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INTRODUCTION 
 
Various environmental constraints – shortage and excess of light or water, low 
or high temperature, mineral deficiency, salinity – limit photosynthetic pro-
duction in natural plant communities. Ecologists traditionally define any sub-
optimal conditions which limit the rate of plant growth as a stress situation 
(Grime, 1977). The term 'stress' is also widely used among plant physiologists 
referring mainly to the unstable physiological state of an organism (Larcher, 
1987; Gaspar et al., 2002). When interpreting the shortage of light as a resource 
limitation, it is important to consider that shade conditions are generally created 
by the vegetation itself. Therefore low light availability can coincide both with 
plenty of available soil resources, but also with the lack of mineral nutrients, if 
soil becomes depleted as nutrients are accumulated into biomass. 
 Plant species vary widely in their tolerance to different environmental stress 
conditions (Grime, 1977; Tilman, 1988; Bigelow & Canham, 2002). Enhanced 
stress tolerance is generally associated with species-specific leaf traits, which 
improve persistence and longevity – for instance longer leaf life-span (LL), 
higher leaf dry mass per unit area (LMA), lower leaf nitrogen content and lower 
photosynthetic capacity (Westoby et al., 2002). Higher species-specific LMA is 
usually accompanied by prolonged average leaf longevity (Reich et al., 1997; 
Reich et al., 1999). This strong association is commonly explained by greater 
structural toughness of high LMA leaves, which allow them to cope with 
biological and physical hazards like herbivory and wind damage (Reich et al., 
1991; Wright & Cannon, 2001). LMA can be viewed as a product of two 
components – leaf density and thickness. Larger fraction of relatively nitrogen-
poor mechanical tissues in leaves, such as collenchyma and sclerenchyma 
increases tissue density (Garnier et al., 1997). Hence the high LMA due to 
increased tissue density is associated with reduced leaf nitrogen concentration 
and photosynthetic capacity (Niinemets, 1999), particularly if expressed per unit 
of leaf dry mass. The fraction of  mechanical tissues in leaf tends to decrease 
with increasing leaf thickness (Garnier et al., 1999). High LMA due to 
increased leaf thickness, therefore, is associated with increased leaf nitrogen 
content and photosynthetic capacity (Niinemets, 1999), particularly if expressed 
per unit of leaf area. 
 Within a given species, leaves developed at high light are thicker and exhibit 
higher LMA than those grown in shaded conditions. Whether species-specific 
LMA of shade-tolerant species is lower than that of shade-intolerant species 
under common irradiance, is less clear and contrasting reports can be found in 
the literature. Shade tolerance has been traditionally thought to depend on traits, 
which improve light harvesting efficiency  (Valladares & Niinemets, 2008). As 
low LMA allows to construct larger foliar area per unit biomass, it has been 
hypothesized that more shade tolerant species have lower LMA than intolerants 
(Givnish, 1988). Some reports are consistent with this hypothesis, showing that 
at least among deciduous species, shade tolerators do have lower LMA at 
common irradiance (Beaudet & Messier, 1998; Kull & Niinemets, 1998; 
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Niinemets, 2006), but not among evergreens (Lusk et al., 2008). Based on the 
work in seedlings, Reich et al. (2003) strongly suggests opposite to the common 
expectation, that shade tolerant species grown under the same light conditions 
have higher LMA than intolerants, and conclude that species shade tolerance is 
associated with general resource-conservation syndrome traits, which include 
long leaf life-span, high LMA, low mass-based leaf nitrogen content, low 
photosynthetic capacity and low respiration rate. This discrepancy between 
studies has been associated with ontogenetic modifications in biomass 
allocation and LMA (Niinemets, 2006). Shade intolerant species commonly 
have smaller seeds and therefore, at common age, seedlings of shade intolerant 
species have lower mass and smaller LMA and greater fraction of biomass in 
leaves (Niinemets, 2006). 
 Aside water, which is the key environmental factor most often constraining 
terrestrial productivity, nutrients are the second key limitation. Among soil 
nutrients, nitrogen has usually the strongest effect on both plant productivity 
and biomass allocation (Vitousek & Howarth, 1991). Optimality models show 
that for a given amount of nitrogen in foliage, the carbon gain of the entire 
canopy is maximized when foliar nitrogen is distributed proportionally to light 
availability along the vertical canopy profile (Field, 1983; Sands, 1995). This is 
because leaf nitrogen content is strongly related to the leaf photosynthetic 
capacity (Evans, 1989) and leaves with higher carbon assimilation capacity can 
use stronger light more efficiently for carbon assimilation. The common 
explanation for the strong relationship between total leaf nitrogen content and 
photosynthetic capacity is the fact that a large fraction of leaf nitrogen is 
allocated into photosynthetic apparatus, particularly into ribulose-1,5-
bisphosphate carboxylase/oxygenase (Rubisco), the primary enzyme of photo-
synthetic carbon assimilation cycle (Evans, 1993a; Hikosaka & Terashima, 
1996). However, proteins in leaf are continuously turned over by simultaneous 
synthesis and degradation. The permanent turnover of proteins consumes 
energy, and as the mature leaves cannot import carbohydrates due to the 
physiological and anatomical restrictions (Turgeon, 1989), the strong relation-
ship between foliar nitrogen and photosynthetic performance can mean that 
certain amount of energy must be captured through photosynthesis to maintain 
the nitrogen within the leaf (Kull, 2002). 
 The utilization of nitrogen and light are often also viewed in terms of their 
use efficiency either at a single leaf, whole plant or ecosystem level. The 
efficiency of using nitrogen (NUE), taken up from soil, for dry biomass 
production by plants combines two distinct components: (i) photosynthetic 
nitrogen-use efficiency (PNUE) defined as the instantaneous rate of carbon 
fixation per unit of plant nitrogen, and (ii) the mean residence time (MRT), 
which determines the duration of return from a unit of nitrogen invested 
(Berendse & Aerts, 1987). In practice, the inverse of the nitrogen concentration 
in the biomass is commonly used as a rough estimate of plant NUE (Chapin, 
1980; Shaver & Melillo, 1984). Light absorption per unit of leaf nitrogen (ΦN) 
was originally also used as an indicator of NUE (Hirose & Werger, 1994), but 
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this approach is valid only if the light-use efficiency (LUE, productivity per unit 
of absorbed light) remains constant, as ΦN equals the ratio of instantaneous 
NUE to LUE. Based on model calculations (Kull & Jarvis, 1995; Kull & Kruijt, 
1999) ΦN can be interpreted as the energetic cost of maintaining nitrogen within 
the foliage. Light capture per unit of above-ground biomass (ΦM) can be used as 
an estimation of plant efficiency to acquire the light resource with the above-
ground biomass regarded as an investment to capture light (Hirose & Werger, 
1995). However, if biomass is viewed as a productivity over a certain time 
period, low ΦM should be interpreted as an evidence of increased LUE. If light 
energy is efficiently converted into biomass, light absorption per unit of 
biomass should decline even if available light resources do not change; and 
increased amount of the photosynthesising tissue per unit of intercepted light 
leads to an increase in LUE as with the increasing amount of photosynthetic 
apparatus, a relatively smaller proportion is light saturated (Kull, 2002). 
 Photosynthetic apparatus consists of two major fractions: (i) light-reactions 
of photosynthesis are responsible for the capture of light energy and using it to 
make energetic (ATP) and reductive equivalents (NADPH), and (ii) dark 
reactions utilize high-energy molecules for carbon fixation. As chlorophyll-
binding protein complexes can be found only in light-harvesting part, while the 
largest fraction of leaf nitrogen is in Rubisco, i.e. in the biochemical part of the 
photosynthetic machinery, chlorophyll to nitrogen content ratio (Chl/N) reflects 
the relative share of light-harvesting part of the photosynthetic apparatus. At 
very low light photosynthesis increases linearly with increasing light intensity, 
but starts to deviate from the linear relationship as soon as photosynthesis in the 
uppermost chloroplasts reaches light saturation. This earlier saturation of 
photosynthetic apparatus near upper leaf surface is an universal phenomenon. 
Both at single leaf level (Nishio et al., 1993; Han et al., 1999) and within the 
canopy (Sinclair & Shiraiwa, 1993), the increasing thickness of photosynthetic 
tissue (i.e. greater LMA) enchances LUE as relatively smaller fraction of it 
becomes light saturated (Kull, 2002). In low-light environments, the leaves 
invest relatively more into the light harvesting part of the photosynthetic 
machinery, reflected in increased Chl/N ratio. Despite of rapid increases at very 
low light availability, the Chl/N ratio remains still lower, than the predicted 
optimum for maximising the photosynthesis in the lowest canopy layers (Evans, 
1993b; Kull & Kruijt, 1998). The ability of photosynthetic apparatus to 
acclimate, is also limited in the case of very high irradiance, as Chl/N ratio 
tends to achieve a plateau (Kull & Niinemets, 1998). Apparently there are 
certain construction limits which do not allow the amount of light harvesting 
antenna to be reduced or increased sufficiently for full acclimation to extreme 
shade or very high irradiance (Evans, 1993b; Kull, 2002). 
 The remote sensing methods detect primarily the chlorophyll content of the 
upper canopy layers, which dominate in the reflectance signal above the 
vegetation, and with some assumptions also the total canopy chlorophyll 
content can be estimated from the vegetation reflectance data relatively well 
(Filella & Peñuelas, 1994; Sims & Gamon, 2002; Coops et al., 2003; le Maire et 
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al., 2004). However, for using remote sensing information to parameterize 
large-scale carbon gain models (Sellers et al., 1992; Dai et al., 2004) whole 
canopy photosynthetic capacity has to be estimated from reflectance data, and 
the foliage photosynthetic potential is usually related more strongly to canopy 
nitrogen than to chlorophyll content (Evans, 1989). Therefore further 
assumptions about the correlation between Na and Chla are needed to predict Na 
and foliage photosynthetic capacities from remotely-assessed chlorophyll 
content (Schepers et al., 1998; Weih & Rönnberg-Wästjung, 2007). Positive 
scaling of Na with light availability has been postulated to reflect optimal 
distribution of limiting nutrients in the canopy, as it maximises canopy 
photosynthesis for a given total canopy nitrogen (Anten, 2005). To predict the 
nitrogen profiles from remote sensing data, the assumption of an “optimal” 
distribution of nitrogen or arbitrary correlations between nitrogen and current 
leaf light environment would be the most feasible approach (Friend, 2001; Dai 
et al., 2004).  
 To improve the accuracy of large-scale carbon gain model estimations based 
on remotely-assessed chlorophyll content, more data about the vertical 
distribution profiles of chlorophyll and nitrogen within canopy is currently 
needed. For large-scale conclusions it is also important to gain more advanced 
insight into generality and specifity of plant responses among life-forms, 
functional groups and species. Responses observed at community level consist 
of both physiological plasticity within species and species-specific differences. 
Heterogeneous distributions of resources and competitors have lead to diversity 
of plant species and traits to cope with different habitats. Among functional 
groups of woody species with different leaf longevity deciduous broad-leaved 
species and evergreen conifers co-exist in cooler habitats while evergreen 
broad-leaved angiosperms are more common in warm temperate climate. 
 

 
Aims 

 
The general aim of this study was to identify the suites of traits responsible for 
species shade tolerance and light harvesting in different plant functional groups. 
In particular, to understand how plant responses to light availability depend on 
species-specific functional traits in different plant functional groups at common 
light availability (genotypic plasticity) and within light gradients (phenotypic 
patterns). First we hypothesize that among woody species, higher shade 
tolerance is associated with species-specific leaf traits, which promote foliar 
area accumulation and/or reduce the ‘cost’ of leaf production (longer leaf life-
span, smaller dry mass per area, lower nitrogen content and lower photo-
synthetic capacity).  We also expect that in the herbaceous canopy community-
level light capture efficiency per unit biomass and leaf nitrogen, is modified by 
changes in species composition, and that species dominating at different soil 
fertility have different strategies for biomass and nitrogen partitioning.  
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The specific aims of this thesis were: 
(1)  to examine how leaf life-span, leaf dry mass per area, leaf nitrogen content 

and photosynthetic capacity are related to species shade tolerance in 
temperate woody species of the Northern Hemisphere and how these 
patterns vary among plant functional groups; 

(2)  to compare the responses of deciduous tree species and herbaceous species 
regarding the distribution patterns of leaf chlorophyll and nitrogen contents 
and leaf dry mass per area with the light availability gradient within the 
canopy; 

(3)  to examine how light capture ability varies in the herbaceous canopy with 
respect to biomass and nitrogen partitioning patterns along a productivity 
gradient; to which extent the community-level variation of light absorption 
per unit of above-ground biomass and per unit of leaf nitrogen can be 
contributed to changes in species composition; and which species-specific 
characteristics of biomass and nitrogen partitioning lead to dominance of a 
species in different soil conditions. 
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MATERIALS AND METHODS 
 
The first paper is based on the literature data published for a number of 
temperate woody species in the Northern Hemisphere. The other two papers are 
based on original field measurements in south-eastern Estonia, conducted in a 
grassland (Aru, near town of Elva: 58°16'N, 26°18'E) and a mixed deciduous 
forest (Järvselja: 58°22'N, 27°20'E).  
 
 

Literature-based data 
 
Information from three main databases (Niinemets, 1999; Wright et al., 2004; 
Niinemets & Valladares, 2006) were combined to generate the database of 
species shade tolerances and leaf traits on 339 woody species from entire 
temperate zone of the Northern Hemisphere. The information on the species’ 
shade tolerance scores was provided by the database of Niinemets and 
Valladares (2006), which contains cross-calibrated tolerance rankings for 806 
temperate woody species from Europe, East-Asia and North-America. Shade 
tolerance, in this database is defined as the approximate minimum light 
intensity at which a given species is able to grow. Shade tolerance rank 1 
corresponds to very intolerant (minimum light availability at least 50% of full 
sunlight) and 5 to very tolerant (minimum light requirement 2–5%). 
 The information on species-specific values of leaf structural and 
physiological traits – leaf dry mass per area (LMA), nitrogen content and 
photosynthetic capacity – were obtained from the databases of Wright et al. 
(2004) and Niinemets (1999). Only the data of upper-canopy leaves, developed 
under high-light conditions were used in these databases for calculating the 
average species-specific leaf characteristics. Glopnet database (Wright et al., 
2004) provided information for 1978 species from 175 sites and the database of 
Niinemets (1999) for 597 woody species from 182 sites. Out of these species, 
339 were present in the database of shade tolerance rankings (Niinemets & 
Valladares, 2006), which set the limit to the number of species in combined 
dataset of species shade tolerances and leaf traits.  
 Leaf life-span (LL) used here, is an average leaf life-span, but not the 
maximum possible leaf longevity. As the two main databases used (Niinemets, 
1999; Wright et al., 2004), provided the data for mean leaf life-span only for 
148 species, missing values of LL were obtained from 42 additional literature 
sources, by counting the average number of leaf cohorts with at least 50% 
foliage remaining for evergreens, and on the basis of growing season length and 
the number of leaf flushes for deciduous species (see paper I, Appendix A1 for 
detailed description of collection of leaf life-span data). 
 

4
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Measurements in the forest site 
 
The measurements in the mixed deciduous forest located in south-eastern 
Estonia at Järvselja. The site was dominated by two shade intolerant early-
successional species, Betula pendula Roth. (shade tolerance score = 2.03 
according to Niinemets & Valladares, 2006) and Populus tremula L. (shade 
tolerance = 2.22) in the upper canopy layer (20–27 m) and by a shade tolerant 
species Tilia cordata Mill. (shade tolerance = 4.18) in the lower layer (15–20 
m). Permanent scaffolding towers were used to access the foliage. Four to five 
sample points were chosen along the vertical light gradient at different heights 
in the canopy of each studied species. To estimate the light availability, relative 
diffuse irradiance (ID) was calculated from hemispherical photographs taken 
above each sample point (Nikon CoolPix 950 digital camera equipped with an 
FC-E8 “fish-eye” conversion lens, Nikon Corporation, Tokyo, Japan; images 
were analysed with Winscanopy 2001a Pro, Regent Instruments Inc., Quebec, 
Canada). Area of leaf lamina, dry mass, nitrogen and chlorophyll contents were 
assessed for each species from all sample points. 
 
 

The site description and measurements  
in the grassland 

 
The herbaceous community located in south-eastern Estonia near Elva was a 
former agricultural field abandoned five years earlier. Ten 1×1 m plots were 
established along the slope (inclination angle ca. 5°) of a small hillock that 
produced a gradient in soil conditions, the most apparent in the thickness of the 
humus horizon (see detailed description in Paper III). The species growing in 
sample plots were Achillea millefolium L., Agrostis gigantea Roth, Agrostis 
stolonifera L., Anthriscus sylvestris (L.) Hoffm., Cerastium vulgare Hartm., 
Cirsium arvense (L.) Scop., Dactylis glomerata L., Elymus repens (L.) Gould, 
Festuca pratensis Huds., Festuca rubra L., Helictotrichon pubescens (Huds.) 
Pilger, Phleum pratense L., Pilosella officinarum F.W. Schultz et Sch. Bip., 
Polygala vulgaris L., Potentilla anserina L., Ranunculus acris L., Taraxacum 
officinale Weber ex Wigg, Trifolium pratense L. and Vicia cracca L. 
Depending on the height of the vegetation, the canopy was divided into three to 
five layers, each 15–25 cm thick. To characterize the vertical gradient in light 
conditions, a series of measurements were made above and below each canopy 
layer with a LI-191 line quantum sensor (Li-Cor Biosciences, Lincoln, NE, 
USA). To characterize the variation in the diffuse component of solar radiation, 
one set of measurements were made before sunrise. Leaf angles were measured 
(using a protractor) for major species in all plots and layers. Then the biomass 
in each canopy layer was harvested within a 0.5×0.5 m area in the centre of the 
sample plot and sorted by species. Leaf and stem dry mass, leaf area, 
chlorophyll and nitrogen contents were assessed separately for each species and 
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canopy layer. Light absorption partitioning between species was calculated 
using modified approach of Anten and Hirose(1999), separately for each canopy 
layer based on the measurements of direct and diffuse irradiance, leaf area, leaf 
angle distribution and chlorophyll content, accounting for light absorption by 
stems and foliage clumping. The exact formulae are shown in Paper III. 
 
 

Chlorophyll and nitrogen determination 
 
Chlorophyll concentration of a sample was measured optically in 80% aqueous 
acetone with a S2000-FL spectrometer (Ocean Optics, Dunedin, FL, USA) 
following the equations of Porra et al. (1989). Nitrogen concentration was 
determined using a standard Kjeldahl method by Kjeltec Auto 1030 analyser 
(Foss Tecator AB, Höganäs, Sweden). 
 
 



16 

RESULTS AND DISCUSSION 
 

 ‘Leaf economics spectrum’ and shade tolerance in 
temperate woody species of the Northern Hemisphere  

 
To explore how mean leaf life-span (LL), leaf dry mass per area (LMA), leaf 
nitrogen content (N) and photosynthetic capacity (A) were related to the species 
tolerance to low light availability an extensive database consisting of 339 
woody species from temperate Northern Hemisphere was constructed. This 
database contained data on 244 deciduous broad-leaved angiosperm species 
(denoted as DB functional group), 50 evergreen broadleaved angiosperms (EB), 
35 evergreen conifers (EC), 7 evergreen needle-leaved angiosperm species and 
3 deciduous conifers. The two smallest groups (evergreen needle-leaved 
angiosperm species and deciduous conifers) were included in the analyses of the 
pooled data and these two minor groups were not outliers in any of the broad 
relationships (data not shown), but separate analyses within the functional 
groups were conducted only for the three major groups (DB, EB and EC). 
 Across the whole dataset, LL was positively associated with LMA (Pearson's 
correlation coefficient r =  0.81, p < 0.0001) and negatively with leaf nitrogen 
per dry mass, Nm (r = –0.71, p < 0.0001) and photosynthetic capacity per leaf 
dry mass, Am (r = –0.83, p < 0.0001). This strong coordination of leaf functional 
traits – LL, LMA, Nm and Am – at a global scale, is called 'leaf economics 
spectrum'. This spectrum spans from 'quick-return' strategy characterised by 
short-living leaves with low dry mass investments per leaf area and high 
photosynthetic capacities to 'slow-return' strategy characterised by long leaf life-
span and greater structural toughness of leaves, which results in high LMA, low 
Nm and low Am (Wright et al., 2004). The intriguing question would be whether 
the variation in shade tolerance is compatible with the general strategies of 
stress-tolerant and intolerant species, as it has been earlier suggested by Reich et 
al. (2003). To reduce the four-dimensional set of leaf traits forming ‘leaf 
economics spectrum’ to one-dimensional trait characterising species strategy 
along the continuum of ‘quick-return’ to ‘slow-return’ spectrum, principal 
components analysis (PCA) was conducted for LL, LMA, Nm and Am on pooled 
data of 339 species. The results of PCA (Table 4 in I) showed that 83% of the 
total variation in LL, LMA, Nm and Am was described by the first axis. Factor 
scores from this first PCA axis were used in subsequent correlation analysis as a 
variable characterising the species strategy for resource availability in general 
(the slow-return species at one end of the ‘leaf economics spectrum’ 
representing the general strategy for coping with limited resources and the fast-
return species at the other end of the spectrum representing the strategy for high 
resource availability). However, the lack of correlation between the factor 
scores from the first PCA axis and species shade tolerance rankings (Table 5 in 
I) showed that contrary to the expectations in literature, the species ability to 
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tolerate limited light availability is not related to the global-scale gradient of 
'leaf economics'. 
 
 

Mean species-specific leaf traits and shade tolerance 
within functional groups (DB, EB and EC) 

 
In order to understand, why species shade tolerance was not related to the 
general ‘leaf economics spectrum’, the bivariate relationships between the shade 
tolerance ranking and individual leaf traits were further investigated. Contrary 
to the global pattern of  'leaf economics' where LL and LMA are expected to 
scale positively with each other, species shade tolerance increased with LL 
(pooled data: r = 0.21, p < 0.001; within DB group: r = 0.30, p < 0.001; EB 
group: r = 0.33, p < 0.05;  EC group: r = 0.68, p < 0.001) and decreased with 
LMA (pooled: r = –0.12, p < 0.05; DB: r = –0.39, p < 0.001; EB: r = –0.36, p < 
0.05;  EC: r = –0.49, p < 0.001). In pooled data, shade tolerance also decreased 
with nitrogen content per leaf area (Na: r = –0.26, p < 0.001) and photosynthetic 
capacity per leaf area (Aa: r = –0.42, p < 0.001).   
 Phenotypic plasticity enables the leaves developed in shaded conditions to 
have lower LMA than ‘sun-leaves’ within the same tree crown (Fig. 1A in II). If 
the selection pressure along light availability gradient favours low LMA in 
shaded conditions, it should lead to inherently lower LMA of shade-tolerant 
species compared to intolerants. It has been hypothesized that lower LMA in 
shade-tolerant species is an important adaptive trait, which reduces the biomass 
requirement for the construction of unit foliar area (Givnish, 1988). Among 
winter-deciduous temperate trees a negative relationship between species-
specific LMA and shade tolerance has been often observed, in particular if 
ontogenetic variations are considered (Niinemets, 2006; Lusk & Warton, 2007), 
while the scaling between LMA and shade tolerance has been suggested to be 
positive among evergreen species due to the effect of leaf longevity (Lusk et al., 
2008). Longer leaf life-span has been postulated to be adaptive under shade 
conditions due to the increased foliar area by the accumulation of leaf cohorts 
produced over several years in evergreens, and because of leaf longevity also 
determines the duration of return from unit of investment into photosynthetic 
tissues (Lusk, 2002; Westoby et al., 2002). As LL and LMA scale positively 
with each other at global scale, it is expected that among the evergreens the 
shade-tolerant species should have higher LMA due to the positive association 
between LL and shade tolerance (Lusk & Warton, 2007; Lusk et al., 2008). 
Among the temperate woody species studied here (Table 2 in I), shade tolerance 
was inversely related to LMA also within the evergreen groups, however, 
contrary to the global pattern, within evergreen groups LL and LMA were not 
significantly related (Fig. 1A; EB: r = 0.17, p > 0.05;  EC: r = –0.02, p > 0.05).  
 

5
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Figure 1. Bivariate relationships between the four leaf traits forming 'leaf economics 
spectrum'. Data were separately fitted by standardised major axis regressions within 
major functional groups in temperate Northern Hemisphere woody flora (deciduous 
broadleaved angiosperms – DB; evergreen broadleaved angiosperms – EB and ever-
green conifers – EC) and Pearson's correlation coefficients (r) within each group are 
shown with significance coded as *** p < 0.001; ** p < 0.01; * p < 0.05; ns  
p > 0.05. 
 
 
The species shade tolerance was clearly related to LL and LMA within each 
functional group (Table 2 in I) and all three major functional groups differed 
significantly by mean values of LL, LMA and Am (Fig. 2). DB group was 
characterised by the lowest LL and LMA, and the highest Am, EB group 
exhibited intermediate values and EC functional group had the highest LL and 
LMA accompanied by the lowest Am. The differences between DB and EC 
group were so pronounced that even the ranges of LL and Am values did not 
overlap (Fig. 2, the whiskers denote minimum and maximum values). However, 
at the same time, the mean shade tolerance did not differ significantly between 
the three major functional groups and nearly whole range of shade tolerance 
scores (from 1 corresponding to very intolerant to 5 corresponding to very 
tolerant species) were present within each group (Fig. 2 inset). Therefore it 
seems that despite the strong global-scale coordination among plant functional 
traits forming the 'leaf economics spectrum', there is still enough room for 
ecological differentiation, as various alternative combinations of different 
values of the same traits can result in similar tolerance.  
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Figure 2. The comparison of  three main functional groups (deciduous broadleaved 
angiosperms – DB; evergreen broadleaved angiosperms – EB and evergreen conifers – 
EC) in the database of temperate Northern Hemisphere woody species. The bar heights 
show the mean trait values within the groups and the whiskers illustrate the whole span 
of variation, corresponding to the maximum and minimum value within the given 
functional group. Means with the same letter are not significantly (p > 0.05) different 
between the functional groups (Games-Howell test). 
 
 
There were remarkable differences between the strategies exploited within 
functional groups to achieve the plant tolerance to shade. As winter-deciduous 
species cannot prolong the leaf longevity to a great extent due to the limitation 
by the length of the growing season, but this group is generally characterised by 
high photosynthetic capacities (Fig. 2C); the strategy of deciduous broad-leaved 
group appeared to be reducing the construction cost of the unit of leaf area to 
increase the shade tolerance. Within the deciduous broad-leaved group shade 
tolerance was negatively related to nitrogen content per leaf area (Na: r = –0.47, 
p < 0.001) and photosynthetic capacity (both mass based Am: r = –0.47, p < 
0.001 and area based Aa: r = –0.61, p < 0.001). Hence it appears that besides the 
controversial trends in LL and LMA, which were present in all groups, the 
combination of the leaf traits enhancing shade tolerance in deciduous broad-
leaved group, contradicts the general pattern of 'leaf economics spectrum' 
(Table 4 in I, Fig. 1) also concerning the simultaneous reduction of LMA and 
Am with increasing shade tolerance of the species (Table 2 in I). 
 Contrary to deciduous species, in evergreen conifers group, which was 
characterised by the longest leaf life-span (Fig. 2A), species shade tolerance 
was increasing with Am (r = 0.56, p < 0.001) and photosynthetic nitrogen use 
efficiency (PNUE, r = 0.50, p < 0.001). It has been suggested that worldwide 
conifers are mainly constrained to less productive sites due to their lower 
photosynthetic capacities compared to angiosperm trees and lower fractions of 
foliar nitrogen in photosynthetic machinery (Lusk et al., 2003). However, as 
photosynthetic capacity of shade-tolerant deciduous angiosperms is expected to 
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be lower than average for deciduous angiosperms, it may offer some ex-
planation to how several shade tolerant conifers (members of genera Abies, 
Taxus and Tsuga) can still successfully compete with angiosperms in dense 
forests on fertile sites.  
 Evergreen broad-leaved group with intermediate leaf longevity (Fig. 2A), 
also exhibited intermediate strategy in respect of shade tolerance compared to 
deciduous broad-leaved species and evergreen conifers (Table 2 in I). Although 
there exists a global-scale coordination of leaf traits, which are individually also 
related to species shade tolerance, it appears that primarily the strategy, how to 
achieve shade tolerance, not the tolerance itself changes along the 'leaf 
economics spectrum'. Alternative strategies can also offer some insight into the 
geographical distribution of the species, as mixed forests of winter-deciduous 
broad-leaved and evergreen coniferous species are common in cool temperate 
climates, while evergreen broad-leaved trees become gradually dominating in 
warmer temperate forests. 
 
 

Acclimation to a vertical gradient of light availability  
in herbaceous and deciduous woody canopies  

 
Besides the differences in species-specific leaf traits discussed in the previous 
chapter assessed at high light availability (genotypic plasticity), the species and 
functional groups may also significantly vary in the capacity for foliage 
acclimation to light gradients. Such responses to changes in the environment are 
called phenotypic plasticity. 
 
To understand the mechanisms and possible limitations of light acclimation 
within herbaceous and woody canopies the distribution of LMA, leaf chloro-
phyll and nitrogen contents along vertical gradient of light availability were 
investigated in herbaceous species from an old-field and in three deciduous tree 
species with different shade tolerance (P. tremula, B. betula and T. cordata). 
The range of light conditions measured in July was similar in the studied tree 
and herbaceous canopies varying from 1 above the canopy to 0.1–0.2 measured 
above the lowest layer. 
 The results of paper I showed that shade-tolerant deciduous trees had lower 
species specific LMA and Na compared to intolerants. Among deciduous woody 
species appears to be strong similarity between plastic and evolutionary 
responses of these leaf traits to light gradients when to compare the species 
specific results of paper I with the phenotypic plasticity along the vertical 
gradient of light availability within the canopy studied in paper II (Fig. 1 in II). 
Both LMA and Na were positively related to light availability within the canopy 
in studied tree species (r ranging from 0.83 to 0.93, p < 0.001), but for grassland 
species these correlations were generally insignificant with only few exceptions 
(Table 1 in II). However, despite the weak relationship with light availability in 
herbaceous species, the positive scaling of Na with LMA was common for all 
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data in paper II (Fig. 2A in II), and the correlation between LMA and Na was 
strong both for all three tree species pooled (r = 0.94, p < 0.001) and for all 
herbaceous species pooled (r = 0.84, p < 0.001). The results of path analysis in 
paper II showed that the light-dependent modifications in Na were 
predominantly controlled by the variation of LMA (Fig. 3 in II). 
 LMA is one of the most extensively studied foliar trait as it measures the 
biomass investment per unit of leaf area, and it is known to be determined first 
of all by light conditions during leaf development (Niinemets, 2007). In 
deciduous tree canopies perennial branching framework remains for many years 
and majority of leaves are formed at approximately the same time period in the 
beginning of the growing season. As the leaf production is negligible during the 
rest of the growing season in these deciduous tree species, which we 
investigated, the main changes in light availability occur before the leaf reaches 
to full maturity. Although the light gradient becomes notably steeper during leaf 
expansion growth, lower canopy leaves experience somewhat lower light 
availability than upper canopy leaves already since the formation and hence the 
light gradient throughout the rest of the leaf life-span can reflect the light 
availability patterns during leaf development. Leaves of P. tremula and 
T.cordata achieve their final LMA ca. 40–50 days after bud-burst (Niinemets et 
al., 2004). In contrast, the foliage in herbaceous canopy undergoes much more 
dramatic changes during its life-span, as plants grow taller forming constantly 
new leaves and stems, while lower leaves and smaller (subordinate) individuals 
become gradually shaded (Anten et al., 1998).  
 The within-canopy pattern in Na can result either from light-dependent 
modifications in LMA, or from changes in nitrogen content per unit of leaf dry 
mass (Nm), but the modifications in Nm have been shown to reflect leaf 
senescence (Field, 1983; Hirose & Werger, 1987; Anten et al., 1998). The rapid 
decline in Nm of the leaves in deciduous tree-canopy due to senescence occurs 
in autumn at the end of the growing season (Niinemets et al., 2004) but our 
measurements were made in July and hence no effect of senescence can be 
expected in tree canopy. However, in herbaceous species, the content of 
Rubisco starts to decline already a few days after full foliage expansion 
(Hidema et al., 1991; Hikosaka et al., 1993; Ono et al., 2001; Murchie et al., 
2005), reflecting the onset of leaf nitrogen reallocation from senescing foliage. 
Furthermore, light environment can substantially influence leaf aging process. 
Shading the whole plant delays leaf senescence, as demonstrated by experi-
ments, while shading individual leaves or branches accelerates senescence via 
re-translocation of foliar nitrogen (Hikosaka, 2005; Niinemets, 2007). However, 
the re-allocation of nitrogen from older shaded foliage to new leaves in upper 
canopy was not sufficient to produce the detectable vertical gradient of leaf 
nitrogen with increasing light availability in herbaceous species in our study 
(Table 1 in II). But the variability of Nm within a given species was remarkably 
lower among the tree species compared to the herbaceous plants (Table 2 in II), 
suggesting that at some limited rate the nitrogen re-translocation from older 
leaves was occurring in herbaceous canopy.  
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 Average values of LMA and Na were larger in trees than in herbaceous 
plants at the same light availability, and these differences became more 
pronounced at high irradiance (Fig. 3).  As in herbaceous canopy new leaves, 
formed in upper layers, are likely to become shaded later, it may be not 
beneficial to produce the leaves with fully high light-acclimated traits (including 
high LMA and Na) even under conditions of high irradiance. 
 Mature leaves have only a limited ability to modify leaf anatomy, however, 
these leaves have a significant capacity to adjust leaf chlorophyll content and 
the fraction of leaf nitrogen involved in light harvesting (Chl/N ratio) in 
response to changed light conditions (Brooks et al., 1996; Oguchi et al., 2003). 
Acclimation of leaf chlorophyll content to high irradiance consists of two 
opposite responses as confirmed by the results of path analysis (Fig. 3 in II). 
Increased irradiance can lead to enhanced leaf chlorophyll content via changes 
in leaf anatomy, like increased number of mesophyll cell layers and larger 
amount of photosynthetic apparatus per unit of leaf area (Kull, 2002). However, 
as this mechanism requires corresponding changes in leaf anatomy, it is fully 
functional only in developing leaves, and in our results of path analysis (Fig. 3B 
in II), the indirect positive effect of irradiance on chlorophyll content per unit of 
leaf area (Chla) via increased LMA and Na, appeared only in deciduous tree 
canopy, where light conditions measured in July, can be expected to reflect the 
light availability patterns during leaf development (between the end of April 
and the beginning of June for the studied tree species). The opposite effect of 
increased irradiance occurs at the chloroplast level. For the effective use of 
resources and photoprotection, the relative share of chlorophyll containing light 
harvesting part compared to the rest of photosynthetic apparatus decreases with 
increasing light availability. This direct negative effect of irradiance on Chla 
occurs both in young developing leaves and in fully matured leaves (Fig. 3 in 
II). Given that the re-acclimation of mature leaves to changed light conditions 
generally does not include the modifications in LMA, it should result in 
enhanced variability of Chla. Indeed, our results showed that one of the striking 
differences between tree and herbaceous species was that the coefficient of 
variation of Chla was much larger in herbaceous canopy (Table 2 in II). Transfer 
experiments have also shown that the re-acclimation to modified light 
environment leads to increased variation in Chla (Naidu & DeLucia, 1998; Frak 
et al., 2001; Oguchi et al., 2003). 
 Correlations between light availability and leaf nitrogen and chlorophyll 
contents are used for parameterizing large-scale carbon gain models using 
remote sensing information (Friend, 2001; Dai et al., 2004), however, as our 
results (Paper II) showed, modified light environments during vegetation 
expansion can importantly alter and break down these relationships. 
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Figure 3. Leaf dry mass (A), nitrogen (B) and chlorophyll (C) content per unit of leaf 
area, in relation to light availability (measured in July) for deciduous tree and 
herbaceous species. Error bars denote 95% confidence intervals for mean. 
 
 
The results of paper II also demonstrated the advantages of deciduous strategy 
for tree canopies where leaves are formed during a single flush and hence light 
conditions do not change significantly after leaf maturation. However, it should 
be remembered that in evergreen tree canopies light availability for a given leaf 
will also change after leaf maturation (Niinemets, 2007), although the changes 
are less rapid than in herbaceous canopy. The different strategies for shade 
tolerance between deciduous and evergreen woody species described in paper I, 
can partly arise from the different light acclimation capacities of young 
developing foliage and mature leaves. 
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Light capture efficiency expressed per foliar nitrogen 
content and biomass within the herbaceous canopy 

 
In tree canopy, the light environment of a given leaf is largely created by the 
same tree via self-shading. In herbaceous canopy, there is a great number of 
individuals and species in close proximity influencing the light regime. 
 The results of Paper II suggested that changes in leaf light environment due 
to continuous leaf formation and extension growth in herbaceous canopy, 
resulted in 'non-optimal' nitrogen distribution along the canopy light gradient, as 
mature leaves have only a limited capacity to re-acclimate to new light 
conditions. Comparison of the results from papers I and II could suggest that 
species growing in fertile conditions, which allow fast growth rates, are forced 
to have shorter leaf life-spans and quicker leaf turnover to replace old shaded 
leaves. Therefore, the distribution of light capture efficiency per foliar nitrogen 
and whole above-ground biomass within herbaceous canopy along soil fertility 
gradient was further investigated, and the main emphasis was to distinguish 
between the effect of interspecific plasticity and the importance of different 
species-specific mean values of the resource-use efficiencies at canopy scale. 
 Three forb species (Achillea millefolium L., Cirsium arvense (L.) Scop., 
Taraxacum officinale Weber ex Wigg.) and three grass species (Dactylis 
glomerata L., Festuca pratensis Huds. and Phleum pratense L.) were present 
along the entire productivity gradient studied in paper III. These six species 
produced majority of the biomass (65–95%) in all plots (Fig. 1 in III) and were 
examined in more detail. Other species were pooled together for analysis as 
they formed only a minor part of the total biomass and were present only in a 
few plots. According to Grime (1998) these pooled species belong to the 
transient species group. 
 As the changes in species composition were marginal along the productivity 
gradient, a clear trend was observed in species’ biomass proportions. Grasses 
formed more than 80% of the stand above-ground biomass at the more 
productive part of the transect, but their relative share declined to less than 50% 
in less productive sample plots. Forbs had a biomass maximum at medium soil 
fertility. This raises a question, why some species become dominant when 
productivity increases, whereas others remain subordinates. The next question 
would be, how the changes in species composition influence community-level 
responses as the traits of dominant species should have the major impact 
determining the functioning of the community (Grime, 1998). 
 Increasing site fertility usually leads to the decline in available light per unit 
of leaf area or biomass due to increased LAI and consequently, a decline in light 
capture per unit of mass can be treated as an indicator of increased competition. 
Indeed, we found that light absorption per unit of above-ground biomass (ΦM) 
decreased significantly with increasing stand biomass (i.e. the stand-level 
response; Fig. 4 in III) and also for two species at the species level (Fig. 7 in 
III). However, the stand-level decreasing trend was amplified by a change in 
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relative abundance of species with lower species-specific values of ΦM with 
increasing site productivity. For instance the average ΦM of P. pratense and F. 
pratensis was less than that in the other species (Fig. 7 in III). The directionality 
of light allows dominant species to monopolise this resource more easily than 
mineral nutrients and therefore, competition asymmetry usually increases in 
fertile soil (Grime, 1979; Schippers & Kropff, 2001). Competitive asymmetry is 
also influenced by plasticity of leaf area ratio (LAR), defined as leaf area 
expressed per plant total biomass (Anten & Hirose, 1998). A striking difference 
in plasticity of LAR between dominant and subordinate species was revealed in 
the present study. Grasses, dominating at the more productive plots, had 
intrinsically low LAR and they responded to increasing soil fertility by reducing 
LAR even more. In contrast, A. millefolium and T. officinale, two forb species, 
increased their LAR in response to intensified competition (Fig. 8 in III). The 
strategy of dominant species appears to be to overtop others at the cost of 
reduced LAR, while the strategy of subordinates is to increase light capturing 
ability by increasing LAR. 
 The behaviour of light absorption per unit of leaf nitrogen (ΦN) and above-
ground efficiency of nitrogen use (aNUE) at the stand level resulted mainly 
from changes in relative share of species with different species-specific values. 
There was almost no dependence of aNUE on site productivity for any species, 
except a significant decrease in aNUE of A. millefolium (Fig. 6 in III), while on 
the stand level, however, a strong increase in aNUE was revealed along the 
productivity gradient (Fig. 4 in III). Intrinsically lower tissue nitrogen 
concentration (i.e. higher aNUE) was a trait characteristic of species which 
became dominant at high availability of soil resources in our study. As these 
species had also low LAR, their high aNUE can be at least partly explained by 
simply greater allocation into nitrogen-poor support tissues (Lemaire & Millard, 
1999). Light capture per unit of foliar nitrogen at the species level showed a 
tendency to decrease with increasing soil fertility (Fig. 5 in III), suggesting that 
the decreased cost of nitrogen acquisition due to higher soil nitrogen availability 
was prevailing even in species which showed a tendency to decrease LAR in 
response to increased competition. The same trend was apparent in less 
productive plots on the stand level (Fig. 4 in III), however, in the most 
productive plots the stand-level ΦN started to increase again. This increase was 
caused mainly by the growing domination of species, like P. pratense, with 
intrinsically high ΦN in the more fertile soils. 
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CONCLUSIONS 
 

Shade conditions are generally created by the surrounding vegetation. The 
results of this thesis showed complex interactions between phenotypic plasticity 
and inherent species-specific differences of leaf traits, influencing the ability of 
plants to cope with limited light conditions. Alternative strategies, which can be 
partly explained by dynamics of light availability during leaf life-span, were 
observed among deciduous and evergreen woody species, graminoids and forbs. 
(1)  In temperate woody flora of the Northern Hemisphere, species shade tolerance 

was positively related to leaf life-span and negatively related to LMA, Na and 
Aa. However, there were also remarkable differences between the functional 
groups of deciduous broad-leaved species and evergreen conifers, as shade 
tolerance decreased with Am within deciduous broad-leaved group and 
increased within evergreen conifers’ group. Although the three functional 
groups studied here – deciduous broad-leaved, evergreen broad-leaved and 
evergreen conifers – differ from each other remarkably by leaf longevity, 
LMA, Nm and Am, the mean shade tolerance for each group was rather similar, 
suggesting that along the global gradient of 'leaf economics' the strategy how to 
achieve shade tolerance varies rather than the shade tolerance itself. 

(2)  The correlative relationships of leaf structural and chemical traits with respect 
to current light availability differed between herbaceous and woody species due 
to contrasting canopy developmental patterns. In the deciduous tree canopy, 
where new leaf formation mainly occurs in a single flush and leaves experience 
similar light environment throughout most of their life-span since expansion, 
LMA and Na increased significantly with current light availability. In the 
herbaceous canopy, on the contrary, LMA and Na were generally not related to 
current light conditions, reflecting limited re-acclimation potential of mature 
leaves. Light acclimation of nitrogen content per unit of leaf area was largely 
mediated by changes in LMA, but the latter is known to be determined by light 
conditions during leaf development. Increasing light availability had two 
conflicting influences on leaf chlorophyll content: (I) an indirect positive effect 
to increase Chla due to the growing amount of photosynthetic apparatus, which 
was mediated by changes in LMA and Na; (II) the direct negative effect to 
decrease Chla due to the declining amount of light harvesting complexes 
relative to the rest of the photosynthetic apparatus.  

(3)   Community-level patterns in light capture, biomass and nitrogen partitioning 
can be largely attributed to changes in species composition along a productivity 
gradient in herbaceous stands. Availability of light resource and hence light 
absorption per unit of biomass (ΦM) declined with increasing site productivity. 
Species, which became dominant at high soil resources had lower tissue 
nitrogen concentrations (high aNUE) and lower LAR, leading to community-
level increase in aNUE and decrease in LAR along the productivity gradient. 
However, some subordinate species increased LAR with increasing soil 
fertility, indicating that dominant and subordinate species have distinct 
strategies to cope with increased competition for limited light resource. 
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SUMMARY IN ESTONIAN 
 

Valguse neeldumine taimestikus, fotosünteesivõime ja  
liikide varjutaluvus: üldised seaduspärad ning erinevused 

funktsionaalsete gruppide vahel 
 
Keskkonnatingimusi, mis ei ole taimede kasvuks optimaalsed, loetakse stressi-
faktoriteks. Pikem lehe eluiga ning väiksem eripind, väiksem lämmastiku-
sisaldus ja madalam fotosünteesivõime on lehetunnused, mida tavaliselt seos-
tatakse taimede suurema stressitaluvusega. Limiteerivates keskonnatingimustes 
võimaldavad lehtede pikem eluiga ja väiksem lämmastikusisaldus ning sellest 
tulenev madalam fotosünteesivõime säästlikumat ressursikasutust. Mehhaa-
niliselt vastupidavamad lehed on pikaealisemad, kuid suurem tugikudede 
osatähtsus vähendab lehe eripinda. 
 Sarnaselt üldise stressitaluvusega võiksid pikem lehe-eluiga ning väiksemad 
lämmastikusisaldus ja fotosünteesivõime suurendada ka taime varjutaluvust. 
Lehe suurem eripind parandab aga limiteeritud valgusressursi kasutamise 
efektiivsust. Uurijate hulgas on üldine konsensus, et sama liigi piires on varju-
lehtede eripind reeglina suurem kui valguslehtedel. Samas esineb märkimis-
väärseid lahkarvamusi selles, kas varjutaluvatel liikidel on samades valgustingi-
mustes suurem või väiksem lehe eripind võrreldes valgusnõudlike liikidega. 
 Lehtede lämmastikusisalduse ja fotosünteesivõime vahelist tugevat seost 
võib seletada kahe asjaoluga. Seose levinuimaks põhjendus on fakt, et väga suur 
osa lehes olevast lämmastikust kuulub Rubisco, peamise süsinikku assimi-
leeriva ensüümi, koosseisu. Samas osalevad kõik lehe valgud pidevas energiat 
nõudvas lagundamise ja taas-sünteesi tsüklis. Seega võib seos lehe lämmastiku-
sisalduse ja fotosünteesivõime vahel tuleneda ka sellest, et leht vajab lämmas-
tiku säilitamiseks ja taastootmiseks teatud hulka fotosünteesist saadavat 
energiat. 
 Lämmastikukasutuse efektiivsuseks (NUE) nimetatakse biomassi produkt-
siooni taime lämmastikusisalduse ühiku kohta. Valgusekasutuse efektiivsuseks 
(LUE) nimetatakse taime biomassi produktsiooni fotosünteesil neeldunud 
valgusenergia ühiku kohta. Valguse neeldumist lämmastiku ühiku kohta 
väljendab NUE/LUE suhe. Kui valgusenergia biomassiks konverteerimine on 
efektiivsem, siis valguse neeldumine maapealse biomassi ühiku kohta väheneb. 
 Minu doktoritöö eesmärgiks on uurida, kuidas taimelehtede funktsionaalsed 
tunnused ning maapealse biomassi jaotus sõltuvad valgustingimustest nii 
liigisiseselt kui liikide vahel. Otsin vastuseid järgmistele küsimustele:  
(1)   Kuidas sõltub põhjapoolkera parasvöötme puittaimede varjutaluvus lehtede 

liigiomasest elueast, eripinnast, lämmastikusisaldusest ja fotosünteesi-
võimest? Esialgse hüpoteesi kohaselt on suurema varjutaluvusega seotud 
tunnused, mis suurendavad lehestiku pindala ja vähendavad ressursikulu 
lehestiku tootmiseks (pikem lehe eluiga, suurem eripind, väiksem 
lämmastikusisaldus ning madalam fotosünteesivõime). 
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(2)   Kas puit- ja rohttaimedel on erinev seos lehtede klorofülli- ja lämmastiku-
sisalduse ning eripinna vahel piki lehestikusisest vertikaalset valgus-
gradienti? Eeldasime, et pikaealise võraga puittaimedel on vastavad seosed 
tugevamad kui rohttaimedel, millede lehtede valgustingimused taimestiku 
kõrguse kasvades kiiresti muutuvad.  

(3)   Kas rohttaimede liigispetsiifilised erinevused lämmastikukasutuse efektiiv-
suses ja maapealse biomassi jaotuses mõjutavad seoseid mullaviljakuse 
ning taimkattes neeldunud valguse vahel koosluse tasemel? Esialgse 
hüpoteesi kohaselt on erineva mullaviljakuse tingimustes domineerivatel 
liikidel erinevad biomassi ja lämmastiku allokatsiooni strateegiad ning need 
liigiomased erinevused avaldavad mõju funktsionaalsetele seostele koosluse 
tasemel. 

Esimesele küsimusele vastuse leidmiseks kasutasin kirjanduse põhjal koostatud 
andmebaasi, mis sisaldas andmeid 339 põhjapoolkera parasvöötmes kasvava 
puuliigi lehetunnuste ja varjutaluvuse kohta. Selles andmebaasis on varjutaluvus 
defineeritud minimaalsete valgustingimuste kaudu, mille juures antud liik 
suudab kasvada. Varjutaluvuse väärtus 1 vastab mittetolerantsele liigile, mis 
vajab kasvamiseks vähemalt 50% täisvalgusest ja varjutaluvuse väärtus 5 
tähistab suurimat tolerantsi (liigid mis vajavad 2–5% täisvalgusest). Lehe-
tunnuste (keskmine eluiga, eripind, lämmastikusisaldus ja fotosünteesivõime) 
liigispetsiifiliste väärtuste arvutamiseks kasutati ainult võra ülemiste, s.t. 
valguslehtede, andmeid. 
 Teisele ja kolmandale küsimusele vastamiseks tegin Eestis välimõõtmisi. 
Järvselja heitlehises segametsas mõõtsime 2000. aasta juulis kolme puuliigi 
(haab, arukask, harilik pärn) võras erinevatel kõrgustel lehtede klorofülli- ja 
lämmastikusisaldust ning eripinda. Lehtede valgustingimusi hindasime pool-
sfäärifotode meetodiga. Elva lähedal Arus mõõtsime 1999. aasta juulis rohttaimi 
söötijäätud (u. 5 aastat) endisel põllumaal. Sõltuvalt taimkatte kõrgusest jaga-
sime selle vertikaalselt 3–5 kihiks (kihi paksus 15–25 cm). Pealelangeva 
valguse intensiivsust mõõtsime kvant-sensoriga iga kihi kohal ja all. Igal liigil 
mõõtsime kõikides kihtides eraldi lehtede kaldenurgad, lehtede mass ja pindala, 
varte mass ning klorofülli- ja lämmastikusisalduse. 
 Kirjandusest on teada, et globaalses skaalas varieeruvad liigispetsiifiline lehe 
keskmine eluiga, eripind, lämmastikusisaldus ja fotosünteesivõime koordinee-
ritult (ingl. k. leaf economics spectrum). Minu töö tulemustest selgus, et sama 
seaduspära kehtib ka põhjapoolkera parasvöötme puittaimedel. Liigid jaotuvad 
spektril, mis ulatub “ressursisäästlikust” strateegiast (iseloomulikeks tunnusteks 
on lehtede pikk eluiga, väike eripind, väike lämmastikusisaldus ja madal 
fotosünteesivõime) kuni kiirekasvuliste liikideni, mille lehtedel on lühike elu-
iga, suur eripind, suur lämmastikusisaldus ning kõrge fotosünteesivõime. Kir-
jandusest võib leida väiteid, et ka varjutaluvus on osa üldisest ressursisäästlikust 
strateegiast ning sellega seletatakse varjutaluvate liikide lehtede madalamat 
eripinda võrreldes valgusnõudlike liikidega samades valgustingimustes. Minu 
tulemused näitavad, et põhjapoolkera parasvöötme puittaimedel ei ole liigi 
varjutaluvus seotud lehetunnustel põhineva üldise ressursisäästliku elu-
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strateegiaga ja varjutaluvamate liikide lehed on küll pikaealisemad, aga samas 
ka suurema eripinnaga. 
 Ressursisäästlikkuse kasvamise alusel võib uuritud liigid jaotada järgmisteks 
gruppideks: heitlehised laialehelised (DB), igihaljad laialehised (EB) ja 
igihaljad okaspuud (EC). Esimesse gruppi kuuluvad kiirkasvulised liigid ning 
viimases on ressursisäästliku strateegia esindajad. Kirjanduses on vastukäivaid 
tulemusi liigi varjutaluvuse ja lehe eripinna vahel püütud põhjendada sellega, et 
heitlehistel liikidel on see seos positiivne ja igihaljastel liikidel negatiivne. 
Käesoleva töö tulemused näitavad aga, et põhjapoolkera parasvöötme puit-
taimede varjutaluvuse ja liigiomase leheeripinna vaheline seos on positiivne ka 
mõlemas igihaljaste puittaimede grupis (EB ja EC). 
 Saadud tulemuste põhjal võib öelda, et piki lehetunnuste “ressursisäästlik-
kuse” gradienti varieeruvad pigem varjutaluvuse saavutamise mehhanismid, 
mitte varjutolerantsus ise, sest keskmine varjutaluvus ei erine DB, EB ja EC 
gruppide vahel oluliselt. Küll aga esineb DB ja EC gruppide sees suuri erinevusi 
üksikute lehetunnuste ja varjutaluvuse vahelistes seostes. Heitlehiste liikide 
leheeluiga on piiratud kasvuperioodi pikkusega ning nende varjutaluvuse 
suurendamise strateegiaks näib olevat vähendada ressursikulu lehe pindala- või 
massiühiku tootmisel, sest DB grupis on varjutaluvuse seos lämmastiku-
sisaldusega (lehe pindalaühiku kohta) ning fotosünteesivõimega (nii pindala- 
kui massi ühiku kohta) negatiivne. Igihaljastel okaspuudel on pikim lehtede 
eluiga ning ka seos leheeluea ja varjutaluvuse vahel on selles grupis tugevaim. 
Vastupidiselt heitlehistele liikidele on igihaljaste okaspuude grupis varju-
taluvuse seosed lehe fotosünteesivõimega (massiühiku kohta) ja fotosünteesi 
lämmastikukasutuse efektiivsusega (fotosünteesivõime lämmastikusisalduse 
ühiku kohta) positiivsed. 
 Lisaks liigispetsiifilistele erinevustele varieeruvad lehe tunnused sama liigi 
piires ka valgus- ja varjulehtedel. Uurisin, kuidas on heitlehiste puit- ja roht-
taimede lehestikus klorofülli- ja lämmastikusisaldus ning eripind seotud 
vertikaalse valgusgradiendiga. Puittaimede varjulehtedel oli võrreldes valgus-
lehtedega suurem eripind ja väiksem lämmastikusisaldus lehe pindalaühiku 
kohta. Rohttaimedel puudus üldjuhul seos nende lehetunnuste ja valgus-
tingimuste vahel. Rohttaimedel moodustuvad reeglina pidevalt uued lehed 
lehestiku ülemises osas hea valguse kättesaadavuse tingimustes, mis jäävad 
hiljem, taime kõrguse kasvades, varju. Pikaealise võraga heitlehistel puit-
taimedel, mille peamine lehtede produktsioon toimub kevadel, kasvuperioodi 
alguses, muutuvad valgustingimused lehe eluea jooksul märksa vähem ning 
suurem osa valgustingimuste muutustest toimub enne lehe täiskasvanuks 
saamist. Kuna täiskasvanud lehed eripinda märkimisväärselt muuta ei saa, 
seletab see valgustingimuste dünaamika erinevus seose puudumist rohttaimede 
lehtede eripinna ning valgustingimuste vahel. Seos valgustingimuste ning lehe 
lämmastikusisalduse (väljendatuna pindalaühiku kohta) vahel sõltub peamiselt 
lehe eripinnast. Täiskasvanud lehtede klorofüllisisaldus võib vastavalt muu-
tunud valgustingimustele märkimisväärselt muutuda. Minu tulemused (tee-
analüüs, ingl. k. path analysis) näitavad valgustingimuste kahte vastandlikku 
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mõju lehe klorofüllisisaldusele. Valguse parem kättesaadavus tingib läbi lehtede 
eripinna ning lämmastikusisalduse muutuste suurema klorofüllisisalduse, sest 
suureneb kogu fotosünteesiaparaat (kaudne positiivne mõju). Samas on valgusel 
klorofülli hulgale ka otsene negatiivne mõju: klorofülli osakaal fotosünteesi-
aparaadis väheneb, sest tugeva valguse tingimustes võimaldab väiksem pig-
mendi kogus samas hulgas valguseenergiat siduda.  
 Uurides niidukoosluses valguse neeldumist biomassi ja lämmastikusisalduse 
ühiku kohta, leidsin, et erineva mullaviljakuse juures domineerivate liikide 
tunnused mõjutasid oluliselt koosluse tasemel seoseid. Kõrgema mullaviljakuse 
korral vähenes valguse neeldumine biomassiühiku kohta, sest vähenes ka 
pealelangeva valguse hulk biomassiühiku kohta. Kõrge mullaviljakuse korral 
domineerivad liigid olid suurema lämmastikukasutuse efektiivsuse (maapealse 
biomassi kogus lehelämmastiku ühiku kohta) ning väiksema lehepinna suhega 
(lehtede pindala maapealse biomassi ühiku kohta). Seetõttu suurenes mulla-
viljakuse tõustes koosluse tasemel lämmastikukasutuse efektiivsus ning vähenes 
lehepinna suhe. Siiski esines ka teistsuguse strateegiaga liike, millel mulla-
viljakuse tõustes lehtede pindala maapealse biomassi ühiku kohta suurenes. 
 Antud töö tulemuste põhjal võib kokkuvõtteks öelda, et (1) põhjapoolkera 
parasvöötme puittaimedel on varjutaluvus üldiselt liigispetsiifilise keskmise 
lehe eluea ja eripinnaga positiivses seoses ning lämmastikusisalduse ja 
fotosünteesivõimega (väljendatuna pindalaühiku kohta) negatiivses seoses, kuid 
funktsionaalsete gruppide siseselt esineb seostes üksikute lehe tunnustega 
märkimisväärseid erinevusi; (2) puittaimedel on seosed lehetunnuste (eripind 
ning klorofülli- ja lämmastikusisaldus) ja valgustingimuste vahel piki lehestiku-
sisest vertikaalset valgusgradienti tugevamad kui rohttaimedel ning (3) roht-
taimede lämmastikukasutuse efektiivsuse ja maapealse biomassi jaotuse 
liigiomased erinevused mõjutavad oluliselt koosluse-tasemel avalduvaid seoseid 
taimkattes neeldunud valgusega. 
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