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Abstract

Search engines have become the means for searching information on the In-
ternet. Along with the increasing popularity of these search tools, the areas
of their application have grown from simple look-up to rather complex infor-
mation needs. Also the academic interest in search has started to shift from
analyzing simple query and response patterns to examining more sophisticated
activities covering longer time spans. Current search tools do not support those
activities as well as they do in the case of simple look-up tasks. Especially the
support for aggregating search results from multiple search-queries, taking into
account discoveries made and synthesizing them into a newly compiled docu-
ment is only at the beginning and motivates researchers to develop new tools
for supporting those information seeking tasks.

In this dissertation I present the results of empirical research with the focus on
evaluating search engines and developing a theoretical model of the complex
search process that can be used to better support this special kind of search
with existing search tools2.

I present a model that decomposes complex Web search tasks into a measur-
able, three-step process. I show the innate characteristics of complex search
tasks that make them distinguishable from their less complex counterparts and
showcase an experimentation method to carry out complex search related user
studies. I demonstrate the main steps taken during the development and imple-
mentation of the Search-Logger study framework (the technical manifestation
of the aforementioned method) to carry our search user studies. I present the
results of user studies carried out with this approach. Finally I present devel-
opment and application of the ATMS (awareness-task-monitor-share) model to
improve the support for complex search needs in current Web search engines.

2It is not the goal of the thesis to implement a new search technology. Therefore perfor-

mance benchmarks against established systems such as question answering systems are not

part of this thesis.
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Chapter 1

Introduction

�The ultimate search engine would basically understand every-
thing in the world, and it would always give you the right thing.
And we're a long, long ways from that.� Larry Page - Google
Founder [1]

According to Maslow's hierarchy of needs [81] information seeking is a funda-
mental human activity. Searching for necessary information is more and more
shifting to electronic media like the Internet [40]. Since the invention of the
Web and its rapid growth over the last decade, the amount of information
available on this medium has become overwhelming. Information overload im-
poses a growing problem upon our knowledge societies, impacting productivity
at the workplace level and also in�uencing the end user Internet experience
[17, 64, 42]. Search engines are the means to search for information on the In-
ternet. People use search engines for all kinds of tasks, from simply looking up
facts to planning their holiday trips and their investment decisions. While look-
ing up facts is well supported by current Web search engines [65, 77], this does
not hold true in case of more complex search tasks [115], where an increasing
number of users is dissatis�ed [113].

For further reference and imagination, I introduce the following scenario (based
on [98]), illustrating a complex search task (I will de�ne the concept of a com-
plex search task in Chapter 2 on page 17):

Imagine Brian and Sarah are journalists in the popular newspaper
FooTimes. Brian and Sarah are currently working on a political
analysis article related to the con�ict between North Korea and
South Korea. They decide to divide the work. Brian will search for
related information and events that happened in North Korea dur-
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ing the last three-month period, while Sarah will search for events
and facts, which took place in South Korea.

In the given case, the journalists need to have many search sessions,
store the relevant articles and information sources, combine them,
and research relations between di�erent events.

First, the journalists search for reliable information sources. They
start from searching for articles on major news web portals like
BBC, CNN, or Financial Times. Brian and Sarah also use search
engines and social bookmarking services like Delicious (see e.g. [41])
to search for local newspapers and other public information sources
like information on embassy Web sites. During the search Brian and
Sarah quickly examine the information on the Web pages and create
bookmarks for the relevant ones. They take notes to remember the
most important facts to later �nd relations between the information
in the relevant documents.

This complex search goes far beyond a simple look-up task and includes discov-
ery, aggregation, and synthesis tasks. As we see the task of searching di�erent
Websites alone and then picking the right information for later research is com-
plex. It means keeping track of the sources, synthesizing relevant information
and sharing with co-workers. Finally it is essential to identify relations between
the information and draw conclusions from that.

Today's search systems are designed to follow the �query - response� or shortly
look-up concept. Users with an information need enter queries into search
systems and those search systems produce ranked lists of search results. Ideally
those search results are relevant for the queries used [115]. Look-up tasks are
among the most basic types of search tasks, usually happening in the context
of question answering and fact �nding, e.g. wanting to know when the famous
composer Mozart was born or who is the inventor of Penicillin.

Users often face the situation where they cannot �nd an answer to their in-
formation need, and therefore, they have to browse, collect and review large
amounts of documents and/or synthesize results from di�erent sources [115] as
also illustrated in the journalist example above. Another example is the follow-
ing simulated work task that was also used during our experiments: �Find the
best universities for your child wanting to study either architecture or politi-
cal science, assuming you live in Germany and are able to support your child
with 1500 EUR per month�. I make the assumption that there is not yet a
search engine available, which just takes the social pro�le of the parent and the
child and their preferences and monetary possibilities as input and generates
the corresponding result for this case. Hence, a single query-based approach
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is usually insu�cient for the tasks in focus in this thesis: complex search tasks
(to be de�ned in Chapter 2).

Matching complex information needs to queries can be a cumbersome activity.
Nowadays, a search for such a task will still involve a lot of aggregation of
di�erent information sources, discovering lots of new facts of what is important
in such a search (like understanding that accommodation is a very important
cost factor to account for apart from tuition in our university example), and
the need to synthesize all this information in a manner allowing to make an
informed decision [102]. The quest for more e�cient information search tools
is more relevant than ever and this dissertation is just one additional building
block in understanding how to proceed.

The goal of this thesis is to improve the special kind of Web search that results
out of complex information needs. We have developed a theoretical model for
complex search processes. Based on this model we have developed tools to
carry out user studies to evaluate the complex search process. The results of
these evaluations are the basis for the suggestions to improve the support for
complex search in Web search engines.

The topic of this thesis is broad and therefore the concepts and methods used
originate from various scienti�c sub-disciplines such as information retrieval
(IR), interactive information retrieval (IIR), question answering (QA), infor-
mation seeking and also �elds such as exploratory search, Web information
retrieval support systems and usability. Hence assigning this work to a certain
�eld or discipline is far from trivial. Overall the work investigates the usability
of search engines for complex search tasks. It therefore uses many concepts
and de�nitions from IR. To cover interactive aspects in our experiments and
also make them measurable with our logging technology, we used concepts and
methods originating from IIR. As far as the character of the search tasks in
focus (complex tasks) is concerned, they are based on an amended de�nition
that is still quite similar to the one used in exploratory search and QA related
research - but has the advantage of being better measurable. Finally, when it
comes to the results of this thesis, they would most probably be complementing
Web information retrieval support systems research.

This thesis is organized as follows: In the next chapter, I introduce complex
search and its role in Web search along with the de�nitions of the core con-
cepts used in this dissertation. After the prerequisites have been introduced, I
present the problem statement along with the research approach used in this
dissertation. After the research approach I present the core research questions
that guided my research. In the following section I answer the research ques-
tions, outlining the research and summarizing the contributing studies. Then
I present the ATMS model (de�ned in Chapter 5 on page 67) to improve the
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support for complex search and discuss the model along with conclusions and
limitations. Finally I demonstrate the main steps taken during the development
and implementation of the Search-Logger study framework in the appendix.

This is a �thesis by publications�. The thesis is composed of an overview of
around 100 pages, to which 7 relevant publications are attached. Those pub-
lications are a joint works together with my co-authors. I have added one
paragraph to each publication summary to point out my own contribution.
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Chapter 2

De�nitions and nomenclature

Due to the ambiguity of some terms, a precise de�nition of the concepts used is
necessary. As there are several de�nitions for many of the following concepts,
I have in those cases selected one that is appropriate to be consistently used
throughout my thesis.

Web Search Query

I have found the following de�nition from the IT Law Wiki [2] well suitable for
my needs in this dissertation:

�A web search query (also called a search query) is the string of
characters that a user enters into a search engine to satisfy his or
her information needs.�

Search Session

I use the de�nition by Jansen et al. [51, p. 862]:

A search session is �a series of interactions by the user toward ad-
dressing a single information need�.

The session typically starts with the �rst interaction of the user with the search
system and ends, when the user either (1) successfully, (2) partly successfully
or (3) unsuccessfully (has given up) leaves the system or starts another session.

Task

The following de�nition is based on Ingwersen and Järvelin's book �The Turn� [46]
and a paper by Li and Belkin [70]:

15



A task is an abstract description of activities to achieve a certain
goal.

The concept of a task in the context of search (evaluation) can be decomposed
into a work task and a search task resulting out of this work task [11, 45, 12].

Work Task

The de�nition best suitable for the needs in my dissertation can be found in
Ingwersen and Järvelin �The Turn� [46, p. 392]

A work task is �A job-related task or non-job associated daily-life
task or interest to be ful�lled by cognitive actor(s). Work tasks
can be natural, real life tasks or be assigned as simulated work task
situations or assigned requests.�

Simulated Work Task

Also the following de�nition is from Ingwersen and Järvelin �The Turn� [46, p.
390]:

Simulated work tasks are �Work task/Interest situations designed for
IS&R (information seeking and information retrieval) research by
involving a speci�ed but arti�cial scenario or cover story of semantic
openness. The situation at hand is meant to trigger individual
information needs in test persons in a controlled manner.�

Search task

For this de�nition I also refer to Ingwersen and Järvelin's book �The Turn� [46,
p. 73]:

�A search task is a sequence of activities with the goal of �nding
speci�ed information - the speci�cation may range from narrow and
detailed, e.g., a fact, to broad and vague, e.g. something about
memory problems in old age.�

This de�nition is speci�ed further in the paper by Li and Belkin [70]:

The search is usually carried out with IR systems.

A search task usually comes out of a work task.

16



A family might for example be dealing with the task to plan a holiday trip.
Resulting out of this work task might arise the search task to �nd children
friendly hotels at a certain destination. According to Bell and Ruthven [12] the
search tasks can either come from the searchers themselves or can be arti�cially
created within laboratory evaluations.

Look-up/Simple Tasks

Look-up tasks are search tasks that lead to look-up searches. In this disserta-
tion, look-up tasks and simple search tasks are regarded as being synonymous
and de�ned by White and Roth in �Exploratory Search: Beyond the Query-
Response Paradigm� [117, p. 13] as follows:

�Lookup searches generally involve the retrieval of single answers
(e.g., a single piece of information satis�es a known item search,
fact retrieval, or question answering; a single Web page satis�es a
navigational query submitted to a Web search engine).�

Look-up searches are among the most basic types of search tasks. Usually they
happen in context of question answering and fact �nding. Typically they are
needed to answer who, when and where questions [117].

Complex Search Tasks

For this de�nition I refer to our own papers [98, 100, 101]:

Complex search tasks are tasks where users are required to follow
a multi-step and time consuming process that is not answerable
with one query, requiring synthesized information from more than
one retrieved web page or document to be solved. The process to
work o� complex search tasks usually comprises at least one of the
process steps aggregation, discovery and synthesis.

To get a better understanding, an example for a complex search task was de-
scribed and explained in Chapter 1 on page 12.

Complex Search Behavior

Complex search behavior appears when people carry out complex search tasks.
The actual execution or execution process of the search task, independent of
ful�lling the goal to satisfy the stated information need or not, will be referred
to as a search1.

1This de�nition is analogous for the terms �simple search� and �simple search tasks�
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Relationship between complex search and exploratory search

The goal of this thesis is to make time consuming search tasks that require a
lot of user interaction measurable and to also investigate the labor-intensive
aspects of the search process such as querying, tabbing, copying, and pasting.
At the very beginning of our research we tried to use Marchionini's de�nition
of exploratory search [79, 117]. Exploratory search tasks (see also Figure 2.1)
are de�ned as open-ended, abstract and poorly de�ned information needs with
a multifaceted character. They are usually accompanied by ambiguity, discov-
ery and uncertainty. Such exploratory search tasks ful�ll needs like learning,
investigating or decision making and require a high amount of interaction [117].

Figure 2.1: Types of search activities according to Marchionini [79]

Marchionini's exploratory search concept was a very good start and our chrono-
logically �rst publication with the title �Search-Logger - Analyzing Exploratory
Search Tasks� [102] still carried �exploratory search� in the title. In the course
of the subsequent research we understood that this de�nition was not entirely
suitable as it was based on too many cognitive concepts and overlapping activ-
ities.
In his view of non-lookup search Marchionini summarizes all sorts of search re-
lated activities under �learning� and �investigating�. At closer hindsight those
activities are located at di�erent cognitive levels of the search process. While
some concepts such as aggregation, discovery and synthesis are �rst level search
and information gathering steps, activities such as planning/forecasting, analy-
sis, or evaluation are of a di�erent quality. They often use information that has
been found in the �rst step, e.g. through aggregation and synthesis, and pro-
cess that information to achieve the needed result. This makes such information
processing steps second level search activities.
Some of the activities such as aggregation certainly are interactive, but the
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amount of learning during pure aggregation tasks can be limited. Therefore
aggregation and comprehension or knowledge acquisition, which Marchionini
all put into a single group called �learning�, are in fact quite di�erent concepts
as far as learning is concerned.

In addition quite a few of the activities overlap. For example analysis, compar-
ison and evaluation are di�erent concepts, but they also have a lot in common
when being used to carry out a search task. For example a comparison task
or an evaluation task will almost certainly contain analysis elements. Plan-
ning/forecasting is a high level, cognitive process that can be seen as being
based on activities such as aggregation, evaluation and analysis.

Finally, one of the goals of my dissertation was that the �nal outcome of the
thesis needs to be technically implementable. Core activities of exploratory
search such as knowledge acquisition, planning/forecasting or interpretation
are certainly important aspects of learning and investigating. Yet they are
very broad and could therefore only be implemented for certain domains, but
not on a general level.

Having understood the assets and drawbacks of Marchionini's exploratory search
de�nition, I needed a di�erent search model that does not contain the second
level search activities such as knowledge acquisition, comprehension or plan-
ning/forecasting as I would not be able to measure those. I was therefore
looking for a model of interactive, labor-intensive, time consuming search that
is measurable and can be implemented. We used Marchionini's exploratory
search model and carefully investigated the activities he mentioned. We set
the scope on the �rst level search activities and left out any second level infor-
mation processing activities as we expected them as being too di�cult to be
implemented on a general, non-domain speci�c level. We found a model based
on aggregation, discovery and synthesis as developed in [98] and further de-
�ned in [100, 101] as suitable for our needs. It covers the main interactive and
labor-intensive steps of �nding documents to known problem aspects, discover-
ing new problem aspects and �nally summarizing (in the simplest way copying
and pasting) the found information such as URLS into one document. All ac-
tivities are �rst level information gathering activities. The term that seemed
to be most appropriate to describe that kind of search was �complex�, as il-
lustrated in Figure 2.2. Needless to say that the line between complex search
and exploratory search as Marchionini de�ned it can be a thin one. Especially
in cases when searchers make a lot of discoveries during searching. Complex
search tasks require a lot of interaction with the system. Hence the search
e�ort in terms of manual labor will be signi�cant, but complex search tasks do
not implicitly carry all the standard attributes of exploratory search tasks such
as learning, planning and decision making [115]. They are therefore complex,
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but not necessarily exploratory as also outlined in Figure 2.2. I will give an
example further below.
In addition our Search-Logger is designed to measure user action that is directly
related to the labor intensive aspects of search processes to ful�ll complex
information needs such as time e�ort, number of queries, pages visited and
browser tabs opened and closed. The Search-Logger currently does not allow to
measure parameters such as engagement and enjoyment, information novelty, or
learning and cognition that were mentioned by White [116] as being appropriate
measures for exploratory search tasks. Hence it would not be correct to say
that the Search-Logger is capable of measuring exploratory search tasks if its
measuring capability really only covers certain activities of the exploratory
search de�nition.

Exploratory Search                                             

Simple Search

Information Need

● Fact retrieval
● Known item search
● Navigation
● Transaction
● Verification
● Question answering

Look-up

● Knowledge acquisition
● Comprehension/

Interpretation
● Comparison
● Aggregation/

Integration
● Socialization

● Accretion
● Analysis
● Exclusion/Negation
● Synthesis
● Evaluation
● DiscoveryDiscovery
● Planning/Forecasting
● Transformation

Investigate

● Knowledge acquisition
● Comprehension/
Interpretation

● Comparison
● Aggregation/Integration
● Socialization

Learn

  +Interactive 
+Labor-intensive 
+Time consuming

● Aggregation
● Discovery
● Synthesis

Complex Search First level 
information 
gathering 
activities

First level 
information 
gathering 
activities 
and   
second level 
information 
processing 
activities

Figure 2.2: Comparison of complex search vs. exploratory search (based on
[79] and extended)

The di�erence between our understanding of complex search and exploratory
search is best illustrated with the help of the following example task. Assume
you would be planning a holiday trip to the Canary Islands. As you have chil-
dren, you want to �nd child-friendly hotels. You are using search engines to
�nd those hotels. This task will take you a while. It will mean a lot querying
and gathering links to hotel Web sites and also copying and pasting relevant
hotel speci�c information, along with prices into a separate document. You
might even observe that you could use the Spanish term for child-friendly,
which is �apto para niños�, for your queries. This would be a search consisting
of aggregation, synthesis and even some discovery element. All those are �rst
level search and information gathering activities. This process will certainly
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be interactive and labor-intensive. But it does not necessarily require a lot
of learning and investigating. It starts becoming exploratory when you begin
acquiring knowledge that e.g. Majorca, part of the Balearic Islands, might be
a better choice for you traveling with children - as the child-friendly hotel sec-
tor is developed better there. You would then look for child-friendly hotels in
Majorca. You would compare all the results that you have gathered, analyze
and evaluate the o�erings, exclude certain o�erings and in the process learn
which o�ering might be best suitable and make a decision based on the knowl-
edge you have gained. This step adds the second level information processing
activities to the search process. By means of this example it also becomes clear
that complex search can lead to exploratory search if second level information
processing activities such as decision making are also used in addition to �rst
level information gathering activities.
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Chapter 3

Research approach

3.1 Problem statement

Search engine quality measurement initiatives have widely contributed to en-
hancing search engine performance for general-purpose, fact-based queries. How-
ever the same is not yet true for all other contexts or information needs like
complex search tasks [115] as de�ned earlier in Chapter 2 on page 17. Similar
to the earlier mentioned supplementation of classic online search with complex
search in order to cover all of today's search needs, the methodologies to eval-
uate the corresponding tools and services also need to be extended. Classic
evaluation methodologies predominantly focus on the search system itself, not
on the search process that people follow [67]. The evaluation is still limited
to those systems that rely on minimal human-machine interaction [60]. In ad-
dition, user related aspects such as search pro�ciency, become important to
determine search task success [74, 93] and have to be taken into account along
with integrating the behavior of the user into the evaluation process of search
systems [115].
According to a keynote speech with the title �Search isn't Search� by Stefan
Weitz, Microsoft, given at the SMX 2009 Conference [113], only 1 in 4 queries
is successful and many queries yield terrible satisfaction (based on data from
Microsoft's Bing search engine). Many search �queries� are actually tasks (as
de�ned in Chapter 2 on page 15), close to 50% of the tasks are longer than 1
week and people are increasingly using search to make decisions (66% of search
users). As a result, today's Web search engines are only being appropriately
used for a subset of tasks that they could theoretically be used for.
Search engines like Google or Bing have started adding more features to their
Web search systems to better support complex information needs, such as au-
tomatic query extension or universal search. The universal search model [106],
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�rst revealed in 2007, integrates document surrogates, videos and images in the
�rst search result pages and therefore o�ers a more complete and comprehen-
sive user experience. Yet these features still add little incremental support [98]
for carrying out complex search tasks as de�ned in Chapter 2 on page 15.

The research presented in this thesis is aimed at understanding complex search
and improve its support in current Web search engines. To guide the research
process, I have divided the dissertation into the following sub tasks and corre-
sponding research questions:

3.2 Research steps

The problems and challenges mentioned in the above section made a combined
approach necessary. As complex search is not an established research discipline
such as information retrieval or interactive information retrieval, but a research
topic that can be investigated in several disciplines, I needed to study those
related research disciplines to build a common ground and develop a de�ni-
tion for complex search. Based on this de�nition and an according model for
complex search I developed a method to measure and analyze complex search.

I used this method to conduct user studies with the goal of describing complex
search behavior with simple measures. Based on theses �ndings I made recom-
mendations for improving the support for complex search in search engines. As
outlined in Figure 3.1 the 4 steps in my research approach were:

Step 1 - Study established search models for non-simple search tasks and re-
search approaches in related areas

Step 2 - Select a method and build the relevant tools to measure and analyze
complex search tasks. Test applicability of the method and the tools in
the course of a pilot study. If needed go back to previous step and revise
method.

Step 3 - Carry out user studies and learn how users search and what impacts
their search performance

Step 4 - Analyze the results of the studies and give recommendations for im-
provement of the support for complex search tasks in Web search engines
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Figure 3.1: Flow chart illustrating my research approach

In the following sections I will describe the 4 steps in more detail.

Step 1 - Study established search models

To understand complex search and to develop a measurable model for it, I
analyzed existing search models and I will present a clear break-down of com-
plex search into measurable steps. The �ndings are published in Publication
I [98]. We took the exploratory search model by Marchionini [79] as a basis and
developed a reduced model (omitting the second level information processing
activities such as planning/forecasting) for complex search based on the better
measurable �rst level information gathering activities aggregation, discovery
and synthesis.
When increasing the support for complex search, the whole notion of complex
search needed to be made measurable. The approach that I followed in this dis-
sertation was looking at existing research directions in related disciplines and
selecting elements that can be used for measuring complex search. I screened
traditional and established research approaches in information retrieval (IR),
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interactive information retrieval (IIR), exploratory search and open domain
question answering with a focus on ways to carry out user studies with com-
plex search tasks and also on potential measures to describe complex search
behavior.

IR research is focused on systems, which retrieve relevant documents from a
document collection [6]. The focus of research is on the system and users are not
part of the scope of classic IR. Researchers in IR examine how people retrieve
information from repositories in commercial organizations, in public places like
libraries but also on their PCs [115]. The query - answer concept (users enter a
query into a search �eld and get back a ranked list of search results) used in IR
has been the basis for commercial search engines like Google, Bing or Yahoo.

The study methods used in IR can mainly be divided into two groups: ju-
ror based studies and click-through data based studies. In juror based study
methods to measure the retrieval e�ectiveness of IR systems, a static set of
documents plus a set of queries is taken and according results are evaluated by
jurors (see [65]). This so called Cran�eld methodology [22] is widely used for
evaluating IR systems. The Text Retrieval Conference (TREC) chose it as the
main paradigm for its activities of large-scale evaluation of retrieval technolo-
gies [112]. Those methods evaluate search engines and their performance on a
technical level, while leaving out important user related aspects. Researchers
try to integrate the user into the measuring process as can be seen in TREC
Interactive Track [27] or TREC High Accuracy Retrieval of Documents Track
[3].

The two most commonly used measures in IR research are precision and recall
plus many additional derived measures like normalized discounted cumulative
gain, reciprocal rank or expected browsing utility (see [66]). While with pre-
cision measures the relevance of results displayed, recall is a measure for how
well the set of retrieved documents covers the total set of available and relevant
documents in the collection.

IIR focuses on the search process itself (and not the used system) and tries
to especially overcome the arti�cial distinction between user and system in
information retrieval evaluation e�orts [91]. The hypothesis is that search is
very often not only query-response but an interactive process. Ruthven [94]
argues that most information seeking is usually part of a bigger search task (not
only a session or a query) or even a work task as described by [46] and analyzing
the interaction with the system cannot be done without also accounting for the
underlying task. As a task can usually span longer time frames (from minutes to
weeks [113]), only examining parts of it without considering the whole context
would not provide the right insights for the researcher.

When it comes to evaluating the performance of IIR systems, according to Kelly
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[56, p. 27 ] studies can either be conducted in a laboratory environment or in a
naturalistic setting, e.g. by using real search engine logs. Both ways have their
advantages and disadvantages. While naturalistic studies are supposed to show
more realistic user behavior, the researcher usually has little in�uence on the
setting and therefore the results are di�cult to compare across sites [56]. Nat-
uralistic studies have the advantage that they can span longer periods of time
(longitudinal studies). Data is usually collected in di�erent ways. Kelly [56]
mentions think-aloud methods (study participants express their acting during
the experiment), stimulated recall (gathers the same info as in previous method
but after the task has been carried out), observation (researchers observe study
participants), logging (user activity is automatically recorded), questionnaires
(a set of closed and open questions administered to study participants) and
interviews (mostly open questions).

IIR experiments are usually also de�ned and di�erentiated from other experi-
ments by what tasks the users are expected to carry out and on what corpora
(document collections) the tasks are to be carried out. On the corpora side
Kelly [56] mentions test collections (like TREC [27] and HARD TREC [3]),
the Web as an information body, or natural corpora (collected by users and
mainly used for personal information management studies). On the task side,
Kelly mentions natural tasks (based on information needs users have in their
everyday life), tasks that allow multi-tasking studies (e.g. [24]) and simulated
work tasks [14, 46].

The measures used in IIR experiments can mainly be grouped into measures
of context, measures of interaction, measures of performance and measures of
usability. The overall measure to be maximized is user satisfaction [19].

The term �exploratory search� (ES) was coined by Gary Marchionini [79]. He
divided the search task universe into look-up, learning and investigating. Ex-
ploratory search comprises tasks that require learning and investigating.

As far as evaluating exploratory search systems is concerned, the methods used
are not as well-researched yet as they are in IR [115]. Similar to IIR, the
challenge is that the user and the system need to be simultaneously examined
[115] (as opposed to IR where only the system is in focus). The consequence
is that the experiments usually are costly. They are often conducted with
insu�ciently big sample sizes and small numbers of tasks. Often the user
samples are not representative, e.g. consist only of students.

The main shortcoming so far is the repeatability and comparability of experi-
ments. A way to improve the comparability of an experiment is to set up test
collections of tasks (similar to the ones used in TREC). According to Kules
and Capra [63, p. 419], such a task should be structured as follows: It �(1) in-
dicates uncertainty, ambiguity in information need, and/or need for discovery;
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(2) suggests knowledge acquisition, comparison, or discovery task; (3) provides
a low level of speci�city about the information necessary and how to �nd the
required information; and (4) provides su�cient imaginative context in order
for the test persons to be able to relate and apply the situation.�

Researchers have suggested developing special measures for exploratory search
systems experiments. White [116] mentions the following measures as appropri-
ate: (1) engagement and enjoyment, (2) information novelty, (3) task success,
(4) task time and (5) learning and cognition. In addition, time is an important
aspect not to be neglected when trying to evaluate complex search systems.
Exploratory search sessions can span over days and weeks and usually com-
prise various activities [115]. Long term studies are essential in order to get
realistic study results [57].

Finally I have investigated how researchers evaluate systems in the �eld of
open-domain Question Answering (QA). As opposed to IR systems, which re-
trieve whole documents, QA tries to �nd correct answers to questions within
documents [34]. QA techniques can be used to answer simple fact based ques-
tions, but have also been applied to �nd answers to quite complex questions,
where the answer needs to be constructed out of multiple documents [111]. QA
systems are usually built of four main modules that are set up in a chain: the
question analysis module, the module searching for documents and analyzing
them, the module that selects the relevant passages and �nally the module
that extracts the answer [30]. The QA track of the Text REtrieval Conference
(TREC) deals with measuring the performance of QA systems. In TREC-8
each participant got access to a document collection and a set of 200 fact-based
questions [111]. An example for such a question is �How many calories are
there in a Big Mac?� [111, p. 83]. The participants answered the questions
with their systems and submitted a ranked list of 5 answers per question. The
answers were assessed by humans on a binary scale. It was guaranteed that
for each question at least one document in the collection contained the answer.
In the TREC 2003 QA track, tasks to create lists and �nd de�nitions were
added to the questions, such as �List the names of chewing gums� or �What is
a golden parachute?� [25, p. 1]. In the TREC 2006 QA track complex, interac-
tive question answering (ciQA) tasks were added [25]. Here the performance of
QA systems was measured also considering interaction aspects. In general the
performance of QA systems depends on the complexity of the task and on how
di�cult it is to extract the answers [83]. Such systems can usually answer fact-
based questions quite successfully. Yet they did not perform that well when
more advanced linguistic techniques are needed [111].
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Step 2 - Select experimentation method

I opted for the following combined approach to analyze the characteristics of
complex search: Automatic questionnaires and user experience sampling.

The design of this method to measure those open-ended search tasks was specif-
ically triggered by our own academic setting. As researchers we are often faced
with the need to �nd solutions for vaguely de�ned problems. The quest for
appropriate solutions usually starts with searching the web for hints and proxy
information. Search sessions often end with users being annoyed by current
search means and their inability to re�ect those open-ended search needs. I
was looking for a logging-based method to measure search tasks, which often
might consist of several search sessions. In addition I wanted to be able to turn
the logging functionality on and o� at any time. Finally I wanted the method
to be a�ordable and easy to use over the Web - ideally with any computer or
platform.

The chosen method combines automatic experience sampling (e.g. via browser
plug-in [31]) and automatic questionnaires - methods usually used separately
in IIR studies (as outlined earlier). According to Boyce et al. [15, p. 202] an-
alyzing the search process and user characteristics independently is well suited
for performance predictions or to analyzing performance di�erences. As the
user studies will mainly be performance-based, this approach perfectly meets
the requirements.

The user interaction data, which is automatically gathered, is used to ana-
lyze interaction and performance aspects and contextual and usability aspects
are investigated by taking into account explicit user provided data from the
questionnaires as outlined in Table 3.1.

User sampling for this approach needed to meet the usual requirements for
usability studies like working with a reasonably sized sample of study partic-
ipants, and caring for the right backgrounds of study participants. Empirical
data from the experiments [102, 100, 101, 103, 99] shows that especially if tasks
are complex, the data that is collected can show large degrees of variation. In
studies aiming at showing di�erences between e.g. certain user groups or con-
text variables like age or gender, it can be di�cult to get enough signal to
produce signi�cantly di�erent average mean values of certain users groups. To
avoid this problem, the user sample either has to be chosen to be big enough,
or a series of special studies have to be carried out with users of similar back-
grounds.

The Web was used as the information body (instead of a speci�c document
collection) as we were analyzing Web search behavior.

This method is speci�cally designed to carry out user studies with simulated
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Experience sampling
via browser plug-in

Automatic
questionnaires

time based measures
(task time, session
time, search speed)

speci�c feedback on
query, session and task

level
interaction measures
(number of queries,
number of pages

visited, query length)

demographic data
(gender, age,
education)

performance measures
(bookmarks, data
copied to clipboard,
Web pages visited)

information need data
(domain expertise, task

di�culty and
complexity)

prior search experience
(use of the Internet, use

of search engines)

Table 3.1: Features of this combined approach

work tasks (for the de�nition see Chapter 2 on page 16) based on goals as
described in [10, 14, 63]. Examples for such tasks can be obtained from Pub-
lication IV (p. 7) in the appendix of the thesis. Depending on the technical
manifestation of the method (e.g. if an easily distributable and usable logging
technology like a browser add-on is applied), the method can also be used to
conduct studies with natural tasks as described by [56, p. 82], because users
can easily install the logging technology themselves and no laboratory environ-
ment is required. Natural tasks are taken from people's usual common duties,
like a researcher collecting references to write the related work section of a sci-
enti�c paper. I developed a logging tool called �Search-Logger� to carry out
user studies with complex search tasks according to the selected method (au-
tomatic questionnaires combined with user sampling via browser plug-in). We
have published the tool in Publication II [102]. For technical details about
the implementation of the tool please refer to Appendix A. I have identi�ed
several other tools designed mainly for the same purpose of logging user events
like the �Wrapper� by Jansen et al. [48]. The Wrapper tool was developed for
the purpose of logging events of all applications used by an information seeker
(including applications like Microsoft O�ce or email clients). The concept of
search task does not exist in this approach. Another tool is a browser plug-in
that was created by Fox et al. in 2005 [31]. Fox's approach was implemented as
an add-on for the Internet Explorer. It was the �rst tool to gather explicit as
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well as implicit information during searches at the same time. It evaluates the
query level and gathers explicit feedback after each query. Fox's approach also
came with a sophisticated analysis environment for the logged data. Another
tool was Lemur's Query Log Toolbar� [23] which is a toolkit implemented as
a Firefox plug-in and Internet Explorer Plug-in. It logs implicit data on the
query level. Logging complex search tasks is not implemented. Other similar
tools are the HCI browser [16], The Curious Browser [21], WebTracker [108]
and Weblogger [89].
While most of the tools were developed for evaluating the query level, the
Search-Logger was especially developed for evaluating complex tasks. None
of the tools have the built-in functionality to have a pre-compiled set of com-
plex search tasks carried out by a test group in a non-laboratory environment
without any time constraints.

Step 3 - Carry out user studies

Finally, to get insight into the characteristics of complex search tasks and
the corresponding user behavior, I carried out user studies with di�erent user
groups together with colleagues. The �rst pilot study with student participants
was conducted to test the Search-Logger tool. The Search-Logger tool along
with the results of this pilot study were published in Publication II [102]. The
results con�rm that the Search-Logger tool is suitable to carry out user studies
with complex search tasks - it correctly logs the right variables allowing me to
analyze the appropriate measures. In addition it could clearly be shown that it
takes users a considerable amount of interaction and time to carry out complex
search tasks with current search engines. The next study was conducted with
library search experts in the course of a library search contest. The �ndings
of this study were published in Publication IV [104]. The most important ob-
servation was that all participants predominantly used search engine strategies
(start the search process with entering queries into search engines) as opposed
to using known address strategies (directly navigating to a known Web site
other than a search engine). In addition the library search experts used a
parallel-player strategy throughout the whole experiment, continuously having
multiple browser tabs open and closing old ones and opening new ones - which
is common for more complex search tasks. The third study was carried out with
ordinary Web users (Figure 2 shows some images taken during this study). The
�ndings of this study have been published in Publication III [101], Publication
V [103], Publication VI [100] and Publication VII [99] and can be summarized
as follows: The complexity of search tasks is measurable and its characteristics
are signi�cantly di�erent from simple tasks. The complexity can be expressed
by applying measures such as task time, session time and number of browser
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tabs opened. A correlation exists between people's normal Web activities and
their performance when carrying out complex search tasks with Web search
engines. The more complex a search task becomes, the less people are able to
judge certain task parameters such as di�culty, e�ort and outcome. Gender is
an indicator for search performance when carrying out complex search tasks.

Figure 3.2: Pictures taken during the user study in Hamburg (myself, study
participants, one of my supervisors Ulrich Norbisrath - from left to right)

Step 4 - Analyze data and give recommendations for improved
support

I analyzed the data gathered during the user studies to develop a set of recom-
mendations and best practices to improve the support for complex search with
search engines. The outcome of this step is the ATMS (awareness-task-monitor-
share) model to better support complex search with current Web search engines
and increase user satisfaction (de�ned in Chapter 5).
In the next section I state the research questions that guided my research
throughout my PhD project.

3.3 Research questions

Understand complex Web search

To understand why current search tools do not support complex Web search
tasks as well as they do in the case of look-up tasks, it is important to clarify
where the limits for their application are. This requires an in-depth analysis of
the existing search paradigms, the ones used in information retrieval (IR) as well
as the ones used in related disciplines such as exploratory search, interactive
information retrieval (IIR) and question answering. For de�nitions of those
research disciplines and concepts please refer to Section 3.2.
To �nd the limits of current search tools and to improve the support for complex
search, I will address the following research questions:
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RQ1.1 What are the tasks that can/cannot be carried out well with current
Web search tools?

RQ1.2 Based on the concept of exploratory search [79] (and its partly di�cult
to measure aspects like learning, planning, and decision making), is it possible
to develop a model for complex search based on measurable activities?

RQ1.3 How does this model relate to the exploratory search model [79] and
what search tasks would it cover?

Develop a study method and corresponding tools

After building a better measurable model for complex search (as motivated in
RQ1.2), the next step is to develop a method and according measures to make
this model measurable. This step raises the following main research questions:

RQ2.1 Can a method to analyze complex search processes be developed and
how should such a method look like?

RQ2.2 What measures should be analyzed to characterize complex search tasks?

RQ2.3 What tools are needed to conduct user studies using the previously
developed method?

Carry out users studies

The next step is deploying the method and the corresponding tools developed
in step 3.3 and analyzing what complex search behavior looks like and what
characteristics can be identi�ed. This step raises the following research ques-
tions:

RQ3.1 Using the measures established in RQ2.2, what distinguishes complex
search tasks from simple search tasks?

RQ3.2 How is successful search behavior re�ected in those measures?

RQ3.3 Are there best practices how users carry out complex search tasks with
Web search engines?

RQ3.4 Is there a relation between people's internet habits and their performance
when carrying out complex search tasks?

RQ3.5 How do users perform when assessing di�culty, e�ort and outcome for
carrying out complex search tasks with current web search engines?

RQ3.6 How does gender impact complex search performance?

RQ3.7 How does age impact complex search performance?

33



Improve support

Finally, after having analyzed the complex search behavior, the results are used
to give recommendations for improving the support for carrying out complex
search tasks with Web search engines, raising the following main research ques-
tions:

RQ4.1 How can the support for carrying out complex search tasks with Web
search engines be improved?

RQ4.2 What are the general limitations of the support that can be given? What
service level makes sense for what group of users?

Vision

My dissertation can only be an incremental building block in the research to-
wards a wider vision of a �decision support and learning engine� that will ��nd�
answers to problems and supports decision making and learning, liberating the
user from the cumbersome searching and information collection tasks. Such a
system would present all the necessary data and information in way that allows
the user to make a decision based on all the relevant information (theoretically)
available.

Thesis outline

The rest of the thesis is organized as follows, taking the seven contributing
studies into account:

• Chapter 4 summarizes the seven publications included in this thesis

• Chapter 5 presents the ATMS model to improve the support for complex
Web search

• Chapter 6 states the conclusions and limitations

• Appendix A contains a summary of the technical implementation details
of the Search-Logger tools

• Appendix B contains the original publications as they were published or
submitted for review
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Chapter 4

Summary of publications and

contributions

This PhD thesis refers to the following 7 scienti�c papers by myself and my
co-authors that have been published in journals and conference proceedings (or
are currently in press or under review):

• Publication I: �Complex search: Aggregation, Discovery, and Synthe-
sis� [98]

� Presents the literature review analyzing established models to de-
scribe interactive search processes

� Suggests a search model based on the concepts of aggregation, dis-
covery and synthesis

• Publication II: �Search-Logger - Analyzing Exploratory Search Tasks� [102]

� Presents a tool to evaluate the user behavior when carrying out
complex search tasks

� Presents the results of a pilot study

• Publication III: �Ordinary Search Engine Users Carrying Out Complex
Search Tasks� [101] (submitted for review)

� Proves that complex search has special characteristics that are mea-
surable

� Presents measures that make complex search tasks distinct from
simple tasks
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� Presents the di�erent characteristics of correctly and wrongly carried
out search tasks and good and bad searchers

• Publication IV: �Search Strategies of Library Search Experts� [104]

� Presents search strategies deployed by library search experts

� Presents an analysis of impact of Internet user types on search per-
formance

� Presents an updated classi�cation of Web search strategies

• Publication V: �The Relationship between Internet User Type and User
Performance when Carrying Out Simple vs. Complex Search Tasks� [103]

� Presents the correlation between Internet user type and Web search
performance for simple tasks

� Presents the correlation between Internet user type and Web search
performance for complex tasks

� Presents the user-type-speci�c di�erence in performance between
simple and complex tasks

• Publication VI: �Ordinary Search Engine Users assessing Di�culty, E�ort,
and Outcome for Simple and Complex Search Tasks� [100]

� Presents how ordinary web users perform when assessing di�culty,
e�ort and outcome for carrying out complex search tasks with Web
search engines

• Publication VII: �Impact of Gender and Age on Performing Search Tasks
Online� [99]

� Presents gender and age di�erences when carrying out simple and
complex search tasks.

In the following section I will brie�y summarize each publication by stating the
research method, the results, the related work and limitations and future work.
As I have written those papers with co-authors, each paper summary contains
one subsection about my own contributions.

36



4.1 Publication I: Complex Search: Aggregation, Dis-
covery, and Synthesis

This paper [98] analyzes established models in exploratory search, information
retrieval and interactive information retrieval and suggests a model for �com-
plex search� based on the relatively clearly de�ned and measurable concepts
of aggregation, discovery and synthesis. Aggregation can for example be mea-
sured by the number of documents found for a certain aspect of a search need.
An approach to measure discovery could be to count the number of aspects (or
dimensions or facets) of a speci�c search need that an information seeker spots
during a search. Synthesis could e.g. be made measurable by comparing the
size (in terms of number of words) of a set of relevant documents with the size
of a summary report of those documents.
The paper was mainly motivated by the following questions:

• What are the main information gathering activities during complex search
processes and can a model for complex search based on those activities
be developed?

• How well is such a model for complex search supported by the current
Web search tools?

• How can this model be mapped to existing search models?

The study answers research questions RQ1.1 (What are the tasks that can/cannot
be carried out well with current web search tools?), RQ1.2 (Based on the ex-
ploratory search concept [79] is it possible to develop a model for complex search
based on better measurable activities?) and RQ1.3 (How would this model re-
late to the exploratory search model [79]?). The main scienti�c contributions
of the publication are:

• 3-step process model for complex search

• Mapping between this complex search model and the exploratory search
model by Marchionini [79]

• Analysis of the support of current Web search engines for this complex
search model

My contribution

As the �rst author of this paper I contributed major parts to the model devel-
opment, being responsible for the literature review and leading the process that

37



resulted in identifying aggregation, discovery and synthesis as the main (search
process and information gathering related) steps when users carry out complex
search tasks. I was the driving force in discussing the problems encountered
with Marchionini's de�nition. I also carried out the analysis to what extent cur-
rent search tools support aggregation, discovery and synthesis. I over-viewed
the paper writing process and I contributed major parts of the related work,
almost the entire Section 2 and considerable amounts of Sections 3 and 4. I
added all the changes required during the �nal two revision cycles.

Research method

For this paper we carried out an extensive literature review, followed by de-
scriptive case studies about how the three process steps aggregation, discovery
and synthesis are supported by current search tools.

Results

Current search tools support simple fact-based, look-up tasks well. Their sup-
port is less good in the case of more complex information needs. We present
a �complex search� model based on the time consuming activities of aggrega-
tion, discovery and synthesis. The model mainly says that any complex search
task can be decomposed into an aggregation step, discovery step and synthesis
step. Each of those steps is relatively well measurable (as shown in [98]) and
therefore this model is the answer to research question RQ1.2 (see above).

Main �ndings:

• Aggregation, discovery, and synthesis, are the main �rst level information
gathering activities in the complex search process

• The aggregation step of complex search is supported to some extent by
many current systems; support for aggregation is just in its roots and
improving it would serve users better

• The discovery step is not supported in standard web search interfaces but
some support is given by advanced search tools

• The synthesis step is not supported in present mainstream Web search
systems

Table 4.1 summarizes our �ndings regarding the support of aggregation, dis-
covery and synthesis in current search tools.
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Aggregation Discovery Synthesis

Standard web search interfaces yes no no
Dynamic query interfaces yes yes no

Faceted browsing yes yes no
Collaborative search tools yes yes no

Social search yes no no
Universal search interfaces yes yes no

Table 4.1: Support of aggregation, discovery and synthesis in current search
systems

Related work

Aggregation, discovery and synthesis have also been studied by other scholars.
Aggregation of information in the context of search can be described by activ-
ities like selecting, storing, and maintaining data objects. Heyman et al. or
Krause et al. [41, 61] have studied social bookmarking services like del.icio.us,
which provide users with already aggregated collections relevant to some cer-
tain topic. These collections can become a great help if the topic corresponds
to the search task of the search session [118].

Information discovery is referred to as generating new ideas while browsing
relevant information [58]. Information discovery is one of the key elements of
information search, on and o� the web. A very speci�c aspect of discover-
ing information relates to information seekers entering a domain new to them.
There are di�erent approaches to support the discovery of formerly unknown
aspects, some are automatic approaches others are human-supported ones. El-
Arini and Guestrin [29] o�er an automated approach for discovering additional
aspects to a speci�c information seeking problem. The information seeker can
take a set of relevant papers and use this set as a �query�. The system will
then suggest additional papers that �the information seeker should also read�.
Koh et al. have developed a system to support creativity in learning by en-
abling information discovery and exploratory search [59]. With their system
called �combinFormation� users are able to make clippings of found documents,
arrange them on the screen, and also add conceptual relationships.

Synthesis is commonly referred to as combining parts of separate items into
one single and new entity. Nenkova et al. [86] state three main tasks in a sum-
marization process, which are (1) content selection, (2) information ordering
and (3) automatic editing, information fusion and compression [7]. Regarding
content selection, a key challenge is to �nd the topic that a document is about.
In order to �nd the topic of a content, researchers mainly apply mathematical
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models, amongst others word frequency models [76, 87], lexical chains [8, 96],
latent semantic analysis [105, 37, 33] and content models [38].

Limitations and future work

We assume that improving the support for the activities of aggregation, discov-
ery and synthesis during complex search tasks will tremendously help both the
inexperienced but also the experienced user. In our three step search model
based on aggregation, discovery and synthesis we deliberately omitted aspects
such as planning/forecasting or comprehension/interpretation as those concepts
are di�cult to measure (compare also [117]). In the future it would make sense
to integrate more of Marchionini's exploratory search activities [79], such as
analysis, exclusion/negation or comparison into the model.
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4.2 Publication II: Search-Logger � Analyzing Ex-
ploratory Search Tasks

This paper [102] presents a tool to evaluate the user behavior when carrying
out complex search tasks. The Search-Logger is an experimentation method
especially designed to carry out search task based experiments. The Search-
Logger's architecture is designed around the earlier given de�nition of a search
task (see Chapter 2). The Search-Logger implementation answers research
question RQ2.1 (Can a method to analyze complex search processes be devel-
oped and how should such a method look like?), RQ2.2 (What measures should
be analyzed to characterize complex search tasks?) and RQ2.3 (What tools are
needed to conduct user studies using the previously developed method?).

The main scienti�c contribution is:

• Development of the Search-Logger tool that allows complex search user
studies on the task level.

My contribution

I was the �rst author of this paper. I was leading the extensive development
process for the Search-Logger tool and planned and carried out the pilot user
study to validate the tool. This means, I acquired the study participants, I
developed and collected the work tasks, guided the study participants in setting
up the Search-Logger framework at their computers, distributed the tasks and
I also analyzed the data gathered during the pilot study. Apart from the long
and challenging development of the Search-Logger tool especially gathering a
set of suitable work tasks was tricky and needed a lot of testing and �ne tuning.
I wrote major parts of the paper. I �rst submitted it to the A-rated conference
CIKM 2010. After it was rejected I developed a major revision of the paper,
taking into account all reviewer comments and resubmitted it to SAC where it
got accepted.

Research method

I carried out a literature review on tools to measure complex search tasks.
Based on this literature review we built the Search-Logger tool and carried out
a pilot user study to test the tool.
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Figure 4.1: Search-Logger architecture

Technical details

The Search-Logger is realized as a browser plug-in (developed in Java-Script)
for Firefox, completed by a remote log storage database and an analysis en-
vironment as outlined in Figure 4.1. It ful�lls the following three main tasks:
(i) administers pre-compiled search tasks to users, (ii) gathers implicit informa-
tion about the search process by logging various browser events as outlined in
the next paragraph, (iii) gathers explicit user feedback via standardized ques-
tionnaires supplied before and after each search task. With this approach we
manage to log the search process on the search task level. Each logged event
is tagged with task speci�c information like task name and task number and a
time stamp. Based on this information the task performance can be analyzed
and evaluated.

All data is centrally collected at a dedicated server. We can log the search
process by gathering data on all measurable standard user events like total
search time, number of web pages visited in total, number of browser tabs
opened, search queries entered and number of search sessions started and ended.

To quantitatively analyze the log �les, I used Excel macro programming meth-
ods as well as a few Python scripts (for more details on the analysis part please
refer to Section A.3 on page 103)

Advantages of this tool overs existing tools:

• Task structure is implemented

• Tasks can interactively be administered

• Works across various platforms (Windows, Linux, MacOS)

• Easy to deploy and install

• Experiments can easily be set up and changed

• Low cost
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Related work

I have identi�ed several other tools designed mainly for the same purpose of
logging user events. The �rst tool is called �Wrapper� by Jansen et al. [48]. The
Wrapper tool was developed for the purpose of logging events of all applications
used by an information seeker (including applications like Microsoft O�ce or
email clients). The concept of a search task does not exist in this approach.
Another tool is a browser plug-in that was created by Fox et al. in 2005 [31].
Fox's approach was implemented as an add-on for the Internet Explorer. It was
the �rst tool to gather explicit as well as implicit information during searches at
the same time. It evaluates the query level and gathers explicit feedback after
each query. Fox's approach also came with a sophisticated analysis environment
for the logged data. A third tool is Lemur's Query Log Toolbar [23] which is
a toolkit implemented as a Firefox plug-in and Internet Explorer Plug-in. It
logs implicit data on the query level. Logging exploratory search tasks is not
implemented. Other tools are, the HCI browser [16], The Curious Browser
[21], WebTracker [108] and Weblogger [89]. Most of the tools were developed
for evaluating the query level while the Search-Logger was purely developed
for evaluating longer lasting complex tasks. None of the tools have the built-in
functionality to have a pre-compiled set of complex search tasks carried out by
a test group in a non-laboratory environment without any time constraints and
are therefore not suitable for our purposes.

Limitations and future work

At this point the Search-Logger only uses the browser add-on approach to
record the user actions. Currently only a browser add-on for Firefox exists.
This means that studies rely on Firefox browsers being used. In the middle
term, the Search-Logger tool shall be extended to support more browsers but
also di�erent ways to log user activity. Apart from the existing browser add-on
approach, a proxy-based approach is envisioned. Using a proxy (through which
all user tra�c during an experiment would be routed) would make it easier
to set up experiments. Initial experiments with a proxy-based approach have
shown that this approach also has its tricky parts like catching non-browser
events or avoiding the logging of too many commercials.

In addition we are planning to merge the Search-Logger with the Relevance
Assessment Tool by Lewandowski and Sünkler [68]. Adding the relevance di-
mension (on the search result level) to the Search-Logger will further improve
the search engine analysis support.

We are also playing with the idea to run experiments with a mobile version of
the Search-Logger (developed at the University of Tartu by a master student).
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This mobile version extends a real browser with logging features on a mobile
phone. Despite the high development e�ort, we currently do not see a real use
case for complex search on mobile phones. Tablets might have an advantage to
mobile phones in that regard, as they are bigger and more user-friendly.
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4.3 Publication III: Ordinary Search Engine Users
Carrying Out Complex Search Tasks (Manuscript
submitted for publication)

This paper [101] presents the results of a study with 56 carefully selected ordi-
nary Web users to investigate the characteristics of complex tasks. The study
participants carried out a set of prede�ned simple and complex search tasks.
The aim of the study was to examine the search behavior of ordinary Web
users when carrying out those tasks and gain insights, which are valid for a
widely valid part of the population in terms of age and gender. Many studies
in this area are carried out with quite small user samples and users with back-
grounds only from the academic sphere [72, 69, 55] (students and university
sta�). This raises doubts about the general validity of their results. We were
especially interested in �nding out more about (1) what makes complex search
tasks distinct from simple tasks and if it is possible to �nd simple measures
for describing complexity, (2) what are measures for successful search behavior
when carrying out complex search tasks and if it is possible to distinguish good
searchers from bad searchers by using selected measures.

We attempted to answer the following questions:

• What distinguishes a complex search task from a simple one?

• Can we identify successful patterns for search? What distinguished a
successful searcher from an unsuccessful one?

• Can we make suggestions for search engine operators to improve the sup-
port for complex search tasks?

These questions and their answers are supposed to be one more building block
towards better understanding the concept of complex search. At this point we
have not derived them from a formal research evaluation but they are based on
our personal observations. Along with the �rst results and the insight we got
from them, we plan to iteratively put our future research questions on a more
rigid basis.

This publication answers research questions RQ3.1 (Using the measures estab-
lished in RQ2.2, what distinguishes complex search tasks from simple search
tasks?), RQ3.2 (How is successful search behavior re�ected in those measures?)
and partly RQ4.1 (How can the support for carrying out complex search tasks
with Web search engines be improved?). The main scienti�c contributions of
this paper are:
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• Proof of the signi�cant di�erences between simple and complex search
tasks and the presentation of the di�erent measures

• Proof that successful and unsuccessful search behavior have similar char-
acteristics and are hence di�cult to distinguish with the measures we
used

• Recommendations for improved support for complex search

My contribution

My contributions to publishing this paper as the �rst author were as follows:
Prior to the experiment I was chie�y responsible for planning the experiment
in terms of logistics (when, where, how) and raising the funds necessary to
pay the study participants. While it is usually quite straight forward to get
hardware purchases funded for IT research, it was especially di�cult to get
the �nancing for this user study in place. It took considerably longer than
expected. I set up the Search-Logger infrastructure at the study premises in
Hamburg and also over-saw collecting the set of simulated work tasks. During
the experiment I was responsible for making sure that the experiment would
run smoothly and without any unexpected incidents. After the experiment I
developed the analyzer tool to analyze the data, I conducted the analysis of the
data and I was chie�y responsible for getting the paper written. Especially the
development of the analyzer tool was di�cult and it took me a lot of iterations
to produce the correct results. I was also responsible to coordinate the di�erent
authors and oversee the integration and revisions of the paper. I contributed
almost the entire related work section, the results section, the method section
and considerable parts of all other sections. I also carried out all revisions
during the publication process.

Research method

We conducted a user study where we had ordinary Web users carry out complex
and simple search tasks. We logged their search behavior and analyzed the
data using standard quantitative techniques to �nd the relationship between
independent variables such as task complexity and dependent variables such as
search time or number of queries used by study participants.

Results

The complexity of search tasks is measurable and its characteristics are sig-
ni�cantly di�erent from simple tasks. The following set of measure has been
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shown to allow characterizing complex search tasks and distinguishing them
from their simpler counterparts:

task time: complex search tasks have a signi�cantly higher search time; 427±17
sec. vs. 140±8 sec. in the experiment

number of sessions: complex search tasks are usually carried out in a higher
number of sessions; 1.1±0.02 sessions vs. 1.0±0.01 sessions in the exper-
iment

time on search engine results pages (SERPs): Users usually spend more
time on SERPs during complex search tasks; 122±9 sec. vs. 33±3 sec.
in the experiment

reading time: complex search tasks are characterized by users spending more
time on reading and scanning pages; 307±15 sec. vs. 107±6 sec. in the
experiment

number of pages visited: When carrying out complex search tasks, users
usually visit a higher number of pages; 7.4±0.5 vs. 2.5±0.2 pages in the
experiment

number of queries issued: When carrying out complex search tasks, users
usually issue signi�cantly more queries; 6.4±0.4 vs. 2.1±0.1 queries in
the experiment

query length: The query length goes up with the complexity of the search
task; 4.4±0.2 vs. 3.1±0.1 words in the experiment

number of query changes: The number of query reformulations correlates
with the complexity of the search task; e.g. 2.0±0.1 vs. 1.2±0.03 new
queries in the experiment

number of SERPs visited: Users visit a signi�cantly higher number of SERPs
when carrying out complex search tasks; 0.3±0.06 vs. 0.1±0.02 pages in
the experiment

I grouped correctly carried out tasks (independent of which user carried out the
task) and compared them with wrongly carried out tasks. The only measure
that distinguished the correct tasks from the incorrect ones was the number of
tabs - 2.9±0.2 vs. 2.4±0.1 tabs in the experiment.
Finally, I wanted to rule out the case where a searcher is excellent at one
instance, but performs badly at all other tasks (which would not make him
a good searcher and his search behavior would just randomly be good). The
results show that good searchers can be distinguished from bad searchers by:
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• smaller task times; 337±31 sec. vs 526±68 sec. for the best performing
and worst performing quartile in the experiment

• smaller SERP times; 82±13 sec. vs. 166±29 sec. for the best performing
and worst performing quartile in the experiment

Regarding the question of what makes a task complex, we can conclude that
complexity can be expressed by the amount of e�ort (in terms of time, sessions,
and queries) which is needed to carry out a search task. This can be shown
and proven by means of the measures that we investigated.
We suggest that search engine operators put more emphasis on the fact that
complex search tasks have signi�cantly di�erent characteristics than simple
ones. These di�erences can be measured as shown in this paper and, depending
on the character of the search task search engines could o�er di�erent kinds
of support to the searcher. For example it would make sense to monitor the
search process on the task level (as explained in Chapter 5 on page 67). When
erratic or chaotic behavior from the user side is identi�ed (like identical queries
repeated), struggling searchers could be identi�ed by giving hints or other forms
of help. We suggest that a di�erent, enhanced service should be o�ered to those
struggling searchers (for more details better supporting complex search please
refer to Chapter 5 on page 67).

Related work

I explored research aimed at investigating search user behavior. I found two
main ways to analyze the user behavior: Using search engine transaction logs,
and carrying out user studies in a laboratory setting. Logging user behavior was
done in di�erent ways. Transaction logs recorded in search engines have been
analyzed in several publications [50, 80, 49, 39]. One of the �rst larger scale
studies re�ecting on the search behavior of Internet-Search users was published
by Jansen et al. [52]. They analyzed transaction logs from the search engine
Excite. In the paper itself it is mentioned that one of the disadvantages of that
analysis is that the transaction logs contain no �information about the users
themselves or about the results and uses� (p. 208). They talk about sessions,
but it is not clear how their starts and ends are determined. As we have also
done in this study, they analyzed the changes between queries. They distinguish
unique, modi�ed, or identical queries. Jansen and Spink [49] give an overview
over nine transaction-log studies of �ve Web search engines based in the US
and Europe. They review session length, query length, query complexity, and
viewed content in di�erent search engines. They observe that users are viewing
very few result pages (even less then in their �rst study) and again that the
use of Boolean operators is nearly insigni�cant.
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Most of the presented studies are only transaction-based and do not take the
actual task and user into account. Other studies (e.g. [18, 53]) were done with
very speci�c user samples (like undergraduate students). All of them con�rm
that queries are generally very short (only around two words on average) and
that users tend to only take a look at the very �rst results in the SERP. All
studies giving tasks to the testing persons use simple tasks. The only exception
is the study described in Hölscher and Strube [42], which investigated more
complex search tasks. While most of the studies described use query logs from
real search engines, some studies (e.g. [42]) log the behavior of certain users in
a lab setting.

Limitations and future work

One of the limitations of this study was its sample size. Although our user
sample of 56 people was much bigger than in most of the other studies we have
found in the context of search studies, some measures were quite blurry - due
to the diverse backgrounds of the study participants. We expect to see clearer
signals and more signi�cant di�erences between e.g. age groups or men and
women in case of bigger sample sizes.

It would be interesting to further analyze the data concerning the possibility to
identify patterns in the sequence of queries and if those patterns could be used
to identify strategies and erratic search behavior. In addition it would make
sense to more deeply investigate the di�erences between complex search tasks,
where the complexity comes either from the e�ort to aggregate, or discover or
synthesize. Finally we plan to carry out a similar experiment with a signi�cantly
larger user sample and more homogeneous user groups (like teachers or blue
collar workers only) and investigate if it would be possible to get valid �ndings
for the cases where hypotheses had to be rejected due to high standard error
of the means. We assume that a larger user sample with more homogeneous
backgrounds will lead to more signi�cant di�erences.
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4.4 Publication IV: Search strategies of Library search
experts

In this paper [104] we present the results of a search experiment conducted
with information professionals from libraries and museums in the course of a
search contest. The aim of the experiment was to analyze the search strate-
gies of experienced information workers carrying out search tasks of varying
complexity.

We attempted to address the following questions:

• How do library search experts search?

• Can we identify unique strategies?

• Can we relate the Internet user types of the contest participants to their
search performance?

This study answers research question RQ3.3 (Are there best practices how users
carry out complex search tasks with Web search engines?) and partly answers
research question RQ4.1 (How can the support for carrying out complex search
tasks with Web search engines be improved?). Its main scienti�c contributions
are:

• Presentation of search strategies of library search experts

• Analysis of the impact of the Internet user type on search performance

• Presentation of an updated classi�cation of Web search strategies

My contribution

My personal contributions for this paper were planning the experiment from
the technical and methodological side, providing simulated work tasks during
the planning phase of the experiment, and carrying out the experiment to-
gether with colleagues - technically implementing and running the experiment.
I considerably contributed content to the paper during the publishing phase.
I drafted the abstract and introduction and contributed to the related work,
method, results and conclusion sections.
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Research method

We carried out a user study in the course of a library search contest (assigning
the study participants work tasks that they had to carry out), logged the users'
search behavior with the Search-Logger tool and partly automatically partly
manually analyzed the data to identify common patterns in the search strategies
applied by the study participants.

Results

The most important observation was that the participants predominantly (in
94.4% of the cases) used search engine strategies (start the search process with
entering queries into search engines) as opposed to using known address strate-
gies (directly navigating to a Web site other than a search engine). In only 5.6%
of the cases, the library search professionals applied non-search engine strate-
gies, navigating to known (non search engine related) Web sites and searching
for the information there. This recon�rms that search engines are a good entry
point to exploring a search space. The low average number of points (16 out of
30) that study participants reached during the experiment and the high aver-
age number of opened and closed tabs (49) and search attempts per task (62)
indicate that users are required to search interactively and apply a considerable
amount of manual labor to carry out complex search tasks of the kind used in
the experiment.

Overall the library search experts most often applied the following strategies:

• Search engine strategy with subtype �search terms narrowing� (84.6%)

• Search engine strategy with subtype �search terms narrowing extending�
(7.4%)

• Known address strategy with subtype �search terms narrowing� (3.1%)

Many of the contestants used a parallel-player strategy throughout the whole
experiment, continuously having multiple browser tabs open and closing old
ones and opening new ones, which is common for complex search tasks. It is
interesting to observe that the results of the user study with 56 ordinary Web
users [104] do not show this wide use of parallel-player strategies. The ordinary
users worked with multiple browser tabs signi�cantly less often - 4.9 tabs in the
case of library search experts vs. 2.8 tabs on average in the case of ordinary
users.

Regarding the Internet user type (a classi�cation of Internet users into in-
formation seekers and communication and entertainment seekers derived from
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people's online activities [54, 103]) it was interesting to observe that the par-
ticipants who scored �rst, second, and third in the contest all have an Internet
user pro�le �active versatile�. This Internet user pro�le is the most active one,
having high scores on all dimensions of Internet activity.

Related work

Search strategies have increasingly been researched in the last years. Marchion-
ini [78] has de�ned four levels in information seeking: moves, tactics, strategies,
and patterns. He de�ned strategies as generalized approaches to particular in-
formation seeking problems. Navarro-Prieto et al. [85] identi�ed bottom-up,
top-down, and mixed strategies. Chin and Fu [20] found in their study that
younger users prefer the bottom-up interface-driven strategy. They look up
more links and leave a Web page quickly. Older users prefer the top-down
knowledge-driven strategy. Thatcher [107] has studied cognitive search strate-
gies among experienced and less experienced web users. He identi�ed 7 generic
cognitive search strategies. Shneiderman [97] distinguished searching tasks from
speci�c fact-�nding to more unstructured open-ended general-purpose browsing
tasks.
Kalmus et al. [54] de�ne in their work the following types of Internet users: Ac-
tive versatile (these are more active people, using di�erent Internet possibilities
like communication, information and entertainment), entertainment-oriented
active (focus on searching for entertainment, and consumption of culture), prac-
tical work-related (focus on information and practical activities, active in us-
ing e-services), practical information-oriented small-scale (slightly higher than
average use of information and e-services), entertainment and communication-
oriented small-scale (searching for entertainment, communication, passive In-
ternet use with regard to other purposes) and small-scale (not characterized by
any speci�c Internet use, poorly developed online behavior).

Limitations and future work

The experiment was carried out with a time limit. Although we could not
show a signi�cant impact of the time constraint on the study outcome, the
results might have turned out di�erently under open ended conditions as in
the experiment described by Singer et al. in [102] where the study participants
had 4 weeks to complete their tasks. We are planning an open ended follow up
experiment with the same questions to further analyze the impact of the time
constraint on the study results.
Overall the younger the participants were, the better they scored. We will also
further analyze the correlation between age and search performance. As one
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limitation of this study was, that the user sample only consisted of women, we
will try to �nd a more balanced user sample for the next study.
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4.5 Publication V: The relationship between Internet
User Type and User Performance when Carrying
Out Simple vs. Complex Search Tasks

In this paper [103] we present the correlation between people's Internet habits
and their online search performance. It is widely known that people become
better at an activity if they perform this activity long and often. Yet when ex-
amining Web search, the question remains whether being active in related areas
like communicating online, writing blog articles or commenting on community
forums correlate with a person's ability to perform Web search. Web search
has become a key task conducted online. We present our �ndings on whether
the Internet user type (de�ned below), which categorizes Web uses according
to their online activities, has an impact on their search capabilities.

We attempted to answer the following questions:

• Is there a di�erence in search characteristics between certain user types
when performing simple search tasks?

• Is there a di�erence in search characteristics between certain user types
when performing complex search tasks?

• Is there a user-type-speci�c di�erence in performance between simple and
complex search tasks?

This paper answers research question RQ3.4 (Is there a relation between peo-
ple's internet habits and their performance when carrying out complex search
tasks?). We show:

• Characteristics of di�erent user types when carrying out simple search
tasks

• Characteristics of di�erent user types when carrying out complex search
tasks

• Relation between Internet user type and search performance

My contribution

As the �rst author, I analyzed the data and compiled all the results for this pa-
per. Especially the rigor of the statistical analyzes required, such as the Spear-
man's rho correlation coe�cients, was challenging and deepened my knowledge
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of statistics for user research. I over-viewed the paper writing process, I coor-
dinated the participating authors and contributed major parts of the written
content such as the entire results section and considerable parts of all other
sections. I also conducted all revisions of the paper till it was accepted. For
my speci�c contributions to the experiment itself please refer to the summary
of Publication III, in Section 4.3 on page 46.

Research method

We conducted a user study where users had to carry out a number of work tasks
and logged their search behavior with the Search-Logger tool. At the beginning
of the experiment we also administered questionnaires to be able assign a unique
Internet user type according to their usual Internet usage patterns. I used
quantitative techniques to �nd correlations between the Internet user types
(independent variable) and the search performance (dependent variable).

Results

To analyze the relation between Internet user type (for an overview of the
Internet user type concept please refer the Publication V, included in this dis-
sertation at page ?? �.) and search performance, we have ranked the users
according to their performance in the experiment - at �rst for simple search
tasks only.

In the case of simple tasks, the average rank for Internet user type 1 (the
most active one) was 2.7 versus an average ranking of 4.8 for Internet user
type 5 (the least active one) on a scale from 1 to 10. Internet user type is
an indicator for performance when carrying out simple search tasks. This
�nding was also con�rmed by our correlation analysis. We investigated the
correlation between the Internet user types and various search measures. The
strongest correlation was between ranking number and Internet user type -
also statistically signi�cant. The higher the user type (the less active users are
online) the lower they ranked in our experiment.

In the case of complex tasks the average rank for Internet user type 1 was 4.9
versus an average rank of 6.0 for Internet user type 5 on a scale from 1 to
10. We also investigated if there exist signi�cant mutual di�erences between
neighboring pairs (user type 1 vs. 2, 2 vs. 3, 3 vs. 4, and 4 vs. 5) but could not
show any. However, we could show a signi�cant di�erence of mean values when
we grouped active user types (1, 2 and 3) in one group, and small-scale or more
passive user types (4 and 5) in another (with a p value <0.03). This means
that the active and more experienced Internet users perform signi�cantly better
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when conducting complex search tasks than the group consisting of small-scale
Internet users.

Regarding a user-type speci�c di�erence in performance between simple and
complex tasks, we observed that in the case of complex tasks, the average
rank is signi�cantly lower (indicating worse performance) for all user types in
comparison to simple tasks. In the case of complex tasks the rank di�erence
between Internet user type 1 and Internet user type 5 is 2.0, whereas in the
case of simple tasks the di�erence is 2.1 - which shows that both less and more
experienced users were equally struggling with the complex search tasks. I have
run paired-sample t-tests comparing samples of complex vs. simple rankings
for each user type. The resulting p-values (>0.5) indicate that the di�erence
between the mean values of complex and simple rankings is not signi�cant. As
our user sample was comparably small (n=60) and the users had varying levels
of search experience (ranging from inexperienced housewives to experienced
students of information science), we assume that a larger sample in combination
with a more homogeneous average search experience would lead to smaller
standard errors and clearer results.

Related work

Di�erent approaches are used to classify people according to their Internet
usage behavior. For the purposes of this paper, we have conducted the Internet
user classi�cation based on the users' primary online activities. The original
approach to this Internet user typology [88] examined a long list of di�erent
activities online, ran a factor analysis on those activities to distil the basic
underlying patterns and later applied cluster analysis to determine the key
types of Internet users. The following six basic user types could be con�rmed:

1. Active versatile Internet users, who are active in both information seeking,
and communication and entertainment related use;

2. Practical work oriented Internet users, who are mainly active information
oriented users;

3. Entertainment oriented active Internet users, whose main interests in-
clude entertainment and communication related uses, and seeking Inter-
net solutions that cater to their interests;

4. Practical information oriented small-scale Internet users di�er from the
previous group in so far as their activities focus mainly on information
use, they are less frequent in their activities;
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5. Entertainment and communication oriented small-scale Internet users
also use the Internet less frequently than their active counterparts. Their
use focuses on leisure-related activities and they are passive when it comes
to information-related activities;

6. Small-scale Internet users use the technologies so infrequently that they
do not have any signi�cant types of activities that would describe them,
and have poorly developed online behavior;

Future work

In future experiments, we are planning to use more nuanced user samples that
allow us to compare two speci�c user types with each other and work out their
di�erences. This comparison should provide the possibility to zoom in on the
important activities. The analysis in this paper takes a statistical birds-eye
view of the search process, while the data and data collection method enables
us to investigate actual search patterns and search strategies. The browser
based logging software would also enable us to follow the user in her or his
natural search context and investigate the searches occurring naturally over the
course of a day for a given user type. That data-rich natural experiment would
give non-commercial tracking information and enable us to see search patterns
carried across di�erent websites and di�erent periods of time. Supporting this
with other methods (e.g. diary) would also enable us to look at cross-media
search in an attempt to understand the searching of information in the context
of other sources. The Search-Logger software would simplify this kind of cross-
media approach as the search can be connected to other activities in the Internet
browser.
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4.6 Publication VI: Ordinary Search Engine Users
assessing Di�culty, E�ort, and Outcome for Sim-
ple and Complex Search Tasks

In this paper [100] we examine how ordinary Web search engine users manage
to assess the four parameters di�culty, time e�ort, query e�ort and outcome for
simple and complex search tasks. We compare according assessments for simple
tasks and for complex tasks and also investigate, whether better searchers are
also better judges. In addition we investigate, whether the judging performance
depends on task complexity or simply on the individual searcher.

We tried to answer the following questions:

• How do users perform when assessing the e�ort for carrying out complex
search tasks with current web search engines?

• Are there signi�cant di�erences between assessing simple and complex
search tasks?

• How does the users' ability to judge if the information they have found
is correct or not depend on task complexity?

• Does the judging ability depend on task complexity or simply the indi-
vidual user?

This publication answers research question RQ3.5 (How do users perform when
assessing di�culty, e�ort and outcome for carrying out complex search tasks
with current web search engines?). Its main contributions are:

• Users are good at judging simple tasks

• Users perform signi�cantly worse when judging complex tasks

• Task complexity inversely correlates with judging performance

• Better searchers are not signi�cantly better at assessing di�culty and
e�ort

• Better searchers are signi�cantly better at judging the task outcome for
complex tasks
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My contribution

For this this paper my contributions were as follows: I analyzed the data and
computed all the results required for this paper. It was challenging to present
the results in a way that they re�ect the concepts di�culty, time e�ort, query
e�ort and ability to �nd the right result in the most understandable and in-
tuitive way. To make the text more understandable I �nally decided to add
a number of �gures and tables to illustrate certain facts. As the �rst author
I over-viewed the paper writing process, coordinated the contributing authors
and almost entirely wrote the introduction, related work section, results sec-
tion, and major parts of all other sections. I conducted all revisions till the
paper was accepted for publication. For my speci�c contributions to the exper-
iment itself please refer to the summary of Publication III, in Section 4.3 on
page 46.

Research method

We carried out a user study where the study participants had to carry out
a number of work tasks. Their search behavior was logged with the Search-
Logger tool. Before and after each task we also asked the users to �ll in task
related questionnaires. Using standard quantitative techniques we analyzed the
relationship between certain independent variables such as task complexity and
various dependent variables such as judging performance.

Results

The results con�rm that people are able to judge di�culty, time e�ort, query
e�ort and task outcome for simple tasks. For 90% of the study participants the
estimated and experienced di�culty was in line. 95% of the study participants
correctly assessed their ability to �nd the correct result.

When examining users' ability to judge the aforementioned parameters for com-
plex search tasks, as expected their ability decreased in comparison to simple
tasks. 65% of the study participants were able to su�ciently judge the subjec-
tive di�culty. In addition, especially the high proportion of 73% of the users
claiming to have found the correct results is not in line with our manual evalu-
ation of their results. Only 47% (158 out of 336 carried out tasks) of the results
that were submitted for complex search tasks were correct. This may indicate
that the problem with complex Web searching might not be users �nding no
results, but the results found only seemingly being correct. This may explain
why users are generally satis�ed with their Web search outcomes.
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When it comes to search capabilities, we would expect that better searchers
are also better at judging the di�culty, the e�ort and the task outcome for
complex search tasks. As the results show, only for the task outcome, users
who perform better in the whole experiment were also signi�cantly better at
judging the outcome of the task. For di�culty and e�ort, the di�erences were
insigni�cant.

Regarding the question whether the judging performance is independent of the
task type (simple/complex) and just depends on the user, the answer is as
follows: There were some users who were able to correctly judge the task pa-
rameters like task outcome (26% of all users) both for simple and for complex
tasks. Yet the number of users who managed to correctly judge those param-
eters for simple tasks (and were wrong for complex tasks) was much bigger
(51% in case of task outcome) than the number of users who correctly judged
the parameters for complex tasks and at the same time were wrong with their
judgments for simple tasks (only one user in case of task outcome). Although
the numbers varied, this relationship also holds true for task complexity, time
e�ort, and query e�ort. Together with the results from research questions RQ1
to RQ4 it is clear that task complexity impacts the judging performance of
users.

Related work

Bell and Ruthven [12] carried out a user study with 30 people who were asked
to work on three groups of search tasks (tasks organized in three complexity
levels) and afterwards rate the complexity of each task on a 5-point scale. They
observed that the assessment of completion and task complexity were inversely
correlated. The more complex people perceived a task, the less con�dent they
felt, when they completed that task. In addition they found that a task is
perceived as more complex if the task contains little information about what
information is needed and what amount of information should be retrieved.
Also subjective factors like previous knowledge about topics related to that
task had to be taken into account as in�uencing factors for the perception of
complexity.

Gwizdka and Spence [36] conducted a study with 27 undergraduate psychology
students in which they where required to ful�ll a look-up task. They wanted to
examine the relationship between searcher's activities and subjective post-task
di�culty and �nding predictors for subjective task complexity. They found
that task time, time per click, pages visited, unique pages visited, revisit ratio
and back-button use were good predictors for subjective task complexity.

White and Iivonen [114] conducted a study with 54 experienced Web searchers
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and had them rate 16 search questions regarding complexity. Their results
show that users perceive closed/predictable source questions easy, open/unpre-
dictable source questions di�cult. In addition the study participants agreed
that �searchability, clarity, familiarity/currency, public knowledge, simplicity,
and speci�city� were important aspects that made a task either simple or com-
plex.

Li et al. [71] conducted a survey containing 100 university students in China.
They observed that objective task complexity measures were more indicative
for task complexity than subjective ones. The main objective predictors for
task complexity were: number of words in the task description, number of
languages needed to interpret search results and the number of domain areas,
that the task involved. In addition the objective complexity criteria were more
helpful to predict complexity.

In the information science community the two concepts complexity and dif-
�culty are sometimes used as being identical and sometimes they are used as
being distinct. Gwizdka [35] has conducted a question-driven, Web based infor-
mation search study with 48 participants (students, mean age 27 years) aimed
at understanding the cognitive load when carrying out web search tasks (record-
ing them and analyzing their respective actions). The study participants were
required to carry out a primary task and in parallel a secondary task to measure
their cognitive load on the primary task. His results con�rm that subjective
task di�culty and objective di�culty are in line and that study participants
tended to underestimate task di�culty when being asked beforehand about it.

Vakkari and Huuskonen [110] conducted a study with 41 medical students to
investigate how the search e�ort impacted search output and task outcome.
They found that in case of bad retrieval results, their participants worked harder
to achieve desired task outcomes. They conclude that measures for search
process and task outcome need to be added to classic IR measures.

Future work

In future work it would be interesting to not only analyze if study participants
correctly or incorrectly judged tasks but also investigate to what extent the
users tend to over- and underestimate the task parameters. Regarding sam-
ple size we are planning to run experiments with bigger sample sizes. This
will enable us to get more correct statistics with more signi�cant features. In
addition, we are planning to conduct studies with study participants from cer-
tain professional domains like teachers or blue collar workers only. Further on
it would be interesting to investigate to what extent such abilities (e.g. task
e�ort assessment) can be trained. The implication for a growing number of
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information workers would certainly be important.
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4.7 Publication VII: Impact of Gender and Age on
Performing Search Tasks Online

In this paper [99] we examine gender and age di�erences for a user sample of
56 ordinary Web users carrying out a set of simple and complex search tasks.
We compare the search performance of ordinary female and male search engine
users when carrying out simple and complex search tasks and work out the
di�erences. In addition we investigate the correlation between age and search
performance for both simple and complex search tasks.

We tried to answer the following questions:

• What is the correlation between gender and search performance for simple
tasks and complex tasks? What are the signi�cant di�erences to simple
tasks?

• Are women better searchers or men?

• How does age correlate with search performance for simple and complex
search tasks? What are the main di�erences in performance between
simple and complex tasks?

This publications answers research questions RQ3.6 (How does gender impact
complex search performance?) and RQ3.7 (How does age impact complex
search performance?). Its main contributions are:

• Women and men perform equally well for simple tasks (in terms of �nal
results) and also show similar search behavior.

• In the case of complex tasks men and women also perform equally well,
but their search behavior shows signi�cant di�erences (in terms of SERP
time, read time and browser tab usage).

• Younger people are quicker at searching than older people in case of simple
tasks but both groups achieve similar results.

• In case of complex tasks, younger people are quicker and also achieve
better results (higher number of correctly carried out tasks).

My contribution

I was the �rst author of this paper. I analyzed the gender - and age-speci�c data
that we had collected during the study and computed the results needed for this
paper. I over-viewed the paper writing process and almost entirely contributed
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the written content. As there was very little related literature for gender and
age speci�c aspects of Web search available, it was not easy to position the
paper in the context of the existing work. I also carried out all revisions till
the paper was accepted for publication. For my speci�c contributions to the
experiment itself please refer to the summary of Publication III, in Section 4.3
on page 46.

Research method

We combined the information that we collected through automatic question-
naires with the automatically logged user behavior information gathered in the
course of a user study. Using standard quantitative techniques we analyzed
relationships between independent variables such as gender and age and de-
pendent variables such as search performance.

Results

Our results show that men and women perform equally well when carrying out
simple search tasks. The only signi�cant di�erence between men and women
carrying out simple search tasks was the number of pages visited. Men visited
signi�cantly more pages (2.8 for men vs. 2.2 for women). When it comes to
complex search tasks, men and women again perform equally well. As opposed
to simple tasks, the search behavior between the two groups showed signi�cant
di�erences. Men spent signi�cantly more time on SERPs (145 sec. vs. 101
sec), issued a signi�cantly higher number of queries per task (7.7 vs. 5.4), and
women opened and closed a signi�cantly higher number of browser tabs (3.8
vs. 2.6).

As far as age is concerned, younger (18-26 years age range) and older study
participants (49-59 years age range) did not show a signi�cantly di�erent per-
formance in case of simple tasks (both groups achieved similar quality search
results). The signi�cant di�erence between the two age groups was related to
the time e�ort. Younger study participants had a signi�cantly lower total task
time (83 sec. vs. 186 sec.), SERP time (19 sec. vs. 40 sec.) and read time (64
sec. vs. 146 sec). For complex search tasks, also the search performance and
hence the ranking was signi�cantly better for younger users than for older ones
(2.4 vs. 5.5). Also reading time (229 sec. vs. 434 sec.) and task time (333 sec.
vs. 555 sec) were signi�cantly smaller for the younger group than for the older
group.
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Related work

Lorigo et al. [75] used eye tracking to examine how di�erent classes of users
evaluate search engine results pages and found signi�cant behavioral di�erences
between men and women. Males checked more search results on SERPs in
a more structured way. Jackson et al. [47] carried out a survey with 630
Anglo-American undergraduates to examine their Internet usage patterns and
according gender di�erences. They found out that women were mainly using
the Internet for communicating (e-mail), while men were mainly searching for
information.

Hupfer and Detlor [44] carried out a survey-based study with 379 respondents,
mainly students, to amongst others examine gender di�erences in Web infor-
mation seeking. While women use the Internet for communication and are
interested in �nding medical information and information about government
and politics, men seem to be more interested in hobby-related information and
investment and purchasing information. Liu and Huang [73] did a survey with
203 completed copies at a University campus in China with people aged be-
tween 18 and 23. Their �ndings are that female readers prefer reading from
paper to reading online, and that there are signi�cant di�erences between what
to read and sustained attention. Roy and Chi [92] conducted a study with 14
eighth grade students, 7 boys and 7 girls. The study participants had to carry
out search tasks and were observed by two observers. Their �ndings show that
boys used di�erent search strategies than girls.

Meyer et al. [82] investigated the impact of age and training on Web search
activity. In their study with 13 older and 7 younger users (ages not mentioned),
they were able to show that the main di�erence between older study partici-
pants and younger ones was that both groups could ful�ll most of the tasks,
but it took the older ones more steps.

Morrell et al. [84] conducted a survey (consisting of 550 adults) to examine
Web usage patterns among middle aged (aged 40-59), young-old (aged 60-74)
and old-old adults (aged 75-92). They report distinct age and demographic
di�erences in individuals who use the Web. Kubeck [62] examined the di�er-
ences between older and younger adults �nding information on the Web in a
naturalistic setting. His sample consisted of 29 older (mean age of 70.6 years)
and 30 younger (mean age of 21.8 years) people. He was able to show that both
groups found answers of similar quality, but the older users where signi�cantly
less e�cient in the process of searching. Aula [5] gave a set of search tasks to
10 older adults. She discovered that they were quite successful, but they had
some operational di�culties in understanding how the Web was structured.

Dickinson et al. [26] present a prototype for a Web search system for older peo-
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ple without any Internet experience. They also carried out a small user study
and asked the users to rate the system against currently available mainstream
search tools. The study con�rms that older people search di�erently and have
di�erent requirements regarding user interface and usability.

Future work

One limitation was related to the broadness of our user sample. Due to the
very diverse backgrounds (from university student to housewife), we were faced
with quite high variances in our numbers. This resulted in high standard errors
of mean. Hence we plan future experiments with more focused user samples
(like a younger and older group of academics only) and those might produce
more signi�cant di�erences.
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Chapter 5

The ATMS model for complex

search with search engines

When setting out to improve the support for complex search, one should have
in mind two main guidelines:

1. The user is in the center and the parameter that needs to be maximized
is user satisfaction.

2. Improving any system speci�c aspects is meaningful as long as this im-
provement is positively recognized by the users.

According to Allan et al. [4] improving the system support for complex tasks
is signi�cantly more reasonable than trying to do the same for simple tasks.
They have shown that for simple tasks users do not notice any improvements
unless they are huge. This is in the contrary to di�cult tasks with a lot of
interactivity - even small improvements are perceived positively by users.

Overall, we have observed that task complexity can be expressed by the e�ort,
which is needed to carry out a search task (in terms of time, sessions, browser
tabs and queries). This can be shown and proven by means of the measures
that we investigated. We found three main causes of complexity:

• It can originate from the need that a lot of information needs to be
processed, read, quali�ed and collected.

• It can be due to the openness of a task where it is a priory not clear,
what the main criteria of the task to be explored are, and a lot of e�ort
is needed to discover the dimensionality of the result space and the main
aspects of the task.
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• It can result from the fact that the collected information needs to be
synthesized into a single document and this causes a lot of e�ort.

5.1 Model outline

I have proved in this thesis that complex search is usually a tedious and time
consuming process and complex search tasks are only weakly supported by
current Web search engines. User satisfaction decreases the more e�ort users
have to invest into a search task [113].

Hence minimizing a user's search e�ort by decreasing the search time, reducing
the number of queries, the number of query reformulations and pages visited
should improve user satisfaction. In addition, o�ering support along the process
should theoretically also have a positive in�uence on user satisfaction. Based on
the research carried out in this dissertation, the support that commercial search
engines can o�er for complex search tasks should be based on the following
ATMS (Figure 5.1) model. ATMS is an acronym that stands for Awareness
building, Task features,Monitor search behavior and Share best practices. The
ATMS model also answers research questions RQ4.1 (How can the support for
carrying out complex search tasks with Web search engines be improved?) and
RQ4.2 (What are the limitations of the support?).

1. 
Awareness 

building 

2. Task 
features 

3. Monitor 
search 

behavior 

4. Share 
best 

practices 

User  

Satisfaction  

 

Figure 5.1: The ATMS model to improve the support for complex search in
search engines
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Users will be supported in two ways. Explicit help will be o�ered through
awareness building and recommendations and implicit support will be given
through o�ering task search features, and sharing of successfully �nished search
tasks (best practices) as follows:

1. Awareness: Our research has shown [99, 100, 101, 103] that many users
struggle when they are faced with complex information needs. Especially
the comparison between the search behavior and strategies of ordinary
Web users [101] with the strategies of search experts [104] shows that
experts apply advanced strategies such as tabbed browsing more often
than ordinary Web users. In addition users often �nd it di�cult to assess
task properties such as di�culty, e�ort and outcome [100]. I therefore
recommend to build awareness among search engine users that not all
search needs are the same and that complex search tasks need a di�erent
treatment than e.g. look-up tasks and that carrying out complex tasks
online might eventually be more e�ort and take longer than expected.
It will also help to teach users already existing techniques (like tabbed
browsing) to better support carrying out complex tasks. Of course not
all users of Web search engines will equally be able and also willing to
adapt their search strategies. My take of the awareness building feature
of the ATMS model is outlined in Figure 5.2. Based on the queries that
the user has entered over a certain period of time, the system notices that
the user has a complex information need. It informs the user that those
information needs require di�erent treatment and also o�ers to turn on
the task feature.

Figure 5.2: Wireframe of the awareness building feature in Google
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Researchers in the �eld of information literacy (compare e.g. [28, 9]) also
stress the importance of information skills in the context of information
searching. In depth user testing, taking into account information about
their Internet user type (a classi�cation of Internet users into information
seekers and communication and entertainment seekers derived from peo-
ple's online activities [54, 103]) will allow segmenting the users according
to their willingness to �develop� their search skills.

2. Task features: To make the search process more convenient I further rec-
ommend to implement a feature in search engines that allows searching
in tasks as outlined in Figure 5.3. The results of our user studies con-
�rm that people carry out complex search tasks over longer periods of
time [101, 102] - from hours to even weeks. The task option allows users
to mark when a search task is being carried out, as opposed to non-
task based browsing or querying. At the beginning of such a task the
user pushes a �task� button. From now on, all search action is tagged
(carrying a tag showing task-speci�c information). After the task but-
ton is pushed, a bar indicating the task option is overlaid on top of the
usual search window, and a �oating dialog box appears next to the usual
search window as illustrated in Figure 5.3 on the next page. This is done
in a similar manner as shown by the SearchPad by Bharat [13], but with
the slight di�erence that the SearchPad operated on the query level as
opposed to the task level in our case1. On the task pad the user can
administer task-speci�c information such as task name, queries used so
far, pages bookmarked and content copied. The task can be paused and
resumed. Once the task has successfully been carried out it can be stored
and retrieved later on.

Such a task feature ful�lls mainly two functions: recording the search
process and �ltering out certain important parts of the process that the
user can reuse later. Those parts are: queries used, Web sites visited,
Web sites bookmarked and content copied to the clipboard.

The task feature has the following advantages: In the case of complex
information needs that can go over days or even weeks (such as booking
a holiday trip), users can work to a certain point in one session. They can
take a break, e.g. talk to family members and discuss options relevant
for the search task and can then go on with their search at the point
they had left the search session. No opening of browser tabs is needed,
no memorizing of the query space is required. All the search details are
available at a click.

1The SearchPad was nevertheless perceived useful by 150 users in a 4 month user study
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It is even thinkable to share the work on the task with other users over
social networks, such as family members and friends who will go on the
same holiday trip. Apart from this private sharing a public �sharing of
best practices� (to be described in Step 4 �Sharing best practices�) is
thinkable.

Figure 5.3: Wireframe of task search feature in Google

3. Monitor search behavior: Despite building awareness in Step 1, in the
case of really complex information needs it can still happen that searchers
struggle during their searches. Our research shows that especially older
people [99] and people with little Web experience [103] perform signi�-
cantly worse in the case of complex search tasks. It is therefore advis-
able to monitor the search behavior of users while carrying out complex
search tasks. When erratic or chaotic behavior is identi�ed (like identical
queries repeated), searchers get o�ered, e.g. better suggestions for dif-
ferent queries or related topics as outlined in Figure 5.4. For example if
a searcher uses the term �complex search� to �nd information related to
complex search and is struggling with this task, by pushing a button in
the side panel the search engine suggests to also use �exploratory search�
or �interactive information retrieval� based on the search terms that other
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people working on the same task have used. In addition links found and
bookmarks set by other people are also o�ered.

Figure 5.4: Wireframe of search monitor feature in Google

4. Share best practices: As the log �le that is generated by the Search-
Logger [102] contains all relevant information about the search process
such as links clicked, Web sites bookmarked and queries issues, this valu-
able information can easily be re-used. Sharing strategies to tackle those
complex search tasks, such as lists of queries that have been useful to
other people or sharing the main facets (problem aspects) of the complex
search tasks could be used to support other users as illustrated in Fig-
ure 5.5. When users push the task button (as explained in Step 2), and
specify what task they want to carry out, the search engine automatically
noti�es the users of existing information relevant for this task. They can
check what queries other people have used what sites they have book-
marked and which pages they have visited. This quickly helps them to
get an understanding of the main aspects of their complex search need.

The ATMS model as outlined in Figure 5.2 uses the four steps Awareness build-
ing, Task based search, Monitoring the search process and Sharing best prac-
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tices to improve customer satisfaction. I assume that users will iteratively be
going through the ATMS process, each time adding incremental search abili-
ties to their repertoire of search strategies. User satisfaction will automatically
grow along with the increased search capabilities.

Figure 5.5: Wireframe of task share feature in Google

5.2 Estimation of feature implementation e�ort

Implementing the ATMS model in a real search engine environment would
require di�erent degrees of e�ort and sophistication for each of the four steps
of the ATMS model as outlined in Table 5.1 on the following page.
Educating search engine users that looking for simple facts with a search engine
is a di�erent task than e.g. planning a holiday trip would be quite easy to
implement by just e.g. monitoring measures like sessions or task time. If
users pass certain session or task time thresholds, they could be o�ered useful
information to carry out task searches more e�ciently.
O�ering the functionality to search in tasks would be slightly more e�ort. One
could just take the code of the current Search-Logger framework [102] and
tweak it to let users search in tasks. As the logging functionality is already

73



there, it would only need some extensions, e.g. mining the log for events such
as queries, bookmarks and clicked pages. Those events could then be made
accessible to the user as outlined in Figure 5.3. For his master's project at
the Institute of Computer Science (University of Tartu) Peeter Jürviste has
developed a prototype of an application that lets users record their own search
tasks and share those records with other people.

Monitoring the search process and identifying erratic or chaotic behavior is
the only functionality that I consider as di�cult to implement. It would e.g.
require advanced procedures such as machine learning to make the search engine
identify erratic search behavior and distinguish it from normal search behavior.
In addition the search engine provider would need to have a reasonably big
sample of tasks on stock to be able to o�er those to other struggling users.

Implementing the functionality to share search results with friends would be
straightforward. The important search process information such as queries used
or pages bookmarked is extracted and available (done in Step 2). Making this
kind of information shareable, e.g. via social networks, is a standard procedure
nowadays.

E�ort

Awareness building(Step 1) easy
Task features (Step 2) moderate

Monitor search behavior(Step 3) di�cult
Share best practices (Step 4) easy

Table 5.1: Implementation e�ort of ATMS in real search engine

In the next section I will discuss the ATMS model in the context of current
search challenges.

5.3 Discussion

In this section I will discuss the ATMS model that was de�ned in the previous
section, relate it to present search challenges and initiatives at current Web
search engines and also compare it with research on Web information retrieval
support systems.

As outlined in Figure 5.6 the challenges in search according to Microsoft lie in
mainly three areas:

• increase user satisfaction
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• o�er context speci�c help

• implement a way for search engines to be used in sessions not queries

• increase the focus on the task and decision making

Search challenges 
Users are dissatisfied 

•Results not satisfying intent 

•Many wasted clicks 

•Repeated searches 

Users want help searching 

•Usage in sessions not queries 

•Half of time is spent on long sessions 

•Significant time spent refining or repeating queries 

Increasing focus on tasks and decisions 

•More reliance on search to make decisions 

•Users focused on accomplishing tasks 

•Search not optimized for tasks for decisions 

Opportunities 

BETTER Results 

Organized experience 

Powerful Decision Tools 

Figure 5.6: Search challenges and opportunities identi�ed by Microsoft [113]

Those challenges and opportunities are interesting, yet Figure 5.6 lacks clear
directions about how eventual improvements will be achieved. It is also ques-
tionable that �better results� are an opportunity. Mentioning better results as
an opportunity again intrinsically assumes that the query-answer method could
be improved by increasing the relevance of search results. I assume that the big
improvements in complex search are about improving the search process (and
not about which search results are ranked highest).

The suggestions that I make in this thesis cover each of the three search chal-
lenges (increase user satisfaction, provide help searching, focus on tasks and
decisions) that Microsoft has identi�ed. Table 5.2 on page 77 compares Mi-
crosoft's search challenges with the four elements of the ATMS model. Not
only are all challenges addressed by the ATMS approach, but also additional
support is given as follows:

• Search challenge 1 �Users are dissatis�ed� identi�ed by Microsoft is sup-
ported by Step 1 (Awareness), Step 2 (Tasks) and Step 3 (Monitoring) of
the ATMS model:

� Step 1 of the ATMS model, increasing the awareness among users,
will result in fewer repeated searches as users know better what
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to expect from a search engine and what not, and automatically
decrease users' dissatisfaction. Users will understand that search
engines, as they know them, are not the tools to automatically carry
out complex search task by pushing a button. Further hints like
varying queries more or noting queries to avoid repetitions might
further increase user satisfaction by raising the awareness. This will
automatically lead to less overall dissatisfaction.

� Step 2 of the ATMS model, the task search option, will not directly
lead to e.g. better search results. Still user satisfaction will rise, as
users will be issuing fewer repeated searches.

� Step 3 of the ATMS model, monitoring the search process and as-
sisting users in case of e.g. erratic behavior will also increase user
satisfaction.

� Step 4 of the ATMS model, share task info, will lead to increased
satisfaction, as users will be able to share relevant search results
across their search network.

• Search challenge 2 �Provide help searching� identi�ed by Microsoft is sup-
ported be Step 2 (Tasks), Step 3 (Monitoring) and Step 4 (Sharing) of
the ATMS model:

� Step 1 of the ATMS model (build awareness) will only indirectly
provide help. Users, who are aware of what can be done with current
search engines and what not, will less probably fall into certain traps
where they need help.

� Step 2 of the ATMS model, implementing a task search feature (not
a session structure as suggested by Microsoft) will automatically also
allow the usage of search engines in sessions (and not queries). As
I suggest to allow searching in tasks, especially long sessions are
automatically supported.

� Step 3 of the ATMS model, monitoring the search process for indi-
cators of shiftlessness and o�ering speci�c help will provide the users
with the service level that Microsoft has identi�ed.

� Step 4 of the ATMS model, sharing task information of already
carried out tasks, is a very e�ective way to help users �nd exactly
what they are looking for. For those tasks users get access to relevant
queries, helpful bookmarks and they also are made aware of all the
aspects of the search task. This will signi�cantly reduce their search
time.
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• Search challenge 3 �Better support tasks and decisions� identi�ed by Mi-
crosoft is supported be Step 2 (Tasks) and Step 4 (Sharing) of the ATMS
model :

� Step 1 of the ATMS model, build awareness, will not contribute to
better supporting search in tasks.

� Step 2 of the ATMS model, to o�er the option to search in tasks will
help users who use search engines for making decisions and accom-
plishing tasks over all.

� Step 3 of the ATMS model, monitor search process, will not con-
tribute to better supporting search in tasks.

� Step 4 of the ATMS model, allowing users to share task informa-
tion will increase the support for decision focused tasks. Especially
searches on very complex tasks that require collecting data from
various sources, getting to know the problem domain or also un-
derstanding inter-dependencies between certain aspect, can be kick-
started by learning from how other users have acted in the same
situation.

Microsoft search
challenges/ATMS model

Awareness
Step 1

Tasks
Step 2

Monitoring
Step 3

Sharing
Step 4

User dissatisfaction + + + o
results not satisfying intent + o + +
wasted clicks + + + o
repeated searches + + ++ o
Better help for search o + + ++
sessions not queries o ++ + ++
time spent on long sessions o ++ + ++
time spent re�ning or
repeating queries

o o ++ ++

Tasks and decisions o ++ o +
more reliance on search to
make decisions

o + o +

users focused on
accomplishing tasks

o ++ o +

search not optimized for
tasks and decisions

o ++ o +

+challenge addressed, o challenge not addressed

Table 5.2: ATMS model versus Microsoft search challenges [113]
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Not only Microsoft, but also the other main players in the Web search market
are experimenting with advanced search models. According to Gläser et al. [32],
Yahoo! has created the �FUSE� model for future search. According to this
model, Web search (public information), desktop search (personal information)
and search communities (social information) will be more integrated in the
future. Yahoo! aims at o�ering services, which take advantage of the synergies
that are being created by this integration. At the beginning of 2012 Google
has announced its integration of its core search service with its social network
Google+ [109]. This means that Google+ members (but also other people
signed in into Google) will be able to choose whether to get search results from
the Web only or to also see results from their social network - such as posts
on Google+. This way searching across private and public information from
one search bar is possible. Google and Yahoo! are pursuing similar approaches
here. While they seem to be interesting, they are still focused on look-up needs
and do not push any further to better supporting search tasks.

Finally it is interesting to compare the ATMS model with research on Web
Information Retrieval Support Systems (WIRSS) [43]. While the WIRSS ini-
tiative does not explicitly focus on complex search tasks it tries to improve
the support for Web search on a general level. It that context Hoeber [43,
p. 3] states activities like �investigating, analyzing, organizing, �ltering, un-
derstanding, saving, sharing, modifying, manipulating, summarizing� as the
main targets for improved support. When comparing those activities with the
ATMS model it becomes clear that a considerable overlap can be identi�ed.
ATMS supports organizing and �ltering, saving and sharing activities. While
the ATMS model is clearly designed to support complex search tasks better,
the very broad approach of WIRSS seems to be a bit unfocused and not very
practical.
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Chapter 6

Conclusions and limitations

In this thesis I have examined Web search engines from the angle of improving
their support for complex search tasks. Having been an ordinary search engine
user myself, I was assuming that �search is search� and Google would �nd me
the answer to all my search needs. The motivation to carry out this research
came from my own empirical �ndings that search engines are incredibly good
at something and rather bad at something else. A similar displeasure was
expressed by my supervisor about the performance of Google in academia-
related searches. Yet it was not clear to me how to judge, what Google was
good at and for which activities to lower my expectations.

In this dissertation I have (1) succeeded in analyzing established search dis-
ciplines (such as IR, IIR, or QA) and other initiatives (such as exploratory
search) and in understanding which are the strengths and limitations of cur-
rent search tools (RQ1.1). Starting with the exploratory search model, I have
developed (2) a generalized model of complex search, comprising the three
interactive �rst level information gathering activities in complex search tasks
(aggregation, discovery and synthesis). These three steps are the core activities
during complex search tasks and they are relatively well measurable (RQ1.2).
This model accounts for fewer aspects than the exploratory search model (the
di�cult to measure ones such as planning/forecasting or decision making have
been omitted).

I have been successful in (3) developing a method to make complex search
measurable (RQ2.1). The method is based on a combination of automatically
logging the user behavior while searching with a browser add-on and using au-
tomatic questionnaires to elicit user speci�c information such as demographics
and satisfaction with task outcome or expected task di�culty. I have presented
a number of measures (4), which can be used to characterize complex search
behavior - such as the number of sessions it takes to carry out a complex search
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task, number of pages viewed, number of queries entered, number of browser
tabs opened and query length (RQ2.2 and RQ3.1). We have developed and
published (5) a tool called Search-Logger to carry out user studies according
to the method (RQ2.3) presented in previous step (3).
In the next step I have presented the results of user studies that we have con-
ducted using the method (3) and the Search-Logger tool (5). The results of
a larger user study (6) with ordinary Web users con�rm that ordinary people
show a search behavior embossed by little strategy and lack of understanding
of search engine functionality. They can unexpectedly be struggling with even
quite simple tasks (RQ3.1). This is re�ected in long search task times and
below-expected search success (RQ3.2). I also presented the results of a study
with library search experts. As far as recommendations for search engine users
carrying out complex search tasks is concerned, this study recon�rms our �nd-
ings from the study (6) that better performing users show a di�erent search
behavior, e.g. they use browser tabs more during their searches - 4.9 tabs in
case of library search experts vs. 3.1 tabs in case of worst performing quartile
of users in the study (7). In addition the library search experts mainly applied
search terms narrowing and search term narrowing and extending strategies in
a systematic manner (RQ3.3), while ordinary web users often showed chaotic
and erratic search behavior. I showed (8) that being active on the Web in
many areas such as communicating online, writing blog articles or comment-
ing on community forums correlate with a person's ability to perform Web
search (RQ3.4). The most active Internet user type ranked best during our
experiments. The results con�rm (9) that people are able to judge di�culty,
e�ort and task outcome for simple tasks. They are signi�cantly less successful
when they are asked to do the same for complex search tasks (RQ3.5). We
also observed (10) that men and women perform equally well when carrying
out complex search tasks (RQ3.6), but (11) age is a signi�cant di�erentiator
regarding search performance, especially for complex tasks (RQ3.7).
Finally I presented the ATMS model (12) to improve the support for complex
search tasks in search engines. This model (RQ4.1) comprises the following
four elements:

1. Build awareness that complex tasks need di�erent search strategies

2. O�er users the option to carry out their searches in tasks

3. Monitor the search process and o�er help when needed

4. Share best practices among users

Of course this model also has its limitations. As ordinary users are mostly
unaware of the fact that search engines are tools built for a certain type of
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application, it will be a challenge to educate them towards changing their be-
havior. When limitations regarding e.g. user acceptance are identi�ed, the
service level given to users can then be adapted according to the respective
user types (RQ4.2). I assume that the ATMS model in its widest sense might
not be applicable to all users but rather in varying graduations to di�erent user
segments. While advanced users might have been expecting this task feature
for a long time, less search-savvy searchers would just need basic support at
the beginning. A feasible way to segment users would be eliciting their Inter-
net user types [103], deriving their search abilities and o�er Internet user type
speci�c assistance.

Closing words

In this PhD project I have produced a number of signi�cant results to better
support complex search with search engines. Based on these results a number
of follow-up projects were initiated.
At the University of Tartu (Institute of Computer Science) the PhD student
Dmitri Danilov bases his research on the results achieved in this dissertation
by trying to improve the support for users struggling with complex search
tasks. He builds a technology to help users explore the search result space by
automatically o�ering them additional queries based on the search results they
have identi�ed as relevant already. This feature �ts well into Step 3 (Monitor
search behavior) of the ATMS model as outlined in Figure 5.1 on page 68. Once
a search engine identi�es erratic search behavior (such as a user entering the
same query multiple times), this technology would immediately o�er valuable
help.
The master student Peeter Jürviste has developed a proxy-based solution for
the Search-Logger. This will make the installation of the Search-Logger being
easier as the proxy-based version will not depend on a certain version of the
Firefox browser installed at the computers that the study participants work
with. In addition, the proxy-based version will get rid of the following problem
that we discovered just before the user study in Hamburg: During the roll-out
of the instant predictions feature (search results are changed instantaneously
according to the queries typed into the search bar) Google had switched from
loading a new web page after a user had entered a query to building the SERPs
with Java script. We had to turn o� this functionality at all computers during
the Hamburg user study and later turn it on again.
At the University of Applied Sciences in Hamburg Prof. Dirk Lewandowski
plans to merge the Search-Logger [102] with the Relevance Assessment Tool by
Lewandowski and Sünkler [68]. According to Prof. Lewandowski, adding the
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relevance dimension (on the search result level) to the Search-Logger will sig-
ni�cantly enhance the technological support to carry out search engine related
user studies.

In future work it would be interesting to investigate the ability to measure core
exploratory search concepts like learning, planning, and decision making. We
are also playing with the idea to run experiments with the mobile version of the
Search-Logger (developed at the University of Tartu by the bachelor student
Gleb �t²enov). This mobile version extends a real browser with logging features
on a mobile phone.

This dissertation has greatly succeeded in making complex search measurable.
Through the creation of the Search-Logger experimentation framework and the
user studies, complex search user behavior has been analyzed in detail and
potential directions for improved search engine support have been given in the
form of the ATMS model.
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Appendix A

Technical implementation

details

In this chapter I describe the details about how the technical implementation
of the Search-Logger study framework to carry out user studies with complex
search tasks was realized (for details about the method in general please refer
to Section 3.2 on page 29). The framework comprises two parts: One part
is the Search-Logger to automatically record the user events during usability
studies and administering automatic questionnaires and the second part is the
statistical analyzer of the log �le. First, I describe the sources of data and the
data collection process. Then I outline the development work related to the
logging part of the Search-Logger followed by the summary of the Search-Logger
Analyzer implementation.

A.1 Sources of data and data collection process

The Search-Logger needs to be installed at computers that study participants
use during the experiment. The Search-Logger works with two kinds of data.

1. standard user events such as links clicked, browser tabs opened or queries
entered are automatically recorded

2. user feedback is gathered through automatic questionnaires at the begin-
ning of the experiment and before and after each search task

The process how users are guided through the experiment and what data is
collected is illustrated in Figure A.1 on the following page. When the users
begin the experiment, they also manually start the Search-Logger. They are
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then asked to �ll in a demographic form that collects data such as gender, age,
and information related to the users' Internet habits.

Start experiment

Fill in demographic form

Select work task

Fill in pre-task form

Carry out the task

Task finished? Switch task

yes

no

Log user 
events

End

Fill in post-task form

New task?
no

yes

All tasks
finished?

yes

no
Select next task

Start Search-Logger

Figure A.1: Flow chart of user process

Once this form is submitted, the users select the �rst work task followed by
a couple of task speci�c questions to gather information such as the users'
assessment of the di�culty of the task. The pre-task form is only presented
once depending on whether this task was previously started or not. Then
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the users carry out the task or continue working on it if it has previously
been started. When they are done, they push the ��nish the task� button of
the Search-Logger and are then asked to �ll in a post-task form. This form
gathers information such as how di�cult this task was perceived. The study
participants then choose the next task and proceed in the same manner. They
can always pause a task and switch to another one if they want. When they
have carried out all tasks, they can �nish the experiment by pushing the �nish
button of the Search-Logger.

A.2 Search-Logger

The Search-Logger [102] is a tool to evaluate the user behavior when carrying
out complex search tasks. I will �rst name the requirements that we identi�ed
in advance of the development work, then I summarize the implementation
process itself.

Requirements

As already stated in Section 3.2, where I described the method that we decided
to use to carry out our experiments, we found the following requirements to be
important for the development of the Search-Logger recording tool:

• We should have the possibility to administer tasks to users taking part
in the experiment

• We needed to be able to automatically record speci�c user action such as
links clicked, browser tabs opened, queries entered

• Each user event should be tagged with task number, time, date and user
number

• The implementation should be done in a way that the users' normal search
behavior is not disturbed

• The record of the user action should be gathered in a single central
database

• The implementation of the recording tool should be deploy-able across
many operating systems such as Windows, Linux and Mac

• The approach should be low cost, i.e. using proprietary software should
be avoided
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• The implementation should be easy to install so that study participants
could get it running remotely by reading a simple instruction

• Users should be able to start, pause and stop search tasks whenever they
wanted

• Users should be able to switch between tasks whenever they wanted

• We needed to be able to gather demographic information at the beginning
of the experiment and task speci�c information before and after each
search tasks

Implementation

Considering above requirements, the Search-Logger recording tool is realized
as a browser plug-in (developed in Java-Script) for Firefox, combined with a
remote log storage database and an analysis environment as outlined in Figure
A.2. It ful�lls the following three main tasks: (i) administers pre-compiled
search tasks to users, (ii) gathers implicit information about the search pro-
cess by automatically logging various browser events as outlined in the next
paragraph, (iii) gathers explicit user feedback via standardized questionnaires
supplied before and after each search task. Each logged event is tagged with
task speci�c information such as task name, task number, user number, and a
time stamp. Based on this information the task performance can be analyzed
and evaluated.

All data is centrally collected at a dedicated server. We log the search process
by gathering data on all measurable standard user events such as total search
time, number of Web pages visited, number of browser tabs opened, search
queries entered and number of search sessions started and ended.

Developing the Search-Logger took about 1 year (net development time was
approximately 900 - 1000 man hours).

Browser

Plug-in PHP
Front-
end Analyzer

interacts interacts

reads

Internet

monitors

browses

Figure A.2: Search-Logger architecture
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A.3 Log Analyzer

I will describe the technical implementation of the Log Analyzer by means of
the larger user study conducted in Hamburg in July 2011 (as introduced in
Section 4.3 on page 45). As already stated in the data collection section above,
we collected two types of data in the course of this study: On the one hand
the user behavior was automatically logged (and the data stored into a log
�le), on the other hand we asked the study participants to �ll in automatic
questionnaires at the beginning of the experiment and before and after each
search task.

Requirements

The requirements for the Log Analyzer were less stringent than for the recording
part of the Search-Logger.

• The raw log �le (comma separated values) consisted of about 30 000 lines.
Hence an appropriate method to process it e�ciently was needed

• The analyzer needed to be able to combine both the log data as well as
the information gathered through the automatic questionnaires

• The �nal output of the analyzer should be the measures that we needed
for our publications

• As in the case of the recording part, non standard software (such as SPSS)
should be avoided to keep costs of the PhD project down

Implementation

The realization of the statistical analyzer was insofar more di�cult than ex-
pected, as especially the log-�le created at our Hamburg study consisted of
close to 30 000 log entries (as outlined in Figure A.3). After starting to work
on the data analysis part, I quickly realized that I would run into performance
issues quite soon.
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56485 82 2 http://googleads.g.doubleclick.net/pagead/drt/s;; 141.22.170.191 1.313E+09 40765.4744 1_Komponist_(KERNAUFGABE)_1

56486 82 1 http://googleads.g.doubleclick.net/pagead/ads?client=ca-pub-6506748959449825&output=html&h=280&slotname=0056090963&w=336&lmt=1312964583&flash=10.2.153&url=http%3A%2F%2Fwww.salzburg-rundgang.at%2Fgeboren_gelebt%2Fwolfgang_amadeus_mozart%2F&dt=1312964584165&bpp=4&shv=r20110803&jsv=r20110719&correlator=1312964584211&frm=4&adk=2023989222&ga_vid=2102514202.1312964584&ga_sid=1312964584&ga_hid=358898245&ga_fc=1&u_tz=120&u_his=6&u_java=1&u_h=1050&u_w=1680&u_ah=1010&u_aw=1680&u_cd=24&u_nplug=23&u_nmime=108&dff=verdana&dfs=12&biw=807&bih=824&ref=http%3A%2F%2Fwww.google.de%2Fsearch%3Fhl%3Dde%26source%3Dhp%26biw%3D824%26bih%3D841%26q%3DWann%2Bund%2Bwo%2Bwurde%2Bder%2BKomponist%2Bder%2B%25E2%2580%259CZauberfl%25C3%25B6te%25E2%2580%259D%2Bgeboren%253F%2B%26oq%3DWann%2Bund%2Bwo%2Bwurde%2Bder%2BKomponist%2Bder%2B%25E2%2580%259CZauberfl%25C3%25B6te%25E2%2580%259D%2Bgeboren%253F%2B%26aq%3Df%26aqi%3D%26aql%3D1%26gs_sm%3De%26gs_upl%3D2931l2931l0l3675l1l1l0l0l0l0l179l179l0.1l1l0&fu=0&ifi=1&dtd=117&xpc=kUszrrP2G9&p=http%3A//www.sa141.22.170.191 1.313E+09 40765.4744 1_Komponist_(KERNAUFGABE)_1

56487 82 2 http://www.salzburg-rundgang.at/geboren_gelebt/wolfgang_amadeus_mozart/;; 141.22.170.191 1.313E+09 40765.4744 1_Komponist_(KERNAUFGABE)_1

56488 82 2 http://www.salzburg-rundgang.at/geboren_gelebt/wolfgang_amadeus_mozart/;;Wolfgang%20Amadeus%20Mozart%20-%20Geboren%20&%20Gelebt%20-%20Salzburg%20-%20Informationen%20und%20Sehensw%C3%BCrdigkeiten141.22.170.191 1.313E+09 40765.4744 1_Komponist_(KERNAUFGABE)_1

56489 82 2 https://googleads.g.doubleclick.net/pagead/drt/si?p=CAA&ut=AFAKxlQAAAAATkJDbOtG6TC7Ho_sfS-Y-nCA8Um3YU7n;;141.22.170.191 1.313E+09 40765.4744 1_Komponist_(KERNAUFGABE)_1

56490 82 3 Clipboard%20change%20detected%20...;; 141.22.170.191 1.313E+09 40765.4745 1_Komponist_(KERNAUFGABE)_1

56491 82 4 Clipboard%20contents;;27.01.1756 141.22.170.191 1.313E+09 40765.4745 1_Komponist_(KERNAUFGABE)_1

56492 76 11 Displaying%20post-SC%20form%20for%20SC%20index%200;;User%20has%20presumably%20completed%20searching141.22.170.149 1.313E+09 40765.4745 1_Komponist_(KERNAUFGABE)_1

56493 76 25 User%20opened%20a%20tab;; 141.22.170.149 1.313E+09 40765.4745 1_Komponist_(KERNAUFGABE)_1

56494 76 2 file:///C:/Users/ntadmin/AppData/Roaming/Mozilla/Firefox/Profiles/5vsnz9wc.default/extensions/%7B8176c455-dfff-42c5-9691-2b832d1b7b5a%7D/search_cases/1_Komponist_(KERNAUFGABE)_1_2.html;;Search%20case%20description%20template141.22.170.149 1.313E+09 40765.4745 1_Komponist_(KERNAUFGABE)_1

Figure A.3: Raw log of Hamburg Study

Generic solution available? At the beginning of the data analysis e�orts
I invested a lot of time into �nding a generic solution and checking the pack-
ages regarding their suitability for our needs. I experimented with a couple of
open source packages like �GanttProject� (www.ganttproject.biz), packages for
Gnuplot or SIMILE Widgets (www.simile-widgets.org). Unfortunately none of
the packages that I tried really o�ered the speci�c functionality that I needed.
For example SIMILE Widgets o�ered a very nice way to display timed events
by using a time line representation as outlined in Figure A.4. An approach like
this was interesting for illustration purposes, but I needed to analyze search
speci�c measures like the time users spent on SERPs, number of browser tabs
opened and all kinds of query reformulations. To analyze those very search
speci�c measures, none of the out of the box solutions was really helpful. I
therefore opted for implementing the analyzer myself.

Figure A.4: Time line representation of user action with SIMILE Data Visu-
alization Web Widget
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My implementation I decided not to go for an out of the box solution and
develop the Log Analyzer myself instead. I realized the analyzer in two parts:
One part was done in Visual Basic (VBA) in Excel and the other part was done
in Python.

The development of the Log Analyzer mainly consisted of two steps. The �rst
step comprised a lot of manual cleaning, �ltering and ordering of the log �le
(steps 1 to 5 below). In the steps 6, 7 and 8 below I developed the code for the
Log Analyzer itself.

The steps that I took when building the analyzer (as outlined in Figure A.5 on
page 110) were as follows:

1. I manually cleaned the log �le of:

(a) Advertising: Some browser events, like advertisements were logged
by the Search-Logger along with information about the user behav-
ior. I cleaned the log �le from those ads (e.g. Google Adwords),
by analyzing the log, identifying keywords (like �googleads� or �dou-
bleclick�, �ltering for those keywords and �ltering out those lines.
By doing this I managed to reduce the log from from 30 000 to 20
000 log entries.

(b) Automatically generated (e.g. by Javascript code in Web sites) non-
user behavior related browser action such as logs related to the Face-
book like button, Twitter button, Plusone button for Google's social
network Google+. I used the same procedure as in (a)

The time spent for this step totaled 2 weeks.

2. I translated the log entries into human readable format

(a) I wrote an Excel macro to transform date and time entries into
human readable format

(b) I added a macro to translate number codes from questionnaires into
human readable strings

The e�ort for this step was about 1 week.

3. I analyzed how users changed queries during their searches. I �rst ex-
tracted the queries, which users entered into search engines by using the
built in string functions in Excel. Then I analyzed those queries

(a) regarding their length (number of words)
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(b) regarding how a query was reformulated - looking at two sequential
queries. I analyzed whether users broadened a query (omitting one
or more search terms), narrowed a query (adding one or more search
terms), entered a new query (no word in common with the previous
query), used an equal query (equal search terms) and �nally if they
changed the query (substituted one or more search terms with other
ones). For example if users entered the query �penicillin wiki� and
then only �penicillin� this would be broadening. First using �peni-
cillin wiki� and then �antibiotic� would be a new query. And �rst
using �penicillin wiki� and then �penicillin blog� would be a query
change.

(c) This step was quite signi�cant as it took me quite a while to �gure
out a way to e�ciently run this analysis with our rather large log �le.
The core of the analysis was as follows: We had e.g. the log entries
user 1 ��gur österreichisch kinderbuch�, user 7 �Kasachstan�, user
1 �Figur österreichischer Kinderbuchautor� and user 1 �Penicillin
Er�nder�. Queries 1,3 and 4 belonged to user 1, query 1 and 3 to
one task and query 4 to another task. Query number 2 belonged
to user 7. The sequence of queries needed to be analyzed according
to the recipe explained in b). Of course in Excel it would have
been straightforward to �lter for users. Yet as I needed to take
into account the timely sequence of the queries per users along with
the task dependency, it made more sense to keep a certain number
of log entries in the memory for this operation. I had the choice
between Python and VBA to implement this procedure and opted
for Python (as the common choice in the academic environment) to
keep system speci�c dependencies low (Python ran on all machines
in our research group).

The e�ort for this step was about 3 weeks.

4. I classi�ed the log entries into several classes (from pages visited to Search-
Logger speci�c events as outlined below). For example, to �nd all in-
stances where users navigated to the second SERP in Google, I started
with the �action description� column of the log �le. I �ltered out all en-
tries that contained the word �Google�. I looked for logs where the query
reformulation was of type �equal� and where the logged search engine
URL was identical. Another example is all user action related to image
search. I �ltered the log for the keyword �imgres?imgurl� in the action
description. All URLs in the log that contained this string were instances
where users clicked on an image in the Google image search engine. I
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color coded the di�erent classes in the log �le to enhance readability.
The classes were as follows:

(a) visited web sites

(b) search engine related logs; I analyzed the logs and identi�ed the
characteristics to classify them as follows:

i. user visited a search engine (Google, Bing, Yahoo,..) and en-
tered a query

ii. user visited the an image search engine and issued a query
iii. user visited the second search engine results page (SERP)
iv. user entered a query into a news search engine

(c) usability related logs

i. user opened a browser tab
ii. user closed a browser tab

(d) Search-Logger speci�c events

i. demographic form was displayed
ii. user submitted demographics
iii. user started a search case
iv. user �nished a search case
v. user submitted a pre-task form
vi. user submitted a post-task form

The e�ort for this step was about 5 weeks. The e�ort for this task was
insofar signi�cant as I had to analyze the logs �rst for their structure.
Only after reverse engineering the URL structure of e.g. the Google
news search engine, I could go on with carrying out the classi�cation by
implementing macros using the Excel string functions. This meant a lot
of trial end error to get it right as each search engine uses its own URL
structure and even within the Google family of search services a common
format seems to be missing.

5. We manually analyzed the data that users submitted via demographic
forms and pre- and post task forms. This step also included analyzing
the search results users submitted and comparing them with the correct
results.

(a) demographic forms
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i. We transformed the submitted demographic forms from the log
into a separate Excel sheet. One line in the Excel sheet con-
sisted of user number, age, gender, Internet usage per day (in
hours), Internet usage per week (in days), usually used Web
search engines and Internet user type speci�c information, e.g.
if the Internet was more used for professional purposes or fun.

(b) pre- and post- task forms

i. We transformed pre- and post-task form data of the log �le into
a separate Excel sheet. This sheet contained 12 lines per user
- 6 lines for the simple tasks and 6 lines for the complex tasks.
Each line contained columns for the following user pre-task judg-
ments: expected task complexity, expected time e�ort for task,
expected query e�ort for task and if they expected to �nd the
correct result. The post-task judgments were: experienced task
complexity, experienced time e�ort for task, experienced query
e�ort for task and if they thought they had found the correct
result.

(c) search results

i. The results were submitted by users in the form of Word �les.
We manually analyzed the submitted results with the correct
solution. We assigned to each solution a grade (1-4) whether
it (1) was totally correct (2) partly correct (3) wrong or (4) no
solution was submitted.

The e�ort for this step was about 4 weeks. I spent about 1 week on
integration and analysis.

6. Finally I integrated all additional Excel sheets that contained data gath-
ered during the experiment (demographics, pre-form, post-form) into one
Excel �le and made the data available to be used by the VBA analyzer:

(a) First I extended the main data array to account for all the additional
columns contained in the sheets mentioned above.

(b) Then I changed all the corresponding procedures, which were used
for reading all the data into the array.

The e�ort for this step was 1 week.

7. As we started to gather ideas for publications I started adding di�erent
additional views at the data.
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(a) For our publications we needed basically two views at the data

i. along tasks - to analyze the di�erences between simple and com-
plex tasks. Therefore I needed to add a parameter to let the
analyzer only take into account e.g. simple tasks or complex
tasks.

ii. along users - to analyze the di�erences between individual peo-
ple and also di�erent user groups (e.g. good searchers vs. bad
searchers). For this I added parameters to let the analyzer only
take into account e.g. searches that led to correct results or
searchers that led to incorrect results.

(b) I used Excel's �lter functionality to make the data analyzable along
any logged parameter: user number, user action, action description,
time stamp, queries, reformulation type, query length and time for
each step.

The e�ort for this step was about 3 weeks.

8. I analyzed the measures needed for our papers

(a) measures like (time per task, number of queries per task, number
of queries per session, time per session, query length) were partly
calculated in VBA or directly in Excel or I used a combined approach

(b) statistical analysis of mean values (2 sample t-tests, normal corre-
lation coe�cients, Spearman's rho correlation coe�cients [90, 95])
was done in Excel's extended �Data analysis� environment

The e�ort for this step was about 4 weeks.

All steps that I took when building the analyzer module are illustrated in
Figure A.5 on the next page. As can be seen in the �ow chart, building the
analyzer part included constant testing. In addition I ran one speci�c test after
the log �le was manually cleaned, translated into human readable format and
the query reformulations were analyzed. I had to especially revise my algorithm
to analyze the query reformulations several times till it was suitable for my
requirements, e.g. accounting for instances where a query was unchanged.
This could mean that the user entered the same query again but also that the
user clicked on the next SERP. Then I implemented the functionality to classify
the log entries and constantly tested the classi�cation. Also this step included
several iterations till the classi�cation algorithm ran as desired. For example
I continuously enhanced the classi�cation by adding more types of user events
to make the log �le better understandable. Finally, I ran another set of tests
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after the measures were extracted. I encountered several instances where I had
to re�ne the whole analysis process to produce the measures in a format as
wanted, e.g. when users switched tasks it meant that all time based measures
had to account for that event.

Start

Manually clean log file

Translate into human 
readable format

Analyze query 
reformulations

Classify log entries

Test ok? Refine

yes

no

Add different views

Refine

yes

no

Run analysis

Extract 
measures

End

Integrate all Excel sheets

Analyze user 
submitted data

 Measures 
ok?

Test ok? Refine

yes

no

Figure A.5: Flow chart of analysis steps

In total the implementation of the analyzer part took me about 20 weeks (800
man hours).

110



Technical details and empirical benchmark data

I implemented the VBA based part in 3 VBA modules: Main, ReadIn and
WriteOut.

The ReadIn module contains one method �Readoriginallogs� that reads the 8
data �elds of the log �le into the memory.

The Main module runs the calculations. It calls the ReadIn module (to read
in the log data from the log �les) and at the end of the calculation run it calls
the WriteOut module to write out the results into a new Excel sheet.

The Main module consists of the following sub modules and calculates:

• SERP time per action (time on SERP per query)

• SERP per sequence time (time on SERP per search sequence without
switching task=sum of all SERP times in previous step)

• SERP per task time (time on SERP per task=sum of all SERP sequence
times)

• Reading time per action (time between two log events)

• Reading time per sequence (time spent for reading without switching the
task)

• Reading time per task (sum of all reading times per sequence in previous
step)

• Queries per task

• Type of queries (e.g. new, changed) per task

• Average query lengths

• Number of opened tabs and closed tabs per sequence and per task

• Number of opened tabs and closed tabs per task

• Reading to SERP ratio per task (Reading time/SERP time)

The sub-modules that caused a lot of trouble were the ones related to calculat-
ing SERP and reading time per task. It could happen that study participants
started searching on a Task A for a while, which resulted in SERP and reading
times for this search sequence. Then they switched to another Task B and
started over with the previously started Task A at the end of the experiment.
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The WriteOut module writes the �nal data out into an Excel sheet. The Write-
Out module consists of the �user view� sub module (generating the data per
user), �user summary view� module (generating the data for the whole sample
averaging over users) and the �task summary view module� (generating the
data for the whole sample averaging over tasks). As most results are mean
values, they are written out together with their standard errors of mean.
This approach of using Excel and VBA was insofar instrumental as I always had
good control over what was going on during the calculation runs, as WriteOuts
were mainly in the same format as the ReadIns. Opting for VBA and Excel
also had the advantage that the numbers were always visible and check-able.
After manually processing the log �les and optimizing the algorithms for per-
formance, one analysis run of 20 000 (cleaned) lines of log data takes less than a
minute (signi�cantly down from several minutes at the beginning). The results
are written out in 5 additional Excel sheets showing the plane results of the
analysis, the query change analysis, the user view, user summary view and task
summary view.
Overall the log-�le analysis was more challenging than initially expected. It
comprised about 110 incremental iterations, done from the end of October
2011 till the beginning of February 2012. I have produced 1860 lines of code
(LOC) in VB. The Main module consists of 797 LOC. The ReadIn module
consists of 169 LOC. The WriteOut module consists of 894 LOC. The Python
module (created together with Ulrich Norbisrath) consists of 120 LOC.

Problems and issues

During the process of analyzing the data I discovered mainly three areas that
caused problems - the �rst was performance, the second was maintainability
and the third was related to cooperation and sharing.

Performance Especially towards the end of the implementation phase, when
most features had been implemented, one analysis run of the complete log
�le took 2-3 minutes depending on what variables I wanted to be analyzed.
Iteratively adding changes to the code and testing became tedious. Therefore
I created test log �les (of signi�cantly smaller size) containing logs of only e.g.
5-7 users and worked with those ones during time of code changes.
I also checked the code for unnecessary loops and if conditions and reduced the
amount of write outs to a minimum in order to boost performance.

Maintainability At the very end of the analysis procedure when the com-
plexity became gradually higher I started questioning whether Excel and VBA
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(with its lack of support for object oriented programming features) were the
appropriate tools to carry out this analysis with. Adding new functionality and
parameters became increasingly time consuming.

Cooperation and sharing As Excel is a Microsoft speci�c product, I could
not seamlessly share my code with e.g. my supervisor, who uses Linux. Sharing
code e.g. via a joint repository would have been easier if the analyzer had been
implemented in a platform independent programing language.

Excel was good for getting results quickly and learning the requirements and
what to analyze. Therefore, the combination of Visual Basic and Excel was a
good choice. Now that I know, what is needed (platform independent language,
easier maintainability), I can start working on adding more functionality to the
Python version and moving to a shared code model.
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Appendix B

Publications





Abstract in Estonian

Veebi otsingumootorid ja vajadus keeruka informat-
siooni järele

Veebi otsingumootorid on muutunud põhiliseks teabe hankimise vahenditeks in-
ternetist. Koos otsingumootorite kasvava populaarsusega on nende kasutusala
kasvanud lihtsailt päringuilt vajaduseni küllaltki keeruka informatsiooni otsin-
gu järele. Samas on ka akadeemiline huvi otsingu vastu hakanud liikuma liht-
päringute analüüsilt märksa keerukamate tegevuste suunas, mis hõlmavad ka
pikemaid ajaraame. Praegused otsinguvahendid ei toeta selliseid tegevusi nii-
võrd hästi nagu lihtpäringute juhtu. Eriti kehtib see toe osas koondada mitme
päringu tulemusi kokku sünteesides erinevate lihtotsingute tulemusi ühte uude
dokumenti. Selline lähenemine on alles algfaasis ja ning motiveerib uurijaid
arendama vastavaid vahendeid toetamaks taolisi informatsiooniotsingu ülesan-
deid.

Käesolevas dissertatsioonis esitatakse rida uurimistulemusi eesmärgiga muuta
keeruliste otsingute tuge paremaks kasutades tänapäevaseid otsingumootoreid.
Alameesmärkideks olid:

(a) arendada välja keeruliste otsingute mudel,

(b) mõõdikute loomine kompleksotsingute mudelile,

(c) eristada kompleksotsingu ülesandeid lihtotsingutest ning teha kindlaks, kas
neid on võimalik mõõta leides ühtlasi lihtsaid mõõdikuid kirjeldamaks
nende keerukust,

(d) analüüsida, kui erinevalt kasutajad käituvad sooritades keerukaid otsingu-
ülesandeid kasutades veebi otsingumootoreid,

(e) uurida korrelatsiooni inimeste tava-veebikasutustavade ja nende otsingu-
tulemuslikkuse vahel,
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(f) kuidas inimestel läheb eelhinnates otsinguülesande raskusastet ja vajami-
nevat jõupingutust ning

(g) milline on soo ja vanuse mõju otsingu tulemuslikkusele.

Keeruka veebiotsingu ülesanded jaotatakse edukalt kolmeastmeliseks protses-
siks. Esitatakse sellise protsessi mudel; seda protsessi on ühtlasi võimalik ka
mõõta. Edasi näidatakse kompleksotsingu loomupäraseid omadusi, mis teevad
selle eristatavaks lihtsamatest juhtudest ning näidatakse ära katsemeetod soo-
ritamaks kompleksotsingu kasutaja-uuringuid. Demonstreeritakse põhilisi sam-
me raamistiku �Search-Logger� (eelmainitud metodoloogia tehnilise teostuse)
rakendamisel kasutaja-uuringutes. Esitatakse sellisel viisil teostatud uuringu-
te tulemused. Lõpuks esitatakse ATMS meetodi realisatsioon ja rakendamine
parandamaks kompleksotsingu vajaduste tuge kaasaegsetes otsingumootorites.

Käesolev dissertatsioon põhineb seitsmel autori artiklil, mis on publitseeritud
teadusajakirjades ja konverentsikogumikes (või on kirjutamise hetkel trükis või
hindamisel retsensentide poolt).

• Artikkel 1: Complex search: Aggregation, Discovery, and Synthesis [98]

� Kirjandusülevaade, mis analüüsib olemasolevaid keerukate otsingu-
protsesside kirjeldamise mudeleid .

� Pakub välja mudeli, mis toetub selgelt de�neeritutele ja mõõdetava-
tele agregeerimise, avastamise ja sünteesi kontseptsioonidele.

• Artikkel 2: Search-Logger - Analyzing Exploratory Search Tasks [102]

� Esitleb vahendit kasutaja käitumise hindamiseks keerukate otsingu-
ülesannete lahendamise käigus.

� Esitab vastava pilootuuringu tulemused.

• Artikkel 3: Ordinary Search Engine Users Carrying Out Complex Search
Tasks [101][esitatud hindamisele]

� Tõestab, et keerukal otsingul on teatud erilised karakteristikud, mida
on võimalik mõõta.

� Esitleb mõõdikud, mis eristavad keeruka otsingu ülesanded lihtsaist
ülesandeist.

� Esitleb erinevaid karakteristikuid, mis eristavaid õigesti ja valesti
sooritatud otsinguülesandeid.
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� Esitab proovitulemusi hästi- ja halvastisooritavate otsijate erinevuse
kohta.

• Artikkel 4: Search Strategies of Library Search Experts [104]

� Esitleb otsingustrateegiaid, mida kasutavad raamatukogu otsingu-
eksperdid.

� Esitab analüüsi internetiotsijate tüüpide mõju osas otsingutulemus-
likkusele.

� Toob sisse kaasajastatud klassi�katsiooni veebiotsingute strateegiate
kohta.

• Artikkel 5: The Relationship between Internet User Type and User Per-
formance when Carrying Out Simple vs. Complex Search Tasks [103]

� Esitatakse interneti kasutajatüübi ja veebiotsingu tulemuslikkuse va-
helist korrelatsiooni lihtsate ülesaanete juhul.

� Esitatakse interneti kasutajatüübi ja veebiotsingu tulemuslikkuse va-
heline korrelatsioon keerukate ülesaanete juhul.

� Leitakse tulemuslikkuse kasutajatüübi-spetsii�line erinevus lihtsa ja
keeruka ülesande vahel.

• Artikkel 6: Ordinary Search Engine Users assessing Di�culty, E�ort, and
Outcome for Simple and Complex Search Tasks [100]

� Esitab tava-veebikasutajate teostust ülesandes, kus nad peavad eel-
hindama keeruliste otsinguülesannete raskusastet, vajaminevat jõu-
pingutust ja tulemuslikkust kasutades veebi otsingumootoreid.

• Artikkel 7: Impact of Gender and Age on Performing Search Tasks Online
[99]

� Esitleb soo- ja vanuseerisusi lihtsate ja keeruliste otsinguülesannete
sooritamisel.
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