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Abstract: 

Robots provide an opportunity to spare humans from tasks that are repetitive, require high              
precision or involve hazardous environments. Robots are often composed of multiple robotic            
units, such as mobile manipulators that integrate object manipulation and traversal           
capabilities. Additionally, a group of robots, i.e., multi robot systems, can be utilized for              
solving a common goal. However, the more elements are added to the system, the more               
complicated it is to control it. TeMoto is a ROS package intended for developing              
human-robot collaboration and multi-robot applications where TeMoto Robot Manager         
(TRM), a subsystem of TeMoto, is designed to unify the control of main robotic components:               
manipulators, mobile bases and grippers. However the implementation of TRM was           
incomplete prior to this work, having no functionality for controlling mobile bases and             
grippers. This thesis extends the functionality of TeMoto Robot Manager by implementing            
the aforementioned missing features, thus facilitating the integration of compound robots and            
multi-robot systems. The outcome of this work is demonstrated in an object transportation             
scenario incorporating a heterogeneous multi-robot system that consists of two manipulators,           
two grippers, and a mobile base. 

Keywords: ​Multi-robot system, Compound robot, Object transportation, ROS. 

CERCS:  T125 Automation, robotics, control engineering 
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ROBOTITE HALDURI ALAMSÜSTEEMI VÄLJATÖÖTAMINE 
TARKVARARAAMISTIKULE TEMOTO 

Lühikokkuvõte: 

Robotid võimaldavad aidata inimesi ülesannetes mis on eluohtlikud, nõuavad suurt täpsust           
või on üksluised. Üks terviklik robot koosneb tihtipeale mitme eri funktsionaalsusega           
alamrobotist, millest näiteks mobiilne manipulaator on kombinatsioon mobiilsest platvormist         
ja objektide manipuleerimise võimekusega robotist. Roboteid saab rakendada ülesannete         
lahendamisel ka mitme roboti süsteemina, kuid robotite hulga suurenemisel suureneb ka           
nende haldamise keerukus. TeMoto on ROSi kimp, mis hõlbustab inimene-robot koostöö ja            
mitme roboti süsteemide arendamist. Robotite haldur on TeMoto alamsüsteem, mis aitab           
käsitleda mobiilseid platvorme, manipulaatoreid ja haaratseid ühtse tervikliku robotina.         
Käesolevale tööle eelnevalt puudus Robotite halduril mobiilsete platvormide ja haaratsite          
haldamise võimekused, mille väljatöötamine oli antud töö peamiseks eesmärgiks. Töö          
tulemusena valmis TeMoto Robotite halduri terviklik lahendus, mille funktsionaalsust         
demonstreeriti objekti transportimise ülesande lahendamisel, kaasates kahest manipulaatorist,        
kahest haaratsist ja mobiilsest platvormist koosnevat heterogeenset mitme roboti süsteemi. 

Võtmesõnad: ​mitme roboti süsteem, liitrobot, objektide transport, ROS. 

 CERCS: T125 Automatiseerimine, robootika, juhtimistehnika 
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1. Introduction 
Robots represent enormous potential in several application domains such as robots in            
medicine and healthcare, where high degree of precision is required resulting in shorter             
recovery times and more reliable outcomes in surgery procedures [1] [2], Robots are used in               
production and manufacturing industries to increased productivity, flexibility, versatility and          
safety [3], or in exploration and rescue missions in emergency areas [4], among other [5].  

With a wide structural diversity in terms of shape, size, and design, robots provide different               
capabilities that range from manipulation through robotic arms and locomotion with mobile            
bases, to a combination of these capabilities known as compound robots e.g. mobile             
manipulators, which integrate manipulation and mobility. Furthermore, in order to          
accomplish complex tasks, robots can be used to cooperate with each other in multi-robot              
system scenarios. 

The fact of having different capabilities, or simply having components that do not necessarily              
belong to the same manufacturer but still need to operate together, means that the way of                
controlling them may vary from one to another. That is why it is important to have a unifying                  
platform basis that enables the integration of different drivers and controllers such as ROS,              
which has become a one of the most practical and popular frameworks for the development               
of advanced robot systems.  

ROS utilizes tools and plugins such as MoveIt! and Navigation to generate collision-free             
trajectories to control robots. However, ROS tools are still limited, missing a systematic             
approach for integrating and controlling compound robots and other multi robot systems. For             
instance, motion planning for manipulators and mobile robots is handled by two separate             
libraries (MoveIt and Navigation respectively) and thus, there is no straightforward toolset            
for controlling mobile manipulator robots in ROS. 

TeMoto is a software framework that streamlines the development of human-robot           
collaboration and multi-robot applications. It leverages the tools and data distribution           
infrastructure of ROS to provide an additional software layer for integrating and controlling             
resources, such as sensors, actuators, algorithms and robots. TeMoto is provided with a             
number of managers that are in charge of maintaining knowledge about the resources. In the               
case of robots, Temoto Robot Manager (TRM) is intended to provide rapid integration of              
robotic actuator systems, facilitating the implementation of a single or multiple robots;            
nonetheless, it is missing major key functionalities for controlling mobile robots and grippers.             
The main task of the thesis is to implement the TRM to support controlling all major robot                 
categories such as mobile platforms, manipulators, and grippers.  

This thesis is divided into 7 chapters. The concept of multi-robot systems (MRS) and              
compound robots is introduced in chapter 2 while an overview of the previous work related to                
TeMoto and TeMoto Robot Manager is given in chapter 3. Chapter 4 discusses the              
requirements for this work. The structure of implemented work is discussed in chapter 5 and               
a multi-robot demo using TRM is presented in chapter 6. The thesis concludes with the               
remarks on the TRM in chapter 7.   
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2. Literature overview 
With a wide structural diversity in terms of shape, size, and design, robots provide different               
capabilities that range from manipulation, locomotion to grasping operations. These          
capabilities are often integrated depending on the task at hand. For example a robot could be                
combined of a manipulator and a mobile base for solving mobile manipulation tasks such as               
object retrieval. Moreover, a group of robots can be utilized for scenarios such as area               
coverage, foraging and object transportation. This section collects the main contributions of            
the literature related to MRS, compound robots and frameworks that allow developing            
robotics applications.  

2.1. Multi robot systems 

A Multi-robot System (MRS) refers to a group of two or more independent robots that work                
together to achieve a shared goal. These systems tend to be comprised of robots of a simpler                 
design combined together in a modular fashion, in order to provide convenient solutions in              
terms of cost, performance, efficiency, and reliability [6]. The use of MRS has been described               
since 1986, such as the project present by Freund et al, to find a path with online collision                  
avoidance, for three stationary robots in an assembly automation application and for            
scenarios with mobile robots surrounded by moving obstacles. They integrated the dynamics            
of all robots in a hierarchical structure, and for the collision detection [7]. 

Farinelli et al. propose a taxonomy classification of works on Multi-Robot Systems according             
to two groups, ​Coordination ​as depicted in Figure 1a, and ​System Dimensions in Figure 1b               
[8]. The first one is a hierarchical structure that represents the interaction between robots, and               
the second takes into account the system features that influence team development. The             
cooperation refers to the ability of the system to cooperate with other systems in order to                
accomplish a specific task [8]. Knowledge characterizes how aware are the robots of each              
other within the system [9]. The coordination level refers to the set of rules that the robots                 
follow to interact with each other and move cohesively [10]. The last level represents the way                
the decisions are made within the system rather centralized or distributed[11]. 

 

 

Figure 1​. Classification of Multi Robot System based on (a) Coordination and (b) System dimensions 
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Additionally, in the ​System Dimension classification Figure 1b, it is considered that            
cooperation is obtained through ​communication mechanisms ​that allow robots to exchange           
messages directly or indirectly [11]. The ​team composition classifies the MRS according to             
their heterogeneity, divided in two classes, ​heterogeneous and ​homogeneous teams. In the            
first one, the robots differ either in their hardware devices or in the software. In the case of                  
homogeneous MRS, all of the members have the same software and hardware layout [8]. The               
last characteristic refers to the ​team size​ or number of robots acting in the same environment. 

For example, using a large team of homogeneous robots is known as swarms, that are simple                
agents that perform complex collective behaviors [12]. Swarms are inspired by natural            
systems in which the collective behavior emerges from the interaction between the robots and              
with the environment [13].  Its control is normally a distributed and decentralized system.  

The main uses of swarm system lie in sensing, information exchange, motion, and achieving              
dedicated collective actions. In [14], investigate and develop some principles of adaptation            
and evolution for robots that can dock with each other as in Figure 2. and symbiotically share                 
energy and resources, for a collective interaction with the physical world. 

 

Figure 2.​ ​Adaptation and evolution for symbiotic swarm robot organisms ​ [14] 

2.1.1. Compound Robots 

Traditionally MRS are composed of individual hardware platforms with no mechanical           
interconnection. Yet a single robot could be made out of a number of individual robotic               
systems such as a manipulator arm integrated on top of a mobile platform. To the best of the                  
author's knowledge, there is no generally accepted terminology to refer to such mechanically             
coupled systems. However, a number of research projects and companies refer to them as              
compound robots [15] [16] [17] because they consist of multiple robots or subsystems which              
are responsible for manipulation, navigation and gripping capabilities (hereinafter referred to           
as “features”), assembled into one ​compound​ body. 

Commonly appearing compound robots are mobile manipulators, which are composed of a            
mobile base that provides locomotion, and one or more robotic arms attached to the base for                
manipulation tasks (e.g., Figure 3). Mobile manipulators are widely applied in the domains of              
construction, transportation, space exploration, military operation, etc. [18].  
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In [19], it is proposed a technique to control the feature of mobile manipulators              
simultaneously where the mobile base is seen as an extra joint for the manipulator and it is                 
included in the kinematics to drive the robot following a desired trajectory from a start point                
to the end goal. In [20], Ramzy Ali et al. decompose the problem in subsystems,               
implementing a logic to navigate an environment towards a desired goal avoiding collisions             
and command the arm after the base has reached the goal, using a separate controller for                
picking up objects. In [21] Nagatani et al. present a motion planning algorithm to draw large                
objects on a wall keeping the locomotion controller independent from the manipulator            
controller but maintaining a cooperative motion by communication between both controllers.  

An integration of different features in a single robot is presented in [22] [23], used for                
haptics-enabled capabilities for teleoperated mobile manipulation robots that support human          
interaction in explosive disposal missions depicted in Figure 3.  

 
Figure 3​. Example of a compound robot: teleoperated bimanual mobile manipulator ​[23]​ compound 

of two robotic arms, a clearpath platform and two grippers 

2.2. Applications of Multi robot systems 

MRS’s can be utilized on search and rescue to increase communication bandwidth between             
robots and reduce energy consumption [24]. Using more than one robot, it is possible to               
achieve a greater coverage area because the agents can be distributed over the space.              
Lopez-Perez et al. [25] propose a scene partitioning scheme with a distributed algorithm to              
minimize communication thus energy consumption, and assign weights to the frontiers for            
the representation of each zone, which are combined with the obtained from other robots to               
obtain a full map. Wurm et al. consider the exploration with coordinate marsupial robots, that               
is to say, teams of robots that are able to deploy and retrieve other robots [26]. These                 
heterogeneous robots require actions and advanced planning mechanisms to be implemented           
in zones of the environment where the bigger robots cannot enter but the smaller robots can.                
In [27] developed a framework to classify terrain using a heterogeneous team of legged              
robots and a vibration-based terrain identifier (accelerometers and gyroscopes on the robot)            
and thus avoid dangerous slippery regions.  

MRS have been applied for surveillance tasks as the project presented by Pennisia et al, using                
a system to identify the presence and position of people in an indoor environment. A set of                 
heterogeneous sensors and robots patrolling the space triggering an alarm when abnormal            
activity is detected [28]. Nowadays using different types of robots like Unmanned Aerial             
Vehicles (UAV), surveillance can be extended to outdoor areas like in [29], where a global               
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architecture was developed to manage services and control systems with common functions,            
reducing development and operating costs. It was tested on an automated UAV-based            
surveillance system compound by drones, sensors and other devices. In an interactive user             
interface they could give waypoint missions to the UAVs and track persons using a container               
resource for the status, control, detection and streaming data.  

MRSs have been successfully applied in disaster response scenarios such as the Fukushima             
nuclear accident in 2011, where exploration tasks were performed using a mobile robot, and a               
manipulator was implemented to facilitate the installation of sensors. One to measure            
radiation levels and a water gauge in the basement of the reactor buildings to determine flood                
levels [4]. In [30], propose a solution to evaluate the damage of infrastructures of disaster               
environments and locate dynamic objectives of interest on it. A system that stores tasks and               
enables automatically these behaviors among a group of robots was tested in a controlled              
laboratory environment, simulating scenarios where communication is limited or its          
reliability is low.  

A combination of several homogeneous mobile manipulators can be seen in Figure 4, in a               
system that requires moving objects with different shapes among other solid obstacles. [31].             
Antonio Petitti et al. propose two ways of controlling: controlling the twist of the              
manipulated object, having priori knowledge of the physical parameters of the load, and an              
approach in which each robot does not have any information about the load [32].  

 

Figure 4.​ ​Homogeneous MRS team of five KUKA youBots cooperatively transporting a load ​[32]. 

As can be seen, MRS range of different application domains is broad, with systems that               
benefit from the diverse capabilities of its members such as compound robots, or a set of                
multiple robots interacting with each other.  
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2.3. Main challenges for Multi-Robot Systems 
Multi-robot systems offer several advantages in terms of cost, performance, time, task            
inherently distributed, binding several resources, parallelism, and redundancy [6]. There is a            
wide range of domains in which a multi-robot system can be applied [33], and depending on                
the application, different tasks represent different requirements. 

Manuela Veloso [34] exalts as main issues for MRS is the constraints in communication, due               
the MRS require general mechanism for sharing information. Baele et. al. [35] present a              
solution for avoiding the congestion of the ​communication ​network when multiple worker            
robots transmit data simultaneously and data packets may be lost. Using a heterogeneous             
configuration with five types of robots, each with specific roles. The smaller robots in charge               
of collecting data and the bigger one use an aggregator module to reduce duplicated data               
gotten by smaller robots.  

One of the main challenges in mobile manipulators is vehicle-arm ​coordination ​due the             
dynamics of the arm and the base not only differs, but also interacts. Besides, the addition of                 
the mobile base introduces kinematics redundancy complicating the integration of techniques           
for navigation, planning and control to achieve efficient motion [19]. The redundancy results             
when they exceed the total DOFs that are strictly needed to perform a task, resulting in                
multiple joint configurations to reach the same end-effector pose.  

In [36], Cressel Anderson et al. point out that the challenges with mobile manipulators are the                
integration ​to achieve real-time performance, and the ​control ​of their features to produce the              
desired outcome, because the mobile platform and the manipulator each one have their own              
control system. There are applications where it may be sucient to move them separately,              
sending the mobile platform to a desired location, and once reach the goal, move the               
manipulator, but other tasks require a closer coupling of these control systems.  

For the aforementioned challenges and the fact that ​there are systems that implement more              
than one robot to complete a task​, we therefore need a platform or unified ​frameworks               
capable of dealing with different elements, with information about how to access their drivers              
and controller, and an interface to provide interaction with the user.  

A framework is a platform or layered structure for developing applications, integrated with a              
collection of components that collaborate to produce a reusable architecture [37]. It helps to              
manage hardware devices and interact with the software system. A framework is composed             
of predefined classes, functions and special tools that can be used through application             
programming interfaces (API), that provide access to the elements supported by the            
framework [38].  

A real-time visual-based system was implemented at Simon Fraser University [39], to select             
and command individual robots in a multi-robot environment. The election of the robot to be               
commanded was based on a non-verbal communication, resulting from a score evaluating a             
facing engagement algorithm. A single human in front of a group of robots, looking to the                
desired robot (as a static gesture), enables the face detector and with a dynamic gesture can                
interact with the desired robot, in their case, the user moving the hands can control the                
selected mobile base to the right or the left. 
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Some design principles of general software to reduce robotic applications design and            
implementation time were presented in [40], where the user can control a set of robotic arms                
with any set of sensors. The modular architecture was achieved by encapsulating the features              
into structures and a generic interface that allows to change their attributes. Using a server               
and client model, they could control an external device whether it is connected directly or               
remotely.  

In ​[41]​, Lopez et al. propose a centralized system for controlling mobile single and              
multi-robot applications, tested on applications like tour guide robots and transportations           
tasks in hospitals. All the robots and all the users are connected to a central server using                 
wireless communication as shown in Figure 5. The server executes off-board remote control             
like planning for multiple robots, scheduling and resource sharing among other tasks. Each             
robot has an on-board local control for reactive behavior, that contains an executive layer              
which performs a task decomposition in basic tasks and a Robot-Web interface layer that              
represents a set of processes to interact with the users and connect to the Central Server ​[41]​. 

 

Figure 5.​ ​Example of a multi-robot and multi-user framework architecture ​[41] 
 

  

14 



 

2.4. Robot Operating System 

The Robot Operating System (ROS) [42] is a robotics application development and            
integration framework which provides a ​publisher-subscriber based data distribution         
infrastructure that allows software applications, such as sensor drivers and data processing            
algorithms, to exchange data.  

There are three forms of communication in ROS: topics, services, and actions as depicted in               
Figure 6. Topics are buses over executable programs exchange messages. Topics can have             
multiple publishers and subscribers [43]. Services have a request and response interactions. A             
server provides a service and a client uses the service by sending the request and awaiting for                 
the response [44]. Similarly, actions have a request and response interaction, but compared to              
services, actions are used when the task takes a long time to execute. Actions have messages                
on which they communicate: A ​goal ​is the task to accomplish, the ​feedback ​allows a client to                 
track the progress of a goal and a ​result ​is sent upon completion of the goal [45]. 

 

Figure 6.​ ​Forms of communication in ROS 
ROS has been widely adopted by the robotics community and thus a wide variety of ROS                
based tools and libraries have been created to simplify the creation of complex and robust               
robot behavior [46]. The primary tools for controlling manipulators and mobile bases are             
MoveIt! [47] and ROS Navigation [48] respectively. MoveIt provides functionalities for           
planning collision-free trajectories for serial manipulators while Navigation helps to move a            
mobile robot with collision avoidance. 

2.4.1. MoveIt 

Moveit is a ROS package for manipulation purposes such as pick and place or grasping               
operations [49]. Currently there is a wide variety of robots that support MoveIt [47]. Creating               
a MoveIt! support for custom robots is simplified via MoveIt! Setup Assistant [50]. 

MoveIt provides a standard framework for integrating motion planners and inverse           
kinematics solvers and exposes their functionality via ROS based communication interface           
[51]. A motion planning request can be sent to indicate the arm to move to a different                 
position, or to command the end effector to a new pose. To execute the planned trajectories                
on the robot, MoveIt instantiates a client to communicate with the hardware controller [52]. 
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The motion planners allow to calculate an optimum path, or a sequence of valid              
configurations that the joints must perform to move the end effector gradually from the              
current pose to a goal pose [52]. The planner takes into account velocity and acceleration               
constraints, and it also has collision checking to avoid self-collision or a crash with some               
other objects in the world. Using a ​FollowJointTrajectoryAction​, which is an action server             
running on the robot, MoveIt can communicate with the robot to execute the trajectories. 

 

Figure 7​ Primary node of Moveit: Move_group architecture​ [51] 

The Figure 7 shows the architecture of MoveIt. The primary node that allows to connect all                
of those functionalities as plugins is called move_group. MoveIt provides ROS actions (red             
lines in Figure 7) and services (blue lines in Figure 7) for the user to use according to their                   
needs. It is possible to use either C++ or Python based interfaces to command the               
move_group node [51]. MoveIt knows the kinematic capabilities of a robot via the unified              
robot description (URDF). 

Additionally, MoveIt uses a concept called planning group, which is a set of joints or links in                 
a robotic arm that plans together in order to achieve a goal position of a link or the end                   
effector [53]. It is possible to define more than one planning group for robots with multiple                
arms as a compound robot e.g. a dual-arm setup or to control smaller sections of a                
manipulator. 

2.4.2. Navigation 
ROS Navigation is a framework that exposes functionalities of trajectory planners through a             
ROS based interface, using a collection of packages that enable mobile robots to move in the                
environment avoiding obstacles encountered along the way from its current position to a goal              
position [52]. It is designed to be as general-purpose as possible primarily meant for              
differential drive (two separately driven wheels placed on either side of the robot body) and               
holonomic wheeled robots (robot can move in any direction) [48]. 
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Figure 8.​ Schematic diagram of ROS Navigation. ​[53] 

The move_base block shown in Figure 8 represents the core of Navigation because its              
function is to take goal poses, generate a trajectory and move the mobile robot from its                
current position to the goal position.  

Inside of the move_base node, it links the global and local planners to adjust the behavior of                 
the robot during the path planning [54]. The move_base takes input from odometry, that uses               
a motion sensor on the robot, e.g. encoders, to provide the estimated robot position              
publishing the data in an /​odom topic. The sensor source is needed, due it allows to gather                 
environment information and avoid obstacles in the world [54].  

The output of the navigation is given in the ROS topic ​/cmd_vel ​in the form of linear velocity                  
and angular velocity using ​geometry_msgs/Twist message type, and the robot base controller            
converts those values into the equivalent motor speed to follow the trajectory [52].  

In order to receive goal requests, the ROS Navigation uses ActionServer for communication             
with an ActionClient. Move_base is an implementation of a ​SimpleActionServer​, which is an             
action server with a single goal policy, subscribed to a topic called ​move_base_simple/goal             
with a ​geometry_msgs/PoseStamped message type. A ​SimpleActionClient can send goal          
poses (information where the robot should move) to this server, and the move_base generates              
a trajectory making use of the global and local planners [45]. 
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3. Previous Work - TeMoto 
As described in chapter 2, there are several software frameworks for controlling robots where              
ROS is the most widely used robotics development platform. While ROS provides a data              
distribution infrastructure, it does not provide a methodology for organizing and managing            
the individual nodes, such as sensors and data processing algorithms, that comprise a robot              
[55]. This management is necessary in a number of cases, where energy conservation or              
system reliability is desired. For example a robot that is equipped with a variety of sensors,                
such as 3D LIDARS and cameras, might not need to access all of the sensors at all times.                  
Thus having a programmatic way of managing (enabling, disabling, configuring) the given            
robotic resources allows designing robots that use energy and computation resources           
efficiently and adapt without manually reconfiguring the robot, e.g., maintaining visual           
feedback by switching from broken sensor to a working one. [56] 

TeMoto is a software framework that provides the aforementioned resource management           1

capabilities. TeMoto (Figure 9) is developed upon ROS with a purpose of streamlining the              
development of human-robot collaboration and multi-robot systems. It leverages the tools and            
data distribution infrastructure of ROS to provide additional software layers for managing            
resources.  

 

Figure 9.​ Overview of the TeMoto framework, which manages robotic resources by utilizing ROS 
as a data distribution infrastructure. TeMoto comprises a set of manager nodes, each responsible 

for managing a specific set of resources where TeMoto Robot Manager manages robotic actuators.  

The TeMoto framework comprises a set of programs called ​managers​, which manage            
resources​, such as sensors, actuators, algorithms and robots ​[57] as depicted in Figure 9. The               
managers maintain knowledge about resources, including the status and availability of a            
given resource and they handle resource requests [55]. Managers expose a ROS based control              

1 ​https://github.com/temoto-telerobotics 
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interface which allows accessing the resources by user-defined programs or other managers            
[57]. Each manager is designed to manage a specific type of resource, e.g., Component              
Manager manages sensor and algorithm resources, whereas the Robot Manager manages           
robotic devices such as manipulators, grippers and mobile bases.  

3.1. TeMoto Robot Manager 

This section provides an overview of TeMoto Robot Manager (TRM) in the state it was prior                2

to this work. TRM is a manager which is designed to integrate different types of robots and                 
provide the application developer a unified structure for controlling a robot as a whole unit,               
rather than controlling each feature separately. This helps to reduce time and complexity of              
controlling MRSs. ​This version of TeMoto has the capability of controlling robots with             
manipulation features depicted in Figure 10 as it was the only supported feature prior to this                
thesis. It can plan and execute a trajectory for the end effector of a specific robot. 

 
Figure 10.​ Architecture of TeMoto Robot Manager with a representation about how a robot is (a) 

initialized or (b) commanded. 

The architecture or TRM depicted in Figure 10. Robot Manager Interface that allows other              
applications to access the functionalities of TRM, the Robot Manager able to read YAML              

2 ​https://github.com/temoto-telerobotics/temoto_robot_manager 
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description files and a robot handle which contains the implementation of the manipulation             
feature to command robotic arms. The commands pass from RMI to TRM, to the robot               
handler, that identify the manipulation feature, and make use of the moveit interface to              
command the robot. 

TeMoto can control resources that are situated on separate physical machines, TRM can             
redirect requests to remote TRM. This implementation allows users to command different            
robots, simply by changing the name of the robot in the argument of the methods to                
command a different unit either locally or remotely. 

All of the information related to the robots, including the definition of manipulation feature              
and the URDF, are outlined in a robot description YAML file that, at the user's disposal, can                 
be stored together with the respective ROS package of the robot (one file for each robot), or                 
into a single file with the description of various robots. The robot description describes all               
elements of the robot (Figure 11a) and provides TRM the necessary information to know how               
to access each robot. An automatic scan is performed on the different subfolders searching for               
robot description definitions, and TRM parses the information found to create them as a              
resource.  

To initialize a robot (step “a” in Figure 10), TRM takes the values regarding the driver and                 
controller as depicted in Figure 11b. The driver is an executable in charge of enabling direct                
control of real hardware, letting TeMoto and the robotic device communicate with each other.              
TRM makes use of the MoveIt! package for controlling manipulators, hence the controller in              
the robot description YAML outlines the settings for the move_group node (discussed in             
section 2.4.1), represented by the yellow block in the architecture in Figure 10. When the               
robot is loaded, a control interface is instantiated. The MoveIt interface (blue block in Figure               
10) is in charge of sending the commands to the move_group, which in turn initiates an                
action client that communicates to an action server running on the robot (purple block in               
Figure 10).  

 

 
(a) (b) 

Figure 11.​ General structure of robot_description YAML file (a) in a schematic form (b) in natural 
language  
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The Robot Manager Interface (RMI), depicted as a red block in Figure 10, is the bridge to                 
users or other applications to access the functionalities of TRM. Its main objective is to               
simplify the use of TRM via providing a C++ based API. Using ROS services for passing                
commands, the RMI sends the instructions to the robot manager, for example to initialize a               
robot (step “a” in Figure 10, or to command it (step “b” in Figure 10). Whenever an                 
instruction is given via RMI, an according callback function is invoked within TRM which              
executes the requested routine.  

Method Arguments Description 

loadRobot Robot_name Initialize the robot as resource 

planManipulation 
Robot_name 

Planning group 
Target Pose 

Compute a trajectory to a desired pose with a 
defined planning group 

execute Robot name Execute a plan 

Table 1.​ Main set of functions provided on the Robot Manager Interface API 

The API of RMI, which allows accessing the functionality of TRM is listed in Table 1. When                 
a command is sent, the robot manager identifies which robot a certain instruction is addressed               
to using the ​robot_name ​argument. The Robot Manager searches for the configuration of the              
robot to direct the instruction to the respective hardware.  
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4. Objective 
The main objective of this thesis is to improve TeMoto Robot Manager to the level that it can                  
be used for Multi-Robot System. Consequently, the navigation and gripper functionalities           
must be implemented besides MoveIt. Additionally, illustrate the new capabilities of TRM in             
a demo using the three features working together to accomplish a common task.  

4.1. Functional Requirements  
This section describes the requirements that the new functionalities of TRM should fulfill. 
 

1) Expand the capabilities of TRM to fully support compound robots.  
2) Driver and controller for manipulation, navigation and gripper features must be           

definable via Robot Description YAML file. 
3) TRM creates a control interface per each feature stored in the Robot Description             

YAML file. 
4) The manipulation feature is able to plan and execute a trajectory for manipulator             

robots using the move_group interface though moveit platform. 
5) The navigation feature is implemented utilizing ROS Navigation. 
6) A gripper feature allows opening and closing grippers. 
7) The TRM interface API provides access to all the features of the TRM. 

 

4.2. Non-functional Requirements 
 

1) All the development must operate on ROS Kinetic under Ubuntu 16.04 operating            
system   
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5. Design and Implementation 
The architecture of TRM proposed in this thesis is shown in Figure 12. Making use of the                 
previous architecture of TeMoto Robot Manager discussed in chapter 3.1, the elements that             
provide the navigation and gripper functionalities were added (Region highlighted with blue            
dashed line).  

Since navigation is one of the major fields in robotics, and grippers allow us to grasp and                 
handle objects, this section describes the methods included in the Robot Manager Interface,             
the adjustments made in the robot description file and the elements that allow communication              
with the real hardware instantiated in the Robot handle, so that the developer can send               
commands to manipulators, mobile bases and grippers through TRM. 

 

Figure 12.​ Architecture of TeMoto Robot Manager with extended features for navigation and 
gripper. 
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Similarly to the manipulation feature, the fields for the navigation and gripper features were              
included in the YAML file as depicted in Figure 13. In order to let TRM know the                 
capabilities of a robot, they need to be listed in the robot description file, which starts with a                  
robot_name key, to identify each robot within the system. As YAML is a format that relies on                 
indentation for the structure, because it denotes nesting, the new features are set at the same                
level as the manipulation feature indicating that the feature listed belongs to that particular              
robot.  

 

Figure 13.​ ​Structure of a robot description YAML File  

Each feature includes subfields for the controller and driver (yellow block in Figure 13), that               
takes string values that represent the name of the packages, launch files for the executables               
and optional arguments to specify values that are passed to the specific launch file. That is the                 
core information that provides TRM the ability to manage those resources.  

If one or more features are defined in the robot description file, TRM is able to identify which                  
feature it is referring to, and instantiate a corresponding control interface. For instance, if the               
robot to parse corresponds just to a mobile base, the navigation feature is the only description                
that needs to be defined. In the case of a compound robot for example, all of the features must                   
be listed under the same robot as in Figure 13. However, in case of a multi-robot system, it is                   
required to inc​lude a robot definition with different robot_name for each robot, even if the               
hardware is the same (in the case of homogeneous MRS).  
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5.1. Navigation feature 

In order to include navigation functionalities to TRM, the existing platform ROS Navigation             
(discussed in Chapter is included 2.4.2) is implemented. This allows developers to control             
mobile bases through the RMI by defining a desired pose of the robot with respect to the map                  
frame and sending it as goals. 

 
Figure 14.​ ​Architecture of Navigation feature 

The navigation feature contains the driver and the controller definition in the robot             
description file as shown in Figur​e 15. They contain the executables and parameters that a​re               
in charge of setting up the move_base node (discussed in section 2.4.2). The driver allows the                
connection with the real hardware and provides the ​/odom topic. Equally, the controller             
makes the link between the move_base node and the base controller through the topic              
/​cmd_vel​, taking the goals and converting them into motor speed, depending on the             
configuration of the robot. 

 
Figure 15.​ ​Example of Navigation feature in a Robot Description YAML file 
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When a load command is addressed to a robot with navigation feature, TRM executes those               
launch files and instantiates a control interface. As the move_base node makes use of ROS               
action protocol that accepts goals from action clients, the robot handler is defined as an action                
client to be able to send goal requests to the move_group server through a ​SimpleActionClient               
(​server with a single goal policy​).  

 

Figure 16.​ ​Flow diagram to send a goal using an action client for the navigation implementation 

The Figure 16 illustrates the flow of the process in the robot handler to seng a goal to the                   
movo_base node. Firstly, it constructs an action client that takes the server name to connect               
to (​robot_ns/move_base​). Then, a ​goal ​object is created with a ​geometry_msgs/PoseStamped           
message definition with a desired pose, meaning a representation in the space of position and               
orientation about where the robot should move to in the world. Then the robot handle sends                
the goal request to the move_base action server, and waits for its execution. A goal result is                 
sent back upon completion of the goal.  

In the RMI, a method was included that allows developers to send navigation goals to mobile                
bases. That function requires the robot_name, frame_id and goal pose. This frame_id            
specifies the reference frame for the location of the goal, that is to say, if it is defined as                   
“​map​”, the coordinates will be considered in the global reference frame or absolute position,              
but in case of being defined it as base_link, the coordinate would be with respect to robot                 
base frame attached to the robot, so it is a relative position. 

5.2. Gripper feature 

The ISO 14539 standard about manipulating industrial robots defines a gripper as an end              
effector designed for seizing and holding objects, and it mentions different types of finger              
control, among which there are two-value control (i.e. open and close), position control,             
velocity control, force control or hybrid ​[58]​. However, its protocol and message definition             
are left at the discretion of the manufacturers, so that each brand has its services and types of                  
messages, and there is currently no unified platform or structure to control different grippers.              
This makes its direct integration into the TeMoto framework inconvenient, as it is impractical              
to add dependencies to an endless number of packages for each possible gripper.  

However, it is necessary to include a general structure capable of handling different grippers.              
For this reason, it is proposed to include an intermediate node between TRM and the gripper                
hardware, which acts as a converter node or translator between different types of service              
definitions.  
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Figure 17​ ​Architecture of gripper converter node 
Just like the other features (manipulation and navigation), the driver and controller are             
defined in the robot description file as in Figure 18. The driver launches a file to bring up the                   
real robot with the connection type and parameters to control the gripper. It initializes the               
services required by the robot for the finger operation. The proposed converter node is              
launched as a controller of the gripper feature. Firstly, this node is in charge of creating a                 
temoto_gripper_control Server (demarcated in blue in Figure 17) to receive commands,           
secondly it must adjust the values receive from the TeMoto definition to the custom value for                
the gripper, and finally send the adjusted command to the gripper control interface.  

 

Figure 18.​ ​Example of Gripper feature in a Robot Description YAML file. 
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In the RMI, a method was included that allows to send gripper position commands. This               
function requires the name of the robot to which this feature belongs, and a float value as                 
value of control.  

TRM acts as a Service Client (line 1 Figure 19), which calls the server running in the                 
converter node. The request message is compound by the name of the robot to which the                
gripper belongs or is attached (line 3) and a ​float32 ​as a control parameter (line 4).  

 

Figure 19​ ​TeMoto service client to pass gripper commands to the server running on a converter 
node. 

When the converter node receives a gripper control request, a callback function is executed in               
which the message can be adjusted to the data type, protocol, or specification to the certain                
gripper. For example, if the gripper needs a boolean value for only open and close               
commands, a control value of 0.0 that stands for fully closed and 100.0 for open can be used;                  
or in case of position control, a transformation (e.g. scale) can be implemented and assigned               
to the gripper. 

In addition, this controller node must communicate with the real hardware, which acts as              
Gripper Service Client (marked purple in Figure 17), relaying the previous request received             
with the adjusted values to the respective server or interface provided by the gripper.  

5.3. Robot Manager Interface 

As discussed in chapter 3.1, TRM uses a server-client architecture to pass commands. For the               
platform to be widely used and following the Goldilocks principle, provide enough            
functionality to be useful but not too much that the package is heavyweight and difficult to                
use from other software, TeMoto gives developers the functionalities and a variety of services              
they need. 

For the manipulation feature, the robot can plan and execute trajectories to a desired point in                
the space. A getEndEffector function was included to ask for the current pose of the end                
effector. Additionally, some overload functions for planning a trajectory were included, to be             
able to command the robot either to a pose or a predefined named target pose, that contains                 
all joint values under a name as a group state, which can be useful to adjust initial states or to                    
ensure the pose of each link in the manipulator. In the case of the navigation feature, the user                  
can send a pose goal establishing a coordinate and the orientation of the mobile base with the                 
corresponding reference frame. For the gripper feature, a user can send a control gripper              
position making use of a float value as an argument.  

The main functions that provide access to TRM are listed in the Table 2.  
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Feature Method Arguments Description 

All loadRobot Robot_name Initialize the robot as a resource 

Manipulation 

planManipulation 
Robot name 

Reference frame 
Pose 

Compute a trajectory to a desired 
pose with a defined planning group 

executePlan Robot name 
Execute a planned trajectory for a 

defined robot 

getEndEffectPose Robot name 
Ask for the current pose of the end 

effector 

Navigation navigationGoal 
Robot name 

Reference frame 
Pose 

Allows to send a goal pose to the 
mobile base 

Gripper 
controlGripperPosi

tion 
Robot name 

Position 
Send a value for opening and closing 

gripper command 
 

Table 2.​ Main set of functions provided on the Robot Manager Interface API for the manipulation, 
navigation and gripper feature. 
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6. Discussion and Demonstration 
In order to demonstrate the functionalities of the TRM, a following heterogeneous            
multi-robot scenario was implemented: The task is to deliver an object located on the table to                
the manipulator who is furthest from it. Since the mobile robot does not have the ability to                 
take the object by itself, the first robotic arm must take the object and place it on top of the                    
mobile robot, which navigates the environment towards the second robot arm and thus be              
able to take it. For its execution, there is a mobile robot, and two manipulators from different                 
manufacturers each one with a gripper, who work together to move an object from one point                
to another.  3

 

6.1. Control Architecture 

 

Figure 20. ​TeMoto Architecture of the demo setup  

The Figure 20 shows a schematic of the architecture for the demo, to exemplify how it is                 
distributed and how the instructions flow through the system. It contains three different             
instances of TeMoto running on separate stations. The first one T1-Operator is the instance              
arranged for the user. It does not contain any hardware or robot attached to it.               
T2-Manipulators contain the robot description of the xArm7 [59] and UR5 [59] robots, with              
its respective features (manipulation and gripper), and T3-Robotont is a TeMoto running on a              
Clearbot robot [61] (navigation). The TeMoto workstations communicate with each other           
through a wireless network, whereas the manipulators belong to a different network with a              
wired connection.  

Since the intention of this demo is to show the ability of TeMoto to control a multi-robot                 
system and understand multiple features in a single robot as a whole unit, rather than               

3 ​https://github.com/temoto-telerobotics-demos/robot_manager_mrs_demo 
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gathering information from the environment or set up dynamically coordinates in the space,             
all of the poses and goals implemented are hard coded. However, the trajectories and motion               
are planning on the go.  

6.2. Hardware 
The platforms used for the demo can be seen on Figure 21.  

 

Figure 21. ​Heterogeneous Multi-robot system to transport an object task in a demo scenario  
 

6.2.1. UFACTORY xArm7 manipulator 
xArm7 is a robotic arm with a 7 Degree of freedom manufactured by Ufactory [59], made of                 
aluminium and carbon fiber with a 3.5 kg payload, ±0.1mm repeatability and 700 mm of               
reaching area. Its communication protocol is through Ethernet TCP-IP. The xArm7 has a             
flexible collaborative gripper with customized fingertips suitable for a wide range of uses,             
designed specifically for the xArm robot. It is controlled through the IO port in the tool head.  

 

Figure 22. ​xArm7 Robot description 
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The robot description file implemented for the xArm robot is represented in Figure 22. It               
contains the definition for a robot named “xarm7_robot” and includes the manipulation and             
gripper features.  
 
Making use of the ROS packages for xArm series from UFACTORY [62] a new package was                
created, including the table to represent the real environment where the robot is going to               
operate, and to prevent any kind of collision when MoveIt plans a trajectory. For the gripper                
functionality, two nodes were created. One for the driver that utilizes services to enable the               
gripper and configure the grasp speed, and one node for the controller that adjust the control                
command (0 - 100) to the proper range of the open distance between 0 to 850.  

6.2.2. Universal Robots UR5 
 
The UR5 is a lightweight, highly flexible, 6-DOF industrial robot arm produced by Danish              
company Universal Robots [60, p. 5], that allows to automate repetitive tasks with payloads              
of up to 5 kg in a 850 mm reaching area, ideal to optimize low-weight collaborative                
processes, such as picking, placing, and testing.  

 

Figure 23. ​UR5 and KG-3 compound robot description 

 
The UR5 uses a software version 3.12 with a control box CB3.1. Unlike the UFACTORY               
xArm7, the UR5 does not have native gripper, so a Kinova KG-3 gripper was mounted as the                 
end-effector. As with xArm robot, a new ROS package was created using the MoveIt Setup               
Assistant, that includes the table and the gripper that was conditioned for this demo.  
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6.2.3. Kinova Gripper  

A Kinova KG-3 gripper was attached to the end effector coupling of the UR5, to provide                
grasping and gripping functionalities that conform to objects of varying shapes and sizes.             
This gripper is used with a standalone controller box to power and control the actuators               
through a USB 2.0 port interface, attached to the T2-Manipulators TeMoto workstation.  

Notice that the definition of the kinova gripper is under the robot “ur5_robot” in the robot                
description file, Figure 23, due it is mechanically coupled to this robotic arm. That is why                
TeMoto sees both the manipulator and the gripper as one robot / compound robot:              
“ur5_robot”. In order to command the gripper, the ​robot_name argument required in the             
method on the RMI corresponds to “ur5_robot”.  

6.2.4. Clearbot Mobile Robot 

It is an omnidirectional mobile robot with ROS support packages developed by the Institute              
of Technology at ​University of Tartu ​[61]​. This platform has an intel mini pc and nucleo                
development board for processing data, able to run an instance of TeMoto. It is equipped with                
RealSense D435 camera that uses stereo vision to calculate depth that allows gatter             
information of the environment as well as contributes to the localization of the robot; each               
gearmotor has integrated a quadrature encoder that provides the odometry.  

 

Figure 24. ​Clearbot robot description 

 
The robot description file for Clearbot platform contains just the navigation feature as it is the only                 
capability for this robot as can be seen on Figure 24. The driver and controller are in charge of                   
communicating with the hardware, subscribes to the command velocity topicand publishes the            
odometry.  

Since the Clearbot robot has to navigate in the space designated for the test, a map was                 
provided using the map_server. This contains the information of the table borders and the              
footprint of the manipulators as they are fixed objects as shown in Figure 25. The reference                
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frame is located at the middle of the map. It is important to have reliable data from the                  
camera and the odometry, otherwise the localization might fail.  

 

Figure 25. ​Clearbot navigating on the map to the goal_1. Black edges correspond to global 
costmap, and pink represent the local costmap. Image taken from the rviz environment.  

 

6.3. Execution 

This demo aims to exemplify the use of TRM and the new capabilities, in a heterogeneous                
multi robot system, to pick up an item located on the table, using a robot manipulator and a                  
griper. The navigation feature is tested with a mobile robot in charge of moving into the                
environment towards the robot arm, which places the object on top of it, and then the mobile                 
robot transports it to the second manipulator, which takes the object with its gripper. The               
entire routine is settled up in an action, thus the operator just needs to send a command to                  
trigger the entire task.  
There are three instances of TeMoto labeled as T1,T2 and T3 running in separate              
workstations as shown in Figure 26. Once the instances are started, the system is in charge of                 
finding the robot description files (shown in pink in the schematic Figure 26) and remaining               
the valid configurations. Since there are several TeMoto platforms running, they share            
information to notify that a specific resource is available.  

We must give a command to TeMoto in order to have the robots do a complex task. An initial                   
instruction is required even if they do their tasks autonomously. In this case the TeMoto               
action is addressed to T1. From the T1-operator workstation, the TeMoto action gives all of               
the set of instruction for the pick and place operation, starting by initializing each robot, and                
although they do not belong locally in this station, the system knows these resources are               
hosted remotely and can be used, so the request is sent to the corresponding instance, which                
is in charge of launching the driver and controller. To initialize a robot, TRM uses the name                 
defined as ​robot_name ​in the robot description YAML file, 
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Once the robots are initialized (Figure 27.1), the xArm is commanded to face an object, and                
using the gripper, lift it off the table (Figure 27.2). Using a navigation goal, the Clearbot                
robot is commanded to move near the xArm (Figure 27.3) which puts the object on top of                 
Clearbot (Figure 27.4), and then a second navigation goal is sent to the Clearbot, this time to                 
carry the object and navigate towards the UR5 (Figure 27.5). Once the mobile base robot               
reaches this pose goal, the UR5 plans a trajectory to get closer to the object (Figure 27.6) and                  
using the kinova gripper takes it off the Clearbot robot (Figure 27.7), which concludes the               
action (Figure 27.8). 

In the case of xArm gripper, the opening and closing position is normally controlled with               
values that range ​​between 0 and 850 (fully close - fully open respectively). For Kinova               
m1n6s300 gripper the maximum value is 6400 for each finger.  

Making use of the Robot Manager Interface, a value from 0 to 100 is used representing                
opening percentage, meaning that the user does not have to worry about the exact value for                
each gripper, and now is able to control all grippers the same way. When this value reaches                 
the converter node, in the callback function it is adjusted according to the maximum value               
that this hardware accepts.  

Every time a command is addressed to the xarm7_robot or ur5_robot, the requests are              
directed to the T2-manipulators RM, which communicates with the external hardware, but if             
the instruction given correspond to a goal pose for the mobile base, the instruction is               
redirected to the T3-Robotont RM.  
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Figure 26. ​Block diagram representing the sequence instructions flow and interaction between 

different TeMoto workstations. 

36 



 

  

  

  

  
Figure 27.  ​Implementation of TRM to control a Heterogeneous MRS in a collaborative 

transportation task, using manipulation, navigation and gripper features. 
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6.4. Demo results 

Although the action contains all hardcoded values, it was possible to demonstrate that TRM              
is capable of handling different hardware interfaces within the same action, controlling            
manipulation, navigation and gripper features in a heterogeneous multi-robot system.  

Using the manipulation feature, it was possible to plan and execute trajectories to desired              
poses in the space for different robotic arms. By adding the arrangement of objects              
surrounding the manipulator to the moveit_config, such as the case of the floor and walls,               
helps to avoid possible collision. The Clearbot robot was able to navigate to the desired               
points, with goals sent from the Robot Manager Interface defined with respect to the map               
frame, that is, absolute positions.  

The converter node worked for both kinova and xArm gripper, converting from TeMoto             
gripper services to the respective message type. It was a good strategy to send values in                
percentage instead of the exact value required by the hardware, since it is easier to imagine its                 
operation in a range from 0 to 100% than in an arbitrary number, leaving the converter node                 
to adjust it to the corresponding value. 

It could have had a more interactive system if this implementation were combined with other               
managers such as context and component manager (TeMoto managers), to make use of             
sensors to obtain the exact position of the object to be transported, and use that information as                 
input to plan a path to that point in the space. However, for the development of this thesis, the                   
objective was to demonstrate that TeMoto has the ability to command different types of              
robots, from a central station for the operator, rather than the interaction between managers.  
6.5. Limitations and Future Work 

Each robot is required to have its own robot description file, even if they are completely the                 
same. In case of having a swarm for example, the same configuration must be replicated N                
times with a different robot_name to be able to identify them within the system. It would be                 
convenient in cases like this, to have a team_size or number of homogeneous platform              
parameter fields so that the system automatically instantiates each platform. 

Because the architecture used to pass commands is based on a service-client or action-client              
structure that use callback functions, each instruction waits for the task to be executed and the                
system responds once it has finished. This implies that within a TeMoto action, only a               
particular feature can be addressed at a time. In case of needing to operate robots with same                 
feature simultaneously, for example a dual-arm setup, one option would be to use separate              
TeMoto actions for each robot, or it might be necessary to include a logic in the Robot                 
Manager that generates threads to execute the instruction in parallel. 

In case of multi-manipulator robot setups, the manipulators are not aware of each other unless               
they are described within the same moveit_config. This is a problem if we want to ,e.g.,                
mount another xArm7 to the table and start controlling it via moveit without modifying the               
moveit_config of the pre-existing arm, these robots will be two individual robots without             
inter-robot collision avoidance. If the arm is included in the previous configuration, they             
should be commanded via different planning groups. 
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7. Conclusions 
The main core of TeMoto architecture is to facilitate software developments by allowing             
programmers spending their time on adjusting the parameters of its application to fit in the               
TeMoto structure, rather than dealing with low-level details. As a result of this thesis, some               
functionalities for navigation and gripper control purposes were included on the TeMoto            
framework and meets the described prerequisites.  

Incorporating the ROS navigation and gripper functionalities to TeMoto, the range of robots             
that can be operated with this framework is greatly expanded, and being able to define their                
multiple characteristics in a single robot description, as in the case of compound robots,              
allows them to be operated as a unit rather than separate parts.  

The implementation was demonstrated to be operational by testing it on a heterogeneous             
multi-robot system, with a mobile base and two manipulators (xArm7 - UR5), each one with               
a gripper (xArm gripper - Kinova 3 fingers), in a collaborative task to transport an object                
from one place to another which involves planning trajectories, navigate in an environment             
and grasping operations.  

The converter node proposed for the integration of the gripper acting as a translator between               
different message definitions, helps to communicate TeMoto with the hardware. It worked            
fine for both xArm and Kinova grippers, even though they manage their own services. 
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