
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Computer Science Curriculum

Urmas Tamm

Eclipse plugin for analyzing embedded SQL queries in PHP

programs

Master’s Thesis (30 ECTS)

Supervisor: Vesal Vojdani

Co-supervisor: Aivar Annamaa

TARTU 2015

2

Eclipse plugin for analyzing embedded SQL queries in PHP programs

Abstract

During code development it is crucial to get fast feedback about the correctness of our

code. Various hints are given by compiler through warnings and error messages that are

displayed in the IDE, e.g. Eclipse. Unfortunately, this covers only the general host-language,

in which we write the code. Often we need to use another language to communicate with a

specific application domain: e.g. SQL for sending queries to a database engine. By default

these SQL strings are not checked statically, although it would be highly beneficial. Alvor is a

tool that statically checks SQL queries in Java programs. This thesis presents an extension for

Alvor to add PHP support.

The key challenge when adapting Alvor to PHP was the dynamic nature of PHP. The

solution is therefore limited to operate only within the scope of a PHP function or a PHP

script. We evaluated the tool on open-source software and the results showed that it would be

most beneficial to use it as a tool to support beginners in learning programming.

Keywords: program analysis, static analysis, Eclipse plugins, embedded SQL, Alvor.

Eclipse plugin PHP programmides leiduvate SQL päringute kontrollimiseks

Lühikokkuvõte

Käesoleva magistritöö eesmärgiks oli kavandada ja implementeerida Eclipse’i põhine

töövahend, mis võimaldaks kontrollida PHP-skriptides leiduvate SQL-päringute süntaktilist

ning semantilist korrektsust. Aluseks sai võetud juba eksisteeriv töövahend Alvor, mis on

mõeldud Java koodis leiduvate SQL lausete kontrollimiseks. Töö tulemusena valmis laiendus

AlvorPHP, mis kogub kokku päringulaused neid sisaldava PHP funktsiooni või skripti

skoobis ning tagastab edasiseks käitlemiseks. PHP dünaamilise eripära tõttu ei olnud võimalik

realiseerida toetust kõigile temas esinevatele keelelistele konstruktsioonidele. Mõned neist

jäid realiseerimata ka ajapuuduse tõttu, mis jätab võimaluse laienduse edaspidiseks

täiendamiseks. Sellele vaatamata on toetatud enam levinud ning kasutatavad vahendid. Antud

laienduse kasutajate sihtgrupp peaks olema ennekõike algajad programmeerijad, kes saaksid

seda kasutada õppimist toetava abivahendina.

3

Võtmesõnad: programmianalüüs, sõnede analüüs, Eclipse’i pluginad, programmides

leiduvad SQL päringud, Alvor

4

Contents

INTRODUCTION ... 6

1. PROGRAM ANALYSIS .. 8

1.1 Abstract Syntax Tree ... 8

1.2 Visitor pattern .. 9

1.3 Bindings ... 10

1.4 String analysis ... 11

2. ECLIPSE PLATFORM ... 12

2.1 Overview of Eclipse .. 12

2.2 Plugin architecture ... 13

3. ALVOR ... 15

3.1 Alvor’s architecture ... 15

3.2 Abstract String Collector ... 16

4. ALVOR FOR PHP .. 18

4.1 Modifications ... 18

4.2 Implementation .. 19

4.3 Supported features ... 20

4.3.1 Scalar .. 20

4.3.2 Variables and Assignments .. 20

4.3.3 Quote .. 21

4.3.4 InfixExpression... 21

4.3.5 ParenthesisExpression .. 22

5

4.3.6 ConditionalExpression ... 22

4.3.7 IfStatement ... 22

4.3.8 SwitchStatement ... 23

4.3.9 Loop statements .. 24

4.3.10 FunctionDeclaration ... 24

4.3.11 Resource inclusion.. 25

4.4 Unsupported features ... 27

4.4.1 Exceptions .. 28

4.4.2 ArrayAccess ... 28

4.4.3 InLineHtml ... 28

4.4.4 FunctionInvocation ... 28

4.4.5 MethodInvocation... 29

4.4.6 ReflectionVariable .. 29

4.4.7 ClassInstanceCreation .. 30

5. EVALUATION ... 31

6. FUTURE WORK .. 33

CONCLUSION ... 34

Bibliography .. 35

Appendix ... 38

6

INTRODUCTION

PHP is a popular scripting language used for web application development. Web

applications are usually backed by a database engine. Conventionally PHP developers interact

with the database through the standard APIs that require passing them SQL queries as strings.

This is referred to as embedding the SQL queries into the host-language. Since the standard

development tools provide no feedback on the correctness of such embedded queries, they are

not checked until runtime. Thus, there is no guarantee that they result in a successful call

instead of an error. Such faulty database calls can be pinpointed only by testing. The fact that

the queries are often built up dynamically, by using concatenation and various other methods

of string manipulation, makes it even harder to track down and fix bugs. Let’s consider an

example:

function limit_query($limit=10)

{

 return mysql_query("SELECT * FROM baz LIMIT".$limit);

}

The function limit_query() has one parameter, $limit, that it uses to construct and return a

MySQL query. The query uses the database table named “bar” and returns a number of rows

equal to the integer value of the $limit parameter.

Here we have two types of errors in our resulting query object that are underlined in red.

First, we have a semantic error, since the name of the database table has been misspelled.

Second, we have a syntactic error, due to the missing space between the keyword “LIMIT”

and the value of the “$limit” parameter. It would be beneficial to be aware of such errors as

soon as possible, without having to run the code. This is the case not with only PHP, but with

any general-purpose host language (e.g. Java, Python etc.) that embeds a domain-specific

language (DSL) such as SQL.

In this master’s thesis we present a tool for statically analyzing embedded SQL queries

inside PHP scripts. The tool itself is implemented as a plugin for the Eclipse IDE [1] and is an

extension of an existing tool named Alvor, implemented by Annamaa et al [2]. Alvor provides

7

feedback by detecting the queries in code and running them against the configured database. It

originally used Java as the host language and a number of SQL dialects as the embedded

DSLs. Alvor performs sound SQL syntax analysis during compile-time, supporting a number

of string manipulation constructs from simple concatenation of strings to more sophisticated

method calls and recursion.

The scope of this work is more limited than the original tool. We have not included all

the features that are supported in Alvor’s program analysis. The goal was to create a proof-of-

concept extension for PHP, evaluate its results and leave room for future work if it would be

reasonable to further develop it.

The thesis consists of the following parts: in the first chapter we are going to give a

theoretical background of how Alvor functions in terms of program analysis and more

specifically, string analysis. In the second chapter we give an overview of the Eclipse

platform and the lifecycle of Eclipse plugins that make up Alvor’s architecture. The third

chapter is dedicated to Alvor’s working principles and the fourth to the extension of Alvor for

PHP (AlvorPHP), created by the author. In the fifth chapter, we evaluate the tool, using some

open source projects and finally, in the sixth, consider possibilities for future work.

8

1. PROGRAM ANALYSIS

Program analysis is a technique for analyzing programs in terms of a specific property,

such as the absence of certain types of run-time errors. Program analysis may take place

during the execution of the program, called dynamic program analysis, or without executing

the program at all, called static program analysis. In this thesis we are going to focus on the

latter, since our goal is to give feedback to the programmer during the phase of code writing.

The type of program analysis that Alvor uses is called string analysis. String analysis

determines values of string expressions at specific points of program. We use that information

to determine all the possible values of our embedded SQL queries.

1.1 Abstract Syntax Tree

To perform our analysis we make use of the program’s abstract syntax tree (AST). The

AST is a tree representation of the source code, where each node of the tree represents a

language construct occurring in the program’s source. The AST is similar to the DOM model

inside an XML document. That kind of tree model is easier to analyze than the source text.

Most of the code-related tools and features in the Eclipse IDE make use of the AST. The

Eclipse Java Development Tools (JDT) [3] framework considers every source file as a tree of

AST nodes. Each node in the AST is a subclass of the abstract ASTNode class, defined in the

JDT. Every such subclass is a specialization for an element in the programming language

being used.

Let us consider an example AST in Figure 1.1 that has been created using the Eclipse’s

built-in ASTView plugin for Java [4]. Here we have a simple “Hello World” program and its

AST representation. As we can see, we have a separate node for our main method declaration

(MethodDeclaration). There are specific nodes for other language constructs as well, such as

assignments (Assignment), variable declarations (VariableDeclarationFragment), etc.

9

Figure 1.1: AST of a “Hello World” program in Java

1.2 Visitor pattern

As we can see in Figure 1.1, even a simple “Hello World” program can produce quite

complex AST. Say, we want to reach the MethodInvocation object that represents our

System.out.println(“Hello World”) call. One possible solution for that would be scanning all

the levels in the entire AST, but is definitely not very convenient. Fortunately there exists a

better solution for that: the visitor design pattern. It allows us to query for the child nodes of

each ASTNode in our program AST. Covering all the aspects of the visitor pattern is out of the

10

scope of this thesis. Gamma et. al. have given a good overview of it in their book about

design patterns [5].

In the JDT, the ASTVisitor class represents our visitor object, which defines the visit()

method for every ASTNode class object. In the ASTNode class we have the corresponding

accept() method that accepts the visitor as it gets passed to it when we step through the AST.

The visitor pattern is somewhat cumbersome: each time we need to search for a specific

node, we have to implement the needed visit() method that takes the node as its argument.

This creates a certain amount of boilerplate code that is used nowhere else. In the JDT there is

an alternative solution for that, which is being used in Alvor: a specific SearchEngine class

allows us to conveniently search for Java elements inside the AST. We can define our own

search patterns that allow us to search for a node by its structural properties. E.g. a

MethodDeclaration contains information about its name, return type, modifiers etc. that we

can use to identify the node of interest. Unfortunately, the SearchEngine class is available

only in the JDT and our PHP extension for Alvor still has to rely on the general visitor

pattern.

1.3 Bindings

An important feature in the JDT that we use in our program analysis are bindings. A

binding defines a named entity in the Java language, e.g. packages, types, fields, methods,

constructors and local variables [6]. Bindings give the picture about the structure of the

program the way the compiler sees it.

Not all nodes contain binding information. The subclasses of the ASTNode class that do

are always identifiable by their binding information. Usually they have more than one type of

binding information available. For example, an instance of the MethodInvocation class has a

binding to its return type, declaring class, types of exceptions it might throw etc.

All binding information is of great use to us when we investigate the nodes of our AST. It

allows us to gather the needed information when we try to determine the possible values of

our embedded SQL queries. Bindings are also being used in a number of other language

specific development frameworks, not just the JDT.

11

1.4 String analysis

Static string analysis is a type of program analysis that allows us to compute run-time

values of relevant strings occurring in the program. In our case these are the strings that are

used as parameters in the SQL query functions. Because we cannot compute precise values of

dynamically constructed strings at compile-time, string expressions are evaluated abstractly

by over-approximating the set of possible string values. String analysis is sound if every

string that may occur during the execution of the program is represented in the set of abstract

strings, computed by the analyzer.

Let us consider an example:

String result = "SELECT * FROM ";

for (i = 0..3) {

 if (i % 2 == 0) result = result + "bar";

 else result = result + "baz";

}

As the result of executing the previous code we would have the string “SELECT * FROM

barbazbar” stored in the variable result. If we evaluate the result abstractly it would have the

following form: “SELECT * FROM (bar|baz)*”. The concrete string is included in the set of

strings represented by the regular expression, thus the abstract string is a sound over-

approximation of the concrete behavior of the program. As we can see, the sets of strings that

may occur as the result of conditional branching and iteration have a neat and compact

representation as regular expressions. We do not have to turn to more complex analysis

techniques, such as computing the least fix-points, since the abstract domain has a natural way

of representing iteration via the Kleene star operation on regular expressions.

Next, we can check, whether the abstract string itself is correctly formed by using a

technique called abstract parsing. If the abstract string conforms to the SQL syntax, it means

that every string represented by the regular expression is a syntactically correct SQL

statement. Since all concrete strings are represented by this set of abstract strings, we have

statically verified the correctness of the possible outcome. On the other hand, if the abstract

string is not a valid SQL statement, this means that we may have identified a bug. Yet, this

could also be just a false alarm, because not all elements in our abstract set are possible in real

execution.

12

2. ECLIPSE PLATFORM

2.1 Overview of Eclipse

The Eclipse Project is an open-source project written in the Java programming language

and is developed by the Eclipse Foundation [1]. Although originally Eclipse was meant to be

a Java development IDE (integrated development environment), it can be used to build a

variety of tools. The Eclipse Project tries to provide a universal platform to be “an open

extensible IDE for anything and yet nothing in particular” [7].

When speaking about Eclipse we mean the Eclipse Software Development Kit (SDK),

which is an IDE and a platform for building Eclipse based tools at the same time. Eclipse

itself is not just one big Java program, but rather a collection of modules, called plugins. In

the core of the Eclipse SDK is the Eclipse Platform, which is composed of the following

layers that can be seen in Figure 2.1:

 Platform Runtime – the kernel of the Eclipse Platform. It discovers the needed

plugins on startup and runs them using an in-memory registry. Platform Runtime

is the only part of the Eclipse Platform that is not implemented as a plugin.

 Rich Client Platform – a set of tools for building Rich Client Applications,

applications that make use of the underlying Eclipse Platform framework.

 Workbench IDE UI – a set of plugins that make up the basic graphical interface of

the Eclipse IDE.

The Eclipse SDK also contains the before mentioned JDT (Java Development Tools)

framework, plugins that make up the Eclipse Java IDE, and the Plug-in Development

Environment (PDE): a set of plugins that enable the development of plugins for Eclipse itself.

The PDE allows the programmer to conveniently develop and run plugins. It also includes

wizards for creating plug-in projects, templates for generating code and specialized editors for

configuring plugin’s properties. For quick testing, a new instance of Eclipse can be launched.

13

There is a number of materials available on the web for beginners to start writing their own

Eclipse plugins, such as [8], which is a bit deprecated, but still a good starting platform for

total newcomers. More thorough overview with tutorials and code samples can be found in

the book by Blewitt [9].

We can always install additional components to our Eclipse installation that allow us to

fulfill a variety of tasks. The Eclipse PDT (PHP Development Tools) [10] framework

provides all the necessary components needed to develop PHP-based web applications. Our

PHP extension for Alvor makes heavy use of the features provided by the PDT. The PDT

framework can be used to perform similar program analysis as was covered for JDT in the

previous chapter. There is also a number of other open-source projects and commercial

products that are built on top of or integrated with the PDT framework, such as the popular

Zend Studio IDE for PHP [11].

Figure 2.1: Overview of the Eclipse architecture [12]

2.2 Plugin architecture

A plugin is the smallest component of the Eclipse Platform that provides a service. It is a

small Java program that extends the functionality of Eclipse in its own way. It consumes the

14

services of other plugins or it provides its own functionalities for others to consume. The

Eclipse platform loads its plugins dynamically, only on demand. This ensures that Eclipse is

able to operate fast, loading and using only the components which it currently needs.

A plugin is a self-contained software component in the sense that it includes all the

resources it needs to run: code, image files, resource bundles, etc. Some plugins do not

contain code at all [13]. An example of this kind of a plugin is the one that provides online

help in the form of HTML-pages.

Each plugin has a manifest file, MANIFEST.MF, which describes the plugin’s

dependencies and its contributions to the outside world. By contributions we mean the

services and functionalities for other plugins to use. An extension management system, called

Extension Registry, can be used to create extension points, which define contracts for other

plugins to implement. All extension points and extensions are defined in a separate plugin.xml

file. Using these pre-defined contracts, we can, for example, create an XML editor by

extending the functionalities of a plain text editor via its publically exposed extension points.

This way we create a new implementation that is completely separate of the base plugin,

similar to the concept of inheritance. Doing so, we can flexibly create our tool on top of the

Eclipse Platform that consists of loosely coupled, but still well integrated modules.

15

3. ALVOR

Alvor is a tool developed by Annamaa et. al. that statically analyzes SQL statements

embedded in Java programs. Alvor is implemented as a plugin for the Eclipse IDE, using the

Eclipse JDT framework. It can perform sound analysis on strings constructed using different

programming features and provides feedback on both syntactic mistakes as well as semantic

errors.

3.1 Alvor’s architecture

In this chapter we are going to describe the technical working principles of Alvor. For

more details one should consult the original article [2].

Figure 3.1: Alvor’s architecture [2]

The stages of Alvor’s workflow are displayed in Figure 3.1. Alvor operates within the

scope of a Java project, assigned by the user. It goes through all the *.java files located within

the project’s scope and its dependencies. It uses the capabilities of the Eclipse JDT to acquire

the AST from the source code of each file. The AST gets then analyzed by the Abstract String

16

Collector to locate the Java expressions representing SQL statements; such expressions are

referred to as hotspots. For each hotspot the collector evaluates the abstract string

representation, which is a regular expression, representing all the possible values the hotspot

can evaluate to. The entire process of locating the hotspots and evaluating their values is

referred to as crawling.

After crawling has finished, the collected values are checked for errors, which is done in

two parts. The SQL Syntax Analyzer parses the abstract strings for syntax errors. The Testing

Facility generates sample queries and runs them against the database engine. If the test fails

and the database returns an error, e.g. due to a misspelled or missing field name, an error is

reported. Error messages from both of the analysis are displayed in the Eclipse UI similar to

the Java compiler errors.

3.2 Abstract String Collector

Abstract String Collector collects the locations of hotspots and evaluates their

approximate values as abstract strings. These abstract strings are in form of regular

expressions, which may have the following forms: concatenation, repetition, choice and

parenthesized value. The simplest form of an abstract string is a plain string or character

value.

The String Collector crawls the code for certain API calls that accept SQL statements as

arguments. The names of methods to search for can be defined by the user in Alvor’s

preferences. The corresponding abstract string values for each hotspot are evaluated through

inter-procedural constant propagation analysis. To guarantee termination on recursive

programs, the depth of analysis is limited.

Conditional appending of string values is represented with a choice (a | b) between two

abstract strings a and b, where one of them stands for the then and the other for the else

branch of the if-else statement. Loop-statements, such as while and for, are assumed to

execute zero or more times. If we use concatenation inside the body of a loop, we can

represent the resulting abstract string as a* – an empty string or a number of repetitions of the

abstract string a.

If a method parameter is being used in a hotspot expression, the resulting abstract string

is going to be constructed as a choice of all possible parameter values that are gathered at the

17

method’s call sites. If the value of the hotspot is computed using a method call, then all

implementations of this method are considered. The resulting hotspot value will be a choice,

built from the results of all the gathered method calls.

There exist a number of features of the host language that are not supported by the string

collection algorithm, such as field variables in Java. If such an unsupported feature is

encountered by the algorithm, the hotspot is considered as unsupported and a corresponding

marker will be displayed in the Eclipse IDE. In case of supported hotspots, the string

collection algorithm is sound and collects all the possible string values the hotspot can

evaluate to.

Finally, let us consider an example SQL query embedded in Java and show how we

evaluate the value of a hotspot:

public Statement nameFilter(String name) throws SQLException

{

 String query = "SELECT * FROM tbl WHERE name = "+name;

 return getConnection().prepareStatement(query);

}

We have configured Alvor to search for the JDBC API method prepareStatement() calls

that represent hotspots. The method call has a single parameter, which is a query string,

named “query”. To find its value, we start moving up the AST from the method’s call site.

We see that the variable is declared in an assignment that consists of a concatenation

operation. The first part of the concatenation is a string object that we do not need to evaluate

any further. The second part is a variable, called name that we now start to evaluate. Since the

only place, where we encounter the name variable is the parameter of the method, we need to

move outside of the scope of the method and consider all the places, where the nameFilter()

method is called. The resulting abstract string is as follows:

“SELECT * FROM tbl WHERE name = ” “[.*]”

We expect the value of the variable to be a plain string, therefore we can represent it here

as the regular expression that accepts any character.

18

4. ALVOR FOR PHP

AlvorPHP is an extension of the original Alvor. It is an Eclipse plugin that allows us to

gather SQL statements embedded in PHP programs and forward them to Alvor to check for

syntactic and semantic errors. For that, it uses the Eclipse PDT framework to obtain the

needed ASTs from the source code.

4.1 Modifications

Compared to the original tool, there exist a number of principal differences in our

extension’s architecture. The main reason for that is using PHP as the host language. Instead

of *.java files inside Java projects we are now dealing with *.php scripts and projects with the

PHP nature.

The analysis itself is now limited to the scope of the PHP program or the containing

function of the hotspot. If the hotspot is located inside a PHP function, we crawl the AST and

try to gather the information available until reaching the header of the function. Should we

encounter a call to a function on the way, we do not follow it and stop our analysis. This is the

case even if the function is the same one that we are currently operating in, i.e. recursion is

also not supported.

If the hotspot is located outside a PHP function or class definition, then the scope is the

containing PHP script. In that case, we climb the AST until we reach the start of the program.

If we encounter any resource inclusions, we attempt to build an AST from the contents of the

included file and analyze it the same way as the original file. The reason for such limitations

was to keep the analysis as simple as possible.

The forms of abstract strings that we gather are the same. We have only modified the

value that a loop statement may have. Loop statements are now handled as conditionals,

where the then part consists of the body of the loop and the else part is simply left empty. I.e.

19

we expect the body of the loop to be executed one or zero times. The resulting value is a

choice of abstract strings, where the else part is represented by the empty string. All the rest of

the architecture is more or less the same as described in Chapter 3.

4.2 Implementation

Creating Alvor’s PHP extension required re-factoring the existing code. Previously Alvor

supported only Java as the host language and had just a single implementation that depended

on the JDT. The new solution had to contain an interface instead that each language-specific

extension needed to implement. The logic of AlvoPHP in terms of program analysis mostly

stayed the same. Only the language constructs that we encounter during crawling are

different, because now we are using PDT.

The PDT framework is closely related to the Dynamic Languages Toolkit (DLTK)

framework [14] and uses some of its features. The DLTK framework is a set of other

extensible frameworks that provide JDT-alike features for building development

environments oriented for dynamic languages.

A notable problem during the implementation was the lack of proper documentation and

code examples. Compared to the JDT, it was really hard to get access to the needed materials

concerning DLTK and PDT.

A number of problems related to the host language had to be considered during the

implementation. The biggest challenge was handling the dynamic nature of PHP. As PHP is a

weakly typed language, there exists no type safety. Therefore we cannot statically check the

correctness of the code before we start our analysis.

There are certain features in PHP that we are not able to properly check with our

algorithm. Because of that, a number of limitations had to be introduced, although some of

them already existed in the original Alvor tool as well. In the next two sub-sections we give

an overview of language constructs in PHP that are supported by AlvorPHP and those that are

not. The constructs and names we use to identify them are defined in the PDT.

20

4.3 Supported features

4.3.1 Scalar

Represents a general scalar value: ‘string’, 1, 1.2, etc. When we encounter a scalar value

as the parameter of our hotspot, we do not have to perform any further crawling. The value of

the Scalar is handled as a plain string value and gets returned as the value of the hotspot.

An example: mysql_query(“SELECT * FROM tbl”), where the mysql_query() API call is

our hotspot function. The argument value is given by a Scalar class object and is the value of

the hotspot.

4.3.2 Variables and Assignments

The Variable class object refers to a variable, e.g. $a. Variables are the constructs that we

encounter the most in our code. For the variable to have any use to us it has to hold a value. A

value is given to a variable in an Assignment class object, where the value on the right side is

assigned to the variable on the left. We support two types of operands in assignments, the

plain “equals” operand, e.g. $a = “foo”, and the “concat equals”, e.g. $a .= “foo”. The

second one is often used when we need to build our queries dynamically.

Tracking down variables to evaluate their possible values can be tricky: a variable can

exist in a wide range of expressions, not just inside assignments. Therefore, the evaluation of

variables is done in a number of separate phases. We move up the AST, starting from the first

encounter of the variable and use its unique variable binding to track its usage in the code. A

variable binding can identify either a field of a class or an interface or a global/local variable

declaration. If the variable is not present in the node being investigated, we skip it and move

on. Finding an occurrence, we evaluate it and add its value to the resulting set of values.

When we have reached the root of our search scope, the resulting set of values gets returned.

We have to look out for unassigned variables: variables that are present within the search

scope, but with no value assigned or the value has been assigned in a different scope. For

example, we do not have access to instance field variables. We are going to cover this later

when we talk about unsupported features. This means that we can sometimes come up with

nothing, when trying to track down the usage of our variable. This is the case with the widely

21

used superglobals: $_GET and $_POST that are used to collect form data: we have no access

to their runtime values. A common practice is using the gathered form data directly in query

strings, e.g.:

“SELECT * FROM tbl WHERE name=”.$_POST[‘name’]

4.3.3 Quote

Quote is a special type of language construct available in PHP. It is a kind of hybrid,

consisting of Variable and Scalar class objects. An example of such kind of construct would

be the following:

“SELECT * FROM tbl where foo=$foo and bar=$bar”

Here $foo and $bar represent variables that are being used in the context of a query. To

get the full value of the Quote construct, we have to track down the values of the variables.

The resulting abstract string will be a sequence of values that we are able to gather.

This kind of variable embedding is distinctive to PHP and allows the developer to

conveniently use the variables he needs, without turning to concatenation. Had we gone the

other way around, this is how our query string would have looked like:

“SELECT * FROM tbl where foo=”.$foo.” and bar=”.$bar

4.3.4 InfixExpression

Represents an infix expression, such as: $a+1, foo()*2. An infix expression is made up of

n expressions and n-1 infix operands that can be of various kinds. We support only the

concatenation of strings, since this is the only operation that gives us reasonable results and

which we can properly track. That is, we cannot evaluate the result of multiplication for

example, due to the fact that it does not take string values as arguments. When encountering

an infix expression, it gets split into parts and each sub-expression is evaluated separately.

The resulting value is a sequence of strings, made up of gathered results.

22

4.3.5 ParenthesisExpression

Represents an expression inside (round) parenthesis, e.g. ($a = 1). Occasionally we have

to use parenthesis to separate our logic and control the flow of the algorithm. When

encountering a parenthesized expression, we discard the parenthesis and evaluate the

expressions inside one after another.

4.3.6 ConditionalExpression

Represents a type of conditional expression, holding the condition, the true expression

and the false expression, e.g. $a > 0 ? $a : -$a. Instead, we could have defined and called the

following function:

function foo($a)

{

 if($a > 0)

 return $a;

 else

 return -$a;

}

Since we are dealing with a conditional here, the resulting value is a choice of values,

evaluated from expressions inside the true and false branches. The ConditionalEpression can

be directly used as the parameter in the tracked API calls, e.g. foo($a > 0 ? $a : -$a), because

it is an expression. That does not hold for statements that represent conditionals: the if-else

and switch.

4.3.7 IfStatement

Represents an if-else statement, e.g.:

if ($a > $b) {

 $sql .= "value > ".$b;

 } elseif ($a == $b) {

 $sql .= "value = ".$b;

 } else {

 $sql .= "value < ".$b;

 }

The previous example can also be written using alternative syntax, both of them are

supported by our tool:

23

if ($a > $b) :

 $sql .= "value > ".$b;

 elseif ($a == $b) :

 $sql .= "value = ".$b;

 else :

 $sql .= "value < ".$b;

 endif;

Each branch of the if-else statement defines a block of code, which itself is an object

defined in the PDT, named Block. The body of the Block can be another if-else statement, i.e.

the elseif construct.

We are unaware, which of the branches is going to be taken during runtime, therefore we

have to evaluate them all. The value of an if-else statement is a choice of all the possible

abstract string values the statement may evaluate to.

4.3.8 SwitchStatement

The SwitchStatement is yet another type of conditional available in PHP that may have

the following form:

switch ($i)

{

 case 0 :

 $sql .= "value = 0";

 break;

 case 1 :

 $sql .= "value = 1";

 break;

 default :

 $sql .= "value IS NULL";

 break;

}

Once again we have no idea of the branch that is going to be taken, thus we have to

investigate all the paths available and return their values as a choice of abstract strings.

A good thing about the API of the SwitchStatement defined in the PDT is that each

branch is represented as a separate SwitchCase class object. Each SwitchCase has an array of

statements that are defined inside its body. At the same time, the SwitchStatement’s

counterpart in the JDT framework has rounded up all the expressions defined in the entire

switch into a single array, which makes finding and using them a bit cumbersome.

24

4.3.9 Loop statements

Loop statements allow us to execute a block of code for a number of times. This way we

can conveniently build our queries, e.g. if we need to append a number of conditions to our

query string.

The following are the loop statements defined in the PDT and supported by our tool:

 WhileStatement

 ForStatement

 DoStatement

 ForEachStatement

The while and for statements are in principle the same as in any other programming

language. The DoStatement is a special case of the WhileStatement, e.g.:

do {

$sql .= ",".$i;

} while ($i > 0);

The ForEachStatement is the one that is distinctive to PHP. The foreach loop goes

through a block of code for each element in an array, e.g.:

foreach ($arr as $i => $value)

{

 $sql .= ",".$value;

}

As we mentioned already, the support for loop statements is somewhat limited in

AlvorPHP. We consider them as if-else statements, where the body of the loop represents the

then part of an if-else statement. The abstract string value of a loop statement is a choice of

abstract strings, consisting of an empty string and the value that we are able to gather inside

the body of the loop. The reason for such solution was the fact that creating support for loops

was technically quite complicated and was left for future work. Although the current solution

does not provide us too much information, we still tried to give at least a limited support for

the loop statements that are being used quite widely.

4.3.10 FunctionDeclaration

An object of the FuncionDeclaration class represents a block of code that defines the

declaration of a function in our code. Should we find a hotspot inside a FuncionDeclaration

object, then this declaration object is going to be our search scope.

25

During the analysis we move up the AST, starting from the location of our hotspot until

we have reached the start of the function. The last thing we do is evaluate the function’s

formal parameters. If there are none, we stop our analysis and return whatever we have been

able to gather.

PHP has a nice feature that allows assigning default values to function parameters, as

shown in the following code snippet. If we haven’t found any useful information in the

function body, we could be able to gather at least something from the function signature. The

problem is that when crawling the function’s parameters, we cannot always be sure that we

have found what we are looking for. Consider the following code:

function foo($bar, $bar=”bar”)

{

 echo $bar;

}

Defining a function with such signature and calling it in the following manner:

foo(“bar”, “foo”) is perfectly fine in PHP and the value “foo” gets printed as the result.

Function’s formal parameters’ default values are not used very often, because most of the

times we have argument values passed to our function calls.

4.3.11 Resource inclusion

A distinctive feature of PHP is the possibility to include the contents of one PHP file in

another, using the specific include() and require() functions. This is a convenient way to reuse

a piece of code in multiple places.

In the PDT we use the Program class to define a single PHP file. In terms of program

analysis, if we include one Program class object in another, we’d have to consider the

contents of the included file in our analysis as if they were present in the original file from the

point of the inclusion.

The following is a brief code example that describes the principles of resource inclusions

in PHP and how we handle them:

26

inc2.php

<?php

$foo = 'inc2';

$bar = 'inc2_val';

?>

inc1.php

<?php

$table = 'inc1';

$value = 'inc1_val';

require_once 'inc2.php';

?>

test.php

<?php

include 'inc1.php';

mysql_query("SELECT * FROM ".$table." WHERE value = ".$value);

?>

Our main script here is the “test.php”, which contains a mysql_query() function call that

represents a hotspot. The possible value of the hotspot depends on the values of the $table and

$value variables. We start the evaluation by looking for the usage of the $table variable,

because we encounter it first.

On the line preceding the hotspot function is an inclusion statement that refers to a file

named “inc1.php”. We obtain its contents and construct the corresponding AST that we start

crawling from bottom up. We are going to carry on until we are able to evaluate and return a

value of our variable. We do not have to look any further, because the inclusion overwrites

everything else that precedes it.

The very first statement that we encounter in “inc1.php” is yet another inclusion,

referring to the “inc2.php” file this time. Therefore we change our search scope and move into

“inc2.php”, which does not contain any information about the variable $table. After reaching

the start of “inc2.php” we move back into “inc1.php” and continue on from the line preceding

the inclusion. Eventually, we are able to collect a value from an assignment in the “inc1.php”

and return it. The very same process has to be fulfilled for the other variable as well, giving us

the following value for the hotspot:

"SELECT * FROM inc1 WHERE value = inc1_val"

When including a file, we have to provide its file name. This has to be a path relative to

the file that the inclusion is located in. In PHP the argument for the inclusion function may be

a string, value of a variable, the result of a method or a function call, etc. In our analysis we

decided to support only plain strings as filename arguments.

There might exist situations where we can run into a loop when including one file in

another. Consider an example:

27

inc2.php

<?php

$table = 'inc2';

$value = 'inc2_val';

require_once 'inc1.php';

?>

inc1.php

<?php

require_once 'inc2.php';

mysql_query("SELECT * FROM ".$table." WHERE value = ".$value);

?>

The problem is that when we re-include “inc1.php”, we start our analysis from the bottom

of the “inc1.php” script once again. This way we will be stuck in an endless loop. To avoid

situations like that we maintain a list of ASTs and check it on each inclusion. Should the list

already contain the AST of the file that we are about to include we halt our analysis.

4.4 Unsupported features

As we mentioned, there is a number of PHP expressions that we do not support in our

analysis. The two main reasons for that are the following:

 We are unable to evaluate the resulting value, because we do not have access to

the needed runtime information. Encountering such type of expression, the

analysis process for the current hotspot is halted and the corresponding place in

the code is going to be marked with a marker in the Eclipse IDE.

 We are able to evaluate the expression, but it does not give us any useful

information that we could further use in our analysis. This kind of expressions are

just skipped because the soundness of the analysis does not depend on them.

Examples of such expressions include: the EchoStatement, which does nothing

more than just outputs info, e.g. echo $a.

In the following subsections we cover more thoroughly a number of unsupported PHP

features and explain why they were left out.

28

4.4.1 Exceptions

PHP 5 has an exception model similar to other programming languages [15]. An

exception can be thrown (ThrowStatement) and caught (CatchStatement) inside a try-block

(TryStatement). We decided to leave exceptions out from our analysis for simplicity. They are

unsupported and thus handled the same way as all the rest of unsupported features. We

generally do not encounter them too often in code and there are various ways to manage

without them.

4.4.2 ArrayAccess

Refers to an array access that may be in a form such as $arr[0]. There are various ways

to manipulate the contents of an array and they are often populated using runtime values. This

makes it complicated to track all of the members in an array. Therefore supporting array

access would make the analysis too complicated.

4.4.3 InLineHtml

In the PDT, the InLineHtml class refers to HTML code. Sometimes there are situations

where the PHP code is mixed with HTML tags. Although this is generally considered a bad

coding practice, there are still occasions where we need to use them both in the same script.

Since there is nothing that the HTML markup can provide us, it just has to be discarded.

4.4.4 FunctionInvocation

The FunctionInvocation class represents a function call to a previously declared function,

such as foo(). The crawled hotspots are also instances of the FunctionInvocation class. As

already mentioned: we do not move out of the containing function scope through the call of

another function. Should we encounter a function call that has effect for the possible value of

our hotspot, e.g. through assigning the value of the function call to a variable that is used in

one of our hotspot functions, the analysis for the given hotspot is halted. Otherwise we carry

on with the analysis.

29

4.4.5 MethodInvocation

MethodInvocation is a FunctionInvocation whose function body is defined inside a class

declaration, ClassDeclaration. The hotspot function itself can be a MethodInvocation, if we

have written our own separate class for database interaction. The name of the method has to

be declared in AlvorPHP’s preferences for it to be crawled. Otherwise, we again halt the

analysis, should a method invocation somehow have influence to the possible value of our

hotspot, e.g. mysql_query($a->foo()).

4.4.6 ReflectionVariable

ReflectionVariable represents a special type of variable in PHP, consisting of an identifier

and two dollar signs, e.g. $$a. The PHP manual defines it as a variable variable that takes the

value of the variable and treats that as the name of a variable [16]. Let us consider a simple

example:

$a = "hello";

$$a = "world";

$sql = "SELECT * FROM ".$hello;

We have now defined two variables: $a with the contents “hello” and $hello with the

contents “world”. Using the variable $hello in the concatenation operation the value “world”

gets appended to the query string. By using variable variables we can dynamically set and use

a variable name.

Although this kind of language construct is very convenient to use, it is quite hard to

track in our analysis. When encountering a variable variable, we first have to take its value

and construct a new Variable instance based on its contents. The problem is that the contents

of the variable may include runtime values. Even if they don’t, there would be no way for us

to gather the needed information about the variable binding. This information is crucial, when

we crawl the code for variable usages. Since it proved to be too complex technically, we

decided not to support ReflectionVariable.

30

4.4.7 ClassInstanceCreation

The ClassInstanceCreation allows us to create a new instance of a class, e.g. new a. In

case we create a new instance of a class in a place where it could influence the possible

outcome of our analysis, e.g. assigning a value to variable that is used in our hotspot function,

the analysis of the given hotspot is halted. The reason is that we’d have to move out of our

current scope into a different one.

31

5. EVALUATION

As we already mentioned: PHP applications interact with the user during runtime and it is

quite complicated to perform static code analysis for such systems. One way users could make

the most of our tool would be by replacing runtime values with static ones for testing. This

way we would be able to gather a larger number of hotspots. We evaluated our tool on two

different systems.

First, we used a small open source project, written for a tutorial, to test the usefulness of

our tool. The tutorial was about creating a blog system in PHP from scratch [17], using the

capabilities of a MySQL database. The code for the tutorial is available on Github [18]. There

were altogether two hotspot patterns that we crawled, namely the functions used for database

interaction. We had to slightly modify the code to be able to fully test all the supported

features of AlvorPHP, e.g. resource inclusions. This did not influence the number of hotspots

that we were able to gather in any way. We were able to identify and evaluate all the queries

in the project, i.e. there were no unsupported hotspots. All the gathered hotspot values passed

Alvor’s SQL checks, there were no bugs in the queries that our extension evaluated.

Next, we intentionally created a number of situations that would eventually evaluate to an

unsupported hotspot. For example, calling a function to retrieve the name of the table used in

the query. In return, AlvorPHP successfully pinpointed all the unsupported features that we

introduced.

The second system that we used in evaluation was Moodle [19] (version 2.8.5), an

environment for internet-based courses. Moodle is also running on a MySQL database and

has implemented its own separate API with a number of methods for database interaction

[20]. From all those methods we were able to use five in our analysis. The reason is that our

analysis did not support the more complex methods, e.g. retrieving records without using the

full SQL query as the argument. The results of our evaluation can be seen in Table 5.1.

32

 # Hotspots

Benchmark LOC Patterns total unsupported supported %

Simple Blog 972 2 14 0 14 100

Moodle 1063551 5 1018 661 357 35

Table 5.1: Evaluation results

As the results show we were able to evaluate roughly one third of all the collected

hotspots in Moodle. It isn’t a bad result, when we consider the lines of code. Most of the

supported hotspots passed Alvor’s SQL checking. Though, a number of false positives was

returned that turned out to be still correct after double checking them manually.

Evaluation results suggest that it would be more beneficial to use AlvorPHP on smaller

programs, since the code logic tends to get too complicated in bigger applications. Thus, it

could be used as a tool to support beginners when learning programming.

33

6. FUTURE WORK

Implemented solution as it is in its current state, represents only a small subset of the

possibilities that we can consider in our program analysis. There exist a number of

improvements left for future work:

 The first goal should be moving outside the boundaries of the function where our

hotspot is located. I.e. if we are operating within the scope of a function, we

should follow function and method calls from their call sites and try to evaluate

results based on the corresponding function and method declarations.

 In AlvorPHP we only had a limited support for loop constructs and no support for

recursion. The goal should be evaluating them the way it is done in the original

Alvor.

 We could also add a number of other language constructs that we previously did

not consider, e.g. exceptions.

 A bigger challenge would be creating support for a higher level PHP framework,

such as Yii [21] and Zend [22]. The problem is that PHP frameworks use

sophisticated patterns to communicate with the underlying database. Such as the

active record pattern [23], used in Yii. This makes the task quite complex, if not

impossible.

34

CONCLUSION

In this master’s thesis we gave an overview of Alvor, a tool that allows us to statically

check SQL queries embedded in Java programs. Alvor is implemented as a plugin for the

Eclipse IDE and allows for use in interactive real-life projects. The goal of this thesis was to

create an extension that would allow Alvor to perform similar syntactic and semantic

checking of SQL strings inside PHP programs.

The created extension was meant as a proof-of-concept to determine how beneficial it

would be to perform static analysis on code written in a language with a dynamic nature,

such as PHP. We limited our analysis to the scope of a PHP function or a script to avoid

making the analysis overly complicated.

We evaluated the usefulness of our extension on the Moodle environment and a simple

blog system, written for a tutorial. The results showed that in the current state AlvorPHP

may be used as a tool for supporting novice programmers in their studies. To be used on

bigger and more complex systems, one should further develop it in the aspects that were

left for future work.

35

Bibliography

[1] The Eclipse Foundation, "Eclipse IDE," 2015. [Online]. Available:

http://www.eclipse.org. [Accessed 2015].

[2] A. Annamaa, A. Breslav, J. Kabanov and V. Vene, "An Interactive Tool for Analyzing

Embedded SQL Queries," in Programming Languages and Systems - 8th Asian

Symposium, APLAS 2010, Shanghai, China, 2010.

[3] The Eclipse Foundation, "Eclipse Java development tools (JDT)," 2015. [Online].

Available: https://eclipse.org/jdt/. [Accessed 2015].

[4] The Eclipse Foundation, "org.eclipse.jdt.astview - AST View," 2015. [Online].

Available: https://eclipse.org/jdt/ui/astview/. [Accessed 2015].

[5] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley, 1994.

[6] The Eclipse Foundation, "Help - Eclipse platform org.eclipse.jdt.core.dom Interface

IBinding," 2015. [Online]. Available:

http://help.eclipse.org/juno/topic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/cor

e/dom/IBinding.html. [Accessed 2015].

[7] The Eclipse Foundation, "Eclipse Platform Overview," 2015. [Online]. Available:

https://eclipse.org/eclipse/eclipse-charter.php. [Accessed 2015].

[8] EclipsePluginSite.com, "Eclipse Plugin Development," 2008. [Online]. Available:

http://www.eclipsepluginsite.com/. [Accessed 2015].

[9] A. Blewitt, "Eclipse 4 Plug-in Development by Example : Beginner's Guide",

Birmingham, UK: Packt Publishing Ltd., 2013.

36

[10] The Eclipse Foundation, "Eclipse PHP Development Tools," 2014. [Online]. Available:

https://eclipse.org/pdt/. [Accessed 2015].

[11] Zend Technologies Ltd, "The PHP IDE for Smarter Development," 2014. [Online].

Available: http://www.zend.com/en/products/studio. [Accessed 2015].

[12] R. Ramsagar, "Eclipse IDE Primer," 13 09 2009. [Online]. Available:

https://tecnoesis.wordpress.com/2009/09/13/eclipse-ide-primer/. [Accessed 2015].

[13] The Eclipse Foundation, "Eclipse Platform Technical Overview," 19 04 2006. [Online].

Available: https://eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-

whitepaper.html. [Accessed 2015].

[14] The Eclipse Foundation, "Dynamic Languages Toolkit," [Online]. Available:

https://eclipse.org/dltk/. [Accessed 2015].

[15] The PHP Group, "PHP: Exceptions - Manual," 2015. [Online]. Available:

http://php.net/manual/en/language.exceptions.php. [Accessed 2015].

[16] The PHP Group, "PHP: Variable variables - Manual," 2015. [Online]. Available:

http://php.net/manual/en/language.variables.variable.php. [Accessed 2015].

[17] D. Carr, "Creating A Blog From Scratch With PHP," 07 06 2013. [Online]. Available:

https://daveismyname.com/creating-a-blog-from-scratch-with-php-

bp#.VVRky_mjLNF. [Accessed 2015].

[18] D. Carr, "daveismynamecom/simple-blog-part-1-build," 11 03 2014. [Online].

Available: https://github.com/daveismynamecom/simple-blog-part-1-build. [Accessed

2015].

[19] M. Dougiamas, "Moodle - Open-source learning platform," 2015. [Online]. Available:

https://moodle.org/. [Accessed 2015].

[20] M. Dougiamas, "Data manipulation API - MoodleDocs," 15 08 2014. [Online].

Available: https://docs.moodle.org/dev/Data_manipulation_API. [Accessed 2015].

[21] Yii Software LLC, "Yii PHP Framework," 2015. [Online]. Available:

http://www.yiiframework.com/. [Accessed 2015].

37

[22] Zend Technologies Ltd., "Zend Framework," 2015. [Online]. Available:

http://framework.zend.com/. [Accessed 2015].

[23] M. Fowler, "Active Record," in Patterns of Enterprise Application Architecture,

Addison Wesley, 2002, pp. 160-163.

38

Appendix

User Guide

To install Alvor use the following Eclipse update-site: https://dl.bintray.com/alvor/Alvor/

NB! You may need to uncheck "Group items by category".

Guidelines for using Alvor are available at: https://bitbucket.org/plas/alvor/overview

Source code

The source code for both the original Alvor tool and its PHP extension is publicly

available on Bitbucket: https://bitbucket.org/plas/alvor

The code for the AlvorPHP extension is located in the com.googlecode.alvor.lang.php

plugin.

https://dl.bintray.com/alvor/Alvor/
https://bitbucket.org/plas/alvor/overview
https://bitbucket.org/plas/alvor

39

Non-exclusive licence to reproduce thesis and make thesis public

I, Urmas Tamm (date of birth: 25.09.1983),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright,

„Eclipse plugin for analyzing embedded SQL queries in PHP programs“

supervised by Vesal Vojdani and Aivar Annamaa

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual

property rights or rights arising from the Personal Data Protection Act.

Tartu, 20.05.2015

