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1.1 Motivation

General Relativity (GR), which relates the gravitational effects to spacetime
curvature, has been very successful in describing a wide range of phenomena.
However, general relativity by itself does not provide any explanation for a number
of observations in modern cosmology: the homogeneity of the cosmic microwave
background, the accelerating expansion of the universe, the origin of structure and
the motion of galaxies and galactic clusters. These observations can be explained
by introducing mechanisms known as inflation, dark energy and dark matter, but
the precise nature of these has remained unknown. Further, attempts to quantize
general relativity have so far been unsuccessful.

The aforementioned reasons have motivated the study of a large number of
possible extensions and modifications of general relativity [1], like f(R), f(R,G) and
similar theories. However, in this thesis we do not study the modifications of GR
itself, but a number of the theories that differ from GR by underlying connection.

We study first the teleparallel gravity [2, 3, 4], where the torsion free, metric
compatible Levi-Civita connection of general relativity with its curvature is re-
placed by the curvature free, metric compatible Weitzenböck connection with its
torsion. Teleparallel gravity describes gravity as a force, distinguishes between
gravitational and inertial effects, which raises hope that the purely gravitational
force part will be accessible to quantization. It can be considered as a gauge the-
ory for the translation group, and therefore could be more in line with other gauge
theories [5, 6, 3].

We also consider the symmetric teleparallel gravity, a class of theories, which
use the curvature and torsion free symmetric teleparallel connection that is not
metric compatible to describe gravity. Despite the difference in mathematical
foundations, these two alternative geometries can be used to equivalently describe
the dynamics of general relativity, thus can be referred as (symmetric)teleparallel
equivalent of GR, i.e. TEGR or STEGR.

On the theoretical side an important criterion of viability is local Lorentz in-
variance. Teleparallel gravity is usually formulated in the formalism of tetrad and
spin connection, the latter being independent of the former. In the teleparallel
equivalent of general relativity the spin connection does not affect the tetrad field
equations, and can be chosen to be zero arbitrarily [3]. Interpolating this prop-
erty to the extensions like f(T ) or scalar-torsion gravity leads to a problematic
result, for the action fails to be locally Lorentz invariant [7, 8], violating the basics
of the tetrad formalism. It was argued that therefore these theories implied pre-
ferred frame effects, acausality, and were inhabitated by extra spurious degrees of
freedom [9, 10, 11, 12]. The Lorentz invariance issue is fixed in the covariant for-
mulation of the theory [13], which allows nontrivial spin connection compatible
with vanishing curvature, i.e., flat spin connection.

After accepting nonvanishing spin connection there arises an obvious question

12



how to determine it. An answer to the latter came only recently in the context of
f(T ) gravity. Namely, variation of the action with respect to spin connection by
carefully maintaining the flatness property yields an equation which can fix the
remaining six components of the spin connection [14, 15]. This equation involves
only the first derivatives of the spin connection, so one may ask whether the spin
connection is an independent dynamical quantity in f(T ) gravity. One can not set
the spin connection arbitrarily to zero, but for a given tetrad must make sure the
spin connection satisfies the respective condition. As a pleasant byproduct it turns
out that when the condition on the spin connection is satisfied, the antisymmetric
part of the tetrad field equations vanishes automatically [14]. It is remarkable that
this feature also holds in much more general theories of torsion [16, 17].

On the observational side our main focus will be on the gravitational wave tests
and the solar system tests. The recent discovery of gravitational waves has opened
a new era of observations in gravitational physics. Besides the possibility of grav-
itational astronomy, it allows to test gravity theories in regimes which have so far
been inaccessible to experiments. Whereas GW observations have continued to be
confirmed, the first three-detector observation by LIGO and VIRGO holds impor-
tant significance in that such measurements allow for signal localization and, more
to the purpose of this work, constraints on the six potential polarization modes of
metric theories of gravity [18]. Moreover there has been the first multi messen-
ger observations [19] which constrain the difference of the propagation velocity
between GW and electromagnetic waves in vacuum, which can be different from
zero in various modified theories of gravity [20, 21, 22, 23, 24, 25, 26]. Thus GW
observations offer the possibility for strong constraints on theories predicting extra
modes and a propagation velocity different from the speed of light, and so may be
the route to reducing the variety of potential gravitational theories [27].

An important question is the consistency of any new theory with observations
in the solar system. For those systems where gravity is still sufficiently weak, a the-
oretical description making use of a post-Newtonian approximation (PN) is usually
performed. Our primary goal is to calculate the PN limit of teleparallel gravity the-
ories using the parameterized post-Newtonian (PPN) formalism [28] which allows
a characterization of gravity by ten parameters, which have been measured in high
precision experiments. To do so, an adaptation of the classical PPN formalism to
tetrad based theories is required. A possible adaptation can be derived from a sim-
ilar approach to the PN limit of scalar-tetrad theories [29], by omitting the scalar
field part. Further, it needs to be adapted to the covariant formulation of teleparal-
lel gravity [13, 14, 30, 31], which we will use in our calculations, and in which also
a flat spin connection appears as a dynamical field. The purpose of doing it is thus
twofold. Our main aim is to put forward a general method for calculating the PN
limit of teleparallel gravity theories in their covariant formulation, by expanding
the tetrad components in a pure spacetime basis and expressing them in terms of
the PN potentials and a number of constants, which are then determined by solv-
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ing the field equations. The second aim is to use this general method in order to
determine the PN limit of a general class of teleparallel gravity theories [32, 33].
This class is chosen to be very generic, such as to encompass a large number of
theories discussed in the literature, while at the same time being prototypical for
applying our formalism to even more general theories.

Finally, we use the dynamical systems approach to obtain a qualitative assess-
ment of the behavior of solutions in a model, without delving into the often almost
impossible task to find the analytic form of the solutions. While dynamical sys-
tems have been helpful in uncovering the main features of solutions in particular
models [34, 35, 36, 37, 38, 39], there have been only a few papers attempting a
more systematic analysis of generic f(T ) cosmology [35, 40, 41, 42]. Our present
study aims at completing this task by deriving the general expressions for de Sitter
fixed points, acceleration, phantom dark energy, and finite time singularities.

1.2 Aim of the thesis and of the overview article

As briefly mentioned in the Motivation, an important question is to check the
viability of a new theory.

• In order to test the consistency and viability of a large class of cosmological
models in the solar system we make use of the parametrized post-Newtonian
(PPN) formalism. In particular, we calculate the post-Newtonian limit of the
general class of teleparallel theories, whose action is given by a free function
of three scalar quantities [32, 33]. This general class of teleparallel theories
encompasses both the new relativity class of theories and the wide class of
f(T ) theories.

• We test the most general class of teleparallel gravity theories whose action
is quadratic in the torsion tensor, known as new general relativity and the
most general class of symmetric teleparallel gravity theories whose action is
quadratic in the nonmetricity tensor by deriving the propagation velocity of
gravitational waves, which has been measured for the first time by Advanced
LIGO when the gravitational wave signal GW170817 with optical follow-
up is received. Further, we derive the polarization of gravitational waves
in these theories, which can also be measured from combined LIGO and
VIRGO observations.

• We put forward the covariant formulation of the a generalized form of scalar-
torsion gravity f(T, φ) in order to fix the local Lorentz invariance issue.

• We use the method of dynamical systems to describe a wide range of phe-
nomena in cosmology, like acceleration, phantom dark energy, and finite
time singularities in f(T ) theories.
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1.3 Structure of the thesis

The overview article contains the current Motivation, which also includes the
mathematical notions and connections. Chapter Motivation is followed by two
chapters introducing definition, geometry and field equations of the teleparallel
gravity theories in Chapter 2 with torsion and in Chapter 3 with nonmetricity. Then
in Chapter 4 we review the phenomenology, including gravitational wave obser-
vations, solar system tests and dynamical systems approach and test the aforemen-
tioned theories making use of them. The paper I “Parametrized post-Newtonian
limit of general teleparallel gravity theories” is attached at the Chapter 5. The paper
II “Propagation of gravitational waves in teleparallel gravity theories” is attached
at the Chapter 6. The paper III “Propagation of gravitational waves in symmetric
teleparallel gravity theories” is attached at the Chapter 7. The paper IV “Covariant
formulation of scalar-torsion gravity” is attached at the Chapter 8. The paper V
“Dynamical systems approach and generic properties of f(T ) cosmology” is at-
tached at the Chapter 9. The overview article ends with the Summary. Each of the
chapters is preceded by a local Table of Contents.

1.4 Mathematical notions

1. In the thesis we denote:

• Lorentz indices with uppercase Latin letters A,B, . . . = 0, . . . , 3,
• spacetime indices with lowercase Greek letters µ, ν, . . . = 0, . . . , 3,
• spatial indices with lowercase Latin letters i, j, . . . = 1, . . . , 3.

2. We use the following abbreviation:

• round brackets for symmetrization of indices (µν) = 1
2(µν + νµ),

• square brackets for antisymmetrization [µν] = 1
2(µν − νµ),

• the fixed indices, those not used in the (anti)symmetrization, are dis-
tinguished by vertical lines. For example, symmetrization over µ, γ; ν
remains fixed (µ|ν|γ) = 1

2(µνγ + γνµ).

3. In our convention, we use the Minkowski metric ηAB and ηµν with signature
(−,+,+,+).

4. In the majority of cases,

• we will use geometrised units for the speed of light c = 1 and the
Newtonian constant GN = 1.

• we will treat energy momentum tensor as a perfect fluid.
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Remarks

• The bullet (•) denotes quantities related to the teleparallel spin connection.

• Open circle (◦) denotes quantities related to the Levi-Civita connection.

• Cross (×) denotes quantities related to the symmetric teleparallel connec-
tion.

1.5 Connections

We start with a brief review of the general geometry, particular cases of which
we use in this thesis. The fundamental fields defining the geometry are a Lorentzian
metric gµν and an affine connection with coefficients Γρµν . Using the metric, the
affine connection can be decomposed into

Γρµν =
◦
Γρµν +Kρ

µν + Lρµν , (1.5.1)

consisting of the Levi-Civita connection (known also as Christoffel and Rieman-
nian connection)

◦
Γµσρ ≡

1

2
gµτ (∂σgτρ + ∂ρgτσ − ∂τgσρ) , (1.5.2)

the contortion
Kρ

µν =
1

2
(Tµ

ρ
ν + Tν

ρ
µ − T ρµν) , (1.5.3)

and the disformation

Lρµν =
1

2
Qρµν −Qµρν −Qνρµ . (1.5.4)

The last two are defined by torsion

T ρµν = Γρνµ − Γρµν = −2Γρ[µν] (1.5.5)

and nonmetricity

Qρµν = ∇ρgµν = ∂ρgµν − Γαµρgαν − Γανρgµα . (1.5.6)

It is helpful to remark that the torsion, as well as curvature

Rλρµν = ∂µΓλρν − ∂νΓλρµ + Γτ ρνΓλτµ − Γτ ρµΓλτν (1.5.7)

are properties of the connection. Nonmetricity is not a property of the connection
(alone), but a property of the metric-affine geometry, since it depends on both,
metric and connection.
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Rλρµν = 0 T ρµν = 0

Qρµν = 0

Weit
zen

bö
ck Riemann

symmetric teleparallel

FIG. 1. Subclasses of metric-affine geometry, depending on the properties of con-
nection.

Vanishing curvature gives teleparallel geometry, while vanishing torsion presents
torsion free geometry and vanishing nonmetricity leads to Riemann-Cartan geom-
etry. We can restrict the metric-affine geometry by their combination as well.

For example, vanishing torsion and nonmetricity condition leads to the Levi-
Civita connection, known as the general relativity connection, which is

1. symmetric
◦
Γρµν =

◦
Γρνµ, i.e.

◦
T ρµν =

◦
Γρνµ −

◦
Γρµν = 0 , (1.5.8)

2. compatible with the metric g (metricity condition)

◦
∇ρgµν ≡ ∂ρgµν −

◦
Γαµρgαν −

◦
Γανρgµα = 0 (1.5.9)

and has non-vanishing curvature

◦
Rλρµν = ∂µ

◦
Γλρν − ∂ν

◦
Γλρµ +

◦
Γτ ρν

◦
Γλτµ −

◦
Γτ ρµ

◦
Γλτν . (1.5.10)

In the following chapters we discuss other two possible combinations.
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2.1 Geometry with torsion

The second possible combination, an alternative to general relativity, is to as-
sume vanishing curvature and nonmetricity from the beginning,

•
Rλρµν = ∂µ

•
Γλρν − ∂ν

•
Γλρµ +

•
Γτ ρν

•
Γλτµ −

•
Γτ ρµ

•
Γλτν = 0 . (2.1.1)

This case we work in the Weitzenböck geometry. Weitzenböck connection has
non-vanishing torsion

T ρµν =
•
Γρνµ −

•
Γρµν = −2

•
Γρ[µν] . (2.1.2)

Let us begin with a brief outline of the geometry of the theories we consider in
this chapter. The fundamental variables in teleparallel theories of gravity, follow-
ing their covariant formulation [13, 14, 30, 31], are a tetrad θAµ and a curvature
free Lorentz spin connection •ωABµ. We denote the inverse tetrad by eAµ, which
satisfies

θAµeA
ν = δνµ, θAµeB

µ = δAB. (2.1.3)

Via these variables one defines the spacetime metric with its inverse

gµν = ηABθ
A
µθ
B
ν , gµν = ηABeA

µeB
ν (2.1.4)

and, conversely, the Minkowski metric

ηAB = eA
µeB

νgµν , ηAB = θAµθ
B
νg
µν . (2.1.5)

One can also raise or lower indices by making use of metrics

eAµ = gµνeA
ν , θAµ = gµνθAν , (2.1.6)

θAµ = ηABeBµ, eA
µ = ηABθ

Bµ . (2.1.7)

The tetrad corresponding to a given metric is not defined uniquely, but only up to
a local Lorentz transformation which transforms the spin connection as well,

θ′Aµ = ΛABθ
B
µ ,

•
ω′ABµ = ΛAC

•
ωCDµ ΛB

D + ΛAC ∂µΛB
C , (2.1.8)

here ΛA
B is the inverse of the Lorentz transformation matrix ΛAB . The trans-

formation (2.1.8) just reflects the possibility to switch between different local ob-
servers. Demanding that the spin connection vanishes is a particular gauge choice
and in general means picking a specific (class of) observer(s) among the others.

Covariant derivative acting on the Lorentz or spacetime indices is given by

•
Dµθ

A
ν = ∂µθ

A
ν +

•
ωABµθ

B
ν , (2.1.9)
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•
∇µeBν = ∂µeB

ν +
•
ΓνρµeB

ρ . (2.1.10)

The relation between Weitzenböck connection
•
Γρµν and spin connection •ωABν

is given by

•
Γρµν = eA

ρ
•
Dνθ

A
µ = eA

ρ
(
∂νθ

A
µ +

•
ωABνθ

B
µ

)
, (2.1.11)

and, conversely, we have

•
ωABµ = θAν

•
∇µeBν = θAν

(
∂µeB

ν +
•
ΓνρµeB

ρ

)
. (2.1.12)

In particular, expression (2.1.11) is equivalent to the identity

0 = ∂µθ
A
ν +

•
ωABµθ

B
ν −

•
Γρνµθ

A
ρ . (2.1.13)

One can see from the covariant derivative of the Minkowski metric (2.1.5) and
(2.1.12)

•
∇σηAB = eB

νgµν
•
∇σeAµ + eA

µgµν
•
∇σeBν

= eBµ
•
∇σeAµ + eAν

•
∇σeBν =

•
ωBAµ +

•
ωABµ = 0 (2.1.14)

that the spin connection is antisymmetric in its internal indices, i.e. •
ωABµ =

− •ωBAµ.
Making use of (2.1.11) the covariant formulation of the torsion (2.1.2) can be

rewritten as

TAµν =
•
Dµθ

A
ν −

•
Dνθ

A
µ = ∂µθ

A
ν − ∂νθAµ +

•
ωABµθ

B
ν −

•
ωABνθ

B
µ ,

(2.1.15)

while the curvature (1.5.7) as

•
RABµν = ∂µ

•
ωABν − ∂ν

•
ωABµ +

•
ωACµ

•
ωCBν −

•
ωACν

•
ωCBµ = 0 . (2.1.16)

Note, that tetrads can be used to convert the spacetime indices into internal
indices and vice versa, e.g. one can transform the torsion components TAµν to the
purely spacetime index components T ρµν = eA

ρTAµν .
The pure tetrad formulation of teleparallel gravity neglects the spin connection,

•
ωABµ = 0→

{ •
Γρµν = eA

ρ∂νθ
A
µ,

T ρµν = 2eA
ρ∂[µθ

A
ν].

21



As a consequence, torsion tensor does not transform as a tensor under local
Lorentz transformations, which is a violation of local Lorentz invariance. How-
ever, this approach is physically meaningful, if we are interested in the solutions
of the field equations. It correlates with the assumption that the spin connection
does not represent gravitation, but only inertial effects. As a result, there exists a
proper Lorentz frame (also known as the Weitzenböck gauge) where the inertial ef-
fects are eliminated, the spin connection vanishes, and the field equations become
simpler to solve. For example, we have used this feature in the study of the solar
system tests (see Chapter 5) and the gravitational waves solutions (see Chapters 6
and 7). So, both formulations, the pure tetrad and covariant one, lead to the same
results for aforementioned solutions.

To present a teleparallel gravitational theory we need an action functional con-
structed from the torsion tensor. The quantity under the action integral should re-
main invariant (transform as a scalar up to a boundary term) under general space-
time coordinate transformations and local Lorentz transformations. To construct
such a scalar there are three possible contractions of the torsion tensor:

T1 = TµνρTµνρ , T2 = TµνρTρνµ , T3 = TµµρTν
νρ , (2.1.17)

which are quadratic and leave parity even (do not involve the Levi-Civita totally
antisymmetric symbol).

2.2 Variations

To derive the field equations we need the variations of the action components.
The variation of the fundamental variables are given by [14]

δθθ
A
µ = δθAµ , (2.2.1a)

δθeA
µ = −eAνeBµδθBν , (2.2.1b)

δθθ = θ eA
µδθAµ , (2.2.1c)

where θ = det(θAµ).
Then the variation of the torsion tensor

T ρµν = 2eA
ρ
(
∂[µθ

A
ν] +

•
ωAB[µθ

B
ν]

)
(2.2.2)

with respect to the tetrad can be calculated as

δθT
ρ
µν = −2eB

ρeA
σδθBσ

(
∂[µθ

A
ν] +

•
ωAB[µθ

B
ν]

)
+ 2eA

ρ
(
∂[µδθ

A
ν] +

•
ωAB[µδθ

B
ν]

)
. (2.2.3)

22



Making use of T σµν = eA
σTAµν and

•
Dνθ

A
µ = ∂νθ

A
µ +

•
ωABνθ

B
µ we get a

compacted form

δθT
ρ
µν = −eAρT σµνδθAσ + 2eA

ρ
•
D[µδθ

A
ν] . (2.2.4)

The variation of the torsion with respect to the spin connection is given by

δωT
ρ
µν = 2eA

ρδ
•
ωAB[µθ

B
ν] . (2.2.5)

In particular, for the trace we have

δωT
ν
νµ = eA

νθBµδ
•
ωABν . (2.2.6)

We can now obtain the variation of the quadratic terms with respect to the tetrad

δθ (TµνρTµνρ) = −4T ρσµTρσνeA
νδθAµ − 4eA

ρTρ
µν
•
Dνδθ

A
µ , (2.2.7a)

δθ (TµνρTρνµ) = 4T [σµ]ρTρσνeA
νδθAµ − 4T [µ

|ρ|
ν]eA

ρ
•
Dνδθ

A
µ , (2.2.7b)

δθ (TµµρT
ν
ν
ρ) = 4T ρρ

[σTµ]
σνeA

νδθAµ + 4T ρρ
[µeA

ν]
•
Dνδθ

A
µ (2.2.7c)

and with respect to the spin connection

δω (TµνρTµνρ) = −4Tρ
σµeA

ρθBσδ
•
ωABµ , (2.2.8a)

δω (TµνρTρνµ) = 4T [µ
|ρ|
σ]eA

ρθBσδ
•
ωABµ , (2.2.8b)

δω (TµµρT
ν
ν
ρ) = 2T ρρ

νeA
µθBνδ

•
ωABµ . (2.2.8c)

In the following sections, we briefly review the theories we test to check their
viability, using the dynamical systems approach, the gravitational wave tests and
the solar system tests. In particular, we display their action and field equations
needed to the analysis.

2.3 Generic F(T1, T2, T3) theories

Let us write a generic action given by two parts,

S = Sg[θ,
•
ω] + Sm[θ, χ] , (2.3.1)

where Sg is the gravitational part, Sm is the matter part, and χ denotes an arbitrary
set of matter fields. The variation of the matter action Sm with respect to the tetrad
θAµ can be written in the general form

δθSm = −
∫
M

ΘA
µδθAµ θ d

4x . (2.3.2)
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Here θ is the determinant of the tetrad. Further, ΘA
µ denotes the energy-momentum

tensor, which we assume to be symmetric, Θ[µν] = 0, by imposing local Lorentz
invariance on the matter action.

The gravitational part of the action Sg can be defined via the free function F ,

Sg[θ, ω] =
1

2κ2

∫
M
F(T1, T2, T3) θ d4x, (2.3.3)

which depends on the three scalar quantities, which are parity-even and quadratic
in the torsion, given by the formula above (2.1.17).

This action defines a generic class of teleparallel gravity theories, which has
been discussed before in the literature [32, 33], and shall serve both as a generic
example and starting point for further extensions in future work. By variation of
the total action (2.3.1) with respect to the tetrad we find the gravitational field
equations1

κ2Θµν =
1

2
Fgµν + 2

◦
∇ρ
(
F,1Tνµρ + F,2T[ρµ]ν + F,3T σσ[ρgµ]ν

)
+ F,1T ρσµ

(
Tνρσ − 2T[ρσ]ν

)
− 1

2
F,3T σσρ

(
T ρµν + 2T(µν)

ρ
)

+
1

2
F,2
[
Tµ

ρσ (2Tρσν − Tνρσ) + T ρσµ
(
2T[ρσ]ν − Tνρσ

)]
, (2.3.4)

where F,i = ∂F/∂Ti with i = 1, 2, 3 and
◦
∇ is the covariant derivative with

respect to the Levi-Civita connection of the metric gµν . The antisymmetric part
of these field equations is identical to the connection field equations obtained by
variation with respect to the spin connection.

2.4 New general relativity

In the new general relativity (NGR) class of teleparallel gravity theories [43]
the Lagrangian is given by the general linear combination of quadratic torsion in-
variants

F(T1, T2, T3) = t1T1 + t2T2 + t3T3 (2.4.1)

with constant coefficients ti. It is remarkable that, unless we introduce higher
derivatives or scalar fields, the general teleparallel Lagrangian of the action (2.6.2)
reduce to the case of NGR at perturbative level. The choice of the parameters
t1 = 1

4 , t2 = 1
2 , t3 = −1 in (2.4.1) yields the teleparallel formulation of general

relativity, which is called teleparallel equivalent of general relativity (TEGR) [4].
1Since we are interested in the study of the PPN limit and the GWs of the given theories (see

Chapters 5 and 6), the gravitational field equations (in the Weitzenböck gauge) are the only field
equations we require.

24



2.5 f(T ) theories

Another important class of theories is given by the so-called f(T ) class of
theories, whose Lagrangian is given by

F(T1, T2, T3) = f(T ) , T =
1

4
T1 +

1

2
T2 − T3 . (2.5.1)

HereT is the torsion scalar, which constitutes the Lagrangian of the TEGR. Torsion
scalar can be defined by

T =
1

4
T ρµνTρ

µν +
1

2
T ρµνT

νµ
ρ − TµρµT νρν , (2.5.2)

or, equivalently, by
T =

1

2
T ρµνSρ

µν , (2.5.3)

with the superpotential

Sρ
µν = Kµν

ρ − δµρTσσν + δνρTσ
σµ . (2.5.4)

The variations of the torsion scalar take the form

δθT = −2SρσµTρσνeA
νδθAµ − 2Sρ

µνeA
ρ
•
Dνδθ

A
µ , (2.5.5a)

δωT = (TµρσeA
ρeB

σ − 2T ρρνeA
µeB

ν) δ
•
ωABµ . (2.5.5b)

The tetrad field equations of these theories are given by its symmetric part

1

2
fgµν +

◦
∇ρ
(
fTS(µν)

ρ
)
− 1

2
fTS(µ

ρσTν)ρσ = κ2Θµν (2.5.6)

and the antisymmetric part
0 = ∂[ρfTT

ρ
µν] . (2.5.7)

where subscriptl denote the derivative fT =
df

dT
. In the last term the notation

means that one first needs to antisymmetrize with respect all three lower indices
and then sum over with the repeating upper index.

The connection field equations are

0 = −
•
∇[µ

•
∇ν]fT + ∂[νfT

•
Kρ

µ]ρ =
3

2
∂[ρfT

•
T ρµν] , (2.5.8)

i.e. are equivalent to the antisymmetric part of the tetrad field equations (2.5.8).
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2.6 Scalar-torsion gravity

For convenience, the comma notation will denote the partial derivatives, e.g.,
∂µφ ≡ φ,µ. We consider the scalar-torsion gravity model given by the action

S = Sg[θ,
•
ω, φ] + Sm[θ, χ] . (2.6.1)

Here the variation of the matter part of the action Sm with respect to the tetrad θAµ
is of the same form as it given in (2.3.2). For the gravitational part we choose the
action

Sg =
1

2κ2

∫
M
d4x θ [f(T, φ) + Z(φ)gµνφ,µφ,ν ] , (2.6.2)

which depends on two arbitrary functions f andZ of the torsion scalar and a scalar
field φ, while 2κ2 = 16πGN sets the Newtonian gravitational constant.

We can denote the kinetic term of the scalar field by [44]

X = −1

2
gµνφ,µφ,ν . (2.6.3)

as a matter of convenience and find its variation with respect to the scalar field and
the tetrad

δφX = −gµνφ,νδφ,µ , (2.6.4a)
δθX = gµνφ,νφ,ρea

ρδθaµ . (2.6.4b)

From the variation of the gravitational part (2.6.2) with respect to the tetrad
θaµ we obtain the symmetric part of the tetrad field equations

1

2
fgµν+

◦
∇ρ
(
fTS(µν)

ρ
)
−1

2
fTS(µ

ρσTν)ρσ−Zφ,µφ,ν+
1

2
Zgµνg

ρσφ,ρφ,σ = κ2Θµν

(2.6.5)
and the antisymmetric part of the tetrad field equations

0 = ∂[ρfTT
ρ
µν] . (2.6.6)

In the last term the notation means that one first needs to antisymmetrize with
respect all three lower indices and then sum over with the repeating upper index.

Variation of the gravitational part (2.6.2) with respect to the spin connection
yields the connection field equations

0 = −
•
∇[µ

•
∇ν]fT + ∂[νfT

•
Kρ

µ]ρ =
3

2
∂[ρfT

•
T ρµν] . (2.6.7)

One can see that the antisymmetric part of the tetrad field equations (2.6.7) is
equivalent to the connection field equatuions (2.6.7).
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Variation of the gravitational part (2.6.2) of the action with respect to the scalar
field φ yields the scalar field equation

fφ − Zφgµνφ,µφ,ν − 2Z
◦
�φ = 0 , (2.6.8)

where fφ =
df

dφ
and

◦
� = gµν

◦
∇µ

◦
∇ν is the d’Alembert operator.
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In the paper 7 we study symmetric teleparallel gravity, which differs from the
teleparallel gravity by the underlying geometry, to compare the results from the
gravitational waves in theories with torsion to those with nonmetricity.

3.1 Geometry with nonmetricity

In the theories with nonmetricity we assume vanishing curvature and torsion
from the beginning

×
Rλρµν = ∂µ

×
Γλρν − ∂ν

×
Γλρµ +

×
Γτ ρν

×
Γλτµ −

×
Γτ ρµ

×
Γλτν ≡ 0, (3.1.1a)

×
T ρµν =

×
Γρνµ −

×
Γρµν ≡ 0, (3.1.1b)

but nonvanishing nonmetricity

Qαµν =
×
∇αgµν (3.1.2)

which implies

Qα
µν = gµρgνσQαρσ = −

×
∇αgµν . (3.1.3)

The nonmetricity is symmetric in its second and third index,Qαµν = Qανµ. Some
helpful expressions that we will use in our calculations later are

Qα = gµνQαµν , (3.1.4a)
Q̃α = gµνQµνα . (3.1.4b)

The most general connection which satisfies the assumptions (3.1.1a) and (3.1.1b)
is generated by a coordinate transformation defined by functions ξµ(x) in the
form [45, 16]

×
Γµνσ =

∂xµ

∂ξρ
∂ν∂σξ

ρ . (3.1.5)

It further follows that it is always possible to find coordinates such that

×
Γαµν ≡ 0, (3.1.6)

not only at a single point, but in an open neighborhood. This particular choice of
coordinates is known as the coincident gauge [46], and will be used throughout
this work. Note that this uniquely determines the coordinate system (xµ) we use,
up to linear transformations of the form

xµ 7→ ξ̃µ(x) = ξ̃µ(x0) + (xν − xν0) ∂ν ξ̃
µ
∣∣∣
x=x0

, (3.1.7)
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so that ∂µ∂ν ξ̃α ≡ 0. It follows that we have no further gauge freedom left to
impose conditions on the metric degrees of freedom, except at a single point, as
it is conventionally the case, e.g., in general relativity. In the coincident gauge
covariant derivatives are replaced by partial derivatives, so that the nonmetricity
reads

Qαµν = ∂αgµν . (3.1.8)
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3.2 Newer general relativity

We consider the ”newer GR” model given by action for the metric, the coordi-
nate functions ξµ and the matter fields χI [47, 16, 46]

S[gµν , ξ
σ, χI ] = Sg[gµν , ξ

σ]+Sm[gµν , χ
I ] , Sg = −

∫
M

√
−g

2k2
Qd4x . (3.2.1)

Here the matter part Sm does not depend on the affine connection
×
Γαµν [ξ], but

only on the metric and a set of matter fields .
The gravitational part Sg is given by the most general action quadratic in the

nonmetricity, where the nonmetricity scalar

Q = Qα
µνPαµν (3.2.2)

is defined via the nonmetricity conjugate

Pαµν = c1Q
α
µν + c2Q(µ

α
ν) + c3Q

αgµν + c4δ
α
(µQ̃ν) +

c5

2

(
Q̃αgµν + δα(µQν)

)
,

(3.2.3)
unless one introduces also derivatives [48] .

By variation of the total action with respect to the metric, one obtains the field
equations

2√
−g
×
∇α(
√
−gPαµν) +PµσρQν

σρ− 2Qρµ
σP ρνσ −

1

2
Qgµν = k2Θµν , (3.2.4)

where the energy-momentum tensor Θµν is derived from the matter action Sm.
To obtain the second set of field equations, we vary the total action with respect
to the components of the connection generating coordinate functions ξµ. Note
that this is equivalent to performing a restricted variation of the flat, symmetric

connection
×
Γαµν , which must be of the form δ

×
Γαµν =

×
∇µ
×
∇νδξα in order to keep

the vanishing torsion and curvature, δ
×
Tαµν ≡ 0 and δ

×
Rαβµν ≡ 0. After twice

performing integration by parts, carefully taking into account the terms arising

from
×
∇µ
√
−g due to the nonmetricity, this yields the field equations

×
∇µ
×
∇ν
(√
−gPµνα

)
= 0 . (3.2.5)

Note that their right hand side vanishes, since we have assumed no direct cou-
pling of the matter to the flat, symmetric connection, and so the hypermomentum
vanishes. The symmetric teleparallel equivalent of general relativity (STEGR) is
included in the Newer GR class of gravity theories for the choice of the parameters
c1 = −1

4 , c2 = 1
2 , c3 = 1

4 , c4 = 0 and c5 = −1
2 [16, 49].
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A significant task is to verify the new theory on the viability and the consis-
tency with observations. In order to do so, we make use of the parameterized
post-Newtonian (PPN) formalism, the Newman–Penrose (NP) formalism and the
dynamical systems approach as a tool. While the PPN formalism is used to test
theories in the solar system, the NP formalism provides testing of these theories on
GW polarizations. The dynamical systems approach is a tool used in cosmology
to obtain a qualitative assessment of the behavior of solutions in a model, without
delving into the almost impossible task to find the analytic form of the solutions.

4.1 Solar System Tests

We briefly review in this section the PPN formalism and our results (see the at-
tached paper 5), which we received by applying this formalism to the to the generic
F(T1, T2, T3) theories (see Sec. 2.3). An important ingredient of the PPN formal-
ism is the assumption that the matter which acts as the source of the gravitational
field is given by a perfect fluid, whose velocity in a particular, fixed frame of ref-
erence is small, measured in units of the speed of light, and that all physical quan-
tities relevant for the solution of the gravitational field equations can be expanded
in orders of this velocity.

We choose to work in the Weitzenböck gauge ωABµ ≡ 0. The tetrad is ex-
panded as

θAµ = ∆A
µ + τAµ = ∆A

µ +
1
τAµ +

2
τAµ +

3
τAµ +

4
τAµ +O(5) . (4.1.1)

where
∆A

µ = diag(1, 1, 1, 1) , ∆A
µ = diag(1, 1, 1, 1) (4.1.2)

is the diagonal background tetrad. The Minkowski metric is

ηAB = diag(−1, 1, 1, 1) , ηµν = ηAB∆A
µ∆B

ν = diag(−1, 1, 1, 1) . (4.1.3)

We also use the notational conventions

τµν = ∆A
µτAν , τAµ = ηABτ

B
µ , τµν = ηµρτ

ρ
ν = ∆A

µτAν , (4.1.4)

i.e., indices of the perturbation τ are transformed with the background tetrad and
raised and lowered with the corresponding Minkowski metric. A detailed analysis
shows that the only relevant, non-vanishing components of the field variables we
need to determine in this article are given by

2
τ00 ,

2
τ ij ,

3
τ0i ,

3
τ i0 ,

4
τ00 . (4.1.5)

Using the expansion (4.1.1) and the components listed above we can expand all
geometric quantities appearing in the field equations up to their relevant velocity
orders. This concerns in particular the metric

gµν = ηABθ
A
µθ
B
ν , (4.1.6)

34



whose background solution follows from the diagonal background tetrad ∆A
µ to

be a flat Minkowski metric, 0
gµν = ηµν , and whose perturbation around this back-

ground is given by
2
g00 = 2

2
τ00 ,

2
gij = 2

2
τ (ij) ,

3
g0i = 2

3
τ (i0) ,

4
g00 = −(

2
τ00)2 + 2

4
τ00 . (4.1.7)

Since we choose to work in the Weitzenböck gauge the torsion tensor takes the
form

T ρµν =
•
Γρνµ −

•
Γρµν = 2eA

ρ∂[µθ
A
ν] . (4.1.8)

Using the tetrad expansion, we can expand the torsion tensor as well
2

T 0
0i =

2
τ00,i ,

2

T ijk = 2δil
2
τ l[k,j] ,

3

T i0j = δik(
2
τkj,0 −

3
τk0,j) ,

3

T 0
ij = 2

3
τ0[i,j] ,

4

T 0
0i =

2
τ00

2
τ00,i −

3
τ0i,0 +

4
τ00,i . (4.1.9)

For the energy-momentum tensor we use the standard perfect fluid form

Θ00 = ρ
(

1− 2
τ00 + v2 + Π

)
+O(6) , (4.1.10a)

Θ0i = −ρvi +O(5) , (4.1.10b)
Θij = ρvivj + pδij +O(6) . (4.1.10c)

Finally, in order to expand also the gravitational side of the field equations (2.3.4),
we need to introduce a suitable expansion for the free function F and its deriva-
tives. For this purpose we use a Taylor expansion of the form

F(T1, T2, T3) = F(0, 0, 0) +
3∑
i=1

F,i(0, 0, 0)Ti +O(T 2) . (4.1.11)

Higher orders beyond the linear approximation will not be required. We further
introduce the notation F = F(0, 0, 0) and F,i = F,i(0, 0, 0) for the constant Tay-
lor coefficients.

Results and discussion

We find the PPN parameters for the theory as

ξ = α1 = α2 = α3 = ζ1 = ζ2 = ζ3 = ζ4 = 0 , (4.1.12)

from which we deduce that there is no violation of the conservation of total energy-
momentum, as well as no preferred frame or preferred location effects; theories of
this type are called fully conservative. The only non-trivial result is given by the
PPN parameters

β =
6F,1 + 3F,2 + 7F,3

4(2F,1 + F,2 + 2F,3)
, γ =

F,3
2F,1 + F,2 + 2F,3

. (4.1.13)
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More expressively, we find that their deviation from the general relativity values
βGR = γGR = 1 can be written in terms of a single constant ε by defining

β − 1 = − ε
2
, γ − 1 = −2ε , ε =

2F,1 + F,2 + F,3
2(2F,1 + F,2 + 2F,3)

. (4.1.14)

In particular, we obtain β = γ = 1 for 2F,1 + F,2 + F,3 = 0, so that theories
satisfying these conditions are indistinguishable from general relativity by mea-
surements of the PPN parameters.

Here the specific examples:
(i) The deviation (4.1.14) of the PPN parameters in NGR is given by

ε =
2t1 + t2 + t3

2(2t1 + t2 + 2t3)
. (4.1.15)

This result agrees with the values obtained for β and γ in the original presenta-
tion [43] of the theory.

(ii) In any f(T ) type theories we find that the deviation (4.1.14) of the PPN
parameters from their general relativity values vanishes identically, ε = 0, hence
cannot be distinguished from GR by their PPN parameters.

Comparison to observations

For the discussion of experimental bounds it is important to take into account
that the deviations (4.1.14) of the PPN parameters from their general relativity
values are not independent. This fact is relevant for most measurements of the PPN
parameters, where the result depends on a linear combination of the parameters,
such as the perihelion shift of Mercury or the Nordtvedt effect [28]. The latter is
in particular remarkable, since from the values (4.1.13) follows 4β − γ = 3, so
that the Nordtvedt parameter [50, 51]

ηN = 4β − γ − 3− 10

3
ξ − α1 +

2

3
α2 −

2

3
ζ1 −

1

3
ζ2 (4.1.16)

vanishes identically, indicating the absence of the Nordtvedt effect independently
of the theory under consideration. Hence, lunar laser ranging experiments search-
ing for the Nordtvedt effect will not be affected, and are thus insensitive to the
modifications we discuss here.

For measurements of the PPN parameter γ alone, the most stringent bound is
obtained from the Cassini tracking experiment [52], which yields the bound

γ − 1 = −2ε ≤ (2.1± 2.3) · 10−5 . (4.1.17)

Comparable bounds on ε may be obtained from solar system ephemeris, which
yields bounds on both γ and β [53].
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4.2 Gravitational Waves

Recall that we consider minimal coupling between gravity and matter, i.e.,
coupling only through the metric seen as function of the tetrad, but not through
the flat spin connection. This is the usual coupling prescription for non-spinning
matter, which we will henceforth assume. It follows from this choice of the matter
coupling that test particles follow the geodesics of the metric, and hence the au-
toparallel curves of its Levi-Civita connection. The effect of a gravitational wave
on an ensemble of test particles, or any other type of gravitational wave detector,
such as the mirrors of an interferometer, is therefore described by the correspond-
ing geodesic deviation equation.

ai = −
◦
R0i0jx

j , (4.2.1)

where
◦
R0i0jx

j are the six so-called electric components of the Riemann tensor, xj
are the spatial coordinates.

The NP formalism makes use of a set of a particular complex double null basis
of the tangent space. The basis vectors are denoted by

lµ = (1, 0, 0, 1) , nµ =
1

2
(1, 0, 0,−1) ,

mµ =
1√
2

(0, 1, i, 0) , m̄µ =
1√
2

(0, 1,−i, 0) . (4.2.2)

in terms of the canonical basis vectors of the Cartesian coordinate system they can
be defined as

l = ∂0 + ∂3, n =
1

2
(∂0 − ∂3), m =

1√
2

(∂1 + i∂2), m̄ =
1√
2

(∂1 − i∂2) .

(4.2.3)
In the new basis the Minkowski metric takes the form

ηµν =

lµ nµ mµ m̄µ


0 −1 0 0 lµ

−1 0 0 0 nµ

0 0 0 1 mµ

0 0 1 0 m̄µ

. (4.2.4)

From the above, we can see that the only nonvanishing inner products of null vec-
tors are −lµnµ = mµm̄µ = 1 and all other naturally vanish.

Using the null basis Newman and Penrose introduced the coefficients, that en-
codes the Weyl tensor, trace-free Ricci tensor and Ricci scalar, to describe the
gravitational radiation field. In the same way, the coefficients can be determined
by the Riemann tensor.
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We now consider a plane wave propagating in the positive x3 direction, which
corresponds to a single Fourier mode. The wave covector then takes the form
kµ = −ωlµ and the metric perturbations can be written as

hµν = Hµνe
iωu , (4.2.5)

where we introduced the retarded time u = x0 − x3 and the wave amplitudes are
denoted Hµν .

As shown in [54], the Riemann tensor of this plane wave is determined com-
pletely by the six electric components

Ψ2 = −1

6

◦
Rnlnl =

1

12
ḧll , Ψ3 = −1

2

◦
Rnlnm̄ = −1

2

◦
Rnlnm =

1

4
ḧlm̄ =

1

4
ḧlm ,

Ψ4 = −
◦
Rnm̄nm̄ = −

◦
Rnmnm =

1

2
ḧm̄m̄ =

1

2
ḧmm , Φ22 = −

◦
Rnmnm̄ =

1

2
ḧmm̄ ,

(4.2.6)

where, for example,
◦
Rnlnl =

◦
Rµνρσn

µlνnρlσ is the electric component of the
Riemann tensor in the null basis and dots denote derivatives with respect to u.

x

y

x

y

x

y
� � �

Ψ4: + mode Ψ4: × mode Φ22: b mode

z

x

z

y

z

x, y
→ → →

Ψ3: x mode Ψ3: y mode Ψ2: l mode

FIG. 2. Polarizations in the Newman-Penrose formalism
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Results and discussion

In the attached papers we studied gravitational waves in the most general class
of teleparallel gravity theories whose action is quadratic in the torsion tensor,
known as new general relativity 6 and in the symmetric teleparallel gravity theo-
ries 7. Here we provide a short review of the results we received from the analysis
of the possible gravitational wave polarizations in these theories.

E(2) classification:

II6 : all 6 modes are allowed.

III5 : there is no longitudinal mode Ψ2 ≡ 0, all other modes are allowed.

N3: Ψ2 ≡ Ψ3 ≡ 0, tensor and breathing modes are allowed.

N2: Ψ2 ≡ Ψ3 ≡ Φ22 ≡ 0, only tensor modes are allowed.

• O1: Ψ2 ≡ Ψ3 ≡ Ψ4 ≡ 0, Φ22 6≡ 0, only breathing mode is allowed.

• O0: Ψ2 ≡ Ψ3 ≡ Ψ4 ≡ Φ22 ≡ 0. No wave.

GW polarizations in symmetric teleparallel gravity theories

Inserting the wave ansatz (4.2.5) and writing the gravitational field strength
tensor Eµν in the Newman-Penrose basis, we find that the five component equa-
tions 0 = Ell = Elm = Elm̄ = Emm = Em̄m̄ are satisfied identically, while the
remaining five component equations take the form

0 = Enn = 2c5ḧmm̄ − 2(c2 + c4 + c5)ḧln , (4.2.7a)
0 = Enm = −(c2 + c4)ḧlm , (4.2.7b)
0 = Enm̄ = −(c2 + c4)ḧlm̄ , (4.2.7c)
0 = Emm̄ = c5ḧll , (4.2.7d)
0 = Eln = −(c2 + c4)ḧll . (4.2.7e)

One can see that the parameters c1, c3 have no influence on the allowed polariza-
tions, while depending on the parameters c2, c4, c5 we obtain the E2 class II6, III5,
N3 or N2, with N3 filling most of the parameter space.

39



c2 = sin θ cosφ

c4 = sin θ sinφ

c5 = cos θ

N2 : c2 + c4 + c5 = 0, c5 6= 0

N3: c2 + c4 6= 0, c2 + c4 + c5 6= 0

III5 : c2 + c4 = 0, c5 6= 0

II6 : c2 + c4 = c5 = 0
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FIG. 3. Visualization of the parameter
space using polar coordinates.

We have also seen that there exists a four parameter family of theories besides
STEGR which is of class N2 and thus exhibits the same two tensor modes as in
general relativity. Theories in this class therefore cannot be distinguished from
general relativity by observing the polarizations of gravitational waves alone.

GW polarizations in the new general relativity

Note that the metric perturbation components hµν

gµν = ηµν + hµν = ηµν + 2εsµν . (4.2.8)

depend only on the symmetric perturbation of the tetrad, so that these are the
only components whose presence or absence we must determine (see the attached
paper 6). Inserting the wave ansatz (4.2.5) and writing the gravitational Euler-
Lagrange tensor Eµν in the Newman-Penrose basis, we find that the eight compo-
nent equations

Ell = Elm = Eml = Enl = Emm = Em̄m̄ = Elm̄ = Em̄l = 0 (4.2.9)

are satisfied identically, while the remaining eight component equations take the
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form

0 = Enn = (2c1 + c2 + c3)s̈nl + 2c3s̈mm̄ + (2c1 + c2 + c3)änl , (4.2.10a)
0 = Emn = (2c1 + c2)s̈ml + (2c1 − c2)äml , (4.2.10b)
0 = Em̄n = (2c1 + c2)s̈m̄l + (2c1 − c2)äm̄l , (4.2.10c)
0 = Enm = −c3s̈ml + (2c2 + c3)äml , (4.2.10d)
0 = Enm̄ = −c3s̈m̄l + (2c2 + c3)äm̄l , (4.2.10e)
0 = Emm̄ = Em̄m = −c3s̈ll , (4.2.10f)
0 = Eln = (2c1 + c2)s̈ll . (4.2.10g)

where aµν is the antisymmetric part of the tetrad perturbation, which does not
contribute to the geodesic deviation equation, and so we do not discuss it.
We have seen that depending on the parameters c1, c2, c3 we obtain the E2 class
II6, III5, N3 or N2, with N3 filling most of the parameter space.
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FIG. 4. Visualization of the parameter
space using polar coordinates.

We have also seen that there exists a family of theories besides TEGR which
is of class N2 and thus exhibits the same two tensor modes as in general relativity.
Theories in this class therefore cannot be distinguished from general relativity by
observing the polarizations of gravitational waves alone.
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4.3 Dynamical Systems Analysis

The method of dynamical systems is a widely used set of tools in cosmology
to obtain a qualitative assessment of the behavior of solutions in a model, with-
out delving into the often almost impossible task to find the analytic form of the
solutions [55].

In the attached paper 9 “Dynamical systems approach and generic properties of
f(T ) cosmology” we have derived a two-dimensional dynamical system from the
flat FLRW cosmological field equations of a generic f(T ) gravity theory, where
the matter content is given by a combination of dust and radiation. We have shown
that the full cosmological dynamics of this model depend only on a single func-
tion W (H) = f + 12H2fT of the Hubble parameter H , which is derived from
the function f(T ) defining the particular theory under consideration. Instead of
choosing a particular form of f(T ), we have kept the function fully generic and
derived a number of physically relevant properties of the whole family of f(T )
theories.

Our main result is comprised of numerous conditions on the Friedmann func-
tionW (H), which determine the existence and stability of fixed points in the cos-
mological dynamics, the possibility of a bounce or turnaround, the existence and
severity of finite time singularities, the existence of accelerating and decelerating
phases of the expansion of the universe and transitions between them as well as
the possibility of crossing the phantom divide. As a fully generic result, we have
shown that there exist no periodic orbits in the phase space, and no oscillating uni-
verse solutions, independent of the choice of the function f(T ). Further, we have
shown how points on the phase space and the shape of the Friedmann function
W (H) at these points can be related to observational cosmological parameters.
Note that our chosen matter content manifestly satisfies all energy conditions, and
that all features we discussed are direct consequences of the modified gravitational
dynamics.

To illustrate our results and the general formalism, we have applied it to a
generic power law model f(T ) = T + α(−T )n. We have shown how the dy-
namics on the physical phase space depend on the constant parameters α and n
of the model and displayed the phase diagrams for all qualitatively different val-
ues of these parameters. We have further characterized all possible trajectories in
these phase spaces and their acceleration and effective dark energy. In particu-
lar, we have shown that it is not possible to dynamically cross the phantom divide
wDE = −1 in these models. We have finally shown that there are no trajectories
that start from an initial accelerating period (which would be interpreted as infla-
tion), become decelerating, and finally transition back to an accelerating de Sitter
phase.
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Summary

In the attached paper 8 “Covariant formulation of scalar-torsion gravity” we
have presented a new class of theories in the covariant teleparallel framework,
where the gravitational action depends on an arbitrary function of the torsion scalar
and a scalar field, f(T, φ). This generic setup subsumes and generalizes a number
of previously considered models, like f(T ) gravity and a scalar field nonminimally
coupled to T , putting them in unified scheme so that they can be studied together.
We derived the field equations for the tetrads, scalar field, and flat spin connection.
The latter is especially important and until recently was missing in the covariant
teleparallel picture. The spin connection equation turns out to be related to the
antisymmetric part of the tetrad field equations and makes it to vanish identically.
One also needs the spin connection equation when combining the field equations
in order to show the matter energy-momentum conservation. As a matter of fact,
the spin connection field equation contains only first order derivatives with respect
to the spacetime coordinates, and provides a consistency condition that from the
tetrad ansatz determines the six nontrivial spin connection components (remaining
after imposing zero curvature). These six components can be interpreted as gauge
degrees of freedom, since they can be absorbed into the tetrad by a suitable local
Lorentz transformation.

In the paper 5 “Parametrized post-Newtonian limit of general teleparallel grav-
ity theories” we derived the post-Newtonian limit of a general class of teleparal-
lel gravity theories, whose action is given by a Lagrange function depending on
three scalar quantities formed from the parity-even contractions of the torsion ten-
sor [32, 33]. We found that the post-Newtonian limit of these theories is fully
determined by a single constant, which is calculated from four Taylor coefficients
of the Lagrange function at the zeroth and first order. Our results show that the
class of theories we considered is fully conservative in the sense that it does not
exhibit any preferred frame or preferred location effects, or violation of energy-
momentum conservation, which is reflected by the fact that only the PPN param-
eters γ and β potentially deviate from their general relativity values. Further, due
to the aforementioned fact that deviations of the PPN parameters from their gen-
eral relativity values are governed by a single combination of the constant Taylor
coefficients, large parts of the parameter space of possible theories are left with a
post-Newtonian limit which is identical to that of general relativity, so that these
theories are indistinguishable by solar system experiments at the respective post-
Newtonian order. Further, we found that the Nordvedt effect is absent in the whole
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class of theories we considered. We then applied our findings to two particular sub-
classes of theories: new general relativity [43] and f(T ) gravity [56, 57]. In the
former case the aforementioned Taylor coefficients are given by the three constant
parameters which determine the new general relativity action, and our findings
agree with the original calculation of γ and β from a static, spherically symmet-
ric ansatz [43]. In the latter case we find that the post-Newtonian parameters are
identical to those of general relativity, so that any f(T ) gravity theory is consistent
with solar system observations.

In the papers 6 and 7 we studied the propagation of gravitational waves in the
most general class of teleparallel gravity theories whose action is quadratic in the
torsion tensor, known as new general relativity and the most general class of sym-
metric teleparallel gravity theories whose action is quadratic in the nonmetricity
tensor. We made use of the Newman-Penrose formalism to derive the possible
polarizations of gravitational waves. Our results show that the two tensor polar-
izations, which are present also in general relativity, are allowed for the whole
class of theories we considered, while additional modes - two vector modes and
up to two scalar modes - may be present for particular models within this class.
We found that the TEGR and STEGR are not the unique theory exhibiting exactly
two polarizations, but there is a one in NGR and four in STG parameter family of
theories with the same property. It thus follows that observations of gravitational
wave polarizations may only give partial results on the parameter space of these
theories.

In the paper 9 “Dynamical systems approach and generic properties of f(T )
cosmology” we used the dynamical systems approach to determine the existence
and stability of fixed points in the cosmological dynamics, the possibility of a
bounce or turnaround, the existence and severity of finite time singularities, the
existence of accelerating and decelerating phases of the expansion of the universe
and transitions between them as well as the possibility of crossing the phantom
divide in generalized f(T ) gravity theory. Depending on the model parameters,
it is possible to have a bounce (from contraction to expansion) or a turnaround
(from expansion to contraction), but cyclic or oscillating scenarios are prohibited.
As an illustration of the formalism we consider power law f(T ) = T + α(−T )n

models, and show that these allow only one period of acceleration and no phantom
divide crossing. The formalism and generic results derived in this article can now
be applied to any particular f(T ) gravity theory or class of such theories, in order
to get a systematic overview of its cosmological behavior.
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[16] J. B. Jiménez, L. Heisenberg, and T. Koivisto, “Coincident General
Relativity,” Phys. Rev. D98 no. 4, (2018) 044048, arXiv:1710.03116
[gr-qc].
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Kokkuvõte (in Estonian)
Väändel baseeruvad gravitatsiooniteooriad: teoreetilised ja vaatluslikud
piirangud

Lisatud artiklis 8 “Covariant formulation of scalar-torsion gravity” (Skalaar-
väände gravitatsiooni kovariantne kirjeldus) me esitlesime kovariantses teleparal-
leelses raamistikus uut teooriate klassi, milles mõjufunktsionaal sõltub väände-
skalaari ja skalaarvälja suvalisest funktsioonist f(T, φ). See üldine esitus sisal-
dab ja üldistab mitu varasemalt uuritud mudelit, seehulgas f(T ) gravitatsiooni ja
väändeskalaariga mitteminimaalselt seotud skalaarvälja, korrastades neid üldises
skeemis, ja võimaldades neid ühiselt uurida. Me tuletasime tetraadi, skalaarvälja
ja tasase spinniseostuse väljavõrrandeid. Viimasel on eriti oluline roll, mida pan-
di tähele alles hiljuti kovariantse vaatenurga alt. Spinniseostuse väljavõrrand on
seotud tetraadi väljavõrrandi antisümmeetrilise osaga ja lahendab selle identselt.
Samuti on spinniseostuse väljavõrrand vajalik kõigi võrrandite kombinatsioonist
mateeria energia-impulsi jäävusseaduse tuletamiseks. Õigupoolest sisaldab spin-
niseostuse väljavõrrand ainult esimest järku tuletisi aegruumi koordinaatide järgi
ning esitab kooskõla tingimused, millega tuletatakse tetraadist kuus mittetriviaal-
set spinniseostuse komponenti (mis on veel alles kui eeldame nulliga võrduvat
kõverust). Neid komponente võib interpreteerida kui kalibratsioonivabadusast-
meid, kuna neid on võimalik absorbeerida tetraadi sisse sobiva lokaalse Lorentzi
teisenduse abil.

Artiklis 5 “Parametrized post-Newtonian limit of general teleparallel gravity
theories” (Üldiste teleperalleelsete gravitatsiooniteooriate post-Newtoni piir) tule-
tasime post-Newtoni piiri üldiste teleperalleelsete gravitatsiooniteooriate klassile,
mille mõjufunktsionaali moodustab vaba funktsioon kolmest skalaarsest suurusest,
mis koosnevad väändetensori paarsust säilitavatest ahenditest [32, 33]. Me leidsi-
me, et nende teooriate post-Newtoni piiri määrab täielikult vaid üks konstant, mis
tuleneb lagranžiaani Taylori rea neljast nullindat ja esimest järku koefitsiendist.
Meie tulemused näitavad, et uuritud teooriate klass on täielikult konservatiivne,
see tähendab, et ei esine eelistatud raami ega asukoha efekte või energia-impulsi
jäävuse rikkumist, mida peegeldab fakt, et ainult PPN parameetrid γ ja β võivad
erineda oma üldrelatiivsusteooria väärtustest. Lisaks järeldub sellest, et PPN pa-
rameetrite erinevus üldrelatiivsusteooriast sõltub vaid ühest Taylori koefitsientide
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kombinatsioonist ning suur osa teooriate parameetrite ruumist omab sama post-
Newtoni piiri kui üldrelatiivsusteooria, nii et neid teooriaid ei ole võimalik eris-
tada kasutades vastava post-Newtoni täpsusega katseid Päikesesüsteemis. Muu-
seas leidsime, et Nordtvedti efekt ei esine terves uuritud teooriate klassis. Järg-
misena rakendasime oma tulemusi kahele teooriate alamklassile: uus üldrela-
tiivsusteooria [43] ja f(T ) gravitatsioon [56, 57]. Esimesel juhul Taylori koe-
fitsiendid võrduvad kolme konstandiga, mis määravad uue üldrelatiivsusteooria
mõjufunktsionaali, ja meie tulemus on võrdne γ ja β varasema arvutusega staati-
lise ja sfääriliselt sümmeetrilise geomeetria puhul [43]. Teisel juhul me leidsime,
et post-Newtoni parameetrid on samad kui üldrelatiivsusteoorias, millest järeldub,
et f(T ) on kooskõlas vaatlustega Päikesesüsteemis.

Artiklites 6 ja 7 uurisime gravitatsioonilainete levimist kõige üldisemas te-
leparalleelsete gravitatsiooniteooriate klassis, mille mõjufunktsionaal on teise
astme polünoom väändetensorist ja mida nimetatakse uueks üldrelatiivsusteoo-
riaks, ning kõige üldisemas sümmeetriliste teleparalleelsete gravitatsiooniteoo-
riate klassis, mille mõjufunktsionaal on teise astme polünoom mittemeetrilisuse
tensorist. Me kasutasime võimalike gravitatsioonilainete polarisatsioonide tule-
tamiseks Newman-Penrose formalismi. Meie tulemused näitavad, et kaks tensor-
polarisatsiooni, mis esinevad ka üldrelatiivsusteoorias, on kooskõlas terve uuritud
teooriateklassiga, kuid lisapolarisatsioonid, täpsemalt kaks vektorit ja kuni kaks
skalaari, ilmuvad ainult konkreetsetes mudelites selles klassis. Me leidsime, et
üldrelatiivsusteooria teleparalleelsed ekvivalendid pole ainsad teooriad, milles on
täpselt kaks polarisatsiooni, kuna uue üldrelatiivsusteooria klassis on kahe para-
meetri teooriate pere ning sümmeetrilises teleparalleelses teoorias nelja parameet-
ri teooriate pere, millel on sama omadus. Seega järeldub, et gravitatsioonilaine-
te polarisatsioonid võimaldavad teha vaid osalisi kitsendusi nende teooriate para-
meetriruumi kohta.

Artiklis 9 “Dynamical systems approach and generic properties of f(T ) cos-
mology” (f(T ) kosmoloogia dünaamiliste süsteemide käsitlus ja üldised oma-
dused) kasutasime dünaamilise süsteemi meetodit selleks, et uurida püsipunk-
tide olemasolu ja stabiilsust kosmoloogilises dünaamikas, paisumise “põrke”
ja “ümberpöörde” võimalikkust, lõpliku aja jooksul ilmuva singulaarsuse
võimalikkust ja tõsidust, universumi kiireneva ja aeglustuva paisumise faaside ole-
masolu ja üleminekuid nende vahel ning fantoomipiiri ületamist üldises f(T ) gra-
vitatsiooniteoorias. Sõltuvalt mudeli parameetritest on võimalik “põrge” (paisu-
misest kokkutõmbumisele) või “ümberpööre” (kokkutõmbumisest paisumisele),
kuid korduv või võnkuv käitumine on keelatud. Formalismi illustreerimiseks uuri-
sime astmeseaduse f(T ) = T+α(−T )n mudeleid ja näitasime, et neis esineb vaid
üks kiirenevalt paisuva universumi ajajärk ja fantoompiiri ei ületata. Selles artiklis
arendatud formalismi ja tulemusi on võimalik rakendada igale f(T ) gravitatsioo-
niteooriale või teooriateklassile nende kosmoloogilise käitumise süstemaatiliselt
uurimiseks.
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We derive the post-Newtonian limit of a general class of teleparallel gravity theories, whose action is
given by a free function of three scalar quantities obtained from the torsion of the teleparallel connection.
This class of theories is chosen to be sufficiently generic in order to include the fðTÞ class of theories as
well as new general relativity as subclasses. To derive its post-Newtonian limit, we first impose the
Weitzenböck gauge, and then introduce a post-Newtonian approximation of the tetrad field around a
Minkowski background solution. Our results show that the class of theories we consider is fully
conservative, with only the parameters β and γ potentially deviating from their general relativity values. In
particular, we find that the post-Newtonian limit of any fðTÞ theory is identical to that of general
relativity, so that these theories cannot be distinguished by measurements of the post-Newtonian
parameters alone.

DOI: 10.1103/PhysRevD.100.104011

I. INTRODUCTION

General relativity is challenged both by observations in
cosmology and by its theoretical tensions with quantum
theory. These challenges have led to the development of a
plethora of modified gravity theories. While most of these
theories take the most well-known formulation of general
relativity in terms of the curvature of a Levi-Civita
connection as their starting point, there exist other for-
mulations which may serve as possible starting points for
modifications [1]. An important class of such modifications
is based on the teleparallel equivalent of general relativity
(TEGR) [2], and thus belongs to the class of teleparallel
gravity theories [2–5]. The characteristic feature of these
theories is to employ a flat, metric-compatible connection,
whose torsion mediates the gravitational interaction.
A large class of modified teleparallel gravity theories is

obtained by assuming a gravitational Lagrangian of the
form fðTÞ [6,7], where T is the torsion scalar appearing in
the TEGR action [2]. Various phenomenological and
theoretical aspects of these theories have been investigated,
including their cosmological dynamics [8–10] and pertur-
bations [11], gravitational waves [12–15], and degrees of
freedom from a Hamiltonian analysis [16–20]. The rich
phenomenology and generality of this class of gravity
theories hence invite further investigations of the class of a
whole, studying further phenomenological aspects.
Another line of studies has been devoted to theories in

which the three scalar quantities, which may be obtained

from contractions of the torsion tensor, are treated sepa-
rately. An early contender of this class is given by new
general relativity [21], whose Lagrangian is simply the
general linear combination of these three terms, and thus
can be understood as derived from a general, local, and
linear constitutive relation [22,23]. Several aspects of these
theories have been studied, such as the equivalence
principle [24], gravitational waves [25], and Hamiltonian
formulation [26]. Further relaxing the condition of linearity
in the three scalar terms leads to an even more general
class of teleparallel theories, whose action is given by a
free function of three scalar quantities [27,28]. This
general class of teleparallel theories, which encompasses
both the new relativity class of theories and the wide class
of fðTÞ theories, will be the subject of our studies in this
article.
While aiming to model the present observations in

cosmology, any viable theory of gravity must of course
also comply with observations on smaller scales, such as
the Solar System, orbiting pulsars, and laboratory experi-
ments. A commonly used framework which was developed
for collectively deriving this local-scale phenomenology
is the parametrized post-Newtonian (PPN) formalism
[29–31]. It characterizes gravity theories by a set of ten
parameters, which have been measured with high precision
in various experiments. Because of its generality and the
availability of numerous observations, the PPN formalism
has become an important tool for assessing the viability of
gravity theories.
In order to calculate the post-Newtonian limit of

teleparallel theories of gravity, an adaptation of the classi-
cal PPN formalism to tetrad-based theories is required.
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A possible adaptation can be derived from a similar
approach to the post-Newtonian limit of scalar-tetrad
theories [32] by omitting the scalar field part. Further, it
needs to be adapted to the covariant formulation of tele-
parallel gravity [20,33–35], which we will use in this
article, and in which also a flat spin connection appears as a
dynamical field. The purpose of this article is thus twofold.
Our main aim is to put forward a general method for
calculating the post-Newtonian limit of teleparallel gravity
theories in their covariant formulation, by expanding the
tetrad components in a pure spacetime basis and expressing
them in terms of the post-Newtonian potentials and a
number of constants, which are then determined by solving
the field equations. The second aim is to use this general
method in order to determine the post-Newtonian limit of a
general class of teleparallel gravity theories [27,28]. This
class is chosen to be very generic, such as to encompass a
large number of theories discussed in the literature, while at
the same time being prototypical for applying our forma-
lism to even more general theories.
Our work is in line with a number of previous studies of

the post-Newtonian limit of the related class of Poincaré
gauge theories. For a more restricted class of teleparallel
theories, which is included in the class of theories we study
here, it has been shown that post-Newtonian effects only
occur at higher perturbation orders than the ones considered
in the PPN formalism [36–39]. More general classes of
quadratic Poincaré gauge theories, in which both curvature
and torsion are present, show deviations already at the PPN
level, and may necessitate the use of additional PPN
potentials and parameters beyond the standard formalism
[40,41]. Note, however, that this will not be the case for the
class of teleparallel gravity theories we consider in this
article, for which the curvature of the considered connec-
tion vanishes identically.
The outline of this article is as follows: In Sec. II, we

briefly review the dynamical variables and fields used in the
covariant formulation of teleparallel gravity and display the
class of theories we consider, together with their action and
field equations. In Sec. III, we review the basic ingredients
of the post-Newtonian (PPN) formalism, and show how it
can be adapted to the field variables relevant for teleparallel
gravity. We employ this formalism in order to solve the
field equations for a general post-Newtonian matter dis-
tribution in Sec. IV. From this solution we obtain the post-
Newtonian metric and PPN parameters in Sec. V, where
we also compare our result with observations. Finally, in
Sec. VI we discuss a number of specific examples. We end
with a conclusion in Sec. VII.
In this article, we use uppercase latin letters A;B;… ¼

0;…; 3 for Lorentz indices, lowercase greek letters
μ; ν;… ¼ 0;…; 3 for spacetime indices, and lowercase
latin letters i; j;… ¼ 1;…; 3 for spatial indices. In our
convention, the Minkowski metric ηAB and ημν has the
signature (−;þ;þ;þ).

II. FIELD VARIABLES AND THEIR DYNAMICS

We start with a brief review of the underlying geometry
and dynamics of the theories we consider in this article.
The fundamental variables in teleparallel theories of
gravity, following their covariant formulation [20,33–35],
are a tetrad θAμ and a curvature-free Lorentz spin con-
nection ωA

Bμ. We denote the inverse tetrad by eAμ, which
satisfies θAμeAν ¼ δνμ and θAμeBμ ¼ δAB. Via these variables,
one defines the metric

gμν ¼ ηABθ
A
μθ

B
ν ð1Þ

and the torsion

Tρ
μν ¼ eAρð∂μθ

A
ν − ∂νθ

A
μ þ ωA

Bμθ
B
ν − ωA

Bνθ
B
μÞ: ð2Þ

To give dynamics to these fundamental field variables, we
consider an action given by two parts:

S½θ;ω; χ� ¼ Sg½θ;ω� þ Sm½θ; χ�; ð3Þ

where Sg is the gravitational part, Sm is the matter part, and
χ denotes an arbitrary set of matter fields. The variation of
the matter action Sm with respect to the tetrad θAμ can be
written in the general form

δθSm ¼ −
Z
M
ΘA

μδθAμθd4x: ð4Þ

Here θ is the determinant of the tetrad. Further,ΘA
μ denotes

the energy-momentum tensor, which we assume to be
symmetric,Θ½μν� ¼ 0, by imposing local Lorentz invariance
on the matter action. For the remainder of this article, we
will treat the matter source as a perfect fluid, as discussed in
detail in Sec. III. Also note that here we have used the tetrad
to change the index character, i.e., Θμν ¼ θAμgνρΘA

ρ.
The gravitational part of the action Sg is defined via the

free function F ,

Sg½θ;ω� ¼
1

2κ2

Z
M
F ðT 1; T 2; T 3Þθd4x; ð5Þ

which depends on the three scalar quantities, which are
parity-even and quadratic in the torsion, and take the forms

T 1 ¼ TμνρTμνρ; T 2 ¼ TμνρTρνμ; T 3 ¼ Tμ
μρTν

νρ:

ð6Þ

This action defines a generic class of teleparallel gravity
theories, which has been discussed before in the literature
[27,28] and shall serve both as a generic example and as a
starting point for further extensions in future work.
By variation of the total action [Eq. (3)] with respect to

the tetrad, we find the field equations
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κ2Θμν¼
1

2
Fgμνþ2∇∘ ρðF ;1TνμρþF ;2T ½ρμ�νþF ;3Tσ

σ½ρgμ�νÞ

þF ;1Tρσ
μðTνρσ−2T ½ρσ�νÞþ

1

2
F ;2½Tμ

ρσð2Tρσν−TνρσÞ

þTρσ
μð2T ½ρσ�ν−TνρσÞ�−

1

2
F ;3Tσ

σρðTρ
μνþ2TðμνÞ ρÞ;

ð7Þ

where F ;i ¼ ∂F=∂T i with i ¼ 1, 2, 3, and ∇∘ is the
covariant derivative with respect to the Levi-Civita con-
nection of the metric gμν. These are the field equations we
will be solving in the remainder of this article. For this
purpose, we will make use of a post-Newtonian approxi-
mation of the teleparallel geometry, which will be detailed
in the following section.

III. POST-NEWTONIAN APPROXIMATION

The main tool we use in this article is the parametrized
post-Newtonian (PPN) formalism [29–31], which we
briefly review in this section, taking into account that
we intend to apply it to the class of extended teleparallel
theories of gravity detailed in the preceding section.
An important ingredient of the PPN formalism is the
assumption that the matter which acts as the source of
the gravitational field is given by a perfect fluid, whose
velocity in a particular, fixed frame of reference is small,
measured in units of the speed of light, and that all physical
quantities relevant for the solution of the gravitational field
equations can be expanded in orders of this velocity. In this
section we discuss how this expansion in velocity orders
proceeds for the quantities we need in our calculation in the
following sections, in particular for the tetrad.
The starting point of our calculation is the energy-

momentum tensor of a perfect fluid with rest energy
density ρ, specific internal energy Π, pressure p, and
four-velocity uμ, which is given by

Θμν ¼ ðρþ ρΠþ pÞuμuν þ pgμν: ð8Þ
The four-velocity uμ is normalized by the metric gμν, so that
uμuνgμν ¼ −1. We will now expand all dynamical quan-
tities in ordersOðnÞ ∝ jv⃗jn of the velocity vi ¼ ui=u0 of the
source matter in a given frame of reference, starting with
the field variables. We choose to work in the Weitzenböck
gauge, and so we set ωA

Bμ ≡ 0. For the tetrad θAμ, we
assume an expansion around a flat diagonal background
tetrad ΔA

μ ¼ diagð1; 1; 1; 1Þ:

θAμ ¼ ΔA
μ þ τAμ ¼ ΔA

μ þ τ
1 A

μ þ τ
2 A

μ þ τ
3 A

μ þ τ
4 A

μ þOð5Þ:
ð9Þ

Here we have used overscript numbers to denote velocity
orders; i.e., each term τ

n A
μ is of order OðnÞ. Velocity orders

beyond the fourth order are not considered and will not be
relevant for our calculation.
For the tetrad perturbation τAμ, it will turn out to be

more convenient to lower the Lorentz index using the
Minkowski metric ηAB and convert it into a spacetime index
using the background tetrad ΔA

μ, so that we introduce the
perturbations

τμν ¼ ΔA
μηABτ

B
ν; τ

n

μν ¼ ΔA
μηABτ

n B
ν: ð10Þ

A detailed analysis shows that not all components of the
tetrad field need to be expanded to the fourth velocity order,
while others vanish due to Newtonian energy conservation
or time-reversal symmetry. The only relevant nonvanishing
components of the field variables we need to determine in
this article are given by

τ
2

00; τ
2

ij; τ
3

0i; τ
3

i0; τ
4

00: ð11Þ

Using the expansion [Eq. (9)] and the components listed
above, we can expand all geometric quantities appearing
in the field equations up to their relevant velocity orders.
This concerns in particular the metric, whose background
solution follows from the diagonal background tetrad ΔA

μ

to be a flat Minkowski metric, g
0

μν ¼ ημν, and whose
perturbation around this background is given by

g
2

00 ¼ 2τ
2

00; g
2

ij ¼ 2τ
2

ðijÞ; g
3

0i ¼ 2τ
3

ði0Þ;

g
4

00 ¼ −ðτ2 00Þ2 þ 2τ
4

00: ð12Þ

For later use, we also write out the relevant torsion
components, which take the forms

T
2
0
0i ¼ τ

2

00;i; T
2
i
jk ¼ 2δilτ

2

l½k;j�;

T
3
i
0j ¼ δikðτ2 kj;0 − τ

3

k0;jÞ; T
3
0
ij ¼ 2τ

3

0½i;j�;

T
4
0
0i ¼ τ

2

00τ
2

00;i − τ
3

0i;0 þ τ
4

00;i; ð13Þ

and which will be necessary for the decomposition of the
field equations into velocity orders. Here we have made use
of the additional assumption that the gravitational field is
quasistatic, so that changes are only induced by the motion
of the source matter. Time derivatives ∂0 of the tetrad
components are therefore weighted with an additional
velocity order Oð1Þ.
Using the expansion [Eq. (12)] of the metric tensor, we

can now also expand the energy-momentum tensor
[Eq. (8)] into velocity orders. For this purpose, we must
assign velocity orders also to the rest mass density, the
specific internal energy and the pressure of the perfect fluid.
Based on their orders of magnitude in the Solar System,
one assigns velocity ordersOð2Þ to ρ andΠ, andOð4Þ to p.
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The energy-momentum tensor [Eq. (8)] can then be
expanded in the form

Θ00 ¼ ρð1þ Πþ v2 − 2τ
2

00Þ þOð6Þ; ð14aÞ

Θ0j ¼ −ρvj þOð5Þ; ð14bÞ

Θij ¼ ρvivj þ pδij þOð6Þ: ð14cÞ

Finally, in order to expand also the gravitational side of
the field equations [Eq. (7)], we need to introduce a suitable
expansion for the free function F and its derivatives. For
this purpose, we use a Taylor expansion of the form

F ðT 1;T 2;T 3Þ ¼ F ð0;0;0Þ þ
X3
i¼1

F ;ið0;0;0ÞT i þOðT 2Þ:

ð15Þ

Higher orders beyond the linear approximation will not be
required. We further introduce the notation F ¼ F ð0; 0; 0Þ
and F;i ¼ F ;ið0; 0; 0Þ for the constant Taylor coefficients.
This will be used throughout the following sections.

IV. EXPANSION OF THE FIELD EQUATIONS
AND SOLUTION

In order to discuss the post-Newtonian parameters, we
need to expand the field equations to the required order in
the perturbation and then make use of the post-Newtonian
approximation. We will do so in the following sections.
Further, we will make use of a generic Ansatz for the tetrad
perturbations, which consists of post-Newtonian potentials
and constant coefficients, which we will also determine
here by solving the field equations. We proceed order by
order. The zeroth order, which corresponds to the back-
ground solution around which we expand, is discussed in
Sec. IVA. We then solve for the second order in Sec. IV B,
the third order in Sec. IV C, and finally the fourth order in
Sec. IV D.

A. Background field equations

We start our discussion with the zeroth order of the field
equations [Eq. (7)]. From the expansion in Eq. (14), it
follows that at the zeroth velocity order the energy-

momentum tensor vanishes, Θ
0

μν ¼ 0, so that we are left
with solving the vacuum field equations. Inserting our

assumed background values θ
0
A
μ ¼ ΔA

μ for the tetrad into
the respective field equations [Eq. (7)], we find that they
take the form

0 ¼ 1

2
Fημν: ð16Þ

It thus follows that the field equations are solved at the
zeroth order only for theories which satisfy F ¼ 0. This is a
consequence of our assumption that the background solu-
tion is given by a flat Minkowski metric, which therefore
excludes a cosmological constant. We will thus restrict
ourselves to theories satisfying this restriction for the
remainder of this article. This restriction will not be of
importance for any actual phenomenology, since the effects
of a nonvanishing cosmological constant in agreement with
cosmological observations would be negligible on Solar
System scales.

B. Second velocity order

We continue with expanding the gravitational part Eμν of
the field equations [Eq. (7)] in the perturbation τμν at the
second velocity order. The corresponding components take
the form

E
2

00 ¼ −ð2F;1 þ F;2 þ F;3Þτ2 00;ii þ 2F;3τ
2

i½i;j�j; ð17aÞ

E
2

ij¼4F;1τ
2

j½k;i�kþ2F;2ðτ2 i½k;j�kþτ
2

k½j;i�kÞ
þF;3½2τ2 k½k;i�j−τ

2

00;ijþðτ2 00;kkþ2τ
2

k½l;k�lÞδij�: ð17bÞ

It follows from their index structure that the tetrad
components τ00, τij should transform as a scalar and a
tensor, respectively, under spatial rotations [29,31]. Further
using their respective velocity orders and their relation to
the source matter, we can write down an Ansatz for the
tetrad as

τ
2

00 ¼ a1U; τ
2

ij ¼ a2Uδij þ a3Uij: ð18Þ

Here ai (and also the later appearing bi, ci) are constant
coefficients, which we will determine by solving the field
equations and by imposing gauge conditions, while U and
Uij are post-Newtonian functionals of the matter variables.
These functionals are related to the matter variables by the
differential relations

∇2χ¼−2U; Uij¼ χ;ijþUδij; ∇2U¼−4πρ; ð19Þ

where ∇2 ¼ δij∂i∂j is the spatial Laplace operator of the
flat background metric, and χ is the so-called superpoten-
tial, which is auxiliary in the definition of Uij [29]. For
the sake of convenience, we will from now on rewrite
the field equations making use of the shorthand notation

E
n

μν ¼ E
n

μν − κ2Θ
n

μν ¼ 0. Then, inserting the appropriate
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Ansatz [Eq. (18)] for the tetrad into the field equations
[Eq. (17)] at the second velocity order, and using the
relations in Eq. (19), we obtain

E
2

00¼−½κ2−4πa1ð2F;1þF;2þF;3Þþ8πða2þa3ÞF;3�ρ;
ð20aÞ

E
2

ij ¼ −½a1F;3 − ða2 þ a3Þð2F;1 þ F;2 þ 2F;3Þ�
× ð4πδijρþ U;ijÞ; ð20bÞ

where we can see that the terms contained in square
brackets in front of the post-Newtonian functionals must
be zero, in order for the equations to be solved for arbitrary
matter distributions. Further, note that we obtain only two
independent equations, while our Ansatz [Eq. (18)] con-
tains three free constants. This is a consequence of the
gauge freedom, which is related to the diffeomorphism
invariance of the theory. We thus may choose a gauge by
supplementing the system with one additional equation.
The standard PPN gauge mandates that the coefficient in
front of Uij vanishes, and so we make the gauge choice
a3 ¼ 0. Thus, we get for the coefficients

a1 ¼
2F;1 þ F;2 þ 2F;3

ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ
κ2

4π
;

a2 ¼
F;3

ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ
κ2

4π
; a3 ¼ 0:

ð21Þ

We will subsequently use this second-order solution in the
remaining higher-order field equations.

C. Third velocity order

At the third velocity order in the perturbation expansion,
we still work with linearized field equations, which are of
the forms

E
3

0i ¼ 2F;1ðτ2 ij;0j − τ
3

i0;jjÞ þ F;2ðτ2 ji;0j − τ
3

j0;ij

þ 2τ
3

0½j;i�jÞ þ F;3ðτ2 jj;0i − τ
3

j0;ijÞ; ð22aÞ

E
3

i0 ¼ 2F;1ð2τ3 0½j;i�j − τ
2

00;0iÞ þ F;2ð2τ3 ½jj0j;i�j

þ 2τ
2

½ij�;0j − τ
2

00;0iÞ þ F;3ð2τ2 j½j;j0ji� − τ
2

00;0iÞ: ð22bÞ

Observe that the components τ0i, τi0 must behave as
vectors under spatial rotations, which are of the third

velocity order, and so they can be expressed in terms of
PPN potentials in the forms

τ
3

i0 ¼ b1Vi þ b2Wi; τ
3

0i ¼ b3Vi þ b4Wi; ð23Þ

with the PPN vector potentials satisfying

∇2Vi ¼ −4πρvi; ∇2Wi ¼ −4πρvi þ 2U;0i: ð24Þ

In this case, proceeding analogously to the equation (20),
we obtain the third-order field equations

E
3

i0¼½κ2þ4πðb1þb2ÞF;2þ8πðb3þb4ÞF;1�
�
ρvi−

U;0i

4π

�
;

ð25aÞ

E
3

0i ¼ ½κ2 þ 8πðb1 þ b2ÞF;1 þ 4πðb3 þ b4ÞF;2�ρvi
þ
�
ðb1 − b2ÞF;3 − b2ð4F;1 þ F;2Þ

þ ðb1 − b3 − b4ÞF;2 þ
κ2

4π

F;3

2F;1 þ F;2

�
U;0i: ð25bÞ

We see that we obtain three independent equations, given
by the vanishing of the square brackets, for the four
coefficients b1;…; b4. This is again a consequence of
the gauge invariance which we encountered also for the
second-order equations (20) and coefficients (18). We
could thus fix the gauge also here by adding one more
equation. However, we will proceed differently in this case,
and leave one of the constant coefficients undetermined at
this stage. The reason for this will become clear at the
fourth velocity order, where this free constant will allow us
to choose the standard PPN gauge by eliminating one more
PPN potential. Choosing b4 ¼ b0 as the undetermined
parameter, we find

b1 ¼ −
1

ð2F;1 þ F;2Þ
κ2

4π
; b2 ¼ 0;

b3 ¼ −b0 −
1

ð2F;1 þ F;2Þ
κ2

4π
; b4 ¼ b0: ð26Þ

Again, we will make use of this (now only partial) solution
in the fourth-order equations, which we address next.

D. Fourth velocity order

Finally, for the fourth order, we find that we need to
consider only certain components of the field equations and
the linear combinations thereof. In particular, we need the
time component
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E
4

00 ¼ ð2F;1 þ F;2 þ F;3Þ
�
−τ4 00;ii þ τ

3

0i;0i þ τ
2

00τ
2

00;ii þ 2τ
2

ijτ
2

00;ij þ τ
2

00;i

�
τ
2

ðijÞ;j −
τ
2

00;i

2
− τ

2

jj;i

��

þ 2F;1τ
2

ij;kτ
2

i½k;j� − F;2τ
2

ij;kðτ2 k½j;i� þ τ
2

j½i;k�Þ þ
F;3

2

�
τ
2

ij;iτ
2

kj;k þ τ
2

ii;jτ
2

kk;j þ 2τ
2

ij;iτ
2

jk;k

�

þ 2F;3

h
τ
4

i½i;j�j þ τ
2

ij;kτ
2

j½k;i� þ 2τ
2

00τ
2

i½j;i�j − τ
2

ii;jτ
2

ðjkÞ;k þ τ
2

ij

�
τ
2

j½k;i�k þ τ
2

kði;jÞk − τ
2

kk;ij

�i
ð27Þ

and the trace of the spatial part of the field equations

E
4

ii ¼ 2ð2F;1 þ F;2 þ 2F;3Þ
�
τ
2

i½i;j�τ
2

jk;k − τ
4

i½i;j�j
�
− 2ðF;1 þ F;2 þ F;3Þτ2 ij;kτ

2

jk;i − ð2F;1 þ F;2Þτ2 ijτ
2

ij;kk

þ 2F;3

h
τ
4

00;ii − τ
3

0i;0i − τ
2

00;iτ
2

ij;j þ τ
2

iiτ
2

jk;jk − τ
2

ijτ
2

jk;ik þ τ
2

jiτ
2

ij;kk − τ
2

kkτ
2

ii;jj þ τ
2

00;ii

�
τ
2

00 þ τ
2

jj

�i

þ ð2F;1 þ F;2 þ 3F;3Þ
h
τ
2

ii;00 − τ
3

i0;i0 þ 2τ
2

00;iτ
2

j½j;i� þ 2τ
2

ij

�
τ
2

kk;ij − τ
2

kði;jÞk
�i

þ 1

2
ð2F;1 þ F;2 þ F;3Þτ2 00;iτ

2

00;i

þ F;1

h
2τ
2

ikτ
2

ij;jk þ 2τ
2

kj;iτ
2

ki;j þ τ
2

ij;k

�
τ
2

ij;k − 3τ
2

ik;j

�i
þ F;2

2

�
τ
2

ij;kτ
2

kj;i þ 2τ
2

ijτ
2

ik;jk

�
− 3F;3τ

2

ðijÞτ
2

00;ij

þ
�
2F;1 þ F;2 þ

3

2
c3

�h
τ
2

ii;j

�
2τ
2

kj;k − τ
2

kk;j

�
− τ

2

ij;iτ
2

kj;k

i
þ
�
2F;1 þ

3

2
F;2 þ 2F;3

�
τ
2

ij;kτ
2

ji;k: ð28Þ

In order to determine the post-Newtonian metric, we need to solve these equations for the tetrad component τ
4

00. Note that
this component should transform as a scalar under rotations, and thus we can consider an Ansatz of the form

τ
4

00 ¼ c1Φ1 þ c2Φ2 þ c3Φ3 þ c4Φ4 þ c5U2 ð29Þ

with the fourth-order scalar potentials

∇2Φ1 ¼ −4πρv2; ∇2Φ2 ¼ −4πρU; ∇2Φ3 ¼ −4πρΠ; ∇2Φ4 ¼ −4πp: ð30Þ

Finally, to eliminate the spatial component τ
4

ij of the tetrad, which appears in the field equations (27) and (28), but is not
relevant for our calculation, we make use of the linear combination

E
4 ¼ ð2F;1 þ F;2 þ 2F;3ÞE

4

00 þ F;3E
4

ii ð31Þ

and find

E
4 ¼ ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þf2b0U;00 þ 4π½c1ρv2 þ ðc2 þ 2c5ÞρU þ c3ρΠþ c4p� − 2c5U;iU;ig

þ κ2

4π
ð2F;1 þ F;2 þ 2F;3Þ

�
U;00 þ

κ2ρU
2F;1 þ F;2 þ 3F;3

�
− 3F;3κ

2p − ð2F;1 þ F;2 þ 3F;3Þκ2ρv2

− κ2ð2F;1 þ F;2 þ 2F;3Þ
�
ρΠþ κ2

32π2
U;iU;i

2F;1 þ F;2

�
: ð32Þ

In order to obtain the solution in the standard PPN gauge, the coefficient in front of the term U;00 must vanish, since it does
not correspond to any of the terms in the Ansatz [Eq. (29)] and would introduce a term violating the standard PPN gauge.
Together with the remaining, independent terms, we then find the six independent equations

4πð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þc4 − 3κ3F;3 ¼ 0; ð33aÞ

4πð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þc3 − κ2ð2F;1 þ F;2 þ 2F;3Þ ¼ 0; ð33bÞ
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4πð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þðc2 þ 2c5Þ þ
κ4

4π

2F;1 þ F;2 þ 2F;3

2F;1 þ F;2 þ 3F;3
¼ 0; ð33cÞ

2ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þb0 þ
κ2

4π
ð2F;1 þ F;2 þ 2F;3Þ ¼ 0; ð33dÞ

ð2F;1 þ F;2 þ 3F;3Þ½4πð2F;1 þ F;2Þc1 − κ2� ¼ 0; ð33eÞ

−2ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þc5 −
κ4

32π2
2F;1 þ F;2 þ 2F;3

2F;1 þ F;2
¼ 0: ð33fÞ

Solving these equations for the remaining six undetermined constants then yields their values:

b0 ¼ −
2F;1 þ F;2 þ 2F;3

ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ
κ2

8π
; c1 ¼

1

ð2F;1 þ F;2Þ
κ2

4π
;

c2 ¼ −
ð2F;1 þ F;2 − 3F;3Þð2F;1 þ F;2 þ 2F;3Þ

ð2F;1 þ F;2Þ2ð2F;1 þ F;2 þ 3F;3Þ2
κ4

32π2
; c3 ¼

2F;1 þ F;2 þ 2F;3

ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ
κ2

4π
;

c4 ¼
3F;3

ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ
κ2

4π
; c5 ¼ −

2F;1 þ F;2 þ 2F;3

ð2F;1 þ F;2Þ2ð2F;1 þ F;2 þ 3F;3Þ
κ4

64π2
: ð34Þ

With this result, we have fully solved the general field
equations (7) at all velocity orders which are required to
determine the PPN metric and hence the PPN parameters.
This will be done in the following section.

V. PPN METRIC AND PARAMETERS

Using the solution obtained in the previous section, we
can now finally determine the PPN metric, and hence the
PPN parameters of the general class of teleparallel gravity
theories we consider in this article. We will do so in three
steps. In Sec. VA, we briefly recall the relevant tetrad
components and display their solutions after inserting the

constant coefficients we determined into the respective
Ansätze. From these components, we derive the metric
components in Sec. V B. Finally, in Sec. V C, we read off
the PPN parameters. We compare this result to observations
in Sec. V D, in order to obtain bounds on the class of
theories we consider.

A. Post-Newtonian tetrad

We start by briefly recalling the tetrad components and
displaying their solutions from Sec. IV. From the Ansatz
[Eq. (18)] together with the solutions in Eq. (21) for the
constant coefficients, we find the second-order components

τ
2

00 ¼
2F;1 þ F;2 þ 2F;3

ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ
κ2

4π
U; τ

2

ij ¼
F;3

ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ
κ2

4π
Uδij: ð35Þ

We then come to the third-order Ansatz [Eq. (23)], together with the solution in Eq. (26) and the missing coefficient b0 in the
solution in Eq. (34). This yields the components

τ
3

i0 ¼ −
1

2F;1 þ F;2

κ2

4π
Vi; τ

3

0i ¼ −
κ2

8π

ð2F;1 þ F;2 þ 4F;3ÞVi þ ð2F;1 þ F;2 þ 2F;3ÞWi

ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ
: ð36Þ

Finally, we recall the Ansatz [Eq. (29)] for the only fourth-order component we have to determine. With the solution in
Eq. (34), we find

τ
4

00 ¼
1

2F;1 þ F;2

κ2

4π
Φ1 −

ð2F;1 þ F;2 − 3F;3Þð2F;1 þ F;2 þ 2F;3Þ
ð2F;1 þ F;2Þ2ð2F;1 þ F;2 þ 3F;3Þ2

κ4

32π2
Φ2 þ

2F;1 þ F;2 þ 2F;3

ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ
κ2

4π
Φ3

þ 3F;3

ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ
κ2

4π
Φ4 −

2F;1 þ F;2 þ 2F;3

ð2F;1 þ F;2Þ2ð2F;1 þ F;2 þ 3F;3Þ
κ4

64π2
U2: ð37Þ

These are all tetrad components which are relevant to construct the post-Newtonian metric.
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B. Post-Newtonian metric

In the next step, we calculate the post-Newtonian metric.
For this purpose, we insert the tetrad components displayed
in Sec. VA into the metric expansion in Eq. (12). We start
with the second-order metric component

g
2

00 ¼
2F;1 þ F;2 þ 2F;3

ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ
κ2

2π
U ¼ 2GU;

ð38Þ

which follows immediately from the second-order tetrad
perturbation [Eq. (35)]. Here we have introduced the
Newtonian gravitational constant G. Solving the normali-
zation condition G ¼ 1, as this is the conventional PPN
choice of units and yields the relation

κ2 ¼ 4π
ð2F;1 þ F;2Þð2F;1 þ F;2 þ 3F;3Þ

2F;1 þ F;2 þ 2F;3
: ð39Þ

Using this normalization, we find for the remaining
components

g
2

ij ¼
2F;3

2F;1 þ F;2 þ 2F;3
Uδij ð40Þ

at the second order,

g
3

0i ¼ −
6F;1 þ 3F;2 þ 10F;3

2ð2F;1 þ F;2 þ 2F;3Þ
Vi −

1

2
Wi ð41Þ

at the third order, and finally

g
4

00 ¼
1

2F;1 þ F;2 þ 2F;3

�
−
6F;1 þ 3F;2 þ 7F;3

2
U2

þ 2ð2F;1 þ F;2 þ 3F;3ÞΦ1 − ð2F;1 þ F;2 − 3F;3ÞΦ2

þ 2ð2F;1 þ F;2 þ 2F;3ÞΦ3 þ 6F;3Φ4

�
ð42Þ

at the fourth order. Further components will not be
necessary in order to obtain the PPN parameters.

C. Post-Newtonian parameters

By comparing the metric components shown in Sec. V B
with the standard PPN form of the metric [29,31], we find
the PPN parameters for the theory as

ξ ¼ α1 ¼ α2 ¼ α3 ¼ ζ1 ¼ ζ2 ¼ ζ3 ¼ ζ4 ¼ 0; ð43Þ

from which we deduce that there is no violation of the
conservation of total energy-momentum, as well as no
preferred frame or preferred location effects; theories of this
type are called fully conservative. The only nontrivial result
is given by the PPN parameters

β ¼ 6F;1 þ 3F;2 þ 7F;3

4ð2F;1 þ F;2 þ 2F;3Þ
; γ ¼ F;3

2F;1 þ F;2 þ 2F;3
:

ð44Þ

More expressively, we find that their deviation from the
general relativity values βGR ¼ γGR ¼ 1 can be written in
terms of a single constant ϵ by defining

β− 1¼−
ϵ

2
; γ− 1¼−2ϵ; ϵ¼ 2F;1þF;2þF;3

2ð2F;1þF;2þ 2F;3Þ
:

ð45Þ

In particular, we obtain β ¼ γ ¼ 1 for 2F;1 þ F;2þ
F;3 ¼ 0, so that theories satisfying these conditions are
indistinguishable from general relativity by measurements
of the PPN parameters. We will discuss this particular case
later in Sec. VI, when we discuss specific examples.

D. Comparison to observations

For the discussion of experimental bounds, it is impor-
tant to take into account that the deviations [Eq. (45)] of the
PPN parameters from their general relativity values are not
independent. This fact is relevant for most measurements of
the PPN parameters, where the result depends on a linear
combination of the parameters, such as the perihelion shift
of Mercury or the Nordvedt effect [30]. The latter is in
particular remarkable, since from the values in Eq. (44)
4β − γ ¼ 3 follows, so that the Nordvedt parameter [42,43]

ηN ¼ 4β − γ − 3 −
10

3
ξ − α1 þ

2

3
α2 −

2

3
ζ1 −

1

3
ζ2 ð46Þ

vanishes identically, indicating the absence of the Nordvedt
effect independently of the theory under consideration.
Hence, lunar laser ranging experiments searching for the
Nordvedt effect will not be affected, and are thus insensitive
to the modifications we discuss here.
For measurements of the PPN parameter γ alone, the

most stringent bound is obtained from the Cassini tracking
experiment [44], which yields the bound

γ − 1 ¼ −2ϵ ≤ ð2.1� 2.3Þ × 10−5: ð47Þ

Comparable bounds on ϵ may be obtained from Solar
System ephemeris, which yields bounds on both γ and
β [45].
This concludes our discussion of the PPN parameters for

a general teleparallel theory. To illustrate our results, we
will present the most commonly encountered examples in
the following section.

VI. EXAMPLES

We now apply the general result we derived in the
previous sections to a number of example theories. We start
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with a simple rewriting of the gravitational Lagrangian in
its axial, vector, and tensor parts in Sec. VI A. In Sec. VI B,
we then consider new general relativity, in which the
general function F is replaced by a linear function of its
three arguments. In Sec. VI C, we finally consider the fðTÞ
class of theories, where f is a function depending on the
TEGR torsion scalar only.

A. GðTax;Tvec;TtenÞ theories
We begin by noting that the theory of gravity given in

Ref. [27] is identical to the class of theories we discussed
here, since its action is of the same form:

F ðT 1; T 2; T 3Þ ¼ GðTax; Tvec; T tenÞ; ð48Þ

with the torsion components

Tax ¼
1

18
ðT 1 − 2T 2Þ; T ten ¼

1

2
ðT 1 þ T 2 − T 3Þ;

Tvec ¼ T 3; ð49Þ

which are fully equivalent for expressing the action. It
follows that the Taylor coefficients

G ¼ GjT¼0; G;a ¼
∂G
∂Tax

����
T¼0

;

G;t ¼
∂G
∂T ten

����
T¼0

; G;v ¼
∂G

∂Tvec

����
T¼0

ð50Þ

are related by

F ¼ G; F;1 ¼
1

18
G;a þ

1

2
G;t;

F;2 ¼ −
1

9
G;a þ

1

2
G;t; F;3 ¼ G;v −

1

2
G;t: ð51Þ

Note in particular that G;a drops out whenever F;1 and F;2

appear only in the combination 2F;1 þ F;2. Hence, the axial
part does not contribute to the deviation [Eq. (45)] of the
PPN parameters from their general relativity values, since

ϵ ¼ G;v þ G;t

4G;v þ G;t
ð52Þ

contains only vectorial and tensorial parts. This agrees with
earlier findings, that purely axial modifications show up
only in higher post-Newtonian orders than considered in
the PPN formalism [36–39].

B. New general relativity

Next, we consider the new general relativity (NGR) class
of teleparallel gravity theories [21]. Its Lagrangian is given
by the general linear combination

F ðT 1; T 2; T 3Þ ¼ t1T 1 þ t2T 2 þ t3T 3 ð53Þ

with constant coefficients ti. It thus follows immediately
that the Taylor coefficients are given by F ¼ 0 and F;i ¼ ti,
i ¼ 1, 2, 3. The deviation [Eq. (45)] of the PPN parameters
is thus given by

ϵ ¼ 2t1 þ t2 þ t3
2ð2t1 þ t2 þ 2t3Þ

: ð54Þ

This result agrees with the values obtained for β and γ in the
original presentation [21] of the theory.

C. f ðTÞ theories
Another important class of theories which is covered by

the calculations we present in this article is given by the so-
called fðTÞ class of theories, whose Lagrangian is given by

F ðT 1;T 2;T 3Þ¼fðTÞ; T¼1

4
T 1þ

1

2
T 2−T 3: ð55Þ

HereT is the torsion scalar which constitutes the Lagrangian
of the teleparallel equivalent of general relativity (TEGR)
[2]. For the Taylor coefficients we find F ¼ fð0Þ, so that at
the zeroth order we get the condition F ¼ fð0Þ ¼ 0. The
remaining Taylor coefficients are given by F;1 ¼ 1

4
f0ð0Þ,

F;2 ¼ 1
2
f0ð0Þ, andF;3 ¼ −f0ð0Þ. As a consequence, we find

that the deviation in Eq. (45) of the PPN parameters from
their general relativity values vanishes identically, ϵ ¼ 0, for
any theories of this class. Hence, we find that any fðTÞ-type
theories cannot be distinguished from general relativity by
their PPN parameters.

VII. CONCLUSION

We derived the post-Newtonian limit of a general class of
teleparallel gravity theories, whose action is given by a
Lagrange function depending on three scalar quantities
formed from the parity-even contractions of the torsion
tensor [27,28]. We found that the post-Newtonian limit of
these theories is fully determined by a single constant,
which is calculated from four Taylor coefficients of the
Lagrange function at the zeroth and first orders. The zeroth
order, which plays the role of a cosmological constant,
must be set to zero to achieve consistency between the
background (vacuum) field equations and the post-
Newtonian Ansatz of a flat Minkowski background (or
at least sufficiently small such as not to affect the Solar
System dynamics). The post-Newtonian parameters are
then fully determined by the first-order Taylor coefficients.
We displayed these coefficients in two different represen-
tations, both through the canonical contractions of the
torsion tensor and its axial-vector-tensor decomposition.
Our results show that the class of theories we considered

is fully conservative in the sense that it does not exhibit any
preferred frame or preferred location effects, or violation of
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energy-momentum conservation, which is reflected by the
fact that only the PPN parameters γ and β potentially
deviate from their general relativity values. Further, due to
the aforementioned fact that deviations of the PPN para-
meters from their general relativity values are governed by
a single combination of the constant Taylor coefficients,
large parts of the parameter space of possible theories are
left with a post-Newtonian limit which is identical to that of
general relativity, so that these theories are indistinguish-
able by Solar System experiments at the respective post-
Newtonian order. Further, we found that the Nordvedt
effect is absent in the whole class of theories we considered.
We then applied our findings to two particular subclasses

of theories: new general relativity [21] and fðTÞ gravity
[6,7]. In the former case, the aforementioned Taylor
coefficients are given by the three constant parameters
which determine the new general relativity action, and our
findings agree with the original calculation of γ and β from
a static, spherically symmetric Ansatz [21]. In the latter
case, we find that the post-Newtonian parameters are
identical to those of general relativity, so that any fðTÞ
gravity theory is consistent with Solar System observations.
Our work invites numerous generalizations and exten-

sions. In particular, one may consider more general
theories, for example, one derived from a general con-
stitutive relation [46], possibly including also parity-odd

terms. Another possibility is to include a coupling to scalar
fields [47–52], up to Horndeski-like teleparallel theories
[53,54]. This would extend previous calculations of the
PPN parameters for specific theories in this class [55–57].
Further, taking inspiration from the so-called trinity of
gravity [1], one may consider extensions to the symmetric
teleparallel equivalent of gravity [58], and apply the para-
metrized post-Newtonian formalism to generalized theories
based on the symmetric teleparallel geometry [59–63].
Another possible extension would be studying the motion
of compact objects at higher orders in the post-Newtonian
expansion, in order to derive the emitted gravitational
waves [64].
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[61] J. B. Jiménez, L. Heisenberg, and T. S. Koivisto, Telepar-
allel Palatini theories, J. Cosmol. Astropart. Phys. 08 (2018)
039.

[62] L. Järv, M. Rünkla, M. Saal, and O. Vilson, Nonmetricity
formulation of general relativity and its scalar-tensor ex-
tension, Phys. Rev. D 97, 124025 (2018).

[63] M. Rünkla and O. Vilson, Family of scalar-nonmetricity
theories of gravity, Phys. Rev. D 98, 084034 (2018).

[64] L. Blanchet, Gravitational radiation from post-Newtonian
sources and inspiralling compact binaries, Living Rev.
Relativity 17, 2 (2014).

ULBOSSYN UALIKHANOVA and MANUEL HOHMANN PHYS. REV. D 100, 104011 (2019)

104011-12

72



Chapter 6

Propagation of gravitational
waves in teleparallel gravity
theories



Reprinted paper with permission from
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Propagation of gravitational waves in teleparallel gravity theories
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We investigate the propagation of gravitational waves in the most general teleparallel gravity model with
second order field equations as perturbations around the Minkowski background. We argue that in this case
the most general Lagrangian at the first nonvanishing order of the perturbations is given by a linear
combination of quadratic invariants and hence coincides with the well-known new general relativity model.
We derive the linearized field equations and analyze them using the principal polynomial and the Newman-
Penrose formalism. We demonstrate that all gravitational wave modes propagate at the speed of light, and
there are up to six possible polarizations. We show that two tensorial modes of general relativity are
always present, and the number of extra polarizations depends on the free parameters of the new general
relativity model.

DOI: 10.1103/PhysRevD.98.124004

I. INTRODUCTION

Modified gravity theories are a viable alternative to dark
energy in addressing the problem of accelerated expansion
of the Universe [1,2]. A novel class of modified gravity
models that caught a lot of attention recently is the so-called
modified teleparallel theories. These theories are motivated
by the fact that the ordinary general relativity (GR) can be
reformulated using the teleparallel geometry, resulting in a
theory known as the teleparallel equivalent of general
relativity (TEGR) or shortly just teleparallel gravity [3–10].
Whereas TEGR is equivalent to the ordinary formulation

of GR in terms of curvature in all physical predictions, this
equivalence is lost when we consider modified gravity
theories based on these different underlying geometries.
The most well-known example is the case of fðTÞ gravity,
constructed in analogy with fðRÞ gravity, where the
Lagrangian is taken to be an arbitrary function of the
so-called torsion scalar, which defines the TEGR action
[11–14]. When a nonlinear function f is considered, the
resulting fðTÞ theory represents a novel gravity model with
rich dynamics distinctive from fðRÞ gravity. See [15] for an
extensive overview.
The recent discovery of gravitational waves [16,17]

opened a new way to test various modified theories of
gravity [18–24]. This motivates a study of gravitational
waves in modified gravity theories and proper understand-
ing of their fundamental properties. Particularly interesting
are the questions about the number of polarization modes of

gravitational waves and their corresponding propagation
velocities. The case of fðRÞ gravity is well-understood,
and it has been shown that these theories all possess an
additional massive scalar gravitational wave mode [25–28]
compared to GR.
In the case of modified teleparallel theories, gravitational

waves have been studied first in the case of fðTÞ gravity
[29,30], where, in contrast to the fðRÞ case, it was shown
there are no extra propagating gravitational modes compared
to GR. As we will argue later, this follows from a simple
observation that fðTÞ gravity effectively reduces to TEGR at
the perturbative level, and hencewe obtain only the usual two
GR polarizations. Only very recently [31,32], it was shown
that new polarizationmodes appear if we extend fðTÞ gravity
by introducing scalar fields or higher-derivative terms of the
torsion in the caseof so-calledfðT; BÞ [33] andfðT; TGÞ [34]
theories, where B is the boundary term relating the
Riemannian curvature scalar with the torsion scalar and TG
is the teleparallel equivalent of the Gauss-Bonnet term.
In this paper we follow another approach and study

gravitational waves propagating around the Minkowski
background in the model known as new general relativity
(NGR) [35], where the Lagrangian is taken to be a most
general linear combination of quadratic parity preserving
torsion invariants.1 Our study is motivated by a simple
observation that, unless we introduce higher derivatives
or scalar fields, the most general teleparallel gravity
Lagrangian at the perturbative level is given by the linear

*manuel.hohmann@ut.ee
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1Note that sometimes “new general relativity” refers only to a
special subclass of these theories in which only one of the three
parameters we consider here is left free and two are fixed to a
specific value.
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combination of quadratic invariants of the torsion, i.e.,
NGR. For example, recently proposed fðTax; T ten; TvecÞ
gravity [36] and the so-called axiomatic electrodynamics
inspired models [37], which are both very general frame-
works designed to include all previously studied tele-
parallel models as special instances, reduce to the case
of NGR at the perturbative level.
We analyze the gravitational waves in the NGR model

using two methods. First, we consider a perturbative
analysis of the NGR model following the example of
[38,39] and analyze the resulting linearized field equations
by the method of the principal symbol. Second, we use the
Newman-Penrose formalism [40] and classify the resulting
polarizations according to the classification scheme intro-
duced in [41,42]. We show that all gravitational modes
propagate at the speed of light and derive how the number
of polarization modes depends on the free paramaters of the
NGR Lagrangian.
The outline of this paper is as follows. In Sec. II we

briefly introduce teleparallel geometry and the NGR model
as the most general teleparallel gravity at the perturbative
level. In Sec. III we introduce the principal symbol and
determine that all gravitational wave modes propagate at
the speed of light. In Sec. IV we use the Newman-Penrose
formalism to analyze the possible polarizations of gravi-
tational waves and show how they depend on the free
parameters of the NGR Lagrangian. We conclude this paper
with a brief discussion and outlook in Sec. V.
In this article we use the following notation. Latin letters

a; b;… are Lorentz indices, and Greek letters μ; ν;… are
spacetime coordinate indices. The Minkowski metric is
denoted by η and has components ηab ¼ diagð−1; 1; 1; 1Þ.

II. LINEARIZED TELEPARALLEL GRAVITY

We begin this article with a short review of the required
geometric notions in teleparallel gravity in Sec. II A. We
then recall the NGR Lagrangian in Sec. II B, where we also
derive the corresponding linearized field equations.

A. Teleparallel geometry

The fundamental variables in theories ofgravity formulated
in terms of teleparallelism are the tetrad 1-forms θa, their dual
vector fields ea and the curvature free spin connection ωa

b
generated by local Lorentz transformations Λa

b. In local
coordinates on spacetime they can be expressed as

θa¼θaμdxμ; ea¼eaμ∂μ;

ωa
bðΛÞ¼ωa

bμðΛÞdxμ¼Λa
qdðΛ−1Þqb¼Λa

q∂μðΛ−1Þqbdxμ:
ð1Þ

Moreover the tetrad 1-forms and their duals satisfy

θaðebÞ ¼ θaμebμ ¼ δab; θaμeaν ¼ δνμ; ð2Þ

and define a Lorentzian spacetime metric via

gμν ¼ ηabθ
a
μθ

b
ν; gμν ¼ ηabeaμebν: ð3Þ

Tensor fields can be expressed either in a coordinate or tetrad
basis. For a (1,1)-tensor Z we may for example write

Z ¼ Zμ
νdxν ⊗ ∂μ ¼ Za

bθ
b ⊗ ea: ð4Þ

Thus when we change an index from Latin to Greek, this
operation is done via multiplication with θaμ or eaμ,
respectively.
The building block of Lagrange densities is the torsion of

the spin connection given by

Ta ¼ Dθa ¼ ð∂μθ
a
ν þ ωa

bμθ
b
νÞdxμ ∧ dxν; ð5Þ

where the spin covariant derivative D ensures a covariant
transformation behavior under local Lorentz transforma-
tions of the tetrad [43,44]. More precisely, consider a tetrad
θ̂a which is related to the original tetrad by a local Lorentz
transformation Λ̃a

b, i.e., θ̂a ¼ Λ̃a
bθ

b. Then, the torsion
tensor of the tetrads is related by T̂a ¼ Λ̃a

bTb, where the
connections are given in terms of two further Lorentz
transformations Λ̂ and Λ,

ω̂a
b ¼ Λ̂a

cdðΛ̂−1Þcb;
ωa

b ¼ ðΛ̃−1ÞacΛ̂c
ddðΛ̃e

bðΛ̂−1ÞdeÞ ¼ Λa
ddðΛ−1Þdb: ð6Þ

In particular when one considers Λ̃ ¼ Λ̂ one chooses the
so-called proper tetrad or a tetrad in the Weitzenbock
gauge, for which ωa

b ¼ 0 [44].
The components of the torsion in local coordinates are

therefore canonically labeled by Ta ¼ 1
2
Ta

μνdxμ ∧ dxν. In
the following we will use the torsion components with
spacetime indices only obtained via Tα

μν ¼ Ta
μνeaα.

B. Lagrange density and field equations

We consider here the new general relativity (NGR) [35]
model given by the action,

Ltotðθ;∂θ;Λ;∂Λ;ΦIÞ¼Lðθ;∂θ;Λ;∂ΛÞþLMðθ;ΦIÞ; ð7Þ

where LMðθ;ΦIÞ is the matter Lagrangian, which is
constructed via the usual minimal coupling principle.
The spacetime metrics appearing during that procedure
are understood as functions of the tetrads. The gravitational
Lagrangian is the most general Lagrange density quadratic
in the torsion tensor,

Lðθ; ∂θ;Λ; ∂ΛÞ
¼ jθjðc1Tρ

μνTρ
μν þ c2Tρ

μνTνμ
ρ þ c3Tρ

μρTσμ
σÞ

¼ jθjGαβ
μνρσTα

μνTβ
ρσ; ð8Þ
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where three real parameters c1, c2 and c3 define different
NGR theories. In the last equality we introduced the
supermetric [45] or constitutive tensor [37,46],

Gαβ
μνρσ ¼ c1gαβgρ½μgν�σ − c2δ

½μ
β g

ν�½ρδσ�α − c3δ
½μ
α gν�½ρδ

σ�
β ; ð9Þ

which will turn out to be convenient for the following
analysis. The appearing spacetime metric g is understood as
a function of the tetrads (3). The teleparallel equivalent of
general relativity (TEGR) is included in the NGR class of
gravity theories for the choice c1 ¼ 1

4
; c2 ¼ 1

2
and c3 ¼ −1.

To analyze the propagation of gravitational waves for
NGR gravity around the Minkowski background we derive
the linearized field equations of the theory. To do so we fix
Cartesian coordinates ðxμ; μ ¼ 0;…; 3Þ and make the
following perturbative ansatz for the tetrad and the
Lorentz transformation defining the spin connection,

θaμ ¼ δaμ þ εuaμ ð10aÞ

eaμ ¼ δμa þ εvaμ ð10bÞ

Λa
b ¼ δab þ εwa

b; ð10cÞ

where ε is a perturbation parameter. The duality between θa

and ea implies to first order in ε that vaμδbμ ¼ −ubνδνa, and
Λ being a local Lorentz transformation implies that
wab ¼ −wba. The perturbative gauge transformations are

θ̂a ¼ Λ̃a
bθ

b ⇒ ûaμ ¼ w̃a
μ þ uaμ

Λa
d ¼ ðΛ̃−1ÞacΛ̂c

d ⇒ ŵa
b ¼ w̃a

b þ wa
b: ð11Þ

Moreover changing the index type from Lorentz to space-
time, to first order in the perturbation, is done with δaμ or
δμa, respectively, and raising and lowering any kind of
index is done with the Minkowski metric ηab or ημν,
respectively, or its inverse.
The torsion tensor can be expanded into the first order

fields as

Ta
μν ¼ 2∂ ½μθaν� þ 2ωa

b½μθbν� ¼ 2εð∂ ½μuaν� − ∂ ½μwa
ν�Þ

þOðε2Þ: ð12Þ

In this order of the perturbation theory we transform the
torsion components Ta

μν to the purely spacetime index
components Tα

μν, which are used in the Lagrangian,
and find the lowest order nonvanishing term in NGR
Lagrangian (8):

ε2Gαβ
μνρσð∂μuαν−∂μwα

νÞð∂ρuβσ−∂ρwβ
σÞþOðε3Þ: ð13Þ

The expression Gαβ
μνρσ is the zeroth order ofGαβ

μνρσ; i.e., all
metric components gμν in (9) are replaced by components of

the Minkowski metric ημν. Observe that the Lagrangian of
every teleparallel theory of gravity, which is constructed from
the torsion and the tetrad alone without involving higher
derivatives of the tetrad, has a lowest order term of the
kind (13).
The field equations to lowest nontrivial order are now

easily obtained from the Euler-Lagrange equations. The
Lagrangian only depends on the derivative of the funda-
mental variables u and w, and thus we find

0 ¼ ∂λ
∂L

∂∂λuτκ
⇔ 0 ¼ Gτβ

λκρσ∂λð∂ρuβσ − ∂ρwβ
σÞ; ð14Þ

0 ¼ ∂λ
∂L

∂∂λwτ
κ
⇔ 0

¼ ðGτβ
λκρσ − ηγτη

ξκGξβ
λγρσÞ∂λð∂ρuβσ − ∂ρwβ

σÞ; ð15Þ

where we use the antisymmetry of wμν in its indices to derive
the second equation or, in other words, allowed only anti-
symmetric variations of w; note that due to our restriction (6)
to flat spinconnections this is essentially the linearizedversion
of the restricted variation method introduced in [47]. Raising
the index τ the equations can be written as

0 ¼ Gτβλκρσ∂λ∂ρðuβσ − wβσÞ; ð16Þ

0 ¼ G½τjβλjκ�ρσ∂λ∂ρðuβσ − wβσÞ: ð17Þ

It is clear that these two sets of equations are not independent
of each other, but the latter is the antisymmetric part of the
former, a feature that has been discussed in the context of the
covariant formulation of teleparallel theories of gravity
[37,44]. Moreover it is clear that u and w are not independent
variables of the theory.
To proceed we introduce the new gauge invariant

[compare (11)] variable xβσ ¼ uβσ − wβσ , which must
satisfy the field equations,

0 ¼ Gτβλκρσ∂λ∂ρxβσ: ð18Þ

For further simplification we decompose xβσ into its
symmetric and antisymmetric part xβσ ¼ sβσ þ aβσ, which
allows us to analyze the field equations further. Using this
decomposition and the explicit form of G, see (9), they take
the form

0 ¼ Eτκ ¼ ∂ρ½ð2c1 − c2Þ∂ρaτκ − ð2c1 − c2Þ∂κaτρ

þ ð2c2 þ c3Þ∂τaρκ� þ ∂ρ½ð2c1 þ c2Þ∂ρsτκ

− ð2c1 þ c2Þ∂κsτρ þ c3ðητκð∂ρsββ − ∂βsρβÞ
− ητρð∂κsββ − ∂βsκβÞÞ�: ð19Þ

These equations can further be decomposed into a sym-
metric and into an antisymmetric part, which are indepen-
dent and given by
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0 ¼ ∂ρ½−ð2c1 þ c2 þ c3Þ∂ðτaκÞρ� þ ∂ρ½ð2c1 þ c2Þ∂ρsτκ

− ð2c1 þ c2 þ c3Þ∂ðτsκÞρ

þ c3ðητκð∂ρsββ − ∂λsρλÞ − ηρðτ∂κÞsββÞ�; ð20Þ

0 ¼ ∂ρ½ð2c1 − c2Þ∂ρaτκ þ ð2c1 − 3c2 − c3Þ∂ ½τaκ�ρ�
þ ∂ρ½ð2c1 þ c2 þ c3Þ∂ ½τsκ�ρÞÞ�: ð21Þ

Observe that for ð2c1 þ c2 þ c3Þ ¼ 0 the symmetric
and the antisymmetric field equations decouple. If one
further demands that (21) vanishes identically, in addi-
tion ð2c1 − c2Þ ¼ 0 and ð2c1 − 3c2 − c3Þ ¼ 0 have to be
satisfied, which implies c1 ¼ − 1

4
c3 and c2 ¼ − 1

2
c3. Hence

for all theories, whose Lagrangian is a multiple of the
TEGR Lagrangian, the antisymmetric part of the field
equations is satisfied trivially and only for those. We like to
point out that linearized field equations in the case of TEGR
have been studied in [39] and the fully general case, albeit
in a different representation, in [48,49].
In the following we will deduce the propagation velocity

and the polarization modes of the perturbations from these
field equations.

III. PRINCIPAL POLYNOMIAL AND SPEED
OF PROPAGATION

The propagation of waves satisfying a partial differential
equation is determined by the principal symbol and
principal polynomial of the field equations [50,51]. The
vanishing of the principal polynomial defines the wave
covectors k of the propagating degrees of freedom of the
theory and thus their propagation velocity.
The principal symbol is the highest derivative term of the

field equations where the partial derivatives are replaced by
wave covectors ∂ → ik. Here this corresponds to consider-
ing the field equations in Fourier space. From (18) we find

0 ¼ Gτβλκρσkλkρx̂βσ ¼ PτβκσðkÞx̂βσ; ð22Þ
where x̂βσ is the Fourier transform of our original field
variable xβσ and

PτβκσðkÞ ¼ c1
2
ητβðηðk; kÞηκσ − kκkσÞ

−
c2
4
ðkβkκηστ − kβkτηκσ þ kσkτηβκ

− ηðk; kÞηβκηστÞ − c3
4
ðkτkκησβ − kβkτηκσ

þ kσkβητκ − ηðk; kÞητκησβÞ: ð23Þ
The principal polynomial PðkÞ is given by the determinant
of the principal symbol, which is interpreted as a metric on
the space of fields yτκ ¼ PτβκσðkÞx̂βσ .
From the antisymmetry of the field equations in the

indices λκ and ρσ it is immediately clear that the principal
symbol is degenerate as fields of the form x̂βσ ¼ kσVβðkÞ

solve the field equations trivially. This is a clear sign of the
presence of gauge degrees of freedom in the theory. In order
to derive the principal symbol we must restrict the field
equations to the subspace of fields, on which they are
nondegenerate. This feature is common in field theories
with gauge degrees of freedom and appears also in general
premetric theories of electrodynamics [52] for example.
The field equations can be seen as a map from the space

of 4 × 4matrices x̂βσ to its duals. To identify the subspace V
of all 4 × 4 matrices on which the field equations are
nondegenerate we employ the following decomposition:

x̂βσ ¼ kβkσU þ Vβkσ þ kβWσ þQβσ; ð24Þ

where the scalar U, the 1-form components Vα andWα and
the (0, 2)-tensor Qβσ satisfy the constraints

kαVα¼0; kαWα¼0; kαQα
β¼0; kαQβ

α¼0: ð25Þ

The 4 degrees of freedomU and Vα cannot be dynamical as
they trivially solve the field equations. Remaining are
12 degrees of freedom, 4 − 1 ¼ 3 encoded in Wα and
16 − 7 ¼ 9 in Qαβ, which span the subspace V. Expanding
Qτκ further into its symmetric traceless and antisymmetric
part as well as its trace by writing Qτκ ¼ Sτκ þ Aτκþ
1
3
ðητκ − kτkκ

ηðk;kÞÞQσ
σ , and using (9), the Fourier space field

equations become

0 ¼ Êτκ ¼ ð2c1 þ c2 þ c3Þηðk; kÞkτWκ

þ ð2c1 þ c2Þηðk; kÞSτκ þ ð2c1 − c2Þηðk; kÞAτκ

þ 1

3
Qσ

σηðk; kÞð2c1 þ c2 þ 3c3Þ
�
ηκτ −

kτkκ

ηðk; kÞ
�
;

ð26Þ

where we use, for the sake of readability, the notation
ηðk; kÞ ¼ ημνkμkν. To analyze them further we observe that
they decompose into their contractions with k, their trace,
their symmetric traceless and antisymmetric part,

0 ¼ Êτκkτkκ; 0 ¼ Êτκkκ; ð27aÞ

0 ¼ Êτκkτ ¼ ð2c1 þ c2 þ c3Þηðk; kÞ2Wκ; ð27bÞ

0 ¼ Êτ
τ ¼ ð2c1 þ c2 þ 3c3Þηðk; kÞQτ

τ; ð27cÞ

0 ¼ Ê½τκ� −
k½τÊjσjκ�kσ
ηðk; kÞ ¼ ð2c1 − c2Þηðk; kÞAτκ; ð27dÞ

0 ¼ ÊðτκÞ − kðτÊjσjκÞkσ −
1

3

�
ητκ −

kτkκ

ηðk; kÞ
�
Êσ

σ

¼ ð2c1 þ c2Þηðk; kÞSτκ: ð27eÞ
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The first two equations are satisfied trivially for any choice of parameters c1, c2 and c3. The remaining four nontrivial
field equations can be represented by a block diagonal matrix acting on a field space vector which is an element of V:

ηðk; kÞ

0
BBBB@

ð2c1 þ c2 þ c3Þηðk; kÞ 0 0 0

0 ð2c1 þ c2 þ 3c3Þ 0 0

0 0 ð2c1 − c2Þ 0

0 0 0 ð2c1 þ c2Þ

1
CCCCA

0
BBBB@

Wκ

Qτ
τ

Âτκ

Ŝτκ

1
CCCCA ¼

0
BBBB@

0

0

0

0

1
CCCCA: ð28Þ

Due to their simple nature the principal polynomial is now easily obtained as determinant of the above matrix,

PðkÞ ¼ ð2c1 þ c2 þ c3Þ3ð2c1 þ c2 þ 3c3Þð2c1 − c2Þ3ð2c1 þ c2Þ5ðηðk; kÞÞ15: ð29Þ

A necessary nontrivial solution to satisfy the field equations
is that in which their wave covectors k are such that
PðkÞ ¼ 0. From the above equation (29) it is evident that
only null covectors of the Minkowski metric ηðk; kÞ ¼ 0
realize this condition. Hence we find that for NGR theories
of gravity, perturbations propagate with the speed of light
determined by Maxwell electrodynamics on Minkowski
spacetime.
Wewould like to remark that this feature can also already

be seen from the decomposed Fourier space field equa-
tions (27b) to (27e). For all field equations there can only
exist a nontrivial solution of the field Wκ, Qτ

τ; Sτκ or Aτκ if
and only if ηðk; kÞ vanishes, so all field modes in the
theory are massless. For theWκ mode we find a double pole
in its propagator, which is consistent with [49,53]. For
ηðk; kÞ ≠ 0 the only solution of the field equations is that
the fields themselves vanish identically.

IV. NEWMAN-PENROSE FORMALISM
AND POLARIZATIONS

We now focus on the polarization of gravitational waves.
As we have seen in the previous section, gravitational waves
in new general relativity are described by Minkowski null
waves, independently of the choice of the parameters c1, c2,
and c3. This allows us to make use of the well-known
Newman-Penrose formalism [40] in order to decompose the
linearized field equations into components, which directly
correspond to particular polarizations. We then employ the
classification scheme detailed in [41,42], which character-
izes the allowed polarizations of gravitational waves in a
given gravity theory by a representation of the little group,
which is the two-dimensional Euclidean group E(2) in case
of null waves. In this section we determine the E(2) class of
new general relativity for all possible values of the param-
eters c1, c2, and c3.
The main ingredient of the Newman-Penrose formalism

is the choice of a particular complex double null basis of the
tangent space. In the following, we will use the notation of
[54] and denote the basis vectors by lμ, nμ, mμ, and m̄μ. In
terms of the canonical basis vectors of the Cartesian
coordinate system they are defined as

l ¼ ∂0 þ ∂3; n ¼ 1

2
ð∂0 − ∂3Þ;

m ¼ 1ffiffiffi
2

p ð∂1 þ i∂2Þ; m̄ ¼ 1ffiffiffi
2

p ð∂1 − i∂2Þ: ð30Þ

We now consider a plane wave propagating in the positive
x3 direction, which corresponds to a single Fourier mode.
The wave covector then takes the form kμ ¼ −ωlμ, and the
symmetric and antisymmetric parts of the tetrad perturba-
tions can be written in the form

sμν ¼ Sμνeiωu; aμν ¼ Aμνeiωu; ð31Þ
where we introduced the retarded time u ¼ x0 − x3, and the
wave amplitudes are denoted Sμν and Aμν.
Recall that we consider minimal coupling between

gravity and matter, i.e., coupling only through the metric
seen as function of the tetrad but not through the flat spin
connection. This is the usual coupling prescription for non-
spinning matter, which we will henceforth assume. It
follows from this choice of the matter coupling that test
particles follow the geodesics of the metric and hence the
autoparallel curves of its Levi-Civita connection. The effect
of a gravitational wave on an ensemble of test particles, or
any other type of gravitational wave detector, such as the
mirrors of an interferometer, is therefore described by the
corresponding geodesic deviation equation. The observed
gravitational wave signal hence depends only on the
Riemann tensor derived from the Levi-Civita connection.
As shown in [42], the Riemann tensor of a plane wave is
determined completely by the six so-called electric com-
ponents. For the wave (31), these can be written as

Ψ2 ¼ −
1

6
Rnlnl ¼

1

12
ḧll;

Ψ3 ¼ −
1

2
Rnlnm̄ ¼ −

1

2
Rnlnm ¼ 1

4
ḧlm̄ ¼ 1

4
ḧlm;

Ψ4 ¼ −Rnm̄nm̄ ¼ −Rnmnm ¼ 1

2
ḧm̄ m̄ ¼ 1

2
ḧmm;

Φ22 ¼ −Rnmnm̄ ¼ 1

2
ḧmm̄; ð32Þ
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where dots denote derivatives with respect to u and the
metric perturbation components hμν are derived from the
perturbation ansatz (10) as

gμν ¼ ημν þ hμν ¼ ημν þ εðημρuρν þ ηνρuρμÞ ¼ ημν þ 2εsμν:

ð33Þ

Note that they depend only on the symmetric perturbation
of the tetrad, so that these are the only components whose
presence or absence we must determine. We now examine
which of the components (32) may occur for gravitational
waves satisfying the linearized field equations (19).
Inserting the wave ansatz (31) and writing the gravita-

tional Euler-Lagrange tensor Eμν in the Newman-Penrose
basis, we find that the eight component equations,

Ell ¼ Elm ¼ Eml ¼ Enl ¼ Emm ¼ Em̄ m̄ ¼ Elm̄ ¼ Em̄l ¼ 0;

ð34Þ

are satisfied identically, while the remaining eight compo-
nent equations take the form

0¼Enn¼ð2c1þc2þc3Þs̈nlþ2c3s̈mm̄þð2c1þc2þc3Þänl;
ð35aÞ

0 ¼ Emn ¼ ð2c1 þ c2Þ̈sml þ ð2c1 − c2Þäml; ð35bÞ

0 ¼ Em̄n ¼ ð2c1 þ c2Þ̈sm̄l þ ð2c1 − c2Þäm̄l; ð35cÞ

0 ¼ Enm ¼ −c3 ̈sml þ ð2c2 þ c3Þäml; ð35dÞ

0 ¼ Enm̄ ¼ −c3 ̈sm̄l þ ð2c2 þ c3Þäm̄l; ð35eÞ

0 ¼ Emm̄ ¼ Em̄m ¼ −c3 ̈sll; ð35fÞ

0 ¼ Eln ¼ ð2c1 þ c2Þ̈sll: ð35gÞ

We now distinguish the following cases, which are also
visualized in the diagram in Fig. 1, which we explain later
in this section:

(i) 2c1 þ c2 ¼ c3 ¼ 0: In this case Eqs. (35f) and (35g)
are satisfied identically for arbitrary amplitudes Sll.
For waves of this type the corresponding component
Rnlnl ¼ −6Ψ2 of the Riemann tensor, which de-
scribes a longitudinally polarized wave mode, is
allowed to be nonzero. Following the classification
detailed in [42], they belong to the E(2) class II6 with
six polarizations. This case corresponds to the two
blue points in Fig. 1, which is actually a line in the
three-dimensional parameter space and hence a
single point in the projected parameter space shown
in the diagram, which happens to lie on the cut
c3 ¼ 0 and hence appears twice on the circular
perimeter.

(ii) 2c1ðc2 þ c3Þ þ c22 ¼ 0 and 2c1 þ c2 þ c3 ≠ 0: It
follows from the second condition that at least
one of 2c1 þ c2 or c3 must be nonzero. Hence,
either Eq. (35f) or Eq. (35g) imposes the condition
Sll ¼ 0, so that there is no longitudinal mode Ψ2.
The first condition is equivalent to a vanishing deter-
minant of the matrix,

�
2c1 þ c2 2c1 − c2
−c3 2c2 þ c3

�
; ð36Þ

so that Eqs. (35b), (35c), (35d) and (35e) allow for
nonvanishing solutions. This further implies that the
two columns of this matrix are linearly dependent
and hence proportional to each other. However, from
the second condition further follows that neither
column vanishes. Hence, at least one of the pairs
(35b), (35c) and (35d), (35e) of equations must be
nontrivial, with the coefficients of both the sym-
metric and the antisymmetric tetrad perturbation
nonvanishing. Hence, nonvanishing solutions of
these equations have both symmetric and antisym-
metric contributions and, therefore, in particular
nonvanishing Slm and Slm̄; however, recall that the

FIG. 1. Visualization of the parameter space using polar
coordinates. The radial axis shows the zenith angle θ, whereas
the (circular) polar axis shows the azimuth angle ϕ, following the
definition (38). Blue points: 2c1 þ c2 ¼ c3 ¼ 0, class II6, 6 pola-
rizations. Green line: 2c1 þ c2 þ c3 ≠ 0; 2c1ðc2 þ c3Þ þ c22 ¼ 0,
class III5, 5 polarizations. White area: 2c1ðc2 þ c3Þ þ c22 ≠ 0;
2c1 þ c2 þ c3 ≠ 0, class N3, 3 polarizations. Red line: 2c1 þ
c2 þ c3 ¼ 0; c3 ≠ 0, class N2, 2 polarizations.
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antisymmetric part does not contribute to the geo-
desic deviation equation, and so we do not discuss it
here. It then follows that Rnlnm̄ ¼ −2Ψ3, whose
complex components describe two vector polariza-
tions, is allowed to be nonzero. Waves of this type
belong to the E(2) class III5 encompassing five
polarizations. This case is represented by the green
line in Fig. 1.

(iii) 2c1ðc2 þ c3Þ þ c22 ≠ 0 and 2c1 þ c2 þ c3 ≠ 0: In
this case the only linearized field equation which
allows for nonvanishing solutions is Eq. (35a). Here
the only relevant component for the geodesic
deviation is Smm̄, so that we can neglect the other
terms. This component is allowed to be nonvanish-
ing and hence allows a nonvanishing component
Rnmnm̄ ¼ −Φ22 of the Riemann tensor. The corre-
sponding scalar wave mode is called the breathing
mode. The remaining equations impose the con-
dition Ψ2 ¼ Ψ3 ¼ 0, so that the longitudinal and
vector modes are prohibited. This wave has the E(2)
class N3 and thus three polarizations. Almost all
points of the parameter space, shown in white in
Fig. 1, belong to this class.

(iv) 2c1 þ c2 þ c3 ¼ 0 and c3 ≠ 0: It follows immedi-
ately from Eq. (35f) that Sll ¼ 0, so that the
longitudinal mode Ψ2 is prohibited. Taking the
sum of the pairs (35b), (35c) and (35d), (35e) of
equations and replacing c2 by −2c1 − c3 one further
finds that Slm ¼ Slm̄ ¼ 0, and hence also the vector
modes Ψ3 must vanish. Finally, Eq. (35a) imposes
the condition Smm̄ ¼ 0, so that also the breathing
mode Φ22 is prohibited. It thus follows that the only
unrestricted electric components of the Riemann
tensor are Rnmnm ¼ −Ψ̄4 and its complex conjugate,
corresponding to two tensor modes. The E(2) class
of this wave is N2, with two polarizations. This case
is shown as a red line in Fig. 1. Note in particular that
TEGR, marked as a red point, belongs to this class,
as one would expect. This subclass corresponds to
the so-called one-parameter family of teleparallel
models and has received particular attention in
previous studies [48]. It has been argued that this
condition is necessary to avoid ghosts [49,53].
However, we will not address the question of ghosts
in this article and leave this discussion for a
separate study.

We have visualized the aforementioned cases in Fig. 1,
which we constructed as follows. We first made use of our
assumption that at least one of the parameters c1, c2, and c3
is nonvanishing and introduced normalized parameters,

c̃i ¼
ciffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c21 þ c22 þ c23
p ; ð37Þ

for i ¼ 1, 2, 3. One easily checks that the E(2) classes
we found only depend on these normalized parameters. We

then introduced polar coordinates ðθ;ϕÞ on the unit sphere
to express the parameters as

c̃1 ¼ sinθ cosϕ; c̃2 ¼ sinθ sinϕ; c̃3 ¼ cosθ: ð38Þ

As the E(2) class is the same for antipodal points on the
parameter sphere, we restrict ourselves to the hemisphere
c̃3 ≥ 0, and hence 0 ≤ θ ≤ π

2
; this is equivalent to identify-

ing antipodal points on the sphere and working with the
projective sphere instead, provided that we also identify
antipodal points on the equator c̃3 ¼ 0. We then considered
ðθ;ϕÞ as polar coordinates on the plane in order to draw the
diagram shown in Fig. 1. Note that antipodal points on the
perimeter, such as the two blue points, are identified with
each other as they describe the same class of theories.
This concludes our discussion of gravitational wave

polarizations. We have seen that depending on the param-
eters c1, c2, and c3 we obtain the E2 class II6, III5, N3 or N2,
with N3 filling most of the parameter space. We have also
seen that there exists a family of theories besides TEGR
which is of class N2 and thus exhibits the same two tensor
modes as in general relativity. Theories in this class
therefore cannot be distinguished from general relativity
by observing the polarizations of gravitational waves alone.

V. CONCLUSION

We studied the propagation of gravitational waves in the
most general class of teleparallel gravity theories whose
action is quadratic in the torsion tensor, known as new
general relativity. The wave we considered is modeled as a
linear perturbation of a diagonal tetrad corresponding to a
Minkowski background metric. We derived the principal
polynomial of the linearized field equations and found that
gravitational waves propagate at the speed of light; i.e.,
their wave covector must be given by a null vector of the
Minkowski background. Further, we made use of the
Newman-Penrose formalism to derive the possible polar-
izations of gravitational waves. Our results show that the
two tensor polarizations, which are present also in general
relativity, are allowed for the whole class of theories we
considered, whereas additional modes—two vector modes
and up to two scalar modes—may be present for particular
models within this class. We found that the teleparallel
equivalent of general relativity is not the unique theory
exhibiting exactly two polarizations, but there is a one-
parameter family of theories with the same property. It thus
follows that observations of gravitational wave polariza-
tions may only give partial results on the parameter space of
these theories.
We remark that, although we restricted our analysis to

theories whose action is quadratic in the torsion tensor, our
results are valid for a significantly larger class of theories.
This is due to the fact that the torsion is linear in the tetrad
perturbations, so that the action is already quadratic in the
perturbations. Hence, any higher order correction terms
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would have no influence on the linearized field equations.
This observation agrees with previous results that there are
no additional gravitational polarizations in fðTÞ gravity
compared to general relativity [29] as up to the required
perturbation order the Lagrangian can be approximated as
fðTÞ ¼ fð0Þ þ f0ð0ÞT þOðT2Þ, which is equivalent to
general relativity with a cosmological constant. An exten-
sion to the class of theories discussed in [36] is shown
in [55].
Although higher order terms in the action do not

influence the linear perturbations around a Minkowski
background, they certainly have an influence on the
cosmological dynamics of the theory and therefore on
the expansion history of the Universe. This modified
expansion history might thus also leave an imprint on
the observed gravitational waves propagating in a cosmo-
logical background. An interesting extension of our work
would be to study gravitational waves as a perturbation to a
tetrad corresponding to a Friedmann-Lemaitre-Robertson-
Walker metric, taking into account modifications of the
background dynamics arising from higher order torsion
terms. Note that such modifications do not show up in the
quadratic action we considered in this article as all terms in
the gravitational action become proportional to the square
of the Hubble parameter in the case of cosmological
symmetry, and so the action reduces to the teleparallel
equivalent of general relativity, up to a constant factor.

Another possible class of extensions is to consider
additional fields nonminimally coupled to torsion and to
study their influence both on the speed and the polarization
of gravitational waves. A canonical example is given by
scalar torsion theories [56–59] constructed from the TEGR
torsion scalar and an additional scalar field, where one
would expect the presence of an additional scalar mode
compared to general relativity as it is also the case for scalar
curvature gravity. These theories can be extended by
replacing the TEGR torsion scalar with the NGR torsion
scalar which defined the Lagrangian considered in this
article.
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Symmetric teleparallel gravity (STG) offers an interesting third geometric interpretation of gravitation
besides its formulation in terms of a spacetime metric and Levi-Civita connection or its teleparallel
formulation. It describes gravity through a connection which is not metric compatible, however is torsion
and curvature free. We investigate the propagation velocity of the gravitational waves around Minkowski
spacetime and their potential polarizations in a general class of STG theories, the so-called “newer general
relativity” class. It is defined in terms of the most general Lagrangian that is quadratic in the nonmetricity
tensor, does not contain its derivatives and is determined by five free parameters. In our work we employ
the principal symbol method and the Newman-Penrose formalism, to find that all waves propagate with the
speed of light, i.e., on the Minkowski spacetime light cone, and to classify the theories according to the
number of polarizations of the waves depending on the choice of the parameters in the Lagrangian. In
particular it turns out that there exist more theories than just the reformulation of general relativity which
allow only for two polarization modes. We also present a visualization of the parameter space of the theory
to better understand the structure of the model.

DOI: 10.1103/PhysRevD.99.024009

I. INTRODUCTION

The observation of gravitational waves (GWs) has
opened the possibility of a new window on strong field
physics [1] that is not accessible by electromagnetic
observations alone. While GWobservations have continued
to be confirmed, the first three-detector observation holds
important significance in that such measurements allow for
signal localization and, more to the purpose of this work,
constraints on the six potential polarization modes of metric
theories of gravity [2]. Moreover there has been the first
multimessenger observations [3] which constrain the differ-
ence of the propagation velocity between GW and electro-
magnetic waves in vacuum, which is different from zero
in various modified theories of gravity [4–10]. Thus GW
observations offer the possibility for strong constraints on
theories predicting extra modes and a propagation velocity
different from the speed of light, and so may be the route to
reducing the landscape of potential gravitational theories
consistent with observation [11].

Viewed through the prism of the connection, metric
theories of gravity can be classified into three broad classes
of theories. The ones which use the Levi-Civita connection
of the metric and its curvature, the ones which use the
tetrads of a metric and their curvature free, metric-
compatible, Weitzenböck connection with torsion and
the ones which use a curvature and torsion free symmetric
teleparallel connection that is not metric compatible. This
classification nicely highlights the sometimes overlooked
point that curvature is a property of the connection and not
of the metric tensor or the manifold [12]. It becomes a
property of the metric only through the use of the Levi-
Civita connection. For the description of gravity it is
remarkable that general relativity (GR) and the Einstein
equations can be equivalently formulated in terms of either
of the connections just mentioned [13–15], i.e., all three
connections can be used to define Lagrangians whose
Euler-Lagrange equations coincide with the Einstein equa-
tions for a particular choice of contributing terms.
Historically most used for the construction of GR and

extended theories of gravity [16] is the Levi-Civita con-
nection, resulting mainly in fðRÞ, fðR;GÞ and similar
theories. However, the use of torsion and nonmetricity
allow for another kind of generalization [17]. In particular,
the irreducible contributions of the Lagrangian of these two
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theories can be elevated to arbitrary coupling coefficients
with a limit to their GR equivalent for a particular
numerical choice. These two avenues of generalization
are important because they may provide constraints on
these novel and not extensively studied generalizations
which may lead to a better understanding of the unique
coincidence that GR appears to represent. Moreover, by
altering the connection a new landscape of gravitational
theories can be studied which differ from each other at a
fundamental level in the classical regime [18].
GWs offer the possibility of a model independent test of

the polarization modes a theory exhibits [19,20]. In
principle, this provides a strict test of which theories are
realistic in the strong field regime. Thus far, the topic has
not been studied as well for STG theories, as for torsion
based (or teleparallel) gravity theories. In teleparallel
gravity [21,22], the propagation of GW modes has been
shown to have a varied nature depending on the particular
form the theory takes. This was first studied in Ref. [23]
where it was found that the straightforward generalizations
of the teleparallel equivalent of GR (TEGR), namely fðTÞ
theories, exhibit the same polarization structure as that of
GR and thus is indistinguishable at the level of GW modes.
Thework then was further confirmed and expanded upon to
encompass scalar fields and a generalized form of fðRÞ
gravity [24], the speed of the GWs and the effect of the
three-detector observation was then studied in Ref. [25],
which then culminated in the explicit expression of the
modes in these extended teleparallel theories in Ref. [26].
In Refs. [27,28], the general scenario of decomposed
Lagrangians of both the torsional and nonmetricity sit-
uations is considered with clear groundwork for further
analysis in either theory. Another approach to the propa-
gator of generalized symmetric teleparallel gravity theories
including higher derivative orders and making use of the
Barnes-Rivers formalism can be found in Ref. [29].
In the present study, we investigate the GW polarization

modes of the massless contribution in the general form of
the STG setting. As in the teleparallel setting, since the
Lagrangian can be divided into irreducible contributors,
it is interesting to understand the GW mode structure that
this seemingly arbitrary landscape provides [14,17]. We
then represent the resulting parameter space of this theory
in a novel way, since the model has a lot of potential
avenues to it.
The paper is organized as follows. In Sec. II we briefly

introduce the key components of the model we are
considering and form the linearized field equations. This
is crucial to understanding the relevant contributions to the
GW modes. In Fourier space, the field equations are then
decomposed and the speed of GWs in STG is determine in
Sec. III to determine the polarization states the Newman-
Penrose formalism is considered in Sec. IV where these
states are depicted. Lastly, we close with a discussion in
Sec. V.

II. LINEARIZED GENERAL SYMMETRIC
TELEPARALLEL GRAVITY THEORIES

Before we derive the speed and polarization of gravita-
tional waves in symmetric teleparallel gravity, we need to
derive its linearized field equations. This is done in two
parts. In Sec. II A we briefly review the underlying
spacetime geometry and its gauge aspects. We turn our
focus to the dynamics of the theory in Sec. II B, where
we review the action and field equations, which we then
linearize after gauge fixing.

A. Geometry with nonmetricity

We start with a brief review of the underlying geometry
involving nonmetricity, which we use in this article. The
fundamental fields defining the geometry are a Lorentzian
metric gμν and an affine connection Γμ

νρ. The connection is
chosen to have vanishing curvature,

Rμ
νρσ ¼∂ρΓμ

νσ−∂σΓμ
νρþΓμ

ωρΓω
νσ−Γμ

ωσΓω
νρ≡0; ð1Þ

and vanishing torsion

Tμ
ρσ ¼ Γμ

σρ − Γμ
ρσ ≡ 0: ð2Þ

It does, however, possess in general nonvanishing non-
metricity,

Qαμν ¼ ∇αgμν: ð3Þ

Indices are raised and lowered using the metric gμν. Note
that due to the presence of nonmetricity this implies

Qα
μν ¼ gμρgνσQαρσ ¼ −∇αgμν: ð4Þ

The nonmetricity is obviously symmetric in its second and
third index, Qαμν ¼ Qανμ, which allows the definition of
two different traces,

Qα ¼ gμνQαμν; Q̃α ¼ gμνQμνα: ð5Þ

The most general connection which satisfies the assump-
tions (1) and (2) is generated by a coordinate transforma-
tion defined by functions ξμðxÞ in the form [14,30]

Γμ
νσ ¼

∂xμ
∂ξρ ∂ν∂σξ

ρ: ð6Þ

It further follows that it is always possible to find
coordinates such that

Γα
μν ≡ 0; ð7Þ

not only at a single point, but in an open neighborhood.
This particular choice of coordinates is known as the
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coincident gauge [17], and will be used throughout this
work. Note that this uniquely determines the coordinate
system ðxμÞwe use, up to linear transformations of the form

xμ ↦ ξ̃μðxÞ ¼ ξ̃μðx0Þ þ ðxν − xν0Þ∂νξ̃
μjx¼x0 ; ð8Þ

so that ∂μ∂νξ̃
α ≡ 0. It follows that we have no further gauge

freedom left to impose conditions on the metric degrees
of freedom (d.o.f.), except at a single point, as it is
conventionally the case, e.g., in general relativity. In the
coincident gauge covariant derivatives are replaced by
partial derivatives, so that the nonmetricity reads

Qαμν ¼ ∂αgμν: ð9Þ

Wewill make use of this formula in the following, when we
derive the linearized field equations.

B. Action and field equations

The starting point for the derivation of the linearized field
equations is the “newer general relativity” action for the
metric, the coordinate functions ξμ and the matter fields
[14,17,31], which can be written in the form

S½gμν; ξσ; χI� ¼ Sg½gμν; ξσ� þ Sm½gμν; χI�;

Sg ¼ −
Z
M

ffiffiffiffiffiffi−gp
2

Qd4x: ð10Þ

We assume that the matter part Sm of the action does not
depend on the affine connection Γα

μν½ξ�, but only on the
metric gμν and a set of matter fields χI. The gravitational
part Sg of the action is expressed in terms of the non-
metricity scalar Q, seen as a function of the metric and the
connection generating vector field, and is most conven-
iently defined via the nonmetricity conjugate

Pα
μν ¼ c1Qα

μν þ c2QðμανÞ þ c3Qαgμν þ c4δαðμQ̃νÞ

þ c5
2
ðQ̃αgμν þ δαðμQνÞÞ; ð11Þ

as

Q ¼ Qα
μνPα

μν: ð12Þ

This is the most general Lagrangian which is quadratic in
the nonmetricity, unless one introduces also derivatives
[29]. Choosing the parameters c1 ¼ − 1

4
; c2 ¼ 1

2
; c3 ¼ 1

4
;

c4 ¼ 0, and c5 ¼ − 1
2
one obtains the nonmetricity formu-

lation of general relativity [14,32], which is usually called
symmetric teleparallel equivalent of general relativity
(STEGR). By variation of the total action with respect to
the metric, one obtains the field equations

2ffiffiffiffiffiffi−gp ∇αð
ffiffiffiffiffiffi
−g

p
Pα

μνÞ þ PμσρQν
σρ

− 2Qρμ
σPρ

νσ −
1

2
Qgμν ¼ Tμν; ð13Þ

where the energy-momentum tensor Tμν is derived from
the matter action Sm. To obtain the second set of field
equations, we vary the total action with respect to the
components of the connection generating coordinate func-
tions ξμ. Note that this is equivalent to performing a
restricted variation of the flat, symmetric connection
Γα

μν, which must be of the form δΓα
μν ¼ ∇μ∇νδξ

α in
order to keep the vanishing torsion and curvature,
δTα

μν ≡ 0 and δRα
βμν ≡ 0. After twice performing inte-

gration by parts, carefully taking into account the terms
arising from∇μ

ffiffiffiffiffiffi−gp
due to the nonmetricity, this yields the

field equations

∇μ∇νð
ffiffiffiffiffiffi
−g

p
Pμν

αÞ ¼ 0: ð14Þ

Note that their right hand side vanishes, since we have
assumed no direct coupling of the matter to the flat,
symmetric connection, and so the hypermomentum van-
ishes. We remark that this second set of field equations can
alternatively be obtained from the diffeomorphism invari-
ance of the gravitational action, giving an equivalent of the
Bianchi identities, and the matter action, giving the matter
energy-momentum conservation. This shows that the field
equations (13) and (14) are not independent, and reflects
the presence of the gauge symmetry under diffeomor-
phisms. Hence, we may restrict ourselves to solving the
metric field equations (13).
In order to linearize the metric field equations, we now

adopt the coincident gauge Γα
μν ≡ 0 and consider a small

perturbation around a Minkowski background metric,

gμν ¼ ημν þ hμν: ð15Þ

The nonmetricity tensor thus takes the form

Qαμν ¼ ∂αhμν: ð16Þ

Further, we restrict ourselves to the vacuum field equations,
so that Tμν ≡ 0. Up to the linear order in the metric
perturbations hμν, the metric field equations (13) then
reduce to

0 ¼ 2c1□hμν þ ðc2 þ c4Þηασð∂α∂μhσν þ ∂α∂νhσμÞ
þ 2c3ημνητω□hτω þ c5ημνηωγηασ∂α∂ωhσγ

þ c5ηωσ∂μ∂νhωσ: ð17Þ

Note that up to higher order terms, indices are now raised
and lowered by the Minkowski metric ημν. This in
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particular applies to the d’Alembert operator □ ¼ ημν∂μ∂ν.
In the following, we will use the linearized equations (17)
in order to derive properties of gravitational wave
propagation.

III. PRINCIPAL POLYNOMIAL AND SPEED
OF PROPAGATION

To determine the propagation speed of gravitational
waves in nonmetricity theories of gravity we study the
field equations in Fourier space. A necessary condition
solutions of the field equations have to satisfy is,
that the so called principal polynomial of the equations,
as function of the wave covectors, has to vanish
[33,34].
The field equations in Fourier space are

0 ¼ Êμν ¼ ð2c1η−1ðk; kÞδλμδρν þ ðc2 þ c4Þkλðkμδρν þ kνδ
ρ
μÞ

þ 2c3ημνη−1ðk; kÞηλρ þ c5ðημνkλkρ þ ηλρkμkνÞÞĥλρ:
ð18Þ

The principal polynomial of the equation is the determinant
of the highest power in k term. To calculate this determinant
we decompose the equations with help of a decomposition
with respect to a gauge vector field κμ which is dual to kμ,
i.e., satisfies κμkμ ¼ 1.

ĥλρ ¼ Sλρ þ 2kðλVρÞ þ
1

3

�
ηλρ −

kλkρ
η−1ðk; kÞ

�
T

þ
�
kλkρ −

1

4
ηλρη

−1ðk; kÞ
�
U; ð19Þ

where the divergence free symmetric traceless part Sμν and
the divergence free vector Vμ satisfy

ηλρSλρ ¼ 0; kλSλρ ¼ 0; kρVρ ¼ 0: ð20Þ

The remaining scalars are the trace T ¼ ĥμνημν and the

weighted double divergence U ¼ 4
3

hμνkμkν

η−1ðk;kÞ2. Inserting this

decomposition into the field equations yields

0 ¼ Êμν ¼ 2c1η−1ðk; kÞSμν þ ð2c1 þ c2 þ c4Þη−1ðk; kÞ2kðμVνÞ þ
�
2

3
ðc1 þ 3c3Þη−1ðk; kÞημν þ

�
c5 −

2

3
c1

�
kμkν

�
T

þ
�
3

4

�
c5 −

2

3
c1

�
η−1ðk; kÞ2ημν þ

1

2
ð4c1 þ 3c2 þ 3c4Þη−1ðk; kÞkμkν

�
U ð21Þ

To further analyse them we consider their contractions with k, their trace and their symmetric traceless part

0 ¼ Êμνkμkν ¼ ð2c3 þ c5Þη−1ðk; kÞ2T þ
�
3

4
c5 þ

3

2
ðc1 þ c2 þ c4Þ

�
η−1ðk; kÞ3U; ð22Þ

0 ¼ Êμ
μ ¼ ð2c1 þ 8c3 þ c5Þη−1ðk; kÞT þ

�
3c5 þ

3

2
ðc2 þ c4Þ

�
η−1ðk; kÞ2U; ð23Þ

0 ¼ Êμνkμ −
kν

η−1ðk; kÞEρσkρkσ ¼ ð2c1 þ c2 þ c4Þη−1ðk; kÞ2Vν; ð24Þ

0 ¼ Êμν −
1

3

�
ημν −

kμkμ
η−1ðk; kÞ

�
Êσ

σ þ
1

3

�
ημν − 4

kμkν
η−1ðk; kÞ

�
Êρσkρkσ

η−1ðk; kÞ ¼ 2c1η−1ðk; kÞSμν: ð25Þ

To obtain the principal polynomial we can represent the decomposed equations as nearly diagonal matrix

η−1ðk;kÞ

0
BBBBBB@

ð2c3þc5Þη−1ðk;kÞ
�
3
4
c5þ 3

2
ðc1þc2þc4Þ

�
η−1ðk;kÞ2 0 0

ð2c1þ8c3þc5Þ
�
3c5þ 3

2
ðc2þc4Þ

�
η−1ðk;kÞ 0 0

0 0 ð2c1þc2þc4Þη−1ðk;kÞ 0

0 0 0 2c1

1
CCCCCCA

0
BBB@

T

U

Vν

Sμν

1
CCCA¼

0
BBB@
0

0

0

0

1
CCCA; ð26Þ

and calculate its determinant

PðkÞ ¼ ð3 × 23Þc51ð2c1 þ c2 þ c4Þ3ð3c25 − 4c21 − 12c3ðc2 þ c4Þ − 4c1ðc2 þ c4 þ c5 þ 4c3ÞÞη−1ðk; kÞ15: ð27Þ
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The necessary and nontrivial condition, solutions of the
field equations have to satisfy, is, that their wave covectors
k are such that PðkÞ ¼ 0. From the above Eq. (27) we find
that this implies η−1ðk; kÞ ¼ 0 must be satisfied, i.e., all
propagating modes propagate on the null cone of the
Minkowski metric, or in other words, with the vacuum
speed of light. We like to remark that this does not mean
that necessarily all the modes must be propagating d.o.f.
The conclusion here is only that if they are, then they are
propagating with the speed of light.
In case one considers nonmetricity gravity theories with

parameters c1 to c5, such that one ore more field equa-
tions (22)–(25) are solved trivially, for example c1 ¼ 0 for
Eq. (25) or 2c1 þ c2 þ c4 ¼ 0 for (24), the corresponding
modes, for example the tensor or vector mode, can not be
propagating d.o.f. of the theory. Their value must be
defined by constraints which must be satisfied on initial
data hypersurfaces. Such features become most visible in a
full fledged Hamiltonian analysis of the theory in consid-
eration, which shall be performed in the future.
To illustrate the statement just made we display the field

equations for the values of the coefficients in the non-
metricity equivalent of general relativity c1 ¼ − 1

4
; c2 ¼ 1

2
;

c3 ¼ 1
4
; c4 ¼ 0 and c5 ¼ − 1

2

0 ¼ 0; ð28Þ

0 ¼ Êμ
μ ¼ η−1ðk; kÞT −

3

4
η−1ðk; kÞ2U; ð29Þ

0 ¼ Êμνkμ −
kν

η−1ðk; kÞEρσkρkσ ¼ 0; ð30Þ

0 ¼ Êμν −
1

3

�
ημν −

kμkμ
η−1ðk; kÞ

�
Êσ

σ

þ 1

3

�
ημν − 4

kμkν
η−1ðk; kÞ

�
Êρσkρkσ

η−1ðk; kÞ
¼ 1

2
η−1ðk; kÞSμν: ð31Þ

The vector modes Vμ can not be dynamical d.o.f. since their
field equation is satisfied identically. The two scalar modes
are coupled and the tensor modes decouple. For general
relativity it is know that a thorough Hamilton analysis
yields that only two propagating degrees of remain and all
other are fixed by constraints.
As final remark of this section we would like to remark

here that, as in the analysis of linearized teleparallel
theories of gravity [27], higher order poles appear in the
propagators of the scalar and vector modes due do
the higher then linear appearance of η−1ðk; kÞ in the
Eqs. (22)–(24), which survive even in the non-metricity
equivalent of general relativity for one of the scalar modes
(29). On general grounds it is argued that the appearance of

such terms signals the existence of ghost in the theory [35].
However the existence of such terms in the GR equivalent
case shows that a more thorough analysis is required to
identify if the ghost mode is coupling to the propagating
field modes or not. The above mentioned complete
Hamilton analysis of the theory considered here will also
answer this question in the future.

IV. NEWMAN-PENROSE FORMALISM
AND POLARIZATIONS

We now focus on the polarization of gravitational waves.
As we have seen in the previous section, gravitational
waves in quadratic symmetric teleparallel gravity are
described by Minkowski null waves, independently of
the choice of the parameters c1;…; c5. This allows us to
make use of the well-known Newman-Penrose formalism
[36] in order to decompose the linearized field equations
into components, which directly correspond to particular
polarizations. We then employ the classification scheme
detailed in [19,20], which characterizes the allowed polar-
izations of gravitational waves in a given gravity theory by
a representation of the little group, which is the two-
dimensional Euclidean group E(2) in case of null waves.
In this section we determine the E(2) class of quadratic
symmetric teleparallel gravity for all possible values of the
parameters c1;…; c5.
The main ingredient of the Newman-Penrose formalism

is the choice of a particular complex double null basis of the
tangent space. In the following, we will use the notation of
[37] and denote the basis vectors by lμ; nμ; mμ; m̄μ. In terms
of the canonical basis vectors of the Cartesian coordinate
system they are defined as

l ¼ ∂0 þ ∂3; n ¼ 1

2
ð∂0 − ∂3Þ;

m ¼ 1ffiffiffi
2

p ð∂1 þ i∂2Þ; m̄ ¼ 1ffiffiffi
2

p ð∂1 − i∂2Þ: ð32Þ

We now consider a plane wave propagating in the positive
x3 direction, which corresponds to a single Fourier mode.
The wave covector then takes the form kμ ¼ −ωlμ and the
metric perturbations can be written as

hμν ¼ Hμνeiωu; ð33Þ

where we introduced the retarded time u ¼ x0 − x3 and the
wave amplitudes are denoted Hμν.
It follows from our choice of the matter coupling that

test particles follow the geodesics of the metric, and hence
the autoparallel curves of the Levi-Civita connection. The
effect of a gravitational wave on an ensemble of test
particles, or any other type of gravitational wave detector,
therefore depends only on the Riemann tensor derived from
the Levi-Civita connection. As shown in [20], the Riemann
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tensor of a plane wave is determined completely by the six
so-called electric components. For the wave (33), these can
be written as

Ψ2 ¼ −
1

6
Rnlnl ¼

1

12
ḧll;

Ψ3 ¼ −
1

2
Rnlnm̄ ¼ −

1

2
Rnlnm ¼ 1

4
ḧlm̄ ¼ 1

4
ḧlm;

Ψ4 ¼ −Rnm̄nm̄ ¼ −Rnmnm ¼ 1

2
ḧm̄ m̄ ¼ 1

2
ḧmm;

Φ22 ¼ −Rnmnm̄ ¼ 1

2
ḧmm̄; ð34Þ

where dots denote derivatives with respect to u. We
now examine which of the components (34) may occur
for gravitational waves satisfying the linearized field
equations (17).
Inserting the wave ansatz (33) and writing the gravita-

tional field strength tensor Eμν in the Newman-Penrose
basis, we find that the five component equations

0 ¼ Ell ¼ Elm ¼ Elm̄ ¼ Emm ¼ Em̄ m̄; ð35Þ

are satisfied identically, while the remaining five compo-
nent equations take the form

0 ¼ Enn ¼ 2c5ḧmm̄ − 2ðc2 þ c4 þ c5Þḧln; ð36aÞ

0 ¼ Enm ¼ −ðc2 þ c4Þḧlm; ð36bÞ

0 ¼ Enm̄ ¼ −ðc2 þ c4Þḧlm̄; ð36cÞ

0 ¼ Emm̄ ¼ c5ḧll; ð36dÞ

0 ¼ Eln ¼ −ðc2 þ c4Þḧll: ð36eÞ

Note in particular that the parameters c1 and c3 do not
appear in these equations. This can be understood by taking
a closer look at the linearized field equations (17). Here the
constants c1 and c3 appear in front of terms of the form
□hμν, where □ ¼ ημν∂μ∂ν is the d’Alembert operator of
the flat background. These terms vanish identically for the
null wave (33), independently of the amplitudes Hμν,
since the retarded time u is a light cone coordinate, and
so □eiωu ≡ 0. This can also be seen from the fact that the
corresponding wave covector kμ ¼ −ωlμ is null, i.e.,
η−1ðk; kÞ ¼ 0, which is a necessary condition for solving
the Eqs. (17) as shown in the preceding Sec. III. Hence, it is
a direct consequence of the form of the propagator that the
allowed polarizations depend only on the remaining
parameters c2, c4, c5. We now distinguish the following
cases, which are also visualized in the diagram in Fig. 1
which we explain later in this section:

(i) c2 þ c4 ¼ c5 ¼ 0: In this case Eqs. (36d) and (36e)
are satisfied identically for arbitrary amplitudes Hll.
For waves of this type the corresponding component
Rnlnl ¼ −6Ψ2 of the Riemann tensor, which de-
scribes a longitudinally polarized wave mode, is
allowed to be nonzero. Following the classification
detailed in [20], they belong to the E(2) class II6 with
six polarizations. This case corresponds to the two
blue points in Fig. 1, which is actually a line in the
three-dimensional parameter space, and hence a
single point in the projected parameter space shown
in the diagram, which happens to lie on the cut
c5 ¼ 0 and hence appears twice on the circular
perimeter.

(ii) c2 þ c4 ¼ 0 and c5 ≠ 0: It follows from the second
condition that Eq. (36d) prohibits a nonvanishing
amplitude Hll. Hence, there is no longitudinal mode
Ψ2. Equations (36b) and (36c) are satisfied identi-
cally for arbitrary amplitudes Hlm and Hlm̄. It then
follows that Rnlnm̄ ¼ −2Ψ3, whose complex com-
ponents describe two vector polarizations, is allowed
to be nonzero. Waves of this type belong to the E(2)
class III5, and there are five polarizations. This case
is represented by the green line in Fig. 1.

(iii) c2 þ c4 ≠ 0 and c2 þ c4 þ c5 ≠ 0: In this case it
follows from Eqs. (36b), (36c), and (36e) that Hll,
Hlm and Hlm̄ must vanish. Hence, the longitudinal

FIG. 1. Visualization of the parameter space. Blue Points:
c2 þ c4 ¼ c5 ¼ 0, class II6, 6 polarizations; green line:
c2 þ c4 ¼ 0; c5 ≠ 0, class III5, 5 polarizations; white area:
c2 þ c4 ≠ 0; c2 þ c4 þ c5 ≠ 0, class N3, 3 polarizations; red line:
c2 þ c4 þ c5 ¼ 0; c5 ≠ 0, class N2, 2 polarizations.

HOHMANN, PFEIFER, UALIKHANOVA, and SAID PHYS. REV. D 99, 024009 (2019)

024009-6

96



mode Ψ2 and vector modes Ψ3 are prohibited. The
remaining linearized field equation which allows for
nonvanishing solutions is Eq. (36a). In particular, it
allows for a non-vanishing amplitude Hmm̄, and
hence a nonvanishing component Rnmnm̄ ¼ −Φ22

of the Riemann tensor. The corresponding scalar
wave mode is called the breathing mode. This wave
has the E(2) class N3, exhibiting three polarizations.
Almost all points of the parameter space, shown in
white in Fig. 1, belong to this class.

(iv) c2 þ c4 þ c5 ¼ 0 and c5 ≠ 0: The linearized field
equations (36) in the Newman-Penrose basis now
yield the conditions Hll ¼ Hlm ¼ Hlm̄ ¼ Hmm̄ ¼ 0.
It thus follows that the longitudinal mode Ψ2, the
vector modes Ψ3 and also the breathing mode Φ22

must vanish. The only unrestricted electric compo-
nents of the Riemann tensor are therefore Rnmnm ¼
−Ψ̄4 and its complex conjugate, corresponding to
two tensor modes. The E(2) class of this wave is N2,
so that there are two polarizations. This case is
shown as a red line in Fig. 1. Note in particular that
STEGR, marked as a red point, belongs to this class,
as one would expect.

We have visualized the aforementioned cases in Fig. 1,
which we constructed as follows. We first made the
assumption that at least one of the parameters c2, c4, c5
is nonvanishing and introduced normalized parameters

c̃i ¼
ciffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c22 þ c24 þ c25

q ð37Þ

for i ¼ 2, 4, 5. One easily checks that the E(2) classes we
found only depend on these normalized parameters, except
for the case c2 ¼ c4 ¼ c5 ¼ 0 belonging to class II6. We
then introduced polar coordinates ðθ;ϕÞ on the unit sphere
to express the parameters as

c̃2¼ sinθcosϕ; c̃4¼ sinθsinϕ; c̃5¼ cosθ: ð38Þ

Since the E(2) class is the same for antipodal points on the
parameter sphere, we restrict ourselves to the hemisphere
c̃5 ≥ 0, and hence 0 ≤ θ ≤ π

2
; this is equivalent to identify-

ing antipodal points on the sphere and working with the
projective sphere instead, provided that we also identify
antipodal points on the equator c̃5 ¼ 0. We then considered
ðθ;ϕÞ as polar coordinates on the plane in order to draw the
diagram shown in Fig. 1. Note that antipodal points on the
perimeter, such as the two blue points, are identified with
each other, since they describe the same class of theories; in
fact, these blue points correspond to a straight line passing
through and including the origin c2 ¼ c4 ¼ c5 ¼ 0.
This concludes our discussion of gravitational wave

polarizations. We have seen that the parameters c1, c3
have no influence on the allowed polarizations, while
depending on the parameters c2, c4, c5 we obtain the E2

class II6, III5, N3 or N2, with N3 filling most of the
parameter space. We have also seen that there exists a four
parameter family of theories besides STEGR which is of
class N2 and thus exhibits the same two tensor modes as in
general relativity. Theories in this class therefore cannot
be distinguished from general relativity by observing the
polarizations of gravitational waves alone.

V. CONCLUSION

We studied the propagation of gravitational waves in the
most general class of symmetric teleparallel gravity theo-
ries whose action is quadratic in the nonmetricity tensor.
The wave we considered is modeled as a linear perturbation
of a Minkowski background metric in the coincident gauge,
in which the coefficients of the flat, symmetric connection
vanish. We derived the principal polynomial of the linear-
ized field equations and found that gravitational waves
propagate at the speed of light, i.e., their wave covector
must be given by a null covector of the Minkowski
spacetime background. Further, we made use of the
Newman-Penrose formalism to derive the possible polar-
izations of gravitational waves. Our results show that the
two tensor polarizations, which are present also in general
relativity, are allowed for the whole class of theories we
considered, while additional modes—two vector modes
and up to two scalar modes—may be present for particular
models within this class. We found that the symmetric
teleparallel equivalent of general relativity is not the unique
theory exhibiting exactly two polarizations, but there is a
four parameter family of theories with the same property.
It thus follows that observations of gravitational wave
polarizations may only give partial results on the parameter
space of these theories.
We remark that although we restricted our analysis to

theories whose action is quadratic in the nonmetricity
tensor, our results are valid for a significantly larger class
of theories. This is due to the fact that the nonmetricity is
linear in the metric perturbations, so that the action is
already quadratic in the perturbations. Hence, any higher
order correction terms would have no influence on the
linearized field equations. This is shown, e.g., in [27] for
the polarizations of gravitational waves in a more general
class of theories, whose Lagrangian is defined by a free
function of the five scalar terms quadratic in nonmetricity
considered in this article.
Another possible class of extensions is to consider

additional fields nonminimally coupled to nonmetricity
and to study their influence both on the speed and the
polarization of gravitational waves. A canonical example is
given by scalar-nonmetricity theories [18,30] constructed
from the STEGR nonmetricity scalar and an additional
scalar field, where one would expect the presence of an
additional scalar mode compared to general relativity
as it is also the case for scalar-curvature gravity. These
theories can be extended further by replacing the STEGR
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nonmetricity scalar with the general quadratic nonmetricity
scalar which defined the Lagrangian considered in this
article.
Finally, another interesting extension of our work would

be to study gravitational waves as a perturbation to a
Friedmann-Lemaitre-Robertson-Walker metric. One may
expect that in this case also nonmetricity terms of higher
then quadratic order in the Lagrangian would affect the
result, as they would lead to modifications of the back-
ground dynamics. This modified expansion history might
thus also leave an imprint on the observed gravitational
waves propagating in a cosmological background.
In conclusion, the formulation of theories of gravity in

the symmetric teleparallel/nonmetricity language allows
for promising extensions of GR which are consistent with
the basic gravitational wave observations. An analysis of
further observables in this particular class of theories, like

the calculation of PPN parameters, rotational curves of
galaxies and the cosmological expansion of the universe,
will explore their viability further in the future.
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We consider a generalized teleparallel theory of gravitation, where the action contains an arbitrary
function of the torsion scalar and a scalar field, fðT;ϕÞ, thus encompassing the cases of fðTÞ gravity and a
nonminimally coupled scalar field as subclasses. The action is manifestly Lorentz invariant when besides
the tetrad one allows for a flat but nontrivial spin connection. We derive the field equations and demonstrate
how the antisymmetric part of the tetrad equations is automatically satisfied when the spin connection
equation holds. The spin connection equation is a vital part of the covariant formulation, since it determines
the spin connection associated with a given tetrad. We discuss how the spin connection equation can be
solved in general and provide the cosmological and spherically symmetric examples. Finally, we generalize
the theory to an arbitrary number of scalar fields.
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I. INTRODUCTION

General relativity, which encodes the effects of gravity
in the curvature, has been remarkably successful in describ-
ing a wide range of phenomena. However, to give a
satisfactory account of cosmology would necessitate an
ad hoc inclusion of major extra matter ingredients respon-
sible for triggering the rapid expansion of the early Universe
(inflation), for the observed structure formation and galactic
rotations (dark matter), as well as for the accelerated
expansion of the present Universe (dark energy). These
problems keep motivating the study of extensions of general
relativity, whereby many different theories and approaches
have been proposed and considered [1–3]. Perhaps the most
popular and promising of those are generalizing the gravi-
tational action to be some function of the curvature scalar,
fðRÞ, and the inclusion of a nonminimally coupled scalar
field (scalar-tensor gravity). Such models arise naturally
when quantum effects are taken into account [4], but they
also happen to be favored in, e.g., describing the spectrum of
fluctuations from inflation [5–7] and naturally permit the
effective barotropic index weff < −1, as recent observations
seem to suggest [8,9].
From the geometric point of view, curvature is not a

property of spacetime per se but a property of the chosen
connection. General relativity adopts the Levi-Cività con-
nection, which implies vanishing torsion and nonmetricity
but allows nontrivial curvature. An alternative approach,
first probed by Einstein himself [10], would be to take the

Weitzenböck connection, which sets curvature and non-
metricity to zero but allows nontrivial torsion. The ensuing
theory where R is replaced by the torsion scalar T in the
action is known as teleparallel equivalent of general
relativity [11–14], since its observational predictions
exactly match those of general relativity. Things get more
interesting, however, when one considers an extended
theory, e.g., generalizing the action to fðTÞ [15,16] or
introducing a nonminimally coupled scalar field [17]. It
turns out that the extended theories based on torsion differ
from their counterparts based on curvature. This realization
launched a flurry of studies regarding dark energy, infla-
tion, black holes, and other solutions and properties of the
extended teleparallel theories [18].
There was a catch, though. Teleparallel gravity is usually

formulated in the formalism of a tetrad and spin connection,
the latter being independent of the former. In the tele-
parallel equivalent of general relativity, the spin connection
does not affect the tetrad field equations and can be chosen
arbitrarily [12]. Interpolating this property to the extensions
like fðTÞ or scalar-torsion gravity leads to a problematic
result, for the action fails to be locally Lorentz invariant
[19,20], violating the basics of the tetrad formalism. It was
argued that therefore these theories implied preferred frame
effects and acausality and were inhabited by extra spurious
degrees of freedom (d.o.f.) [21–24]. The Lorentz invariance
issue is fixed in the covariant formulation of the theory
[25], which allows a nontrivial spin connection compatible
with vanishing curvature, i.e., flat spin connection (but the
question of the d.o.f. is still under investigation [26,27]).
After accepting a nonvanishing spin connection, there

arises the obvious question of how to determine it. An
answer to the latter came only recently in the context of
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fðTÞ gravity. Namely, variation of the action with respect to
the spin connection by carefully maintaining the flatness
property yields an equation which fixes the remaining six
components of the spin connection [28,29]. This equation
involves only the first derivatives of the spin connection, so
one may ask whether the spin connection is an independent
dynamical quantity in fðTÞ gravity. One cannot set the spin
connection arbitrarily to zero but for a given tetrad must
make sure the spin connection satisfies the respective
condition. As a pleasant byproduct, it turns out that when
the condition on the spin connection is satisfied, the
antisymmetric part of the tetrad field equations vanishes
automatically [28]. It is remarkable that this feature also
holds in much more general theories of torsion [30,31].
In the current paper, we consider a generalized form of

scalar-torsion gravity where the action involves an arbitrary
function of the torsion scalar and a scalar field, fðT;ϕÞ,
thus including both the fðTÞ and nonminimally coupled
scalar models as particular subcases. After recalling the
main geometric formulas and defining the action in Sec. II,
we derive the field equations by varying the action with
respect to the tetrad, the flat spin connection, and the scalar
field in Sec. III. The spin connection equation generalizes
the result found for fðTÞ gravity [28,29] and shares the
property that it automatically makes the antisymmetric part
of the tetrad equations be identically satisfied, as we
demonstrate explicitly. In this section, we also show how
the spin connection equation is instrumental in guarantee-
ing the conservation of matter energy momentum and how
the field configurations with constant T and ϕ reduce the
equations to those of general relativity. In Sec. IV, we
discuss different possibilities of how to solve the spin
connection equation and concisely present the examples of
simple diagonal tetrads with the associated spin connection
corresponding to cosmologies of spatially flat, spherical,
and hyperbolic homogeneous and isotropic spacetimes;
Kasner anisotropic spacetime; as well as a general static
spherically symmetric spacetime. Later in Sec. V we
develop a further generalization of the theory to multiple
scalar fields and give the respective field equations. The
article ends in Sec. VI with a summary and discussion.

II. SCALAR-TORSION MODEL

We start our discussion with a brief outline of the scalar-
torsion model we consider in this article. In Sec. II A, we
define the kinematic variables of the theory and briefly
review the definition of the terms we will use in the action.
The action itself is presented in Sec. II B. Finally, in Sec. II
C, we list a number of special cases of our model that have
been discussed in the literature.

A. Kinematic variables

We derive our model from the covariant formulation of
teleparallel gravity [25,28], in which the basic variables in

the gravity sector are a tetrad haμ and a spin connection
ω
� a

bμ, and augment these by adding a scalar field ϕ. (Here,
the greek indices correspond to the spacetime coordinates,
while the latin indices pertain to an orthonormal frame with
Lorentzian metric ηab.) For a given spacetime metric,

gμν ¼ ηabhaμhbν; ð1Þ

the corresponding tetrad is not defined uniquely, but only
up to a local Lorentz transformation which transforms the
spin connection as well,

h0aμ ¼ Λa
bhbμ; ω

� 0a
bμ ¼ Λa

cω
� c

cμΛb
d þ Λa

c∂μΛb
c;

ð2Þ

here, Λa
b is the inverse of the Lorentz transformation

matrix Λa
b. The transformation (2) just reflects the pos-

sibility of switching between different local observers.
Demanding that the spin connection vanishes is a particular
gauge choice and in general means picking a specific (class
of) observer(s) among the others. The bullet (•) denotes
quantities related to the teleparallel spin connection, which
is chosen to be flat, i.e., having vanishing curvature,

R
� a

bμν ¼ ∂μω
� a

bν − ∂νω
� a

bμ þ ω
� a

cμω
� c

bν − ω
� a

cνω
� c

bμ: ð3Þ

The spin connection defines a spacetime connection with
connection coefficients

Γ
� ρ

μν ¼ haρD
�
νhaμ ¼ haρð∂νhaμ þ ω

� a
bνhbμÞ; ð4Þ

where D
�
μ is the gauge covariant Fock-Ivanenko derivative

and haμ denotes the inverse tetrad, which satisfies haμhbμ ¼
δab and haμhaν ¼ δνμ. The connection coefficients Γ

� ρ
μν are

defined such that the total covariant derivative of the tetrad
vanishes (metricity condition),

0 ¼ ∇� μhaν ¼ ∂μhaν þ ω
� a

bμhbν − Γ
� ρ

νμhaρ: ð5Þ

Note that we adopt the convention that the last index on the
connection coefficients is the “derivative” index, while the
first pair of indices is the “endomorphism” indices. This
connection in general has nonvanishing torsion

Tρ
μν ¼ Γ

� ρ
νμ − Γ

� ρ
μν: ð6Þ

We further use an open circle (̊) to denote quantities related

to the Levi-Cività connection ∇̊μ of the metric (1), the
connection coefficients of which are given by

Γ̊ρ
μν ¼

1

2
gρσð∂μgσν þ ∂νgμσ − ∂σgμνÞ: ð7Þ
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In contrast to the teleparallel connection, it has vani-
shing torsion but in general nonvanishing curvature. The
difference

Kρ
μν ¼ Γ

� ρ
μν − Γ̊ρ

μν ¼
1

2
ðTμ

ρ
ν þ Tν

ρ
μ − Tρ

μνÞ ð8Þ

is called the contortion tensor. For convenience, we will
denote the partial derivatives using the comma notation,
e.g., ∂μϕ≡ ϕ;μ.

B. Action

We now come to the action of our model, which we write
in the form

S ¼ Sg½haμ;ω� abμ;ϕ� þ Sm½haμ; χ�; ð9Þ

where Sg denotes the gravitational part, while Sm denotes
the matter part, and matter fields are collectively denoted by
χ. For the gravitational part, we choose the action

Sg ¼
1

2κ2

Z
M
d4xh½fðT;ϕÞ þ ZðϕÞgμνϕ;μϕ;ν�; ð10Þ

which depends on two free functions f and Z, while 2κ2 ¼
16πGN sets the Newtonian gravitational constant. Here,
h ¼ detðhaμÞ denotes the determinant of the tetrad, while T
is the torsion scalar defined as

T ¼ 1

2
Tρ

μνSρμν; ð11Þ

with the superpotential

Sρμν ¼ Kμν
ρ − δμρTσ

σν þ δνρTσ
σμ: ð12Þ

Here, the reader should be alerted that we use a convention
where the definition of the torsion scalar (11) contains a
factor 1

2
, while the superpotential (12) does not carry such a

factor [28]. Other authors, often in the field of fðTÞ gravity
and cosmology, use a different convention by including the
factor 1

2
in the definition of the superpotential and leaving

the torsion scalar without (e.g., Ref. [16]). Finally, in the
literature on the teleparallel equivalent of general relativity,
there is yet another convention which puts the factor 1

2

directly into the gravitational action, while keeping the
definitions of the torsion scalar and superpotential free of it
[12,25]. One should be careful, as these choices affect the
respective factors in the field equations as well.
The gravitational part Sg of the action is complemented

by a matter part Sm, which is assumed to depend only on
the tetrad haμ and a set of matter fields χ, the precise content
of which is not relevant for the purpose of this article. The
only relevant quantity is the energy-momentum tensor Θa

μ

defined from the variation of the matter action with respect
to the tetrad,

δhSm ¼ −
Z
M
d4xhΘa

μδhaμ: ð13Þ

We demand that Sm is invariant under local Lorentz
transformations (2), which then implies that the energy-
momentum tensor is symmetric [12],

0 ¼ Θ½μν� ¼ ha½μgν�ρΘa
ρ: ð14Þ

Further, we demand that Sm is invariant under diffeo-
morphisms, which implies that Θμν is covariantly con-
served with respect to the Levi-Cività connection,

∇̊μΘμν ¼ 0: ð15Þ

We will discuss this aspect further in Sec. III E.

C. Special cases

Let us note that the action (10) encompasses
several previously studied scalar-torsion theories as sub-
classes, e.g.:

(i) teleparallel equivalent of general relativity with a
minimally coupled scalar field (quintessence),

fðT;ϕÞ ¼ T − 2κ2VðϕÞ; ZðϕÞ ¼ κ2; ð16Þ

(ii) fðTÞ gravity [15,16],

fðT;ϕÞ ¼ fðTÞ; ZðϕÞ ¼ 0; ð17Þ

(iii) minimally coupled scalar field in fðTÞ gravity [32]

fðT;ϕÞ ¼ fðTÞ − 2κ2VðϕÞ; ZðϕÞ ¼ κ2; ð18Þ

(iv) teleparallel dark energy [17]

fðT;ϕÞ ¼ ð1þ 2κ2ξϕ2ÞT − 2κ2VðϕÞ;
ZðϕÞ ¼ κ2; ð19Þ

(v) generalized teleparallel dark energy [33]

fðT;ϕÞ ¼ ð1þ 2κ2ξfðϕÞÞT − 2κ2VðϕÞ;
ZðϕÞ ¼ κ2; ð20Þ

or [34]

fðT;ϕÞ ¼ ð1þ 2κ2ξfðϕÞÞFðTÞ − 2κ2VðϕÞ;
ZðϕÞ ¼ κ2; ð21Þ

(vi) Brans-Dicke–like action with constant kinetic term
coupling [23]

fðT;ϕÞ ¼ fðϕÞT − 2κ2VðϕÞ; ZðϕÞ ¼ ω; ð22Þ
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or with dynamical kinetic term coupling [35]

fðT;ϕÞ ¼ ϕT − 2κ2VðϕÞ; ZðϕÞ ¼ ωðϕÞ
ϕ

; ð23Þ

(vii) the scalar-torsion equivalent to FðTÞ gravity [23]

fðT;ϕÞ ¼ dF
dϕ

T − ϕ
dF
dϕ

− FðϕÞ; ZðϕÞ ¼ 0:

ð24Þ
The actions (20)–(23) can be transformed into each other
by a suitable redefinition of the scalar field ϕ [35,36]. In the
last case (24), the scalar field is actually a nondynamical
auxiliary field [23]. For the theories based only on the
torsion scalar (11) and without introducing derivative
couplings between the scalar field and torsion [37] or a
nonstandard kinetic term for the scalar field [38], the action
(10) is in the most general form. As a remark, we note that,
in contrast to the scalar-curvature theories, the scalar-
torsion action (10) is not invariant under conformal
rescalings of the tetrad, for these introduce a coupling
between the scalar field and vector torsion [39], leading to a
much broader class of theories [40,41].

III. EQUATIONS OF THE THEORY

With the preliminaries in place, we will now go
on to vary the action (10) with respect to the tetrad in
Sec. III A, the flat spin connection in Sec. III B, and the
scalar field in Sec. III C and write down the ensuing
field equations. In Sec. III D, we show in detail that the
condition arising from the variation with respect to the
spin connection is equivalent to the antisymmetric part of
the tetrad field equations. In Sec. III E, we demonstrate
that combining the equations also leads to an expression
for the matter energy-momentum conservation, and the
spin connection equation is instrumental in guaranteeing
that. Finally, in Sec. III F, we explicate how the sym-
metric part of the tetrad field equations reduces to general
relativity for configurations with a constant torsion scalar
and scalar field.

A. Tetrad field equation

We start with the derivation of the tetrad field equation,
which is obtained by variation of the action (9) with respect
to the tetrad haμ. From the variation of the gravitational part
(10), we obtain

δhSg ¼
1

2κ2

Z
M
hf½ðf þ Zgρσϕ;ρϕ;σÞhaμ − 2SρσμTρσνhaνfT − 2Zgμνϕ;νϕ;ρhaρ�δhaμ − 2fTSρμνhaρD

�
νδhaμgd4x

¼ 1

2κ2

Z
M
h

�
ðf þ Zgρσϕ;ρϕ;σÞhaμ − 2SρσμTρσνhaνfT − 2Zgμνϕ;νϕ;ρhaρ þ

2

h
D
�
νðhfTSρμνhaρÞ

�
δhaμd4x

¼ 1

2κ2

Z
M
h½ðf þ Zgρσϕ;ρϕ;σÞgμν þ 2SρσμðKρνσ − TρσνÞfT − 2Zϕ;μϕ;ν þ 2∇̊ρðfTSνμρÞ�gμτhaνδhaτd4x: ð25Þ

From the second line, one can find the left-hand side of the tetrad field equations with one Lorentz index and one spacetime
index; however, we skip this step here and proceed with the third line, which is already written in lower spacetime indices
only. Using the definitions (12) of the superpotential and (8) of the contortion, as well as the energy-momentum tensor (13),
the resulting field equation can be written as

1

2
fgμν þ ∇̊ρðfTSνμρÞ þ

1

2
fT

�
Tρ

ρσTσ
μν þ 2Tρ

ρσTðμνÞσ −
1

2
TμρσTν

ρσ þ TμρσTρσ
ν

�

− Zϕ;μϕ;ν þ
1

2
Zgμνgρσϕ;ρϕ;σ ¼ κ2Θμν: ð26Þ

Let us remark that, contrary to the fðRÞ theories, these
equations contain derivatives of the tetrad (or metric) only
up to the second order. Therefore, several issues and
subtleties characteristic of fðRÞ gravity [1] do not arise.
This nice feature has been one of the motivations to study
fðTÞ gravity [18] and persists in the more general fðT;ϕÞ
models considered here as well.
In analogy to the teleparallel equivalent of general

relativity [12], one may notice that the left-hand side of
the tetrad field equations allows for the definition of a
conserved gravitational energy-momentum pseudotensor.

Given a minimally coupled scalar field, this can further be
split into contributions from the tetrad and the scalar field.
However, in the case of nonminimal coupling, the energy
momenta of the tetrad and scalar fields are entwined, since
the function f contains both of them.

B. Connection field equation

We now come to the variation of the action (9) with
respect to the spin connection ω

� a
bμ. Here, we follow the

constrained variation prescription [28], where the variation
is restricted to a gauge covariant derivative of the form
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δω
� ab

μ ¼ −D
�
μλ

ab with λðabÞ ¼ 0, such that the varied spin

connection remains flat, δωR
� a

bμν ¼ 0. Note that the spin
connection enters the action (10) only through the torsion
scalar, the variation of which can be written in the very
simple form [28]

δωT ¼ δωð−R̊þ 2∇̊μTν
νμÞ ¼ 2∇̊μδωTν

νμ

¼ 2∇̊μðhaνhbμδωab
νÞ; ð27Þ

using the relation between the torsion scalar T and the Ricci
scalar R̊ and the fact that the latter depends only on the
tetrad but not on the teleparallel spin connection. We then
obtain the variation of the gravitational part of the action as

δωSg ¼
1

2κ2

Z
M
hfTδωTd4x

¼ −
1

κ2

Z
M
hfT∇̊μðhaνhbμD

�
νλ

abÞd4x

¼ 1

κ2

Z
M
h∂νfThaμhbνD

�
μλ

abd4x

¼ 1

κ2

Z
M
hð−∇� μ∇

�

νfT þ Kρ
μρ∂νfTÞhaμhbνλabd4x;

ð28Þ

where we have twice performed integration by parts. Due to
the antisymmetry of λab, as well as the relation

∇� μ∇
�

νfT −∇� ν∇
�

μfT ¼ Tρ
νμ∂ρfT ð29Þ

for the commutator of covariant derivatives acting on the
scalar function fT , the field equation reads

0 ¼ −∇� ½μ∇
�

ν�fT þ ∂ ½νfTKρ
μ�ρ ¼

3

2
∂ ½ρfTTρ

μν�: ð30Þ

In the last term, the notation means that one first needs to
antisymmetrize with respect all three lower indices and then
sum over with the repeating upper index. By expanding the
torsion into the tetrad and the spin connection, one can also
write this equation as

∂μfT ½∂νðhh½aμhb�νÞ þ 2hhc½μh½aν�ω
� c

b�ν� ¼ 0; ð31Þ

which is of the same form as the corresponding equation in
fðTÞ gravity [28,29]. However, note that in the scalar-
torsion model the function f also depends on the scalar
field ϕ, so the derivative reads

∂μfT ¼ fTT∂μT þ fTϕ∂μϕ; ð32Þ

whereas the second term is not present in fðTÞ gravity. This
second term vanishes if and only if the scalar field is

minimally coupled, fTϕ ¼ 0, or in a field configuration
with a uniform scalar field.
Equation (31) contains only the first derivatives of the

spin connection which appear since we are taking the
derivatives of the torsion scalar (11) in fT . Therefore, this
equation can be interpreted as a condition to determine the
spin connection components associated with a given tetrad.
It is a feature characteristic of the generalized teleparallel
framework, since in the fðRÞ and scalar-curvature theories
the spin connection is completely determined by the tetrad
via the Levi-Cività prescription.

C. Scalar field equation

Finally, we come to the scalar field equation. Variation of
the gravitational part (10) of the action with respect to the
scalar field yields

δϕSg¼
1

2κ2

Z
M
h½ðfϕþZϕgμνϕ;μϕ;νÞδϕþ2Zgμνϕ;νδϕ;μ�d4x

¼ 1

2κ2

Z
M
h½fϕþZϕgμνϕ;μϕ;ν−2gμν∇̊;μðZϕ;νÞ�δϕd4x;

ð33Þ
where we have performed integration by parts to arrive at
the second line. The corresponding variation of the matter
part of the action vanishes, δϕSm ¼ 0, since we do not
consider any direct coupling between the scalar field and
matter fields. Hence, the field equation does not contain a
source term and can finally be brought into the form

fϕ − Zϕgμνϕ;μϕ;ν − 2Z□̊ϕ ¼ 0; ð34Þ

where □̊ ¼ gμν∇̊μ∇̊ν is the d’Alembert operator.
Let us note that, contrary to the scalar-curvature theories,

the second derivatives of the tetrad (or metric) do not
appear in the scalar field equation, and thus the procedure
of “debraiding” (cf. Ref. [42]) is not necessary. As a
consequence, when the matter Lagrangian does not explic-
itly involve the scalar field, the scalar field equation
remains without a matter contribution as a source term,
e.g., the trace of the matter energy-momentum tensor.
Therefore, in scalar-torsion gravity, the chameleon screen-
ing mechanism does not work as in the scalar-curvature
theories [43,44], unless one introduces a coupling of the
scalar field to matter [45] or a boundary term [39–41].

D. Relation between field equations

It has recently been shown for fðTÞ gravity and more
general teleparallel gravity theories with second order field
equations that the antisymmetric part of the tetrad field
equations is identical to the connection field equations, so
the flat spin connection is a pure gauge d.o.f. corresponding
to the local Lorentz invariance of the action [28–31]. We
now show that the same holds true also for the class of
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scalar-torsion theories presented here. For this purpose,
we consider the antisymmetric part of the tetrad field
equations (26), which reads

0 ¼ 2∇̊ρðfTS½νμ�ρÞ þ fTðTρ
ρσTσ

μν þ Tρσ ½νTμ�ρσÞ
¼ 3∂ ½ρfTTρ

μν� þ fTð3∇̊½ρTρ
μν� þ Tρ

ρσTσ
μν − Tρσ ½μTν�ρσÞ;

ð35Þ

where we have used the definitions (12) of the super-
potential and (8) of the contortion. For the first term in
brackets, we now expand the covariant derivative into
Christoffel symbols,

∇̊½ρTρ
μν� ¼ ∂ ½ρTρ

μν� þ Γ̊ρ
σ½ρTσ

μν�− Γ̊σ
½μρTρjσjν�− Γ̊σ

½νρTρ
μ�σ;

ð36Þ

where the last two terms vanish due to the symmetry of
the Christoffel symbols in their lower indices, since the
Levi-Cività connection is torsion free. For the remaining
term, we express the Levi-Cività connection through the
teleparallel connection and the contortion,

Γ̊ρ
σ½ρTσ

μν� ¼ Γ
� ρ

σ½ρTσ
μν� − Kρ

σ½ρTσ
μν�: ð37Þ

A direct calculation then shows that

∂ ½ρTρ
μν� þ Γ

� ρ
σ½ρTσ

μν� ¼ R
� ρ

½μν�ρ ¼ 0; ð38Þ

which vanishes, since the teleparallel spin connection and
hence its spacetime connection are flat,

R
� ρ

σμν ¼ haρhbσR
� a

bμν ¼ 0: ð39Þ

We are thus left with the only remaining term, which reads

∇̊½ρTρ
μν� ¼ −Kρ

σ½ρTσ
μν� ¼ −

1

3
ðTρ

μνTσ
σρ − Tρσ ½μTν�ρσÞ:

ð40Þ

Hence, the brackets in the second line of the antisymmetric
field equation (35) vanish. This equation thus reduces to

∂ ½ρfTTρ
μν� ¼ 0; ð41Þ

which indeed agrees with the connection field
equations (30).
We are finally left with the symmetric part of the field

equations:

1

2
fgμν þ ∇̊ρðfTSðμνÞρÞ þ

1

2
fT

�
2Tρ

ρσTðμνÞσ −
1

2
TμρσTν

ρσ þ TρσðμTνÞρσ

�

− Zϕ;μϕ;ν þ
1

2
Zgμνgρσϕ;ρϕ;σ ¼ κ2Θμν: ð42Þ

Using the relation

SðμρσTνÞρσ ¼ −2Tρ
ρσTðμνÞσ þ

1

2
TμρσTν

ρσ − TρσðμTνÞρσ;

ð43Þ

it can also be written as

1

2
fgμν þ ∇̊ρðfTSðμνÞρÞ −

1

2
fTSðμρσTνÞρσ − Zϕ;μϕ;ν

þ 1

2
Zgμνgρσϕ;ρϕ;σ ¼ κ2Θμν: ð44Þ

These equations remain to be solved independently from
the antisymmetric part (41).
To recap, the dynamical equations for the theory (9) are

the ten symmetric equations (44) for the tetrad components,
the scalar field equation (34), and the matter equations of
motion (not specified here). Demanding flatness constrains

the spin connection so that only six components
(or combinations of components) remain free. These six
freedoms in the spin connection get fixed by the conditions
(31) [or in an equivalent form (41)]. The ten dynamical
tetrad components match the number of independent metric
components and describe gravity, while the other six tetrad
components characterize the frame of the local observer.
Choosing a particular local observer fixes these six tetrad
components, which in turn completely fixes the spin
connection, the latter encoding the inertial effects in the
observer frame [29].

E. Conservation of matter energy momentum

We finally show that the covariant conservation of
the energy-momentum tensor can also be derived from
the gravitational field equations. For this purpose, we
take the covariant divergence of the symmetric field
equation (44), which reads
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κ2∇̊μΘμν ¼ −Z0gμρϕ;μϕ;ρϕ;ν − Z□̊ϕϕ;ν − Zϕ;μ∇̊μ∇̊νϕþ 1

2
Z0gρσϕ;ρϕ;σϕ;ν þ Zϕ;ρ∇̊ν∇̊ρϕþ 1

2
fϕϕ;ν

þ fT∇̊μ
�
∇̊ρSðμνÞρ −

1

2
SðμρσTνÞρσ þ

1

2
Tgμν

�

þ ∇̊μ∇̊ρfTSðμνÞρ − ∇̊μfT

�
1

2
SðμρσTνÞρσ − ∇̊ρSðμνÞρ − ∇̊ρSðρνÞμ

�
: ð45Þ

In the first line, two terms cancel since the Levi-Cività
connection is torsion free, which implies

∇̊μ∇̊νψ − ∇̊ν∇̊μψ ¼ 0 ð46Þ

for any scalar function ψ , in particular also for ψ ¼ ϕ.
The remaining terms in the first line can then be written as

1

2
ϕ;νðfϕ − Z0gμρϕ;μϕ;ρ − 2Z□̊ϕÞ; ð47Þ

and one recognizes that the term in brackets is simply the
left-hand side of the scalar field equation (34) and thus
vanishes. For the second line, one once again makes use of
the geometric identity (56) to realize that the term in
brackets is simply the Einstein tensor; its covariant diver-
gence vanishes due to the Bianchi identity. We are left with
the third line. For its first term, one finds the identity

∇̊μ∇̊ρfTSðμνÞρ ¼
1

2
ð□̊fTTρ

ρμ − ∇̊μ∇̊ρfTTμρ
ν

− ∇̊μ∇̊νfTTρ
ρμÞ

¼ −
3

2
∇̊μ∇̊½ρfTTρ

μν�; ð48Þ

where we have once more used the symmetry (46) of the
Levi-Cività connection, now with ψ ¼ fT . For the last two
terms in the third line, we find

∇̊ρSðμνÞρ þ ∇̊ρSðρνÞμ ¼ −
3

2
∇̊½ρTρ

μν�

þ 1

2
ð∇̊ρTμν

ρ þ ∇̊μTρ
ρν − gμν∇̊ρTσ

σρÞ:
ð49Þ

Contracting the terms in brackets with ∇̊μfT , we obtain

1

2
∇̊μfTð∇̊ρTμν

ρ þ ∇̊μTρ
ρν − gμν∇̊ρTσ

σρÞ

¼ −
3

2
∇̊½ρfT∇̊μTρ

μν�: ð50Þ

Now, the terms (48) and (50) are combined with the
covariant divergence of the connection field equation (30)
and hence vanish. Using the identity (40), the energy-
momentum conservation law (45) reduces to

κ2∇̊μΘμν ¼ −
1

2
∇̊μfTðSðμρσTνÞρσ − Tρ

μνTσ
σρ þ Tρσ ½μTν�ρσÞ:

ð51Þ

It is helpful to realize that the term in brackets can be
written as

−
1

2
ðSðμρσTνÞρσ − Tρ

μνTσ
σρ þ Tρσ ½μTν�ρσÞ ¼ SρσμKρσ

ν:

ð52Þ

Note that the contortion tensor (8) is antisymmetric in its
first two indices. Hence, only the part of the superpotential
contributes, which is likewise antisymmetric in its first two
indices. Finally, we find that

∇̊μfTS½ρσ�μ ¼ −
3

2
∇̊½μfTTμ

ρσ�; ð53Þ

which vanishes due to the connection field equations (30).
Hence, the right-hand side of the conservation equa-
tions (45) vanishes, as one would expect. Let us note that
the spin connection equation played a role in providing
that.

F. Reduction to general relativity

The field equations (41) and (44) have the interesting
property that for particular solutions they reduce to the field
equations of general relativity. These solutions must satisfy
the conditions that both T and ϕ are constant, and
fϕðT;ϕÞ ¼ 0 for these constant values. Note that a constant
torsion scalar does not require a constant tetrad and spin
connection; there are field configurations where those
variables cancel each other in the torsion scalar. If both
T and ϕ are constant with respect to spacetime, i.e., their
derivatives with respect to spacetime directions vanish, the
same holds for any function of these variables, and thus in
particular for f and its derivatives. As an immediate
consequence, the antisymmetric part (41) of the field
equations is solved identically. Further, the scalar field
equation (34) reduces to fϕ ¼ 0 and is solved due to our
assumptions. It remains to show that the symmetric part
(44) reduces to the general relativity field equations. For
this purpose, we write these equations in the form
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1

2
fgμν þ fT

�
∇̊ρSðμνÞρ −

1

2
SðμρσTνÞρσ

�
¼ κ2Θμν; ð54Þ

where we used the constancy of ϕ to omit the scalar field
kinetic terms and the constancy of fT to remove its
contribution to the derivative in the second term. We can
now split the first term to obtain

1

2
ðf − fTTÞgμν þ fT

�
∇̊ρSðμνÞρ −

1

2
SðμρσTνÞρσ þ

1

2
Tgμν

�

¼ κ2Θμν: ð55Þ

One further uses the identity

∇̊ρSðμνÞρ −
1

2
SðμρσTνÞρσ þ

1

2
Tgμν ¼ R̊μν −

1

2
R̊gμν; ð56Þ

so the field equations finally take the form

1

2
ðf − fTTÞgμν þ fT

�
R̊μν −

1

2
R̊gμν

�
¼ κ2Θμν: ð57Þ

Note that the coefficients of the metric and the Einstein
tensor on the left-hand side are both constant with respect to
spacetime, due to our assumptions, and can thus be related
to effective cosmological and gravitational constants. It
follows that the metric (1) satisfies the Einstein equations
corresponding to these two parameters.

IV. DETERMINING THE SPIN CONNECTION

After deriving the field equations, the aim of this section
is to analyze the connection equation (31) and provide a
sample of tetrads, spin connections, and scalar fields which
solve it and thus can serve as a starting point for finding
solutions to the remaining field equations (44) and (34). We
start with a few general considerations in Sec. IVA, before
providing a number of specific examples. In particular, we
discuss Friedmann-Lemaître-Robertson-Walker spacetimes
in Sec. IV B, Kasner spacetimes in Sec. IV C, and spheri-
cally symmetric spacetimes in Sec. IV D.

A. General considerations

In principle, there is a reasonable way how to approach
the set of field equations. First, one should take an Ansatz
for the tetrad (which may implicitly relate to a certain
Lorentz observer) as well as for the scalar field. Second,
demanding that the curvature (3) vanishes, and the con-
ditions (31) are satisfied when the Ansatz is substituted in,
should determine the form of the spin connection asso-
ciated with that Ansatz. Then, the tetrad Ansatz and the
spin connection can be substituted into the tetrad field
equations (44) and the scalar field equations (34) to be
solved. Finally, one may use local Lorentz transformations

(2) to find other equivalent forms of the solution (corre-
sponding to different local observers).
Let us look more closely at the conditions on the spin

connection (31) or (41). We may encounter several different
situations, some of which have been noted before for fðTÞ
gravity [29] and have actually come up even before while
trying to satisfy the antisymmetric part of the tetrad
field equations [46,47]. First, if fT is constant, i.e.,
fTT ¼ fTϕ ≡ 0, the constraint is identically satisfied.
This case pertains to taking the theory to be the teleparallel
equivalent of general relativity (with the optional scalar
field minimally coupled). There, the flat spin connection
can be chosen completely arbitrarily, but there can be other
principles to constrain it besides the field equations [48,49].
Second, we may choose the spin connection such that

∂μT ¼ 0 and ∂μϕ ¼ 0. This is related to a possible strategy
of looking for solutions in fðTÞ gravity where one tries to
Lorentz transform the Ansatz tetrad of interest into a frame
where the torsion scalar T or its derivative vanishes
[46,47,50–52]. The strategy is good, since in that particular
frame the connection condition is automatically satisfied
for any ω

� a
bμ, including also a zero spin connection.

Therefore, omitting the spin connection in such a frame
while solving the tetrad field equations is a consistent
move. However, the drawback is that the tetrad field
equations reduce to those of the teleparallel equivalent
of general relativity, as we have briefly shown in Sec. III F.
Hence, with this method, one only recovers the solutions
already present in general relativity. But this method is
still a nice way to learn about universal solutions, i.e.,
solutions which are common to the whole fðT;ϕÞ family
of theories.
Third, due to the properties of the Ansatz, it might be

possible to solve the spin connection condition independ-
ently of the function f. This can happen when ∂μT and ∂μϕ
summed over with the terms in the brackets in Eq. (31)
yield zero. This is a much more interesting option, since the
whole set of equations is not necessarily reduced to the
teleparallel equivalent of general relativity, for the tetrad
and scalar field equations still involve the function f. Thus,
these solutions may extend the repertoire of general
relativity. A feasible way to realize this situation is when
the Ansatz depends on one particular coordinate y, like time
y ¼ t in cosmology or radial distance y ¼ r in static,
spherically symmetric spacetime. Then, the two scalars
T and ϕ, and hence fT , depend only on this coordinate. As
a consequence, ∂μfT ∝ ∂μy, and the particular choice of the
function f becomes irrelevant for solving the connection
field equations. From a geometric point of view, the
expression in the brackets in Eq. (31) can be interpreted
as a set of six vectors labeled by the six possible values of
the antisymmetric index pair ½ab�, and the equations are
solved if these vectors are tangent to the hypersurfaces of
constant y. In the following subsections, we illustrate how
this works in a few examples. In principle, it may happen
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that the situation can be realized with more general Ansätze
as well, due to some underlying symmetry.
Finally, in the more general case, it might not be possible

to solve the spin connection equation independently of the
function f. In the computationally worst case, one may
have to tackle all Eqs. (31), (44), and (34) simultaneously.
With the nonminimally coupled scalar field, there might
also exist some particularly amenable forms of the function
fðT;ϕÞ which could allow cancellation in (32) and thus
turn out to be helpful in finding the solutions. Note that also
in this situation the aforementioned geometric interpreta-
tion holds, but the hypersurfaces are defined by constant
values of fT and thus depend on the choice of the
function f.
In the following subsections, we present some tetrads in

their diagonal form together with a nonvanishing spin
connection which satisfies the condition (31).

B. Friedmann-Lemaître-Robertson-Walker spacetimes

Homogeneous and isotropic cosmological spacetimes
are described by the metric in the Friedmann-Lemaître-
Robertson-Walker (FLRW) form

gμνdxμdxν ¼ dt2 − aðtÞ
�

dr2

1 − kr2
þ r2ðdϑ2 þ sin2ϑdφ2Þ

�
;

ð58Þ

written in spherical coordinates t; r; ϑ;φ. Here, k ∈
f−1; 0; 1g determines the sign of the spatial curvature.
Note that in all three cases the cosmological symmetry
imposes that the scalar field is evolving homogeneously,
ϕ ¼ ϕðtÞ, while the matter energy-momentum tensor must
be given by an ideal fluid,

Θμν ¼ ðρþ pÞuμuν − pgμν; ð59Þ

with energy density ρ ¼ ρðtÞ, pressure p ¼ pðtÞ, and four-
velocity uμ ¼ ∂t normalized by the metric, gμνuμuν ¼ 1. A
canonical choice for the tetrad is the diagonal one,

haμ ¼ diag

�
1;

aðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p ; aðtÞr; aðtÞr sinϑ
�
: ð60Þ

Following the procedure detailed in the general discussion,
one then determines the spin connection by solving the
antisymmetric part (30) of the field equations. Depending
on the value of k, one may find different solutions:

(i) In the case k ¼ 0, one may use the spin connection
[25]

ω
� 1

2ϑ ¼ −ω� 21ϑ ¼ −1; ω
� 1

3φ ¼ −ω� 31φ ¼ − sin ϑ;

ω
� 2

3φ ¼ −ω� 32φ ¼ − cos ϑ: ð61Þ

One then finds that the remaining tetrad field
equations are given by

1

2
f þ 6fTH2 −

1

2
Z _ϕ2 ¼ κ2ρ; ð62Þ

1

2
f þ 2fTϕH _ϕ − 24fTT _HH2 þ 6fTH2 þ 2fT _H

þ 1

2
Z _ϕ2 ¼ −κ2p; ð63Þ

where H ¼ _a
a is the Hubble parameter and a dot

denotes the derivative with respect to t. Note that
Minkowski spacetime is included as the special
case a ¼ 1.

(ii) For k ¼ 1, a viable spin connection is given by [53]

ω
� 1

2ϑ ¼ −ω� 21ϑ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
; ω

� 1
2φ ¼ −ω� 21φ ¼ −r sinϑ; ω

� 1
3ϑ ¼ −ω� 31ϑ ¼ r;

ω
� 1

3φ ¼ −ω� 31φ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
sin ϑ; ω

� 2
3r ¼ −ω� 32r ¼ −

1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p ; ω
� 2

3φ ¼ −ω� 32φ ¼ − cosϑ: ð64Þ

In this case, one obtains the remaining tetrad field equations

1

2
f þ 6fTH2 −

1

2
Z _ϕ2 ¼ κ2ρ; ð65Þ

1

2
f þ 2fTϕH _ϕ − 24fTT

�
_H þ 1

a2

�
H2 þ 6fTH2 þ 2fT

�
_H −

1

a2

�
þ 1

2
Z _ϕ2 ¼ −κ2p: ð66Þ

(iii) Finally, for k ¼ −1, one may use the spin connection [53]

ω
� 0

1r ¼ ω
� 1

0r ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2
p ; ω

� 0
2ϑ ¼ ω

� 2
0ϑ ¼ r; ω

� 0
3φ ¼ ω

� 3
0φ ¼ r sinϑ;

ω
� 1

2ϑ ¼ −ω� 21ϑ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
; ω

� 1
3φ ¼ −ω� 31φ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
sinϑ; ω

� 2
3φ ¼ −ω� 32φ ¼ − cosϑ: ð67Þ
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Here, the remaining tetrad field equations are
given by

1

2
f þ 6fTH

�
H −

1

a

�
−
1

2
Z _ϕ2 ¼ κ2ρ; ð68Þ

1

2
fþ 2fTϕ

�
H−

1

a

�
_ϕ− 24fTT

�
_HþH

a

��
H−

1

a

�
2

þ 6fTH

�
H−

1

a

�
þ 2fT

�
_Hþ 1

a2

�

þ 1

2
Z _ϕ2 ¼−κ2p: ð69Þ

In all three cases, the scalar field equation reduces to

fϕ − 2Zϕ̈ − 6ZH _ϕ − Zϕ
_ϕ2 ¼ 0: ð70Þ

One easily checks that the three mentioned spin connec-
tions satisfy the condition (31) for the connection, due to
the reasons outlined as the third option in Sec. IVA. Let us
emphasize that the tetrad (60) alone with a vanishing spin
connection does not solve the condition (31). It is worth
noting that the structures of the spin connection compo-
nents as well as the tetrad field equations in the k ¼ þ1
(64) and k ¼ −1 (67) cases are different. For example, in
the latter case, there are nontrivial time components which
do not appear in the former case. In the k ¼ 1 case, it was
found that a certain local Lorentz rotation can make a
transformation into a local frame, where all the spin
connection components vanish, but the tetrad components
become nondiagonal and more complicated [47]. In the
k ¼ −1 case, the same can happen, but one needs to
employ a Lorentz boost [53]. The remaining tetrad and
scalar field equations we displayed above are invariant
under this simultaneous transformation of the tetrad and the
spin connection.

C. Kasner spacetimes

Homogeneous but in general anisotropic Kasner space-
time can be realized by choosing the tetrad

haμ ¼ diagð1; aðtÞ; bðtÞ; cðtÞÞ; ð71Þ
in Cartesian coordinates. This, together with a vanishing
spin connection,

ω
� a

bμ ¼ 0; ð72Þ

makes the connection condition (31) satisfied, which
vindicates the respective studies in fðTÞ gravity [54–57].
But for more general anisotropic models, one has to check
the compatibility of the spin connection.
In the special case a ¼ b ¼ c, the tetrad (71) reduces to

another viable tetrad to describe FLRW spacetime with
k ¼ 0,

haμ ¼ diagð1; aðtÞ; aðtÞ; aðtÞÞ: ð73Þ

Along with a vanishing spin connection (72), one finds that
the condition (31) is easily satisfied. Since here assuming
the vanishing spin connection yields the correct result, the
former studies of the spatially flat cosmology in fðTÞ and
scalar-torsion gravity remain valid; see, e.g., Refs. [32,58–
62] for a selection of latest works.

D. Spherically symmetric spacetimes

A general static spherically symmetric spacetime can be
represented by a diagonal tetrad

haμ ¼ diagðAðrÞ; BðrÞ; r; r sinϑÞ: ð74Þ

This, together with the flat spin connection [25]

ω
� 1

2ϑ ¼ −ω� 21ϑ ¼ −1; ω
� 1

3φ ¼ −ω� 31φ ¼ − sin ϑ;

ω
� 2

3φ ¼ −ω� 32φ ¼ − cosϑ ð75Þ

and a generic spherically symmetric Ansatz for the scalar
field, ϕ ¼ ϕðrÞ, satisfies the condition for the connection
(31). As with the previous cases presented in spherical
coordinates, it is possible by a Lorentz transformation to
find a frame where the spin connection vanishes, while the
tetrad becomes nondiagonal [46]. Thus, the earlier research
on the spherically symmetric systems in fðTÞ gravity based
on this nondiagonal tetrad [46,47,63–67] has a valid
starting point, but albeit sees physics in a particular frame.
Assuming the diagonal tetrad (74) must happen in con-
junction with the nonzero spin connection (75), like in
Ref. [68], otherwise one is led to wrong results.

V. GENERALIZATION TO MULTIPLE
SCALAR FIELDS

In the previous sections of this article, we have consid-
ered a class of scalar-torsion theories of gravity obtained by
(in general nonminimally) coupling a scalar field to tele-
parallel gravity. In this section, we extend our findings to
multiple scalar fields. For this purpose, we consider a
multiplet ϕ ¼ ðϕAÞ, A ¼ 1;…; N of N scalar fields. We
then replace the action (9) by the more general form

S ¼ 1

2κ2

Z
M
½fðT;ϕÞ þ ZABðϕÞgμνϕA

;μϕ
B
;ν�θd4xþ Sm½θa; χI�:

ð76Þ

This action differs from the single field case in two ways.
First, in order to potentially render all scalar fields
dynamical, there must be a kinetic term involving all
fields. A natural generalization of the single scalar field
kinetic term is to equip the parameter function Z with two
scalar field indices, such that it is symmetric in these
indices, Z½AB� ¼ 0; any antisymmetric part would cancel

HOHMANN, JÄRV, and UALIKHANOVA PHYS. REV. D 97, 104011 (2018)

104011-10

114



due to the contraction with a symmetric tensor composed
from the derivatives of the scalar fields. Second, the two
parameter functions f and ZAB now depend on all scalar
fields, and hence on the field multiplet ϕ. This must be
taken into account when calculating variations and deriv-
atives of the parameter functions. [In special cases like
fðT;ϕÞ ¼ fðϕÞT, it is possible to redefine the scalar fields
so that only one of them is nonminimally coupled, as
pointed out in the multiscalar-curvature theory [69], but we
will not delve into this option here.]
It is now straightforward to derive the field equations

from the action (76), essentially following the same steps
as shown explicitly in Sec. III. We will not repeat these
steps here and only display the field equations in their final
form. We start with the symmetric part (44), which
generalizes to

1

2
fgμν þ ∇̊ρðfTSðμνÞρÞ −

1

2
fTSðμρσTνÞρσ − ZABϕ

A
;μϕ

B
;ν

þ 1

2
ZABϕ

A
;ρϕ

B
;σgρσgμν ¼ κ2Θμν; ð77Þ

where only the terms originating from the kinetic energy of
the scalar fields are visibly affected. These do not appear in
the antisymmetric part (41) of the tetrad field equations,
which hence retain their form,

∂ ½ρfTTρ
μν� ¼ 0: ð78Þ

This in particular implies that the connections given in
Sec. IV remain valid also in the case of multiple scalar
fields.
Finally, the generalization of the scalar field equation (34)

requires more attention, since derivatives of ZAB now carry
different types of indices, and the correct indices must be
chosen in contractions. Starting from the action (76), we
find the scalar field equations

fϕA − ð2ZAB;ϕC −ZBC;ϕAÞgμνϕB
;μϕ

C
;ν−2ZAB□̊ϕB ¼ 0: ð79Þ

We conclude with the remark that, although the form of the
field equations is mostly unchanged compared to the single
field case, there is an implicit and less apparent change
coming from the fact that the parameter functions f and
ZAB, and hence their derivatives appearing in the field
equations, depend on all scalar fields.

VI. SUMMARY AND DISCUSSION

In this paper, we have presented a new class of theories
in the covariant teleparallel framework, where the gravi-
tational action depends on an arbitrary function of the
torsion scalar and a scalar field, fðT;ϕÞ. This generic setup
subsumes and generalizes a number of previously consid-
ered models, like fðTÞ gravity and a scalar field non-
minimally coupled to T, putting them in a unified scheme

so that they can be studied together. We derived the field
equations for the tetrads, scalar field, and flat spin con-
nection. The latter is especially important and until recently
was missing in the covariant teleparallel picture. The spin
connection equation turns out to be related to the anti-
symmetric part of the tetrad field equations and makes it
vanish identically. One also needs the spin connection
equation when combining the field equations in order to
show the matter energy-momentum conservation.
As a matter of fact, the spin connection field equation

contains only first order derivatives with respect to the
spacetime coordinates and provides a consistency condition
that from the tetrad Ansatz determines the six nontrivial
spin connection components (remaining after imposing
zero curvature). These six components can be interpreted as
gauge d.o.f., since they can be absorbed into the tetrad by a
suitable local Lorentz transformation.
Solving the spin connection equations is not an easy

matter, though. In a simple case, the solution Ansatz can
reduce the equations to be those of the teleparallel
equivalent to general relativity, where the spin connection
can be fixed arbitrarily, but then the possibilities of the
wider generalized theory remain unexplored. As we
explain, for certain symmetric configurations, it is possible
to solve the spin connection equation independent of the
function f and illustrate this by the examples of cosmo-
logical and spherically symmetric spacetimes. These results
can be used as a starting point for integrating the tetrad field
equations, whereby one typically needs to specify the form
of the function f. In light of this understanding, not all
previous results in fðTÞ or scalar-torsion gravity can be
automatically be taken with trust; one must check whether
the assumed spin connection is consistent with the tetrad.
Our work leaves a number of possibilities for further

investigations and generalizations. In particular, it invites
studies of the phenomenology of the class of theories we
discussed here, such as their post-Newtonian limit or
gravitational waves. Also, one may derive the cosmological
field equations and perform an analysis of the possible
solutions, employing the method of dynamical systems.
Also, fundamental questions, such as the number of
propagating d.o.f., may be addressed, e.g., by performing
a Hamiltonian analysis.
Another straightforward possibility is to consider more

general action functionals, such as a Lagrangian given by
an arbitrary function depending on the torsion scalar, the
scalar field, and its kinetic term and also involving a
coupling to vector torsion [70]. Particular subclasses of
such a model, where the scalar field couples to different
terms constructed from the underlying teleparallel geom-
etry by a small number of free functions, similar to the case
of scalar-tensor gravity [71], are also worth studying [72].
One may also pose the question of what is the most general
theory coupling one or more scalar fields to torsion and
investigate its generic properties [73].

COVARIANT FORMULATION OF SCALAR-TORSION GRAVITY PHYS. REV. D 97, 104011 (2018)

104011-11

115



ACKNOWLEDGMENTS

The authors thank Martin Krššák and Christian Pfeifer
for many useful discussions as well as Ott Vilson, Tomi
Koivisto, and Alexey Golovnev for comments. The work
was supported by the Estonian Ministry for Education and

Science through the Institutional Research Support Project
No. IUT02-27 and Startup Research Grant No. PUT790 as
well as the European Regional Development Fund through
the Center of Excellence TK133 “The Dark Side of the
Universe.”

[1] V. Faraoni and S. Capozziello, Beyond Einstein Gravity
(Springer, Dordrecht, Netherlands, 2011), Vol. 170.

[2] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis,
Modified gravity and cosmology, Phys. Rep. 513, 1 (2012).

[3] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, Modified
gravity theories on a nutshell: Inflation, bounce and late-
time evolution, Phys. Rep. 692, 1 (2017).

[4] N. D. Birrell and P. C. W. Davies, Quantum Fields in
Curved Space, Cambridge Monographs on Mathematical
Physics (Cambridge University Press, Cambridge, England,
1984).

[5] A. A. Starobinsky, A new type of isotropic cosmological
models without singularity, Phys. Lett. 91B, 99 (1980).

[6] F. L. Bezrukov and M. Shaposhnikov, The Standard Model
Higgs boson as the inflaton, Phys. Lett. B 659, 703 (2008).

[7] P. A. R. Ade et al. (Planck Collaboration), Planck 2015
results. XX. Constraints on inflation, Astron. Astrophys.
594, A20 (2016).

[8] P. A. R. Ade et al. (Planck Collaboration), Planck 2015
results. XIV. Dark energy and modified gravity, Astron.
Astrophys. 594, A14 (2016).

[9] S. Pan, E. N. Saridakis, and W. Yang, Observational
constraints on oscillating dark-energy parametrizations,
arXiv:1712.05746.

[10] T. Sauer, Field equations in teleparallel spacetime:
Einstein’s fernparallelismus approach towards unified field
theory, Historia mathematica 33, 399 (2006).

[11] C. Møller, in Conservation laws and absolute parallelism
in general relativity, Matematisk-fysiske skrifter K.
Danske videnskabernes selskab, Vol. 1 (I kommission hos
Munksgaard, Copenhagen, 1961), 1.

[12] R. Aldrovandi and J. G. Pereira, Teleparallel Gravity
(Springer, Dordrecht, Netherlands, 2013), Vol. 173.

[13] J. W. Maluf, The teleparallel equivalent of general relativity,
Ann. Phys. (Berlin) 525, 339 (2013).

[14] A.Golovnev, in Proceedings of the 9thMathematical Physics
Meeting: School and Conference on Modern Mathematical
Physics in Belgrade, September 2017 (to be published).

[15] G. R. Bengochea and R. Ferraro, Dark torsion as the cosmic
speed-up, Phys. Rev. D 79, 124019 (2009).

[16] E. V. Linder, Einstein’s other gravity and the acceleration of
the Universe, Phys. Rev. D 81, 127301 (2010); Erratum,
Phys. Rev. D 82, 109902(E) (2010).

[17] C.-Q. Geng, C.-C. Lee, E. N. Saridakis, and Y.-P. Wu,
“Teleparallel”, dark energy, Phys. Lett. B 704, 384 (2011).

[18] Y.-F. Cai, S. Capozziello, M. De Laurentis, and E. N.
Saridakis, f(T) teleparallel gravity and cosmology, Rep.
Prog. Phys. 79, 106901 (2016).

[19] B. Li, T. P. Sotiriou, and J. D. Barrow, fðTÞ gravity and local
Lorentz invariance, Phys. Rev. D 83, 064035 (2011).

[20] T. P. Sotiriou, B. Li, and J. D. Barrow, Generalizations of
teleparallel gravity and local Lorentz symmetry, Phys. Rev.
D 83, 104030 (2011).

[21] M. Li, R.-X. Miao, and Y.-G. Miao, Degrees of freedom of
fðTÞ gravity, J. High Energy Phys. 07 (2011) 108.

[22] Y. C. Ong, K. Izumi, J. M. Nester, and P. Chen, Problems
with propagation and time evolution in f(T) gravity, Phys.
Rev. D 88, 024019 (2013).

[23] K. Izumi, J.-A. Gu, and Y. C. Ong, Acausality and non-
unique evolution in generalized teleparallel gravity, Phys.
Rev. D 89, 084025 (2014).

[24] P. Chen, K. Izumi, J. M. Nester, and Y. C. Ong, Remnant
symmetry, propagation and evolution in fðTÞ gravity, Phys.
Rev. D 91, 064003 (2015).

[25] M. Krššák and E. N. Saridakis, The covariant formulation
of f(T) gravity, Classical Quantum Gravity 33, 115009
(2016).

[26] J. M. Nester and Y. C. Ong, Counting components in the
Lagrange Multiplier Formulation of Teleparallel Theories,
arXiv:1709.00068.
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geometry in f(T) gravity, Eur. Phys. J. C 75, 77 (2015).

[52] C. Bejarano, R. Ferraro, and M. José Guzmán, McVittie
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Dynamical systems approach and generic properties of f ðTÞ cosmology
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We present a systematic analysis of the dynamics of flat Friedmann-Lemaître-Robertson-Walker
cosmological models with radiation and dust matter in generalized teleparallel fðTÞ gravity. We show that
the cosmological dynamics of this model are fully described by a functionWðHÞ of the Hubble parameter,
which is constructed from the function fðTÞ. After reducing the phase space to two dimensions, we derive
the conditions on WðHÞ for the occurrence of de Sitter fixed points, accelerated expansion, crossing the
phantom divide, and finite time singularities. Depending on the model parameters, it is possible to have a
bounce (from contraction to expansion) or a turnaround (from expansion to contraction), but cyclic
or oscillating scenarios are prohibited. As an illustration of the formalism we consider power law
fðTÞ ¼ T þ αð−TÞn models, and show that these allow only one period of acceleration and no phantom
divide crossing.

DOI: 10.1103/PhysRevD.96.043508

I. INTRODUCTION

General relativity (GR), which relates the effects of
gravity to spacetime curvature, has been highly successful
in describing a wide range of phenomena. Teleparallel
gravity [1–3] employs torsion instead of curvature, concep-
tually distinguishes between gravitation and inertia, and
builds up its theoretical formulation more in line with gauge
theories [2,4,5]. Despite the difference in mathematical setup
and interpretation, teleparallel gravity is equivalent to gen-
eral relativity in all physical predictions. This follows from
the correspondence of the respective field equations, since
the curvature scalar R in the Einstein-Hilbert action of
general relativity differs from the torsion scalar T in the
action of teleparallel equivalent of general relativity (TEGR)
only by a total divergence term, R ¼ −T − 2∇μTλ

μλ, where
Tλ

μλ are the components of the torsion tensor.
In searching for good models to describe the phenomena

of dark energy, dark matter, and inflation, many researchers
have looked beyond GR, generalizing its Lagrangian to an
arbitrary function of curvature, fðRÞ, leading to fourth-
order field equations [6,7]. In the same vein the Lagrangian
of teleparallel gravity has been generalized to fðTÞ [8,9].
The ensuing field equations are of second order, and we get
a new class of theories essentially different from their
counterparts based on curvature.
The original approach to fðTÞ gravity had a problem in

which the action failed to be invariant under the local
Lorentz transformation of the tetrad fields [10,11]. This
made the theory subject to preferred frame of reference
effects, spurious degrees of freedom, and acausality

[12–15]. The issue can be remedied by realizing that the
Weitzenböck connection originally used in teleparallel
gravity is not the most general connection consistent with
nonzero torsion and vanishing curvature; one can also
allow purely inertial spin connection [16,17]. This leads to
a covariant approach to fðTÞ gravity whereby one tackles
the field equations by invoking a reference tetrad which
encodes the inertial effects [18,19].
It is remarkable that while many solutions in fðTÞ gravity

need to be reconsidered in view of the covariant approach,
the diagonal tetrad corresponding to flat Friedmann-
Lemaître-Robertson-Walker (FLRW) universe is already
“proper” and consistent with the covariant view [18].
Already, the first studies of FLRW cosmology in fðTÞ
gravity have pointed out the possibility that it can naturally
lead to accelerated expansion of the universe without any
extra matter component, thus being interesting to model
dark energy and inflation [8,9,20,21]. Later a number of
works have focused upon various cosmological aspects
of fðTÞ models, from background evolution and growth
of perturbations to comparison with observational data; see
Refs. [22,23] for reviews.
The method of dynamical systems is a widely used set of

tools in cosmology to obtain a qualitative assessment of the
behavior of solutions in a model, without delving into the
often almost impossible task to find the analytic form of
the solutions. While dynamical systems have been helpful
in uncovering the main features of solutions in particular
models [21,22,24–27], there have been only a few papers
attempting a more systematic analysis of generic fðTÞ
cosmology [24,28–30]. Our present study aims at complet-
ing this task by deriving the general expressions for de
Sitter fixed points, acceleration, phantom dark energy, and
finite time singularities. The method and formulas we
present can be easily applied to study specific models or
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for a heuristic construction of phenomenologically desir-
able scenarios.
The key in the dynamical systems analysis is choosing

suitable dynamical variables, as also highlighted by recent
insights in the study of fðRÞ gravity [31,32]. One typically
adopts Hubble-rescaled dimensionless variables evolving
in dimensionless expansion-logarithmic time parameter
N ¼ ln a. This leads to an at first three-dimensional phase
space for flat FLRW fðTÞ cosmology with radiation and
dust matter components [21,24–29]. There is a further
redundancy. In fðTÞ gravity the Einstein equations are of
second order, so in cosmology there are in principle five
dynamical quantities ða;H; T; ρr; ρmÞ. Not all of them are
independent, as in the equations the flat FLRW the scale
factor a occurs only within the Hubble parameter H ¼ _a

a,
the density of radiation ρr and dust matter ρm are related to
H and fðTÞ by a Friedmann constraint equation, and in
addition there is a geometric identity T ¼ −6H2. Therefore
the physical phase space is two-dimensional, spanned by
two variables given by combinations of the quantities
mentioned before. The situation can be contrasted with
generic fðRÞ gravity where the Einstein equations are of
fourth order and in cosmology there are six dynamical
quantities ða;H; R; _R; ρr; ρmÞ. Again a is subsumed
into H, and one quantity can be expressed via others by
the Friedmann constraint, but the geometric identity R ¼
6 _H þ 12H2 does not reduce R to H. So the phase space
of flat FLRW fðRÞ cosmology with radiation and dust is
four-dimensional [7,31,32].
As in Refs. [24,27,30] we reduce the flat FLRW fðTÞ

cosmology phase space to two dimensions. Our choice of
the dynamical variables allows a straightforward physical
interpretation of results. Taking the Hubble parameter H to
be one of the variables makes the fixed points correspond to
de Sitter (or Minkowski) spacetime. The second variable
given by the ratio of radiation energy density to overall
matter energy density makes the flow from radiation to dust
matter domination in expanding universe graphic on the
other axis. We follow the evolution of the system in basic
cosmological time in order to study both expanding and
contracting phases under the same footing.
To illustrate our general results we consider a simple

class of models fðTÞ ¼ T þ αð−TÞn as an example. These
models allow the cosmic evolution from radiation domi-
nation through matter domination to dark energy domina-
tion eras [8,9], superbounce [33], initial singularity
crossing [34], future sudden singularities [35], but no
phantom crossing [36]. Its fixed points have been studied
in Hubble-rescaled variables [21,24,27,28,30], and some
analytic solutions are also known [37]. Constraints from
various sets of observations can be found in Refs. [8,36,
38–49]. We show how these features are reflected with our
method and a comprehensive picture emerges.
The outline of the paper is as follows. In Sec. II we

briefly review the action and cosmological field equations

of fðTÞ gravity and show that they are fully defined in
terms of the Friedmann functionWðHÞ. We then cast these
equations into the form of a dynamical system in Sec. III,
and read off a number of properties of this system: its
boundaries and fixed points, as well as the possibility of
bounces, turnarounds, and oscillating universe solutions.
We then discuss finite time singularities in Sec. IV.
Observable properties, in particular, the accelerating expan-
sion of the universe and the properties of dark energy,
are delineated in Sec. V. In Sec. VI we apply our general
formalism to a generic power law model and show how
its parameters influence the properties of the dynamical
system. We end with a conclusion in Sec. VII. In order to
collect and summarize the results obtained on the physical
phase space, we provide a graphical index of phase space
points in Appendix.

II. ACTION AND COSMOLOGICAL
FIELD EQUATIONS

In this section we briefly review the cosmological
dynamics of fðTÞ gravity, starting from the most general
action and cosmological field equations. We show that if
we express them through the Hubble parameter of a FLRW
spacetime, they take the form of one constraint equation
and one dynamical equation. We further display these field
equations for the special case in which the matter content of
the universe is constituted by both dust matter and radiation
and show their consistency with the corresponding con-
tinuity equations for this choice of the matter content.
The starting point of our derivation is the action func-

tional of fðTÞ gravity [2,8,9,22],

S ¼ 1

16πG

Z
jejfðTÞd4x; ð1Þ

with an arbitrary function fðTÞ of the torsion scalar

T ¼ 1

4
Tρ

μνTρ
μν þ 1

2
Tρ

μνTνμ
ρ − Tμ

ρμTνρ
ν: ð2Þ

The dynamical variable is given by the tetrad field eiμ, in
terms of which the torsion tensor is expressed as

Tρ
μν ¼ Γρ

νμ − Γρ
μν ¼ eρi ð∂μeiν − ∂νeiμ þ ωi

jμe
j
ν − ωi

jνe
j
μÞ;
ð3Þ

where the flat spin connection ωi
jμ is introduced in order

to render the theory covariant under local Lorentz trans-
formations. For our cosmological setting, we assume a flat
Friedmann-Lemaître-Robertson-Walker (FLRW) universe,
for which we can choose the tetrad to be

eiμ ¼ diagð1; a; a; aÞ ð4Þ
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with the usual cosmological scale factor a ¼ aðtÞ. One
finds that in this case the tetrad is “proper” and the inertial
spin connection vanishes [18]. The torsion scalar reduces to

T ¼ −6
_a2

a2
¼ −6H2; ð5Þ

where H is the Hubble parameter. From our assumption
of cosmological symmetry, i.e., homogeneity and isotropy,
further follows that the matter energy-momentum tensor
must take the form of a perfect fluid,

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð6Þ

where ρ stands for energy density, p denotes pressure, and
the four-velocity

uμ ¼ ∂t ð7Þ

is normalized by the metric gμν ¼ ηijeiμe
j
ν. From the action

(1) then follow the cosmological field equations [8,9]

12H2fT þ f ¼ 16πGρ; ð8aÞ

48H2 _HfTT − ð12H2 þ 4 _HÞfT − f ¼ 16πGp; ð8bÞ

where subscripts denote derivatives, i.e.,

fT ¼ df
dT

; fTT ¼ d2f
dT2

: ð9Þ

In the remainder of this article, without a loss of generality
we will write fðTÞ ¼ T þ FðTÞ. In this parametrization the
cosmological field equations read

6H2 þ 12H2FT þ F ¼ 16πGρ; ð10aÞ

4 _Hð12H2FTT − FT − 1Þ ¼ 16πGðρþ pÞ: ð10bÞ

Note that if F ¼ 0, these equations reduce to the usual
Friedmann equations in TEGR and GR. Also note that if
FT ¼ F

2T, i.e., F ∼
ffiffiffiffiffiffiffi
−T

p
, the cosmological equations are still

identical to the TEGR and GR case. However, the full field
equations receive corrections, which possibly influence the
evolution of perturbations of the cosmological background.
In order to discuss solutions to these field equations, we

finally also need an equation of state for the matter content.
Here we will use the simple assumption that the matter
content is constituted by two components: dust and
radiation. The density and pressure thus take the form

ρ ¼ ρm þ ρr; p ¼ pm þ pr; ð11Þ

where the equation of state is given by

pm ¼ 0; pr ¼
1

3
ρr: ð12Þ

From these relations follow the matter continuity equations

_ρm ¼ −3Hρm; _ρr ¼ −4Hρr: ð13Þ
The cosmological field equations then finally take the form

W ¼ 16πGðρm þ ρrÞ; ð14aÞ

− _H
WH

3H
¼ 16πG

�
ρm þ 4

3
ρr

�
: ð14bÞ

Here we have introduced the Friedmann function

WðHÞ ¼ F þ 6H2 þ 12H2FT; ð15Þ
keeping in mind the relation (5) between T and H,
and where the subscript stands for differentiation WH ¼
dW=dH. As we will see in the following, the function
WðHÞ encodes the main cosmological features of any given
fðTÞ gravity model. Equations (13) and (14) are the basis
of the current study. Note that they are not independent of
each other. For our analysis, we have to remove this
redundancy and apply the constraint equation in order to
obtain an unconstrained dynamical system. This will be
done in the following section.

III. DYNAMICAL SYSTEMS APPROACH

We will now cast the cosmological equations of motion
(14) and (13) detailed in the previous section into the
language of dynamical systems and derive some of its
properties. We start by determining the phase space of the
dynamical system and its evolution equations in Sec. III A.
Since this phase space will turn out to be unbounded in one
direction, we perform a coordinate transformation in
Sec. III B, which maps the system into a compact region.
We then discuss three particular features of the dynamical
system: its fixed points in Sec. III C, the possibility of
crossing the line H ¼ 0 in Sec. III D, and the possibility of
an oscillating universe in Sec. III E.

A. Phase space and evolution equations

In the previous section we have seen that the Hubble
parameter H and the energy densities ρm and ρr are not
independent due to the algebraic Friedmann constraint
(14a). The physical phase space of our dynamical system
is thus a hypersurface of codimension 1 in the space

fðH; ρm; ρrÞjH ∈ ð−∞;∞Þ; ρm ∈ ½0;∞Þ; ρr ∈ ½0;∞Þg;
ð16Þ

which we parametrize as follows. We introduce a new
variable
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X ¼ ρr
ρr þ ρm

ð17Þ

for the ratio of radiation to the total energy density. The
original densities are then recovered as

ρr ¼ Xðρr þ ρmÞ; ρm ¼ ð1 − XÞðρr þ ρmÞ; ð18Þ

where the total energy density on the right hand side is
determined in terms ofH by the Friedmann constraint (14).
One easily sees that the physical phase space is restricted to
H ∈ ð−∞;∞Þ; X ∈ ½0; 1�. Another bound follows from the
Friedmann constraint and the validity of the null energy
condition, which implies that the total matter energy
density ρm þ ρr must be non-negative and finite. From
the Friedmann constraint (14) it follows that this is
equivalent to WðHÞ ≥ 0. The physical phase space is thus
finally given by

P ¼ fðH;XÞj −∞ < H < ∞; 0 ≤ X ≤ 1;

0 ≤ WðHÞ < ∞g: ð19Þ

We now discuss the dynamics of the new variables. Taking
the time derivative of the definition (17) and using the
continuity equations (13), one finds

_X ¼ HXðX − 1Þ: ð20Þ

Similarly, we can solve the Friedmann equation (14a) for _H
and use the definition (17) to obtain

_H ¼ −ðX þ 3ÞH W
WH

¼ −
ðX þ 3ÞH
ðlnWÞH

; ð21Þ

where we have tacitly assumed that the factor WH=H by
which we divided is nonzero and finite since otherwise
the division would be ill-defined, or defined only via a
suitable limiting procedure. We have to keep this in mind
later when we will be discussing these limiting cases.
Equations (20) and (21) define our dynamical system.
Note that our choice for the dynamical variables to
describe the two-dimensional phase space is different
from Refs. [24,27,30].
We also remark that our model includes the two special

cases in which the matter content is given by pure dust
matter, ρr ¼ 0, and pure radiation, ρm ¼ 0. These are
obtained by restricting the phase space to X ¼ 0 or
X ¼ 1, respectively. From the continuity equation in the
form (20) it follows that any dynamics that start on these
subspaces will also remain there, so they can be treated as
dynamical systems on their own. This will be considered
next, when we compactify the phase space and discuss its
boundary.

B. Compactified phase space and its boundary

For various applications, such as drawing phase dia-
grams and discussing limiting points of trajectories, it is
more convenient if the dynamical system is defined on a
compact domain. In order to map our dynamical system
into a compact domain, we replace the Hubble parameterH
with a new variable Y, which we define such that

Y ¼ Hffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2

p ⇔ H ¼ Yffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Y2

p : ð22Þ

The domain of these variables in given by Y ∈ ð−1; 1Þ;
X ∈ ½0; 1�. We then express the dynamical equations in
terms of the new variables, which yields

_Y ¼ −
ðX þ 3ÞYð1 − Y2ÞW

WH
; ð23aÞ

_X ¼ XYðX − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Y2

p : ð23bÞ

This rescaled system will be used later when we show
phase diagrams for particular functions W.
Using the new variables ðY; XÞ, we can now discuss the

boundary ∂P of the phase space. This is important since
there may exist trajectories, whose limiting points are
located on the boundary, and which may or may not be
part of the physical phase space (16). This concerns, in
particular, points at which H or W (and hence the total
matter energy density) diverges, so the Friedmann equa-
tions (14) become singular, and thus invalid. From the
definition (19) of the physical phase space it follows that
we have the following components of the boundary ∂P:

(i) The boundary along the line X ¼ 0 belongs to the
physical phase space. It contains those points of the
phase space where the radiation energy density ρr
vanishes, and the matter content of the universe is
given by dust matter, or we have a vacuum. From the
dynamical equation (20) it follows that _X vanishes
for X ¼ 0, so any trajectories starting from this
boundary stay on the boundary. Later in Sec. III C
we see that regular de Sitter fixed points can reside
on this boundary.

(ii) The same properties hold for the boundary along
the line X ¼ 1, which contains those points of the
phase space where the dust energy density ρm
vanishes, and the matter content of the universe is
given by radiation, or we have a vacuum. Later in
Sec. III C we see that regular de Sitter fixed points
can reside also on this boundary.

(iii) Lines with constant H ¼ H⋆ and X ∈ ½0; 1�, where
WðH⋆Þ ¼ 0 and the sign of W is different for
H < H⋆ and H > H⋆, also correspond to the
boundaries, which are part of the physical phase
space. They represent vacuum solutions of the field
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equations. Note that in this case the whole line
H ¼ H⋆; X ∈ ½0; 1� represents a single point
ðH; ρm; ρrÞ ¼ ðH⋆; 0; 0Þ of the original phase space.
These boundaries always contain regular de Sitter
fixed points, as we will see in a deeper discussion in
Sec. III C.

(iv) Similarly, lines with constantH¼H⋆ and X ∈ ½0; 1�,
where W → ∞, are also boundaries. In contrast to
the previous case, they do not belong to the physical
phase space, since the total matter energy density
ρm þ ρr diverges. However, as we will see in
Sec. III C, there are trajectories which approach
these boundaries in infinite time, and they contain
points which can be regarded as (singular) fixed
points.

(v) Finally, the lines Y ¼ �1; X ∈ ½0; 1� corresponding
to H → �∞ also can be treated as boundaries of the
(compactified) phase space, provided that W is non-
negative in the corresponding limit. These bounda-
ries are relevant as they may contain limit points
of trajectories that are reached in finite time, which
correspond to particular types of singularities as
discussed in Sec. IV B.

Note that it is also possible that _H diverges, for example,
at points ðH;XÞ where WH ¼ 0, and that in this case
trajectories reaching this point cannot be continued.
However, these can still be regarded as parts of the physical
phase space if the physical quantities ðH; ρm; ρrÞ constitut-
ing the original phase space remain finite. These points are
known as sudden singularities and are discussed in detail in
Sec. IV C.
Since the boundary ∂P may contain a number of

interesting points as briefly mentioned above and further
discussed in the remaining sections of this article, it will
turn out to be more convenient to study the dynamics on the
compactified phase space P̄ ¼ P∪∂P.

C. Fixed points and their stability

We now come to the discussion of fixed points of the
dynamical system defined by equations (20) and (21) in
Sec. III A. Recall that the fixed points of a dynamical
system are points ðH⋆; X⋆Þ in its phase space at which the
flow of the dynamics vanishes. For the dynamical system
we consider here this amounts to the conditions _X ¼ 0 and
_H ¼ 0. From equation (20) one easily understands that
_X ¼ 0 if either X ¼ 0, X ¼ 1, or H ¼ 0. The condition for
_H ¼ 0 given by equation (21) requires a more careful
treatment, as it depends on the Friedmann function WðHÞ.
We can distinguish the following cases:

(i) For W → 0 it is obvious that _H → 0 in the case
that WH remains finite. However, in the case that
WH either vanishes or diverges for W ¼ 0, we
also obtain a fixed point. To see this, note that
lnW → −∞ when W → 0. However, this implies

that also ðlnWÞH → �∞, where the sign depends
on the direction of the limit. Hence, from W → 0

always follows _H → 0. From the Friedmann con-
straint (14a) it further follows that the energy density
of dust matter and radiation vanishes, so these fixed
points correspond to vacuum solutions. As we will
discuss in Sec. V B, they are de Sitter vacuum
solutions for H⋆ ≠ 0 and Minkowski vacuum sol-
utions for H⋆ ¼ 0, which follows from the fact that
for a constant Hubble parameter _a=a ¼ H ¼ H⋆ the
scale factor behaves as

aðtÞ ∼ expðH⋆tÞ; ð24Þ

and so is constant, or exponentially increasing or
decreasing, depending on the sign of H⋆.

(ii) Following the same line of argumentation, we can
also consider the case that W → ∞ for a finite value
of H⋆. In this case we find lnW → ∞, which again
implies ðlnWÞH → �∞, so also in this case _H → 0
and we obtain a fixed point. Note that these points
are not part of the physical phase space P defined by
equation (19), but lie on the boundary ∂P. We call
them singular fixed points in order to distinguish
them from regular fixed points which belong to the
physical phase space. Here for H⋆ < 0 the radiation
and dust matter content get compressed to infinite
density after infinite time in the future. Analogously
for H⋆ > 0 the radiation and matter started from an
infinite density state infinite time ago in the past.
Note that also in this case the scale factor approaches
asymptotically the exponential behavior (24) in the
vicinity of the fixed point.

(iii) We are left with the case that W → W⋆ > 0 remains
finite. In this case we can still obtain a fixed point
of the equation (21) if WH → �∞ diverges. This
condition is necessary and sufficient for H ≠ 0. For
H ¼ 0 the weaker condition that WH=H diverges is
both necessary and sufficient. However, if we map
this fixed point into the original phase space with
variables ðH; ρm; ρrÞ, we find the paradox situation
in which ρmþρr >0 is constant, sinceW ¼ W⋆ > 0
is also constant at a fixed point though, in general,
H ¼ H⋆ ≠ 0. This contradicts the continuity equa-
tions (13). The reason for this contradiction is the
fact that we divided the dynamical equation (14b) by
an infinite quantity, and hence generated a previ-
ously nonexisting solution. However, these points
are still relevant in a suitable limit since they turn out
to correspond to a certain class of finite time
singularities, as shown in Sec. IV D.

Note that the existence and number of fixed points
satisfying these conditions depends on the Friedmann
function W, and hence on the choice of the function F.
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Wewill not make such a choice here and discuss the generic
properties of the aforementioned fixed points.
In order to discuss the stability of a fixed point ðH⋆; X⋆Þ,

we introduce small perturbations ðh; xÞ around the fixed
point such that

H ¼ H⋆ þ h; X ¼ X⋆ þ x; ð25Þ

and then linearize the dynamical equations in h and x. This
leads to a linear system of the form

�
_h

_x

�
¼ J ·

�
h

x

�
; J ¼

 ∂ _H
∂H

∂ _H
∂X

∂ _X
∂H

∂ _X
∂X

!�����
H¼H⋆;X¼X⋆

;

ð26Þ

where the partial derivatives are given by

∂ _H
∂H ¼ −ðX þ 3ÞWWH þHW2

H −HWWHH

W2
H

;

∂ _H
∂X ¼ −H

W
WH

; ð27aÞ

∂ _X
∂H ¼ XðX − 1Þ; ∂ _X

∂X ¼ ð2X − 1ÞH: ð27bÞ

It follows immediately that ∂ _H=∂X ¼ 0 whenever _H ¼ 0.
A detailed treatment is necessary for ∂ _H=∂H. For this
purpose we write W in the form

W ≈W⋆ þ cjH −H⋆jb ð28Þ

in the vicinity of the critical value H⋆, where W⋆, c; b are
constants. This approximation covers all cases we men-
tioned before, and we find the following behavior:

(i) To study the caseW → 0, we setW⋆ ¼ 0 and b > 0.
Note that we haveWH→�∞ for b<1 andWH → 0
for b > 1, while WH remains finite for b ¼ 1. In all
three cases we find

_H⋆
H ¼ lim

H→H⋆
∂ _H
∂H ¼ −

ðX þ 3ÞH⋆
b

: ð29Þ

(ii) To model the case W → ∞, we consider b < 0,
and can likewise set W⋆ ¼ 0. We find the same
limit (29).

(iii) Finally, we consider the case W⋆ > 0 with b > 0. If
H⋆ ≠ 0, WH must diverge in order to obtain a fixed
point. This is the case for b < 1. However, in this
case ∂ _H=∂H also diverges, so a linear approxima-
tion cannot be used to determine the stability of the
fixed point, and one must explicitly study the
behavior of _H near the fixed point. If H⋆ ¼ 0, we

only need b < 2 in order to obtain a fixed point.
For 1 < b < 2 we find that ∂ _H=∂H likewise di-
verges, while for 0 < b < 1we obtain ∂ _H=∂H → 0,
and so also in these cases the linearized system is not
sufficient. Finally, a special case is given by H⋆ ¼ 0
and b ¼ 1, in which we find

_H⋆
H ¼ lim

H→H⋆
∂ _H
∂H ¼ −

ðX þ 3ÞW⋆
c

: ð30Þ

From this analysis it follows that the Jacobi matrix
simplifies significantly at a fixed point,

J ¼
�

_H⋆
H 0

X⋆ðX⋆ − 1Þ ð2X⋆ − 1ÞH⋆

�
;

_H⋆
H ¼ −AðX⋆ þ 3Þ; ð31Þ

where the constant A follows from either formula (29) or
(30), depending on the nature of the fixed point. Note that
A > 0 in the cases W → 0 at H⋆ > 0, W → ∞ at H⋆ < 0
andW > 0,WH > 0 atH⋆ ¼ 0. Similarly, we findA < 0 in
the cases W → 0 at H⋆ < 0, W → ∞ at H⋆ > 0 and
W > 0, WH < 0 at H⋆ ¼ 0. In these cases a linear
approximation is sufficient in order to determine the
stability of the fixed points. We thus calculate the eigen-
values of J for these cases only, and distinguish between the
three different conditions obtained from _X ¼ 0.

(i) H⋆ ¼ 0: The Jacobi matrix and eigenvalues reduce
to

J ¼
�−AðX⋆ þ 3Þ 0

X⋆ðX⋆ − 1Þ 0

�
;

λ1 ¼ −AðX⋆ þ 3Þ; λ2 ¼ 0: ð32Þ

Note that one eigenvalue vanishes, whose corre-
sponding eigenvector is given by ∂X. This relates to
the fact that in this case all points with H ¼ 0 and
0 ≤ X ≤ 1 are nonisolated fixed points. The stability
is determined by the remaining eigenvalue, which is
positive for WH < 0, which yields a repeller, and
negative for WH > 0, which yields an attractor.

(ii) X⋆ ¼ 0: The Jacobi matrix and eigenvalues are
given by

J¼
�−3A 0

0 −H⋆

�
; λ1¼−H⋆; λ2¼−3A: ð33Þ

Both eigenvalues are negative forW → 0 atH⋆ > 0,
which yields an attractor, and positive for W → 0
at H⋆ < 0, which yields a repeller. For W → ∞
the eigenvalues have opposite signs; we find a
saddle point.
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(iii) X⋆ ¼ 1: In this case the Jacobi matrix and eigen-
values take the form

J¼
�−4A 0

0 H⋆

�
; λ1¼H⋆; λ2¼−4A: ð34Þ

Now the situation is reversed compared to the
previous case. Both eigenvalues are negative for
W → ∞ at H⋆ < 0, which yields an attractor, and
positive for W → ∞ at H⋆ > 0, which yields a
repeller. For W → 0 the eigenvalues have opposite
signs; we find a saddle point.

In all other cases the linearized analysis is not sufficient,
and the sign of _H must be studied explicitly in the vicinity
of the fixed point using the full, nonlinear equations of
motion. We can summarize our findings as follows. We
start with a classification of regular fixed points, which are
elements of the physical phase space P:
Statement 1. A point ðH⋆; X⋆Þ is a regular fixed point

of the dynamical system if it satisfies one of the following
criteria:

(i) In the case X⋆ ¼ 0, H⋆ > 0, W⋆ ¼ 0, it is an
isolated attractor. The corresponding solution is an
expanding de Sitter vacuum solution with scale
factor (24).

(ii) In the case X⋆ ¼ 0, H⋆ < 0, W⋆ ¼ 0, it is an
isolated repeller. The corresponding solution is a
contracting de Sitter vacuum solution with scale
factor (24).

(iii) In the case X⋆ ¼ 1,H⋆ ≠ 0,W⋆ ¼ 0, it is an isolated
saddle point. The corresponding solution is physi-
cally equivalent to either of the two aforemen-
tioned cases.

(iv) Points with 0 ≤ X⋆ ≤ 1, H⋆ ¼ 0, W⋆ > 0, and
W⋆

H > 0 are non-isolated attractors. The correspond-
ing solution is a static universe with Minkowski
geometry, but non-vanishing matter content.

(v) Points with 0 ≤ X⋆ ≤ 1, H⋆ ¼ 0, W⋆ > 0 and
W⋆

H < 0 are non-isolated repellers. The correspond-
ing solution is a static universe as in the aforemen-
tioned case.

(vi) Fixed points, whose stability cannot be determined
from a linearized analysis, are given by:
(a) H⋆ ¼ 0 and W⋆ ¼ 0; this is a Minkowski

vacuum solution.
(b) H⋆ ¼ 0, W⋆ > 0, and W⋆

H diverges; also, this is
a static universe with nonvanishing matter
content.

(c) H⋆ ¼ 0, W⋆ > 0, and W⋆
H ¼ 0 such that

H=WH → 0; this case corresponds to a finite
time singularity of type IV, as shown in
Sec. IV D. ▪

There are a number of fixed points, which either lie
outside the physical phase space (16), or do not correspond
to solutions of the Friedmann equations (14) in terms of the

original variables ðH; ρm; ρrÞ, since they are obtained from
a singular coordinate transformation. Here we find the
following conditions:
Statement 2. A point ðH⋆; X⋆Þ is an irregular fixed

point of the dynamical system if it satisfies one of the
following criteria:

(i) In the case X⋆ ¼ 1, H⋆ < 0, W⋆ → ∞, it is an
isolated attractor. Trajectories approaching this
point undergo an exponential decreasing of the scale
factor (24), while the matter density and pressure
grow exponentially.

(ii) In the case X⋆ ¼ 1, H⋆ > 0, W⋆ → ∞, it is an
isolated repeller. Trajectories originating from this
point undergo an exponential growth of the scale
factor (24), while the matter density and pressure
decrease exponentially.

(iii) In the case X⋆ ¼ 0, H⋆ ≠ 0, W⋆ → ∞, it is an
isolated saddle point. Note that this point is neither
a physical solution, nor approached by any trajec-
tories.

(iv) Fixed points, whose stability cannot be determined
from a linearized analysis, are given by
(a) X⋆ ∈ f0; 1g, H⋆ ≠ 0, W⋆ > 0, and W⋆

H di-
verges; even though this point lies inside the
physical phase space spanned by the variables
ðH;XÞ, it does not have a corresponding solu-
tion in the original matter variables ðH; ρm; ρrÞ,
as it originates from a singular coordinate
transformation.

(b) H⋆ ¼ 0 and W⋆ → ∞; this point does not
belong to the physical phase space and corre-
sponds to a static universe with an infinite matter
density. ▪

An overview of all conditions listed in Statements 1
and 2, ordered by the properties of points in the compacti-
fied phase space, is given in Fig. 3 in Appendix A.

D. Possibility of bounce and turnaround

We now come to the discussion of bounces and turn-
arounds, i.e., transitions between expanding and con-
tracting phases of the evolution of the universe. Note
that for any such transition we have _a ¼ 0, and hence
H ¼ 0. Thus, these kind of transitions can occur only if
H ¼ 0 lies inside the physical phase space (19) given by the
condition that the total matter energy density is positive,
and further require _H ≠ 0. The former is the case if and
only if

WjH¼0 ≥ 0: ð35Þ

A bounce is given when _HjH¼0 > 0, while a turnaround is
characterized by _HjH¼0 < 0. From the dynamics (21) of the
Hubble parameter it follows that _H is nonzero and finite at
H ¼ 0 if and only if
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lim
H→0

H
ðlnWÞH

¼ 1

ðlnWÞHH

����
H¼0

ð36Þ

is finite, and hence, in particular, ðlnWÞH → 0 for H → 0.
Explicitly calculating the derivatives of lnW then shows
that _H ≠ 0 if and only ifW > 0,WH ¼ 0, andWHH ≠ 0 at
H ¼ 0, and that the sign of WHH determines the sign of _H.
We thus conclude and summarize as follows:
Statement 3. At H ¼ 0 we have _H ≠ 0 if and only if

W > 0, WH ¼ 0, and WHH ≠ 0, where
(i) for WHH < 0 we have _H > 0 and hence a bounce,
(ii) for WHH > 0 we have _H < 0 and hence a turn-

around. ▪
Examples of bouncing cosmologies in fðTÞ gravity have

been discussed in Refs. [33,50,51].

E. Impossibility of cyclic and oscillating universes

Another interesting aspect, which is closely related to the
existence of bounces and turnarounds as discussed in the
previous section, is the possibility of cyclic universe
solutions. Conventionally, these are defined as periodic
solutions for the scale factor aðtþ t0Þ ¼ aðtÞ, and thus,
in particular, imply that also the Hubble parameter
Hðtþ t0Þ ¼ HðtÞ is periodic and has both positive and
negative phases during each period. This means that in a
cyclic universe both bounces and turnarounds occur peri-
odically. However, this can immediately be excluded using
Statement 3, since the conditions for a bounce and a
turnaround are mutually exclusive and cannot be simulta-
neously satisfied for any given fðTÞ theory of gravity. Note
that this property is even more restrictive and prohibits any
solutions in which the scale factor shows an oscillating
behavior in the sense that the dynamics change more than
once between expansion and contraction.
We can also relax the periodicity condition and demand

only that Hðtþ t0Þ ¼ HðtÞ is periodic. This allows for a
periodic growth of the scale factor, aðtþ t0Þ ¼ λaðtÞ with
constant λ. However, one easily sees that also this is not
possible. Recall from Sec. III A that the sign of _H given
by equation (21) is independent of X ∈ ½0; 1�. Any line of
constant H can therefore be crossed in only one direction,
with either increasing or decreasing H, but not in both
directions, as it would be necessary for a periodic orbit with
variable H. Periodic orbits with constant H and only
variable X are likewise excluded, since for any fixed H
the sign of _X is also independent of X, and the same
argument holds. Finally, oscillating behavior of the Hubble
parameterH is also excluded, which follows from the same
argumentation as for excluding the oscillating behavior of
a. We summarize:
Statement 4. Periodic and oscillating orbits in the

ðH;XÞ phase space, as well as cyclic and oscillating
universe solutions, are not possible. ▪

We finally remark that this very general result does not
depend in any way on the choice of the function fðTÞ in the
action. It does, however, depend on the matter content,
which we have fixed to dust and radiation. Exotic matter,
which would allow for transitions between positive and
negative matter densities, could potentially lead to oscillat-
ing behavior. However, we will not consider exotic matter
here, and conclude our discussion of the phase space of
fðTÞ gravity and its basic properties. Another important
aspect is the existence and classification of finite time
singularities. We present an exhaustive treatment in the
following section.

IV. FINITE TIME SINGULARITIES

The dynamical systems approach detailed in the previous
section now allows us to discuss the possibility of finite
time singularities [52,53] in fðTÞ gravity. Note that there
are different types of singularities, which can be distin-
guished by the behavior of H and _H near the singularity.
This will be explained in detail in Sec. IVA. We then
describe three types of singularities: Those for which both
H and _H become infinite are discussed in Sec. IV B. The
case where _H diverges at a finite value of H is studied in
Sec. IV C. Finally, in Sec. IV D we consider the case in
which both H and _H remain finite, but higher time
derivatives of H diverge.

A. Types of singularities

We start with a brief review of the possible types of
finite time singularities, studied in detail in Refs. [35,54].
For a singularity occurring at time t⋄, it is conventional to
approximate the Hubble parameter close to the singularity
by the asymptotic behavior [53]

HðtÞ ≈H⋄ þ h
jt − t⋄jk ð37Þ

with real constantsH⋄, h; k. Different types of singularities
are distinguished by the value of the parameter k. Classi-
cally, one considers four types of singularities, which are
denoted as follows [52]:
Type I: For k ≥ 1 both H and _H diverge for t → t⋄; in this
case we can set H⋄ ¼ 0 without loss of generality. By
integrating the relation (37), one can see that the logarithm
of the scale factor ln a also diverges at the singularity, and
so either a → 0 or a → ∞. If this singularity occurs in the
past of an expanding universe, it is called a big bang. A
future expanding singularity of this type is known as a big
rip, while a future collapsing singularity is called a big
crunch.
Type II: In the range −1 < k < 0 the Hubble para-
meter H → H⋄ stays finite, but its derivative _H diverges
at the singularity. These singularities are called sudden
singularities.
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Type III: If the singularity parameter is in the interval
0 < k < 1, we have a similar behavior to the case of a type I
singularity; both H and _H diverge. The only difference
between these two types lies in the fact that for a singularity
of type III the scale factor remains finite.
Type IV: Finally, for k < −1 with k∉Z both H and _H
remain finite at the singularity, but higher time derivatives
of H diverge.
In principle, it is also possible to consider singularities with
a more general asymptotic behavior of the Hubble param-
eter than the power law (37); however, we do not consider
such general singularities here, and restrict ourselves to the
four aforementioned types. Moreover, since singularities of
type I and type III differ only by the asymptotic behavior of
the scale factor a, which is not explicit in our dynamical
system, we will treat them together. By solving the
asymptotic behavior (37) for the time t and doing the
same with its time derivative, we can express _H through H
in the vicinity of the singularity. Note that by definition of
the constants we have

H −H⋄
h

> 0; ð38Þ

and so we can write

_H ≈�kh

�
H −H⋄

h

�
1þ1

k

; ð39Þ

where the positive sign holds for future singularities t < t⋄,
while the negative sign holds for past singularities t > t⋄.
In the following, we use the abbreviation W⋄ ¼ WðH⋄Þ,
as well as similar abbreviations for the derivatives of W at
the singularity. We do not a priori demand that these
derivatives exist at the singularity itself, but only in a
neighborhood of the singularity, and then derive suitable
limit values. In the following sections we give a detailed
discussion of all singularity conditions. All conditions are
also summarized in Fig. 3 in Appendix in graphical form.

B. Singularities of type I and III:
H → �∞ and _H → �∞

The first case we discuss is k > 0, where both H and _H
diverge at the singularity, and we set H⋄ ¼ 0. From the
asymptotic behavior (39) it follows that the condition for a
singularity can be expressed as

0 ¼ � 1

k
lim

H→�∞

�
h
H

�1
k ¼ lim

H¼�∞

H
_H
¼ − lim

H→�∞

WH

ðX þ 3ÞW

¼ − lim
H→�∞

ðlnWÞH
ðX þ 3Þ ; ð40Þ

where the sign under the limit depends on whether one
discusses a singularity for an expanding universe, H → ∞,

or collapsing universe H → −∞. We further see that also
the type of the singularity, which is determined by the value
of k, can be seen from the asymptotic behavior of ðlnWÞH
by taking the logarithm under the limit (40). This can be
summarized as follows:
Statement 5. A finite time singularity with H → �∞

and _H → �∞ exists if and only if

lim
H→�∞

ðlnWÞH ¼ 0; ð41Þ

where the positive sign corresponds to an expanding
universe, while the negative sign corresponds to a collaps-
ing universe. The singularity parameter k > 0 is given by

k ¼ − lim
H→�∞

ln jHj
ln jðlnWÞHj

; ð42Þ

with the same sign as above. The singularity lies in the
past if asymptotically WH > 0, sgn _H ¼ −sgnH, and in the
future if asymptotically WH < 0, sgn _H ¼ sgnH. ▪

C. Singularities of type II: Finite H but _H → �∞
We then discuss the case −1 < k < 0, which is also

called a sudden singularity, and which occurs when _H
diverges for finite H ¼ H⋄. This case occurs when there
exists H⋄ such that

0 ¼ lim
H→H⋄

1

_H
¼ − lim

H→H⋄
WH

ðX þ 3ÞHW
: ð43Þ

Recall from the discussion of fixed points in Sec. III C
that _H → 0 whenever W → 0 or W → ∞. Hence, we can
exclude these cases here and study only the case of a
finite limit W → W⋄ > 0. We distinguish the following
two cases:

(i) H⋄ ≠ 0: In order for _H to become singular, the
numeratorWH of (39) must vanish forH ¼ H⋄. This
is the case if and only if WH → W⋄

H ¼ 0.
(ii) H⋄ ¼ 0: The case is similar to the aforementioned

one, but the condition for a sudden singularity is
more restrictive and reads

lim
H→0

WH

H
→ 0; ð44Þ

which is the case if and only if both WH and WHH
vanish at H ¼ 0.

In order to determine the singularity parameter k, we
make use of these conditions, which allow us to approxi-
mate the Friedmann function W near the singularity as

W ≈W⋄ þ ϵ

�
H −H⋄

c

�
b
; ð45Þ
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where sgnc ¼ sgnh is chosen, the expression inside the
brackets becomes positive, ϵ ¼ �1 is a sign, and we require
b > 1 for H⋄ ≠ 0 and b > 2 for H⋄ ¼ 0. In this approxi-
mation the time derivative of the Hubble parameter
becomes

_H ≈ −ϵðX þ 3ÞHW⋄ c
b

�
H −H⋄

c

�
1−b

: ð46Þ

We now have to distinguish two different cases. For
H⋄ ≠ 0 we find that near the singularity ðH⋄; X⋄Þ we have

_H ≈ −ϵðX⋄ þ 3ÞH⋄W⋄ c
b

�
h
c

�
1−b
�
H −H⋄

h

�
1−b

: ð47Þ

By comparison with the general form (39) we immediately
see k ¼ −b−1 from the exponent. The sign in equation (39)
can be understood from

sgn

�
−ϵ

ðX⋄ þ 3ÞH⋄W⋄c
khb

�
h
c

�
1−b
�

¼ sgnðϵH⋄Þ ¼
�
1 for future singularities;

−1 for past singularities;
ð48Þ

where we have simply left out any positive, constant
factors.
For H⋄ ¼ 0 we find the approximation

_H ≈ −ϵðX⋄ þ 3ÞW⋄ c2
b

�
h
c

�
2−b
�
H
h

�
2−b

: ð49Þ

In this case we see k ¼ ð1 − bÞ−1, and the sign in
equation (39) is given by

sgn
�
−ϵ

ðX⋄ þ 3ÞW⋄c2
khb

�
h
c

�
2−b
�

¼ sgnðϵHÞ ¼
�
1 for future singularities;

−1 for past singularities;
ð50Þ

where in addition we used sgnh ¼ sgnH in this case.
We finally remark on the sign ϵ which appears in the

results (48) and (50). Since W⋄
H ¼ 0, the Friedmann

function W must have either an extremal point or an
inflection point at H ¼ H⋄. In case of a maximum
(minimum), ϵ is positive (negative) on both sides of the
singularity. If W has an inflection point, ϵ differs on both
sides of the singularity. We conclude and summarize:
Statement 6. A sudden singularity occurs at H ¼ H⋄ if

and only if W⋄ > 0, W⋄
H ¼ 0, and

(i) either H⋄ ≠ 0, in which case the singularity param-
eter is k ¼ −b−1 with b > 1,

(ii) or H⋄¼0 andW⋄
HH¼0, in which case k¼ð1−bÞ−1

with b > 2,

where b can be determined from the ansatz (45). The
singularity occurs in the future in the following cases:
(a) W has a local minimum at H⋄ > 0,
(b) W has a local maximum at H⋄ < 0,
(c) W has a rising inflection point at H⋄ and the

singularity is approached from jHj > jH⋄j,
(d) W has a falling inflection point at H⋄ and the

singularity is approached from jHj < jH⋄j.
The singularity occurs in the past if any of the aforemen-
tioned conditions is satisfied for −W instead of W. ▪

D. Singularities of type IV: finite H and _H

We finally come to the case k < −1 with k∉Z, which is
the most subtle type of singularity, since both H and _H
remain finite, while higher time derivatives of H diverge.
In order to study these singularities, we approximate the
Hubble parameter as

H ¼ H⋄ þ hez ð51Þ

near the singularity, where we made use of the positivity
condition (38). We then find that near the singularity

d
dz

ln j _Hj ≈ d
dz

ln jkhðezÞ1þ1
kj ¼ 1þ 1

k
: ð52Þ

The dynamical equation (21) for _H yields

d
dz

ln j _Hj ¼ hez
�

1

H⋄ þ hez
− ½ln jðlnWÞHj�H

�

¼ ðH −H⋄Þ
�
1

H
− ½ln jðlnWÞHj�H

�
: ð53Þ

The asymptotic behavior is obtained by approaching the
singularity H → H⋄; we conclude

1þ 1

k
¼ lim

H→H⋄ðH −H⋄Þ
�
1

H
− ½ln jðlnWÞHj�H

�
: ð54Þ

For the values of k we consider in this section, the limit
must be an element of the set

ð0; 1Þn
�
1

2
;
2

3
;
3

4
;…

	
: ð55Þ

It is helpful to distinguish two different cases:
(i) For H⋄ ≠ 0 the term 1=H does not contribute

to the limit. In this case the singularity condition
reads

lim
H→H⋄ðH −H⋄Þ½ln jðlnWÞHj�H

∈ ð−1; 0Þn
�
−
1

2
;−

2

3
;−

3

4
;…

	
: ð56Þ
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(ii) For H⋄ ¼ 0 the contribution of the term 1=H must
be taken into account; the singularity condition
becomes

lim
H→H⋄ðH−H⋄Þ½ln jðlnWÞHj�H ∈ ð0;1Þn

�
1

2
;
1

3
;
1

4
;…

	
:

ð57Þ

Note that in order to satisfy these conditions, it is in
particular necessary that the limit is finite and nonzero,
which requires the asymptotic behavior

½ln jðlnWÞHj�H ¼ WHH

WH
−
WH

W
∼

1

H −H⋄ ð58Þ

near the singularity. To achieve this behavior, we use the
same approximation (45) as in the previous case of a
sudden singularity. For b > 0 we obtain

lim
H→H⋄ðH −H⋄Þ½ln jðlnWÞHj�H

¼ −1þ lim
H→H⋄bW

⋄
�
W⋄ þ ϵ

�
H −H⋄

c

�
b
�
−1

¼ b − 1: ð59Þ

ForH⋄ ≠ 0 we thus require b ∈ ð0; 1Þnf1
2
; 1
3
; 1
4
;…g, which

implies that WH diverges for H → H⋄. Similarly, for
H⋄¼0 we require b∈ ð1;2Þnf3

2
;4
3
;5
4
;…g. WH→W⋄

H¼0,
whileWHH diverges for H → H⋄. This can be summarized
as follows:
Statement 7. Singularities with finite H and _H occur at

H ¼ H⋄ if and only if W⋄ > 0 and
(i) either H⋄ ≠ 0 and WH diverges, in which case the

singularity parameter is k ¼ b−1,
(ii) or H⋄ ¼ 0, W⋄

H ¼ 0, and WHH diverges, in which
case k ¼ ð1 − bÞ−1,

where b is given by the asymptotic behavior (45), provided
that k ≠ Z. The conditions for future and past singularities
are the same as in Statement 6. ▪
We finally remark that the conditions for the existence of

this type of singularity in particular imply the existence of
fixed points, since they satisfy Condition vi in Statement 1.
These singularities hence comprise a special class of fixed
points which are reached in finite time.
This concludes our discussion of finite time singularities.

In the next section we will shift our focus to another aspect
of fðTÞ cosmology and derive a number of observable
parameters.

V. OBSERVATIONAL PROPERTIES

In the final section about the general dynamical system
approach we discuss how to relate the dynamical system to
physical properties and observables of the cosmological

model. For this purpose we study, in particular, two
properties, namely the accelerating expansion of the uni-
verse in Sec. VA and the barotropic index of an equivalent
dark energy model and the possibility of crossing the
phantom divide in Sec. V B. Specific phases of accelerating
expansion, in particular inflation and the observed late time
acceleration, are discussed in Sec. V C. We finally show
how several observational parameters, such as the Hubble
parameter, deceleration parameter, and density parameters,
can be read off from the dynamical system and further be
used to constrain the Friedmann function WðHÞ and select
a particular phase space trajectory in Sec. V D.

A. Accelerating expansion

An important question about any fðTÞ gravity model is
whether it supports an epoch of accelerated expansion of
the universe, and whether there are transitions between
deceleration and acceleration. From the definition of the
Hubble parameter it immediately follows that

_H ¼ d
dt

_a
a
¼ äa − _a2

a2
¼ ä

a
−H2; ð60Þ

and hence the acceleration is given by

ä
a
¼ H2 þ _H ¼ H

�
H − ðX þ 3Þ W

WH

�
: ð61Þ

We now focus on the transition between acceleration and
deceleration, and thus in particular on phase space trajec-
tories passing through the line where ä ¼ 0. Note that for
H ¼ 0 this condition implies _H ¼ 0 and hence corresponds
to a fixed point; there is no transition in this case. We thus
find that transitions can occur only for H ≠ 0 with

H ¼ ðX þ 3Þ W
WH

¼ X þ 3

ðlnWÞH
: ð62Þ

One easily checks that this is possible only if W and WH
are finite and nonzero. To determine the direction of the
transition, we further calculate the third derivative

2H _H þ Ḧ ¼ d
dt

ä
a
¼ a

…
a − ä _a
a2

¼ a
…

a
−H3 −H _H: ð63Þ

We only need to study a
…
in the particular case ä ¼ 0 given

by the relation (62). In this case the third derivative of the
scale factor is given by

a
…

a

����
ä¼0

¼ 6H3ðX þ 1ÞW −H5WHH

ðX þ 3ÞW : ð64Þ

We can thus summarize:
Statement 8. Transitions between acceleration and

deceleration can occur only at phase space points satisfying
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HðlnWÞH ¼ X þ 3, following from equation (62), and the
direction of the transition is determined by

sgna
… ¼ sgnfH½6ðX þ 1ÞW −H2WHH�g; ð65Þ

following from equation (64). ▪
Studies of whether and how different models can

incorporate accelerated expansion include Refs. [8,9,21,
24,28,37,55–58].

B. Dark energy and the phantom divide

If we compare the cosmological field equations (14)
with the corresponding equations for a generic dark energy
model in general relativity, which are given by

H2 ¼ 8πG
3

ðρm þ ρr þ ρDEÞ; ð66aÞ

_H ¼ −4πG
�
ρm þ 4

3
ρr þ ð1þ wDEÞρDE

�
; ð66bÞ

then one can easily infer that fðTÞ gravity can be described
as an effective dark energy model, where the effective
energy density of dark energy is given by

ρDE ¼ 6H2 −W
16πG

; ð67Þ

while its effective barotropic index takes the form

wDE ¼ −1 −
ðX þ 3Þ

3

�
1 − 12

H
WH

��
1 − 6

H2

W

�−1

¼ −1 −
X þ 3

3

½ln jW − 6H2j�H
ðlnWÞH

: ð68Þ

We are, in particular, interested in the question of whether
the barotropic index is smaller or larger than −1, or whether
there exists some H ¼ H× where it changes dynamically
between these two possibilities. The critical value wDE ¼
−1 discriminates between so-called phantom and non-
phantom dark energy, and is hence also known as the
“phantom divide.” For this purpose it is sufficient to study
the sign, zeroes, and poles of the second term. We can
proceed similarly to the discussion of fixed points and
singularities and distinguish a number of different cases.
First, we consider H× ≠ 0, and study the following three
particular cases for W×:

(i) If W diverges, then also WH diverges. Both terms
in brackets in equation (68) approach 1, and the
barotropic index approaches −2 − X

3
≠ −1.

(ii) For W → 0 one can easily see from the first
expression for wDE in equation (68) that wDE →
−1 unless WH → 0 and the corresponding factor in
brackets diverges. However, one can see from the
last expression in equation (68) that also in the case

W → 0 and WH → 0 the term ðlnWÞH in the
denominator diverges as discussed in Sec. III C,
while the numerator stays finite. Hence, also in this
case wDE → −1. However, recall from Sec. III C that
W ¼ 0 implies _H ¼ 0; no crossing can occur in
this case.

(iii) IfW → 6H2, it follows from an analogous argument
that the denominator ½ln jW − 6H2j�H diverges, and
hence also wDE diverges.

We thus see that none of these cases allow for a crossing of
the phantom divide. For any other value ofW, which is not
covered by the aforementioned special cases, the second
bracketed term in equation (68) is nonzero, finite, and does
not equal 1. We then need to consult the value ofWH. Also,
here there are three particular cases to be discussed:

(i) For WH → 12H the first bracketed term in equa-
tion (68) vanishes and we obtain wDE ¼ −1. Since
_H ≠ 0 in this case, as follows from Statement 1, this
allows for a crossing of the phantom divide.

(ii) ForWH → 0 the first bracketed term in equation (68)
diverges, and so does wDE.

(iii) Finally, if WH diverges, the first bracketed term in
equation (68) approaches 1, and we find wDE ≠ −1.

Note that for all other values of WH we likewise find
wDE ≠ −1; the only case we have found so far for crossing
the phantom divide is the one involving WH ¼ 12H.
We are left with the case H ¼ 0. Since we are interested

in the possibility of crossing the phantom divide, we need
to consider only such cases in which we obtain a finite,
nonzero _H, i.e., a bounce or turnaround. These cases follow
from the conditions given in Statement 3. In particular,
we must have W > 0; the second bracketed term in
equation (68) always approaches 1 for H → 0. Thus, in
order to cross the phantom divide, the first bracketed term
must vanish. This is the case if and only if

lim
H→0

H
WH

¼ 1

WHHjH¼0

¼ 1

12
; ð69Þ

i.e., if and only if W > 0, WH ¼ 0, and WHH ¼ 12
at H ¼ 0.
We also determine in which direction the phantom divide

is crossed. For this purpose we calculate the total time
derivative _wDE. In the first crossing case, where H× ≠ 0,
we find

_wDE ¼ −
ðX× þ 3Þ2ðW×

HH − 12ÞðW×Þ2
432H×½W× − 6ðH×Þ2� ; ð70Þ

while in the second crossing case, for H× ¼ 0, we obtain

_wDE ¼ −
ðX× þ 3Þ2W×W×

HHH

864
: ð71Þ

We can summarize our findings as follows:
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Statement 9. Crossing of the phantom divide occurs at
H ¼ H× if and only if W× > 0 and

(i) either H× ≠ 0, W× ≠ 6ðH×Þ2 and W×
H ¼ 12H×, in

which case

sgn _wDE ¼ −sgn
ðW×

HH − 12Þ
H×½W× − 6ðH×Þ2� ; ð72Þ

(ii) or H× ¼ 0, W×
H ¼ 0, and W×

HH ¼ 12, in which case

sgn _wDE ¼ −sgnW×
HHH: ð73Þ

▪
From the point of view of phantom dark energy and the

divide line crossing, different models were considered in
Refs. [55–57].

C. Inflation and late time acceleration

From our discussion of the effective dark energy content
in the preceding section follows another interesting remark.
We have seen that in the caseW ¼ 0, which implies _H ¼ 0,
we have wDE ¼ −1. This leads to the following conclusion,
using the effective dark energy density (67):
Statement 10. At fixed points ðH⋆; X⋆Þ with W⋆ ¼ 0

the solution becomes a de Sitter vacuum solution, i.e.,
ρr ¼ ρm ¼ 0 and wDE ¼ −1, with cosmological constant

Λ ¼ 8πGρDE ¼ 3ðH⋆Þ2: ð74Þ
▪

If H > 0, then this solution models the observed late
time acceleration of the universe. Note that de Sitter fixed
points of this type W⋆ ¼ 0 cannot be used to model
inflation without invoking further mechanisms beyond
the fðTÞ dynamics we study here. To see this, recall from
Statement 1 that forW⋆ ¼ 0 atH⋆ > 0 there exists a saddle
point at X⋆ ¼ 1 and an attractor at X⋆ ¼ 0. Any trajectories
in the vicinity of these fixed points ultimately converge to
the attractor, and thus never leave the accelerating de Sitter
phase. Hence, there would be no exit from this type of
inflation.
We finally remark that fixed points with W⋆ → ∞ could

be potential candidates to model inflation. In the case
H⋆ > 0 we see from Statement 2 that there exists a repeller
at X⋆ ¼ 1. This point, which is the limiting point of
trajectories in their infinite past, corresponds to an infinite
matter density. In this limit the scale factor a asymptotically
becomes 0, with asymptotically constant Hubble parameter
H ¼ H⋆. However, note that of course our purely classical
model breaks down as soon as densities become suffi-
ciently high that the quantum nature of matter becomes
relevant; one cannot extrapolate this trajectory into the
infinite past. We would rather expect that inflation starts
from a quantum regime.

D. Cosmological parameters

A number of observable parameters can be derived
directly from the equations constituting the dynamical
system. Most important are the density parameters, which
are defined with the help of the critical density

ρc ¼
3H2

8πG
: ð75Þ

For different contributions to the matter density present in
our model this yields the straightforward definitions

Ωm ¼ ρm
ρc

¼ ð1 − XÞW
6H2

; Ωr ¼
ρr
ρc

¼ XW
6H2

;

ΩDE ¼ ρDE
ρc

¼ 1 −
W
6H2

: ð76Þ

Conventionally, one also defines a parameter Ωk related
to the spatial curvature; however, this parameter vanishes
identically for our model, since we restrict ourselves to
spatially flat FLRW spacetimes. As a consequence, the
parameters satisfy the constraint equation

Ωm þ Ωr þ ΩDE ¼ 1; ð77Þ

which is simply a rewriting of the corresponding Fried-
mann equation (66), and which is in good agreement with
current observations [59].
Another important set of observable parameters are of

course the Hubble parameter H itself and the deceleration
parameter q defined by

q ¼ −
ä

aH2
¼ −1 −

_H
H2

¼ −1þ ðX þ 3Þ W
HWH

: ð78Þ

Their present values are related to a Taylor expansion of the
scale factor aðtÞ around the present time t0 given by

aðtÞ¼a0

�
1þH0ðt− t0Þ−

1

2
H2

0q0ðt− t0Þ2
�
þOððt− t0Þ3Þ:

ð79Þ

From the present time values of these parameters we can
derive two types of constraints. The Hubble parameter H0

and the ratio between radiation and matter given by

Ωr;0

Ωm;0
¼ X0

1 − X0

ð80Þ

fix a point ðH0; X0Þ in phase space, and hence a particular
trajectory. The total matter density further determines the
present time value of W via

W0 ¼ 6H2
0ðΩm;0 þ Ωr;0Þ; ð81Þ
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while the present time value of WH follows from the
deceleration parameter as

WH;0 ¼
ðX0 þ 3ÞW0

H0ð1 − q0Þ
: ð82Þ

Hence, we obtain the first two coefficients in the Taylor
expansion of the Friedmann functionW around the present
time value H0 of the Hubble parameter.
With this we finish our discussion of observational

properties, and thereby of generic fðTÞ theories. We have
now constructed a comprehensive set of tools to analyze
any given fðTÞ theory by the properties of the correspond-
ing Friedmann function WðHÞ. In order to demonstrate
the potential of these tools, we apply our formalism to a
particular class of theories, for which FðTÞ is given by a
power law, in the next section.

VI. EXAMPLE: POWER LAW
MODEL FðTÞ=αð−TÞn

After discussing the general formalism we developed in
the previous sections, we now apply this formalism to a
specific model. In this model FðTÞ is given by a power law
FðTÞ ¼ αð−TÞn, where α and n are constant parameters.
The main purpose of this section is to illustrate our
formalism. We start with the definition of the power law
model and a discussion of the allowed ranges and special
values of its parameters in Sec. VI A. We then derive a
number of properties of the general power law model,
without restrictions on the constant parameters, using our
general formalism. We discuss the physical phase space, its
boundaries, and fixed points in Sec. VI B. Finite time
singularities are discussed in Sec. VI C. We continue by
discussing phases of accelerating expansion in Sec. VI D
and the properties in Sec. VI E. The results obtained in
Secs. VI B to VI E will then allow us to discuss the general
dynamics and draw qualitative phase diagrams in Sec. VI F,
as well as study the behavior of physical quantities along
trajectories in Sec. VI G. Finally, in Sec. VI H we derive a
number of observational parameters and discuss their
values for commonly used values of the model parameters.

A. Definition and model parameters

We start with a discussion of the generic properties of
the power law model FðTÞ ¼ αð−TÞn, where α and n are
constant parameters whose values we leave arbitrary in
this section. Note that −T ¼ 6H2 is never negative. We
calculate the function

W ¼ 6H2 þ ð1 − 2nÞαð6H2Þn; ð83Þ

its first derivative

WH ¼ 12H þ 2nð1 − 2nÞα ð6H
2Þn

H
; ð84Þ

and second derivative

WHH ¼ 12½1 − nð1 − 2nÞ2αð6H2Þn−1�: ð85Þ

It is important to distinguish a few special cases:
(i) For α ¼ 0 the model trivially reduces to teleparallel

equivalent of general relativity.
(ii) In the case n ¼ 0 we see that FðTÞ is simply a

cosmological constant. Hence, the model becomes
equivalent to GR with a cosmological constant.

(iii) For n ¼ 1 the total Lagrangian reads ð1 − αÞT. This
model is equivalent to general relativity, where the
gravitational constant is rescaled by a factor 1 − α.
Obviously, α ¼ 1 must be excluded in this case.

(iv) For n ¼ 1
2
the terms originating from FðTÞ do not

contribute to the cosmological field equations.
Hence, we obtain the same cosmological dynamics
as for general relativity.

In the following we will exclude these special cases from
our analysis, since they would have to be treated separately
but do not yield any new features beyond the exhaustively
studied GR cosmology with a cosmological constant.

B. Physical phase space and fixed points

We now apply the general framework we developed in
this article to this model. We first determine the physical
phase space, which is given by the conditionW ≥ 0 obtained
in Sec. III A. The boundary of the phase space is thus given
by the condition that either W ¼ 0 or W → ∞, which are
also fixed point conditions according to Statements 1 and 2
detailed in Sec. III C. It thus makes sense to study the fixed
point conditions first. We start with the condition W ¼ 0,
which for the model we consider here has the solutions

H ¼ 0 and ð6H2Þ1−n ¼ ð2n − 1Þα: ð86Þ

The point H ¼ 0, which is a solution only for n > 0, is
special and will be treated separately. The second equation
has a positive and a negative solution for ð2n − 1Þα > 0 and
n ≠ 1. In the following we will denote the positive solution
by H ¼ H⋆. According to Conditions i, ii, and iii in
Statement 1, we thus obtain different fixed points
ðH;XÞ ∈ P: one attractor ðH⋆; 0Þ, one repeller ð−H⋆; 0Þ,
and two saddle points ð�H⋆; 1Þ. According to Statement 10
they all correspond to a de Sitter universe. Note that these are
the only fixed points withH ≠ 0, since the power law model
does not satisfy any other condition listed in Statement 1 or
2, except forH ¼ 0. The point ðH⋆; 0Þ should correspond to
the same state as the stable de Sitter fixed point found in
studies with Hubble-rescaled variables [21,24,27,28,30].
In the caseH ¼ 0we see that Conditionvi a in Statement 1

is satisfied for n > 0, while Condition iv b in Statement 2 is
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satisfied for n < 0. The first one is a regular vacuum fixed
point, while the latter belongs to a divergent matter density,
and hence lies on the boundary outside of the physical phase
space. In both cases the stability cannot be determined from
the linearized analysis. Wewill determine their stability from
the phase diagrams in Sec. VI F.
From our analysis it follows that the physical phase

space is bounded in H if either α > 0 and n > 1
2
or α < 0

and n < 1
2
. Studying the sign of W in these cases yields

different restrictions on the physical phase space:
(i) For α > 0 and n > 1 we obtain W ≥ 0 only for

jHj ≤ H⋆. The absolute value of the Hubble param-
eter thus has an upper bound.

(ii) For α > 0 and 1
2
< n < 1 the physical phase space is

given by jHj ≥ H⋆, and so we receive a lower bound
instead.

(iii) For α < 0 and n < 1
2
the absolute value of the

Hubble parameter likewise has a lower bound given
by jHj ≥ H⋆.

Finally, for ð2n − 1Þα ≤ 0, the physical phase space covers
all of H ∈ R.

C. Finite time singularities

We now come to the discussion of finite time singular-
ities in the power law model, for which we proceed in the
same way as for the fixed points. We start with the case
H → �∞ as discussed in Sec. IV B, which belongs to
the boundary of the physical phase space unless α > 1 and
n > 1. From Statement 5 it follows that we need to consider
the asymptotic behavior of ðlnWÞH forH → �∞. Note that
in this limit we have W ∼H2 if n < 1 and W ∼H2n if
n > 1. In both cases, we find the asymptotic behavior

ðlnWÞH ∼
1

H
; ð87Þ

which corresponds to a finite time singularity of type I with
parameter k ¼ 1. For H → ∞ we find WH > 0; this is a
past singularity, and hence a big bang. Conversely, for
H → −∞, we find WH < 0, and this is a future singularity
for a collapsing universe, hence a big crunch.
We then come to sudden singularities, or singularities of

type II, as discussed in Sec. IV C, which occur at finite H.
Recall from Statement 6 that these occur only where W⋄ is
nonzero and finite; we can exclude H ¼ 0 for the power
law model from our discussion. We are thus looking for
points H⋄ ≠ 0 where W⋄

H ¼ 0, as also required by
Statement 6. This condition yields

ð6H2Þ1−n ¼ nð2n − 1Þα; ð88Þ
where the right hand side is nonzero since we have already
excluded those values for n and α for which it will vanish.
In the following we will denote by H⋄ the positive solution
of this equation, if it exists. This is the case for the
following parameter ranges:

(i) For α > 0 and n < 0 the physical phase space covers
the whole range H ∈ R, and hence also contains the
singularity H⋄.

(ii) For α < 0 and 0 < n < 1
2
we find the singularity at

H⋄ < H⋆; however, this point lies outside the
physical phase space.

(iii) For α > 0 and 1
2
< n < 1 we have qualitatively

the same situation as in the aforementioned case,
with a singularity at H⋄ < H⋆ outside the physical
phase space.

(iv) For α > 0 and n > 1 the singularity also satisfies
H⋄ < H⋆, but in this case this point lies inside the
physical phase space.

Hence, we need to discuss only the first and the last of these
ranges. At the singularity we find that

W⋄¼6

�
1−

1

n

�
ðH⋄Þ2; W⋄

H¼0; W⋄
HH¼24ð1−nÞ:

ð89Þ

In particular, we find thatW⋄
HH is finite and nonzero, and so

the asymptotic behavior of the Friedmann function W is
given by

W −W⋄ ∼ ðH −H⋄Þ2 ð90Þ

near the singularity. We hence obtain the singularity
parameter k ¼ − 1

2
, which is in the expected range for a

singularity of type II. Finally, note that for n < 0 we have
W⋄

HH > 0; W has a local minimum and we find a future
sudden singularity at H⋄ > 0, which is complemented by a
past sudden singularity at −H⋄. The opposite time behavior
is obtained in the case n > 1.

D. Accelerating expansion

As the next aspect we discuss the possibility of an
accelerating expansion and the transition between accel-
erating and decelerating phases, noted already in the early
papers [8,9]. For the acceleration we find the expression

ä
a
¼ H2

�
1 −

X þ 3

2

6H2 þ ð1 − 2nÞαð6H2Þn
6H2 þ nð1 − 2nÞαð6H2Þn

�
: ð91Þ

To determine the behavior of this function on the physical
phase space, it is helpful to introduce the auxiliary
functions

V ¼ HWH

2
¼ 6H2 þ nð1 − 2nÞαð6H2Þn;

U ¼ W
V

¼ 6H2 þ ð1 − 2nÞαð6H2Þn
6H2 þ nð1 − 2nÞαð6H2Þn : ð92Þ

With this definition it follows that
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ä
a
¼ H2

�
1 −

X þ 3

2
U

�
; ð93Þ

and ä > 0 if and only if U < 2
Xþ3

, where 2
Xþ3

always takes
values in the interval ½1

2
; 2
3
�. We have thus obtained a simple

condition which determines the sign of the acceleration for
the power law model. We will discuss this condition and its
implications on the history of the universe in more detail in
Sec. VI G.

E. Dark energy and the phantom divide

We start our discussion in this section with the possibility
of crossing the phantom divide. For this purpose we check
the conditions given in Statement 9 given in Sec. V B.
Condition i is not satisfied since there is no H× ≠ 0 for
which W×

H ¼ 12H×, as follows from equation (84). Also,
Condition ii is not satisfied since WHH ≠ 12 at H ¼ 0,
independent of the parameters of the power law model, as
follows from equation (85). Hence, there is no crossing of
the phantom divide, as noted before in Ref. [36] via
Statefinder and Om diagnostics.
The same result can also be seen from the barotropic

index of the dark energy component, which is given by

wDE ¼ −1þ n
3
ðX þ 3Þ 6H2 þ ð1 − 2nÞαð6H2Þn

6H2 þ nð1 − 2nÞαð6H2Þn

¼ −1þ n
3
ðX þ 3ÞU; ð94Þ

where U is defined in equation (92). Note that wDE ¼ −1 if
and only if W ¼ 0, and that this condition corresponds to
fixed points according to our analysis in Sec. VI B. Hence,
there are no transitions between wDE < −1 and wDE > −1,
and thus no crossing of the phantom divide.
Using formula (94), we can also discriminate between

phantom and nonphantom dark energy. One can easily see
that wDE < −1 if and only if nU < 0, while for nU > 0 we
find wDE > −1. If any of these conditions is satisfied for
some point ðH;XÞ ∈ P, it is satisfied for all points on the
trajectory through ðH;XÞ since there is no crossing of the
phantom divide. We can thus distinguish between phantom
and nonphantom trajectories. We will do so in detail in
Sec. VI G

F. General dynamics and phase diagrams

We now use the results on the physical phase space and
the existence and behavior of fixed points and singularities
obtained in Secs. VI B and VI C in order to discuss the
general dynamics of the cosmological model for different
values of the parameters n and α. Note that the only values
ofH at which the sign of _H and _X, and hence the qualitative
behavior of the system, can change are the values
0;�H⋄;�H⋆. They divide the physical phase space into
several regions, in which we now study the sign of _H, as

well as the aforementioned physical quantities. The quali-
tative phase diagrams derived from our analysis are shown
in Fig. 1, where we have used gray lines in order to mark
the following distinguished values of H: a solid line marks
H ¼ 0, dashed lines mark the singularities H ¼ �H⋄,
and dotted lines mark the fixed points H ¼ �H⋆. Note
that all diagrams are symmetric under the transformation
H ↦ −H;X ↦ X; _H ↦ _H; _X ↦ − _X. We will therefore
only discuss the right half, H ≥ 0, which corresponds to
an expanding phase of the universe. Then the diagrams can
be classified as follows:

(i) For α < 0, n > 1
2
shown in Fig. 1(b) and α > 0, 0 <

n < 1
2
shown in Fig. 1(d) the phase diagrams are

qualitatively identical. The region H>0;0<X<1
is filled with trajectories which start from a big bang
singularity at ð∞; 1Þ and end at a static fixed point at
(0,0). These are bounded by trajectories with X ≡ 0
and X ≡ 1, both of which start at the big bang
ð∞; XÞ and end at a static universe ð0; XÞ. Finally, all
points ð0; XÞ with X ∈ ½0; 1� are fixed points. This
fact does not immediately become apparent from the
phase diagrams, since _X ∼H and _H ∼H2; _H= _X ∼
H → 0 and trajectories become vertical near the
fixed line H ¼ 0. However, the velocity with which
these trajectories are traversed converges to 0.

(ii) For α < 0, n < 1
2
shown in Fig. 1(a) and α > 0, 1

2
<

n < 1 shown in Fig. 1(e) there exists a critical value
H ¼ H⋆. Physical trajectories in the region H >
H⋆; 0 < X < 1 start at the big bang singularity
ð∞; 1Þ and end at the attractive de Sitter fixed point
ðH⋆; 0Þ. Also, in this case there exist bounding
trajectories with X ≡ 0 and X ≡ 1 going from
ð∞; XÞ to ðH⋆; XÞ. Finally, there exists another
bounding trajectory connecting the de Sitter saddle
point ðH⋆; 1Þ to the attractive de Sitter fixed
point ðH⋆; 0Þ.

(iii) In the case α > 0, n < 0 there exists another type of
critical value H ¼ H⋄ corresponding to a sudden
singularity, which splits the physical phase space
into different parts. Trajectories in the region
H > H⋄ start at the big bang singularity ð∞; 1Þ
and reach the sudden singularity ðH⋄; XÞ at a finite
value of X. Points with 0 < H < H⋄ belong to
trajectories starting at the static saddle point (0,1),
which also reach the sudden singularity ðH⋄; XÞ at a
finite value of X.

(iv) In the case α > 0, n > 1 both types of critical values
exist, with 0 < H⋄ < H⋆. Trajectories in the region
H⋄ < H < H⋆ start from the sudden singularity
ðH⋄; XÞ at a finite value of X and approach the
stable de Sitter fixed point ðH⋆; 0Þ. In the region
0 < H < H⋄ trajectories have the same starting
condition but approach the static saddle point (0,0).

We can now also study the stability of the fixed points
on the line H ¼ 0, which we identified in Sec. VI B.
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Since the sign of _H is the same on both sides H > 0 and
H < 0 of these fixed points, it follows that trajectories
on one side are traversed towards H ¼ 0, while on the

other side they are traversed away from H ¼ 0. Hence,
the fixed points on the line H ¼ 0 are always saddle
points.

FIG. 1. Qualitative phase diagrams for the power lawmodel. Distinguished values ofH are marked by the following: a solid line marks
H ¼ 0, dashed lines mark the singularities H ¼ �H⋄, and dotted lines mark the fixed points H ¼ �H⋆.
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G. Physical trajectories and their properties

Making use of the qualitative phase diagrams, we can
now also study the behavior of the acceleration (91) and the
barotropic index (94) of the effective dark energy along
physical trajectories. In this discussion we restrict ourselves
to trajectories in the interior of the phase space and exclude
those which are located entirely on the boundary. Also, here
we discuss only the case H ≥ 0, using the fact that ä and
wDE do not change under a sign reversal H ↦ −H. For this
purpose we now take a closer look at the function UðHÞ
defined in equation (92). Note that

V2UH ¼ WHV −WVH ¼ 12ðn − 1Þ2ð2n − 1ÞαHð6H2Þn
ð95Þ

has no zeroes for H ≠ 0. Thus, U is monotonous whenever
V is finite (and henceU is also defined). We distinguish the
following cases, which are summarized in Fig. 2:

(i) For α < 0 and n < 1
2
as shown in Fig. 1(a) we have

U → 0 for the de Sitter fixed point H → H⋆, where
ä > 0, and U → 1 for H → ∞; hence, ä < 0. We
thus have a transition from a decelerating to an
accelerating phase. For n < 0 we have phantom
dark energy, wDE < −1, while for n > 0 we obtain
wDE > −1. Such dark energy behavior was noted
in Ref. [36].

(ii) For α < 0 and 1
2
< n < 1 as shown in Fig. 1(b) we

find U → 1
n > 1 for H → 0 and U → 1 for H → ∞.

Hence, we have 1 < U < 1
n everywhere, and thus

ä < 0. There is no accelerating phase. Further,
wDE > −1; there is no phantom dark energy.

(iii) For α < 0 and n > 1, which is also shown in
Fig. 1(b), the limiting cases are given by U → 1

for H → 0 and U → 1
n < 1 for H → ∞. The sign of

the acceleration depends on the value of n. For n < 3
2

it follows that U > 2
3
everywhere, and hence ä < 0;

there is no accelerating phase. For n > 2 there is
U < 1

2
for H → ∞; all trajectories pass from an

accelerating to a decelerating phase. In the inter-
mediate parameter range 3

2
≤ n ≤ 2 the accelerating

phase does not cover the whole edge H → ∞ of the
phase diagram, but only the part X < 2n − 3. This
means in particular that the big bang singularity at
H → ∞; X → 1 is located in the decelerating phase.
Trajectories starting from the big bang singularity
may either bypass the accelerating phase completely
or experience a transient positive acceleration. In all
of these cases we have wDE > −1.

(iv) In the case α > 0 and n < 0 shown in Fig. 1(c) we
need to discuss two regions of the phase diagram
separately. For H < H⋄ there is V < 0, and hence
also U < 0, ä > 0, and wDE > −1. For H > H⋄ we
find W > V > 0; hence U > 1, ä < 0, and

FIG. 2. Physical trajectories ðHi; XiÞ → ðHf; XfÞ in the power law model with H ≥ 0, classified by their asymptotic initial and final
states ðHi; XiÞ and ðHf; XfÞ. Due to the symmetry of the phase diagrams, each of these has a corresponding trajectory with H ≤ 0,
which can be obtained by replacingH ↦ −H and reversing the direction of the arrows. Here ä↗ indicates a transition from deceleration
to acceleration, while ä↘ indicates a transition in the opposite direction.
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wDE < −1. However, since these regions are sepa-
rated by a singularity, there are no transitions
between accelerating and decelerating phases or
between phantom and nonphantom dark energy.

(v) For α > 0 and 0 < n < 1
2
as shown in Fig. 1(d) we

have the limiting cases U → 1
n > 2 for H → 0 and

U → 1 for H → ∞. We thus have U > 1 every-
where, and therefore ä < 0; there is no accelerating
phase. There is also no phantom dark energy
since wDE > −1.

(vi) When α > 0 and 1
2
< n < 1 as shown in Fig. 1(e),

there is a de Sitter fixed point with U → 0 for
H → H⋆; hence ä > 0, while U → 1 for H → ∞,
and thus ä < 0. It follows that there is a transition
from a decelerating to an accelerating phase. We still
find wDE > −1 also in this case. Such dark energy
behavior was noted in Ref. [36].

(vii) Finally, in the case α > 0 and n > 1 the physical
phase space W ≥ 0 splits into two regions divided
by a singularity at H ¼ H⋄, as shown in Fig. 1(f),
which we discuss separately. For H < H⋄ we have
W > V > 0, and thus U > 1; hence ä < 0 and
wDE>−1. In contrast, for H>H⋄ we find V < 0,
which yields U < 0; thus ä > 0 and wDE < −1.
Since accelerating and decelerating phases are
separated by a singularity, there is no transition.
The same holds for phantom and nonphantom dark
energy.

H. Observational properties

We finally discuss how to derive a number of observa-
tional parameters for the power law model. For the density
parameters (76) we find the expressions

Ωm ¼ ð1 − XÞ½1þ ð1 − 2nÞαð6H2Þn−1�; ð96aÞ

Ωr ¼ X½1þ ð1 − 2nÞαð6H2Þn−1�; ð96bÞ

ΩDE ¼ −ð1 − 2nÞαð6H2Þn−1: ð96cÞ

We further calculate the deceleration parameter, which can
be found from the acceleration (91) and is given by

q ¼ −1þ X þ 3

2

6H2 þ ð1 − 2nÞαð6H2Þn
6H2 þ nð1 − 2nÞαð6H2Þn : ð97Þ

We do not attempt to fit the parameters α and n of the power
law model based on the observational properties derived
generically in this article, since this particular class of
models has already been extensively studied and numerous
numerical fits have been obtained [8,36,38–40,42–49].
Instead, we only give a qualitative estimate based on the
phase diagrams shown in Fig. 1, again with the purpose of
illustrating the generic formalism developed in this article.
If one assumes that the qualitative behavior of the Hubble

parameter is described by a big bang singularity H → ∞ at
a finite time in the past, followed by an expansion, that
finally leads to an accelerated expansion at a de Sitter fixed
point, one is led to the conclusion that the expansion history
of the universe is best described by either of the phase
diagrams 1(a) or 1(e). Hence, one concludes that the model
parameters must satisfy either α < 0 and n < 1

2
or α > 0

and 1
2
< n < 1. Remarkably, both of these possibilities are

consistent with a positive density parameter ΩDE, as can be
seen from equation (96c).
This concludes our discussion of the power law model.

We have seen that our general formalism reproduces a large
number of results which have been previously obtained in
individual studies. These findings demonstrate the validity
and usefulness of our formalism.

VII. CONCLUSION

In this article we have derived a two-dimensional dynami-
cal system from the flat FLRW cosmological field equations
of a generic fðTÞ gravity theory, where the matter content is
given by a combination of dust and radiation. We have
shown that the full cosmological dynamics of this model
depend only on a single function WðHÞ of the Hubble
parameter H, which is derived from the function fðTÞ
defining the particular theory under consideration. Instead
of choosing a particular form of fðTÞ, we have kept the
function fully generic and derived a number of physically
relevant properties of the whole family of fðTÞ theories.
Our main result is comprised of numerous conditions on

the Friedmann function WðHÞ, which determine the exist-
ence and stability of fixed points in the cosmological
dynamics, the possibility of a bounce or turnaround,
the existence and severity of finite time singularities, the
existence of accelerating and decelerating phases of the
expansion of the universe, and transitions between them as
well as the possibility of crossing the phantom divide. As a
fully generic result, we have shown that there exist no
periodic orbits in the phase space, and no oscillating universe
solutions, independent of the choice of the function fðTÞ.
Further, we have shown how points on the phase space and
the shape of the Friedmann function WðHÞ at these points
can be related to observational cosmological parameters.
Note that our chosen matter content manifestly satisfies all
energy conditions, and that all features we discussed are
direct consequences of the modified gravitational dynamics.
To illustrate our results and the general formalism, we

have applied it to a generic power law model
fðTÞ ¼ T þ αð−TÞn. We have shown how the dynamics
on the physical phase space depend on the constant
parameters α and n of the model and displayed the phase
diagrams for all qualitatively different values of these
parameters. We have further characterized all possible
trajectories in these phase spaces and their acceleration
and effective dark energy. In particular, we have shown that
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it is not possible to dynamically cross the phantom divide
wDE ¼ −1 in these models. We have finally shown that
there are no trajectories that start from an initial accelerat-
ing period (which would be interpreted as inflation),
become decelerating, and finally transition back to an
accelerating de Sitter phase.
The formalism and generic results derived in this article

can now be applied to any particular fðTÞ gravity theory or
class of such theories in order to get a systematic overview
of its cosmological behavior. It is left for future works to
scrutinize other models in a similar manner, finally arriving
at a catalog of fðTÞ theories, classified by the dynamical
properties of their cosmologies. Our results further hint
towards the possibility to reverse the line of investigation
and to construct heuristic fðTÞ models based on a set of
desired cosmological features. Once a class of models or a
parameter range with viable dynamical behaviors has been
confirmed, it can be subjected to further studies by other
methods, e.g., the evolution of perturbations, local gravi-
tational constraints, etc.
Finally, one may also consider a more general class of

modified teleparallel theories augmented with a nonmini-
mally coupled scalar field [60–63], a Gauss-Bonnet term

[64,65], a boundary term [66], combinations of those
[67,68], or higher derivatives of the torsion scalar [69].
Additionally, one may consider actions which are not a
function of the torsion scalar (2), but of different contractions
of the torsion tensor [70–72]. It should be straightforward to
generalize our formalism to such theories, and thus to use
our results to determine their cosmological dynamics.
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APPENDIX: CLASSIFICATION OF
PHASE SPACE POINTS

In order to provide a better overview of all conditions on
the Friedmann function W listed in the main part of the

FIG. 3. Classification of all points in the compactified physical phase space P̄. Gray fields indicate conditions, while white fields show
the physical consequence if all conditions in the same row and column are satisfied. Numbers and codes refer to the statements and cases
in the main part of the article. FP ¼ fixed point, dS ¼ de Sitter.
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article, we provide a graphical ordering scheme of all
values H that belong to the compactified phase space P̄ in
Fig. 3. Table entries refer to the corresponding general
statements detailed in Secs. III to V. If several statements

apply simultaneously to the same phase space point ðH;XÞ,
they are listed with an ampersand (&) character. If several
statements apply to the same value of H, but different
values of X, they are separated with a pipe (j) character.
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