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Embedded Linux-based Smart Home Gateway 

Abstract: 

This thesis describes a means of developing a custom embedded Linux distribution compatible 

with devices with ARM processors and limited resources, such as gateways in smart home 

environments. These devices are usually constrained in computational resources such as RAM 

and memory space. The Yocto Project is utilized to create and customize an operating system 

image and configure a set of applications which can make the devices work as useful gateways. 

The configured applications include a Mosquitto MQTT broker, a web server, and a database 

to display and persist brokered messages. The output of this thesis is the configured operating 

system image which was tested in an emulated device environment. The image includes a 

custom set of applications, which form a smart home data visualisation application. 

Keywords: 

Embedded Linux, MQTT, Yocto Project, QEMU 

CERCS: P170 Computer science, numerical analysis, systems, control 

Embedded Linuxi baasil targa kodu keskseade 

Lühikokkuvõte: 

Käesolev bakalaureusetöö kirjeldab meetodit, kuidas luua Linuxi manusoperatsioonisüsteemi 

tõmmis, mis sobituks piiratud ressurssidega ARM-tüüpi protsessoriga seadmetele, nagu näiteks 

targa kodu keskseadmetele. Sellised seadmed on tavaliselt piiratud nii vähese muut- kui ka 

välkmäluga. Töös kasutatakse Yocto Projecti, et luua ja kohandada operatsioonisüsteem koos 

hulga rakendustega, mida kasutades saab seade funktsioneerida kui targa kodu keskseade. 

Rakenduste hulgas on nii Mosquitto MQTT sõnumivahendaja, kui ka veebiserver ja 

andmebaas, vahendamaks, kuvamaks ja talletamaks andmeid. Töö tulemusena valmib 

kohandatud operatsioonisüsteemi tõmmis koos eelmainitud rakendustega. 

Operatsioonisüsteemi tööd testiti emuleeritud keskkonnas. 

Märksõnad: 

Embedded Linux, MQTT, Yocto Project, QEMU 

CERCS: P170 Arvutiteadus, arvanalüüs, süsteemid, kontroll 
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1 Introduction 

Whether we acknowledge it or not, the internet is all around us. Interconnected devices are 

sending and receiving vast amounts of data every single day. While not all data is preserved, it 

is still constantly being produced. This data is partly generated by smart home software and 

devices, e.g. using an application on a smartphone to schedule brewing a coffee every morning 

at a certain time, monitoring energy usage in a building room by room, or simply by opening 

the garden gate moments before arriving at home.  

This is, essentially, the Internet of Things (IoT) at its simplest level - a network of devices that 

communicate with each other and with the server infrastructure. The server infrastructure must 

have the ability to share received device data and may also provide data back to devices. 

According to a Cisco report published in 2018, more than 840 zettabytes of data will be 

generated by IoT applications by 2021 [1]. This is achieved by messaging protocols such as 

MQTT, which is one of the focus points in this thesis. 

It’s not just private consumers who are interested in IoT - the International Data Corporation 

predicts worldwide spending on the Internet of Things to reach nearly $1.4 trillion in 2021 [2], 

while Gartner reports that the number of connected things will reach 20.4 billion by 2020 [3]. 

This ever-growing interest in IoT has also improved cooperation between private companies 

and institutions of higher education, e.g. with Telia Eesti providing University of Tartu’s 

Mobile & Cloud Computing Laboratory with close to a thousand IoT devices for advancing IoT 

development and studies. The devices include temperature-, light- and movement sensors, 

smart plugs, and the machines that route and direct the generated data – smart home gateways. 

[4] 

The purpose of this thesis is to create and customize an operating system image and configure 

a set of applications, which will assist University of Tartu’s Mobile & Cloud Computing 

Laboratory with repurposing some of the recently received Yoga Hub devices to act as useful 

gateways. The configured applications include a Mosquitto MQTT broker, a web server, and a 

database to display and persist brokered messages. 

This thesis consists of three main sections, and appendices: 

● The first section provides an overview of the state of the art, covering the background 

of embedded Linux, the Yocto Project, and MQTT. It also gives an overview of similar 
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works related to MQTT, the Yocto Project, and QEMU and provides a comparison 

between the works and this thesis; 

● The second section presents the practical work conducted regarding Yocto and MQTT 

configuration to mimic an IoT environment. This includes the general configuration and 

architecture regarding MQTT clients, the Yoga Hub as the gateway, and creating a 

custom embedded Linux distribution to match the Yoga Hub’s limitations; 

● The third section summarizes this thesis and describes possible future development to 

be done based on this thesis regarding the repurposing of Yoga Hubs;  

● Appendix A displays pictures of the Yoga Hub; 

● Appendix B contains a full specifications sheet of the Yoga Hub; 

● Appendix C shows custom code written to publish MQTT messages.  
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2 State of the Art 

2.1 Embedded Linux 

Embedded Linux is a Linux operating system specifically configured to be used in consumer 

electronics such as Android phones, smart home devices, routers and switches. The motivation 

for using embedded Linux on these types of devices is that the devices are constrained by disk 

space. Due to the lower disk space footprint of embedded Linux, it can fit on devices where 

regular Linux cannot.  

While regular Linux distributions are more generic and are able to run on different devices, 

embedded Linux distributions are usually set up for certain hardware and users may experience 

difficulties when trying to run them on devices they are not meant for. 

Some of the benefits for choosing Linux as the operating system for an embedded project over 

alternatives such as Windows Embedded Compact1 include: 

● vast amount of developers and help forums; 

● ease of customization; 

● relatively small image size; 

● and no cost; 

Every Embedded Linux project starts with obtaining and customizing the following elements:  

● the toolchain; 

● the boot loader; 

● the kernel; 

● and the root filesystem. 

The boot process order containing these elements is shown in Figure 1. 

                                                 
1 http://msdn.microsoft.com/en-ph/embedded/  

http://msdn.microsoft.com/en-ph/embedded/
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Figure 1. The boot process. [5] 

2.1.1 Toolchain 

A toolchain is the collection of tools used for compiling source code into executables for a 

target device, consisting of an assembler, compiler, linker, librarian, and any other tools needed 

to produce executable code. In the case of Embedded Linux, the toolchain must be able to 

compile code written in Assembly, C and C++, since these are the languages used to write the 

base packages. Toolchains are used to build the boot loader, kernel, and root filesystem. 

2.1.2 Boot loader 

The purpose of a boot loader is to load the operating system into a computer’s memory at boot 

time [6]. When a computer is powered up or restarted, the Basic Input/Output System performs 

a power-on self-test, checking whether the device’s hardware is connected and functioning 

properly. Then, control is transferred to the master boot record (MBR) where the boot loader is 

located. After making the required system resources operational, the boot loader loads the 

kernel into RAM and creates an execution environment for it. Optionally, the boot loader may 

pass a pointer of the root filesystem to the kernel. 

In the case of a two-stage boot loader, the first stage resides in the MBR, while the second stage 

is located in the Volume Boot Record. The task of first stage is to load the second stage boot 

loader, while also passing on operating system specific data. The second stage, knowing 

operating system specifics, loads the kernel into RAM.  
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2.1.3 Linux Kernel 

The Linux Kernel is a monolithic one – the entire operating system with its services and core 

functionality shares the same space, as opposed to a microkernel architecture where 

functionality is isolated from system services. The main jobs of a kernel are to communicate 

with hardware via drivers, which are included in the kernel or added via kernel modules, and 

manage system resources such as memory, tasks and processes, and disk usage. 

The kernel gets a root filesystem, either passed as a pointer from the boot loader, or by mounting 

the device given on the kernel command line. After receiving the root filesystem, the kernel 

executes the first program, init by default. Then, the init program starts the preceding programs 

and gets the system running.  

Starting with Linux kernel version 4.0, updates may be applied to the kernel without rebooting 

the system, thus allowing for system updates with no downtime [7].  

2.1.4 Root filesystem 

The last required element for an embedded Linux build is the root filesystem. The root 

filesystem contains system libraries, utilities and scripts used to make the system work. The 

first program to run is init, which helps manage the lifecycle of the system, from boot up to 

shutdown. Init’s priority is to take care of starting shell, which in turn is used to start other 

programs. 

Building these elements manually is a tedious task, so projects such as Buildroot2 and the Yocto 

Project3 have been created to automatically build toolchains, boot loaders, kernels and root 

filesystems. In the next chapters, a more in-depth look at the Yocto Project is provided. 

2.2 BusyBox 

As mentioned in 2.1, embedded Linux projects are often restricted disk space-wise. As a result, 

there is a high demand for tools that have a low disk space footprint. BusyBox4 is software that 

provides hundreds of stripped-down Unix tools, such as wget, grep, and unzip, in a single 

executable file. Many of the tools it provides are designed to work with interfaces provided by 

the Linux kernel. It was specifically created for embedded operating systems with very limited 

resources. 

                                                 
2 https://buildroot.org/  
3 https://www.yoctoproject.org/  
4 https://busybox.net/  

https://buildroot.org/
https://www.yoctoproject.org/
https://busybox.net/
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2.3 The Yocto Project 

The Yocto Project, Yocto for short, stems from the OpenEmbedded build framework which in 

turn has its roots in several projects to port Linux to different handheld devices [8]. The 

OpenEmbedded framework uses the IPK format to create binary packages that can be combined 

to create a target system and can be installed at runtime. That is achieved by using recipes for 

each package and having BitBake as the task scheduler.  

In 2005, an OpenEmbedded fork called Poky was created by Richard Purdie. Poky had a smaller 

amount of packages compared to OpenEmbedded and stable releases for Poky were created 

over time. Even though Poky was a fork, it continued to grow alongside OpenEmbedded, 

sharing updates with the OpenEmbedded master branch. [8]  

 In 2008, Intel bought out Purdie’s employer OpenedHand and in 2010, Poky was transferred 

to the Linux Distribution, where the Yocto Project was formed. [8] 

The version of Yocto used in this thesis is, as of the time of writing, the latest stable Yocto 

release - version 2.4.2, codename Rocko [9].  

The main elements of the Yocto Project are: 

● Poky. Nowadays, Poky has evolved from being just an OpenEmbedded fork to Yocto 

Project’s reference distribution. It includes the OpenEmbedded-Core layer along with 

BitBake and metadata to help users get started on creating their own Linux distributions. 

● BitBake. BitBake is a build engine that allows the running of shell and Python scripts 

in parallel in an effective manner. It is a core component of the Yocto Project. BitBake 

uses recipes to define how packages are built. The first step in a cross-platform BitBake 

build process is to create a cross-compile toolchain meant for the target platform, which 

in turn can then build the other required elements.  

● Recipes. Recipes in Yocto are files that have the .bb suffix. Generally, recipes contain 

information about a particular piece of software, including the download source, 

dependencies, any possible patches and configuration options to apply, instructions on 

how to compile the source files and how to package the compiled output.  

● Layers. Layers in Yocto are collections of recipes, usually gathered around a central 

theme, e.g. web development, Python or Java support, or secure storage for application 

data. Premade layers used in Yocto are supplied and maintained by OpenEmbedded 

[10], while developers may also create their own layers if none suit their interests. 
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Layers are used on top of the base, OpenEmbedded-Core layer that comes with Poky. 

The OpenEmbedded-Core layer includes, among other tools, BusyBox. Typically, layer 

names start with meta, e.g. meta-networking.  

● Board Support Packages. Board support packages, or BSPs, contain information about 

certain devices, including any hardware present (or missing) from the device, drivers, 

and information about the device kernel. There are a number of BSP-s available for 

Poky, with the option for developers to create their own custom BSP with the yocto-bsp 

tool. Some example BSP-s include: 

o genericx86 – the generic support for 32-bit x86-based machines; 

o genericx86-64 - the generic support for 64-bit x86-based machines; 

o qemuarm – the QEMU ARM emulation; 

o qemuips – the QEMU MIPS emulation; 

o qemux86 – the QEMU x86 emulation. 

● Images. Poky distribution also provides premade image recipes that can be used to build 

custom Linux distributions. The images are essentially configured packages that 

generate a filesystem that can be used on hardware. Some example images provided by 

Poky are: 

o core-image-minimal – a tiny image, only allowing the device to boot; 

o core-image-full-cmdline – a console-only image with full-featured Linux system 

functionality; 

o core-image-x11 – an image with a basic graphical user interface.   

As seen on Figure 2, all of the aforementioned tools help create a relatively small embedded 

Linux distribution which can either be put on a physical device or, if one is unavailable, be 

emulated with various tools such as kvmtool5 or QEMU6.  

                                                 
5 https://github.com/clearlinux/kvmtool  
6 https://www.qemu.org/  

https://github.com/clearlinux/kvmtool
https://www.qemu.org/
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Figure 2. Creating a custom embedded Linux image with the elements of Yocto. 

2.4 QEMU 

Quick Emulator, or QEMU, is a free and open-source machine emulator and virtualizer that can 

reach near-native performance through dynamic binary translation – looking at short sequences 

of code from the source architecture, translating them to the target architecture, and catching 

the resulting sequences. Code is translated as it is discovered, and pointers to already translated 

code are kept.  

QEMU can also run processes compiled for one architecture in a different one. This is achieved 

by CPU emulation and proves especially beneficial for developers when prototyping and 

debugging software intended for embedded devices – instead of running alpha versions of 

software on the intended target devices, developers can run software on their development 

machine, to which usually a lot more resources are allocated. [11] 

2.5 MQTT 

MQTT, also known as Message Queueing Telemetry Transport, is a publish-subscribe-based 

messaging protocol that works on top of the TCP/IP protocol. In publish-subscribe messaging, 

the senders of messages, called publishers, do not send messages directly to the intended 

receivers, called subscribers, but instead categorize published messages into topics, not 

knowing whether any subscribers exist. Similarly, subscribers do not subscribe to certain 

publishers’ messages, but rather to individual topics, unaware of any potential publishers.  
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This messaging pattern requires a message broker to allow publishing and subscribing to topics. 

The broker may filter and route published messages, translate messages from the formal 

messaging protocol of the publisher to the formal messaging protocol of the subscriber and 

invoke web services to retrieve data.   

In the case of this thesis, the broker is a custom-made Yocto distribution made to mimic a Yoga 

Hub smart home gateway. 

MQTT is designed to be used in devices with low bandwidth and high latency - devices that are 

generally in unstable conditions. [12] 

There is an abundance of available MQTT tools, from the Mosquitto project to Google Chrome 

extensions and apps such as MQTTLens7, MQTTBox8 and MQTT.fx9. In this thesis, a 

combination of Mosquitto and MQTT.fx is used. 

2.5.1 Mosquitto 

Mosquitto is a lightweight open source MQTT broker that as of April 2018 supports MQTT 

versions 3.1 and 3.1.1. Mosquitto is highly portable and available on Windows, Mac, many 

Linux distributions and on iPhones [13].  

The Mosquitto project also comes with two command line MQTT clients – mosquitto_pub and 

mosquitto_sub. Mosquitto_pub is an MQTT client that publishes a single message on a certain 

topic, and then exits. Mosquitto_sub, on the other hand, subscribes to a certain topic and prints 

the received message to the console. Unlike the publishing client, the default subscription client 

lasts until it is manually closed. This may be changed by including a parameter to close the 

subscriber after receiving a certain number of messages.  

2.5.2 MQTT.fx 

MQTT.fx is an easy-to-use MQTT helper program used for developing and testing MQTT-

based applications. MQTT.fx has a built-in scripting tool supported by the Java8 Nashorn 

JavaScript Engine [14], which allows developers to write their own JavaScript code for 

MQTT.fx. Since the tool supports publish, subscribe and unsubscribe MQTT commands, along 

with logging and output to the console, the scripting tool is used to simulate publishing sensor 

data multiple times over a certain time period.  

                                                 
7 https://chrome.google.com/webstore/detail/mqttlens/hemojaaeigabkbcookmlgmdigohjobjm  
8 http://workswithweb.com/mqttbox.html   
9 http://mqttfx.jensd.de/  

https://chrome.google.com/webstore/detail/mqttlens/hemojaaeigabkbcookmlgmdigohjobjm
http://workswithweb.com/mqttbox.html
http://mqttfx.jensd.de/
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To use MQTT.fx, a connection to an MQTT broker must be established within the application. 

From there, publishing and subscribing to topics is available, along with authentication, a 

history of subscribed and published messages and several other tools.  

2.6 Related works 

The combination of using the Yocto Project alongside QEMU to emulate a MQTT IoT 

environment is an uncommon union. More works exist that either use the Yocto Project to 

customize an image for their specific needs, simply use MQTT as a data transfer protocol in 

their IoT implementation or leverage QEMU to emulate a network of IoT devices that 

communicate via MQTT. Below, three academic works on these topics are introduced and 

summarized.  

2.6.1 Management of MQTT Devices via an IoT Home Gateway 

The authors of [15] show that their MQTT-based IoT gateway solution provides convenience 

and helps energy management via remote controlling devices in a smart home setting. A method 

of device discovery via Devices Profile for Web Services (DPWS) is also introduced. 

Using Mosquitto as an MQTT broker, the smart home gateway dispenses abstracted messages 

between devices with heterogenous payloads, in their case, Arduino, Zigbee, and simulated 

DPWS devices are used. Since different devices transmit data in various forms, an abstracted 

JSON format is created to generalize the data. The devices are used to control and connect to 

temperature, light, and humidity sensors, lightbulbs and monitors.   

Since some of the devices used don’t support DPWS, auto-configuration for constrained 

devices using advertisement messages based on User Datagram Protocol is also shown.  

2.6.2 Embedded Linux Based Voice Calling Device  

In [16], M. Swain uses the Yocto Project to customize an Embedded Linux kernel image 

suitable for a Raspberry Pi Model B to be used in a voice calling device. 

In embedded projects, there is usually not a lot of disk space to spare, so a lot of pressure is put 

on achieving a low disk footprint. The two alternatives to creating a custom image with Yocto 

proposed in the paper are Raspbian OS and PILFS. As the former has an image size of 3.2 GB 

and the latter 1.1 GB, Yocto custom images come at a clear advantage, with the image in the 

publication having a memory size of 538 MB.  
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The author demonstrates that a smaller size also means more efficiency, with the custom Yocto 

image taking less time to run given tasks than its larger counterparts.  

2.6.3 IoT Test Environment for Anomaly Detection 

Since IoT solutions often consist of many interconnected devices, a real testing environment 

may not be a viable solution due to the amount of human effort and investment in hardware 

required. In [17], Brady et al. propose that by creating a realistic emulated IoT environment, 

human effort and investment could be reduced while improving productivity. 

The authors propose a novel tool for emulating network components, called Network Emulator 

for Mobile Universes (NEMU). NEMU is leveraged to create a testing environment for 

interconnected and emulated Raspberry Pi devices. The IoT devices are emulated by QEMU.  

Three types of IoT systems are compared:  

1. a real IoT system built with Raspberry Pi hardware; 

2. an emulated IoT system built with QEMU ARM emulation software; 

3. and a virtualized IoT system built with QEMU-KVM virtualization software. 

The authors perform a MQTT-based data transmitting test, a processor and memory-intensive 

Java Dacapo Benchmarks test and a network-intensive test. All three tests are conducted within 

a log analysis context, with the aim being to monitor and detect anomalies in the IoT 

environments. 

Brady et al. show that both emulated and virtualized environments produce test results similar 

to a real IoT environment, as long as the devices are not under processing, memory or network 

stress.  

2.6.4 Discussion  

In all three works, elements of this thesis were used in one way or another. The works showed 

the advantage of Yocto over other operating system distributions, the benefits of using MQTT 

as a data transfer protocol and the wide range of applications of QEMU.  

[15] demonstrated the use of MQTT devices in an IoT setting, with Mosquitto as the broker of 

choice, with its low overhead and reliability, in an automated home environment. The authors 

of [17] used MQTT in conjunction with QEMU to create an emulated IoT environment without 

allocating a large amount of resources to the process. The focus of the work was on emulating 

Raspberry Pi devices, whereas in this thesis, the focus is on emulating a Yoga Hub. In [16], the 

authors showed that, according to process execution time and image size, Yocto proved to be 



15 

 

the most efficient option for creating an embedded Linux image. Since the work concentrated 

on creating a voice calling device, there was no consideration of MQTT or QEMU.  
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3 Architecture & System Configuration 

3.1 System Overview 

To simulate a real-life IoT environment, we consider a network of MQTT clients and a central 

gateway. Inside the gateway resides an MQTT broker alongside a web server, MQTT subscriber 

client and database for logging purposes. The skeleton of this network is seen on Figure 3. 

 

Figure 3. Basic architecture of the network. 

The function of the MQTT clients is to publish data to certain topics, and similarly, subscribe 

to certain topics to receive that information. In a simple home IoT situation, some MQTT clients 

could publish data about the temperature in rooms, and other clients could subscribe to the topic 

and use that information to control the heat, thus optimizing the heating system and potentially 

saving money and energy.  

For data to be able to move between clients, an MQTT broker is set up inside a central gateway. 

Many IoT solutions require the persistence of data, but since MQTT has no built-in message 

logging, only allowing for the last message published to be retained per topic, a database can 

be used to keep a history of messages sent. The database receives information from an MQTT 

subscriber client residing inside the gateway, which is listening to the same topic that the outside 

clients are publishing on and subscribing to.  
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A web server is also set up inside the gateway. There are a number of uses for web applications 

in IoT projects – they are the main user-facing components, providing data visualization via 

dashboards and graphs, and helping users interface with the broker through submitting 

commands. 

3.1.1 Initial Configuration 

With the basic system architecture presented, an environment must be set up to reflect the Yoga 

Hub. 

As shown in Appendix A, the Yoga Hub has the following hardware specifications:  

● CPU – 454MHz Freescale i.MX283; 

● RAM – 64MB DDR; 

● NAND – 128MB. 

To emulate running an embedded Linux operating system on this CPU, a Linux-based 

development environment must be set up - even though QEMU can be run on a Windows host, 

Yocto needs a supported Linux distribution as a build host [18]. This can be achieved either by 

running Linux natively or through Docker.  

Docker is software providing operating-system-level virtualization. It uses the resource 

isolation features of the Linux kernel such as cgroups and kernel namespaces, and a union-

capable file system to allow independent "containers" to run within a single Linux instance, 

avoiding the overhead of starting and maintaining virtual machines. Considering this, coupled 

with the easy-to-start-over nature of Docker containers, Docker is the more viable option for 

the project.  

Yocto CROPS, or CROss PlatformS, leverages Docker containers to create an operating 

system agnostic Yocto Project development environment. That means development may take 

place on a Windows, Mac or Linux machine.  

When setting up CROPS, two TCP ports are mapped in the container to the respective TCP 

ports on the host machine, as explained further in section 3.1.2.  

After setting up CROPS and including the Poky reference distribution, the oe-init-build-env 

script is executed. This: 

● sets the environment variables; 

● checks the minimal resources for building the images; 
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● creates the configuration files. 

As a result, the build directory is also created. This directory contains three files: 

1. bblayers.conf – lists the metadata layers for a custom Yocto image; 

2. local.conf – contains project-specific configuration variables and recipes; 

3. templateconf.cfg – contains the directory that includes template configuration files to be 

used to create an image.  

A number of changes must be made to these default files, before building the embedded Linux 

distribution. 

3.1.2 Network configuration 

As both the MQTT broker and web server need to be connected to from outside the gateway, 

separate ports must be allocated. For the broker, the default Mosquitto port, 1883, is used. For 

the web server, port 3000 is used.  

For networking, there are two main options: Slirp and TAP. Since the Poky distribution does 

not provide root access, which TAP usually requires, setting up TAP interfaces is not an option. 

Hence, Slirp is used in this thesis.  

Slirp is the default networking backend for QEMU which provides a full TCP/IP stack to 

implement a virtual Network Address Translated network. When using Slirp, port forwarding 

must be used to allow networking between the guest and the host.  

3.1.3 Creating a custom BSP 

The Yoga Hub’s Freescale i.MX283 applications processor is an implementation of the 

ARM926EJ-S core [19]. As the default BSP-s offered by Yocto are not configured for 

ARM926EJ-S architectures, a custom BSP must be created. As mentioned in the State of the 

Art, Yocto offers a tool, yocto-bsp, for developers to easily create new BSPs. Customizable 

features include device architecture type, kernel version, and touch-screen and keyboard access. 

To best mimic an IoT gateway like the Yoga Hub, the following setup is chosen: 

● a QEMU ARMV926EJ-S architecture; 

● Linux kernel version 4.12; 

● keyboard access; 

● no touchscreen access. 

After the new BSP is created, layers and recipes essential for MQTT and the web server must 

be downloaded, and configuration files updated. 
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3.1.4 Updating layer and recipe info 

Since the default Yocto configuration includes only the minimal required layers, and Mosquitto 

is not a part of core functionality, it must be added manually. For the broker functionality, the 

Mosquitto recipe must be added to local.conf, and for the MQTT client to work inside the 

gateway, the Mosquitto-clients recipe is required. 

As shown in chapter 2, additional layers can be found in the OpenEmbedded Layer Index. A 

single Mosquitto recipe can be found for the Rocko branch. This recipe also only has a single 

dependent layer, meta-oe, which is helpful for keeping the image size to as small as possible. 

[20] 

The web server of choice is lighttpd10, which is included in openembedded-core. 

3.1.5 BitBaking 

Once the necessary layers and recipes are added to the configuration files, the embedded Linux 

distribution must be built. As described in chapter 2, an image must also be specified as a 

parameter to BitBake the embedded Linux distribution. As any image with graphical support 

will exceed the Yoga Hub’s 128MB disk space limit, a command-line image must be selected 

- the core-image-full-cmdline image is chosen.  

The build process is a lengthy one, taking up to four hours on a machine with an i5-7600 

processor and 8 GB of RAM. The build time can be reduced by allocating more CPU and RAM 

to the Docker container, since BitBake supports multithreading. Modifying the local.conf file 

to allow caching shared-state files and saving downloaded source code tarballs instead of 

deleting them also improves subsequent build speeds. This also applies to separate builds with 

different images. 

After building the custom images, QEMU is used to run the embedded Linux distribution. The 

ports mentioned in Network configuration are also forwarded from the Docker container to 

QEMU. Now, the emulated QEMU machine may be accessed from the host - in the case of this 

thesis, a Windows machine. 

All the elements selected for the embedded Linux build were chosen to minimize the total disk 

size. Total size of the built image including the boot loader executables, kernel, and filesystems 

                                                 
10 https://www.lighttpd.net/  

https://www.lighttpd.net/
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was under the Yoga Hub’s 128 MB limit - core-image-full-cmdline’s final size was 115.228 

MB.  

3.2 Implemented Prototype 

The final solution consists of three MQTT subscriber clients, an MQTT publisher client and an 

emulated Yoga Hub gateway. A complete overview of the implemented system is seen on 

Figure 4, where: 

• a is the displaying of data; 

• b is the logging of data; 

• c is the subscribing to topics from inside the gateway; 

• d is the publishing of messages; 

• e is the subscribing to topics from outside the gateway; 

• and f is interacting with the web server. 

 

Figure 4. In-depth system overview. 

The gateway is running a miniature version of embedded Linux, which has been built and 

configured with the Yocto Project to take up as little disk space as possible using the core-

image-full-cmdline image. Inside the gateway on the Linux system, there is a Mosquitto MQTT 

broker, two Mosquitto MQTT subscriber clients, and a means to save and present data via a flat 
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file database and a lighttpd web server. In the case of this thesis, a plain text file database is 

used.  

One of the MQTT subscriber clients is outside of the embedded device, while the other two are 

inside. The outside subscriber and the publisher client are running on MQTT.fx with 

username/password authentication implemented. The publisher is running a custom script, 

shown in Appendix C. The script is set up to publish randomly generated temperature and 

humidity data every minute, while the outside subscriber is set up to receive that data. The 

subscribers inside the gateway are set up to record that data to a text file database, which allows 

the web server to display the data in a user-friendly manner. A snippet of the MQTT.fx-side log 

of the script can be seen below: 

2018-05-01 13:39:01,378  INFO --- MqttFX ClientModel             

: attempt to add PublishTopic 

2018-05-01 13:39:01,381  INFO --- MqttFX ClientModel             

: successfully published message 21.08 to topic 

temperature/kitchen (QoS 0, Retained: false) 

2018-05-01 13:39:01,387  INFO --- MqttFX ClientModel             

: attempt to add PublishTopic 

2018-05-01 13:39:01,387  INFO --- MqttFX ClientModel             

: successfully published message 46.19 to topic 

humidity/kitchen (QoS 0, Retained: false) 

The Mosquitto MQTT broker is running on default settings, the only exception being the added 

authentication. In a real-world situation, using authentication is a best practice, to minimize the 

chance of message interception. Mosquitto has a number of ways to authenticate, such as 

username/password authentication, pre-shared-key based encryption, and certificate based 

encryption of messages. In this thesis, username/password authentication is used. The broker is 

also running on the default port 1883. [21] 

The lighttpd web server configuration remains mostly unchanged, only the default port is 

changed to 3000. Lighttpd also comes with a default HTML index page, but the HTML must 

be changed to display latest database values to the user - C3.js11 is leveraged to create graphical 

                                                 
11 http://c3js.org/  

http://c3js.org/
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representations of transmitted MQTT data. The contents of the configured web page can be 

seen on Figure 5.  

 

Figure 5. The web server dashboard, including line and gauge charts. 

The result is a web application dashboard that presents up to date device and sensor data to 

users in a meaningful way – graphs being much more intuitive than, for example, JSON 

payloads. 

The web server can further be improved by creating more graphs, and by incorporating AJAX 

to update data without refreshing the page, but in the context of this thesis, AJAX is not a 

priority.  
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4 Conclusion 

In this thesis, the Yocto Project and MQTT were studied, and a practical output was provided 

in the form of an embedded Linux distribution suitable for University of Tartu’s Mobile and 

Cloud Computing Lab’s newly acquired Yoga Hub gateway devices. The thesis also gives the 

background on embedded Linux, MQTT, and the Yocto Project, and covers some related works. 

An IoT network, with simulated external sensor devices implemented using MQTT.fx clients 

and a custom script to mock sensors sending and receiving data, was created. The data was 

distributed through a gateway, which was running a custom embedded Linux build created 

specifically to fit on the memory of the Yoga Hub. Inside the gateway was a Mosquitto MQTT 

broker, alongside a subscriber client, a web server and a database. The subscriber client inside 

the gateway served as a logger to insert information into the database. From the database, the 

web server could retrieve data and display it to the user.  

The conducted work provides a base for developers and researchers to create embedded Linux 

distributions for IoT gateways based on their specific needs. 

4.1 Future developments 

As the image, core-image-full-cmdline, can fit in the Yoga Hub’s 128MB flash memory, using 

that to create an embedded Linux distribution to run on the Yoga Hub would be a viable option. 

A possible future work may also involve adapting the results of this thesis to run on the physical 

Yoga Hub device.  

If a more secure system is required, I highly recommend using certificate-based authentication 

for MQTT. Since no sensitive data was transmitted in the practical work, only 

username/password authentication was used, but in any real-life scenario where sensitive data 

is transmitted, certificate-based authentication should be considered over username/password 

authentication to reduce the chances of data breaches. 

For a more elegant and developer-friendly way of web server development, one of many 

database recipes provided in the OpenEmbedded layer index [10] could be added to the build 

and implemented within the device.  
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Appendices 

A   Pictures of the Yoga Hub  

 

Figure 6. The powered-off Yoga Hub. 

 

Figure 7. The Yoga Hub booting up. 

B   Yoga Hub specifications sheet 

Table 1. The Yoga Hub specification sheet. 

Product detailed name Yoga Hub 

General classification Main Controller 

Dimensions (WxHxD) 254x49x46mm 

Weight 290g (399g with adapter) 

System CPU – 454MHz Freescale IMX283 

RAM - 64MB DDR2 

NAND  - 128MB 

Local User Interfaces 105dB siren (from 10cm), speaker, LCD 

display, button 

Communication Ethernet, USB, ZigBee PRO, GPRS 
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Maximum Connected Devices 20 ZigBee PRO devices 

Power Supply (nominal) 5V DC 2A 

Power Supply (backup) 2000mAh Li-Ion-Pol battery inside 

(3.5..4.2V), lifetime ~3 years 

Operating life time from battery: 4h 

(charging time 10h) 

Power Consumption Max 10W 

Operational Temperature 0..+40°C 

Storage Temperature -20..+50°C 

Relative Humidity 10..95% non-condensing 
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C   Custom MQTT.fx publishing script 

 

 

Figure 8. Custom publishing script for MQTT.fx. 
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