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Abstract

The Deep Web, as the name implies, is typically hidden from a common web

user, because the information it contains, is not findable through standard

search engines. However, this hidden information is often useful to the web

user. The question is, what are the possibilities to surface those resources?

An example of Deep Web resource would be a SOAP web service of Es-

tonian Business Registry. If a developer wants to use this service in a web

application, to query data about annual reports, he should create a service

client on the server-side and then manually wire together the user interface

and the web service. This requires quite a lot of work and knowledge of

server-side programming.

Following a current trend where Web application development is geared

towards the browser-side implementations[22], what should a developer do

in order to create a client-side mashup using Deep Web resources and web

widgets to visualize the annual report data? Unfortunately, his possibilities

narrow down quite heavily. The creation of SOAP requests on the client-side

is not well supported and he should still put up a server-side proxy to request

data outside his own domain. And of course, the wiring with visual widgets

still requires much work.

This thesis aims to provide a solution that helps a developer to create

such client-side mashups. It will provide an infrastructure, that takes care of

the cross-domain request problems by creating a common server-side proxy,

that anyone could use. It will allow a developer to initiate SOAP requests

from within a web browser, by using just JSON request data. Additionally,

the solution allows a developer to integrate SOAP web services with visual

widgets, by using semantic integration instead of hard-wiring.
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Chapter 1

Introduction

There is a growing trend in software industry to move the development toward

presentation layer. In the context of Web applications the presentation layer

usually consists of browser-interpretable logic and components. At the same

time there are efforts to surface the hidden Deep Web resources. The reason

for this is the amount of information that is currently kept a way from a Web

user.

Part of the Deep Web are the web services, among which the SOAP web

services are of particular interest in this thesis. SOAP web services were

chosen, because compared to many other web service protocols, these are

much more difficult to call from the presentation layer. As an example,

imagine the work a developer should currently do, to query a list of annual

reports from Estonian Business Registry SOAP service and then visualize

this information as a table on a web page. First of all, a developer should

set up a server-side proxy, because it is impossible to call business registry

service directly from client-side, unless the original service was altered. As

typically the potential service consumers cannot ask the service provider to

change the service, an obstacle called Same Origin Policy has to be dealt with

and the server-side proxy is probably the only way to reasonable solve this

problem. Setting up a server-side proxy requires knowledge of some server-

side programming language which sets additional requirements to the set of

skills a developer should have.
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The next problem, that the developer has to face with, is the lack of

support for creating SOAP requests using lightweight browser technologies

like JavaScript. Even popular JavaScript APIs do not help to greatly ease

the calling of those services. There are some libraries that try to solve this

problem, but they usually cannot deal with the complexity of SOAP requests.

Even if the developer is able to successfully query the annual report data

from the client-side, he would then have to manually set up the visualization

of this information. This means that he must know the exact format of the

returned list of annual reports, and know, how to extract the information,

that he wants to make visual. The hard-wiring, that needs to be done, is not

only inconvenient, but also subject to errors, that might come from changes

to the interface.

Before proposing any concrete solutions to the above-mentioned problems,

it would be interesting to see what are the current trends and predictions

in the field of web technologies. An authoritative source of information is

the annual analysis of Web and User Interaction Technologies produced by

Gartner. The 2010 release [22] enlists some of the technologies that could

have potential in relation to the problems with Deep Web surfacing. Gartner

predicts, that mashup applications will soon see enterprise adoption and will

provide significant value to the enterprise, which means that the scenarios,

like the one described before, will become more frequent. Semantic Web is

predicted to give high benefit to the enterprise but will likely take more than

ten years to be adopted widely. Semantics could be used to automatically

visualize the annual report data from Business Registry. Gartner also reports

that Citizen Developers are predicted to gain mainstream adoption in about

five to ten years and Web Widgets are predicted to be a mature enough

technology in about 2-5 years. Web Widgets are exactly the technology that

might help creating client-side mashups like the one with Estonian Business

Registry. An illustration of the Web and User Interaction Technologies Hype

Cycle is shown in Figure 1.1 on the following page.

In regards of web services, the current trend is that most of the more pop-

ular consumer-oriented services support more lightweight protocols such as

Representational State Transfer or JSON-RPC while on the enterprise level,
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Figure 1.1: Hype Cycle for Web and User Interaction Technologies, 2010 [22]

SOAP is still widely used. At the same time, the popularity of lightweight

scripting languages such as JavaScript has been greatly increased in recent

years. While the lightweight service protocols are quite well supported by

JavaScript APIs, it is rather difficult to involve heavyweight SOAP services

into the JavaScript world. Based on that, it makes sense to find ways to

transform SOAP services to something more native to the JavaScript world,

for example JSON-RPC.

One would wonder, what is the reason, that has kept SOAP services

away from JavaScript. Probably one of the main reasons is, that most of

the popular services do not support SOAP, so there lacks motivation for the

API developers to provide support. Another reason is dealing with XML,

that is not so well supported. Good support for XML is needed to really

provide seamless integration of SOAP services. JavaScript APIs should have

excellent abilities to parse the WSDL documents that are typically used to

describe the SOAP services but they currently do not have these abilities.

When the web services are involved in the mashups, they are usually hard-
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wired together and the wiring is most often done on the server-side. Because

of hard-wiring, the integration of services in mashups requires a lot of manual

work and is subject to the risk of interface changes, as already stated earlier.

Another thing is that most of the mashups are typically constructed and

deployed on the server of a mashup tool provider. It is desirable to find

the possibilities to do the integration on the client-side using JavaScript and

other browser-supported technologies.

One way to avoid hard-wiring of the services is to use semantically an-

notated service descriptions. There is a framework that supports semantic

integration of OpenAjax Hub widgets [28] and it might be feasible to exploit

that framework to solve the above-mentioned issues - avoid hard-wiring of

services and mashing up services on the client-side. There are also other

efforts done in the field of unifying web widgets’ interfaces and ease their in-

terconnection, like [17] for example. But at the moment, each widget provider

has different and not matching interfaces, which makes it hard for them to

communicate with each other.

There is one other obstacle that prevents the easy wiring of indepen-

dent services that are deployed on separate remote sites - this is the Same

Origin Policy restriction that modern browsers implement. Same Origin Pol-

icy means that a script on a web page can only make requests to the same

domain that the web page originates from. This makes it impossible to com-

pose a client-side application with services from remote domains unless a

workaround is used.

Another goal with widgets is to minimize the programming effort, that is

needed for wiring widgets together, and rely more on the configuration. This

enables users with little programming skills to more easily construct widget

mashups. This also reduces the potential of errors that can occur.

Keeping in mind the current trends and available technologies, the thesis

will propose a solution that helps a developer to overcome the restrictions

that were described earlier. The main idea of the solution will be the auto-

mated generation of hidden widgets, that can be used to access the SOAP

service operations. This widget will use a server-side proxy to bypass the

Same Origin Policy. The proxy can be set up once and used by many with-
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out any need to care about the set up. The problems with SOAP request

creation will be handled by the automatically generated OpenAjax Hub data

widgets, that will bridge SOAP services to ease the inclusion of heavyweight

web services into client-side mashups. In order to simplify the visualization

of data, semantic integration of widgets will be used. For this, the WSDL

document of the service should be annotated using SAWSDL attributes. The

semantic integration will rely on Transformer Widget that is a special Ope-

nAjax Hub widget that enables widget interconnection.

The proposed solution will provide a simpler way for developers to use

many of the SOAP web services, that are available today. By using the

automatically generated widgets, they do not have to do any server-side

programming or set up the proxy server for communication with services

in other domains. This results in a reduced technological barrier to start

using the SOAP services in client-side mashups because instead of knowing

SOAP, XML and some server-side programming language, understanding

pure JavaScript could be enough. The proposed solution is meant to be

useful in mashups, that do not involve very complex services or difficult rules

for service calling. To survive in more demanding applications, this solution

should be developed further.

The rest of the thesis is organized as follows. In chapter 2, the main

components and technologies that are used in this thesis, are described. An

architectural overview of the solution is also given in this chapter. Chapter

3 goes in detail with the concrete implementation of the main components of

the solution. Chapter 3 also gives guidance on how the solution can be used

and set up. Chapter 4 explains how the provided infrastructure demonstrated

its usefulness in a proof of concept demo application. Related works and

alternative solutions are discussed in chapter 5. In chapter 6 a short overview

of the achievements are given which are followed by chapter 7 with thoughts

on ways to improve the system further.
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Chapter 2

Architecture

The proposed solution for automated SOAP widget generation is divided in

two separate parts - the client-side and the server-side components. The

main responsibility for the client-side is to enable communication with and

between SOAP services via hidden web widgets. The main responsibilities

for the server-side component are to provide metadata for the client-side and

to proxy the service requests from client-side to the actual service endpoints.

The client-side itself is additionally divided into OpenAjax Hub, Transformer

Widget, Proxy Widget and some helper functions to simplify the generation

of proxy widget and setting up the application environment. A conceptual

class-diagram of the architecture is shown in Figure 2.1. The components

are described in more detail in the following sections.

2.1 Client-side

2.1.1 OpenAjax Hub

OpenAjax Hub [6] is a set of standard JavaScript functionality that addresses

key interoperability and security issues that arise when multiple Ajax libraries

and/or components are used within the same web page. The standard spec-

ification is developed by OpenAjax Alliance. The standard defines a pub-

lish/subscribe engine that includes a ”Managed Hub” mechanism that allows

a host application to isolate untrusted components into secure sandboxes.
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Figure 2.1: A conceptual-view class diagram of client-server architecture.

However, in this solution the primary reason for using OpenAjax Hub is its

ability to mediate the inter-widget communication. An illustration of using

OpenAjax Hub for mashup assembly is given in Figure 2.2. The way, that

OpenAjax Hub is drawn in Figure 2.1, might leave an impression, that the

OpenAjax Hub is not grouped together to be deployed with the server-side

component. Actually this only shows, that a different implementation of the

OpenAjax Hub specification can be used but does not have to. In fact, there

is a Tibco implementation bundled with the server-side component and it

makes sense to use it.

2.1.2 Transformer Widget

The Transformer Widget [28] is an OpenAjax Hub widget that enables se-

mantic integration of messages exchanged by other OpenAjax Hub widgets.

The Transformer Widget uses special mappings of data elements in the ex-

changed messages that allow linking of data with corresponding terminology

in ontologies. The Transformer Widget receives all the messages that are

being published by other widgets, uses the mappings to aggregate data from

those messages and generate new messages that would be interpretable by

widgets interested in the aggregated data. This thesis extended the Trans-

former Widget in some parts, but most of the development was done in
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Figure 2.2: Typical usage of the Managed Hub [5]

master’s thesis by Rainer Villido [28].

2.1.3 Proxy Widget

The Proxy Widget is an OpenAjax Hub widget that acts as a proxy to a

certain operation provided by SOAP service. It uses server-side component

to bypass the Same Origin Policy restrictions that prohibit the accessing of

resources outside the client domain. The Proxy Widget is entirely created

from ground-up in this thesis.

2.1.4 ProxyWidgetUtils

The ProxyWidgetUtils, as drawn in Figure 2.1 on the preceding page, are

a set of JavaScript utility functions, that hide the complexity of setting up

the mashup environment and help to easily create new Proxy Widgets for a

certain SOAP service operation. This component is also the result of work

done in this thesis.
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Figure 2.3: A specification view of server-side class diagram

2.2 Server-side

The server-side component provides its services through four controllers as

can be seen from Figure 2.3. The controllers should be as lightweight as

possible, therefore they each rely on specific components for their core func-

tionality. The server-side uses Spring MVC framework to implement the

controllers. Spring is also used for some application configuration and de-

pendency injection.

2.3 Used Components and Technologies

2.3.1 SOAP Web Services

SOAP [10] is a lightweight protocol that uses XML messages to exchange

structured information. SOAP is used as a protocol for many heavyweight

web services. The proposed solution will enable the calling of SOAP services

from within a client browser.

2.3.2 WSDL

WSDL (Web Services Description Language) [11] is an XML format for de-

scribing web services. The WSDL document is used to understand the struc-

ture of input and output messages of a SOAP service. The WSDL document

is also used to extract the semantic annotations of the messages. Based on

the structure and semantics, it is possible to generate the mappings doc-
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ument, that the Transformer Widget consumes to mediate communication

between widgets.

2.3.3 SAWSDL

SAWSDL [9] defines a set of extension attributes for the Web Services De-

scription Language and XML Schema definition language that allows descrip-

tion of additional semantics of WSDL components. It provides mechanisms

by which concepts from the semantic models, typically defined outside the

WSDL document, can be referenced from within WSDL and XML Schema

components using annotations. The attributes defined by SAWSDL are used

to read the semantic vocabulary associated with the structure of SOAP mes-

sages.

2.3.4 JSON

JSON [3] is a lightweight open standard for text-based data-interchange for-

mat that is both human- and machine-readable. JSON defines a small set of

formatting rules for the portable representation of structured data. JSON is

the format that is used to send messages between the widgets and to send

data to the server component.

2.3.5 JSON-RPC

JSON-RPC [14] is a stateless, light-weight remote procedure call (RPC) pro-

tocol that uses JSON as data format. JSON-RPC is the protocol that is used

to send messages between the Proxy Widget and the server-side component.

2.3.6 JSONP

JSONP [8] is a way of doing cross-domain requests with the help of using

HTML Script tag. JSONP specifies, that the JSON, that is retrieved from the

server, should be wrapped inside a callback function, that is specified when

initiating the request, so that client-side will be able to respond instantly
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to the successful response. JSONP is used when service calls are proxied

through the server-side component. This enables using the server-side proxy

service even without the Proxy Widget. If only the Proxy Widget would

be using the proxy service and if they both would be served from the same

domain, then using JSONP would not have any effect.

2.3.7 JSON Schema

JSON Schema [13] defines the media type ”application/schema+json”, a

JSON based format for defining the structure of JSON data. JSON Schema is

generated for each input message that is sent to the server proxy via JSON-

RPC. It is required by the Transformer Widget which uses the schema to

construct messages with valid structure.

2.3.8 SMD

Service Mapping Description (SMD) [12] is a JSON representation describing

web services. It allows the description of JSON-RPC and REST web services.

SMD is used by Dojo to automatically generate a JavaScript proxy to call

the described service which in this case is actually the JSON-RPC service

provided by the server proxy.

2.3.9 Dojo Toolkit

Dojo [1] is a JavaScript toolkit that is widely used by many large companies.

Dojo is used in this solution to create JavaScript service wrappers based on

SMD documents and to request the SMD document from the server-side.
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Chapter 3

Implementation

3.1 The Client-side

The client-side consists of various components as can be seen from Figure 2.1

on page 12. The way that client-side components are structured and served

by the server-side can be seen from Table 3.1 on the following page. The

client-side depends heavily on services on the server-side. Therefore it is

important, that before starting with the client-side, a developer makes sure,

that the server-side component is up and running.

3.1.1 Setting Up The Client-side

A client-side application can be served and set up separately from the server-

side component, although it depends on it. This means, that the developer

of the client-side does not need to have access to the server-side component,

or change anything on the server-side, to create the client-side application.

The minimal client-side application could consist of the main application

HTML page and the tunnel.html file, because most of the dependencies are

bundled with and can be included from the deployed server-side component.

The tunnel.html file is needed by the OpenAjax Hub to enable messaging

between widgets in IFrame containers. The main HTML file is where the

client-side mashup application is defined.

The main application HTML file must follow certain rules to use the au-
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Path from server-side root Description

/TransformerWidget.html The main file for loading the

Transformer Widget.

/transformerwidget/ The directory, that contains the

compiled browser-specific

permutations, that are used based on

the used browser.

/widgets/pagebus.js The TIBCO implementation of the

OpenAjax Hub 2.0 standard.

/widgets/ProxyWidget.html The main file for loading the Proxy

Widget

/widgets/ProxyWidget/ProxyWidget.js Main functionality of the Proxy

Widget

/widgets/ProxyWidgetUtils.js Utility functions to ease the set up of

the environment and creation of Proxy

Widgets

Table 3.1: Structure of required client-side components

tomatic widget generation functionality. The main page needs to include

two JavaScript files - an implementation of the OpenAjax Hub by Tibco

(pagebus.js) and a JavaScript file ProxyWidgetUtils.js that contains utility

functions. The Tibco implementation of OpenAjax Hub with pagebus sup-

port is needed to enable message caching. The ProxyWidgetUtils.js contains

functions for generating Proxy Widgets and initializing the client-side ap-

plication. It also includes some of the boilerplate callback methods needed

by the OpenAjax Hub. These methods can be easily overloaded in the main

application file, if needed. Both of these files are bundled with the server-side

component and can be accessed from there.

When the two required JavaScript files have been included, it is possible

to start setting up the application. The main application HTML document

must have a container for all the OpenAjax Hub widgets. The container must

have an id "mashupArea". All the generated widgets will be placed inside that

container. Most common solution is to add a div tag with that id inside the

body tag.

The setting up of the application environment should take place after the

18



page has been loaded. For this, a callback function, that takes care of the

set up, should be registered with the page onLoad event. The name of the

callback could be loadEventHandler. Inside that callback, the first call should

be to a function setUpEnvironment. This function is contained in the ProxyWid-

getUtils.js file and takes two parameters - a URL of the tunnel.html and a

URL of the Transformer Widget. The URL of the The Transformer Widget

must refer to the same domain as the server-side component. This is due to

the Same Origin Policy - because Transformer Widget makes XMLHttpRe-

quests to the server-side, there cannot be any restrictions to accessing this

service. The setUpEnvironment function does all the common setting up of

the OpenAjax Hub environment and assigns the initialized hub to the global

variable managedHub. The managedHub can then be accessible throughout the

application. The function also includes the Transformer Widget to the page

and adds the widget to the hub.

After calling the setUpEnvironment function, it is possible to add custom

widgets to the hub. These can be hidden or visible widgets. Adding new

widgets should conform to the specification of OpenAjax Hub. An example

of a simple application HTML page, that has followed the instructions above,

has been given in the Example 3.1 on the next page.

3.1.2 Creating the Proxy Widget

When the application environment has been set up as required, it is possible

to start adding the Proxy Widgets to the application. Generating and adding

those widgets has been made easy by the inclusion of ProxyWidgetUtils.js

file. This file defines a function generateWidget, that is used to generate a

new Proxy Widget. This function assumes that the previously initialized hub

can be referred to by the global variable "managedHub" - this is an assumption,

which is met by default, if the initialization process has been followed as de-

scribed previously, because the ProxyWidgetUtils.js file created this variable

and the setUpEnvironment function initialized it. The generateWidget is called

by passing three arguments - URL of the WSDL document, operation name

and the URL of the Proxy Widget HTML page. The Proxy Widget main
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Example 3.1 An example of minimal setup needed on the client-side HTML
page
<html>

<head>

<script type="text/javascript"

src="http://www.proxy.com/widgets/pagebus.js"></script>

<script type="text/javascript"

src="http://www.proxy.com/widgets/ProxyWidgetUtils.js"></script>

<script type="text/javascript">

var tunnel = "./tunnel.html";

var transformerWidget = "http://www.proxy.com/TransformerWidget.html";

function loadEventHandler() {

setUpEnvironment(tunnel, transformerWidget);

// set up additional widgets

}

</script>

</head>

<body onload="loadEventHandler()">

<div id="mashupArea"></div>

</body>

</html>

page must be served from the same location as the server-side proxy. Again,

this is because of the Same Origin Policy restriction.

When the function generateWidget is called, it makes sure that there is

no existing widget for the same WSDL operation description. It does this

by checking the global variable proxyWidgets, which is a map, where all the

generated Proxy Widgets are registered by using a unique widget URL as

the key. If no existing widgets are found, then the new widget is registered

in the initialized hub instance.

The functionality, that each Proxy Widget will provide, is controlled by

two parameters, that are appended to the Proxy Widget URL. These are the

location of the web service description and the name of the operation. An

example of how the URL is constructed is given in Example 3.2 on the follow-

ing page. When the hub initializes the Proxy Widget, then those parameters

are extracted from the URL and stored in the Proxy Widget.

The root URL of the server-side component is also extracted from the

URL of the widget. This is possible because the widget and the server-

side component must be served from the same location. Locations of two
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Example 3.2 An example of constructing the unique Proxy Widget URL in
JavaScript code
var soapProxyWidgetURL = "http://proxy.com/widgets/SoapServiceWidget.html";

var wsdlDocumentURL = "http://myservice.com?wsdl";

var operationName = "foo";

var uniqueWidgetURL = soapProxyWidgetURL + "?wsdl=" + wsdlDocumentURL +

"&operation=" + operationName;

Example 3.3 A JavaScript example of generating URLs for services that
return mappings and SMD documents
var soapProxyRootUrl = "http://proxy.com/";

var wsdlDocumentURL = "http://myservice.com?wsdl";

var operationName = "foo";

var mappingServiceURL = soapProxyRootURL + "mapping?wsdl=" + wsdlDocumen-

tURL + "&operation=" + operationName;

var smdServiceURL = soapProxyRootURL + "smd?wsdl=" + wsdlDocumentURL +

"&operation=" + operationName;

important services can be determined by using the root URL, URL of the

WSDL document and the operation name. These are the locations for getting

the mappings for the Proxy Widget and for getting the SMD document that

is used by Dojo to generate the JavaScript service wrapper. Those locations

are generated as can be seen in the Example 3.3.

If the Proxy Widget is successfully connected to the OpenAjax Hub, there

are a few actions that need to be carried out. Firstly, the Proxy Widget pub-

lishes a message to the hub with topic "ee.stacc.transformer.mapping.add.url"

with the URL of the mappings file as message content for registering the map-

pings at the Transformer Widget. This is a special topic that Transformer

Widget listens, to add new mappings to its internal repository. When Trans-

former Widget receives this message, it initiates a XMLHttpRequest to load

the mappings from the given URL. The service replies with a XML document,

that contains all the mappings that Transformer Widget uses to interpret,

construct and route messages between widgets.

The mappings document is divided into two frames, one for the input

and one for the output message. The input message is the one, that the

Proxy Widget receives from the OpenAjax Hub and that it eventually uses

to construct the SOAP input message for a particular operation. The output
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message is the one, that the Proxy Widget publishes back to the hub, once it

receives the results of the SOAP request from the server-side proxy service.

Each frame has its unique topic name, that is generated by using the

algorithm as described in Example 3.9 on page 32. The topic name is used

when publishing messages, that conform with the frame, to the hub. When a

message is published with a certain topic name, it is passed on to the widget,

that has subscribed to that topic.

Transformer Widget also checks for the JSON schema location of each

frame in the mappings document. In mappings document, that is generated

by the server-side mapping generator service, there is a JSON schema defined

only for the input frame. This schema is loaded by the Transformer Wid-

get and persisted internally for later use. Transformer Widget uses JSON

schemas to generate the input message it publishes to the Proxy Widget.

The schema is also used to check if the message is complete and ready to

be published - each element that is marked as required in the schema, must

have a value in the message, otherwise it is not published at all.

The Proxy Widget subscribes itself to receive all the messages that Ope-

nAjax Hub publishes under the topic that was used in the mappings doc-

ument input frame. When subscribing to that topic, the widget specifies a

callback method, that is called when it receives a message with that topic.

This callback function is used to pass the data in the received message on to

the server-side proxy.

The above actions are summarized in a sequence diagram on Figure 3.1

on the next page.

3.1.3 Creating a Consumer for the Proxy Widget

When the Proxy Widget is successfully initialized and registered in the hub

and in the Transformer Widget, it is possible to start using it to request

information from that particular SOAP operation, that the widget was cre-

ated for. In order to use the widget, there are two possibilities - either to

publish data straight into the hub and use the correct topic or to rely on the

Transformer Widget to route the information to the correct widget based on
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Figure 3.1: Sequence diagram of Proxy Widget creation

semantic metadata. It is encouraged to not use the first option, because this

introduces a lot of possibilities to make errors. The reason is, that the user

must know all the details and the exact structure for the input message. The

user must also change the message it publishes, whenever the structure of

the SOAP service changes. For example, if the operation changes names of

its input parameters, user must also update corresponding element names in

its application implementation.

The preferred way to use the Proxy Widget is through the OpenAjax Hub

and Transformer Widget. For this, a consumer widget should be created and

registered in the hub and in the Transformer Widget. To allow semantic in-

tegration between the consumer widget and the Proxy Widget, the consumer

must know the semantic annotations that the service operation uses in its

input and output messages. Using those annotations, the consumer of the

Proxy Widget must create a mappings document that annotates the mes-

sage, that the consumer publishes, with the same global semantic references,

that the Proxy Widget input message uses. It should also create mappings to
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receive a response of the service operation. It is critical, that the exact same

semantic vocabulary is used, otherwise the Transformer Widget is unable to

transform the messages between the widgets.

The created mappings for the consumer widget must be registered in the

Transformer Widget. There are several methods to do this. First one is

similar to the way, that Proxy Widget registers the mappings - the widget

publishes a message with a topic "ee.stacc.transformer.mapping.add.url" and

URL of the mappings location as the data object. Transformer Widget then

loads the mappings from specified URL. However, there is one downside, the

URL must refer to location in the same domain as the Transformer Widget

itself, otherwise it cannot access the data. Or in other words, the consumer

widget must be bundled with the server-side component. In most cases this

is impossible to do, unless the developer has full control of the server-side

component. This violates with the idea, that the infrastructure can be used

by many but without changes to any parts of the system.

Second way is to add mappings statically to the mappings.xml document

- this document has to reside in the same path as the Transformer Widget

itself (in other words, its relative path from Transformer Widget must be

./mappings.xml). The main problem with this approach is again, that the

user must have access to the actual server where the server-side component

is deployed. This definitely should not be the case for most developers.

The third and preferred way is to add mappings by publishing raw XML to

the OpenAjax Hub. The consumer widget should publish the raw XML data

under the topic "ee.stacc.transformer.mapping.add.raw". The Transformer

Widget listens to this topic, parses the raw XML and extracts mappings in-

formation from it. The main advantage of this method is, that the mappings

can be added dynamically and that information does not have to be in the

same domain with Transformer Widget. Instead, the consumer widget could

save this information in a XML file in its own domain, read it, when it has

connected to the hub, and then publish it to be registered in the Transformer

Widget.

When a user uses the third method, it cannot use the JSON schema in

the mappings, because the Transformer Widget cannot access it unless the

24



Example 3.4 An example of mapping that uses embedded schema definition
<frames>

<frame>

<topic>example.topic</topic>

<format>json</format>

<schema_data>

{"type":"object","properties":{"name":{"type":"string"}}}

</schema_data>

<mappings>

<mapping>

<global_ref>http://www.example.org/person/owl#Name</global_ref>

<path>/name</path>

</mapping>

</mappings>

</frame>

</frames>

URL points to same domain as Transformer Widget is served from. Because

the idea is to enable separation of consumer widgets from the whole proxy-

ing infrastructure, the schema data should stay together with the consumer

widget. To overcome the limitations of schema loading from provided URL,

the Transformer Widget was extended so that it is also possible to embed the

schema definition inside the mappings. The Transformer Widget looks for an

element “schema data” inside the “frame” element, to read the schema. An

example of how to use embedded schema definition is given in Example 3.4.

When the consumer widget registers itself in the hub, it must subscribe

itself to the topic that it uses for its input frame. This way the hub can route

the messages to the consumer widget. Input frames are the ones, where

the topic is not marked as outgoing_only. Input frames must always include

the schema definition, because it is used to construct messages, while output

frames are not required to have schema specified, as this is not used anywhere.

3.1.4 Consuming the Proxy Widget

When the consumer widget is fully initialized, it can start using the Proxy

Widget to call the service it needs. To call the service, it must first construct

a message to be published to the OpenAjax Hub. The message data must

conform to the mapping description that goes with the output frame in the
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mappings of the consumer widget. The constructed message will then have

to be published to the hub using the output frame topic name.

Because Transformer Widget listens to all topics, that are published to

the hub, it will receive the consumer widget’s output message. Transformer

Widget will then find the correct mapping that goes with the received topic.

Using the information from mappings, it is able to map the data in the

message with correct semantic references. If all the data is semantically an-

notated, the Transformer Widget will start looking for input frames that have

used the same semantic annotations for their data. Because Proxy Widget

had registered its input frame in the hub and that input frame used the same

semantic references, the Transformer Widget will start constructing the mes-

sage that conforms to the Proxy Widget input frame. It uses the received

data in suitable placeholders, to create the message. When the message is

created, the Transformer Widget checks if it is ready to be published - this

means that all the required fields must be filled. The Transformer Widget

will then publish the data with the topic that the Proxy Widget subscribed

to (the one that Proxy Widget used in its input frame).

OpenAjax Hub passes the message to the Proxy Widget where onData

function is called. The data package, that Transformer Widget constructed,

is passed as a parameter to the onData function. The function delegates to

another function onSoapServiceData in ProxyWidget.js file. This function only

then loads the SMD document from the server by using the SMD service

URL, that the Proxy Widget had generated earlier. SMD is loaded by using

dojo.io.script.get function which creates a Dojo specific Deferred object,

which is used to register callbacks on different events. A callService callback

function is registered on an event of successful retrieval of the SMD document.

When SMD document is retrieved and the callService function is called, a

Dojo service wrapper is created by using dojox.rpc.Service. The Dojo service

wrapper will allow the calling of services, that are defined in the SMD, like any

other JavaScript function. Because the SMD, that is generated in the server-

side, includes only one service, there is only one wrapper function created.

This is function allows calling of the proxy service on the server-side.

When the Dojo service wrapper for the proxy service is called, another
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Figure 3.2: Sequence diagram of proxy widget consumption

Deferred object is created and a callback is registered, that on successful

retrieval of response data, publishes the received data back to the hub. The

data is published using the topic name, that matches the one used for out-

going frame in mappings document. From here on the responsibility goes to

Transformer Widget, which reads the mapping for the received topic, finds

the semantics for the incoming data, finds other frames that use data fields

with the same semantics and creates new data packages, if possible. If any of

the data packages are finished and ready to be published, they are published

to the hub and the response data, that was generated by the server-side

proxy, reaches the consumer widget.

The process of consuming the Proxy Widget is illustrated on Figure 3.2.
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3.2 The Server-side

The server-side component provides important services to the client-side

Proxy Widget and the Transformer Widget. Its main responsibilities are

to create the mappings document for specified service operation, to gener-

ate the JSON schema definition that maps with the service operation input

message structure, to generate the SMD document that is used to create the

Dojo service wrapper and to provide a JSON-RPC service that enables to

proxy the requests to the actual SOAP service.

3.2.1 Generating Mappings

The mappings document is required by the Transformer Widget to map the

structure of data with the semantic global references that each data field

represents. When the Proxy Widget is generated, a certain URL is sent to

the Transformer Widget. This URL points to the service location that is

used to generate mappings for that exact service operation that the Proxy

Widget is generated for. Inside that URL, there are two parameters passed

to the mappings service - the URL of the WSDL document and the name of

the operation. Those parameters are read by the mappings service and are

used to get the structure of the message that the SOAP service uses for the

input and output operations.

The mappings service is a Spring MVC controller that internally uses an

implementation of the MappingGenerator interface to generate the mappings.

The MappingGenerator interface describes only one method - getMapping - as

can be seen in Example 3.5 on the following page. The getMapping method is

passed three parameters. Two of them - wsdlUri and operation - are request

parameters passed to the MappingController. Third is a URL to the service

that generates JSON schemas. The JSON schema URL is generated inside

the controller, using an algorithm like in Example 3.6 on the next page.

Most of the classes and interfaces that are related to mappings generation,

are shown in Figure 3.3 on the following page.
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Example 3.5 MappingGenerator interface
public interface MappingGenerator {

String getMapping(String wsdlUri,

String operation,

String jsonSchemaUrl) throws Exception;

}

Example 3.6 Generating the URL for JSON Schema service
String baseUrl = "http://proxy.com/";

String wsdlDocumentURL = "http://myservice.com?wsdl";

String operation = "foo";

String jsonSchemaServiceURL = soapProxyRootURL + "mapping?wsdl="

+ wsdlDocumentURL + "&operation="

+ operation + "&message=input";

Figure 3.3: Classes and interfaces related to mapping generation.
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Example 3.7 XML with attributes
<elem foo="bar">my value</elem>

Example 3.8 JSON translated from XML with attributes

{"elem":{"_attr_foo":"bar","_value_":"my value"}}

3.2.1.1 Transforming SOAP Message Structure to JSON

The mappings document actually represents the structure of the JSON data

that is exchanged between the Proxy Widget and the server-side proxy ser-

vice. This means that the structure of SOAP request has to be transformed

to the structure of JSON-RPC request. Unfortunately, transforming XML

structure to JSON is not that straightforward. One of the main problems is

that there is no equal counterpart for XML attributes in JSON. The only pos-

sible solution is to transform XML attributes to JSON elements. In this par-

ticular solution, the XML attributes were translated so, that each attribute

name is added a prefix "_attr_" and added as a child element. Translating

XML attributes to JSON elements creates another problem - the value of the

element, whose attributes were translated, has to be given to another special

JSON element. This is because in JSON it is not possible to have mixed

content value like in XML. Therefore the actual value of the element is given

through a special element "_value_" which is added as a child to the original

element. An example of dealing with attributes can be seen in generating

XML as in Example 3.7 to JSON as in Example 3.8.

Another problem is with XML namespaces. This problem is solved by

simply dropping the namespaces when transforming XML element and at-

tribute names to JSON element names. This might create problems in some

rare occasions, but the risk should be relatively small.

Yet another XML construction that cannot be simply translated to JSON

is when a parent element has more than one child element with the same

name. In that case the JSON representation will make the child element an

array and add all the values inside the array.

When SOAP message is transformed to JSON, then also the body and

header parts of the message must be added to JSON and mappings. This is

30



because the header part can include important parameters like license key,

that must also be possible to specify when using the proxy service.

3.2.1.2 Implementation of the MappingGenerator

The MappingGenerator is a Spring bean which is injected to the MappingCon-

troller with dependency injection. This makes it easy to change the imple-

mentation of the actual MappingGenerator interface. The current implementa-

tion SMBMappingGenerator heavily uses SoapUI API to generate the mappings.

The SMB prefix stands for SoapMessageBuilder, which is a class in SoapUI li-

brary. The use of SoapUI makes it easy to generate request templates for the

SOAP input and output requests. The request templates can then be ana-

lyzed to get the actual structure of the message. Some parts of the SoapUI -

in particular the SoapMessageBuilder class and the SampleXmlUtil class - were

extended to enable the inclusion of semantic annotations to the elements of

SOAP message body and header. Also, there were some changes due to the

fact, that XML attributes have to be translated to JSON elements.

3.2.1.3 Generating Topic Names

For input and output frames of each operation, a unique topic name must

be generated. Topic name is used by Transformer Widget to find correct

mapping for information that is passed from publishers to subscribers. Topic

names should usually be in the reverse domain name format. An example of

how topic names are generated is given in Example 3.9 on the next page.

3.2.1.4 Setting Default Values in Mappings

In some cases it might be needed to set default values for some fields in the

SOAP request. For instance for case where the value cannot be expected to be

provided by an application or is a constant. In this solution this need is met

by a special XML document, where all the default values can be configured.

Each field is identified by four attributes: the URL of the WSDL document,

the name of the operation, the path to the field in input or output message

and the type of the message (input or output). It is important to note that

31



Example 3.9 Generating the topic name for input and output frames in the
mappings document
String wsdlDocumentURL = "http://myservice.com?wsdl";

String operationName = "foo";

String commonTopicPart = "ee.stacc.soapwidgetgenerator.";

commonTopicPart += wsdlDocumentURL.replaceAll("\\W", "-");

commonTopicPart += "." + operationName;

String inputTopic = commonTopicPart + ".input";

String outputTopic = commonTopicPart + ".output";

// inputTopic: "ee.stacc.soapwidgetgenerator.http---myservice.com-

wsdl.foo.input"

// outputTopic: "ee.stacc.soapwidgetgenerator.http---myservice.com-

wsdl.foo.output"

Example 3.10 XML for specifying default values in SOAP requests
<?xml version="1.0" encoding="UTF-8"?>

<defaults xmlns="http://www.cs.ut.ee/schema/soapproxywidget/mappingdefaults"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.cs.ut.ee/schema/soapproxywidget/mappingdefaults

mapping-defaults.xsd">

<value sourceUrl="http://myservice.com?wsdl" operation="foo"

path="/my/path" messageType="input">myDefaultValue</value>

</defaults>

the path must represent the structure of a JSON message. So one must keep

in mind the rules that apply when transforming a message structure from

XML to JSON. An example of of this XML is given in Example 3.10.

The default values are added to the mappings for each field that the apply.

Because the mappings are used by the Transformer Widget, the default values

are also set in there. The default value is used in message creation when no

data has been aggregated which would correspond to the same metamodel

element identifier. There are two reasons to specify the default values in the

mappings document. Firstly, the Transformer Widget already has support

for dealing with the default values. Secondly, if a required field is left empty

while constructing the outgoing message, the message will not be published

at all. So it would not be reliable to add default values on the server side,

before creating the actual SOAP request. An example of mapping with a

default value is given in Example 3.11 on the next page.

The location of the XML document with default values can be config-

ured on the server side. The configuration is in the following file: war/WEB-
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Example 3.11 An example of mapping with a default value
<mapping>

<global_ref>http://www.example.org/owl#Example</global_ref>

<path>/my/path</path>

<default>myDefaultValue</default>

</mapping>

INF/application-config.properties and the configuration property is mappingde-

faults.xmldatasource.url. The XML file could be stored in any location ac-

cessible to the server-side component.

The classes that are related to default values in mappings can also be

seen in Figure 3.3 on page 29. From that figure, it can be seen, that

the SMBMappingGenerator uses an implementation of MappingDefaultVal-

uesRepository. This where all the default values are loaded to from an imple-

mentation of MappingDefaultValuesDataSource. The current data source im-

plementation only supports XML.

3.2.2 Generating JSON Schemas

When the Transformer Widget has received a mappings document, it will

look for a schema tag for each frame that is used for an input message. The

schema tag specifies the URL, where the schema definition document can be

located. If a schema tag contains a valid URL, this schema definition is loaded

by Transformer Widget and saved for further usage. The schema locations,

that are used for SOAP Proxy Widget’s input messages are generated by

the server-side component. The URL, that is used for schema retrieval, is

generated by mapping generator as can be seen in Example 3.6 on page 29.

The URL shows that the JSON schema generation service will get the name

of the operation and the location of the WSDL document as parameters.

The JsonSchemaController uses an implementation of the JsonSchemaGen-

erator interface to get the correct schemas. The classes that are related

to JSON schema generation can be seen from Figure 3.4 on the following

page. The DefaultJsonSchemaGenerator uses the custom extension of SoapUI

SoapMessageBuilder to create template message for the actual SOAP request.

This way it is not necessary to parse and analyze the XML schema definition
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Figure 3.4: Class diagram of JSON schema generation related classes

anymore, as this is already done by SoapUI. The message template is used

as a source for the JSON schema generation. Because the schema must rep-

resent the same structure that is used in the mappings document, the rules,

that were used in generating SOAP message structure to JSON, should be

taken into account when generating the corresponding schema. Those rules

are described in section 3.2.1.1 on page 30. It must be considered, that the

JSON schema generation algorithm currently lacks support for attributes.

This means that input messages with attributes cannot be used.

The JSON schema definition will set each element that is not an array

or an object as being type of string. Although JSON schema has support

for other types as well, this is not needed, because no validation is done

anywhere. It is just important to know what the message structure looks

like. Besides the message structure, the JSON schema will also specify if a

field is required or not. This information is used by Transformer Widget,

that makes sure that each required field is present before sending out any

constructed messages.

In Examples 3.12 on the following page and 3.13 it can be seen how a

SOAP request message template translates to JSON schema.
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Example 3.12 An example of SOAP input message template produced by
SoapUI.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ws="http://ws.soatrader.com/"

xmlns:eer="http://eer.soatrader.com/">

<soapenv:Header>

<ws:SOATraderLicense>?</ws:SOATraderLicense>

</soapenv:Header>

<soapenv:Body>

<eer:getListOfAnnualReports>

<!--Optional:-->

<registryCode>?</registryCode>

<languageId >?</languageId>

</eer:getListOfAnnualReports>

</soapenv:Body>

</soapenv:Envelope>

Example 3.13 An example of JSON schema definition that is generated
from input message template given in Example 3.12
{"type":"object","properties":{

"Header":{

"required":true,

"type":"object",

"properties":{

"SOATraderLicense":{"required":true,"type":"string"}}},

"Body":{

"required":true,

"type":"object",

"properties":{

"getListOfAnnualReports":{

"required":true,

"type":"object",

"properties":{

"registryCode":{"type":"string"},

"languageId":{"required":true,"type":"string"}

}}}}}}
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Figure 3.5: Class diagram of classes related to SMD generation

3.2.3 Generating SMD Documents

An SMD document is used by the Proxy Widget to automatically generate

JavaScript wrappers for a JSON-RPC proxy service that the server-side com-

ponent provides for SOAP operations. Dojo Toolkit is the actual consumer

of the SMD document. The URL for SMD generation service is constructed

the way that can be seen in Example 3.3 on page 21. So once again the

server-side component gets the URL of the WSDL document and the name

of the operation as parameters. This time, however, the WSDL document is

not parsed anymore. Those parameters are simply required to construct the

URL for the JSON-RPC proxy service for a certain SOAP service operation.

This URL is added to the SMD document to refer to the target service. The

SMD service also supports JSONP, therefore it is possible to specify the call-

back function name in a request parameter callback. This way the proxying

abilities of the server-side component can be used by anyone even without

using the Proxy Widget itself.

The SmdController uses an implementation of SmdGenerator, as can be

viewed from Figure 3.5. The generated SMD document is a very simple

one. An example of an SMD document that is generated by this service is

given in Example 3.14 on the next page.
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Example 3.14 An example of a SMD document.
{ transport:"JSONP",

envelope:"JSON-RPC-2.0",

SMDVersion:"2.0",

services:{

getListOfAnnualReports:{

target:

"http://localhost:8080/proxy?

wsdl=http://localhost/EstonianBusinessRegistryService_v2.wsdl

&operation=getListOfAnnualReports"

}

}

}

3.2.4 Proxying Requests to the SOAP Service

The JSON-RPC requests, that are created by the Proxy Widget on the client-

side, are translated to SOAP requests and forwarded to the actual SOAP

service endpoint by the server-side proxying service. Internally the Proxy

Widget uses the Dojo service wrapper that was generated earlier with the

help of an SMD document. As can be seen from Example 3.14, the SMD

document contains URL to the target service. Because the transport method

is specified as ”JSONP”, Dojo will use script tag to initiate the request. This

also means that Dojo passes the JSON-RPC request data as a URL encoded

parameter key. An example of a valid query string, that is generated with

SMD in Example 3.14 and where the input data matches the schema that

was given in Example 3.13 can be seen in Example 3.15.

From Example 3.15 it can be seen, that the JSON-RPC request con-

tains four parameters: request id, method name, parameters and the version

of JSON-RPC that is used. The "params" parameter is an array that con-

tains all the parameters that are passed to the Dojo service wrapper. Proxy

Widget only passes one parameter - the JSON formatted message that was

constructed by the Transformer Widget - therefore the array contains only

that message object. The request id is also used in response message for

referencing purposes. The "method" parameter from JSON-RPC data is not

actually used by server-side, because the operation name is read from "oper-

ation" request parameter.
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Example 3.15 An example of valid JSON-RPC request that is sent using
JSONP transport.
http://localhost:8080/proxy

?wsdl=http://localhost/EstonianBusinessRegistryService_v2.wsdl

&operation=getListOfAnnualReports

&{"id":1305550122389,

"method":"getListOfAnnualReports",

"params":[

{ "Header":{"SOATraderLicense":"licenseKey123"},

"Body":{

"getListOfAnnualReports":{

"registryCode":"10283074",

"languageId":"1"

}

}

}],

"jsonrpc":"2.0"

}

&callback=dojo.io.script.jsonp_dojoIoScript2._jsonpCallback

The URL of the WSDL document, the name of the operation and the

JSON formatted message data are used to create the actual SOAP request.

The ProxyController passes these parameters on to the convert method of

the implementation of the JsonRpc2SoapConverter interface. From here on,

once again the request template for the actual SOAP service endpoint is

created with the help of SoapUI. Then the actual message parameters are

read from the JSON message and injected to the corresponding field in the

SOAP request template. This can be done quite easily because the JSON

message matches almost exactly the SOAP request template. Only exception

is, that there are no namespaces used in JSON message. In case of arrays, the

fields in SOAP request template are duplicated the exact number of times as

there are elements in the array. After that the value injection takes place. In

the end, all of the values, that have a matching counterpart in SOAP message

template, are injected. The classes that are related to proxying service are

shown on a class diagram on Figure 3.6 on the following page.

The resulting SOAP message is then sent to the actual endpoint. The re-

sponse message is translated from XML to JSON using the Xml2JsonConverter

class where the same rules, that were described earlier in Section 3.2.1.1 on

page 30, are followed. Using the generated response data in JSON, a valid
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Figure 3.6: Class diagram of classes related to proxying service

JSON-RPC response is created and sent back to the Proxy Widget. An

example of such response is given in Example 3.16 on the following page.

The response is wrapped inside a callback function name, that was passed

as a request parameter. This allows this function to be called right after the

client-side gets the response. The message data, that was transformed from

XML to JSON is given as a value to parameter ”result”. The JSON-RPC

response also contains the request id, the version number of JSON-RPC

protocol and an "error" parameter. The "error" parameter can be used to

pass the client side information about any errors that occurred. If there are

no errors, the parameter must be null.
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Example 3.16 An example of JSON-RPC response.
callbackFunction({

"result":{"Body":{"getListOfAnnualReportsResponse":{

"ListOfAnnualReports":{"report":[

{ "reportName":"Name of a report",

"reportYear":"2010",

"periodStartDate":"2010-01-01",

"periodEndDate":"2010-12-31"},

{ "reportName":"Name of a report",

"reportYear":"2009",

"periodStartDate":"2009-01-01",

"periodEndDate":"2009-12-31"}

]}}}},

"id":"1305550122389",

"error":null,

"jsonrpc":"2.0"})
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Chapter 4

Proof of Concept

To validate that the provided solution works in a real-life scenario, a proof

of concept application was built. This application uses the solution to query

three operations from Estonian Business Registry SOAP service. The op-

erations, that are involved, are findBusinesses, getListOfAnnualReports and

getAnnualReportData. Besides the three Proxy Widgets, that are generated

for each of the SOAP operations, there are three visual widgets to show the

output of the SOAP operations. Let them be named by adding word ”Vi-

sual” as the suffix to each name of the operation, that the widget is meant to

visualize. The demo application also additionally uses Google Maps widget.

The application scenario is as follows. When the application page loads,

all the required set up for the environment is done as described in section 3.1.1

on page 17. When the page has finished loading, all the widgets are initialized

and added to the OpenAjax Hub. The three Proxy Widgets are added with

the help of generateWidget function inside the ProxyWidgetUtils.js file, while

the adding of other widgets has to be done manually. When the Proxy

Widgets are added, they all register themselves in the Transformer Widget

as well.

After all the widgets are created, the first query is made. The first query

is sent to the Proxy Widget of operation findBusinesses. The parameter,

that is used, is ”Elion”. The JSON message, that is published looks like in

Example 4.1 on the following page.
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Example 4.1 JSON data, that is published to findBusinesses Proxy Widget.
{

"Body": {

"findBusinesses": {

"registryCode":"Elion",

"languageId":"1" }

},

"Header": {

"SOATraderLicense":"soaTraderLicense123"

}

}

Figure 4.1: List of results from findBusinesses operation with ”Elion”as input

When the Proxy Widget has gone through all the steps, as described in

Figure 3.2 on page 27, it has published the results back to the hub. The

list contains all the businesses that have a word ”Elion” anywhere in their

name. The list also contains other information about the businesses. The

findBusinessesVisual widget is then made visible and the result set is shown

as a list. The JSON message, that the findBusinesses publishes as a result,

looks like in Example 4.2 on the following page. The situation that appears

to the user, is shown on a screen-shot on Figure 4.1.

The user can then select a business from the list, that was made visi-

ble. When the user selects ”Elion Ettevõtted Aktsiaselts”, the next query is

initiated. This time a Proxy Widget for the getListOfAnnualReports SOAP

operation is used. This operation takes the registry code as the main input

parameter. The message that is published to the hub, looks like in Exam-

ple 4.3 on the following page.

The results include all the available annual reports for that particular

company. The result, that is published to the hub by getListOfAnnualReports

Proxy Widget, looks like in Example X. When the results are retrieved on

the client-side, the getListOfAnnualReportsVisual widget is made visible. The
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Example 4.2 JSON data that findBusiness publishes as a result.
{

"Body": {

"findBusinessesResponse": {

"ListOfBusinesses":{

"recordCount":"31",

"business":[

// ...other businesses

{"businessName":"Elion Ettev~otted Aktsialselts",

"businessRegistryCode":"10283074",

"statusCode":"R",

"statusDescription":"Entered into the register",

"registryDistrictCode":"1",

"registryDistrictName":"Tallinn",

"postalCode":"15033",

"districtName:"Harju",

"streetField":"Endla 16",

"ehakCode":"0784",

"registrationDate":"1997-10-09T00:00:00.093+03:00",

"registrationDateInDistrict":"1997-10-09T00:00:00.093+03:00"

},

// other businesses...

]

}

}

},

"Header": {

"SOATraderUsageStatistics":{

"HitsMade":"1", "HitsLeft":"9"

}

}

}

Example 4.3 JSON data that is published to getListOfAnnualReports Proxy
Widget as input
{

"Body": {

"getListOfAnnualReports": {

"registryCode":"10283074",

"languageId":"1" }

},

"Header": {

"SOATraderLicense":"soaTraderLicense123"

}

}
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Example 4.4 JSON data that is published as result by getListOfAnnualRe-

ports Proxy Widget
{

"Body": {

"getListOfAnnualReportsResponse": {

"ListOfAnnualReports":{

"report":[

{"reportTypeCode":"14",

"reportName":"Balance",

"reportYear":"2009",

"periodStartDate":"2009-01-01T00:00:00.339+02:00",

"periodEndDate":"2009-12-31T00:00:00.339+02:00",

},

// other reports...

]

}

}

},

"Header": {

"SOATraderUsageStatistics":{

"HitsMade":"2", "HitsLeft":"8"

}

}

}

resulting screen-shot can be seen on Figure 4.2 on the next page. In addition

to showing the list of annual reports, the address of the selected company is

placed to the map. Also, another widget is made visible - the widget, that

shows the graph of people and companies that are related to the selected

company.

The rows in the table of getListOfAnnualReportsVisual are also possible to

click. When the user wants to see the balance report from year 2009, she

clicks the first row. This triggers the query of operation getAnnualReportData.

The message, that is published to this operation Proxy Widget looks like in

Example X.

The resulting JSON data, that the Proxy Widget of getAnnualReportData

publishes, looks like in Example 4.6 on page 46. This time the resulting data

is not shown as a table. Instead, a more visually appealing type of widget is

used, where the balance rows are shown as a sector diagram. The screen-shot

of this is given in Figure 4.3 on page 47. As it can be seen, the diagram has
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Figure 4.2: Screen-shot after the getListOfAnnualReports operation has been
queried.

Example 4.5 JSON data, that is sent to Proxy Widget of operation getAn-

nualReportData

{

"Body": {

"getAnnualReportData": {

"registryCode":"10283074",

"reportType":"14",

"year":"2009",

"languageId":"1"

}

},

"Header": {

"SOATraderLicense":"soaTraderLicense123"

}

}
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Example 4.6 JSON data, that getAnnualReportData publishes as a result
{

"Body": {

"getAnnualReportDataResponse": {

"ListOfAnnualReportData":{

"report":[

{"reportDesc":{

"reportTypeCode":"14",

"reportName":"Balance",

"reportYear":"2009",

"periodStartDate":"2009-01-01T00:00:00.673+02:00",

"periodEndDate":"2009-12-31T00:00:00.673+02:00"},

"reportRow":[

{"rowNumber":"10","rowName":"CASH AND BANK",

"column":[

{"code":"A1",

"name":"Current financial year",

"value":"2.091E7"},

{"code":"A2",

"name":"Previous financial year",

"value":"1.06798E8"}

]}

]},

// ... other report rows

]}

}

},

"Header": {

"SOATraderUsageStatistics":{

"HitsMade":"3", "HitsLeft":"7"

}

}

}

sectors, that represent the rows in the balance report.
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Figure 4.3: A screen-shot after showing results from operation getAnnualRe-

portData.
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Chapter 5

Related Work

In order to find what other approaches have been proposed to resolve similar

problems, one has to look in the fields of mashups, service composition at

the presentation layer and automatic front-end generation for web services.

5.1 Service Composition with Mappings

The idea of using special mappings to interconnect services inside client

browser has been presented in [23]. In this article, a special Web Mashup

Scripting Language that should ease the writing of mashups, was introduced.

The end-user accomplishes this by writing a web page that combines HTML,

metadata in the form of mapping relations, and small piece of code, or script.

This idea is similar to the one presented in this thesis but there are also dif-

ferences. In current thesis semantic annotations are used to map fields in

different data structures and also mapping generation is done automatically.

Another dissimilarity is that in the referred article, there were no hints on

using services from other domains, that the presented solution supports.

5.2 Graphical Tools for Mashup Generation

One of the main targets for many developers of mashup related tools or sys-

tems is to provide end users with graphical interface, that would dramatically
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ease the composition and consumption of web services and visual widgets.

There are numerous tools already available that target the average web user

allow visual composition.

A programming tool called Marmite [29] lets end-users create so-called

mashups that re-purpose and combine existing web content and services.

The main idea of Marmite is to allow using data-flow-like view to construct

the transformation and combination of data and data sources using different

operators. It also provides the possibility to look the result of each data-flow

step in a spreadsheet view. The tool has no use of semantics, if two services

have semantically the same information but is labeled differently, then the

tool cannot correlate the information from one to the other. Marmite also

relies on the owners of web services or other programmers to create the

operators that the tool could use. The solution in this thesis differs in many

parts - the targeted user segment is not an end-user, semantic annotations are

used to integrate services, no additional involvement of the original service

provider is required and there is no graphical support to create the mashups.

The Marmite tool was developed as a Firefox plug-in. There are also

many other tools that follow the same pattern because browser is usually a

very natural environment to construct the mashups. For example the Intel

MashMaker [18] is also implemented as a Firefox plug-in.

The MashMaker works by augmenting live data with user specified for-

mulae. Like a spreadsheet, MashMaker allows users to mix computed values

with their data, including editing “live” (i.e., continuously-updated) data as-

sembled through the web and/or user queries.

The Yahoo Pipes [7] has been given credit for a very usable user interface.

A study of usability of mashup tools in 2009 [15] says that Yahoo Pipes

provides the most interactive, intuitive and user friendly data aggregator

and manipulator available at that time. They also describe the Pipes as a

tool that has a large community library of data mashups to select and learn

from and it is also possible to clone a mashup to suit your own needs.

There are some previously quite popular mashup tools whose development

has been discontinued. For example Microsoft Popfly or Google Mashup

Editor were both shut down in 2009. One might wonder what could have
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been the cause for their early closure. Possible reasons could be that the

community was too immature or that those technology giants could not find

feasible business case to be built around those tools.

5.3 Categorizing Mashup Tools and Environ-

ments

To categorize and compare mashup tools and environments, certain attributes

are suggested in an article [30] that help to point out the differences. The

same article also describes some of the existing mashup tools but as the

research was done some time ago, these description might not be relevant

anymore. Regardless of that, the comparison model is still useful and enables

to position the developed solution in context of other tools and environments.

1. Manual or tool assisted development - Developing mashups with the

help of OpenAjax Hub, Transformer Widget and SOAP Proxy is some-

what simplified but still a manual not tool assisted process.

2. Component model - Basically all component types are supported (data,

application logic and user interface); existing components provide ac-

cess via APIs and with the help of mappings in XML format; and end

user can freely add new components to the application.

3. Composition model - The output type is an UI; the orchestration style

is event-based (publish-subscribing handled by OpenAjax Hub); data

passing style is using data-flow approach; compositions are instance-

based - the composition is instantiated upon the opening of an appli-

cation web page; exception and transaction handling is not supported.

4. Development environment - Basic text-based development tools can be

used, there is no special development tool provided, therefore the target

user is a person with JavaScript programming skills; no special system

requirements are needed to run the mashup application - a typical Web

browser is sufficient.
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5. Run-time environment - The mashup can be deployed in any Web

server; the run-time location is the client side; there are no additional

requirements for the browser to run the mashup; the scalability de-

pends mainly on the amount of data sources that create traffic with

the SOAP Proxy server side component.

5.4 The Future of Mashup Development

Taivalsaari and Mikkonen[25] argue that the Web application developments

should occur in a collaborative, social fashion. The article finds that security

and modularity are the two areas that currently make the Web an anti-social

environment for developers. Some of the problems - secure interaction be-

tween content from different sites and overcoming the Same Origin Policy

limitations - are very well related to SOAP Proxy solution. The Same Origin

Policy is overcome with the help of a server-side proxy, that also does not

need to be configured for any additional services. The secure interaction is

resolved by using OpenAjax Hub. The modularity issue also finds a solution

in the current work, because SOAP Proxy allows the usage of SOAP ser-

vices, that have well defined interfaces (WSDL), inside the OpenAjax Hub

infrastructure.

Ankolekar et al. [16] argued in 2007 that two “rivaling” directions, the

Web 2.0 and Semantic Web should gain from each other’s strengths. In this

article they set three hypotheses. Two of them - “the Semantic Web will be

World Wide Web” and a “bottom up user-centered approach is required for

the Semantic Web to take hold” - are actually quite relevant in context of

this paper. Using the SOAP Proxy with OpenAjax Hub and Transformer

Widget does bring the Semantic Web much closer to the end users while at

the same time the mashups will live in the World Wide Web.

The same article lists three infrastructure issues that need to be solved

in regards of wider spread of Semantic Web: the creation of semantic data,

exchanging generated data and reusing the data. Mashups are mentioned as

one way to reuse the semantic data.

Hornung et al. have also been interested in surfacing the Deep Web
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through [20].Their approach involves the use of graphical tools to compose

the mashups and to access the Deep Web, they offer the ability to use web

forms. By using the web forms, they have to tackle of several problems like

form interaction, data record extraction and cleaning, fuzzy result lists and

data cleaning. Those problems are not needed to be dealt with when using

well defined interfaces of web services. One issue is relevant for both cases

- by chaining data sources, each subsequent data source needs to be queried

with all (meaningful) combinations found so far. In their paper they show

that this can lead to combinatorial explosion in possible value combinations.

In the paper about Semantic Web and Web 2.0 by Christopher Thomas

and Amit Sheth [26], it is discussed how can those technologies be combined

to help provide the platform for solving complex problems. They conclude

that the Semantic Web must provide platforms that facilitate the use of se-

mantics, that hide the formalisms from those who do not want and do not

need to see them, that connect the things that are interesting to everyone to

those that are interesting only to Semantic Web visionaries. The solution,

that this thesis provides, does not currently meet this vision, as while de-

scribing the widgets’ interfaces a user should still know the correct semantic

vocabulary to use.

5.5 Bypassing Same Origin Policy

Salminen et al. [24] discuss several possibilities to bypass the Same Origin

Policy restriction. First workaround is using the HTML script tag in con-

junction with JSONP transport protocol or using server-side proxy. In this

case the remote server must have a support for JSONP (this does not come

out-of-the-box). They also stress, that usage of JSONP involves some risks

in the form of man-in-the-middle attacks and cases when the remote site is

untrustworthy. Second way is to use Adobe Flash object based proxy, that

is usable only if the remote server provides a special file that grants access to

remote domain flash objects. Of course, user must also have the Flash plug-

in installed. Third possibility is to use a server-side proxy, which is good

because the proxy does not set any additional requirements to the remote
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server.

There is a W3C working draft document Cross-Origin Resource Sharing

[27] that provides guidelines on how the cross-domain issues could be possibly

solved in the future. However, this approach still seem to introduce the need

for updates in the remote site.

HTML5 standard is expected to introduce a new specification - HTML5

Web Messaging [19] - that defines mechanisms for communicating between

browsing contexts in HTML documents. By using this specification there are

no changes needed in the remote site anymore.

5.6 Accessing SOAP Services From Browser

There exist JavaScript libraries that enable sending requests to SOAP end-

points straight from within the browser. One of them is JavaScript SOAP

Client [4]. While the presented solution could have embraced the library

and not constructed the SOAP messages in the server-side it would still have

been needed to use proxy to overcome the cross-site restrictions. Also, the

Transformer Widget mappings need to be constructed somewhere and it is

doubtful that there exist JavaScript libraries as powerful as SoapUI is.

There is also the IBM’s SOAP extension for Dojo Toolkit [2] which is part

of IBM WebSphere Application Server Feature Pack for Web 2.0. The Dojo

extension comes with functionality that makes it possible to call SOAP ser-

vices with automatically generated service wrappers. The extension parses

WSDL documents to generate the SMD descriptions that Dojo natively sup-

ports. The extension lacks support for more complex data structures and

the SOAP service result is returned in XML not in JavaScript native JSON

format. The WebSphere server can be used to bypass the Same Origin Pol-

icy restrictions. The license information was not studied so it is unknown

if the Dojo extension can actually be used separately from the WebSphere

application server.
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5.7 Problems With Mashups

[24] points out that changes in service interfaces causes lots of trouble to the

mashup developers. This is one of the problems that using semantically an-

notated services can minimize to some extent. The same article also discusses

the legal issues that arise with mashups when various service providers have

different and sometimes conflicting terms of usage or when other rules have

to be followed.

A survey [31] was conducted among mashup developers to analyze the

participants in the community and also detect problems that occur when

developing mashups. The three more problematic areas were: the reliability

of the API, documentation, and coding details. Latter being mainly in the

form of JavaScript skills needed to integrate APIs.

5.8 Semantic Web Services

It is interesting to find out how many SOAP web services a potential user can

find to unleash the possibilities of presented solution. A research from 2008

[21] included all semantic Web services that could be found in the surface Web

by using a special meta-search engine Sousuo does not give good results. At

that time they found just around 1500 indexed semantic service descriptions.

Of course time has passed, and this number has probably increased. But still

the same research concluded that, at that time, this number was expected to

be bigger.
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Chapter 6

Conclusion

This thesis investigated the ways to ease the surfacing of SOAP web services

that are part of the Deep Web. The main focus was to solve the problems

related to creating mashup applications on the presentation layer.

At first a possible application scenario was introduced, where a developer

wants to use a Estonian Business Registry SOAP service, to build a client-

side mashup. The application would query the list of annual reports for a

specific company and then visualize the list.

Then the problems, that make developing such applications difficult, were

introduced. It was found out, that a developer has to struggle with Same Ori-

gin Policy and the lack of support for creating SOAP requests in JavaScript.

It was also apparent that visualizing output of the services requires knowledge

of the SOAP message structure and lots of manual work.

In order to resolve these problems, a solution was provided, that includes

the server-side and the client-side components. On the client-side, an ap-

proach of using visual and hidden widgets was chosen. This means that for

each SOAP operation, a hidden widget will be created. A hidden widget acts

like a proxy to the actual SOAP service operation and provides data to the

visualization widget.

The communication infrastructure between widgets was established with

the help of OpenAjax Hub and Transformer Widget. OpenAjax Hub pro-

vides a publish/subscribe mechanism to route the messages between the hub
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clients. Transformer Widget takes care of transforming messages from one

client to another based on the mappings, where the input and output mes-

sages of widgets are mapped with related semantic vocabulary. Transformer

Widget also needs JSON schemas when it deals with transforming JSON

data from one widget to the other.

The Proxy Widget was introduced to automatically generate hidden wid-

gets. The Proxy Widget is a OpenAjax Hub widget, that proxies requests to

the SOAP endpoints. When the Proxy Widget connects to the hub, it needs

to provide mappings and JSON schema for the Transformer Widget. Those

are generated by server-side services, that take the URL of a WSDL docu-

ment and the name of the operation as input parameters. Then they use the

structure of the actual SOAP messages to generate the needed documents.

The actual proxying of requests was done by first creating JSON-RPC

requests on the Proxy Widget and then sending them to the server-side. The

server-side translates this request to a SOAP request and sends it forward to

the actual endpoint. The response is translated back to the JSON-RPC and

forwarded to the Proxy Widget.

The provided solution was tested in a proof of concept application that

built upon the scenario that was used in the introduction. The purpose of the

demo applications was to access Estonian Business Registry SOAP services

in order to search and display information about companies. Three Proxy

Widgets were created to enable querying for the list of businesses, the list of

annual reports and the data for each report. The output of each operation

was visualized by a special widget. The demo proved that the solution enables

developers to create client-side mashups using SOAP services.
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Chapter 7

Future Work

The presented solution could be improved in various aspects. One of those

improvements could be the possibility to control the flow of service calls. This

responsibility could be part of the Transformer Widget and would require a

development of how to describe the flow and how to process this description

inside the Transformer Widget.

Another limitation of current solution is the inability to cache mappings

or other generated metadata. By introducing caching, the responsiveness of

the server-side component would become much better. The cached metadata

could then be used by anyone, who asks for mappings from the server-side.

Because the service interfaces do not change very often, the cache time-to-live

could be quite high.

The system could also benefit from the ability to automatically detect ser-

vices that can operate on certain semantic data. Probably this would need to

be a separate service that can then be called to get the list of usable services.

Those services could then be used to automatically generate widgets for the

user. Using Estonian Business Registry (EBR) as an example, imagine, that

user asks what services can she use, if she only has a name of a company.

The service would then automatically look for operations, that can take the

name of the company as an input. The service would detect that there is an

operation ”findBusiness” described in the WSDL of the EBR SOAP service.

It would then pass on that information to the mashup application, which
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would then automatically create the Proxy Widget for that service.

Current solution also lacks support of exception handling. There is no

easy way to recover from cases when a web service is down, a specified WSDL

document cannot be accessed or the operation is not found inside the WSDL

document. Luckily the JSON-RPC protocol has support for passing infor-

mation about errors to the client-side.

It would also be great, if not only SOAP services would be supported by

the Proxy Widget. There could be applied some virtualization mechanisms,

that would transform the information in the JSON-RPC request to a general

request. This general request could then be converted to any other request

type, like SOAP or REST and passed on to the actual endpoint. The results

would then be transformed back to format suitable for JSON-RPC.

This thesis could also have some positive effect on adding semantic anno-

tations to SOAP web services. At the moment, there are very little services,

that are semantically annotated. If the owners of services see, that the pre-

sented solution eases the consuming of their services, they might be more

motivated to increase the priority of this task.

It is currently possible to use the infrastructure without semantically an-

notated services. In this case, of course, it is not possible to use the Trans-

former Widget to do the semantic integration between widgets. However, as

it still makes the using of SOAP services a lot easier, it would make sense to

define separate interfaces for the usage without semantics. Perhaps even a

two separate widgets could be used - Semantic Proxy Widget and just Proxy

Widget, which would not have support for semantics.
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Süvaveebi kuvamine automaatsete OpenAjax

Hub vidinate genereerimise abil

Magistritöö (30 EAP)

Karli Kirsimäe

Resümee

Antud magistritöö uurib, kuidas lihtsustada esitluskihil SOAP protokolli ka-

sutavate veebiteenuste, mis on osa süvaveebist, kasutamist. Sellise teema

valimist motiveerib asjaolu, et rakenduste kompositsiooniline raskuskese li-

igub üha enam esitluskihi suunas, kuid hetkel ei ole veebilehitsejale omaste

tehnoloogiatega võimalik väliste domeenide teenuseid kasutada, nende väljun-

dit kuvada ja teenuseid omavahel siduda.

Et välja selgitada, kuidas antud probleemi lahendada, uuriti, mis on

hetkel sellise lähenemise kasutusse võtmisel peamised pidurdavad tegurid.

Selgus, et põhilisi raskusi tekitavad asjaolud, et veebilehitsejad ei võimalda

teha päringuid rakenduse suhtes välistesse domeenidesse ja et JavaScriptis on

SOAP päringute koostamise tugi võrdlemisi limiteeritud. Lisaks tõdeti, et

teenustest saadava info visualiseerimine nõuab teenuse väljundi ja kuvamis-

loogika manuaalset kokku-traageldamist (hard-wiring ing k).

Probleemi lahendamiseks otsustati kasutada nö veebividinapõhist lähene-

mist, kus iga teenuse operatsiooni jaoks genereeritakse nähtamatu JavaScripti

vidin, millelt saadav info muudetakse nähtavaks mõne teise vidina poolt.

Sellise lähenemise rakendamiseks loodi kaheosaline raamistik, mis koosneb

kliendikihist ja serverikihist. Vidinate suhtlemise võimaldamiseks võeti ka-

sutusele OpenAjax Hub raamistik [6], mis toimib vidinatevaheliste sõnumite

vahendajana. Selleks, et vidinad ei oleks tihedalt kokku traageldatud, võeti

appi Transformer Widget [28]. Transformer Widget lisab OpenAjax Hub

vidinatele võimaluse omavahel suhelda, kasutades semantilist integreerimist.

Nähtamatute vidinate genereerimiseks loodi eraldi OpenAjax Hub vidin

- Proxy Widget. See toimib teenuseid tarbivate vidinate ja tegeliku teenuse

vahelise puhvrina ning lisaks hoolitseb selle eest, et vidin oleks korrektselt
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Transformer Widgetis registreeritud. Transformer Widgetis registreerimiseks

pakub tuge ka serveripool. Serveris genereeritakse selle jaoks dokument,

mis kirjeldab vidinate struktuuri ja semantikat ning lisaks ka skeem JSON

vormingus andmete kirjeldamiseks. Serveripool kasutab selle jaoks teenuse

semantiliselt annoteeritud WSDL keeles kirjeldust, kust saadakse kõik vajalik

informatsioon.

Proxy Widgeti puhverdamisloogika toimib nii, et esitluskihis võetakse

sisendisse JSON vormingus andmed, mille abil luuakse JSON-RPC päring.

See saadetakse edasi serveripoolele, mis omakorda transformeerib päringu

SOAP päringuks ning saadab lõppteenusele. Lõppteenuselt saadud vastus

teisendatakse tagasi JSON-RPC päringuks ning edastatakse Proxy Widgetile.

Välja pakutud lahenduse toimimist testiti näidisrakendusega, kus esitluskihi

tasemel võimaldati tarbida kolme Äriregistri teenust - firmade leidmine nime

järgi, firma aastaaruannete leidmine ning aastaaruannete andmete leidmine.

Näidisrakendus tõestas, et teenuste tarbimine ning andmete kuvamine os-

utus antud lahendusega oluliselt lihtsamaks. Lisaks oli see tõestuseks, et

teenuste tarbimine oli võimalik vaid veebilehitsejale omaste tehnoloogiate

kasutamisega.
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Appendix

Source Code

The source code of the provided solution can be downloaded from Github:

https://github.com/karli/Automatic-soap-widget-generator.
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