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INTRODUCTION 

Communication between cells is the key to the proper functioning of multi-
cellular organisms. Sensing the environment for information about changes in 
the surrounding conditions and signals allows the cell to respond and adjust its 
properties in concert with the rest of the organism. G-protein coupled receptors 
(GPCRs), and G proteins (guanine nucleotide-binding proteins) that the former 
are coupled to, are critical for transducing the extracellular information to the 
inside of the cell, being involved in a multitude of developmental, physiological 
and behavioural processes. Of the three major groups of receptors – GPCRs, ion 
channels, and receptor tyrosine kinases – GPCRs form the largest family. They 
represent the most substantial class of drug targets today, acting as the primary 
targets of approximately half of the drugs on the market. GPCRs communicate 
signals acquired through the binding of hormones, neurotransmitters, ions and 
even light particles to name a few. The subsequent activation of G-proteins 
triggers a complex and a highly regulated intracellular signalling cascade, dis-
turbance of which may result in many types of human diseases, such as cardio-
vascular, neurological and metabolic, as well as cancer. RIC8, one of the 
indispensable components of this signalling pathway, interacts directly with G 
protein α subunits, regulating their activity and abundance in cells. Both RIC8 
and G proteins are present in humans, but also in simple organisms like the 
amoeba Dictyostelium discoideum and the red bread mould Neurospora grassa 
indicating that they emerged quite early in the evolution of the eukaryotes. 
Thus, RIC8 is a component of a highly conserved cell signalling system. The 
research into the in vivo function of RIC8 in nematode Caenorhabditis elegans, 
fruit fly Drosophila melanogaster and African clawed frog Xenopus laevis has 
revealed that it plays an essential role in cell division, synaptic signal 
transduction, and cell adhesion and migration. However, the function of RIC8A 
(one of two RIC8 proteins in vertebrates) in mice is still poorly characterised. 
The previous studies have revealed that RIC8A is expressed in the developing 
nervous system during the early organogenesis phase (E9.5-E12.5) and that it is 
also expressed in the brain of the adult mice. Moreover, the mice heterozygous 
for the Ric8a allele display behavioural abnormalities. The research presented in 
this dissertation is a continuation of these studies.  

The main goal of this thesis was to analyse the phenotypes of three different 
Ric8a knockout mice: a total knockout (Ric8a–/–) and the specific depletions of 
Ric8a from the neural precursor cells and from differentiated neurons. Two 
major conclusions were drawn from this analysis. First, the ablation of RIC8A 
in the nervous system results in a neuromuscular phenotype and second, the 
lack of RIC8A results in cell migration defects during gastrulation and neuro-
genesis, probably due to defective adhesion of cells to the extracellular matrix. 
To elaborate on the latter finding, the adhesive properties of RIC8A-deficient 
mouse primary cells were evaluated.  
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REVIEW OF LITERATURE 

1. G proteins 
Heterotrimeric G-proteins are fundamentally conserved from bacteria to mam-
mals and play diverse roles in many aspects of cell regulation. They are com-
posed of non-identical alpha, beta and gamma subunits. The basic mechanism 
of G-protein signalling depends on the capability of the Gα subunit to bind and 
hydrolyse guanosine triphosphate (GTP) to guanosine diphosphate (GDP). In its 
relatively inactive, GDP-bound state Gα subunit forms a complex with Gβ and 
Gγ subunits, and functionally dissociates from the Gβγ complex upon binding 
GTP. The formed Gα:GTP complex and disassociated Gβγ dimer transduce signal 
by modulating downstream effectors. The intrinsic GTP-hydrolysing activity of 
the Gα subunit leads to the reformation of the heterotrimer in its inactive GDP- 
and Gβγ-bound state (Alberts et al., 2002). In addition to heterotrimeric G-
proteins, there are monomeric GTPses called small G-proteins (aka small 
GTPases or Ras superfamily GTPases) that share a common architecture with a 
core ‘GTPase domain’ that is similar in structure and function to Gα subunits 
(Mishra and Lambright, 2016). The GTPase activity of Gα and small G-proteins 
is regulated by various accessory proteins: regulators of G-protein signalling 
(RGS, also dubbed GTPase activating proteins or GAP’s), guanine nucleotide 
exchange factors (GEF) and guanine nucleotide dissociation inhibitors (GDI), 
(Siderovski and Willard, 2005). The major non-structural difference between 
the heterotrimeric and monomeric G-proteins is that heterotrimeric G proteins 
are mostly bound to a G-protein coupled receptors (GPCR) which, upon stimu-
lation by extracellular ligands (e.g. chemokines, hormones, neurotransmitters, 
etc.), act as GEFs inducing the release of GDP and enabling the binding of GTP 
to Gα. Small G-proteins usually function several steps downstream of a mem-
brane receptor and are activated by various intracellular GEF’s (Fig. 1). 

On the basis of sequence similarity, Gα subunits of heterotrimeric G-proteins 
have been divided into four main subfamilies: Gαs, Gαq/11, Gαi/o and Gα12/13 

(Neves et al., 2002). Gαs pathway was the first one described in this group. Its 
general function is to activate the cAMP-dependent pathway by activating 
adenylyl cyclase (Milligan and Kostenis, 2006). Gαi generally functions as an 
inhibitory regulator of the cAMP-dependent pathway (Milligan and Kostenis, 
2006). Therefore, Gαs and Gαi have inverse regulatory functions when it comes 
to cAMP production. Gαo, a nervous system-specific member of the Gαi sub-
family, has been shown to inhibit the voltage-dependent calcium channels having 
no effect on adenylyl cyclase activity (Jiang et al., 1998). Gαq/11 proteins are 
ubiquitously expressed and they mostly activate phospholipase Cβ, which 
generates two downstream messengers essential in the development of organisms, 
namely the water-soluble inositol phosphates that regulate intracellular Ca2+ 
mobilisation, and diacylglycerol, which activates PKC (Litosch, 2016). The major 
downstream effector of the Gα12/13 family is the small GTPase RhoA (Buhl et al., 
1995), which is activated by Rho guanine nucleotide exchange factors (RhoGEFs) 
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that are direct targets of Gα12/13 (Kozasa et al., 1998). It is important to note that 
these subunit families (especially Gαi and Gαq) have multiple subtypes with 
much more identified targets than the ones named here. 

 

 
Figure 1. A standard model for the regulation of G-protein signalling. Gα:GDP in 
complex with Gβγ are coupled to the 7 transmembrane GPCR (G-protein-coupled 
receptor). GDI (guanine nucleotide dissociation inhibitor) also acts on the Gα subunits 
to inhibit the spontaneous release of GDP. When an extracellular ligand binds to the 
GPCR, the receptor triggers a conformational change in Gα enabling its dissociation 
from the receptor and the release of βγ subunit. Subsequently, GDP is released and GTP 
can associate with Gα. Both the GTP-bound Gα and released Gβγ transduce the signal 
from receptor inside the cell by modulating the activity of various enzymes, ion channels, 
and other effectors. Regulators of the G-protein signalling (RGS) act as GTPase-
accelerating proteins (GAPs) that stimulate the signal termination for Gα dramatically 
enhancing their intrinsic rate of GTP hydrolysis to GDP. GDP-bound Gα enables the re-
assembly of the receptor-bound complex. However, Gα:GDP can also be activated in a 
receptor-independent manner. This is mediated by GEFs (guanine nucleotide exchange 
factors). RIC8 has been shown to act as a receptor-independent GEF for Gα subunits. It 
has also been shown to act as a chaperone for Gα subunits necessary for their 
localisation to the plasma membrane. 
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2. RIC8A protein 
2.1. Biochemical properties of RIC8 

Resistance to Inhibitors of Cholinesterase 8 (RIC8) is a regulator for a subset of 
G-protein α subunits. The highly conserved protein was first found in nematode 
Caenorhabditis elegans (C.elegans) from a mutagenesis screen that sought for 
animals resistant to cholinesterase inhibitors among mutants with phenotypes 
similar to egl-30 (Gαq in C.elegans) deficient worms (Miller et al., 2000). When 
cholinesterase enzyme is inhibited, the level and duration of action of the neuro-
transmitter increases leading to a toxic effect (Risher et al., 1987) that is absent 
in RIC8 mutants. Further research revealed that RIC8 functions upstream of, or 
in conjunction with, EGL-30 (Gαq) (Miller et al., 2000). In vitro experiments 
later identified mammalian RIC8 to function as a guanine nucleotide exchange 
factor that regulates the activity G protein α subunits (Tall et al., 2003). Recent 
evidence has implied that RIC8 may also act as a chaperone for Gα subunits 
(Gabay et al., 2011; Chan et al., 2013) (Fig. 1). In vertebrates, two RIC8 iso-
forms have been identified: RIC8A and RIC8B. These homologues have the 
same biochemical function but they differ in the Gα subunits they associate 
with. RIC8A regulates Gα12/13, Gαq/11, and Gαi/o families and RIC8B has mostly 
been associated with the Gαs family but it also binds Gα12/13 and Gαq/11 weakly 
(Tall et al., 2003; Chan et al., 2011; Gabay et al., 2011).  

Attempts to resolve the structure of RIC8 have yielded little results so far. A 
group working with Xenopus laevis compared the xRic-8 (RIC8 in the X.laevis) 
amino acid sequence with protein databases and found that xRic-8 belongs to a 
unique protein family with no homology to other proteins (Figueroa et al., 
2009). The structural model of xRic8a, assembled by using a battery of bio-
informatics approaches, is composed of 10 armadillo folding motifs organized 
in a right-twisted α-alpha super helix (Figueroa et al., 2009). Armadillo proteins 
have been shown to act as “scaffold proteins” interacting with a diverse set of 
partners and participating in many signalling pathways (Hatzfeld, 1999). 
Although Gα subunits play a central role in RIC8A function, some studies have 
indeed found additional binding partners for RIC8A. For example, it was found 
to interact with neural cell adhesion molecule (NCAM) and specific NCAM 
isoform 180 appeared to be necessary for the recruitment of RIC8A to the cell 
surface (Amoureux et al., 2012). In addition, type V adenylate cyclase (AC5) 
has also been shown to directly interact with RIC8A. By binding to the  
N-terminus of AC5, RIC8A suppressed the activity of AC5 via a Gαi-dependent 
pathway (Wang et al., 2007). 

Nevertheless, a vast majority of published data on the biochemical function 
of RIC8A places it into the G protein signalling pathway (Miller and Rand, 
2000; Tall et al., 2003; Tall and Gilman, 2005; Woodard et al., 2010; Gabay et 
al., 2011; Boularan et al., 2015). Tall and his group have been the front-runners 
in this field. They first described RIC8A protein as a GEF for a subset of Gα 
subunits that potentiates and prolongs the signals received from membrane 
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GPCRs (Tall et al., 2003; Tall and Gilman, 2005). Later they discovered that 
RIC8A proteins also act as molecular chaperones that control the initial 
association of nascent Gα subunits with cellular membranes (Gabay et al., 2011; 
Chan et al., 2013). Indeed, the membrane localisation of different Gα subunits 
has been shown to be regulated by RIC8A in multiple studies (Hampoelz et al., 
2005; Nishimura et al., 2006; Saare et al., 2015). In a recent review paper, it has 
been proposed that the function of RIC8A protein in cells is to promote Gα 
protein abundance and that RIC8A GEF activity per se is not necessarily the 
purpose of producing activated Gα-GTP in order to engage downstream 
effectors (Tall, 2013). 

 
 

2.2. Function of RIC8A in cells and organisms 

RIC8A has also been called Synembryn for its identified physiological activities 
in C. elegans: synaptic transmission and embryogenesis (Miller et al., 2000). 
The embryonic functions that RIC8 has been found to participate in have often 
been associated with cell division and the function of Gαi in cells. RIC8 has 
been assigned a role as a regulatory component of an evolutionarily conserved 
heterotrimeric Gα-mediated mechanism that controls spindle orientation and 
asymmetric cell division in C. elegans embryos (Miller and Rand, 2000) and 
D. melanogaster neuroblasts (David et al., 2005; Hampoelz et al., 2005; Wang 
et al., 2005). These results were substantiated by findings in HeLa cells, where 
reduced Ric8a expression prolonged mitosis, caused occasional mitotic arrest, 
and decreased mitotic spindle movements in a Gαi-dependent manner (Woodard 
et al., 2010). The RIC8A localization in oocytes was similar to that of HeLa 
cells and its inhibition interfered with the recruitment of Gαi to the plasma 
membrane (Saare et al., 2015).  

In mouse embryos (E9.5–12.5), the expression of Ric8a was detected mostly 
in the developing nervous system (Tõnissoo et al., 2003). RIC8A was also 
expressed in the adult brain, where it was found in the hippocampus, neocortex, 
and cerebellum (Tõnissoo et al., 2003). In accordance with this neurospecific 
expression, Ric8a haploinsufficiency was found to affect the behavioural 
physiology and spatial memory of mice (Tõnissoo et al., 2006). In the nervous 
system of C. elegans, RIC8 has been shown to affect the Gαq–Gαo pathway by 
mediating the release of neurotransmitters in the neuromuscular synapse (Miller 
et al., 2000). Nematodes with suppressed RIC8 function were shown to display 
decreased locomotion and body flexion (Miller et al., 2000). In the nervous 
system of D. melanogaster, Ric8 binds to the Ca2+ sensor NCS-1 to regulate the 
synapse number and neurotransmitter release (Romero-Pozuelo and Dason, 
2014). 

At Xenopus tropicalis early developmental stages, xRic-8a is expressed in 
the animal hemisphere of an embryo whereas later its expression is restricted to 
neural tissues (neural tube and developing brain) (Maldonado-Agurto et al., 
2011). Recently, there has been an accumulation of evidence linking RIC8A 
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with focal adhesions and actin cytoskeleton remodelling. These processes are 
reviewed in detail in chapter 3.2.  

Information about the in vivo roles of RIC8A is fragmentary. It is clear, 
however, that RIC8A functions in concert with Gα subunits performing crucial 
cellular tasks, since its absence is lethal in D. melanogaster (Hampoelz et al., 
2005; Wang et al., 2005), C. elegans (Miller and Rand, 2000) and mice (Tõnis-
soo et al., 2006).  

 
 

3. Connection between cells and  
the extracellular matrix 

The extracellular matrix (ECM) is synthesized and secreted from the earliest 
stages of development on, and it is critically important for cell growth, survival, 
differentiation, morphogenesis and the maintenance of tissues. Macromolecules 
that constitute the ECM are mainly produced by the cells in the matrix 
(fibroblasts in most connective tissues) and are linked to each other through 
diverse protein-, cell- and carbohydrate-binding domains. These macromolecules 
are divided into two classes: glycosaminoglycans (GAGs), and fibrous proteins, 
including collagen, fibronectin, laminin, elastin, etc. (Alberts et al., 2002). GAGs 
are polysaccharide chains that carry a high negative charge, are strongly hydro-
philic and attract a lot of water into the matrix, which helps the connective 
tissues to maintain elasticity. In addition to structural functions, GAGs parti-
cipate in the regulation of different cellular processes like cell migration, cell 
division, etc., and interact with a variety of secreted proteins that regulate their 
activity. Collagens are the most abundant proteins of the ECM. Collagen mole-
cules are generally long and form cross-linked fibrils with the extent and type of 
cross-linking varying from tissue to tissue (Gelse et al., 2003). Laminins, the 
heterotrimeric proteins composed of α, β, and γ chains, are found in multiple 
genetic variants that form different combinations (Domogatskaya et al., 2012). 
Laminins are the major components of the basal lamina, a specialized form of 
the ECM on the basal side of polarized epithelial cell sheets separating them 
from the underlying connective tissue. The basal lamina together with the 
underlying layer of reticular lamina forms the basement membrane (BM). Basal 
lamina consists mostly of collagen IV and laminins, and it is secreted by the 
epithelial cells whereas the reticular lamina consists of collagen fibres and is 
produced by the underlying connective tissue cells (Sanes, 2003). Fibronectin is 
present in both layers and is thought to anchor them to each other and to the 
cells (Singh et al., 2010). The BM is characterised in more detail in chapter 4. 

Most cells need to attach to the extracellular matrix to grow, proliferate and 
survive, which is known as anchorage dependence (Frisch and Francis, 1994), 
and this interaction is mediated mainly by integrins and regulated by the intra-
cellular signals they generate. Integrins are transmembrane proteins that mediate 
the adhesion and bidirectional signalling between the cell and the ECM. They 
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are heterodimeric proteins consisting of α and β subunits with relatively large 
extracellular domains, a single transmembrane domain (TMD), and a short cyto-
plasmic tail (Hynes, 2002). There are 18 α subunits and 8 β subunits that can 
combine to form 24 functionally different integrins expressed in tissue-specific 
fashion. In addition to this tissue specificity, each integrin exhibits a distinct 
binding affinity to a particular ligand or a set of ligands (Humphries et al., 2006). 
Therefore, a cell with its set of integrins can adhere to, or migrate toward, a 
specific region where the respective ligands are present. Integrins mediate signals 
bidirectionally: “outside-in” signalling is initiated by the ligand binding allowing 
the cell to sense the extracellular environment and react correspondingly, and 
“inside-out” signalling is activated by the intracellular signalling molecules to 
regulate the ligand binding characteristics of integrins (Qin et al., 2004).  

Akin to the integrin receptors is the dystroglycan, another receptor complex 
that consists of an extracellular α- and transmembrane β-subunits linking ECM 
components to the cytoskeletal network (Henry and Campbell, 1999). Originally 
isolated from skeletal muscles and associated with muscular dystrophy (Ervasti 
et al., 1990), dystroglycan is now recognised as a laminin receptor in all tissues 
(Durbeej et al., 1998). α-dystroglycan interacts with the BM and generates intra-
cellular signals, which are transmitted by a transmembrane β-dystroglycan. The 
signalling pathways activated by dystroglycan partially overlap with those 
regulated by integrins (Belkin and Smalheiser, 1996; Spence et al., 2004; 
Thompson et al., 2010).  

 
 

3.1. The role of actin cytoskeleton in cell-ECM adhesion 

The physical spreading of cells on the matrix has a strong influence on intra-
cellular events. Cells that are forced to spread over a large surface area survive 
better and proliferate faster than those that are not spread (Chen et al., 1997). 
Cells adhere to, spread and migrate on substrates by exerting mechanical forces 
to the inner face of the membrane, which are generated by polymerising actin, 
the main component of the cytoskeleton, and its coupling to a motor protein, 
myosin. Polymerisation of actin drives the membrane protrusion and extension 
through the formation of filopodia and lamellipodia. This is considered as the 
first step in cell migration. Filament polymerization from the (+) end is enhanced 
by the family of proteins known as formins (Dia) and the Ena/VASP homology 
proteins, and the disassembly of actin at its (–) end is mediated by ADF/cofilin 
(Pollard and Borisy, 2003). Branching of the actin network is enabled by the 
Arp2/3 complex, which stabilises the connections between the filaments (Goley 
and Welch, 2006). In order to generate adhesion strength (traction force), actin 
cytoskeleton needs to be connected to the extracellular matrix. Following the 
cell-ECM interaction, large molecular complexes called focal adhesions are 
assembled. These contain clustered integrins in the membrane and different 
cytoplasmic proteins including e.g. vinculin, talin, paxillin, etc., that bind, either 
directly or indirectly, to the cytoplasmic tails of integrins (Calderwood et al., 
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2000). Actin filaments organised in a special manner called stress fibres are 
anchored to focal adhesions. Stress fibres form contractile structures in cells 
together with myosin II. Interestingly, on soft substrates cells do not form focal 
adhesion complexes or stress fibres (Gupta et al., 2015).  
 
 

3.2. G proteins and cell adhesion to the ECM 

Rho, Rac, and Cdc42 form a subfamily of Rho GTPases, small G-proteins that 
regulate actin and cell adhesion. Notably, these proteins control many cellular 
processes involved in cell adhesion and the regulation of the cytoskeleton 
dynamics. Cdc42 is activated in protrusions, filopodia, and at the Golgi, Rac1 
activity is required for the formation of protrusions and ruffles, but also controls 
disassembly of invadopodia, whereas RhoA activity is associated with mem-
brane protrusion, tail retraction, ruffling and cell polarity (Martin et al., 2016). 
RhoA has been shown to regulate the actin cytoskeleton with the activation of 
downstream targets formin (mDia) and ROCK (Leung et al., 1995; Watanabe et 
al., 1997). Formins produce straight, unbranched actin fibres by accelerating the 
incorporation of actin monomers as well as protecting the ends from the capping 
proteins (Goode and Eck, 2007). ROCK has been shown to mediate the acti-
vation of actomyosin-mediated contraction through inhibition of myosin light 
chain phosphatases (Riento and Ridley, 2003). Another target of ROCK is 
ADF/cofilin that has been shown to be one of the key regulators of actin severing, 
nucleation, and capping within the protrusive machinery (Song et al., 2006). 

Out of the heterotrimeric G proteins, Gα12/13 has mostly been associated with 
the regulation of cell motility and changes in morphology of cells via the direct 
activation of RhoGEF’s, which in turn activate the RhoA GTPase.  

A number of different GPCRs have been reported to couple with the Gα12/13 

family (Riobo and Manning, 2005), but not in an exclusive manner. Receptors 
that are coupled to Gα12 and/or Gα13 invariably couple to one or more other G 
proteins. For example, many Gαq/Gα11-coupled receptors are reported to induce 
stress fibre assembly in the absence of Gαq and Gα11 and that this involves 
either a Gα12 or a Gα13 coupled receptor-mediated pathway (Gohla et al., 1999). 
Recently, it was found that in addition to GPCRs, Gα13 also interacts with 
integrins, in particular, Gα13 binds integrin β3 subunit in platelets (Gong et al., 
2010) as well as the ubiquitous β1 integrin subunit (Shen et al., 2015). These 
interactions were suggested to be necessary for integrin-mediated “outside-in” 
signalling, transient inactivation of RhoA, and Src activation required for the 
initial cell spreading and migration (Gong et al., 2010; Shen et al., 2015). 
Therefore, it seems that Gα13 plays a dual role in the regulation of RhoA both by 
stimulating it through GPCR-activated pathways and inhibiting it via integrin-
mediated outside-in signalling (Shen et al., 2015). In addition to the outside-in 
integrin signalling, G-proteins have also been associated with the inside-out 
signalling in platelets. Adhesion of platelets to the site of vascular injury is 
dependent on the recruitment of additional platelets into a growing thrombus 
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and this requires mediators such as ADP, thromboxane A2, and thrombin, 
which act through GPCRs (Offermanns, 2006). Gαq, Gαi, and Gα12/Gα13 have 
been associated with these processes. Gα13 has been shown to be involved in the 
RhoA-mediated induction of change in the platelet shape (Moers et al., 2003), 
and co-stimulation of Gαi- and Gα12/Gα13 induces the activation of integrin 
αIIbβ3 (Nieswandt et al., 2002). Therefore both Rho GTPases and Gα proteins 
play crucial roles in cell adhesion and migration processes. 

 
 

3.3. RIC8A and cell adhesion to ECM 

Recently, analogous results have been published independently by several 
research groups that have been using different model systems, where RIC8A 
has been implicated in the assembly of focal adhesions and organisation of the 
actin cytoskeleton. The in vivo transplantation experiments with X. laevis 
demonstrated that xRic-8A deficit causes impaired migration of the cranial neural 
crest cells, a strong reduction in cell spreading and focal complex formation, and 
reduced adhesion to fibronectin (Fuentealba et al., 2013). Similarly, a study 
focusing on mouse cerebellum reported that in the absence of RIC8A in neural 
progenitors the adhesion of these cells to laminin was reduced, and therefore the 
specialised astrocytes called Bergmann glia were unable to attach to the basement 
membrane (Ma et al., 2012). In addition, RIC8 has been linked to growth factor-
induced cell migration in mouse embryonic fibroblasts (MEF) (Wang et al., 
2007). Downregulation of Ric8a by RNA interference inhibited platelet-derived 
growth factor (PDGF)-initiated cell migration and slowed down PDGF-induced 
dorsal ruffle turnover (Wang et al., 2007). Dorsal ruffles or waves (aka actin 
ribbons) are structures consisting of polymerised cortical actin that assemble on 
the dorsal plasma membrane in response to growth factors (Buccione et al., 
2004). RIC8A has also been linked with actin remodelling in another study that 
concerns D. melanogaster gastrulation, where mutation of ric-8 resulted in per-
turbation of cortical actin and formation of blebs on the ventral cellular surface 
of the blastoderm cells (Kanesaki et al., 2013). Moreover, it was found that the 
amount of total and polymerised actin, and the filopodia-like structures were 
reduced in mouse Ric8–/– embryonic stem (ES) cells, as was the activation of 
RhoA GTPase, an important regulator of the actin cytoskeleton organisation 
(Gabay et al., 2011). All these cytoskeletal defects in RIC8-deficient conditions 
were associated with the function of G proteins in the respective studies. 
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4. The Basement membrane-cell  
contact in development 

Basement membranes (BM) are thin sheets of specialised extracellular matrix 
that surround epithelia, endothelia, muscle cells, fat cells, Schwann cells and 
peripheral nerves, as well as the entire central nervous system. They affect the 
survival and differentiation of adherent cells by playing important roles in main-
taining tissue integrity and compartmentalisation, filtration and diverse develop-
mental processes. BM mainly contain type IV collagen, nidogen, perlecan, agrin, 
collagen XVIII, sulphated proteoglycans, and members of the laminin family 
(Erickson and Couchman, 2000). However, the composition of the BM is highly 
divergent depending on its precise location within the body and the type of 
tissue which it supports.  
 
 

4.1. BM in early embryonic development 

A dramatic reorganisation of cells takes place in the early mammalian embryo 
immediately after implantation where the non-polar stem cells of the inner cell 
mass (ICM) will become specialized and give rise to the three germ layers 
(ectoderm, mesoderm, endoderm) that later form all the tissues in an organism. 
By the time of implantation, the mouse embryo has developed into a blastocyst 
(E4.5) that contains three distinct cell populations: ICM has differentiated into 
epiblast (primitive ectoderm) and primitive endoderm (hypoblast), which are 
surrounded by the trophectoderm (Belousov, 2011). During the peri-implantation 
period of mammalian blastocyst development, the first BM to appear in the 
inner cell mass is deposited beneath the primitive endoderm and the trophoblast 
cells so that the epiblast is surrounded by the BM (Bedzhov et al., 2014). 
Laminin-1 (α1β1γ1) is the earliest laminin expressed during mouse embryonic 
development (Cooper and MacQueen, 1983). The endodermal BM induces the 
epiblast development. Primitive endoderm cells remaining in contact with BM 
differentiate into visceral endoderm and epiblast cells in contact with the BM 
become polarised and accumulate F-actin to the apical side of the cells (Sakai et 
al., 2003) to form the columnar epiblast epithelium. Cells at the centre of the 
epiblast that are not connected to the BM undergo apoptosis and thereby give 
rise to the proamniotic cavity in a process called cavitation (Coucouvanis and 
Martin, 1995) (Fig. 2). Mutation of laminin γ1 subunit causes embryonic death 
prior to gastrulation (Smyth et al., 1999) most likely because BM regulates the 
development of epiblast epithelial cells directly and the aforementioned 
programmed cell death indirectly (Murray and Edgar, 2000). After cavitation 
(E5.5) the polar trophectoderm and the epiblast develop into an elongated 
structure that is made up of the ectoplacental cone (which connects the embryo 
to the uterus), the extraembryonic ectoderm (ExE), the epiblast, and a layer of 
visceral endoderm.  
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Figure 2. Basement membrane during the different stages of the early embryonic 
development. At E4.75, during the peri-implantation stage, the first BM is established. 
Epiblast cells become polarised and form the columnar epiblast epithelium. Cells that 
are not connected to the BM undergo apoptosis in a process called cavitation. Gastrulation 
starts with the formation of primitive streak (E6.0–6.5). The ingressing cells lose their 
polarity, the BM brakes down and cells pass through the primitive streak. After which 
they become mesenchymal stem cells (Lim and Thiery, 2012), in a process called 
epithelial-mesenchymal transition (EMT). In a late gastrulation embryo (E7.5), the 
ingressing mesenchymal cells spread between the epiblast and visceral endoderm, or 
proximally where they displace the extra-embryonic ectoderm. Visceral endoderm 
secretes a new BM between itself and the mesenchymal cells that emerge from the 
primitive streak. Abbreviations: PE – primitive endoderm, BC – blastocyst cavity, PS – 
primitive streak, AC – amniotic cavity 
 
Gastrulation then commences with the formation of the primitive streak (E6.0–
6.5) at the junction between the extraembryonic tissue and the epiblast on the 
posterior side of the embryo. This becomes the site of ingression through which 
epiblast cells ingress to form the mesoderm and the endoderm (Fig. 2). These 
two tissues and the ectoderm (the descendants of epiblast cells that do not pass 
through the primitive streak) constitute the three primary germ layers (Tam and 
Loebel, 2007). When primitive streak forms, the ingressing cells lose their 
polarity, detach from the BM and undergo cytoskeletal rearrangements that 
enable migration, and after passing the primitive streak, they become mesen-
chymal stem cells (Lim and Thiery, 2012). This process is called epithelial-
mesenchymal transition (EMT). The first step of EMT is the breakdown of BM 
in the location of the primitive streak, which is controlled by the loss of basally 
localised RhoA activity (Nakaya et al., 2008). Tight junctions and apical-basal 
polarity are both maintained throughout epiblast cells and are lost immediately 
after ingression (Nakaya et al., 2008). Ingressing mesenchymal cells spread 
distally between the epiblast and the visceral endoderm or proximally where 
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they displace the extra-embryonic ectoderm. Visceral endoderm secretes a new 
BM between itself and the mesenchymal cells emerging from the primitive 
streak (Fig. 2). Cell fate determination is coupled to morphogenetic movements 
during mammalian embryogenesis. Morphogenesis is orchestrated by a small 
number of modular mechanical properties: cell-cell adhesion, cell-matrix 
adhesion, protrusion, and contractility, all of which require appropriate 
regulation and dynamics of the cytoskeleton (Montell, 2008).  
 

4.2. BM in neurogenesis 

During development of the nervous system, a limited number of neural pre-
cursor cells give rise to a high number of diverse neural cell types. Neocortical 
neurons arise from a small set of progenitor cells that locate in the ventricular 
zone (Miyata et al., 2001; Noctor et al., 2002). The cortical plate of the mouse 
cerebral cortex develops between E12 and E18 with postmitotic neurons 
migrating away from VZ in an inside-out manner with the earliest-generated 
neurons populating the deepest neocortical layers and later-generated neurons 
occupying the superficial layers (Hatten, 1999; Nadarajah et al., 2001). Defects 
in these events can cause severe neural defects and are associated with various 
diseases like lissencephaly, microcephaly, polymicrogyria, different hetero-
topias, epilepsy and others (Olson and Walsh, 2002; Manzini and Walsh, 2011). 
The organizing framework for cortex histogenesis is provided by the spindle-
shaped radial glia cells that serve as the substrate for the migrating neuroblasts. 
Establishment of the pial-glial barrier is one of the earliest histogenetic events in 
neurogenesis. This is accomplished by coordinated interaction among the 
processes of radial glia, various ECM components, and mesenchymal cells at 
the pial surface, with the formation of a BM that tightly abuts the glia limitans. 
Radial glia interacts with the pial BM through the endfeet of the characteristic 
radial processes extending from the ventricular zone to the pial surface. 
Therefore, the pial BM acts as both an anchor point for the endfeet of radial 
processes, and as a physical barrier to migrating neurons. Alterations in pial BM 
composition and the function of ECM-associated proteins, including the laminin 
γ1 chain (Halfter et al., 2002), GPR56 (Li et al., 2008), perlecan (Costell et al., 
1999), and collagen type III (Luo et al., 2011), result in cortical lamination 
defects accompanied by the fragility of the pial BM and detachment of RG from 
the BM. Moreover, mutations in genes encoding BM components (e.g. laminin 
α5 or γ1, perlecan), as well as their cellular receptors (dystroglycan, β1 or α6 
integrin), disrupt normal deposition of the cortical BM and result in a dis-
organized cortex (Costell et al., 1999; De Arcangelis et al., 1999; Graus-Porta et 
al., 2001; Halfter et al., 2002). These studies demonstrate that an intact BM and 
ECM binding proteins are an absolute requirement for a proper cortical develop-
ment. Interestingly, mutations in Gα12/Gα13 and RhoA GTPase in the devel-
oping nervous system result in similar morphological defects as the mutations in 
BM components and their binding receptors (Moers et al., 2008; Cappello et al., 
2012) indicating that their activity is essential for the glial-BM contact. 
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AIMS OF THE STUDY 

The overall aim of this thesis was to study the role of RIC8A in the mouse 
development using knockout mouse models and primary cell cultures. The 
thesis summarises the results of four linked studies with three main objectives: 
• The first goal of the research presented in this thesis was to assess the in vivo 

function of RIC8 in mammals by analysing the consequences of the absence 
of RIC8A in a mouse. Since Ric8a–/– embryos died at the gastrulation stage, 
we set an aim to describe the morphological defects occurring during the 
aberrant gastrulation process. 

• The second goal of this thesis was inspired by the earlier work of our group, 
and others, showing that RIC8A might be important in the development of 
the nervous system and in the synaptic signal transduction. To study the role 
of RIC8A in these processes and to circumvent the embryonic lethality of 
the Ric8a–/– mice, we analysed the effect of the targeted depletion of Ric8a in 
neural progenitors and in differentiated neurons. 

• The third goal was impelled by the observed defects in cell migration and 
basement membrane in gastrulation and neurogenesis of RIC8A deficient 
animals. To give a functional mechanistic context to the obtained in vivo 
results, we analysed the embryonic stem cells and fibroblasts isolated from 
RIC8A-deficient mice for their adhesive and migratory properties and the 
molecular mechanisms responsible for the regulation of these functions. 
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RESULTS AND DISCUSSION 

1. Ric8a knockout mouse lines 
1.1. Ablation of RIC8A causes defective morphogenetic 

movements during gastrulation in mice (Ref. I) 

In order to gain insights into RIC8A function, Ric8a knockout mouse model was 
generated. Although Ric8a haploinsufficiency in mice does not cause any appa-
rent morphological defects or changes in viability or reproductive capabilities 
(Tõnissoo et al., 2006), the homozygous deletion of Ric8a is lethal at a very 
early stage of the embryonic development. RIC8A deficient (Ric8a–/–) embryos 
are able to implant and initiate gastrulation but are unable to complete gast-
rulation and die between E6.5 and E8.5. This is in accordance with earlier results 
in other model organisms, where the ric-8 reduction of function mutants in 
C. elegans (Miller and Rand, 2000) and D. melanogaster (Hampoelz et al., 2005; 
Wang et al., 2005) exhibit embryonic lethality. Moreover, Ric-8 deficiency in 
D. melanogaster led to multiple gastrulation defects (Hampoelz et al., 2005; 
Wang et al., 2005). Similarly, varying gastrulation defects could be observed in 
Ric8a–/– mutant mouse at the ages E6.5–E7.5. In order to better understand the 
nature of these defects, we analysed the expression of known marker genes for 
gastrulation. As an overall result, all of the tested markers were present in the 
Ric8a–/– embryos, suggesting that RIC8A does not influence the transcription of 
genes that are essential for gastrulation (Ref. I, Fig. 6). In addition, since marker 
genes for different germ layers were also expressed, RIC8A is probably not in-
volved in the differentiation of the epiblast along embryonic and extra-
embryonic lineages. However, there were significant alterations in the expression 
levels and temporal localisation of these lineage markers. For example, staining 
for Bmp4, a marker for ExE (trophoblast-derived extraembryonic ectoderm), 
that also marks epiblast-derived extra-embryonic mesoderm (Fujiwara et al., 
2001), revealed that in Ric8a–/– embryos the expression was restricted to the 
area of ExE, and did not extend to the area of the extraembryonic mesoderm as 
in normal embryos (Ref. I, Fig. 6P). In addition, a mesoderm marker Lim1 
(Tsang et al., 2000) had also very restricted expression which was confined to 
one side of the embryo (Ref. I, Fig. 6Q, Q’). These results indicate that although 
epiblast cells had differentiated into mesoderm and ectoderm, they did not pass 
the correct morphogenetic movements during the gastrulation process. Closer 
inspection of the histology of the Ric8–/– embryos revealed that the extra-
embryonic mesoderm-driven early structures that contribute to the amnion, 
allantois, and yolk sac, were either malformed or had not formed at all (Ref. I, 
Fig. 2). In Ric8a–/– embryos that had survived longest (E8.5), anterior structures 
like head folds and rudimentary trunk regions were severely underdeveloped, 
although had partially formed. Their littermates at that age already displayed a 
head region with a neural ectoderm and a neural tube along with somites (Ref. I, 
Fig. 3). These morphological defects are in accordance with the expression of 
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lineage markers suggesting that the process of cell migration is impaired in the 
absence of RIC8A. Since the BM is essential for the early embryonic develop-
ment (Miner et al., 2004; Nakaya et al., 2008), we also studied the expression of 
laminin in Ric8a–/– embryos. Immunohistochemical analysis of laminin-1 
expression revealed that in Ric8a–/– embryos the Reichert’s membrane was 
intact, but the labelling of the surface of visceral endoderm and of the basal 
surface of embryonic ectoderm was discontinuous and the BM appeared to be 
disorganised (Ref. I, Fig. 5). The results of laminin-1 staining have come into 
focus in the light of new evidence connecting RIC8A with the cell-ECM 
adhesion and therefore are elaborated upon in chapter 2 of this section.  

Since RIC8A is functionally linked to a subset of G protein α subunits, the 
pathologies in the respective knockout mice that are similar to those of Ric8a–/– 
embryos could help to identify the Gα subunit(s) that regulate(s) this particular 
morphogenic event. Pinpointing a sole Gα is improbable because RIC8A has 
been shown to interact with Gαi/o, Gαq, and Gα12/13 subunits, which all have 
multiple subtypes that in some cases can compensate for one-another (Worzfeld 
et al., 2008). Also, more than one Gα is probably involved in these highly 
complex processes. Most of the characterised Gα knockout mice are viable or at 
least develop past gastrulation. The mutant mouse that is the most similar to 
Ric8a–/– is the Gα12 and Gα13 double knockout that dies between E8 and E8.5 
(Gu et al., 2002). The study where those mutants are described does not elaborate 
on the morphological details but does state that the allantois in these mice was 
short and thick and was not fused to the chorion (Gu et al., 2002). Gα12/13 

strongly activates the small GTPase RhoA (Buhl et al., 1995), and it has been 
shown that the loss of basal RhoA activity during the epithelial-mesenchymal 
transition in chick embryos leads to disruption of cell-BM interaction and 
subsequently to the breakdown of BM (Nakaya et al., 2008). Thus, Gα12/13 and 
RhoA might be the links through which RIC8A regulates mouse gastrulation. 

 
 

1.2. Ablation of RIC8A in the neural precursor cells  
of mice causes cortical migration defects and  

is fatal in the embryonic and perinatal stages (Ref. II) 

In order to circumvent the embryonic lethality and to study the developmental 
processes following gastrulation, the cre-lox gene knockout system was utilised 
to create conditional mouse lines. Since in the developing mouse embryo (E9.5–
E14.5) RIC8 is mainly expressed in the nervous system, and in the adult brain, 
RIC8 expression is detected in a number of locations (Tõnissoo et al., 2003) we 
focused our attention on the nervous system. To study the role of RIC8A in 
mouse neurogenesis, we used Nestin promoter-driven Cre-recombinase (Tronche 
et al., 1999) to achieve the deletion of Ric8a in neural precursor cells. We were 
able to first detect Nestin-Cre expression in the neural tube from E9.5 onwards 
(data not shown), which is at the very beginning of neural development, and 
suggests that the deletion of Ric8a probably took place at that stage. Already at 
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E10.5 some of the Nes;Ric8aCKO embryos (about 40%) displayed neural tube 
closure and craniofacial defects and morphologically defective brain vesicles 
(Ref. II Fig. 1B–D). Visual inspection suggested that the rest of the mutants 
(60%) developed in a rather normal manner until birth, after which they died (or 
were killed by their mother) within 12 h. They displayed a strong neuromuscular 
phenotype (Ref. II, Fig. 1J, L), were relatively immobile, but responded to tactile 
stimuli. Upon dissecting the brain, we noticed the enlarged cortical hemispheres 
in the Nes;Ric8aCKO pups (Ref. II, Fig. 1N). This was due to the swelling of the 
ventricles as it was evident that the cortices were actually thinner in mutant 
animals (Ref. II, Fig. 2F, F’). We also observed column-like cell clusters that 
had invaded into the marginal zone in Nes;Ric8aCKO mice (Ref. II, Fig. 2D, F’). 
Such ectopias were first observed at E14.5, the age that is considered to be the 
peak phase of neurogenesis (Kwan et al., 2012). Visualisation of the markers 
for the cortical layers revealed that the ectopias in Nes;Ric8aCKO mutants mostly 
contained cells from the upper layers (II–IV), although the cells from deeper 
layers (V and VI) were also present, especially in bigger heterotopias (Ref. II, 
Fig. 4). Since the neuronal overmigration could be the consequence of the 
discontinuity of pial BM, the coronal sections of embryonic head regions were 
stained with anti-laminin-1 antibody. At E12.5 no apparent defects in the BM of 
Nes;Ric8aCKO embryos could be detected (Ref. II, Fig. 5A–D). However, from 
E14.5 (time of the appearance of first ectopias) onwards the BM was 
discontinuous and scattered between the pial cells (Ref. II, Fig. 5E–P). The pial 
BM is discussed in more detail in Chapter 2 along with the defects seen in BM 
of Ric8a–/– embryos during gastrulation. 

Analogous experiments have been conducted by conditionally ablating Gα12 
and Gα13 in neural precursor cells using the same Nestin cre construct (Tronche 
et al., 1999). Depletion of Gα12/13 results in similar neuronal overmigration as 
does the depletion of RIC8A. In accordance with this, the Gα13 expression in 
Nes;Ric8aCKO brain structures was downregulated (Ref. II, Supplementary fig. 2). 
Interestingly, Moers et. al. observed the first ectopias at E15.5 but did not find 
any at E14.5 (the time of the appearance of ectopias in Nes;Ric8aCKO mice) 
(Moers et al., 2008). In the same study, Cre under NEX promoter (Goebbels et 
al., 2006), which restricts recombination in the principal neurons of the forebrain 
(cortical plate neurons), was used in addition to Nestin Cre. These mice dis-
played similar ectopias, thus strongly suggesting that this defect is brought 
about by the lack of Gα12/13 in neurons and not in glial cells (Moers et al., 2008). 
Authors of this study hypothesised that the deficiency of Gα12/Gα13 makes the 
neurons incapable of receiving stop signals from Gα12/Gα13 coupled receptors.  

One of the candidates for mediating such stop signal is GPR56 since the lack 
of this orphan G protein receptor in neural precursor cells caused similar 
overmigrations (Li et al., 2008). Later it was suggested that collagen III, a ligand 
for GPR56, is the major component of the BM and that the interaction of collagen 
III and GPR56 inhibits neuronal migration by activating the RhoA pathway in a 
Gα12/13-dependent manner (Luo et al., 2011). Since Gα12/13 stimulates RhoA-
dependent actomyosin-based contractility (Buhl et al., 1995) it is highly likely 
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that the loss of this regulatory pathway interferes with the normal regulation of 
cell migration. 

Indeed, when RhoA was ablated in the developing cerebral cortex similar 
overmigrations of neurons were found. In addition, heterotopias developed on 
the apical side creating a subcortical band heterotopia (Cappello et al., 2012). 
The formation of the apical heterotopias was attributed to the lack of RhoA in 
glial cells rather than in neurons, and basal ectopias were considered to be the 
result of a defective neural migration since the targeted mutation of RhoA in 
neurons caused somewhat faster radial migration of these neurons in WT cortex 
(Cappello et al., 2012; Cappello, 2013). Therefore, one could hypothesise that 
the cortical ectopias of Nes;Ric8aCKO mice are caused by the defective Gα12/13 – 
RhoA signalling pathway. 

 
 

1.3. Ablation of RIC8A in differentiated neurons  
of mice results in a neuromuscular defect and  

early postnatal lethality (Ref. III) 

Ric8a haplodeficient (Ric8a+/–) mice subjected to behavioural tests displayed 
impaired spatial memory and increased anxiety but coordination and locomotor 
activity tests showed no significant differences (Tõnissoo et al., 2006). Since 
RIC8A expression in specific regions of the adult brain (like the hippocampus, 
cerebellum, neocortex, etc.) (Tõnissoo et al., 2003) would indicate even more 
severe neurological impairment in its absence we set out to gain more insight 
into the impact of RIC8A on the behaviour and motility of the transgenic mice. 
With the aim of circumventing the embryonic lethality (Ref. I) and severe 
mutations brought about by RIC8A deficiency in neural precursor cells (Ref. II) 
a conditional mouse strain with RIC8A depleted only in postmitotic differentiated 
neurons was generated. To this end, a Synapsin I promoter-driven Cre transgenic 
mouse strain (SynCre) was introduced into the floxed Ric8a (Ric8aF/F) back-
ground. In analogy with Nes;Ric8aCKO mutants, the Syn;Ric8aCKO mice died 
shortly after birth (surviving until the postnatal day 6 (P6)), and the overall 
appearance of these animals was also very similar to Nes;Ric8aCKO mutants. The 
Syn;Ric8aCKO displayed a strong neuromuscular phenotype: they lied on their 
sides, exhibited spontaneous convulsions and spasms, and were generally hypo-
active, thus, our initial goal to perform behavioural experiments could not be 
met. In an attempt to evaluate the neuro-motor performance of Syn;Ric8aCKO 
pups we performed simple handling assays. Tail suspension test revealed that 
the littermates spread their limbs adequately whereas Syn;Ric8aCKO mice 
remained almost completely immobile (Ref. II, Fig. 2B, C). When pups were 
placed on their backs, the littermates turned around but mutant mice were unable 
to right themselves. However “pinching test” revealed that the responses to 
tactile and pain stimuli were not lost in mutant animals. To find a reason for the 
reduced mobility of Syn;Ric8aCKO pups, we first carried out a thorough histo-
logical examination but found no morphological changes in any of the included 
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central nervous system regions (Ref. III, Fig. 3). We did, however, find skeletal 
muscle atrophy (Ref. III, Fig. 2G, H, I) and heart muscle hypoplasia (Ref III, 
Fig. 4B, H), which were probably caused by insufficient signalling from the 
nervous system where RIC8A was absent. Furthermore, we found that sinoatrial 
node, a pacemaker tissue in the right atrium of the heart that is responsible for the 
generation of normal sinus rhythm, was smaller and misplaced in Syn;Ric8aCKO 

mice (Ref. III, Fig. 4D, F). Moreover, electrocardiography (ECG) 
measurements indicated a slower heart rate in mutants (Ref. III, data not 
shown). The aforementioned defects in the heart and the skeletal muscle of 
Syn;Ric8aCKO pups might perhaps be the result of impaired functioning of 
signalling neurons – either deficient transmission in the peripheral nervous 
system, insufficient release of neurotransmitters in the neuromuscular junction, 
the absence of inhibitory signals, or a combined effect of some of these factors.  

Genetic ablation of G-protein α subunits that associate with RIC8A also yields 
abnormalities that resemble the neuromuscular phenotype of Nes;Ric8aCKO and 
Syn;Ric8aCKO mice. For instance, in addition to neural overmigration, the ablation 
of Gα12 and Gα13 in neural precursor cells also resulted in postnatal death between 
P10 and P40, reduced body size, and ataxia (Moers et al., 2008). Interestingly, 
ablation of RhoA in neural precursors caused no effect on the viability or beha-
viour of mice (Cappello et al., 2012). Therefore, the interference with the Gα12/13-
RhoA signalling pathway is probably not the underlying reason for the neuro-
motor defects seen in Nes;Ric8aCKO and Syn;Ric8aCKO mice, and Gα12/13 may 
have functions in the nervous system that are not coupled to RhoA signalling.  

To date, other RIC8A-regulated Gα subunits (Gαq/11, Gαi,o) have not been spe-
cifically knocked out from the nervous system, but since their mutations are not 
lethal at the embryonic stage, the total knockouts do provide some clues. Gαo is 
highly expressed in neurons being one of the most abundant proteins in neurons 
in general (Sternweis and Robishaw, 1984) where it mediates effects of a group of 
rhodopsin-like receptors that include the opioid, α2-adrenergic, M2 muscarinic 
and somatostatin receptors (Cerione et al., 1986; Kleuss et al., 1991). Gαo

–/– mice 
had poor survival with 50% surviving offspring for less than 2 months (Jiang et 
al., 1998). In addition, although the Gαo

–/– mice had impaired motor control they 
were hyperactive and were continuously running in circles (Jiang 1998). Although 
the Gαq/PLC-β proteins are ubiquitously expressed, the Gαq/PLC-β mediated 
signalling pathway has mostly been studied within a context of cardiac function 
and development (LaMorte et al., 1994; Wettschureck et al., 2001). Gαq/Gα11 
double knockout animals died at E11.5 whereas mutants with single active allele 
survived until birth and then died within a couple of hours (Offermanns et al., 
1998). As expected, they displayed numerous cardiac malformations, however, 
they also were runty and anoxic, were poorly responsive to tactile stimuli but did 
not have any obvious brain defects (Offermanns et al., 1998). Mice lacking only 
Gαq were viable but suffered from ataxia and motor discoordination (Offermanns 
et al., 1997). All of the Gα subunits described above seem to regulate neural 
functions and therefore may contribute to the neuromuscular phenotype and early 
lethality seen in Nes;Ric8aCKO and Syn;Ric8aCKO pups.  



26 

2. Basement membrane defects  
in Ric8A mutant mice (Ref. I, Ref. II) 

Over the past few years, there has been a surge of new evidence linking RIC8A 
to cell adhesion and migration processes (see Review of literature, Chapter 3.2). 
Both gastrulation and neurogenesis are major events during embryonic develop-
ment that involve active cell migration and depend on the proper association of 
cells with the ECM. Therefore, I decided to re-analyse the BM defects of both 
the Ric8a–/– gastrula and Nes;Ric8aCKO cortex looking for similar tendencies in 
order to provide clues for the role of RIC8A in maintaining BM integrity. 

In Ric8a–/– embryo we visualised laminin-1 at E7.5, the stage where there are 
three membranes enclosing the forming embryo. The innermost one is between 
the embryo and primitive streak derivatives, mesoderm, and definitive endo-
derm, the latter two being separated from the visceral endoderm also by a BM. 
The outermost membrane is the Reichert’s membrane. Laminin-1 was abundantly 
expressed in Reichert’s membrane (RM) both in the wild-type and Ric8a–/– 

mutant embryos at E7.5 (Ref. I, arrows in Fig. 5A–D). The recently performed 
3D image analyses confirmed that the Reichert’s membrane is intact in Ric8a–/– 
embryos (data not shown). However, the laminin-1 localisation encircling the 
Ric8a–/– embryos was discontinuous and disorganised and in some places even 
absent (Ref. I, Fig. 5B–D). In the region of the primitive streak, the BM was 
also fragmentary in normal embryos (Ref. I, Fig. 5A) due to detachment of the 
primitive streak cells from the BM during the EMT. In Ric8a–/– embryos the 
primitive streak was defined by the expression of its markers (Ref. I, Fig. 6I, J), 
therefore the fragmentary BM did not interfere with its positioning. The first 
step of EMT in gastrulation is the breakdown of the BM in the location of the 
primitive streak, which is controlled by the loss of basally localised RhoA 
activity (Nakaya et al., 2008). Interestingly, in Ric8a–/– mES cells reduced 
RhoA activity has been detected (Gabay et al., 2011). If the RhoA activation 
was impaired in Ric8a–/– embryos, that could be the reason for the breakdown of 
the BM in regions outside the primitive streak. It has been shown that when 
epithelial cells lose their connection with the BM, apoptosis is induced (Frisch 
and Francis, 1994) and a substantial amount of cells undergo apoptosis in 
Ric8a–/– embryos (Ref. I, Fig. 5F). Whether the apoptotic cells align with the 
breaches in the BM is not clear yet, since we did not examine the co-localisation 
of laminin-1 and apoptosis marker Caspase-3.  

Defective BM may also be the underlying cause for the neuronal over-
migration detected in forebrains of mice with RIC8A lacking in neural pro-
genitors. In analogy with the BM defects in Ric8a–/– embryos, we found the 
discontinuous laminin-1 structures in Nes;Ric8aCKO cortices starting from E14.5, 
when laminin-1 staining in RIC8A-deficient embryos was fragmentary, had 
large gaps and displayed aberrant positioning (Ref. II; Fig. 4H, white arrows). 
At P0, furthest that the mutants were able to develop, laminin-1-positive 
fragments were only detectable in BM above subarachnoid space but the pial 
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BM was mostly undetectable (Ref. II; Fig. 4J and 4N). The laminin-1 positive 
fragments were also found scattered between the cells, especially in the regions 
where the extent of ectopias was considerable (Fig. 4L and 4P). In conclusion, 
our results suggest that the lack of RIC8 in neural precursors influences the 
deposition of the BM component laminin-1 and the integrity of the BM. 

Considering that the pial BM was assembled at the early stage of cortical 
development, and that it finally broke in the absence of RIC8A, it is possible 
that the BM cannot sustain the tension generated by the overmigrating neurons. 
Interestingly, when Gα12 and Gα13 were specifically ablated in neural precursor 
cells no BM defect was found at the age when neuronal overmigrations were 
first detected (E15.5). However when the ectopias were more prominent (E16.5) 
the fragmentation of the laminin structures was also observed in Gα12/13 mutant 
mice. From these results, the authors concluded that appearance of ectopias 
precedes the defects in the BM (Moers et al., 2008). Another study focusing on 
a Gα12/13 coupled receptor GPR56 revealed that the loss of mouse Gpr56 gene 
leads to neuronal ectopias in the cerebral cortex, and that the leading causal 
events are most likely the breaches in the pial BM, which in turn are associated 
with abnormal anchorage of radial glial endfeet (Li et al., 2008). Our results 
also indicate that the breaches in the BM enable the overmigration and not vice 
versa. Since the BM is discontinuous in regions where no overmigrations can be 
detected in Nes;Ric8aCKO forebrains (Ref. II, Fig. 5H and N), it is highly likely 
that the formation of the BM breaks precedes the ectopias and therefore is the 
cause and not the end result of the overmigration of neurons. 
Although the gastrulation and neurogenesis are two completely different 
processes in development, we did observe some common characteristic BM 
defects in RIC8A deficient mutant mice. (1) In the absence of RIC8A laminin-1 
is synthesised and secreted since the BM forms in both Ric8a–/– mice and 
Nes;Ric8aCKO brains. In Nes;Ric8aCKO mouse cortices it also seems to be 
correctly incorporated into the BM at first, since at E12.5 no brakes in the BM 
could be detected. In Ric8a–/– embryos, however, it is difficult to distinguish 
whether the BM is assembled correctly, because the laminin-1 defects are of 
varying severity, and we did not stain embryos for laminin-1 at early BM 
forming age (E5.5). However, the Ric8a–/– embryos were able to go through 
cavitation, a highly BM-dependent process (Murray and Edgar, 2000), undis-
turbed. In addition, in some regions of the Ric8a–/– embryo, the BM was intact 
and the Reichert’s membrane was unaffected in all cases, which indicates that 
there is definitely a possibility for the correct BM assembly under RIC8A defi-
cient conditions. (2) At E7.5 there are obvious breaks in the BM (Fig. 3, white 
arrows) and the laminin-1 localisation is severely disorganised in Ric8a–/– 
embryos. Also, in Nes;Ric8aCKO E14.5 embryos and P0 pups the BM is similarly 
discontinuous and disorganised (Fig. 3F). At P0, the pial BM that is observable 
in the littermates (Fig. 3G) had completely disappeared in Nes;Ric8aCKO mice 
and only laminin-1-positive fragments remained scattered between the cells (Fig. 
3H). (3) Interestingly, in both transgenic models of RIC8A deficiency, laminin-1 
localised in areas in between and around the cells (yellow arrowheads) instead 
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of forming a continuous layer. Although this was most prominent in the pial 
BM of the Nes;Ric8aCKO E14.5 cortices and in the visceral endoderm BM of the 
Ric8–/– embryos, it was noticeable in other regions as well. Cells surrounded by 
laminin-1 in an analogous manner were also present in the primitive streak 
region of the WT E7.5 embryo (Fig. 3C). Cells in the primitive streak region 
lose polarity, which induces the breakdown of the BM (Nakaya et al., 2008). 
Thus, aberrant laminin localisation accompanying the RIC8A deficiency also 
implies a defect in the epithelial tissue polarity associated with the 
malfunctioning of the RhoA pathway (Cappello et al., 2012; Daley et al., 2012). 

 

 
Figure 3. Laminin-1 localisation in E7.5 gastrula and in E14.5 and P0 cortices. (A) 
Laminin-1 staining showing an intact BM in wt embryo and (B) various BM defects in 
Ric8a–/– embryos. (C) Discontinuous laminin-1 staining at the site of the primitive 
streak and (D) highly aberrant laminin staining outside of the primitive streak region. 
(E) The correctly aligned laminin-1 in the meninges of E14.5 littermate controls and (F) 
discontinuous laminin deposited between the cells in the meninges of Nes;Ric8aCKO 
mice from the same age. (G) Aligned laminin-1 of the P0 littermate cortex visualising 
the pial BM (lower) and the BM above the subarachnoidal space. (H) The highly 
discontinuous BM above the subarachnoidal space and the barely visible pial BM of the 
P0 Nes;Ric8aCKO forebrains. Black arrowheads – intact laminin 1 staining, yellow 
arrowheads – the misaligned laminin 1 staining, white arrow – the breaks in the laminin 
1 expression. Red – Laminin I, yellow – overexposed Laminin I blue – DAPI. 
Abbreviations: MZ – marginal zone, PS – primitive streak, SAS – subarachnoidal space. 
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3. The role of RIC8A in the regulation of actin 
cytoskeleton and cell-matrix adhesion  

in mES and MEF cells (Ref. IV) 
In order to expand on the results obtained in vivo, primary mouse embryonic 
stem cells (mES) and mouse embryonic fibroblasts (MEF) were utilised to study 
the role of RIC8A on a cellular level. Previously we tried to derive neural stem 
cells from Ric8a–/– mES cells. Indeed, the Ric8a–/– mES cells were able to 
differentiate as verified by the expression of neural stem cell markers (data not 
shown). However, during the feeder-free culturing of mES cells that is neces-
sary for the differentiation process, we noticed that while the control cells formed 
a monolayer on the gelatine-coated plastic most of the Ric8a–/– cells grew in 
round multilayer colonies (Ref. VI, Fig. 1G). This sparked our interest since 
Ric8–/– colonies showed no apparent morphological defects when cultured on 
feeders indicating that the absence of RIC8A somehow might influence the cell-
matrix adhesion. We visualised the actin cytoskeleton of the cells on gelatine 
with phalloidin and saw that while cells at the edges of the wt colonies spread 
out and formed polymerised actin bundles called stress fibres, no such struc-
tures could be found in Ric8a–/– cells (Ref. VI, Fig. 2B, F). In order to further 
expand our studies on the role of RIC8A in cell-matrix adhesion-dependent 
cellular events we established RIC8A-deficient primary MEF cells and used 
them in cellular and biochemical experiments. Similarly to the Ric8a–/– mES 
cells, no polymerised actin structures formed in MEFs except at the cortical 
regions of the adherent cells (Ref. IV, Fig. 2D). Outside stimulus in the form of 
PDGF did not induce actin cytoskeleton remodelling in Ric8a–/– mES cells (Ref. 
IV, Fig. 2J) or in RIC8A deficient MEFs (Ref. IV, data not shown). It is, 
therefore, evident that RIC8A is required for the correct organisation of the 
actin cytoskeleton in both mES and MEFs. The reduction of polymerised actin 
level in Ric8a–/– mES cells has been quantified in an earlier study showing a 
70% drop in F-actin levels (Gabay et al., 2011). To gain further insight into the 
role of RIC8A in the adhesion-related events we analysed the formation and 
presence of focal adhesion complexes and the localisation of integrin β1 upon 
cell adhesion to ECM components. Our results showed that in the absence of 
RIC8A focal adhesion complexes did not form and the cell surface integrin β1 
was distributed randomly in the plasma membrane (Reg. IV, Fig. 3 B, D), 
whereas in the RIC8A-expressing cells under same conditions it had 
accumulated into aggregates (Ref. IV, Fig. 3A, C). In accordance with our 
results, the reduction of focal adhesion complexes in RIC8A-deficient 
conditions was also detected in X. laevis neural crest cells (Fuentealba et al., 
2013).  

Aforementioned results suggest that the lack of RIC8A severely impairs the 
general adhesion-induced cellular processes. However, we did not find 
significant differences in the adhesion rates of RIC8A-deficient cells on any 
tested substrates (Ref. IV, Fig. 4A, B). Thus, the substrate recognition of RIC8A-
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deficient cells under our experimental conditions was not defective. However, 
previously it has been shown that the downregulation of RIC8A in X. laevis 
resulted in reduced adhesion of neural crest cells to fibronectin (Fuentealba et 
al., 2013), and upon its depletion from mouse neural progenitor cells reduced 
adhesion to laminin was observed (Ma et al., 2012). Therefore, it seems that in 
addition to changes in the adhesive properties, the deficiency of RIC8A can also 
impair the association of cells with the substrate under certain experimental 
conditions. In order to analyse whether the observed defects in the organisation 
of actin cytoskeleton and the formation of focal adhesions affect cell migration, 
we used a modified Boyden chamber assay in which the lower side of the 
polycarbonate membrane was coated with an integrin ligand and serum-starved 
cells were seeded to the upper compartment. To assess haptotaxis, the lower 
compartment of the chamber contained serum-free media so that cell migration 
was driven exclusively by the substrate. Under these conditions the migration of 
Ric8a–/– mES cells was reduced on laminin 521 but not on collagen IV or fibro-
nectin (Ref. IV, Fig. 4C). Likewise, the migration of RIC8A-deficient MEFs 
was unaffected on fibronectin, however, compared to the RIC8A-expressing 
cells it was reduced on collagen I (Ref. IV, Fig. 4D). In addition, we tested the 
chemotactic response of these cells to stimulation with foetal bovine serum 
(FBS). Surprisingly, we found that the migration of RIC8A-deficient cells was 
enhanced on type IV and type I collagen, and on laminin 521 compared to 
control cells but, similarly to the haptotaxis experiments, not on fibronectin. 
These results indicate that RIC8A has a role in the regulation of cell migration, 
which is dependent on the ECM substrate. Laminins, collagens, and fibronectin 
all bind different sets of integrins, and this might be the underlying reason for 
the observed differences. Integrin heterodimers that bind to laminin and 
collagen belong to the β1 integrin subfamily, fibronectin, on the other hand, 
mostly binds receptors belonging to RGD-binding integrins that differ from 
those interacting with laminins and collagens (Humphries et al., 2006). 
Interestingly, the downregulation of RIC8A in MEFs has been shown to reduce 
the receptor tyrosine kinase (RTK) mediated cell migration on fibronectin in 
response to PDGF (Wang et al., 2011). We repeated the experiment in our ex-
perimental set-up and saw a similar tendency but this did not reach a statistical 
significance. However, in addition to fibronectin, we assayed the PDGF-
induced migration on collagen I and found that it was also reduced in RIC8A 
deficient conditions (Ref. IV, data not shown). These results suggest that 
RIC8A might have an additional, RTK-dependent and substrate-independent 
role in the regulation of cell migration. 

Considering the lack of detailed information about the possible connection 
between RIC8A and integrins, we chose to study the putative role of RIC8A in 
the regulation of β1 integrin function. We found that activation of integrin β1 
upon the binding of MEFs to type I collagen was decreased in the absence of 
RIC8A, and the activating phosphorylation of AKT downstream of integrins 
was also decreased, which correlates with the reduction of integrin activity (Ref. 
IV, Fig. 5). This indicates that RIC8A is required for the regulation of integrin 
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adhesive and signalling functions in MEFs. Gα13, one of the target proteins of 
RIC8A, has been shown to interact with integrins. Namely, it has been shown to 
bind to the cytoplasmic domains of the platelet integrin β3 subunit (Gong et al., 
2010), and the β1 integrin subunit (Shen et al., 2015). These type of interactions 
were suggested to lead to the transient inactivation of RhoA and the concomitant 
activation of Src required for the initial cell spreading and migration (Gong et 
al., 2010; Shen et al., 2015). Therefore, it seems that Gα13 plays a dual role in 
the regulation of RhoA by both stimulating it through GPCR-activated path-
ways and inhibiting it via integrin outside-in signalling (Shen et al., 2015). The 
RhoA activity assay using our experimental setup produced similar initial results: 
RIC8A deficiency leads to the downregulation of Gα13 (Ref. IV, Fig. 1F), the 
reduction of RhoA activity, and it precludes the transient inhibition of RhoA 
activity upon integrin β1 stimulation (Ref. IV, data not shown). 

 
 

4. Impaired cell-matrix adhesion as one of the 
underlying causes for phenotypic defects seen  

in Ric8a-deficient mice (Ref. I, Ref. II, Ref. IV) 
Focal adhesion complexes did not form in RIC8A-deficient cells. Therefore 
analysing the expression of the different focal adhesion components in Ric8a–/– 
knockout mice could provide insights into the observed developmental defects. 
Talin is one of the cytoplasmic proteins that links cell adhesion molecules to the 
actin cytoskeleton (Jockusch et al., 1995; Priddle et al., 1998), and is 
responsible for integrin activation (Tadokoro et al., 2003). In analogy with 
Ric8a–/– mES cells, the talin–/– mES cells also lacked stress fibres, focal adhesions, 
and the colonies displayed a round morphology on gelatine (Monkley et al., 
2000). Developmental defects of talin–/– embryos were very similar to Ric8–/– 
embryos and the lack of talin resulted in severe disorganisation of embryos at 
gastrulation and death around E8.5–9.5. Similarly, the talin–/– embryos were 
smaller in size, and though the mesoderm and extraembryonic tissues had 
formed, they were completely disorganised referring to defective cell migration 
during gastrulation (Monkley et al., 2000). Interestingly, in the absence of 
vinculin, a binding partner of talin, mES cells were still able to form stress 
fibres and talin-containing focal adhesion complexes on fibronectin but formed 
similar round colonies on gelatine as the talin–/– (Priddle et al., 1998) and Ric8a–/– 
mES cells. The embryos lacking another major protein of actin cytoskeleton 
formation, vinculin, had a somewhat milder phenotype. The vinculin–/– embryos 
started lagging behind in size at E8.5 and survived until E10.5 with the most 
prominent defects in organogenesis being the defective neural tube closure and 
an underdeveloped heart (Xu and Baribault, 1998). Interestingly, vinculin–/– 
MEFs, similarly to the RIC8A-deficient MEFs, migrated at about twice the rate 
of WT cells towards fibronectin in response to stimulation with FBS (Xu et al., 
1998). Paxillin deficient embryos also died around E9.5 although the malforma-
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tions were again not as severe as in Ric8a–/– and talin–/– embryos: paxillin–/– 
embryos were smaller from E8.5 onward having no obvious heart structure and 
displaying an abnormal headfold (Hagel et al., 2002). The absence of focal 
adhesion kinase (FAK) also leads to a rather similar phenotype: FAK–/– embryos 
die at around E8.5–E9.0 and the malformations that are obvious at E8.5 
manifest as deficits in the development of mesenchymal derivatives including 
the absence of somites, a rudimentary non-beating heart or no heart at all, and 
the lack of functional blood vessels (Ilic et al., 2003). Mice with a null mutation 
in Tensin, another component of focal adhesion complexes, were viable (Lo et 
al., 1997). Nevertheless, these null mutations of focal adhesion proteins further 
confirm that the defects seen in Ric8a–/– embryos are related to the impaired 
cell-matrix adhesion. Importantly, the strongest similarity to Ric8a–/– embryos 
was that of the embryos lacking talin, a protein directly interacting with and 
mediating the activation of integrins (Tadokoro et al., 2003). 

RIC8A deficiency led to defects in cell migration on integrin substrates, 
flawed clustering of activated β1 integrins on the plasma membrane and the 
reduced activation of cell-surface β1 integrins. Therefore, it is highly likely that 
the ablation of RIC8A in vivo would result in some form of a deficit in integrin 
regulation. Integrin family contains an array of α and β subunits that are 
expressed in a tissue-specific manner. β1 integrin is ubiquitously expressed and 
its knockout mice die already before gastrulation (Fässler and Meyer, 1995; 
Stephens et al., 1995). This is probably due to a complete absence of BM in β1-
null embryos (Aumailley et al., 2000) since the laminin γ1-deficient embryos 
also lack BM and die in the same peri-implantation stage (Smyth et al., 1999). 
The presence of β1 integrin thus appears to be crucial for the formation of the 
BM. Although the absence of β1 integrin results in a more severe embryonic 
phenotype than that of RIC8A, it is possible that the BM defect in Ric8–/– 
embryos may be a result of interfered regulation of integrin recruitment and 
activation. Laminin-binding α3 and α6 integrins have been shown to have a 
function in the brain tissue and their ablation results in rather similar defects in 
the brain as those found in the brains of Nes;Ric8aCKO mice. α3–/– mice display a 
defect in neuronal migration and a disorganized layering of the cerebral cortex 
suggesting that this integrin is involved in the radial migration of neuronal cells 
(Anton et al., 1999). α6–/– mice also have abnormalities in the laminar organiza-
tion of the developing cerebral cortex, in addition, they display ectopic clusters 
of overmigrated neurons and an abnormal laminin deposition (Georges-
Labouesse et al., 1998). Therefore, the misregulation of α6 integrin may be one 
of the reasons for the cortical ectopias seen in Nes;Ric8aCKO mice.  

Our results on the downregulation of Gα13 levels and reduced activation of 
RhoA observed in RIC8A-deficient cells confirmed those obtained earlier (Gabay 
et al., 2011). The in vivo impact of the downregulation of both Gα13 and RhoA 
have been already discussed in chapters 1.2 and 1.3. RIC8A may be involved in 
the regulation of many cellular processes, and its absence in mouse results in 
developmental defects seen during gastrulation and neurogenesis: insufficient 
recognition of migratory clues mediated by Gα12/13 coupled receptors; impaired 
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RhoA-mediated actomyosin contractility; failure in the formation of RhoA-
dependent epithelial tissue polarity and the consequent defective deposition of 
the BM; and faulty interaction of cells with extracellular substrates. More studies 
are needed to unravel the exact processes RIC8A is involved in on a molecular 
level. However, based on the published research and on our own studies it can 
be concluded that the regulation of cell-BM contact appears to include a similar 
general mechanism during gastrulation and neurogenesis, both of which 
comprise major events in cell migration during development. In addition, 
integrins, RhoA, Gα12/13 and RIC8A all seem to be the key components involved 
in a pathway mediating the cell-ECM contact and the proper organisation of actin 
cytoskeleton in these processes.  
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CONCLUSIONS 

The main objective of the research presented in this dissertation was to elucidate 
the role of RIC8A in the mouse development by utilising Ric8a knockout mice 
and to substantiate the in vivo findings with assays in cell culture using RIC8A 
deficient primary mouse cells. 
The main results of this thesis can be summarised as follows: 
1. Homozygous deletion of Ric8a results in an impaired gastrulation process 

and embryonic lethality at E6.5–E8.5. The Ric8a–/– epiblast differentiated into 
cells expressing mesoderm and ectoderm markers, but the localisation of 
relevant cells was disorganised because of flawed morphogenetic movements 
during gastrulation.  

2. The deletion of Ric8a in neural precursor cells leads to a cortical over-
migration defect. Starting from E14.5 the column-like cell clusters that had 
invaded into the marginal zone could be observed in the developing cortices 
in RIC8A deficient mice. 

3. The expression of RIC8A is necessary for the integrity of the basement 
membrane (BM). The aforementioned migration defects were accompanied 
by a defective BM. The BM marker laminin-1 was synthesised and secreted, 
but its expression was discontinuous and disorganised.  

4. The deletion of Ric8a form differentiated neurons leads to early postnatal 
death (P6) of mutant mice and causes a severe neuromuscular defect charac-
terised by reduced movement, skeletal muscle atrophy, heart defects, and 
deceleration of the heart rate. Lack of RIC8A in neural precursor cells results 
in neonatal death (P0) and a similar phenotype. 

5. RIC8A deficient cells were unable to form focal adhesion complexes and to 
organise actin into stress fibres. In addition, the activation of β1 integrin, its 
downstream signalling, and integrin β1 dependent cell migration were 
impaired in RIC8A deficient cells.  

 
Investigation of the function of RIC8A on the level of cells and an organism was 
partly motivated by the necessity to test the relevance of its biochemical pro-
perties described in in vitro assays. Our results support the proposed function 
for RIC8A as a chaperone for Gα subunits since Gα13 levels were down-
regulated under RIC8A-deficient conditions, both in vivo and in the primary 
cells. Moreover, β1 integrins, RhoA, Gα13, and RIC8A are most likely involved in 
a signalling pathway or pathways that mediate the contact between the cell and 
the extracellular matrix and the proper organisation of the actin cytoskeleton. 
Therefore, the migration and BM defects seen in RIC8A deficient mouse models 
might be caused by defective RhoA and/or integrin β1 activation. The neuro-
muscular defects seen in the nervous system-specific Ric8a–/– mutants are 
probably induced by the downregulation of various Gα proteins and subsequent 
signalling defects in the peripheral nervous system. 
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SUMMARY IN ESTONIAN 

RIC8A roll hiire arengus ja funktsioon rakk-maatriks  
adhesioonis ning aktiini tsütoskeleti organiseerimises 

Hulkrakse organismi normaalse elutegevuse tagamiseks on oluline, et rakud 
saaksid omavahel vahetada infot kas otsese või kaudse kommunikatsiooni vahen-
dusel. Transmembraansed G-valk-seoselised retseptorid (GPCR-d) ja nendega 
interakteeruvad G valgud (guaniin-nukleotiidi siduvad valgud) on üks levinumaid 
väliskeskkonnast saadava info kanaleid läbi mille reguleeritakse mitmeid aren-
gulisi, füsioloogilisi ja käitumuslikke protsesse. G valgud on heterotrimeersed 
valgud, mis koosnevad kolmest erinevast subühikust (α, β, γ) ning moodustavad 
GPCR-iga plasmamembraani siseküljel kompleksi. GPCR-d võtavad vastu infot 
mitmetelt signaalmolekulidelt nagu näiteks hormoonid, neurotransmitterid ja 
kasvufaktorid aktiveerides seeläbi G valgud, mis omakorda käivitavad raku-
sisese signaalikaskaadi. Sellisel viisil kutsutakse rakkudes esile vastus, milleks 
võib olla näiteks migratsioon, jagunemine, või aktsioonipotentsiaali tekkimine. 
RIC8 on nende signaalikaskaadide asendamatu komponent. Täpsemalt on RIC8-l 
kirjeldatud kahte peamist funktsiooni: heterotrimeerse G valgu α subühiku 
aktiivsuse reguleerimine (nukleotiidivahetusfaktori roll) ning Gα korrektse 
koguse ja membraanse asetuse tagamine rakus (chaperon’i roll). Selgroogsetes 
on kaks RIC8 homoloogi, RIC8A ja RIC8B, mis on funktsioonilt sarnased, kuid 
erinevad mõningal määral selles, milliste Gα subühikutega nad seonduvad. (Tall 
et al., 2003, Chan et al., 2011, Gabay et al., 2011). 

Käesoleva töö esimene eesmärk oli uurida RIC8A-puudulike hiirte arengut 
selgitamaks selle valgu rolli hiire organismis. Leidsime, et RIC8A-puudulikud 
hiired surevad gastrulatsiooni faasis (E6.5–8.5) ning seega seadsime sihi ana-
lüüsida Ric8a–/– embrüotel esinevaid morfoloogilisi häireid. Selle käigus avas-
tasime, et RIC8A puudulikud embrüod on võimelised gastrulatsiooni alustama, 
sest neil moodustub ürgjutt, millest epiblasti rakud ka läbi migreeruvad. Samuti 
olid epiblasti rakud võimelised diferentseeruma, kuna nad ekspresseerisid meso-
dermi ja ektodermi markereid. Siiski ei suutnud Ric8a–/– looted gastrulatsiooni 
läbida, sest mesoderm ei organiseerunud korrektselt ning olulised mesoder-
maalsed struktuurid olid kas defektsed või ei moodustunud üldse. Seega on 
RIC8A-puudulike hiirte arengu peatumine gatrulatsioonis tõenäoliselt tingitud 
häiretest morfogeneetilistes liikumistes. 

Doktoritöö teine eesmärk oli ajendatud varasematest tulemustest, mis näitasid, 
et hiire lootes (E9.5–E12.5) on RIC8A peamiselt ekspresseeritud arenevas närvi-
süsteemis (Tõnissoo et al., 2003). Ka täiskasvanud hiire ajus on RIC8A ekspres-
seeritud kindlates piirkondades nagu hipokampus ja eesaju koor (Tõnissoo et al., 
2003). Lisaks selgus Ric8a heterosügootsete hiirtega tehtud käitumiskatsetest, et 
geeni puudumine ühelt alleelilt põhjustab suurenenud ärevust ning ruumilise 
mälu halvenemist (Tõnissoo et al., 2006). Nendele tulemustele tuginedes võib 
oletada, et RIC8A mängib närvisüsteemi arengus ja toimimises olulist rolli, 
mille uurimiseks kasutasime edasises töös kahte erinevat RIC8A puudulikku 
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hiireliini. RIC8A rolli kirjeldamiseks närvisüsteemi arengus lõigati geen välja 
neuraalsetes eellasrakkudes. Need hiired sündisid, kuid surid päeva jooksul 
pärast sündi. Teise mutantse hiireliini tekitasime selleks, et täpsemalt uurida 
Ric8a+/– hiirtel ilmnenud häireid käitumises. Selleks lõime hiireliini kus Ric8a 
oli inaktiveeritud diferentseerunud neuronites. Ka need mutantsed hiired surid 
mõni päev pärast sündi ning seega ei saanud käitumiskatseid teostada. Mõlema 
närvisüsteemi-spetsiifilise mutandi puhul tekkis RIC8A puudusel tugev neuro-
muskulaarne fenotüüp, mida iseloomustas liikumisvõime puudumine, tõmb-
lused ning treemor. Hiirtes, kus RIC8A oli puudu diferentseerunud neuronites, 
kujunes välja skeleti- ja südamelihaste atroofia kuid aju morfoloogias kõrvale-
kaldeid ei leitud. Neuraalsete eellasrakkude-spetsiifilises Ric8a mutandis oli 
ajukoor õhem ning kohati olid närvirakud migreerunud oma loomulikust ana-
toomilisest lookusest välja marginaaltsooni moodustades nn kortikaalsed 
ektoopiad. 

Seega oli RIC8A puudusel rakkude migratsioon häiritud nii gastrulatsiooni 
kui neurogeneesi käigus. Basaalmembraani (BM) ühe peamise komponendi 
laminiin-1 ekspressioon näitas, et BM oli nii Ric8a–/– hiires kui RIC8A-puudu-
likus ajukoores katkendlik ning paiknes kaootiliselt rakkude ümber, mitte ühe 
kihina epiteelrakkude basaalsel poolel. Ülaltoodust võib järeldada, et RIC8A 
puudusel tekkivad migratsioonidefektid võivad olla põhjustatud häiretest raku ja 
ekstratsellulaarse maatriksi (ECM) vahelistes interaktsioonides. Sellest lähtuvalt 
püstitus käesoleva töö kolmas eesmark – uurida RIC8A rolli rakk-ECM-i 
adhesioonis kasutades hiire RIC8A-puudulikke primaarseid rakke. RIC8A puu-
dusel ei koondunud rakupinna β1 integriinid klastritesse ning samuti ei moodus-
tunud rakk-maatriks adhesioonil tekkivaid olulisi struktuure nagu fokaalse 
adhesiooni kompleksid ning aktiini stressi fiibrid. Lisaks oli RIC8A puudusel 
häiritud rakupinna β1 integriinide aktiveerumine ning sellest sõltuva signaali-
raja aktiveerumine rakus. 

RIC8A funktsiooni uurimine rakkudes ja hiire organismis on osaliselt moti-
veeritud vajadusest testida selle valgu in vitro tingimustes kirjeldatud bio-
keemiliste omaduste paikapidavust. Leidsime, et RIC8A puudusel on Gα13 tase 
alla reguleeritud nii hiire koes in vivo kui primaarsetes rakkudes, mis kinnitab 
RIC8A rolli Gα subühiku korrektse hulga tagamises (chaperon’ina). Käesoleva 
doktoritöö tulemused koos eelnevalt avaldatud materjaliga viitavad sellele, et β1 
integriinid, RhoA, Gα13 ja RIC8A on omavahel seotud signaalirajas (või radades), 
mis reguleerivad raku adhesiooni ECM-ile ning sellest sõltuvat aktiini tsüto-
skeleti organiseerumist. Seega Ric8a mutantidel esinenud kõrvalekalded raku-
migratsioonis ja BM terviklikkuses võivad olla tingitud RhoA ja β1 integriinide 
häiritud aktivatsioonist. Neuromuskulaarsed defektid, mis esinesid närvisüsteemi-
spetsiifilisel Ric8a mutantidel, on tõenäoliselt põhjustatud ühe või mitme Gα 
subühiku taseme alla reguleerimisest ja sellest tingitud puudulikust signaali-
ülekandest perifeerses närvisüsteemis. 
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