
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Tõnis Ojandu

Partitioning Enterprise Systems on

Docker Platform

Bachelor's Thesis (6 ECTS)

Supervisor: Satish Narayana Srirama, PhD

Tartu 2016

Ärisüsteemide partitsioneerimine Docker platvormil

Lühikokkuvõte: Ärisüsteemid on keerulised arvutisüsteemid, mis loovad väärtust
nende omanikele. Reegilina süsteemide väärtused koos oma olemustega erinevad
üksteisest, kuid süsteemid ise on ehitatud geneerilisematest komponentidest, mis
on kokku seotud tegelikku väärtust lisava äriloogikaga. Antud süsteemid võivad olla
paigutatud suurtesse riistvaraklastritesse. Sellest tulenevalt võib selliste süsteemide
loomine ja haldamine nõuda märgatavalt vaeva.

Käesolev lõputöö uurib Dockerit, mis on tarkvara konteinerite platvorm. Seda
kasutedes on püütud standardiseerida ning automatiseerida tehisliku ärisüsteemi
juurtamist. Ühtlasi fokuseerib antud uurimistöö ärisusteemide partitsioneerimise
automatiseerimisele mitmele riistvara sõlmele. Selle saavutamiseks testitakse ME-
TIS graa� partitsioneerimise teekide ja tööriistadega.

Võtmesõnad: Docker, Docker Swarm, Ärisüsteemid, Graa� partitsioneerimine,
METIS, Riistvaraklaster

CERCS: T120 Süsteemitehnoloogia, arvutitehnoloogia

Partitioning Enterprise Systems on Docker Platform

Abstract: Enterprise systems are complex computer systems that create business
value to their owners. This value and the nature of these systems varies but usually
they are built from many more general software components that are tied together
with custom and value-adding business logic. These systems can expand extensive
hardware clusters. All this means that they often require noticeable e�ort to
develop and manage.

This thesis makes a study of a software container platform named Docker by
standardizing and automating the deployment of a mock enterprise system. Also
this study focuses on automating the partitioning of these enterprise system into
multiple hardware nodes. It aims to achieve this using METIS graph partitioning
toolset.

Keywords: Docker, Docker Swarm, Enterprise Systems, Graph partitioning,
METIS, Hardware Clusters

CERCS: T120 Systems engineering, computer technology

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Related Works . 5

2 Docker 6
2.1 Docker Image . 6
2.2 Docker clustering and scaling . 9

2.2.1 Docker Swarm . 9
2.2.2 Docker Machine . 10
2.2.3 Docker Weave . 10

3 Enterprise System 11
3.1 RabbitMQ . 12
3.2 MongoDB . 12
3.3 PostgreSQL . 12
3.4 Elasticsearch . 12
3.5 Logstash . 12
3.6 Kibana . 12
3.7 Stream Generator . 13
3.8 RESTful Service . 13
3.9 Middleware . 13
3.10 Nginx . 13

4 Final Implementation 14
4.1 Enterprise System Deployment . 14
4.2 Resource Usage Measurement . 15
4.3 Partitioning . 17

5 Approach 18
5.1 Process . 18
5.2 Results . 19

5.2.1 Scaling . 21

6 Conclusion 26
6.1 Future Directions . 26

3

1 Introduction

1.1 Motivation

Enterprise systems are large complex computer systems that are usually tasked
with data storing, processing and presentation among other things. Essentially
they are custom-built systems that provide business value to the organizations
managing them. Although the systems themselves and their purposes vary, com-
ponents that they are built of themselves are more universal. For example often
enough these systems contain some sort of database technology, a web server, in-
tegrate or provide an integration capabilities via some sort of web services, all
of which are tied together with more or less custom-built business logic that is
constructed using more general software development technologies.

Often these systems are demanding resource-wise because they are built to
serve many users and/or external systems simultaneously. Also these systems
might have to scale when the resources allocated to them can no longer accom-
modate them. Therefore it is natural to assume that these systems usually span
multiple or have a need to span additional hardware nodes. Splitting a system re-
quires decisions to be made concerning partitioning of the individual components.
When partitioning a system there can be many constraints hardware-wise. For ex-
ample a component may require a faster hard disk or direct access to some unique
hardware component. There can also be restrictions speci�ed by the requirements
for high-availability and redundancy. Also partitioning a system will create added
communication overheads between the components when these components end up
in di�erent hardware nodes. Therefore it will make sense to deploy components
that have a higher communication requirements close to each other. In addition
deploying components that demand the most processing power together can cause
signi�cant loss in performance. This work does not de�ne any speci�c constraints
and requirements for the partitioning and entirely focuses on the communication
overheads and allocation of processing power.

As mentioned enterprise systems, though usually unique themselves, are build
of more general components. This does not although mean that there are that less
challenges when deploying such systems. Usually these general components them-
selves are customizable and/or environment-sensitive enough to invoke necessity
for additional con�guring. Therefore deploying such systems can be demanding
when it comes to counting the man-hours required for each install. This e�ort
quickly replicates, since in addition to the actual production environment there is
often a staging environment, testing environment and some sort of a development
or continuous integration environment, It is also possible that this one type of
system can be deployed for other organizations. To combat this there is a need for
some sort of automation which can be achieved by using some packaging technolo-

4

gies, elaborate scripts etc. Docker is such a technology that seeks to standardize
software deployment by generalizing the processes for installing, upgrading, start-
ing, stopping, observing the individual software components and by isolating them
from other components without actually invoking a need for visualization. This
project makes a study of Docker technology by using it as the deployment frame-
work.

1.2 Related Works

This work is largely an extension to the work done by S. N. Srirama and J. Viil
[SV14]. They partitioned scienti�c work�ows by using a graph partitioning library
named METIS. This work aims to adapt this knowledge to enterprise systems
by partitioning components typically found in enterprise systems using the same
graph partitioning library. Docker platform will be used as a underlying framework
for ease of deployment and managing the partitions. The goal of the project is to
show that there are advantages to using the same techniques when partitioning
and scaling an existing enterprise system and attempts to do so by constructing
a mock enterprise system, deploying it onto a Docker platform, measuring the
communication between the individual components, constructing a graph based
on these observations, partitioning the components and deploying them onto a
distributed Docker platform. By doing so the project aims to show that there are
performance advantages to this process.

5

2 Docker

2.1 Docker Image

Docker is an open-source platform that allows deploying software in isolated Linux
containers without requiring additional virtualization overhead [DIS]. Using Docker
involves �rst installing Docker Engine and launching the Docker Daemon on the
host machine. Software is deployed to Docker Engine using Docker Images. Docker
Client is a binary that is used for communicating with Docker Daemon. Docker
Client provides necessary tools for Dockerizing software (i.e., creating Docker Im-
ages from software resources). This is done by creating a Docker�le. The Docker�le
de�nes steps for installing software, network ports the software will expose outside
from the container, commands run on the resulting container and initialization
controls when container will eventually be created from the image being de�ned.
New Docker Images can be created using previous Docker Images as a starting
point. In addition running instances of these images can be turned turned into
new images. Although this is not the recommended approach from the software
development point-of-view since often enough this will clutter the images with un-
related variable data such as logs. Also it will make the image harder to reproduce
and therefore harder to version control.

A single Docker Image is a de�nition of a base image and a list of changes
applied to it [DIM]. These changes are stored as binary changes to image and
correspond to the steps de�ned in the Docker�le. Changes in Docker�le �le will
result in a rede�nition of the changes and their binary di�erences. With this
method the need to rede�ne the entire images from scratch when changes are
applied is bypassed but this also means that the order of the steps in Docker�le
should start with the ones that are the least likely and end with the ones that
are most likely to change. For example Docker�le could start with installment of
all the necessary tools concatenated as single command in order to minimize the
resulting amount of large binary di�erences and would end with separated steps
for installing libraries and the developed software. The latter increases the build
time since the developed software is more prone to change and usually is a lesser
binary di�erence to the image than the libraries. Sample of a Docker�le following
these guideline can be seen on Figure 1.

Docker Images created can be pushed to shared Docker Registries and also
pulled from them [DRE]. Only the binary di�erences will be moved when pulling
or pushing. Therefore the same care taken when de�ning the Docker�les will also
bene�t the network tra�c when the images are moved. I can be observed that
Docker Registry work�ow mirrors Git version control work�ow. Both are in their
nature peer-to-peer. Like version-control systems it is possible to tag versions of
images and return to them at a later date but unlike version-control systems it is

6

FROM java:8

RUN apt -get update \

&& apt -get install wget \

&& apt -get install uzip \

&& wget http://some -host/some -archive.zip \

&& unzip some -archive.zip

ENTRYPOINT ["java","-Djava.security.egd=file:/dev/./

urandom","-cp","app/:lib/*","some.package.SomeMain"]

ADD lib lib

ADD classes app

Figure 1: Basic Docker�le

not possible to return to previous revision since building, pushing or pulling an
image with the same tag will overwrite the previous one. Therefore it is not recom-
mended to rely on the Docker Registry as eternal repository because with simple
missteps it is possible to overwrite the Registry. Therefore it is recommended as
marked above to make the images as reproducible as possible using Docker�les
and delegate the revision control to actual source code version control systems.

Docker community also provides a publicly usable registry with similar open
source principals to Github named DockerHub [DHU]. Dockerhub already con-
tains Docker Images for many open source projects. These include all from op-
erating system base images for di�erent GNU/Linux distributions, base images
with runtime environments already installed (for example Java) to many popular
deploy-ready pieces of software (like MongoDB, Elastisearch, Nginx etc). Docker-
hub is also the default location when pulling images and no registry is explicitly
de�ned.

Best practice is for the Docker Image to start only a single process when Docker
Container is created [DPB]. This process would run in an isolated environment.
This means it has its own �le system and does not con�ict with network ports of
the other processes running on the host machine or in the other docker containers
running. It should be noted that this is a perceived isolation because Docker gains
by not utilizing virtualization but this also means that the processes running in the
container are in fact running on the host machines. Since at this moment running
Docker Container still requires root privileges then it is recommended to run the
process as a less privileged user as demonstrated in the Docker�le on Figure 2.

Usually it is necessary for Docker Containers to interact with each other or

7

FROM java:8

RUN apt -get update \

&& apt -get install wget \

&& apt -get install uzip \

&& wget http://some -host/some -archive.zip \

&& unzip some -archive.zip \

&& adduser some -user \

&& mkdir -p /var/log/some -app \

&& chown some -user: some -user /var/log/some -app

ENTRYPOINT ["java","-Djava.security.egd=file:/dev/./

urandom","-cp","app/:lib/*","some.package.SomeMain"]

ADD lib lib

ADD classes app

USER some -user

Figure 2: Docker�le With Custom User

with the host machine. To this end Docker Container can expose network ports
on the private network address provided for it by the Docker Daemon. Also Docker
Containers can be linked to other Docker Containers. This linkage will essentially
map a hostname to the network address of the other Docker Container in the
/etc/hosts �le. In addition exposed ports can be mapped to the host environment
network address if necessary. Exposing a port is shows in the Docker�le on Figure
3.

Docker Containers can share data with the host environment by mounting di-
rectories as volumes [DVO]. Although here it should be noted that when doing
this process user UID and GID can cause trouble with the �le access rights be-
cause users created when the Docker Image is created will probably not match
to the ones in the deployment environment. Therefore the proper �le access have
for the process will �rst have to be established and integrated. This integration
can be achieved by either being generous with the �le access rights, trying to al-
lign the UID and/or GID with the host environment or by using some tools like
"gosu" [GSU]. In addition to the environment directory mounting it is also possi-
ble to create specialized Volume Containers that can be mounted to other Docker
Containers.

8

FROM java:8

RUN apt -get update \

&& apt -get install wget \

&& apt -get install uzip \

&& wget http://some -host/some -archive.zip \

&& unzip some -archive.zip \

&& adduser some -user \

&& mkdir -p /var/log/some -app \

&& chown some -user: some -user /var/log/some -app

EXPOSE 8080

ENTRYPOINT ["java","-Djava.security.egd=file:/dev/./

urandom","-cp","app/:lib/*","some.package.SomeMain"]

ADD lib lib

ADD classes app

USER some -user

Figure 3: Docker�le With Exposed Port

2.2 Docker clustering and scaling

Multiple Docker environments can be clustered together into a larger system.
There are a myriad of methods for achieving this. They are really dependent
on the actual system that would be clustered. Docker provides the means for
doing it manually by using the inter-Container communication described above
along with the features provided by Docker Network. If possible though it is rec-
ommended to use existing and more automatic tools and frameworks like Docker
Swarm and/or Docker Weave.

2.2.1 Docker Swarm

Docker Swarm is native clustering solution for Docker Engines [DSW]. Docker
Swarm is made up of one Swarm Master node and any number of slave nodes.
Essentially Docker Swarm can be created using the Swarm tool that itself can
be launched as a Docker Container. Docker Swarm can be created manually or
the process can be simpli�ed and sped up by using Docker Machine. Once a
cluster has been created new Docker Containers are started through SwarmMaster,

9

FROM jessie :8

ADD vol /mnt/vol

VOLUME /mnt/vol

Figure 4: Docker�le For Docker Volume

which spreads the containers across the slave node cluster. For this experiment
more control was required when directing Docker Containers to Docker Daemons.
Docker Swarm provides this capability. When Swarm nodes are created then the
daemons can be launched with key value pair labels and when creating container
it is possible to control where they end up by providing criterias.

2.2.2 Docker Machine

Docker Machine is tool for spinning up multiple instances of host machines with
Docker Engines installed and Docker Daemons running on them [DMA]. It also
acts as a simpli�ed interface for starting and managing Docker containers already
running on the machines that have been spun up by the Docker Machine. Docker
Machine supports multiple drivers like VirtualBox [DMV], Amazon AWS [DME],
Digital Ocean [DMO], VMWare [DMW] etc. This way it is easy to scale from
development environment to production environment by just changing the driver
in deployment scripts. For this project development was done using VirtualBox
driver in local environment and measurements were conducted using Digital Ocean
platform [DIO] and driver. Docker Machine can also deploy Docker Swarm when
machines are spun up.

2.2.3 Docker Weave

Docker Weave is an open source framework build on top of Docker platform that is
developed and maintained by Weavework company [DWE]. Using Docker Weave
involves launching Weave images on all the Docker Engines that are to be clus-
tered together and con�guring Docker Daemon to use these images as command
wrappers when issuing commands to Docker Engine. These Weave images main-
tain a private network and provide a Domain Name Service therefore it is not
necessary to link the containers manually. Since Docker Swarm at this point does
not support cross Docker Engine linking then Docker Weave can be used can be
used to mitigate lack of functionality. Combining Docker Machine, Docker Swarm
and Docker Weave creates a tool set where through a single interface it is possible
to spin up extensive cluster with a system of Docker Containers running on top it.

10

3 Enterprise System

In order to demonstrate enterprise system partitioning a mock enterprise system
was created that utilizes some of the popular technologies used in enterprise envi-
ronments (See Figure 5). Essentially the system has a mocked integration point to
a external system that generates simple events. These events are pairs of alphanu-
merical keys and numerical values. For ease of use and demonstration this inte-
gration point was implemented with HTTP being the underlying technology. The
system exposed a RESTful API and provided a single page web front-end which
was not explicitly used as part of the experiment but served more as a demonstra-
tion on how underlying the underlying RESTful endpoint would be used.

Mock enterprise system was used to demonstrate a scenario where there pre-
existed an enterprise system that had been deployed onto a single node. Now that
the system had grown to a size that had trouble performing inside this single node
environment there arouse a need to move it to a multiple node environment. This
experiment aimed to demonstrate a method for doing this by �rst Dockerizing
the components in that system and then using a combination of tools in order to
deploy the system onto the multiple node environment in a performance saving
e�cient manner. This idea behind this demonstration was to prove that it could
be applied to some generic enterprise system.

Figure 5: Mock Enterprise System

11

3.1 RabbitMQ

RabbitMQ is a widely used open source messaging broker that utilizes AMQP
protocol (currently AMQP version 0.9.1) [RMQ]. For this experiment events events
coming from a mock external system were directed through RabbitMQ messaging
broker.

3.2 MongoDB

MongoDB is a widely used open source NoSQL database. It can be used to store
and query JSON documents [MON]. It also provides tools for querying aggregated
info about the the documents stored. For this experiment MongoDB was used as
a store for aggregated information about events coming from the external system.

3.3 PostgreSQL

PostgreSQL is a widely used open source SQL database [PSQ]. It is mainly used
to store relational data. For this experiment we are using PostgreSQL to store
character counters describing the events coming from the external system.

3.4 Elasticsearch

Elasticsearch is a NoSQL JSON database and index, that is in principle aimed
to scale elastically and provide fast query capabilities [ELS]. For this experiment
Elastisearch was used to store log data from Stream Generator, Middleware and
RESTfulService.

3.5 Logstash

Logstash is a event ETL and pipe service [ELS]. Essentially Logstash handles wide
variety of input and output formats and provides tools for �ltering or manipulating
the events it processes. For this experiment Logstash was integrated a Log4j
SocketAppender and Stream Generator, Middleware and RESTful Service were
logging to it. Logstash collected the logs and stored them to Elastisearch.

3.6 Kibana

Kibana is a Rapid application development tool for visualizing data in Elastisearch
[ELS]. For this experiment no visualization was de�ned acted as an appropriate
gateway for log data in Elasticsearch.

12

3.7 Stream Generator

Stream generator was implemented as the mock integration point to an external
system that is sending events. These events are alphanumerical key and numerical
value pairs. Since this was a mock system then for the sake of simplicity the
integration was implemented as a HTTP API that on invocation generated a new
random event. The Stream Generators enqueued the Events generated into a
RabbitMQ broker queue. Stream Generator was implemented as a Java Spring
Boot [SBO] application. Logs created by the Stream Generator during runtime
were sent via Log4j [L4J] SocketAppender to Logstash.

3.8 RESTful Service

RESTful Service acts as a back-end for web front-end. It provides endpoints for
requesting the last 15 minutes of logs from Elasticsearch via Kibana, aggregated
event data obtained from MongoDB and character counter data about the events
from PostgreSQL. RESTful Service was implemented as a Java Spring Boot appli-
cation. Logs created by the RESTful Service during runtime were sent via Log4j
SocketAppender to Logstash.

3.9 Middleware

Middleware read events obtained from the event queue in RabbitMQ, aggregated
them and stored the aggregation results to RabbitMQ. It also maintained counter
for characters encountered in the events and persisted this information in Post-
greSQL. Middlware is implemented as a Java Spring context [SFW] application.
Logs created by the Middleware during runtime were sent via Log4j sSocketAp-
pender to Logstash.

3.10 Nginx

Nginx is a widely used HTTP server [NGX]. For this experiment Nginx was Dock-
erized along with Web front-end static resources. Those were made up of mostly
HTML, CSS and Javascript. Also Nginx was con�gured to act as reverse proxy
request to RESTful Service and Stream Generator event generation endpoint. As
a result Nginx served a Web front-end for the rest of the system and by collecting
all the endpoint simpli�ed the eventual load generation.

13

4 Final Implementation

A CLI environment was implemented that tied together all the technologies rele-
vant to this experiment. Namely system deployment, measurements and partition-
ing. This environment was developed using Java as the programming language.

4.1 Enterprise System Deployment

Three types of Docker images were involved in the deployment of the mock en-
terprise system. In order to deploy RabbitMQ [DHR], MongodDB [DHM], Post-
greSQL [DHP], Elasticsearch [DHE] and Kibana [DHK] Docker images were used
without any alterations that are available in the publicly in DockerHub. Logstash
[DHL] and Nginx [DHN] were also deployed using publicly available Docker Images
but were altered. Namely to Logstash image con�guration detailing the method
of log collection was added. Nginx image was altered by adding the con�guration
for REST request proxies and static web resources like HTML, CSS and Javac-
sript �les. These alterations were stored as custom Docker images in DockerHub
named "vampnik/pesd-logstash" for Logstash and "vampnik/pesd-fe" for Nginx.
Docker images for Middleware, Stream Generator and RESTful Service, were at
most part, custom developments and actually implemented the mock business logic
for the mock enterprise system. Docker images for these components were based
on Java base [DHJ] Docker image that is available publicly in DockerHub. These
images were also stored publicly for eventual use in distributed and remote deploy-
ment as "vampnik/pesd-mw" for Middleware, "vampnik/pesd-stream-generator"
for Stream Generator and "vampnik/pesd-rest" for RESTful Service.

The CLI environment was capable of deploying the mock enterprise system as
a single node local Docker Engine deployment and a remote multi-node Docker
Swarm deployment. Local deployment was invoked using "start-local" command
in the CLI environment. Local deployment could be torn down using "stop-local"
command. When initiating a multi node deployment it was possible to choose
either to opt for random partitioning or for a one de�ned in a partition �le. Ran-
dom partitioning is chosen by shu�ing the list of components. Partition number
for each components is de�ned as (i mod p) + 1 where p is the the number of
partitions requested and i is the index number for that component in the shu�ed
list. For example random deployment onto a Docker Swarm with 4 nodes could
be invoked using "start-weave random4" and a deployment using prede�ned parti-
tion fail named "somePart.graph" could be invoked using "start-swarm somePart".
For both cases Docker Swarm deployment could be torn down using "stop-swarm"
command.

Local experiment environment was Debian 3.16.7 with Docker Engine installed
running on 16GB of memory, 4 processor core Intel(R) Core(TM) i7-3520M CPU

14

@ 2.90GHz, 1TB SSD Disk. Remote experiment environment was a Docker Swarm
that consisted of three Digital Ocean droplets with 2GB of memory, 2 processor
cores and 40GB SSD Disk spun up by Docker Machine.

4.2 Resource Usage Measurement

For this experiment partitioning of the enterprise system was done based on the
network tra�c and processing power usage. Network tra�c measurements were
used as the weights for the edges and processing power proportions were used as
the weights for the vertices to construct a graph representing the mock enterprise
system.

There are various way to characterize network tra�c. Since this project aimed
to partition the components so that the ones communicating the most would end
up in the same partition then the total amount of bytes communicated between
components was used as the network tra�c measurement characteristic. Each
Docker container has its own isolated virtual network device. This makes it easier
to observe network tra�c from the container point of view. Since there was a
mock enterprise system component per container as recommended by Docker best
practices [DPB] then the network tra�c observed for of each of the containers
are only the communication to and from the component they speci�cally contain.
Therefore Docker provides excellent isolation to determine network tra�c of each
of the nodes speci�cally.

In order to measure the number of bytes communicated between the containers
60 seconds of TCP dump output from the virtual network interface of the all the
containers was collected concurrently. This information was in turn aggregated and
used to de�ne the weighed edges for the mock enterprise system communication
graph.

This measuring process was established so as to there would be minimal prereq-
uisites to the enterprise system being monitored. To this end common Linux tool
"tcpdump" was used. Also Docker Images for the components were not altered
in any way. Instead all the monitoring was achieved by using Docker Daemon
"exec" tool that is meant to externally invoke commands in the Docker container
shell. This way it was demonstrated that the same method could be applied to
any system of Docker container and consequently enterprise systems. The CLI
environment would perform this measurements for local deployment when invok-
ing "measure-local" and for Docker Swarm deployment when invoking "measure-
swarm" (as demonstrated on Figure 6). Output of this measurement is the number
of total and pair-wise breakdown of the number of bytes communicated between
the components.

There are also various methods for describing processing power used by com-
ponents. Since Docker lacks virtualization layer then the processes running in

15

the containers actually run on the kernel of the host machine. Therefore observ-
ing the CPU-usage in the process snapshot provided by the "ps" command it is
possible to obtain an overview of the proportions of the processing power used
by each of the mock enterprise system component. For this experiment "ps -e -o
%cpu,%mem,cmd" was run for 60 seconds with 1 second intervals concurrently
with network tra�c measuring. For each process an average CPU-usage was cal-
culated from the 60 snapshots thus obtained. These averages were in turn used
as the weights of the vertices in the resulting graph representing mock enterprise
system.

> measure -swarm

..

// measurement log

..

Total: 285354864 | MeasurementResult{cpu={ logstash

=14.334360567162491 , rest =32.018150493800206 ,

elasticsearch =13.907290124804861 , nginx

=12.124594566175698 , rmq =3.359944351427209 , evGen

=2.1005718537930806 , mw =9.918872792862743 , kibana

=0.6826656313443814 , mongoDb =3.561346889584497 , sql

=7.992202729044834} , memory ={ logstash

=9.170139063205974 , rest =13.25468145991264 ,

elasticsearch =12.734575028866924 , nginx

=0.4518299111401176 , rmq =4.178924644811486 , evGen

=8.129926201114513 , mw =14.513780812289784 , kibana

=4.305437019930715 , mongoDb =1.516140368492394 , sql

=31.744565490235445} , network =[rmq <-> mw : 1381473 ,

mongoDb <-> rest : 2865360 , elasticsearch <->

logstash : 89247749 , kibana <-> rest : 66529,

logstash <-> rest : 7989785 , rmq <-> evGen : 23847 ,

mongoDb <-> mw : 22740, sql <-> rest : 39195302 ,

logstash <-> evGen : 27760 , sql <-> mw : 1055049 ,

elasticsearch <-> kibana : 3380576 , logstash <-> mw :

76260980 , rest <-> nginx : 63827730 , evGen <-> nginx

: 9960, rmq <-> rest : 24]}

Figure 6: Invoking Measurment

16

4.3 Partitioning

For the purposes of this experiment the mock enterprise system was represented
as an undirected graph G = (V,E) where V = v1, v2, ..., vn are the components in
the system, the weight of the vertices represent the proportion of processing power
used by the component and the weights of the edge (vi, vj) ∈ E denote the amount
of network tra�c between the components vi and vj inside some �xed interval α
[SV14]. The goal was to obtain �xed number of partitions of this graph so that
the sum of weights crossing the partition is minimized and vertice weight sums of
all the partitions are as smiliar as possible. This partitioning was to be used as a
deployment layout for the mock enterprise system onto a distributed infrastructure.
Aim of this was to demonstrate that the system performed better using a layout
obtained by this means in comparison to layouts generated randomly.

Since graph partitioning is a NP-complete problem then computing an deter-
ministically optimal solution becomes increasingly unviable as the size of the graph
increases [SV14]. In order for this method to be useful for actual enterprise sys-
tems, it has to function for larger or increasing number of components. To combat
this heuristical algorithms can be used that do not produce the most optimal
but good-enough partitioning. To this end graph partitioning tool METIS, that
implements number of such heuristical partitioning algorithms, was used for this
experiment [KK98]. Both multilevel k-way partitioning and multilevel recursive
bisection algorithm were applied to determine the better candidate [KK11].

A CLI was developed to conduct this experiment. Among other capabilities
it could apply METIS algorithms to the graph obtained by the network tra�c
measurement. This could be achieved by invoking "part-local n name" where n
denotes the number name will be used as the base name like demonstrated on
Figure 7. When partitioning was invoked on the CLI the it would measure the
communication and immediately perform partitioning using the multilayer k-way
algorithm (denoted as TMIN in the output) and mulitlayer recursive bisection
algorithm (denoted as REC in the output). Here it should be noted that logarithm
was applied to the network measurement or the edge weights before partitioning in
the following manner α log(wij) where α > 1 is constant for increasing the resulting
value. METIS requires integer weights [KK11] and by multiplying the weight with
a constant the resulting weights avoid being equal after rounding (for experiments
α = 100 was used). Logarithm helped avoid METIS having to deal with large
integers while still retaining some proportional relativity among the weights. This
way any possible integer over�ows within METIS were avoided. Also when the
weights were di�erent by a large order of magnitude the resulting partitions tended
to be chaotic. After applying the logarithm quality of the partitions increased
signi�cantly.

17

5 Approach

5.1 Process

Aim of the project was to show that by partitioning the nodes in a manner where
components communicating the most among each other would end up in the same
partition while ensuring that the processing resources are as evenly distributed as
possible would yield better overall performance. Mock enterprise system deployed
for this project was so designed that in quiet mode there would be little to no
network tra�c. Namely when there are no external requests towards the system
then the only tra�c between the components would be background heartbeats
This means that external HTTP request would create almost all of the network
tra�c between the components.

In order to generate load for the system a custom load testing system was
developed. This system continuously created new load testing threads that con-
currently made HTTP requests speci�ed endpoints. For each of the endpoint there
was maximum request duration de�ned. Generation of new load testing threads
stopped for endpoint when the average duration for the request that have ended
in previous 60 seconds has reached this maximum value. Using the number of load
testing threads as a metric it was possible to compare the performance of di�erent
partitioning layouts. For this experiment the maximum duration de�ned for the
requests was 1 second.

The load was created through single interface, namely through Nginx via
HTTP. Consequently this made the load on the system more easily managed and
quanti�ed. For load creation four endpoints were used:

1. REST GET /api/stat request for event statistics in MongoDB;

2. REST GET /api/chars request for event key character counters in Post-
greSQL;

3. REST GET /api/logs request for logs from Elasticsearch (via Kibana);

4. REST GET /evgen request to initiate an event in stream generator.

First step was to to determine an e�ective partitioning of the components.
Since in the mock enterprise system contained ten components so the number of
partitions was �xed to be three. Three nodes would create enough possible layout
variations so to demonstrate that directed partitioning has a advantage over a
random layout. In order to create such a partitioning the mock enterprise system
was �rst deployed to a local Docker Engine. Load generation was initiated. After
generation of new load testing threads had capped the TCP dump information

18

and CPU usage was collected and aggregated. Resulting graph was partitioned
using METIS and the partition was stored for later use.

Three layouts generated randomly and layouts that were provided by both
algorithms implemented in METIS would be deployed onto a Docker Swarm de-
ployment with three nodes. For all these deployments load generation would be
initiated. Once number of load testing thread generation would have capped for all
the endpoints then these numbers would be recorded for performance comparison.
In this case when comparing two partitioning layout the one layout that could
handle more concurrent load testing threads, meaning it could service more clients
in a timely manner, was to be considered to perform better.

5.2 Results

Using the above mention method for local deployment network tra�c graph edges
were measured as shown on Table 1 and CPU usage was measured as show on
Table 2 (also see �gure 8):

First Component Second Component Network Tra�c
RabbitMQ Middleware ∼ 1MB
MongoDB RESTful Service ∼ 150kB
Elasticsearch Logstash ∼ 69MB
Kibana RESTful Service ∼ 25kB
Logstash RESTful Service ∼ 405kB
RabbitMQ Stream Generator ∼ 12kB
MongoDB Middleware ∼ 22kB
PostgreSQL RESTful Service ∼ 3MB
Logstash Stream Generator ∼ 37kB
PostgreSQL Middleware ∼ 913kB
Elasticsearch Kibana ∼ 6MB
Logstash Middleware ∼ 65MB
RESTful Service Nginx ∼ 3GB
Stream Generator Nginx ∼ 12kB

Table 1: Network Tra�c Measurement Breakdown On Local Deployment

When applying multilevel recursive bisection algorithm the resulting partitions
were as show in Table 3 and when multilevel k-way partitioning was applied then
the resulting partitions were as shown on Table 4. It can be observed that both
algorithms essentially provided the same partitioning only with di�erent indexes.
Therefore this single layout provided by METIS along with three random layouts
(show in Tables 5, 6 and 7) were deployed onto a Docker Swarm cluster. After

19

Component CPU usage
Logstash 11.27%
RESTful Service 32.24%
Elasticsearch 19.02%
Nginx 10.85%
RabbitMQ 4.68%
Stream Generator 3.32%
Middleware 13.9%
Kibana 0.92%
MongoDB 0.79%
PostgreSQL 2.95%

Table 2: CPU Usage On Local Deployment

the load testing thread generation had stopped thread counts per endpoint were
recorded. Number of concurrent load testing threads that could be served by these
layouts in a 3-node Docker Swarm cluster can be seen in Table 8 and Figure 9.

Partition Components
1 Elasticsearch, Logstash, Kibana
2 Middleware, Nginx, RabbitMQ, MongoDB, PostgreSQL, Stream Generator
3 RESTfulService

Table 3: Recursive Partitions

Partition Components
1 Elasticsearch, Logstash, Kibana
2 RESTful Service
3 Middleware, Nginx, RabbitMQ, MongoDB, PostgreSQL, Stream Generator

Table 4: k-way Partition

It can be seen from the results that there was no di�erence for number of
threads supported for "/api/logs" and "/api/evgen" between all of the layouts.
All could only sustain a single load testing thread. This was caused by the fact
that request times for these endpoints during the load testing were always above
1 seconds. Since the criteria for adding new load testing threads was that the
average request time should be under 1 second then no new threads were created.
Therefore no meaningful comparison can be made based on the results for these
two endpoint. However the simulated load created through these endpoints during
the load testing was still necessary, since without them some of the components

20

Partition Components
1 Logstash, RESTful Service, PostgreSQL, Stream Generator
2 Nginx, Elasticsearch, RabbitMQ
3 Middleware, MongoDB, Kibana

Table 5: Random 1

Partition Components
1 Elasticsearch, Logstash, RESTful Service, Stream Generator
2 RabbitMQ, Kibana, PostgreSQL
3 Nginx, Middleware, MongoDB

Table 6: Random 2

would not have experienced any stress. This in turn would have made the results
for other endpoints unrealistic.

Results for "/api/stat" and "/api/chars" endpoint show that layout provided
by METIS outperformed random layouts. This shows clearly that there is an
advantage when using the described method for partitioning an enterprise system.

5.2.1 Scaling

Extension to the scenario where an enterprise system is on a single node and
has to be partitioned to multiple nodes in order to scale performance-vise is the
scenario where an enterprise system is already on a multiple node system and has
to scale to additional nodes due to lack in either performance and/or resource
capabilities. To this end 3 node layout already provided by METIS was deployed
onto a Docker Swarm cluster. Same type of load was generated. After the load
testing thread generation had capped 60 seconds of network tra�c and processing
power usage was collected. This data was in turn used to create a new graph with
weighed edges and vertices and partitioned into 4-node layouts. These partitions
provided by METIS and 3 random partitions were deployed to Docker Swarm
cluster. Maximum number load testing threads that could be service in timely
manner were determined for all of these layouts. Results can be seen in Table
?? and Figure 10. As previously data from "/api/logs" and "/evgen" endpoints
cannot be used to make any meaningful distinctions between the layouts but are
still needed to simulate load to all the components. Results "/api/stats" and
"/api/chars" demonstrates that the same method can be reapplied to further scale
the an enterprise system deployment.

21

Partition Components
1 Middleware, MongoDB, Kibana, Stream Generator
2 Nginx, Logstash, PostgreSQL
3 Elasticsearch, RabbitMQ, RESTful Service

Table 7: Random 3

/api/stat /api/chars /api/logs /api/evgen
METIS 378 371 1 1
Random 1 275 337 1 1
Random 2 232 266 1 1
Random 3 313 327 1 1

Table 8: Concurrent Load Test Threads Supported in 3-node Swarm Cluster

/api/stat /api/chars /api/logs /api/evgen
k-way 872 646 1 1
Recursive Partitioning 636 547 1 1
Random 1 376 454 1 1
Random 2 276 239 1 1
Random 3 387 388 1 1

Table 9: Concurrent Load Test Threads Supported in 4-node Swarm Cluster

22

> part -local 3 part

..

// partitioning log

..

> part -local 3 part

Total: 3046931636 | MeasurementResult{cpu={ logstash

=11.270594108836745 , rest =32.24716496683546 ,

elasticsearch =19.02592539761786 , nginx

=10.851579773197342 , rmq =4.688502959845945 , evGen

=3.32626060908637 , mw =13.909492903501889 , kibana

=0.925397617858926 , mongoDb =0.7979102774409805 , sql

=2.9571713857784774} , memory ={ logstash

=7.168458781362015 , rest =43.39406610911987 ,

elasticsearch =8.064516129032254 , nginx =0.0, rmq

=2.090800477897253 , evGen =6.869772998805253 , mw

=28.82815611310235 , kibana =2.389486260454 , mongoDb

=0.8960573476702519 , sql =0.29868578255675} , network =[

rmq <-> mw : 1224342 , mongoDb <-> rest : 153324 ,

elasticsearch <-> logstash : 72649760 , kibana <->

rest : 25505, logstash <-> rest : 415231 , rmq <->

evGen : 12183 , mongoDb <-> mw : 22738 , sql <-> rest :

2681303 , logstash <-> evGen : 37494, sql <-> mw :

935046 , elasticsearch <-> kibana : 5785629 , logstash

<-> mw : 67634007 , rest <-> nginx : 2895342754 , evGen

<-> nginx : 12320]}

REC: [[ELASTIC_SEARCH , LOGSTASH , KIBANA], [MIDDLEWARE ,

NGINX , RABBIT_MQ , MONGODB , SQL , EVENT_GENERATOR], [

REST]]

TMIN: [[ELASTIC_SEARCH , LOGSTASH , KIBANA], [REST], [

MIDDLEWARE , NGINX , RABBIT_MQ , MONGODB , SQL ,

EVENT_GENERATOR]]

Figure 7: Invoking Partitioning

23

Figure 8: Mock Enterprise System Weighed Graph

Figure 9: Concurrent Load Test Threads Supported in 3-node Swarm Cluster

24

Figure 10: Concurrent Load Test Threads Supported in 4-node Swarm Cluster

25

6 Conclusion

Docker proved to be very clean platform for software deployment. Initial use
of Docker does not pose a steep learning curve. However as the complexity of
the system increases then additional challenges can be encountered. For example
�le access rights can cause problems when sharing volumes with the host machine
while at the same time running processes as a non-superusers. Dockerizing software
ine�ciently is a common hurdle. Ine�ciencies can noticeably slow development
processes. Therefore it is recommended to invest time into understanding how
Docker deployment works. Because Docker does not utilize virtualization then
during the initial experimentation it is possible to corrupt the host machine to the
extent that a system reset is required. At the same time the main advantages for
using Docker come from the same fact that there is not an absolute isolation be-
tween the host machine and Docker Containers. This in turn means that there are
far less resource overheads while still providing isolation like a separated �lesys-
tem and a separated network device. Thus Docker is not limited to any speci�c
work�ow and can be used for those that require high performance as well as to
those employing microservice software architecture. It should also be noted that
technologies around Docker are currently actively changing and not all the features
have been �eshed out. For example Docker native clustering technology Docker
Swarm still currently does not support cross-host container linking. This invokes a
need for alternatives like ambassador-pattern or Docker Weave that are not ideal.

METIS was shown to viable toolset for partitioning enterprise systems. There
was noticeable performance improvements when deploying layout provided by
METIS compared to randomly generated layouts. During the experiments it be-
came apparent that enterprise system speci�cally bene�ted from the fact that
METIS could partition graphs with weighted vertices. Namely many enterprise
system components may have little communication between each other but are
more demanding for other hardware resources. Mainly for processing power. This
means that by deploying together components that require more processing power
can signi�cantly reduce the overall performance. Since METIS could partition
graphs with weighted vertices in a manner where in addition to minimizing the
edge cut an attempt was made to ensure that resulting partitions had as equal a
vertex weight sum as possible then this issue was mitigated.

Source code for the experiments is available at https://bitbucket.org/Vampnik/pesd

6.1 Future Directions

Since Docker ecosystem is still rapidly developing then there are new technologies
and solutions still around the corner that wait to be explored and experimented
with.

26

CLI developed for this experiment could also be expanded. Namely the man-
agement portion of the source code refactored to meet better coding practices.
Current solution is partially hard-coded around the experiment therefore the man-
agement could be extracted to act as a stand alone tool or a library.

Also this experiment was limited by using network tra�c and CPU as metrics
when describing an enterprise system. However in an realistic scenario there often
are additional criterias. For example all the hardware nodes might not be equal,
there can be additional restrictions where a component can be deployed. In ad-
dition other hardware resource metrics like memory usage may play a role when
deploying. There is room to investigate how well METIS can be adapted to these
additional criterias.

27

References

[DHE] Docker Hub Elasticsearch Image. https://hub.docker.com/_/

elasticsearch/. Accessed: 2016-08-10.

[DHJ] Docker Hub Java base Image. https://hub.docker.com/_/java/. Ac-
cessed: 2016-08-10.

[DHK] Docker Hub Kibana Image. https://hub.docker.com/_/kibana/. Ac-
cessed: 2016-08-10.

[DHL] Docker Hub Logstash Image. https://hub.docker.com/_/logstash/.
Accessed: 2016-08-10.

[DHM] Docker Hub MongoDB Image. https://hub.docker.com/_/mongo/. Ac-
cessed: 2016-08-10.

[DHN] Docker Hub Nginx Image. https://hub.docker.com/_/nginx/. Ac-
cessed: 2016-08-10.

[DHP] Docker Hub PostgreSQL Image. https://hub.docker.com/_/

postgres/. Accessed: 2016-08-10.

[DHR] Docker Hub RabbitMQ Image. https://hub.docker.com/_/rabbitmq/.
Accessed: 2016-08-10.

[DHU] Docker Hub. https://hub.docker.com/. Accessed: 2016-08-10.

[DIM] Docker Images. https://docs.docker.com/engine/userguide/

eng-image/baseimages/. Accessed: 2016-08-10.

[DIO] Digital Ocean. https://www.digitalocean.com/. Accessed: 2016-08-10.

[DIS] Understanding Docker. https://docs.docker.com/engine/

understanding-docker/. Accessed: 2016-08-10.

[DMA] Docker Machine. https://docs.docker.com/machine/overview/. Ac-
cessed: 2016-08-10.

[DME] Docker Machine Amazon AWS driver. https://docs.docker.com/

machine/drivers/aws/. Accessed: 2016-08-10.

[DMO] Docker Machine Digital Ocean driver. https://docs.docker.com/

machine/drivers/digital-ocean/. Accessed: 2016-08-10.

28

https://hub.docker.com/_/elasticsearch/
https://hub.docker.com/_/elasticsearch/
https://hub.docker.com/_/java/
https://hub.docker.com/_/kibana/
https://hub.docker.com/_/logstash/
https://hub.docker.com/_/mongo/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/
https://docs.docker.com/engine/userguide/eng-image/baseimages/
https://docs.docker.com/engine/userguide/eng-image/baseimages/
https://www.digitalocean.com/
https://docs.docker.com/engine/understanding-docker/
https://docs.docker.com/engine/understanding-docker/
https://docs.docker.com/machine/overview/
https://docs.docker.com/machine/drivers/aws/
https://docs.docker.com/machine/drivers/aws/
https://docs.docker.com/machine/drivers/digital-ocean/
https://docs.docker.com/machine/drivers/digital-ocean/

[DMV] Docker Machine Oracle VirtualBox driver. https://docs.docker.com/

machine/drivers/virtualbox/. Accessed: 2016-08-10.

[DMW] Docker Machine VMware vSphere driver. https://docs.docker.com/

machine/drivers/vsphere/. Accessed: 2016-08-10.

[DPB] Docker Best practices. https://docs.docker.com/engine/userguide/
eng-image/dockerfile_best-practices/. Accessed: 2016-08-10.

[DRE] Docker Registry. https://docs.docker.com/registry/introduction/.
Accessed: 2016-08-10.

[DSW] Docker Swarm. https://docs.docker.com/swarm/overview/. Ac-
cessed: 2016-08-10.

[DVO] Docker Volumes. https://docs.docker.com/engine/tutorials/

dockervolumes/. Accessed: 2016-08-10.

[DWE] Docker Weave. https://www.weave.works/. Accessed: 2016-08-10.

[ELS] Elasticsearch. https://www.elastic.co/. Accessed: 2016-08-10.

[GSU] Gosu. https://github.com/tianon/gosu/. Accessed: 2016-08-10.

[KK98] George Karypis and Vipin Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on scienti�c Com-
puting, 20(1):359�392, 1998.

[KK11] George Karypis and V Kumar. Metis manual. University of Minneso-
ta/Department of Science/Army HPC Research Center, 2011.

[L4J] Log4j. http://logging.apache.org/log4j/2.x/. Accessed: 2016-08-
10.

[MON] MongoDB. https://www.mongodb.com/. Accessed: 2016-08-10.

[NGX] Nginx. https://nginx.org/. Accessed: 2016-08-10.

[PSQ] PostgreSQL. https://www.postgresql.org/. Accessed: 2016-08-10.

[RMQ] RabbitMQ. https://www.rabbitmq.com/. Accessed: 2016-08-10.

[SBO] Spring Boot. http://projects.spring.io/spring-boot/. Accessed:
2016-08-10.

[SFW] Spring Framework. https://projects.spring.io/

spring-framework/. Accessed: 2016-08-10.

29

https://docs.docker.com/machine/drivers/virtualbox/
https://docs.docker.com/machine/drivers/virtualbox/
https://docs.docker.com/machine/drivers/vsphere/
https://docs.docker.com/machine/drivers/vsphere/
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/registry/introduction/
https://docs.docker.com/swarm/overview/
https://docs.docker.com/engine/tutorials/dockervolumes/
https://docs.docker.com/engine/tutorials/dockervolumes/
https://www.weave.works/
https://www.elastic.co/
https://github.com/tianon/gosu/
http://logging.apache.org/log4j/2.x/
https://www.mongodb.com/
https://nginx.org/
https://www.postgresql.org/
https://www.rabbitmq.com/
http://projects.spring.io/spring-boot/
https://projects.spring.io/spring-framework/
https://projects.spring.io/spring-framework/

[SV14] Satish Narayana Srirama and Jaagup Viil. Migrating scienti�c work�ows
to the cloud: Through graph-partitioning, scheduling and peer-to-peer
data sharing. In 16th IEEE International Conference on High Perfor-
mance and Communications (HPCC 2014) workshops, pages 1137�1144,
2014.

30

Non-exclusive licence to reproduce thesis and make thesis public

I, Tõnis Ojandu (date of birth: 12th of April 1990),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

Partitioning Enterprise Systems on Docker Platform

supervised by Satish Narayana Srirama

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 11.08.2016

31

	Introduction
	Motivation
	Related Works

	Docker
	Docker Image
	Docker clustering and scaling
	Docker Swarm
	Docker Machine
	Docker Weave

	Enterprise System
	RabbitMQ
	MongoDB
	PostgreSQL
	Elasticsearch
	Logstash
	Kibana
	Stream Generator
	RESTful Service
	Middleware
	Nginx

	Final Implementation
	Enterprise System Deployment
	Resource Usage Measurement
	Partitioning

	Approach
	Process
	Results
	Scaling

	Conclusion
	Future Directions

