
A Finite State Constraint Grammar Parser

Janne Peltonen
University of Helsinki

Helsinki, Finland
janne.peltonen@helsinki.fi

Abstract

It has long been held that finite state (FST)
methods should be the method of choice
in implementing a CG parser (e.g. Karls-
son (1990)), since FST methods are very
well understood mathematically and typ-
ically quite efficient. However, more or
less all implementations to date have been
using other methods. I set out to bridge
the gap between the FST world and the
CG world1. I created a representation
for ambiguous, morphologically analysed
sentences that might be general enough to
be used in other projects as well. I was
able to create a compilation procedure for
most types of CG-2 rules into an FST for-
mat, and successfully apply the compiled
rules to my sentence representation. I im-
plemented the grammar file parsing and
rewrite rule generation using Python 3,
and used Måns Huldén’s (2009) Foma for
the actual FST operations. I also evaluated
the implementation in terms of time and
space requirements.

1 Previous Work

My research is far from being the first attempt
to combine the worlds of Constraint Grammars
and finite state methods. For example, the Finite
State Intersection Grammars (FSIG) developed by
Koskenniemi (1990) are a decidedly CG-like fi-
nite state approach to disambiguation and surface
syntactic parsing — so much so that FSIG has
been suggested to be renamed Parallel CG and tra-
ditional CG, Sequential CG (Voutilainen, 1994).
In FSIG, constraints act on complete sentences
and prune complete readings on a sentence level,

1The results presented herein are also published in my
master’s thesis in Finnish in June, 2011.

whereas traditional CG prunes readings from indi-
vidual cohorts (word forms).

Gross defines local grammars loosely as a class
of grammars that reduce ambiguity by local con-
straints (Gross, 1997). Mohri (2005) shows an al-
gorithm to disambiguate an ambiguous sentence
automaton using only local constraints. This, too,
can be considered as a CG-like FST approach to
disambiguation.

Graña et al. (2003) show a method to compile
constraint-based textual rules directly to FSTs.
However, their rule format differs somewhat from
the previously used formats. My goal was to be
backwards compatible with Tapanainen’s CG-2
(Tapanainen, 1996), since there are lots of gram-
mars written using that formalism. I didn’t use
the open source VISL CG-3 formalism since its
differences from CG-2 are minor — and the for-
malism is currently in a state of rapid evolution.
Additionally, the Swahili grammar sample I was
allowed to use in my work was written in CG-2.

2 Ambiguity Representation

One obvious problem to solve was the represen-
tation of sentences as finite state automata. There
must be a representation for local ambiguity ei-
ther (i) as word ”lattice” containing paths that rep-
resent combinations of local readings; (ii) as a
pearl chain shaped compressed word lattice where
the dependencies across word boundaries are not
maintained, but every combination have a separate
path; or as (iii) as a single path automaton contain-
ing a string that lists all the local ambiguity classes
(aka cohorts) on the single line.

The reasons for choosing the last methods —
single path sentence automata — are, in no partic-
ular order, as follows:

• Avoiding the possibility of exponential
search times.

35

• Apparent straightforwardness of composing
a single path automaton to the rule automata.

• Possibility to refer to sibling readings, that is,
readings in the same cohort.

• Usability of the representation even if the im-
plementation of rules differs radically from
the currently adopted one.

The actual form I chose is as follows:

• Cohorts are separated by the symbol ¤:
¤ cohort ¤ cohort ¤ ... ¤

cohort ¤

• Readings are separated by the symbol §:
§ reading § reading § ... §
reading §

• There is a cohort separator at the beginning
and end of the sentence, as well as a reading
separator before the first reading and after the
last one

• The word form is between the cohort separa-
tor and the first reading:
¤ "<word-form>" § reading §
...

• The base form is the first tag in the reading:
... § "base-form" TAG1 TAG2
...

• The word form is repeated as the last tag in
each reading:
... § "base-form" TAG1 TAG2
... "<word-form>" §

Figure 2 shows the sentence automaton for two
word forms (cohorts) in an ambiguous sentence.
In the traditional vertical form, the sentence would
appear as in example 1.

(1) ...
"<sm1>"

"pm11" P111
"pm12" P121 P122

"<sm2>
"pm21" P211
"pm22" P221

...

3 Rule Representation

A natural form to use for the CG disambigua-
tion rules themselves was Lauri Karttunen’s Re-
place rule syntax (Karttunen, 1995) — there was
an existing, open implementation available, and
the rule formalism appeared strong and simple
enough. The only problem with replace rules were
CG-2’s (Tapanainen, 1996) linked rules: theoret-
ically, a linked rule’s left context might span to
the right side of the rule target, and there is no
easy or easily generalisable way to represent a left
context that might leak to the right side of the
rule centre in Karttunen’s formalism. I chose to
treat linked rules as a special case treated later. In
the test grammar I have available there were only
four linked rules, so that limitation appeared to be
within reason.

I wanted the application strategy of the rules to
mirror what I understood of current CG-2 parsers
as closely as possible. That is, at the rule level,
I wanted the rules to appear to proceed from left
to right — the left context of a given rule had to
have the appearance of the rule being already ap-
plied there whereas the right context should be un-
charted territory (Tapanainen, 1996). So the ob-
vious variant of Karttunen’s rules was the right-
oriented (//) one — left context from the lower,
or output, tape; right context from the upper, or
input, tape.

The choice of right-oriented replace rules cre-
ated interesting complications in the replace rules,
especially when combined with the robustness
clause ’the last reading of a cohort shall not be
removed’. To elaborate: if a left context is to ap-
ply, the readings that contain the left context must
not be marked as erased — or, in the case of a
negated left context, they must all be marked as
erased. But if all the readings in the cohort are
marked as erased, then the last reading of the co-
hort should be treated as non-erased after all, be-
cause there has to be at least one reading left in
each cohort. To be consistent with the left-to-right
application strategy, that should be the rightmost
one.

A simple first approach for rule 2 would be as
in example 3. Here, a REMOVEREADING tag is
added next to the target tag if there is a context
tag CTAG in the previous cohort. .¤. means all
strings that contain at most one cohort separator.

(2) REMOVE (TTAG) IF (-1 (CTAG));

36

§

§

§

§

§

§

¤

¤

"<wf1>" "bf11"
P111

"<wf1>"

"bf12" P121
P122

"<wf1>"

"<wf2>" "bf21"
P211

"<wf2>"

"bf22"
P221

"<wf2>"

¤ ...

...

Figure 1: A Single Path Sentence Automaton

(3) TTAG -> TTAG REMOVEREADING ||
CTAG .¤. _ ;

However, rule 3 doesn’t reflect the internal rule
application strategy outlined. To achieve that, a
more complicated approach is needed. The end
result is represented as rule 4.

(4) TTAG -> TTAG REMOVEREADING //
.#. ... [
¤ ..
§ .nRR CTAG .nRR §
.. |

¤ .
[§ . REMOVEREADING .]*
§ . CTAG . §

] ¤. _ ;

The left context of rule 4 is composed as fol-
lows:

• .#. ... anchors the context to the begin-
ning of the sentence. This is needed when
combining context constraints and wouldn’t
be strictly necessary in this rule, with only
one constraint.

• Two possibilities for the context cohort fol-
low:

1. The cohort contains a reading
with the context tag CTAG and
no REMOVEREADING tags (.nRR
matches everything in a reading except
a REMOVEREADING symbol); or

2. all the previous readings in the cohort
are marked as removed, so we don’t care
if the last reading is marked as removed
— if it contains a CTAG, it matches.

• ¤. means one immediate cohort separator
and anything inside a cohort after that.

On higher level, that is, the levels of rule sets
and grammar files, I chose to mimic the rule ap-
plication order of Pasi Tapanainen’s CG-2 imple-
mentation (Tapanainen, 1996). First, a working set
of rules is generated from the first constraint sec-
tion in the grammar file, in the order they appear
in the grammar file2. Then, for the sentence being
processed, each rule is applied in isolation, and a
new sentence automaton is created from the result
of rule application — if there was a change; other-
wise, the original sentence automaton is used with
the next rule. When all the rules in the working set
have been applied once, the whole process is re-
peated, until the working set of rules can no longer
change the sentence automaton. At this point, the
rules from the next constraint section in the gram-
mar file are appended to the end of the working
set, and the process is repeated until there are no
more constraint sections left.

Changing the application order of rules would
be relatively easy, since the rule application order

2This is actually different from Tapanainen’s implemen-
tation which gives no guarantees about the application order
of rules inside a constraint section; in Tapanainen’s imple-
mentation, only the application order of constraint sections is
defined to match the order of the sections in the grammar file.

37

is mostly defined in Python. On the other hand,
running multiple rules in parallel for one sentence
— in essence, trying to disambiguate each cohort
in a sentence with all rules before advancing to the
next cohort — is not easily achievable with my ap-
proach. It could be doable, in theory, by combin-
ing the context constraints of all the rules to create
one huge replace rule. However, very complex re-
place rules appear to be slow to handle.

4 Implementation

The CG rule parser/re-writer was written in
Python 33, using the PLY (Python Lex-Yacc)
parser generator4. Måns Huldén’s Foma, as a sub-
process of the Python script, is used to compile
the replace rules into transducers. The conversion
between the traditional CG sentence format and
the new sentence format is done in pure Python.
Foma, as a sub-process of the Python script that
controls the high level application order of rules,
is also used to apply the rules to sentences.

To create the compilation process from CG
rules to rewrite rules, I went through the differ-
ent disambiguation rule types in Pasi Tapanainen’s
CG-2 version of the CG formalism and came up
with a rewrite rule equivalent for each of them. In
the current implementation, the rewrite rule gener-
ation phase isn’t as elegant as it could be: the rule
generator goes through all different combinations
of CG-2 rule features and creates a rule for each
combination separately, even if some of the fea-
tures could be treated as modifiers of the original
rule. For example, I suspect that I could imple-
ment rule negation as a simple textual transforma-
tion of the positive version of the same rule.

Using Foma with Python proved to be quite
simple: the sub-process modules in Python’s stan-
dard library provided me with sufficient means to
create a sub-process for Foma and communicate
with it. Currently, I only have a simple implemen-
tation that reads lines from the Foma sub-process
until a certain known line is reached, but I’ve been
experimenting with a separate thread for commu-
nication, to avoid accidental lockups. So far, the
results have been encouraging and simple to im-
plement.

The implementation, in its current form, is not
really distributable. I plan to create a distributable

3http://www.python.org/download/
releases/3.0/

4http://www.dabeaz.com/ply/

package and make it available on-line soon. In the
meantime, I can provide the interested with the
current version and instructions on how to make
it function.

5 Test Grammar And Sentence Data

Professor emeritus Arvi Hurskainen allowed me
to use a sample of his SwaCG Swahili language
grammar to test and develop my own disambigua-
tor (Hurskainen, 2004). The sample contains
397 rules of which 380 are select rules and 17 are
remove rules; the approach used in this grammar
was more to describe sufficient contexts for cer-
tain morphological choices than to describe when
some readings should be discarded.

Four select rules contained a linked contextual
test. My current implementation ignores rules
with linked tests, so the results were, in effect, ob-
tained with a grammar of 393 rules of which 376
are select rules and 17 remove rules.

The morphologically analysed test sentences
were also provided by professor Hurskainen. They
are a set of 684 sentences, hand-crafted to test dif-
ferent aspects of the Swahili grammar. The sen-
tences are categorised as follows:

• constructions with inflecting adjectives
(287 sentences);

• constructions with uninflecting adjectives
(133 sentences);

• demonstrative before noun, inflecting adjec-
tives (183 sentences); and

• demonstrative before noun, uninflecting ad-
jectives 81 sentences.

The ambiguous morphological analysis con-
tains 5191 word forms and 11 455 readings, with
punctuation included. With punctuation excluded,
there are 3139 word forms and 9 403 readings.

6 Results

Rules are applied one at a time, so the rules don’t
have to worry about other rules interfering with
their execution. This also applies when creat-
ing compositions of rules: conceptually, the upper
tape of each new rule is the lower tape of the pre-
vious rule composed with previous rules and the
sentence automaton, so the effect is the same as
with applying the new rule to a new version of the
sentence automaton.

38

6.1 Space Complexity
Memory requirements didn’t appear to grow espe-
cially fast when composing more and more rules
to the composition that begins with the sentence
automaton. On the other hand, when trying to
compose as few as two big rules into a composi-
tion rule without the sentence automaton, I could
easily run out of memory on my workstation. For
example, composing two rule transducers of sizes
2.7 KB and 21.2 KB — with two simple special
transducers that actually erase the readings that are
marked as erased, and clean up superfluous erase
markers, between the rules — generates a trans-
ducer of size 341.8 KB. Composing rules of sizes
21.2 KB and 121.1 KB result in a transducer of
size 4.5 MB, and trying to compose two rules of
size 26.4 MB results in Foma finally running out
of memory on my workstation, after having allo-
cated more than 1.2 GB. 26.4 MB rules are rare,
but at this growth rate, 26.4 MB rule compositions
wouldn’t be.

The sizes of the compressed transducer files, in
Foma binary representation, vary between 852 B
and 2.6 MB — there correspond to uncompressed
transducers of sizes 668 B and 26.4 MB. The bi-
nary representation of the compiled grammar, with
379 compressed binary rules, takes 8.0 MB.

6.2 Time Complexity
Compilation of the test grammar of 393 rules took
at most 90 s (plus 25 s for the packing and unpack-
ing of the binary transducers). VISL CG-3’s CG-
2 compatibility mode is 1 500 times faster. On the
other hand, the time was minutes, not hours, so it’s
almost usable.

Disambiguating the test set of 684 sentences
created almost the same results as disambiguating
with VISL CG-3. All the differences could be ex-
plained by the fact that VISL CG-3, as opposed to
Tapanainen’s CG-2 parser and my program, does
not take the order of tags into account neither in
combined tags nor in same position tests with cate-
nation. Moreover, VISL CG-2 collapses multiple
instances of same tag in a catenation into one (Tino
Didriksen, personal discussion). This result is en-
couraging.

Less encouraging is the result that disambiguat-
ing the complete test set took 64 min 12 s. Again,
VISL CG-3 was 1 500 times faster. The reason
for the apparent slowness of my approach is not
completely clear. An obvious first guess would be

overhead in inter-process communication or prob-
lems with the speed of the finite state tools used.
As it turned out, there were a couple of issues.
However, the results given in this chapter are ob-
tained after having resolved most of the technical
issues.

6.3 Attempts to Increase Speed
It appears that adding a new rule to a composition
of the sentence automaton and other rules takes
more or less the same time than composing the
first rule to the sentence automaton, or perhaps
slightly more. So it is possible to reduce the run
time of the program by using longer rule composi-
tions on each iteration, since the overhead of read-
ing and writing data between processes decreases
(since the number of iterations decreases). How-
ever, there appears to be a cutoff point of some-
thing like 20 rules per composition after which the
decrease in overhead can no longer compete with
the increase in composition time — at least with
my test grammar and data.

One complication in communicating with
Foma was that libreadline5 calls sometimes took
a really long time to complete — but without li-
breadline, I couldn’t get the inter-process com-
munication to work. A one line patch to Foma,
to flush its standard output after the completion of
a command, solved that problem, and the time to
read a longish sentence representation into a Foma
variable dropped from more than 200 ms with li-
breadline to approximately 40 ms without it.

There were a couple of memory leak issues
within Foma that Måns Huldén was kind to fix
more or less immediately. Also, he provided me
with optimised versions of his replace rule trans-
lation formulae that sped up the grammar compi-
lation considerably.

6.4 Analysis
The slow results given in section 6.2 are obtained
after the modifications made in the last section.
Thus it appears that at least currently, the tight-
est bottlenecks are elsewhere than in inter-process
communication or tool errors.

According to the analysis I performed using the
Python cProfile library6, most of the time was
actually spent composing the sentence and rule
transducers together. This would indicate that

5http://www.gnu.org/software/readline/
6http://docs.python.org/release/3.1.3/

library/profile.html

39

my program creates so complex replace rules that
Foma can no longer handle them efficiently. As
the most complex rule transducers have tens of
thousands of states and nearly two million arcs,
that is hardly surprising — the worst case has
32 219 states and 1 732 204 arcs. I have yet to
find out why some rules are so complex and what,
if anything, could be done to avoid such complex-
ity.

7 Conclusion

In this paper, I have shown that it is possible to cre-
ate a finite state CG implementation that is mostly
compatible with CG-2. I was also able to create a
useful finite state representation for the ambiguous
sentences, to which the rules could be readily ap-
plied. Lauri Karttunen’s replace rules proved to be
a usable basis for representing CG rules. My im-
plementation is not complete, and currently only
disambiguates a grammar containing at most the
rule types in my test grammar — to test the disam-
biguator with other grammars, the remaining rule
types should be catered for.

However, even if I have provided a proof of con-
cept implementation of a CG disambiguator, my
program is too slow for any practical purposes.
Additional research is called for. The program
might be sped up a bit by replacing inter-process
communication with direct library calls, once the
required Python library bindings are in place. It
might also be possible to simplify the generated
replace rules. If these approaches fail, other fi-
nite state methods than replace rules should be
considered. As indicated in personal discussion,
at least Anssi Yli-Jyrä and Måns Huldén are cur-
rently planning such approaches.

References
Jorge Graña, Gloria Andrade, and Jesús Vilares. 2003.

Compilation of constraint-based contextual rules for
part-of-speech tagging into finite state transducers.
In Jean-Marc Champarnaud and Denis Maurel, ed-
itors, Implementation and Application of Automata,
volume 2608 of Lecture Notes in Computer Science,
pages 128–137. Springer Berlin / Heidelberg.

Maurice Gross. 1997. The construction of local gram-
mars. In Emmanuel Roche and Yves Schabes, ed-
itors, Finite-state language processing, pages 329–
354. MIT, Cambridge (MA), USA.

Mans Hulden. 2009. Foma: a finite-state compiler and
library. In Proceedings of the Demonstrations Ses-

sion at EACL 2009, pages 29–32, Athens, Greece,
April. Association for Computational Linguistics.

Arvi Hurskainen. 2004. Optimizing disambiguation in
swahili. In Proceedings of Coling 2004, pages 254–
260, Geneva, Switzerland, Aug 23–Aug 27. COL-
ING.

Fred Karlsson. 1990. Constraint grammar as a frame-
work for parsing unrestricted test. In COLING-90:
papers presented to the 13th International Confer-
ence on Computational Linguistics: on the occasion
of the 25th anniversary of COLING and the 350th
anniversary of Helsinki University, pages 168–173,
Helsinki. International Conference on Computa-
tional Linguistics.

Lauri Karttunen. 1995. The replace operator. In Pro-
ceedings of the 33rd annual meeting on Association
for Computational Linguistics, pages 16–23, Mor-
ristown, NJ, USA. Association for Computational
Linguistics.

Kimmo Koskenniemi. 1990. Finite-state parsing and
disambiguation. In COLING-90: papers presented
to the 13th International Conference on Computa-
tional Linguistics: on the occasion of the 25th an-
niversary of COLING and the 350th anniversary of
Helsinki University, pages 229–232, Helsinki. Inter-
national Conference on Computational Linguistics.

Mehryar Mohri. 2005. Local grammar algorithms.
In Lauri Carlson, Antti Arppe, Mickael Suomi-
nen, Krister Lindén, Jussi Piitulainen, Martti Vainio,
Hanna Westerlund, Anssi Yli-Jyrä, Juho Tupakka,
and Markus Koljonen, editors, Inquiries into Words,
Constraints and Contexts. Festschrift for Kimmo
Koskenniemi on his 60th Birthday, CSLI Studies in
Computational Linguistics, pages 84–94. CSLI Pub-
lications, Stanford, CA, USA.

Pasi Tapanainen. 1996. The constraint grammar
parser CG-2. University of Helsinki, Department
of General Linguistics, Helsinki.

Atro Voutilainen. 1994. Designing a Parsing Gram-
mar. University of Helsinki, Department of General
Linguistics, Helsinki.

40

