
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Toomas Aleksander Veromann

Embedded Linux-based Smart Home Gateway

Bachelor’s Thesis (9 ECTS)

Supervisor: Jakob Mass

Tartu 2018

2

Embedded Linux-based Smart Home Gateway

Abstract:

This thesis describes a means of developing a custom embedded Linux distribution compatible

with devices with ARM processors and limited resources, such as gateways in smart home

environments. These devices are usually constrained in computational resources such as RAM

and memory space. The Yocto Project is utilized to create and customize an operating system

image and configure a set of applications which can make the devices work as useful gateways.

The configured applications include a Mosquitto MQTT broker, a web server, and a database

to display and persist brokered messages. The output of this thesis is the configured operating

system image which was tested in an emulated device environment. The image includes a

custom set of applications, which form a smart home data visualisation application.

Keywords:

Embedded Linux, MQTT, Yocto Project, QEMU

CERCS: P170 Computer science, numerical analysis, systems, control

Embedded Linuxi baasil targa kodu keskseade

Lühikokkuvõte:

Käesolev bakalaureusetöö kirjeldab meetodit, kuidas luua Linuxi manusoperatsioonisüsteemi

tõmmis, mis sobituks piiratud ressurssidega ARM-tüüpi protsessoriga seadmetele, nagu näiteks

targa kodu keskseadmetele. Sellised seadmed on tavaliselt piiratud nii vähese muut- kui ka

välkmäluga. Töös kasutatakse Yocto Projecti, et luua ja kohandada operatsioonisüsteem koos

hulga rakendustega, mida kasutades saab seade funktsioneerida kui targa kodu keskseade.

Rakenduste hulgas on nii Mosquitto MQTT sõnumivahendaja, kui ka veebiserver ja

andmebaas, vahendamaks, kuvamaks ja talletamaks andmeid. Töö tulemusena valmib

kohandatud operatsioonisüsteemi tõmmis koos eelmainitud rakendustega.

Operatsioonisüsteemi tööd testiti emuleeritud keskkonnas.

Märksõnad:

Embedded Linux, MQTT, Yocto Project, QEMU

CERCS: P170 Arvutiteadus, arvanalüüs, süsteemid, kontroll

3

Table of Contents
1 Introduction .. 4

2 State of the Art ... 6

2.1 Embedded Linux .. 6

2.1.1 Toolchain .. 7

2.1.2 Boot loader ... 7

2.1.3 Linux Kernel .. 8

2.1.4 Root filesystem ... 8

2.2 BusyBox .. 8

2.3 The Yocto Project .. 9

2.4 QEMU ... 11

2.5 MQTT .. 11

2.5.1 Mosquitto ... 12

2.5.2 MQTT.fx .. 12

2.6 Related works ... 13

2.6.1 Management of MQTT Devices via an IoT Home Gateway 13

2.6.2 Embedded Linux Based Voice Calling Device ... 13

2.6.3 IoT Test Environment for Anomaly Detection ... 14

2.6.4 Discussion .. 14

3 Architecture & System Configuration .. 16

3.1 System Overview ... 16

3.1.1 Initial Configuration ... 17

3.1.2 Network configuration ... 18

3.1.3 Creating a custom BSP ... 18

3.1.4 Updating layer and recipe info ... 19

3.1.5 BitBaking ... 19

3.2 Implemented Prototype .. 20

4 Conclusion .. 23

4.1 Future developments .. 23

5 References .. 24

Appendices ... 26

A Pictures of the Yoga Hub ... 26

B Yoga Hub specifications sheet.. 26

C Custom MQTT.fx publishing script ... 28

D License .. 29

4

1 Introduction

Whether we acknowledge it or not, the internet is all around us. Interconnected devices are

sending and receiving vast amounts of data every single day. While not all data is preserved, it

is still constantly being produced. This data is partly generated by smart home software and

devices, e.g. using an application on a smartphone to schedule brewing a coffee every morning

at a certain time, monitoring energy usage in a building room by room, or simply by opening

the garden gate moments before arriving at home.

This is, essentially, the Internet of Things (IoT) at its simplest level - a network of devices that

communicate with each other and with the server infrastructure. The server infrastructure must

have the ability to share received device data and may also provide data back to devices.

According to a Cisco report published in 2018, more than 840 zettabytes of data will be

generated by IoT applications by 2021 [1]. This is achieved by messaging protocols such as

MQTT, which is one of the focus points in this thesis.

It’s not just private consumers who are interested in IoT - the International Data Corporation

predicts worldwide spending on the Internet of Things to reach nearly $1.4 trillion in 2021 [2],

while Gartner reports that the number of connected things will reach 20.4 billion by 2020 [3].

This ever-growing interest in IoT has also improved cooperation between private companies

and institutions of higher education, e.g. with Telia Eesti providing University of Tartu’s

Mobile & Cloud Computing Laboratory with close to a thousand IoT devices for advancing IoT

development and studies. The devices include temperature-, light- and movement sensors,

smart plugs, and the machines that route and direct the generated data – smart home gateways.

[4]

The purpose of this thesis is to create and customize an operating system image and configure

a set of applications, which will assist University of Tartu’s Mobile & Cloud Computing

Laboratory with repurposing some of the recently received Yoga Hub devices to act as useful

gateways. The configured applications include a Mosquitto MQTT broker, a web server, and a

database to display and persist brokered messages.

This thesis consists of three main sections, and appendices:

● The first section provides an overview of the state of the art, covering the background

of embedded Linux, the Yocto Project, and MQTT. It also gives an overview of similar

5

works related to MQTT, the Yocto Project, and QEMU and provides a comparison

between the works and this thesis;

● The second section presents the practical work conducted regarding Yocto and MQTT

configuration to mimic an IoT environment. This includes the general configuration and

architecture regarding MQTT clients, the Yoga Hub as the gateway, and creating a

custom embedded Linux distribution to match the Yoga Hub’s limitations;

● The third section summarizes this thesis and describes possible future development to

be done based on this thesis regarding the repurposing of Yoga Hubs;

● Appendix A displays pictures of the Yoga Hub;

● Appendix B contains a full specifications sheet of the Yoga Hub;

● Appendix C shows custom code written to publish MQTT messages.

6

2 State of the Art

2.1 Embedded Linux

Embedded Linux is a Linux operating system specifically configured to be used in consumer

electronics such as Android phones, smart home devices, routers and switches. The motivation

for using embedded Linux on these types of devices is that the devices are constrained by disk

space. Due to the lower disk space footprint of embedded Linux, it can fit on devices where

regular Linux cannot.

While regular Linux distributions are more generic and are able to run on different devices,

embedded Linux distributions are usually set up for certain hardware and users may experience

difficulties when trying to run them on devices they are not meant for.

Some of the benefits for choosing Linux as the operating system for an embedded project over

alternatives such as Windows Embedded Compact1 include:

● vast amount of developers and help forums;

● ease of customization;

● relatively small image size;

● and no cost;

Every Embedded Linux project starts with obtaining and customizing the following elements:

● the toolchain;

● the boot loader;

● the kernel;

● and the root filesystem.

The boot process order containing these elements is shown in Figure 1.

1 http://msdn.microsoft.com/en-ph/embedded/

http://msdn.microsoft.com/en-ph/embedded/

7

Figure 1. The boot process. [5]

2.1.1 Toolchain

A toolchain is the collection of tools used for compiling source code into executables for a

target device, consisting of an assembler, compiler, linker, librarian, and any other tools needed

to produce executable code. In the case of Embedded Linux, the toolchain must be able to

compile code written in Assembly, C and C++, since these are the languages used to write the

base packages. Toolchains are used to build the boot loader, kernel, and root filesystem.

2.1.2 Boot loader

The purpose of a boot loader is to load the operating system into a computer’s memory at boot

time [6]. When a computer is powered up or restarted, the Basic Input/Output System performs

a power-on self-test, checking whether the device’s hardware is connected and functioning

properly. Then, control is transferred to the master boot record (MBR) where the boot loader is

located. After making the required system resources operational, the boot loader loads the

kernel into RAM and creates an execution environment for it. Optionally, the boot loader may

pass a pointer of the root filesystem to the kernel.

In the case of a two-stage boot loader, the first stage resides in the MBR, while the second stage

is located in the Volume Boot Record. The task of first stage is to load the second stage boot

loader, while also passing on operating system specific data. The second stage, knowing

operating system specifics, loads the kernel into RAM.

8

2.1.3 Linux Kernel

The Linux Kernel is a monolithic one – the entire operating system with its services and core

functionality shares the same space, as opposed to a microkernel architecture where

functionality is isolated from system services. The main jobs of a kernel are to communicate

with hardware via drivers, which are included in the kernel or added via kernel modules, and

manage system resources such as memory, tasks and processes, and disk usage.

The kernel gets a root filesystem, either passed as a pointer from the boot loader, or by mounting

the device given on the kernel command line. After receiving the root filesystem, the kernel

executes the first program, init by default. Then, the init program starts the preceding programs

and gets the system running.

Starting with Linux kernel version 4.0, updates may be applied to the kernel without rebooting

the system, thus allowing for system updates with no downtime [7].

2.1.4 Root filesystem

The last required element for an embedded Linux build is the root filesystem. The root

filesystem contains system libraries, utilities and scripts used to make the system work. The

first program to run is init, which helps manage the lifecycle of the system, from boot up to

shutdown. Init’s priority is to take care of starting shell, which in turn is used to start other

programs.

Building these elements manually is a tedious task, so projects such as Buildroot2 and the Yocto

Project3 have been created to automatically build toolchains, boot loaders, kernels and root

filesystems. In the next chapters, a more in-depth look at the Yocto Project is provided.

2.2 BusyBox

As mentioned in 2.1, embedded Linux projects are often restricted disk space-wise. As a result,

there is a high demand for tools that have a low disk space footprint. BusyBox4 is software that

provides hundreds of stripped-down Unix tools, such as wget, grep, and unzip, in a single

executable file. Many of the tools it provides are designed to work with interfaces provided by

the Linux kernel. It was specifically created for embedded operating systems with very limited

resources.

2 https://buildroot.org/
3 https://www.yoctoproject.org/
4 https://busybox.net/

https://buildroot.org/
https://www.yoctoproject.org/
https://busybox.net/

9

2.3 The Yocto Project

The Yocto Project, Yocto for short, stems from the OpenEmbedded build framework which in

turn has its roots in several projects to port Linux to different handheld devices [8]. The

OpenEmbedded framework uses the IPK format to create binary packages that can be combined

to create a target system and can be installed at runtime. That is achieved by using recipes for

each package and having BitBake as the task scheduler.

In 2005, an OpenEmbedded fork called Poky was created by Richard Purdie. Poky had a smaller

amount of packages compared to OpenEmbedded and stable releases for Poky were created

over time. Even though Poky was a fork, it continued to grow alongside OpenEmbedded,

sharing updates with the OpenEmbedded master branch. [8]

 In 2008, Intel bought out Purdie’s employer OpenedHand and in 2010, Poky was transferred

to the Linux Distribution, where the Yocto Project was formed. [8]

The version of Yocto used in this thesis is, as of the time of writing, the latest stable Yocto

release - version 2.4.2, codename Rocko [9].

The main elements of the Yocto Project are:

● Poky. Nowadays, Poky has evolved from being just an OpenEmbedded fork to Yocto

Project’s reference distribution. It includes the OpenEmbedded-Core layer along with

BitBake and metadata to help users get started on creating their own Linux distributions.

● BitBake. BitBake is a build engine that allows the running of shell and Python scripts

in parallel in an effective manner. It is a core component of the Yocto Project. BitBake

uses recipes to define how packages are built. The first step in a cross-platform BitBake

build process is to create a cross-compile toolchain meant for the target platform, which

in turn can then build the other required elements.

● Recipes. Recipes in Yocto are files that have the .bb suffix. Generally, recipes contain

information about a particular piece of software, including the download source,

dependencies, any possible patches and configuration options to apply, instructions on

how to compile the source files and how to package the compiled output.

● Layers. Layers in Yocto are collections of recipes, usually gathered around a central

theme, e.g. web development, Python or Java support, or secure storage for application

data. Premade layers used in Yocto are supplied and maintained by OpenEmbedded

[10], while developers may also create their own layers if none suit their interests.

10

Layers are used on top of the base, OpenEmbedded-Core layer that comes with Poky.

The OpenEmbedded-Core layer includes, among other tools, BusyBox. Typically, layer

names start with meta, e.g. meta-networking.

● Board Support Packages. Board support packages, or BSPs, contain information about

certain devices, including any hardware present (or missing) from the device, drivers,

and information about the device kernel. There are a number of BSP-s available for

Poky, with the option for developers to create their own custom BSP with the yocto-bsp

tool. Some example BSP-s include:

o genericx86 – the generic support for 32-bit x86-based machines;

o genericx86-64 - the generic support for 64-bit x86-based machines;

o qemuarm – the QEMU ARM emulation;

o qemuips – the QEMU MIPS emulation;

o qemux86 – the QEMU x86 emulation.

● Images. Poky distribution also provides premade image recipes that can be used to build

custom Linux distributions. The images are essentially configured packages that

generate a filesystem that can be used on hardware. Some example images provided by

Poky are:

o core-image-minimal – a tiny image, only allowing the device to boot;

o core-image-full-cmdline – a console-only image with full-featured Linux system

functionality;

o core-image-x11 – an image with a basic graphical user interface.

As seen on Figure 2, all of the aforementioned tools help create a relatively small embedded

Linux distribution which can either be put on a physical device or, if one is unavailable, be

emulated with various tools such as kvmtool5 or QEMU6.

5 https://github.com/clearlinux/kvmtool
6 https://www.qemu.org/

https://github.com/clearlinux/kvmtool
https://www.qemu.org/

11

Figure 2. Creating a custom embedded Linux image with the elements of Yocto.

2.4 QEMU

Quick Emulator, or QEMU, is a free and open-source machine emulator and virtualizer that can

reach near-native performance through dynamic binary translation – looking at short sequences

of code from the source architecture, translating them to the target architecture, and catching

the resulting sequences. Code is translated as it is discovered, and pointers to already translated

code are kept.

QEMU can also run processes compiled for one architecture in a different one. This is achieved

by CPU emulation and proves especially beneficial for developers when prototyping and

debugging software intended for embedded devices – instead of running alpha versions of

software on the intended target devices, developers can run software on their development

machine, to which usually a lot more resources are allocated. [11]

2.5 MQTT

MQTT, also known as Message Queueing Telemetry Transport, is a publish-subscribe-based

messaging protocol that works on top of the TCP/IP protocol. In publish-subscribe messaging,

the senders of messages, called publishers, do not send messages directly to the intended

receivers, called subscribers, but instead categorize published messages into topics, not

knowing whether any subscribers exist. Similarly, subscribers do not subscribe to certain

publishers’ messages, but rather to individual topics, unaware of any potential publishers.

12

This messaging pattern requires a message broker to allow publishing and subscribing to topics.

The broker may filter and route published messages, translate messages from the formal

messaging protocol of the publisher to the formal messaging protocol of the subscriber and

invoke web services to retrieve data.

In the case of this thesis, the broker is a custom-made Yocto distribution made to mimic a Yoga

Hub smart home gateway.

MQTT is designed to be used in devices with low bandwidth and high latency - devices that are

generally in unstable conditions. [12]

There is an abundance of available MQTT tools, from the Mosquitto project to Google Chrome

extensions and apps such as MQTTLens7, MQTTBox8 and MQTT.fx9. In this thesis, a

combination of Mosquitto and MQTT.fx is used.

2.5.1 Mosquitto

Mosquitto is a lightweight open source MQTT broker that as of April 2018 supports MQTT

versions 3.1 and 3.1.1. Mosquitto is highly portable and available on Windows, Mac, many

Linux distributions and on iPhones [13].

The Mosquitto project also comes with two command line MQTT clients – mosquitto_pub and

mosquitto_sub. Mosquitto_pub is an MQTT client that publishes a single message on a certain

topic, and then exits. Mosquitto_sub, on the other hand, subscribes to a certain topic and prints

the received message to the console. Unlike the publishing client, the default subscription client

lasts until it is manually closed. This may be changed by including a parameter to close the

subscriber after receiving a certain number of messages.

2.5.2 MQTT.fx

MQTT.fx is an easy-to-use MQTT helper program used for developing and testing MQTT-

based applications. MQTT.fx has a built-in scripting tool supported by the Java8 Nashorn

JavaScript Engine [14], which allows developers to write their own JavaScript code for

MQTT.fx. Since the tool supports publish, subscribe and unsubscribe MQTT commands, along

with logging and output to the console, the scripting tool is used to simulate publishing sensor

data multiple times over a certain time period.

7 https://chrome.google.com/webstore/detail/mqttlens/hemojaaeigabkbcookmlgmdigohjobjm
8 http://workswithweb.com/mqttbox.html
9 http://mqttfx.jensd.de/

https://chrome.google.com/webstore/detail/mqttlens/hemojaaeigabkbcookmlgmdigohjobjm
http://workswithweb.com/mqttbox.html
http://mqttfx.jensd.de/

13

To use MQTT.fx, a connection to an MQTT broker must be established within the application.

From there, publishing and subscribing to topics is available, along with authentication, a

history of subscribed and published messages and several other tools.

2.6 Related works

The combination of using the Yocto Project alongside QEMU to emulate a MQTT IoT

environment is an uncommon union. More works exist that either use the Yocto Project to

customize an image for their specific needs, simply use MQTT as a data transfer protocol in

their IoT implementation or leverage QEMU to emulate a network of IoT devices that

communicate via MQTT. Below, three academic works on these topics are introduced and

summarized.

2.6.1 Management of MQTT Devices via an IoT Home Gateway

The authors of [15] show that their MQTT-based IoT gateway solution provides convenience

and helps energy management via remote controlling devices in a smart home setting. A method

of device discovery via Devices Profile for Web Services (DPWS) is also introduced.

Using Mosquitto as an MQTT broker, the smart home gateway dispenses abstracted messages

between devices with heterogenous payloads, in their case, Arduino, Zigbee, and simulated

DPWS devices are used. Since different devices transmit data in various forms, an abstracted

JSON format is created to generalize the data. The devices are used to control and connect to

temperature, light, and humidity sensors, lightbulbs and monitors.

Since some of the devices used don’t support DPWS, auto-configuration for constrained

devices using advertisement messages based on User Datagram Protocol is also shown.

2.6.2 Embedded Linux Based Voice Calling Device

In [16], M. Swain uses the Yocto Project to customize an Embedded Linux kernel image

suitable for a Raspberry Pi Model B to be used in a voice calling device.

In embedded projects, there is usually not a lot of disk space to spare, so a lot of pressure is put

on achieving a low disk footprint. The two alternatives to creating a custom image with Yocto

proposed in the paper are Raspbian OS and PILFS. As the former has an image size of 3.2 GB

and the latter 1.1 GB, Yocto custom images come at a clear advantage, with the image in the

publication having a memory size of 538 MB.

14

The author demonstrates that a smaller size also means more efficiency, with the custom Yocto

image taking less time to run given tasks than its larger counterparts.

2.6.3 IoT Test Environment for Anomaly Detection

Since IoT solutions often consist of many interconnected devices, a real testing environment

may not be a viable solution due to the amount of human effort and investment in hardware

required. In [17], Brady et al. propose that by creating a realistic emulated IoT environment,

human effort and investment could be reduced while improving productivity.

The authors propose a novel tool for emulating network components, called Network Emulator

for Mobile Universes (NEMU). NEMU is leveraged to create a testing environment for

interconnected and emulated Raspberry Pi devices. The IoT devices are emulated by QEMU.

Three types of IoT systems are compared:

1. a real IoT system built with Raspberry Pi hardware;

2. an emulated IoT system built with QEMU ARM emulation software;

3. and a virtualized IoT system built with QEMU-KVM virtualization software.

The authors perform a MQTT-based data transmitting test, a processor and memory-intensive

Java Dacapo Benchmarks test and a network-intensive test. All three tests are conducted within

a log analysis context, with the aim being to monitor and detect anomalies in the IoT

environments.

Brady et al. show that both emulated and virtualized environments produce test results similar

to a real IoT environment, as long as the devices are not under processing, memory or network

stress.

2.6.4 Discussion

In all three works, elements of this thesis were used in one way or another. The works showed

the advantage of Yocto over other operating system distributions, the benefits of using MQTT

as a data transfer protocol and the wide range of applications of QEMU.

[15] demonstrated the use of MQTT devices in an IoT setting, with Mosquitto as the broker of

choice, with its low overhead and reliability, in an automated home environment. The authors

of [17] used MQTT in conjunction with QEMU to create an emulated IoT environment without

allocating a large amount of resources to the process. The focus of the work was on emulating

Raspberry Pi devices, whereas in this thesis, the focus is on emulating a Yoga Hub. In [16], the

authors showed that, according to process execution time and image size, Yocto proved to be

15

the most efficient option for creating an embedded Linux image. Since the work concentrated

on creating a voice calling device, there was no consideration of MQTT or QEMU.

16

3 Architecture & System Configuration

3.1 System Overview

To simulate a real-life IoT environment, we consider a network of MQTT clients and a central

gateway. Inside the gateway resides an MQTT broker alongside a web server, MQTT subscriber

client and database for logging purposes. The skeleton of this network is seen on Figure 3.

Figure 3. Basic architecture of the network.

The function of the MQTT clients is to publish data to certain topics, and similarly, subscribe

to certain topics to receive that information. In a simple home IoT situation, some MQTT clients

could publish data about the temperature in rooms, and other clients could subscribe to the topic

and use that information to control the heat, thus optimizing the heating system and potentially

saving money and energy.

For data to be able to move between clients, an MQTT broker is set up inside a central gateway.

Many IoT solutions require the persistence of data, but since MQTT has no built-in message

logging, only allowing for the last message published to be retained per topic, a database can

be used to keep a history of messages sent. The database receives information from an MQTT

subscriber client residing inside the gateway, which is listening to the same topic that the outside

clients are publishing on and subscribing to.

17

A web server is also set up inside the gateway. There are a number of uses for web applications

in IoT projects – they are the main user-facing components, providing data visualization via

dashboards and graphs, and helping users interface with the broker through submitting

commands.

3.1.1 Initial Configuration

With the basic system architecture presented, an environment must be set up to reflect the Yoga

Hub.

As shown in Appendix A, the Yoga Hub has the following hardware specifications:

● CPU – 454MHz Freescale i.MX283;

● RAM – 64MB DDR;

● NAND – 128MB.

To emulate running an embedded Linux operating system on this CPU, a Linux-based

development environment must be set up - even though QEMU can be run on a Windows host,

Yocto needs a supported Linux distribution as a build host [18]. This can be achieved either by

running Linux natively or through Docker.

Docker is software providing operating-system-level virtualization. It uses the resource

isolation features of the Linux kernel such as cgroups and kernel namespaces, and a union-

capable file system to allow independent "containers" to run within a single Linux instance,

avoiding the overhead of starting and maintaining virtual machines. Considering this, coupled

with the easy-to-start-over nature of Docker containers, Docker is the more viable option for

the project.

Yocto CROPS, or CROss PlatformS, leverages Docker containers to create an operating

system agnostic Yocto Project development environment. That means development may take

place on a Windows, Mac or Linux machine.

When setting up CROPS, two TCP ports are mapped in the container to the respective TCP

ports on the host machine, as explained further in section 3.1.2.

After setting up CROPS and including the Poky reference distribution, the oe-init-build-env

script is executed. This:

● sets the environment variables;

● checks the minimal resources for building the images;

18

● creates the configuration files.

As a result, the build directory is also created. This directory contains three files:

1. bblayers.conf – lists the metadata layers for a custom Yocto image;

2. local.conf – contains project-specific configuration variables and recipes;

3. templateconf.cfg – contains the directory that includes template configuration files to be

used to create an image.

A number of changes must be made to these default files, before building the embedded Linux

distribution.

3.1.2 Network configuration

As both the MQTT broker and web server need to be connected to from outside the gateway,

separate ports must be allocated. For the broker, the default Mosquitto port, 1883, is used. For

the web server, port 3000 is used.

For networking, there are two main options: Slirp and TAP. Since the Poky distribution does

not provide root access, which TAP usually requires, setting up TAP interfaces is not an option.

Hence, Slirp is used in this thesis.

Slirp is the default networking backend for QEMU which provides a full TCP/IP stack to

implement a virtual Network Address Translated network. When using Slirp, port forwarding

must be used to allow networking between the guest and the host.

3.1.3 Creating a custom BSP

The Yoga Hub’s Freescale i.MX283 applications processor is an implementation of the

ARM926EJ-S core [19]. As the default BSP-s offered by Yocto are not configured for

ARM926EJ-S architectures, a custom BSP must be created. As mentioned in the State of the

Art, Yocto offers a tool, yocto-bsp, for developers to easily create new BSPs. Customizable

features include device architecture type, kernel version, and touch-screen and keyboard access.

To best mimic an IoT gateway like the Yoga Hub, the following setup is chosen:

● a QEMU ARMV926EJ-S architecture;

● Linux kernel version 4.12;

● keyboard access;

● no touchscreen access.

After the new BSP is created, layers and recipes essential for MQTT and the web server must

be downloaded, and configuration files updated.

19

3.1.4 Updating layer and recipe info

Since the default Yocto configuration includes only the minimal required layers, and Mosquitto

is not a part of core functionality, it must be added manually. For the broker functionality, the

Mosquitto recipe must be added to local.conf, and for the MQTT client to work inside the

gateway, the Mosquitto-clients recipe is required.

As shown in chapter 2, additional layers can be found in the OpenEmbedded Layer Index. A

single Mosquitto recipe can be found for the Rocko branch. This recipe also only has a single

dependent layer, meta-oe, which is helpful for keeping the image size to as small as possible.

[20]

The web server of choice is lighttpd10, which is included in openembedded-core.

3.1.5 BitBaking

Once the necessary layers and recipes are added to the configuration files, the embedded Linux

distribution must be built. As described in chapter 2, an image must also be specified as a

parameter to BitBake the embedded Linux distribution. As any image with graphical support

will exceed the Yoga Hub’s 128MB disk space limit, a command-line image must be selected

- the core-image-full-cmdline image is chosen.

The build process is a lengthy one, taking up to four hours on a machine with an i5-7600

processor and 8 GB of RAM. The build time can be reduced by allocating more CPU and RAM

to the Docker container, since BitBake supports multithreading. Modifying the local.conf file

to allow caching shared-state files and saving downloaded source code tarballs instead of

deleting them also improves subsequent build speeds. This also applies to separate builds with

different images.

After building the custom images, QEMU is used to run the embedded Linux distribution. The

ports mentioned in Network configuration are also forwarded from the Docker container to

QEMU. Now, the emulated QEMU machine may be accessed from the host - in the case of this

thesis, a Windows machine.

All the elements selected for the embedded Linux build were chosen to minimize the total disk

size. Total size of the built image including the boot loader executables, kernel, and filesystems

10 https://www.lighttpd.net/

https://www.lighttpd.net/

20

was under the Yoga Hub’s 128 MB limit - core-image-full-cmdline’s final size was 115.228

MB.

3.2 Implemented Prototype

The final solution consists of three MQTT subscriber clients, an MQTT publisher client and an

emulated Yoga Hub gateway. A complete overview of the implemented system is seen on

Figure 4, where:

• a is the displaying of data;

• b is the logging of data;

• c is the subscribing to topics from inside the gateway;

• d is the publishing of messages;

• e is the subscribing to topics from outside the gateway;

• and f is interacting with the web server.

Figure 4. In-depth system overview.

The gateway is running a miniature version of embedded Linux, which has been built and

configured with the Yocto Project to take up as little disk space as possible using the core-

image-full-cmdline image. Inside the gateway on the Linux system, there is a Mosquitto MQTT

broker, two Mosquitto MQTT subscriber clients, and a means to save and present data via a flat

21

file database and a lighttpd web server. In the case of this thesis, a plain text file database is

used.

One of the MQTT subscriber clients is outside of the embedded device, while the other two are

inside. The outside subscriber and the publisher client are running on MQTT.fx with

username/password authentication implemented. The publisher is running a custom script,

shown in Appendix C. The script is set up to publish randomly generated temperature and

humidity data every minute, while the outside subscriber is set up to receive that data. The

subscribers inside the gateway are set up to record that data to a text file database, which allows

the web server to display the data in a user-friendly manner. A snippet of the MQTT.fx-side log

of the script can be seen below:

2018-05-01 13:39:01,378 INFO --- MqttFX ClientModel

: attempt to add PublishTopic

2018-05-01 13:39:01,381 INFO --- MqttFX ClientModel

: successfully published message 21.08 to topic

temperature/kitchen (QoS 0, Retained: false)

2018-05-01 13:39:01,387 INFO --- MqttFX ClientModel

: attempt to add PublishTopic

2018-05-01 13:39:01,387 INFO --- MqttFX ClientModel

: successfully published message 46.19 to topic

humidity/kitchen (QoS 0, Retained: false)

The Mosquitto MQTT broker is running on default settings, the only exception being the added

authentication. In a real-world situation, using authentication is a best practice, to minimize the

chance of message interception. Mosquitto has a number of ways to authenticate, such as

username/password authentication, pre-shared-key based encryption, and certificate based

encryption of messages. In this thesis, username/password authentication is used. The broker is

also running on the default port 1883. [21]

The lighttpd web server configuration remains mostly unchanged, only the default port is

changed to 3000. Lighttpd also comes with a default HTML index page, but the HTML must

be changed to display latest database values to the user - C3.js11 is leveraged to create graphical

11 http://c3js.org/

http://c3js.org/

22

representations of transmitted MQTT data. The contents of the configured web page can be

seen on Figure 5.

Figure 5. The web server dashboard, including line and gauge charts.

The result is a web application dashboard that presents up to date device and sensor data to

users in a meaningful way – graphs being much more intuitive than, for example, JSON

payloads.

The web server can further be improved by creating more graphs, and by incorporating AJAX

to update data without refreshing the page, but in the context of this thesis, AJAX is not a

priority.

23

4 Conclusion

In this thesis, the Yocto Project and MQTT were studied, and a practical output was provided

in the form of an embedded Linux distribution suitable for University of Tartu’s Mobile and

Cloud Computing Lab’s newly acquired Yoga Hub gateway devices. The thesis also gives the

background on embedded Linux, MQTT, and the Yocto Project, and covers some related works.

An IoT network, with simulated external sensor devices implemented using MQTT.fx clients

and a custom script to mock sensors sending and receiving data, was created. The data was

distributed through a gateway, which was running a custom embedded Linux build created

specifically to fit on the memory of the Yoga Hub. Inside the gateway was a Mosquitto MQTT

broker, alongside a subscriber client, a web server and a database. The subscriber client inside

the gateway served as a logger to insert information into the database. From the database, the

web server could retrieve data and display it to the user.

The conducted work provides a base for developers and researchers to create embedded Linux

distributions for IoT gateways based on their specific needs.

4.1 Future developments

As the image, core-image-full-cmdline, can fit in the Yoga Hub’s 128MB flash memory, using

that to create an embedded Linux distribution to run on the Yoga Hub would be a viable option.

A possible future work may also involve adapting the results of this thesis to run on the physical

Yoga Hub device.

If a more secure system is required, I highly recommend using certificate-based authentication

for MQTT. Since no sensitive data was transmitted in the practical work, only

username/password authentication was used, but in any real-life scenario where sensitive data

is transmitted, certificate-based authentication should be considered over username/password

authentication to reduce the chances of data breaches.

For a more elegant and developer-friendly way of web server development, one of many

database recipes provided in the OpenEmbedded layer index [10] could be added to the build

and implemented within the device.

24

5 References

[1] “Cisco Global Cloud Index: Forecast and Methodology, 2016–2021 White Paper”,

Cisco.com, [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-

provider/global-cloud-index-gci/white-paper-c11-738085.html (Accessed 13th of March 2018)

[2] “Worldwide Spending on the Internet of Things Forecast to Reach Nearly $1.4 Trillion in

2021, According to New IDC Spending Guide”, Idc.com, [Online]. Available:

https://www.idc.com/getdoc.jsp?containerId=prUS42799917 (Accessed 13th of March 2018)

[3] van der Meulen, R. “Gartner Says 8.4 Billion Connected "Things" Will Be in Use in 2017,

Up 31 Percent From 2016”, Gartner.com, [Online]. Available:

https://www.gartner.com/newsroom/id/3598917 (Accessed 13th of March 2018)

[4] Eljand-Kärp, V. “Telia kinkis Tartu ülikooli asjade interneti laborile 920 seadet, millega

laiendada oma labori uurimisteemasid”, Ut.ee, [Online]. Available:

https://www.ut.ee/et/uudised/telia-kinkis-tartu-ulikooli-asjade-interneti-laborile-920-seadet-

millega-laiendada-oma (Accessed 13th of March 2018)

[5] Attila, A. “Operating Systems - Lecture Notes: Chapter 2. Booting up”,

Gyires.inf.unideb.hu, [Online]. Available:

https://gyires.inf.unideb.hu/GyBITT/20/ch02s02.html (Accessed 19th of March 2018)

[6] “Choosing a Boot Loader”, Control-escape.com, [Online]. Available: http://www.control-

escape.com/linux/bootload.html (Accessed 19th of March 2018)

[7] “Linux_4.0 – Linux Kernel Newbies”, Kernelnewbies.org, [Online]. Available:

https://kernelnewbies.org/Linux_4.0 (Accessed 20th of March 2018)

[8] Simmonds, C. Mastering Embedded Linux Programming – Second Edition. Packt

Publishing. 2017.

[9] “Releases”, Yoctoproject.org, [Online]. Available:

https://wiki.yoctoproject.org/wiki/Releases (Accessed 23th of March 2018)

[10] “OpenEmbedded Layer Index” , Openembedded.org, [Online]. Available:

http://layers.openembedded.org/ (Accessed 27th of March 2018)

[11] “QEMU”, Qemu.org, [Online]. Available: https://wiki.qemu.org/Main_Page (Accessed

1st of April 2018)

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.idc.com/getdoc.jsp?containerId=prUS42799917
https://www.gartner.com/newsroom/id/3598917
https://www.ut.ee/et/uudised/telia-kinkis-tartu-ulikooli-asjade-interneti-laborile-920-seadet-millega-laiendada-oma
https://www.ut.ee/et/uudised/telia-kinkis-tartu-ulikooli-asjade-interneti-laborile-920-seadet-millega-laiendada-oma
https://gyires.inf.unideb.hu/GyBITT/20/ch02s02.html
http://www.control-escape.com/linux/bootload.html
http://www.control-escape.com/linux/bootload.html
https://kernelnewbies.org/Linux_4.0
https://wiki.yoctoproject.org/wiki/Releases
http://layers.openembedded.org/
https://wiki.qemu.org/Main_Page

25

[12] “FAQ - Frequently Asked Questions | MQTT”, Mqtt.org, [Online]. Available:

http://mqtt.org/faq (Accessed 1st of April 2018)

[13] “Download | Eclipse Mosquitto”, Mosquitto.org, [Online]. Available:

https://mosquitto.org/download/ (Accessed 1st of April 2018)

[14] Deters, J. “MQTT Toolbox – MQTT.fx”, Hivemq.com, [Online]. Available:

https://www.hivemq.com/blog/mqtt-toolbox-mqtt-fx (Accessed 2nd of April 2018)

[15] Kim, Seong-Min & Choi, Hoan-Suk & Rhee, Woo Seop. (2015). IoT home gateway for

auto-configuration and management of MQTT devices. 12-17.

10.1109/ICWISE.2015.7380346.

[16] Swain, Mahendra & Srivastava, Abhishek. (2015). Design of Embedded Linux Based

Voice Calling Device. International Journal of Applied Engineering Research. 10. 35095-

35102.

 [17] Brady, Shane & Hava, Adriana & Perry, P & Murphy, John & Magoni, Damien & Portillo,

Omar. (2017). Towards an Emulated IoT Test Environment for Anomaly Detection using

NEMU. 10.1109/GIOTS.2017.8016222.

[18] “Yocto Project Quick Start”, Yoctoproject.org, [Online]. Available:

https://www.yoctoproject.org/docs/2.4.2/yocto-project-qs/yocto-project-qs.html (Accessed

17th of April 2018)

[19] “i.MX28 Applications Processors for Consumer Products“, Nxp.com, [Online]. Available:

https://www.nxp.com/docs/en/data-sheet/IMX28CEC.pdf (Accessed 1st of April 2018).

[20] “mosquitto 1.4.14”, Openembedded.org, [Online]. Available:

http://layers.openembedded.org/layerindex/recipe/70416/ (Accessed 1st of April 2018)

[21] “mosquitto.conf man page”, Mosquitto.org, [Online]. Available:

https://mosquitto.org/man/mosquitto-conf-5.html (Accessed 1st of April 2018)

http://mqtt.org/faq
https://mosquitto.org/download/
https://www.hivemq.com/blog/mqtt-toolbox-mqtt-fx
https://www.yoctoproject.org/docs/2.4.2/yocto-project-qs/yocto-project-qs.html
https://www.nxp.com/docs/en/data-sheet/IMX28CEC.pdf
http://layers.openembedded.org/layerindex/recipe/70416/
https://mosquitto.org/man/mosquitto-conf-5.html

26

Appendices

A Pictures of the Yoga Hub

Figure 6. The powered-off Yoga Hub.

Figure 7. The Yoga Hub booting up.

B Yoga Hub specifications sheet

Table 1. The Yoga Hub specification sheet.

Product detailed name Yoga Hub

General classification Main Controller

Dimensions (WxHxD) 254x49x46mm

Weight 290g (399g with adapter)

System CPU – 454MHz Freescale IMX283

RAM - 64MB DDR2

NAND - 128MB

Local User Interfaces 105dB siren (from 10cm), speaker, LCD

display, button

Communication Ethernet, USB, ZigBee PRO, GPRS

27

Maximum Connected Devices 20 ZigBee PRO devices

Power Supply (nominal) 5V DC 2A

Power Supply (backup) 2000mAh Li-Ion-Pol battery inside

(3.5..4.2V), lifetime ~3 years

Operating life time from battery: 4h

(charging time 10h)

Power Consumption Max 10W

Operational Temperature 0..+40°C

Storage Temperature -20..+50°C

Relative Humidity 10..95% non-condensing

28

C Custom MQTT.fx publishing script

Figure 8. Custom publishing script for MQTT.fx.

29

D License

I, Toomas Aleksander Veromann (date of birth: 03.08.1996),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright,

“Embedded Linux-based Smart Home Gateway”,

supervised by Jakob Mass

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual

property rights or rights arising from the Personal Data Protection Act.

Tartu, 14.05.2018

