.$$
 (9)

We obtained that for every $(s_k) \in ([c_n]^p, [c_n]^q)$ condition (6) is fulfilled and so it follows from (6), (7), (8) and (9) that

$$\begin{split} \sum_{k} a_{nik} | \boldsymbol{\varepsilon}_{k} \mathbf{x}_{k} - \eta \mathbf{1} |^{q_{k}} \leq \\ \leq K \left(\sum_{k} a_{nik} | \boldsymbol{\varepsilon}_{k} |^{q_{k}} | \mathbf{x}_{k}^{-} \mathbf{1} |^{q_{k}} + \sup_{k} | \mathbf{1} |^{q_{k}} \sum_{k} a_{nik} | \boldsymbol{\varepsilon}_{k} - \eta |^{q_{k}} \right) = \\ = K \sum_{k} a_{nik} | \mathbf{x}_{k}^{-} \mathbf{1} |^{p_{k}} | \boldsymbol{\varepsilon}_{k} |^{q_{k}} | \mathbf{x}_{k}^{-} \mathbf{1} |^{q_{k}^{-p_{k}}} + o(1) = \\ = O(1) \sum_{k} a_{nik} | \mathbf{x}_{k}^{-} \mathbf{1} |^{p_{k}} (a_{k}^{* p_{k}} | \mathbf{x}_{k}^{-} \mathbf{1} |)^{q_{k}^{-p_{k}}} + o(1) = \\ = O(1) \sum_{k} a_{nik} | \mathbf{x}_{k}^{-} \mathbf{1} |^{p_{k}} + o(1) = o(1). \end{split}$$

Hence (8) implies that $(\epsilon_k) \in ([c_{\alpha}]^P, [c_{\alpha}]^q)$. The proof is completed.

REMARK. Let $\prec = (A), A = (a_{nk})$. Then $[c_{\alpha}]^{P} = [c_{A}]^{P}$ and in case $p_{k} = \text{const}, q_{k} = \text{const}, (3)$ (for $q_{k} < p_{k}$) and (8) (for $q_{k} \ge p_{k}$) are necessary and sufficient for $(\varepsilon_{k}) \in ([c_{A}]^{P}, [c_{A}]^{q})$ (see [1]).

References

- Balser, W., Jurkat, W. B., Peyerimhoff, A., On linear functionals and summability factors for strong summability. Can. J. Math., 1978, 30, No 5, 983-996.
- Maddox, I. J., Spaces of strongly summable sequences. Quart. J. Math..Oxford Ser.(2), 1967, 18, 345-355.

Department of Mathematical Analysis Tartu University 202400 Tartu Estonia

Received June 10, 1990

Summeeruvustegurid tugeva summeeruvuse korral Virge Soomer Resümee

Olgu $\Rightarrow = (A_i)$ - maatriksite $A_i = (a_{nik})$ jada, kusjuures $a_{nik} \ge 0$, ja olgu $p = (p_k)$ positiivsete arvude jada. Jada $x = (x_i)$ nimetatakse tugevalt \Rightarrow -summeeruvaks arvuks 1, kui

$$\lim_{n} \sum_{k} a_{nik} |x_{k} - 1|^{F_{k}} = 0$$

ühtlaselt i suhtes.

Tähistame kõigi tugevalt ~~summeeruvate jadade hulga sümboliga $[c_{n}]^{p}$. Käesolevas artiklis on leitud piisavad tingimused, et arvud ε_{k} oleksid $([c_{n}]^{p}, [c_{n}]^{q})$ -tüüpi summeeruvustegurid, s.t. selleks, et sisalduvusest $(x_{k}) \in [c_{n}]^{p}$ järelduks sisalduvus $(\varepsilon_{k}x_{k}) \in [c_{n}]^{q}$.

TEORERM 2. Olgu $0 < q_k < p_k \le M < \infty$, $r = sup(q_k/p_k) < 1$ ja $\lambda = inf(q_k/p_k) > 0$. Siis selleks, et jada (ε_k) oleks $([c_{,}]^P, [c_{,}]^q)$ -tüüpi summeeruvustegur, on piisav, et oleksid täidetud tingimused (3) ja (4).

TEORERM 3. Olgu $0 < r \le p_k \le q_k \le M < \infty$. Siis on tingimus (8) piisav selleks, et jada (ϵ_k) oleks $([c_n]^p, [c_n]^q)$ -tüüpi summeeruvustegur.

WEYL FACTORS FOR SUMMABILITY WITH SPEED OF ORTHOGONAL SERIES

Heino Türnpu

1. Let $\varphi = \{\varphi_k\}$ be an orthogonal system in $e = \{a, b\}$. We consider the orthogonal series

$$\Sigma \xi_{\nu} \varphi_{\nu}(t) \tag{1}$$

where $x = (\xi_{1}) \in 1^{2}$.

Let A and B be regular⁴ summability methods, given by triangular matrices (a_{nk}) and (β_{nk}) , respectively.

The series (1) is called A-summable almost everywhere (a.e.) in e, if the limit

$$\lim_{n \to \infty} \sum_{k=0}^{n} \epsilon_k \xi_k \varphi_k(t)$$
(2)

exists a.e. in e.

Let $\lambda = (\lambda_k)$ be a sequence of real numbers with $0 < \lambda_k \neq \infty$.

We say that the series (1) is A_o -summable a.e. in e with speed λ or, in short, A_o^{λ} -summable a.e. in e, if the limit (2) exists a.e. in e and

$$\lim_{n \to \infty} \lambda_n \left(\sum_{k=0}^n \varphi_n \xi_k \varphi_k(t) - f(t) \right) = 0, \qquad (3)$$

a.e. in e where f is the sum of the series (1).

We say that (ω_k) with $0 < \omega_k \not \sim \infty$ is a sequence of Weyl factors for the A_{α}^{λ} -summability a.e. in e if the condition

$$\Sigma \xi_k^2 \omega_k^2 < \infty$$

implies the A_{o}^{λ} -summability a.e. in e of the series (1).

In the case where A is the Riesz summability method P with

* We use definitions from [3].

$$\alpha_{nk} = 1 - \frac{P_{k-i}}{P_n}$$

where $0 < P_k \nearrow \infty$ is a sequence of real numbers, the Weyl factors are well known (see e.g.[1,2,6]).

In [2] the following Theorem A was proved.

THEOREM A. Let
$$\omega_{L} = \lambda_{L} \ln \ln P_{L}$$
 where

$$\frac{n_k}{P_k} \approx 0$$

Then (ω_k) is a sequence of Weyl factors for $\nabla P_{\sigma}^{\lambda}$ -summability a.e. in e of the series (1).

In this paper we shall generalize Theorem A. The series

$$\Sigma \eta_k$$
 (4)

where η_k are real numbers is called λ -convergent if the series (4) is convergent and, furthermore, the limit

$$\lim_{n\to\infty}\lambda_n\sum_{k=n+1}^{\infty}\eta_k.$$

exists.

We say that the summability method A is λ -convergence preserving if for every λ -convergent series (4) the limit

$$\lim_{n\to\infty} \lambda_n \left(\sum_{k=0}^n \alpha_{nk} \eta_k - y\right)$$

exists where y is the sum of the series (4). Let A be a summability method for which

$$a_i := \sup_{n \ge i} |a_{ni}| = o(1) \tag{5}$$

where $a_{ni} = \alpha_{ni} - \alpha_{n,i+1}$

We prove the following

THEOREM. Let A be a λ^2 -convergence preserving summability method for which (5) is fulfilled and

$$\lambda_n^2 / \exp \sum_{\substack{i=0\\j=0}}^{n} a_i^{i=0} 0.$$
 (6)

Then the sequence $\omega = \lambda \ln \sum_{k=0}^{k} a$ is a sequence of Weyl

factors for the A_0^{λ} -summability a.e. in e of the series (1).

2. To prove Theorem we consider the Riesz summability method P where²

$$P_k = \exp \sum_{i=0}^k a_i$$

From (5) it evidently follows that there exist constants 1>0 and L>0 so that

$$la_{k} \leq \frac{P_{k}}{P_{k-4}} \leq La_{k}.$$
 (7)

From Theorem A it follows that if the condition (6) holds and

$$\sum \xi_{k}^{2} \lambda_{k}^{2} \ln^{2} \sum_{i=0}^{k} a_{i} \langle \omega \rangle$$
(8)

then

$$\lambda_{n} \Big| \sum_{k=1}^{n} \left(1 - \frac{P_{k-1}}{P_{n}} \right) \xi_{k} \varphi_{k}(t) - f(t) \Big| = o_{t}(1)$$
(9)

a.e. in e.

Let M denote a decomposition of e, i.e.

$$\mathbf{m} = \{ \mathbf{m}_{mn}, n=0,1,\ldots,m \},\$$

 $\bigcup_{n=0}^{m} \mathbf{m}_{mn} = e$

and

 $\mathfrak{M}_{mk} \cap \mathfrak{M}_{mn} = \emptyset$

if k = n.

We use the following results.

LEMMA 1 (see [7]). Let (f_n) be a sequence of integrable functions in e. Then

$$f_{(t)} = O_{(1)}$$

a.e. in e iff for each =>0 there exists a measurable subset

² If the summability method P is λ^2 -convergence preserving then the condition (6) holds (see [5], p.140)

 $T_c \in where mes T_c > b-a-c$ and a constant $M_c > 0$ so that the inequality

$$\left| \int_{\mathbf{T}_{\varepsilon}} \sum_{n=0}^{m} \chi_{mn}(t) \mathbf{f}_{n}(t) dt \right| \leq \mathbf{M}_{\varepsilon}$$

holds uniformly for all the decompositions **W** of e where $x_{mn} = x$

LRMMA 2 (see [5]). If a regular triangular summability method A is λ^2 -convergence preserving then the conditions

$$1^{\circ} \exists \lim_{n \to \infty} \lambda_n^2 (\sum_{k=0}^n a_{nk} - 1)$$

and

$$2^{\circ} \lambda_{n}^{2} \sum_{k=0}^{n} \frac{|a_{nk}|}{\lambda_{k}^{2}} = 0(1)$$

hold.

LEMMA 3 (see [4,p.361]). Let D_n ($n \in \mathbb{N}$) be continuous homogeneous operators from a Banach space X into the space M_e of all functions measurable in e for which the inequality

 $|D_m(x_1+x_2,t)| \leq |D_m(x_1,t)| + |D_m(x_2,t)|$ holds. If

 1° D_(x,t) = 0,(1)

a.e. in e for any x ∈ X and

 $2^{\circ} \lim_{n \to \infty} D_n(x^{\circ}, t) = 0$ a.e. in e for any x' from a total set in X then $\lim_{n \to \infty} D_n(x, t) = 0$

a.e. in e for each $x \in X$.

Lemma 4. Let A be a triangular regular λ^2 -convergence preserving summability method for which (5) and (6) hold. Then

$$A_{x}(x,t) = 0(1),$$
 (10)

where

$$A_{n}(\mathbf{x},t) = \lambda_{n} \sum_{k=0}^{n} a_{nk} \sum_{i=0}^{k} \frac{P_{i-1}}{P_{k}} \xi_{i} \varphi_{i}(t)$$
(11)

and

$$P_k = \exp \sum_{i=0}^{k} a_i,$$

holds a.e. in e for each $x = (\xi_k) \in 1^2$ with

 $\sum \xi_{k}^{z} \lambda_{k}^{z} < \infty.$ (12)

Proof. From Lemma 1 it follows that (10) holds for fixed x iff for each $\approx >0$ there exists a measurable subset $T_c \subset e$ where mes $T_c > b-a-\epsilon$ and a constant $M_c > 0$ so that the inequality

$$B_m(x) \leq M_e$$

where

$$B_{m}^{s}(x) = \iint_{T_{s}} \sum_{n=0}^{m} x_{mn}(t) A_{n}(x,t)dt|,$$

holds uniformly for all the decompositions ${\mathfrak M}$ of e.

Using Cauchy-Bunyakovsky inequality we get

$$\mathbb{B}_{m}^{\varepsilon}(\mathbf{x}) \leq O(1) \left\{ \int_{\mathbb{T}_{\varepsilon}} \sum_{n=0}^{m} \chi_{mn}(t) c_{n} \sum_{k=0}^{n} \lambda_{k}^{2} |a_{nk}| \left(\sum_{i=0}^{k} \frac{P_{i-1}}{P_{k}} \xi_{i} \varphi_{i}(t) \right)^{2} dt \right\}^{1/2}$$

where

$$c_{n} = \lambda_{n}^{2} \sum_{l=0}^{n} \frac{|a_{nl}|}{\lambda_{l}^{2}}.$$

From the condition 2° of Lemma 2 and (5) it follows that

$$\begin{split} B_{m}^{\varepsilon}(\mathbf{x}) &\leq O(1) \left\{ \int_{T_{\varepsilon}} \sum_{k=0}^{m} \lambda_{k}^{2} \sum_{n=k}^{m} |\mathbf{a}_{nk}| \chi_{mn}(t) \left(\sum_{i=0}^{k} \frac{P_{i-1}}{P_{k}} \xi_{i} \varphi_{i}(t) \right)^{2} dt \right\}^{1/2} \\ &\leq O(1) \left\{ \int_{T_{\varepsilon}} \sum_{k=0}^{m} \lambda_{k}^{2} a_{k} \left(\sum_{i=0}^{k} \frac{P_{i-1}}{P_{k}} \xi_{i} \varphi_{i}(t) \right)^{2} dt \right\}^{1/2} . \end{split}$$

From Bessel's inequality we get

$$B_{m}^{\varepsilon}(x) \leq O(1) N_{\varepsilon} \left\{ \sum_{k=0}^{n} \lambda_{k}^{2} a_{k} \sum_{i=0}^{k} \frac{P_{i-1}^{2}}{P_{k}^{2}} \xi_{i}^{2} \right\}^{1/2} \leq \\ \leq O(1) N_{\varepsilon} \left\{ \sum_{i=0}^{m} \xi_{i}^{2} P_{i-1}^{2} \sum_{k=i}^{m} \frac{a_{k} \lambda_{k}^{2}}{P_{k}^{2}} \right\}^{1/2}.$$

Since from (6) and (7) it follows that
$$\sum_{k=1}^{m} \frac{a_{k}\lambda_{k}^{2}}{P_{k}^{2}} \leq \frac{\lambda_{i}^{2}}{1P_{i}} \sum_{k=1}^{m} \frac{P_{k}}{P_{k}^{2}} \leq \frac{\lambda_{i}^{2}}{1P_{i}} \sum_{k=1}^{m} \left(\frac{1}{P_{k-4}} - \frac{1}{P_{k}} \right) = \frac{\lambda_{i}^{2}}{1P_{i}} \left(\frac{1}{P_{i-4}} - \frac{1}{P_{m}} \right),$$

we finally have by using (12) that

$$B_{m}^{\varepsilon}(x) = O(1) N_{\varepsilon} \left\{ \sum_{i=0}^{m} \xi_{i}^{2} \lambda_{i}^{2} \left(\frac{P_{i-1}^{2}}{P_{i}P_{i-1}} + \frac{P_{i-1}^{2}}{P_{i}P_{m}} \right) \right\}^{1/2} \leq$$

$$\leq O(1) N_{\varepsilon} \left\{ \sum_{i=0}^{m} \xi_{i}^{2} \lambda_{i}^{2} \right\}^{1/2} = O(1) N_{\varepsilon} = M_{\varepsilon}.$$

The proof of Lemma 4 is complete.

3. Proof of Theorem. We have

$$\lambda_{n} \left| \sum_{k=0}^{n} \prec_{nk} \xi_{k} \varphi_{k}(t) - f(t) \right| = \lambda_{n} \left| \sum_{k=0}^{n} a_{nk} \sum_{t=0}^{k} \xi_{t} \varphi_{t}(t) - f(t) \right| \leq \leq A_{n}(x,t) + B_{n}(x,t) + C_{n}(x,t)$$
(13)

where $A_{p}(x,t)$ is defined by formula (11),

$$B_{n}(x,t) = \lambda_{n} | \sum_{k=0}^{n} a_{nk} - 1 | |f(t)|$$

and

$$C_{n}(t) = \lambda_{n} \left| \sum_{k=0}^{n} a_{nk} \left(\sum_{i=0}^{k} \left(1 - \frac{P_{i-1}}{P_{k}} \right) \xi_{i} \varphi_{i}(t) - f(t) \right) \right|.$$

From the condition 1° of Lemma 2 it follows that

$$B_{n}(x,t) = O_{t}(1)$$

holds a.e. in e.

As the inequality (8) holds, the condition (12) is fulfilled and from Lemma 4 we get that

$$A_{(x,t)} = 0(1)$$

a.e. in e.

Since the summability method A is regular and λ^2 convergence preserving and

$$\lambda_n \sum_{k=0}^{n} \frac{|a_{nk}|}{\lambda_k} \leq \left\{ \sum_{k=0}^{n} |a_{nk}| \right\}^{1/2} \left\{ \lambda_n^2 \sum_{k=0}^{n} \frac{|a_{nk}|}{\lambda_k^2} \right\}^{1/2},$$

it follows from the condition 2° of Lemma 2 that

$$\sum_{k=0}^{n} \frac{|a_{nk}|}{\lambda_{k}} = 0(1).$$

But since

$$|C_{n}(\mathbf{x},\mathbf{t})| \leq \lambda_{n} \sum_{k=0}^{n} \frac{|\mathbf{a}_{nk}|}{\lambda_{k}} \lambda_{k}| \sum_{i=0}^{k} \left(1 - \frac{\mathbf{P}_{i-1}}{\mathbf{P}_{k}}\right) \xi_{i} \boldsymbol{P}_{i}(\mathbf{t}) = \mathbf{f}(\mathbf{t})|,$$

we finally get using the inequality (9) that

$$|C_{n}(\mathbf{x},\mathbf{t})| \leq O_{t}(1) \lambda_{n} \int_{\mathbf{k}=0}^{n} \frac{|\mathbf{a}_{nk}|}{\lambda_{k}} = O_{t}(1)$$

a.e. in e for each x for which the inequality (8) holds.
 Now by using the inequality (13) we have that

$$F_{n}(x,t) = O_{n}(1)$$
 (14)

a.e. in e for each x for which the inequality (8) holds, where

$$F_{n}(x,t) = \lambda_{n} | \sum_{k=0}^{n} \alpha_{nk} \vec{\xi}_{k} \varphi_{k}(t) - f(t) |, \qquad (15)$$

It is evident that for each $n \in \mathbb{N}$ the equality (15) defines a bounded linear operator F_n from l_{ω}^2 into M_{ω} where l_{ω}^2 is the Banach space of all sequences for which the inequality (8) holds.

The set $\{e_j\}$ is a total set in l_{ω}^2 where $e_j = (\delta_{kj})$ and δ_{kj} is the Kronecker's symbol and

$$\lim_{n \to \infty} \mathbb{F}_{n}(\mathbf{e}_{i}, t) = \lim_{n \to \infty} \lambda_{n} \left(\sum_{k=0}^{n} \alpha_{nk} \delta_{ki} \varphi_{i}(t) - \varphi_{i}(t) \right) =$$

$$= \lim_{n \to \infty} \lambda_n \varphi_i(t) (\alpha_{ni} - 1).$$

Since the method A is λ^2 -convergence preserving and the series $\sum \delta_{ki}$ is λ^2 -convergent we have

$$\lim_{n\to\infty}\lambda_n \varphi_i(t)(\alpha_{ni} - 1) = \lim_{n\to\infty}\lambda_n \left(\sum_{k=0}^n \alpha_{nk}\delta_{ki} - 1\right) = 0$$

and therefore

$$\lim_{n \to \infty} \mathbf{F}_n(\mathbf{e}_i, \mathbf{t}) = 0$$

a.e. in e, i.e. the condition 2° of the Lemma 4 holds. By using Lemma 4 we get from inequality (14) that

$$\lim_{n\to\infty} F_n(x,t) = 0$$

a.e. in e for all x for which the inequality (8) is fulfilled, i.e.

$$v_k = \lambda_k \ln \sum_{i=0}^{n} a_i$$

is a sequence of Weyl factors for the A_o^{λ} -summability a.e. in e.

The proof of our Theorem is complete.

References

- Leindler, L., Ober die Rieszschen Mittel allgemeiner Ortogonalreihen. Acta Sci. Math., 1963, 24, 1-2, 129-138.
- Андриенко В. А., О скорости суммирования ортогональных рядов методами Рисса. Докл. расширенного заседания семинара ИМП им. Векуа. 1985, 1, 2, 9-12.
- Барон С., Введение в теорию суммируемости рядов. Таллинн. 1977.
- Данфорд Н., Швартц, Дж., Линейные операторы. Общая теория. Москва, 1962.
- Кангро Г., Множители суммируемости для рядов. λ-ограниченных методами Рисса и Чезаро. Уч. зап. Тарт. ун-та. 1971, 277, 136-154.
- Коляда В. И. Скорость сходимости и суммируемости радов и вложение некоторых классов функций многих переменных. Кандидатская диссертация. Одесса, 1973.

7. Тюрниу Х. О скодимости функциональных рядов почти вседу. Уч. зап. Тарт. ун-та. 1971, 277, 136-154.

Department of Mathematical Analysis Tartu University 202400 Tartu Estonia

Received May 22, 1990

Weyli tegurid ortogonaalridade kiiruvusega summeeruvuseks Heino Türnpu Resümee

Olgu $\varphi = \{\varphi_k\}$ lõigus e = [a,b] defineeritud. ortonormaalne süsteem.

Olgu A regulaarne kolmnurkne summeerimismenetlus, mis on antud maatriksiga (α_{nk}) .

Celdakse, et rida

$\sum \xi_k \varphi_k(t)$

on A_{o}^{λ} -summeeruv p.k. lõigul e, kui eksisteerivad piirväärtused

$$\lim_{n \to \infty} \sum_{k=0}^{n} \alpha_{nk} \xi_k \varphi_k(t)$$

ja

$$\lim_{n\to\infty}\lambda_n\left(\sum_{k=0}^n \mathcal{A}_{nk}\xi_k\varphi_k(t) - f(t)\right) = 0.$$

Celdakse, et jada (ω_k) , kus $0 < \omega_k \neq \infty$, on Weyli tegurite jada A_0^{λ} -summeeruvuseks p.k. lõigul e, kui tingimus $\Sigma \xi_1^2 \omega_k^2 < \infty$,

garanteerib rea
$$\sum \xi_k \varphi_k(t) = A_0^{\lambda}$$
-summeeruvuse p.k. lõigul e.

Me töestame, et kehtib järgmine

TEOREEM. Olgu A niisugune λ^2 -koonduvust säilitav summeerimismenetlus, mille korral on täidetud tingimused (5) ja (6). Siis jada (ω_k), kus

$$\omega_k = \lambda_k \ln \sum_{i=0}^{\infty} a_i,$$

on Weyli tegurite jada A_{0}^{λ} -summeeruvuseks p.k. lõigul e.

0

Trnsactions of Tartu University. N 928. FUNCTIONAL ANALYSIS AND THEORY OF SUMMABILITY. In English. Tartu University EV 202400 Tartu, Ülikooli Street, 18 Vastutav toimetaja V. Soomer. Paljundamisele antud 20.06.1991. Formaat 60x90/16. Kirjutuspaber. Kiri: Roman. Rotaprint. Arvestuspoognaid 6,32. Trükipoognaid 7,0. Trükiarv 350. Tell. nr. 332. Hind rbl. 4.50. TÜ trükikoda. EV, 202400 Tartu, Tiigi t. 78. 2 - 2