
 

DISSERTATIONES PHYSICAE UNIVERSITATIS TARTUENSIS 
69 

 



 

 



 

DISSERTATIONES PHYSICAE UNIVERSITATIS TARTUENSIS 

69 
 
 
 
 
 

 
 
 

HELI VALTNA-LUKNER 
 

Superluminally propagating  
localized optical pulses 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

The study was carried out at the Institute of Physics, University of Tartu. 
 

The dissertation was admitted on June 18, 2010 in partial fulfilment of the 
requirements for the degree of Doctor of Philosophy in Physics (Applied 
Physics), and allowed for defence by the Council of the Institute of Physics, 
University of Tartu. 

 
Supervisior:  Prof. Acad. Peeter Saari 

  Institute of Physics, University of Tartu, Estonia 
 
Opponents:  Prof. Ari T. Friberg 
  Aalto University, Helsinki, Finland 
  University of Eastern Finland, Joensuu, Finland 
  Royal Institute of Technology, Stockholm, Sweden 
 
  Dr. Rüdiger Grunwald 
  Max-Born-Institute for Nonlinear Optics and Short-Pulse 

Spectroscopy, Berlin, Germany 
 
Defence:  August 27, 2010, at the University of Tartu, Tartu, Estonia 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
ISSN 1406–0647 
ISBN 978–9949–19–420–9 (trükis)  
ISBN 978–9949–19–421–6 (PDF) 

 
 

Autoriõigus: Heli Valtna-Lukner, 2010 
 
Tartu Ülikooli Kirjastus 
www.tyk.ee 
Tellimus nr. 382 



 

5 

TABLE OF CONTENTS 
 

LIST OF PUBLICATIONS INCLUDED IN THE THESIS  .........................  7 

1. INTRODUCTION  ....................................................................................  10 

2. LOCALIZED WAVES  ............................................................................  15 
2.1. Mathematical description of the localized waves  .............................  15 
2.2. Geneology and optical generation principles  ...................................  18 

2.2.1. Generic superluminal family  ..................................................  20 
2.2.2. Subfamily of superluminal pulses with a propagation-

invariant wavefunction  ...........................................................  22 
2.2.3. Subluminal family  ..................................................................  23 
2.2.4. Luminal family  .......................................................................  24 
2.2.5. Negative group velocities  .......................................................  24 
2.2.6. Asymptotic behavior of the wavefunctions  ............................  25 

2.3. Accelerating and decelerating Bessel-type waves  ............................  26 

3. INTERFEROMETRIC TECHNIQUES FOR SPATIOTEMPORAL 
MEASUREMENTS OF ELECTRIC FIELD  ...........................................  29 
3.1. Spatial interferometry  .......................................................................  30 

3.1.1. The method  .............................................................................  30 
3.1.2. Impulse and frequency response of optical system  ................  36 

3.2. Spectral interferometry  .....................................................................  38 
3.3. Spatial-spectral interferometry and SEA TADPOLE  .......................  40 

3.3.1. Spatial-spectral interferometry method  ..................................  41 
3.3.2. SEA TADPOLE  .....................................................................   44 

3.4. Discussion and Conclusions  .............................................................  45 

4. EXPERIMENTS  ......................................................................................  48 
4.1. Experiments on superluminal localized waves with hyperbolic 

support of the spectrum  ....................................................................  49 
4.1.1. Propagation of the Bessel pulse in dispersive media [30, 31]   50 
4.1.2. Linear X pulse by means of nonlinear interaction ..................  51 

4.2. Experiments on Bessel-X pulses  ......................................................  51 
4.2.1. Spatiotemporal measurement of the correlation function of 

the Bessel-X pulse [29]  ..........................................................  52 
4.2.2. Measurement of the superluminal group velocity in a gas 

chamber [32]  ..........................................................................  52 
4.2.3. Autocorrelation measurements of few-cycle Bessel-X pulses 

[34, 63, 91]  .............................................................................  53 
4.2.4. Low-resolution spatiotemporal measurements of Bessel-X 

pulse with Shack-Hartmann detector [37]  ..............................  53 
4.2.5. High-resolution spatiotemporal measurements of Bessel-X 

pulse with SEA TADPOLE [VI]  ............................................  54 
4.2.6. Discussion  ..............................................................................  55 

4.3. Proof-of-the-principle experiment on focus wave mode [33]  ..........  56 



 

6 

4.4. Experiments on accelerating and decelerating Bessel-type waves  ...  57 
4.4.1. Generation of accelerating and decelerating Bessel pulses by 

axicon and lens  .......................................................................  57 
4.4.2. Formation of decelerating Bessel pulse in diffraction  ............  58 

4.5. Conclusion  ........................................................................................  60 

SUMMARY  ..................................................................................................  61 

SUMMARY IN ESTONIAN  ........................................................................  62 

ACKNOWLEDGEMENTS  ..........................................................................  64 

REFERENCES  ..............................................................................................  65 

PUBLICATIONS   .........................................................................................  71 

 
 



 

7 

LIST OF PUBLICATIONS INCLUDED  
IN THE THESIS 

 
I  P. Saari, M. Menert and H. Valtna, “Photon localization barrier can be 

overcome”, Opt. Commun. 246, 445–450 (2005). 
II  H. Valtna, K. Reivelt and P. Saari, “Modifications of the focused 

X wave as suitable models of strongly localized waves for realization in 
the optical domain”, J. Opt. A: Pure Appl. Opt. 8, 118–121, (2006). 

III  P. Saari, K. Reivelt, H. Valtna, “Ultralocalized superluminal light 
pulses”, Laser Phys. 17, 297–301, (2007). 

IV  H. Valtna, K. Reivelt, P. Saari, “Methods for generating wideband lo-
calized waves of superluminal group velocity”, Opt. Comm. 278, 1–7 
(2007). 

V  A. Averchi, D. Faccio, E. Rubino, H. Valtna Lukner, A. Panagioto-
poulos, P. A. Loukakos, S. Tzortzakis, A. Couairon, and P. Di Trapani, 
“Linear X-wave generation by means of Cross Phase Modulation in 
Kerr media” Opt. Lett. 33, 3028–3030 (2008).  

VI  P. Bowlan, H. Valtna-Lukner, M. Lõhmus, P. Piksarv, P. Saari, and R. 
Trebino, “Measurement of the spatio-temporal field of ultrashort 
Bessel-X pulses", Opt. Lett. 34, 2276–2278 (2009). 

VII  H. Valtna-Lukner, P. Bowlan, M. Lõhmus, P. Piksarv, R. Trebino, and 
P. Saari “Direct spatiotemporal measurements of accelerating ultrashort 
Bessel-type light bullets” Opt. Express 17, 14948–14955 (2009). 

VIII P. Saari, P. Bowlan, H. Valtna-Lukner, M. Lõhmus, P. Piksarv, R. 
Trebino “Directly recording diffraction phenomena in time domain” 
Laser Physics, 20, 948–953 (2010). 

IX  M. Lõhmus, P. Bowlan, R. Trebino, H. Valtna-Lukner, P. Piksarv, P. 
Saari ”Directly recording diffraction phenomena in the time domain” 
Lihtuanian Journal of Physics 50, 69–74 (2010). 

X P. Saari, P. Bowlan, H. Lukner, M. Lõhmus, P. Piksarv, R. Trebino 

“Time-and-space-domain study of diffracting and “non-diffracting” 
light pulses” Lihtuanian Journal of Physics 50, 121–127 (2010). 

XI P. Saari, P. Bowlan, H. Valtna-Lukner, M. Lõhmus, P. Piksarv, and R. 
Trebino “Basic diffraction phenomena revisited in time domain” Opt. 
Express 18, 11083–11088 (2010). 

XII K. Reivelt, H. Valtna, and P. Saari “Optical generation of superluminal 
localized wave solutions of homogeneous wave equation”, Northern 
Optics Conference Proceedings, IEEE, 13–16 (2006).  

XIII P. Bowlan, H. Valtna-Lukner, M. Lõhmus, P. Piksarv, P. Saari, R. 
Trebino “Measurement of the spatiotemporal electric field of ultrashort 
superluminal Bessel-X pulses” Optics and Photonics News, 20, 42 
(2009). 
 



 

8 

Note: Publications prior marriage in year 2008 are published with maiden name 
Heli Valtna, later publications under name Heli Valtna-Lukner (except for one 
in Optics Letters where the name is Heli Valtna Lukner). 

 
 

AUTHOR’S CONTRIBUTION 
 
Here the author contribution to the original publications is indicated. The Ro-
man numerals correspond to those in the list of publications.  

 
I  Performing numerical calculations on localization of the wave fields. 
II Investigating the properties of the focused X wave and its modifi-

cations, writing the manuscript and preparing the figures under super-
vision of the coauthors. 

III Investigating the subject of generating superluminally propagating lo-
calized waves by means of diffraction grating and suggesting the spe-
cific optical element – cylindrical diffraction grating; providing figures 
1, 4 and 5. 

IV Performing calculations on elaborated optical scheme, writing the 
manuscript and preparing the figures.  

V Participating in both experiments in Como, January 2008 and in Herak-
lion, April 2008. 

VI Preparing the experiment and consulting during the experiments, which 
were carried out in Atlanta. Preparing and supervising the numeric 
simulations. 

VII Suggesting the experiment idea, preparing and consulting during experi-
ments, analyzing data, writing manuscript and preparing figures. 

VIII Preparing the experiments and consulting during the measurements. 
IX Preparing the experiments and consulting during the measurements. 
X Preparing the experiments and consulting during the measurements. 
XI Preparing the experiments and consulting during the measurements. 
XII Investigating the subject of generating superluminally propagating lo-

calized waves by means of diffraction grating and suggesting the spe-
cific optical element – cylindrical diffraction grating; providing figures 
1, 4 and 5. 

XIII Preparing the experiment and consulting during the experiments, which 
were carried out in Atlanta. Preparing numeric simulations. 



 

9 

OTHER PUBLICATIONS OF DISSERTANT 
 

a. A. Dubietis, G. Tamošauskas, P. Polesana, G. Valiulis, H. Valtna, D. Fac-
cio, P. Di Trapani, A. Piskarskas, “Highly efficient four-wave parametric 
amplification in transparent bulk Kerr medium” Opt. Express 15, 11126–
11132 (2007).  

b. H. Valtna, A. Dubietis, G. Tamošauskas, P. Polesana, J. Galinis, D. Majus, 
G. Valiulis, D. Faccio, P. Di Trapani, A. Piskarskas “Efficient four-wave 
parametric amplification and spatial soliton generation in transparent 
isotropic medium with Kerr nonlinearity”, Lihtuanian Journal of Physics 47, 
403–410 (2007). 

c. H. Valtna, G. Tamosauskas, A. Dubietis, and A. Piskarskas, “High energy 
broadband four-wave optical parametric amplification in bulk fused silica”, 
Opt. Lett. 33, 971–973 (2008). 

d. A. Dubietis, H. Valtna, G. Tamošauskas, J. Darginavičius and A. Piskarskas 
“Efficient ultrafast four-wave optical parametric amplification in condensed 
bulk media”, Springer Series in Chemical Physics, Ultrafast Phenomena 
XVI Proceedings of the 16th International Conference, Palazzo dei 
Congressi Stresa, Italy, June 9–13, 2008, eds. P. Corkum, S. De Silvestri, 
K. A. Nelson, E. Riedle, R. W. Schoenlein, 92, 792–794 (2009).  



 

10 

1. INTRODUCTION 
 
Light is an electromagnetic wave, whose propagation is governed by Maxwell’s 
equations, or equivalently, by the wave equation. It follows from the equations 
that generally a wave in free space is subject to a lateral spread due to 
diffraction and a temporal spread in linear media due to dispersion. The smaller 
the initial spatial dimensions or temporal duration of the wave packet, the larger 
the spread will be. 

In the first half of the 20th century several solutions to Maxwell equations 
and wave equation were found which describe a “nondiffracting” beam [1] – a 
monochromatic wave field with a bright peak surrounded by concentric rings in 
the transverse plane, described with Bessel function – or “distortion-free pro-
gressing waves” (pulses) in free-space [2, 3]. Very theoretical and abstract 
nature of the problem yielded a long silence on this subject.  

This topic was not revisited until 1983 when it attracted the interest of James 
Neill Brittingham who claimed that he discovered a family of three-dimen-
sional, nondispersive, source-free, classical electromagnetic pulses – focus 
wave modes (FWM) [4] – which propagate luminally along a straight line in 
free space. Brittingham’s claim that FWM contain finite energy was soon 
shown to be faulty [5] because any finite energy solution of the wave equation 
will irreversibly lead to dispersion and the spreading of the energy [6, 7]. FWM 
with infinite energy could propagate infinitely far without any change but it 
would also require an infinitely large aperture. Using a real, finite aperture 
would limit both the field energy and propagation depth that the field’s intensity 
profile could propagate without any apparent distortion or change. However, the 
depth of field of the distortion free propagation would still considerably exceed 
that of a Gaussian pulse with a comparable waist size.  

The subject of localized waves – wave fields with inherent broad spectrum 
and localized “bulletlike” intensity maximum, which is tightly confined to area 
with dimensions in order of few wavelengths, propagate with a constant group 
velocity, without any spread or distortion up to infinite distances in theoretical 
limit – became a research field of its own rights [8]. In the following years a 
number of localized waves and their finite energy counterparts were derived 
(see [9] and references therein).  

Aside general angular spectrum synthesis representation attempts to find 
more closed-form solutions, to generalize and unveil the underlying connections 
between different solutions and to find a structure inherent to the localized 
waves brought to attention the following techniques and schemes:  
i) Complex source points moving at a constant velocity parallel to the real 

axis of propagation [10];  
ii) “Sink-and-source charge” distributions moving superluminally along the 

propagation axis [11, 12, 13];  
iii) “Bi-directional plane wave decomposition” [14];  
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iv) Transforming a diffracting solution of the isotropic-homogeneous (or free-
space) scalar wave equation in (n+1)-dimensional space into a non-
diffracting solution in an n-dimensional space [15];  

v) Considering the angular spectrum of plane waves and analyzing new 
solutions as temporal derivatives of the fundamental X-wave [16, 17] 
yielding an unified description scheme [18];  

vi) (Lorentz) boost representation [9];  
vii) Composing localized waves as a superposition of inclined plane wave 

pulses integrated over the polar angle [13].  
It is interesting to mention that the localized waves kinematically resemble 
hypothetical particles tachyons [19, 20, 21].  

However, describing localized waves as superposition of plane waves in 
momentum space has contributed most to opening their physical nature and led 
to comprehensive classification scheme where any localized wave can be 
derived via a Lorentz transformation, as a relativistically aberrated and Doppler 
shifted version of a simple “seed” wave [22, 23, 24]. 

In the spectral representation the ‘building block’ of a three-dimensional 
localized wave is a Bessel beam [25] whose 3-dimensional field’s transversal 
cross-section is described by a Bessel function. In the axially symmetric case it 
becomes a 0th order Bessel function of the 1st kind. The latter can be generated 
as monochromatic superposition of plane waves, whose k-vectors, originating 
from the cone apex, lie uniformly on the surface of the cone. This is the 
simplest “diffraction free beam”, which can easily be generated experimentally 
using a conical lens called axicon, or by placing an annular aperture at the focal 
plane of a spherical lens [26] (for overview, see [27]).  

A localized wave is obtained when synchronized Bessel beams with diffe-
rent frequencies and of appropriate cone angle are superposed. The specific 
functional dependence between cone angle and the frequency of the constituents 
of the wavefield arises from the dispersion relation and the requirement that the 
group velocity is constant. As we will see in the following chapter, those two 
obvious conditions constitute the genealogy where the waves are classified ac-
cording to their group velocities to luminal, subluminal and superluminal 
families [22–24].  

First experimental proof of a localized wave dates back to year 1992, when 
an acoustic supersonic localized wave, called an X-wave, was generated with an 
ultrasonic Bessel annular array transducer [28]. Existence of an electromagnetic 
or even optical localized wave remained questionable because of the ‘causality’ 
issues: quite often the spectrum of the wave field extend down to zero-frequen-
cies and some fields are composed of forward and backward propagating plane 
wave constituents. The superluminal group velocity of some pulses, the X-wave 
for example, was thought to be unphysical as well. In the optical region 
additional obstacles rise while trying to generate a specific quasi-singular spatial 
distribution of plane wave constituents by factorizing spatial and temporal 
dependencies, as is the case with microwave antennas. Instead, the most 
straightforward approach for generating the suitable spatial distribution of the 
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plane wave constituents would require the use of a hypothetic circular slit with a 
frequency-dependent radius, an achromatic lens and an ultrabroadband light 
source of ultrashort pulses. Not to mention the recording device with appro-
ximately micrometer spatial and femtosecond temporal resolution to measure 
this complicated spatiotemporal profile of the field with necessary resolution.  

For the first time the X-like spatiotemporal profile of the optical Bessel-X 
pulse was successfully measured in 1997 in an interferometric experiment, 
using an arc lamp as the ultrabroadband light source [29]. In the same year, and 
chronologically preceding the abovementioned experiment, the temporal 
behavior and nondispersive propagation of optical superluminal localized wave 
in linear media with normal dispersion was demonstrated in field auto-
correlation experiment [30, 31]. With those experiments the existence of optical 
localized waves was explicitly proven.  

In the following years more experiments in the optical domain were carried 
out. The superluminal group velocity of an ultrashort optical Bessel beam pulse 
was measured over its entire depth of field by recording consequent snapshots 
of the ionization front induced by the pulse; a group velocity of 1.111c was 
reported [32]. The spatial distribution of the electric field of the luminal focus 
wave mode, generated with a concave axicon and a diffraction grating, in order 
to obtain proper angular distribution of the plane wave constituents, was 
measured interferometrically [33]. Complete first and second order spatio-
temporal autocorrelations of a sub-10-fs localized, Bessel-X, wave packet have 
also been measured [34]. (Experiments have been conducted also in microwave 
[35] and teraherz frequencies [36]).  

Recently high-resolution spatiotemporal measurements of the Bessel-X pulse 
were reported using an interferometric technique called SEA TADPOLE 
[VI, XIII]. Similar, but lower resolution measurements were made using Shack-
Hartman sensor in combination with the FROG technique to characterize the 
input pulse [37].  

The superluminal group velocity of localized waves is in some sense just a 
“side effect”, while the most important feature of these fields is their spatial and 
temporal confinement and ‘diffraction free’ nature. Yet this intriguing property 
of superluminality has drawn lot of attention and started debates, even after 
being experimentally demonstrated several times [31–36, VI, X]. It has been 
questioned weather a superluminal group velocity in free space is in accordance 
with relativistic causality. The confusion arises from the fact that speed of light 
is highest possible propagation velocity for signal, but this limit is erroneously 
ascribed also to the group velocity, which need not be a physically profound 
quantity. In localized waves, which propagate rigidly with superluminal group 
velocity, the Poynting vector, which indicates the direction of energy flow, lies 
along the propagation axis. However, the energy flux, as required by causality, 
is not superluminal. Misconceptions about superluminality and causality have 
been addressed in [8, 13, 38, X].  

It has been theoretically studied and experimentally demonstrated that Bessel 
pulses can accelerate or decelerate [39, VII] due to spherical aberration in 
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lenses, appropriately shaped nonlinear profiles of conical lens (axicon) or spe-
cific optical systems. Their bullet-like, central, intense apex and accompanying 
Bessel rings become smaller or larger as the pulse propagates, but the central 
spot of these pulses still remains localized and intense. Moreover, a decelerating 
Bessel pulse is also formed when an ultrashort pulse is diffracted off a centro-
symmetric obstacle or aperture [40, 41, VIII, IX, XI]. If a plane wave pulse is 
diffracted off an opaque disc, the decelerating Bessel pulse appears as the well 
known Poisson-Arago spot. 

In nonlinear optics it has been shown that the diffractive and dispersive 
spreading of an intense, focused ultrashort Gaussian wave packet can be 
balanced in transparent materials by a third order nonlinear processes and result 
in the spontaneous formation of a ‘nonlinear X wave’ [42]. This is very diffe-
rent from the linear case because the pulse shaping is done by the nonlinear pro-
cess. The outcome depends on both the pulse parameters and the nonlinear pro-
perties of the media. The propagation of intense femtosecond pulses in non-
linear media must be analyzed with sophisticated numerical algorithms taking 
into account the space-time couplings in all coordintes (see [43], and references 
therein).  

In the nonlinear optics community, the wave fields possessing nondiffractive 
properties in dispersive or nonlinear media are called conical waves. The sub-
class of conical waves which also propagate without temporal spread in a 
dispersive media are called X waves. It appears that the strong diving pulse 
which has spontaneously formed to a nonlinear X wave in media with third 
order nonlinearities will induce the temporal change in the refractive index. If a 
weak, linearly propagating probe pulse, which can be also centered to another 
wavelength, is delay-matched with the strong driving pulse, the refractive index 
change caused by the former will affect that linear probe pulse and shape it into 
a linear X wave, possessing the nondispersive and nondiffractive propagation 
properties [V]. 

 
Localized waves are not only intriguing for mathematical physics, physical and 
quantum optics [I] but have a number of prospective applications as well.  

Bessel beams and pulses are used in optical trapping and particle micro-
manipulation [44]; in fluorescence microscopy [45]; in biophotonics [46] for fs-
optical transfection and “as an optical syringe” enabling multi-photon excitation 
processes in a needle like line of light [47]. In atomic optics Bessel beams can 
constitute a non-diffracting optical atom guide or applied as atom traps used for 
example to obtain Bose-Einstein condensates. For overview, see [48, 49]. 

Invariant propagation of the intense core of the Bessel pulse is used to drive 
and guide filaments in bulk media and gases [50]. These can be applied to write 
the waveguides into bulk media or to extend the longitudinal range of plasma 
channels created in the atmosphere. The latter are used, for example, for remote 
spectroscopy and lightning control [51].  

Also, several linear optical imaging or image transfer setups were proposed 
in [8, 22, 52, 53, 54].  
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Various second and third order nonlinear processes were studied under 
Bessel pulse illumination and the conical nature of the localized waves has been 
utilized for non-collinear phase matching.  
 
In this thesis we study superluminally propagating localized waves and ac-
celerating and decelerating Bessel-type waves. These are somewhat distorted 
modifications of the Bessel-X pulse, which form in the apexes of expanding-
collapsing toroidal waves. We remain in the scope of wave optics, where light is 
described with the scalar wavefunction, which obeys the wave equation and can 
be attributed to either linearly polarized electric or magnetic field component of 
the electromagnetic field. 

The thesis is organized as follows: 
In Chapter II we give an outline of the mathematical formalism, derive the 

localized wave solutions, introduce the genealogy, and study the principles of 
optical generation of localized fields. We briefly discuss the accelerating and 
decelerating Bessel-type waves.  

We use the general term light bullets for propagation invariant localized 
waves and accelerating or decelerating Bessel-type waves throughout the thesis. 

Chapter III is dedicated to spatiotemporal characterization techniques of the 
electric field with complicated spatial distribution and spatiotemporal coupling. 
We focus on comparing and studying interferometric techniques, which in com-
bination with the FROG or SPIDER methods, allow for the full spatiotemporal 
measurement of the unknown electric field. We extend the treatment of the 
interferometric techniques to the case of stationary and ergodic input fields. By 
doing so we demonstrate that optical white-nose-like input signal can be used to 
characterize the unknown field formed by the optical system and to retrieve the 
frequency and hence also the impulse response of the optical system. 

In Chapter IV we present an overview of optical experiments on both pro-
pagation invariant and accelerating light bullets. Applicability and outcomes of 
different interferometric and non-interferometric measurement techniques are 
discussed. 
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2. LOCALIZED WAVES 
 
The localized waves are ultrawideband wave packets with both spatially and 
temporally tightly confined instantaneous intensity distribution propagating 
without any spread or distortion in free space or in linear media. In this chapter 
we make a brief introduction to the localized wave theory and give guidelines to 
derive a wavefunction of a localized wave through applying the constant group 
velocity condition to the general solution of the scalar wave equation. The 
genealogy of the localized waves and the physical principles for generating the 
waves are shown to arise also from combining the constant group velocity con-
dition and the dispersion relation in the momentum space. 

The properties of the accelerating and decelerating Bessel-type waves are 
discussed in the end of the chapter.  

 
 
2.1. Mathematical description of the localized waves 

 
Let us start from the scalar wave equation: 

 

2 2

1
0

c t

∂ΨΔΨ − =
∂

. 

 
The general solution to the scalar wave equation can be written as a super-
position of the monochromatic plane waves: 

( , ) ( , ) exp( )t d A i i t dω ω ω
∞ ∞

−∞ −∞

Ψ = −   r k kr k ,                          (1) 

where x x y y z zk k k= + +k e e e  is the wave vector with projections kx, ky, kz to 

orthogonal base vectors ex, ey, ez; x y zx y z= + +r e e e  is the position vector in 

the coordinate space (x, y, z); t is time; ω is the frequency and A(k,ω) the 
spectral distribution. 

For the wavefield with axial symmetry, propagating along z-axis, it is 
convenient to write the general solution in the cylindrical coordinates: 

2 2
0

0

( , , ) ( , ) ( ) exp( )z z z zz t dk dk k k J k k ik z ikctρ ρ
∞ ∞

−∞

Ψ = Φ − −  ,    (2) 

where ρ is the radial coordinate and ( , )zk kΦ  describes the spectral 

distribution. Here and hereafter the normalizing constants have been omitted. 

The dispersion relation 
2

2 2 2 2
2 x y zk k k k

c

ω = = + +  reduces the number of free 

spectral variables in k-space. The axial symmetry allows one to eliminate one 
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more free variable as the integration over polar angle yields 2 2
0 ( )zJ k kρ −  – 

a zeroth order Bessel function of the first kind, and 2 2 2
zk k kρ= + . Hence, the 

4-dimensional multiple integral in Eq. (1) reduces to double integral in Eq. (2). 

The term 2 2
0 ( ) exp( )z zJ k k ik z ikctρ − −  in Eq. (2) describes a mono-

chromatic Bessel beam [25]. The localized waves, as any axially symmetric 
wave field, comprise of the Bessel beams. Let us study under which 
circumstances the axially symmetric wave field is a localized wave.  

Let us assume that the group velocity g
z

d
v

dk

ω=  is constant. From there it 

follows that the kz and k must be bound linearly 
z

dk
c const

dk
= ,  

z

a
k k b

c
= + ,  (3) 

where c is the speed of light and, for the time being, a and b are arbitrary 
constants with dimensions of speed and wave number, respectively. In the (k, kz) 
plane the condition (3) describes a line, with slope a/c and intercept b. In the 
(k, kz, kρ) space the line becomes a plane. In the same space one can depict the 

domain of wave numbers as a cone 2 2 2
zk k kρ= + . (See Figure 1.) 

Let us take a quick excursion to the (k, kz, kρ) space. One point in the 
(k, kz, kρ) space defines a monochromatic Bessel beam with wave number k and 
longitudinal component kz and hence the cone angle θ = kz/k. The transversal 
component of the wave field is not free parameter, but is defined by the 
dispersion relation.  

The intersection of a plane, Eq. (3), with the cone is a line. The power 
spectrum of a wave packet traveling at constant group velocity must be non-
zero only along the line. The points of the support where the power spectrum of 
the wave packet is not zero, define the spatial distribution of plane waves in k-
space. Hence, for propagation invariance of the intensity profile of the wave 
packet the support of its spectrum in the momentum space has to be a line 
coinciding with a conical section. (See Figure 1.) 

The spectral distribution ( , )zk kΦ  of the Bessel beam constituents of a loca-

lized wave can be written as a product of two functions: σ(k), which is smooth 
and slowly varying function of the wave number and ϑ(k,kz), which is rapidly 
changing, ideally a singular, function of k and kz and determines the shape of the 
support  

( , ) ( ) ( , ) ( ) ( )z z z

a
k k k k k k k k b

c
σ ϑ σ δΦ = = − − .  (4) 

In combination of Eq. (2) and Eq. (4) we obtain a general solution for axi-
symmetric wave fields with constant group velocity: 
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2
2

0

( , , ) exp

( ) exp .
bc

c a

c bc
z t i z

a a

c bc c
dk k J k k ik z ct

a a a

ρ

σ ρ
∞

−
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 (5)  

One can see that the wavefunction defined by Eq. (5) depends on variables z 

and t through the combination
c

z ct
a
− , which corresponds to the propagation 

variable gz v t− , where vg is the group velocity. Hence the modulus squared of 

the field expressed by Eq. (5) propagates invariantly with group velocity 

gv a= . Let us define /gv cβ = , which is also the slope of the line in Eq. (3). 

The constant b is the intercept of the line, Eq. (3), with the k-axis. Here it is 
sufficient to note that the smallest wave number of the support of the spectrum 

is defined as min 1 /g

b
k

v c
=
±
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bc

i z
a
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 constitutes a phase shift, 

invariant of the spectral variable k. 
Several closed-form expressions are obtained from the general expression of 

the propagation-invariant fields, Eq. (5), by inserting specific power spectrum 
and restrictions to the group velocity vg and the constant b. For example, 
assuming b = 0 and choosing exponentially decaying spectrum yields the well-
known X-wave [28] or, with the same spectrum, β = 1 and b ≠ 0, the focused 
wave mode [9]. However, the existence of the closed-form expressions is rather 
occasional. For number of experimentally feasible waves the field intensity 
distribution is to be calculated using numerical integration. 

It has been shown that the singular support of the spectrum in the spectral 
distribution (4) yields infinite energy [6, 7, 22]. As a result, number of finite 
energy modifications were derived (see, for example, [8, 9, II] and references 
therein). The finite energy content is obtained by defining nonsingular support 
of the spectrum concentrated in the vicinity of the ideal singular support of the 
spectrum. Experimentally more obvious solution would be truncating the 
fields’s amplitude. But, mathematically the truncating would require calculating 
diffraction integrals, which most often can be taken only numerically while, 
making the spectrum nonsingular allows one to choose suitable function, which 
would decay rapidly in the vicinity of the support line and for which the closed-
form expression of the field can be found with the help of integration tables. 
Due to the finite energy content the “modified” localized waves their intensity 
will slowly decrease over the propagation, yet, often the dimensions of the 
intense peak at chosen height (for example half maximum or 1/e) remains un-
changed and the field depth of invariant propagation exceeds considerably that 
of the common focused fields.  
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Despite the existence of several closed form solutions, in most cases the 
finite energy modification does not provide a better approximation to the 
localized wave field measured in experiment than the idealistic infinite energy 
solution. Instead, calculating the “modified” field profiles sets higher demands 
to the computing engine. In experiment, generally there exists a volume behind 
the optical system, where the diffraction effects caused by the aperture are 
negligible and field can be very well approximated to the ‘ideal’ one, with a 
singular support of the spectrum. Under these circumstances it is most practical 
to simulate the field by calculating the field intensity distribution of the ‘ideal’ 
field and to insert the spectrum of a specific light source to the general solution 
for axisymmetric wave fields, Eq. (5). 

The finite energy modifications can be seen as sums of ideal, infinite energy 
localized waves. If the function describing spectral distribution is not tightly 
localized around singular support line, but is wider, the wave field constitutes a 
sum of localized waves with (appreciably) different group velocities. Instead of 
invariant propagation, space-time focusing is established. The subject is treated 
in more detail in chapter II of [8] and references therein. 

If the Bessel beam constituents of the wave field, Eq. (5), are synchronized, 
i. e. their initial phases are correlated, an ultrashort propagation-invariant wave 
field is formed in coordinate space. Such a field can be generated by means of a 
femtosecond pulse and optical system shaping suitable support of the spectrum. 
Often some of the prerequisite conditions is not met. The propagation-invariant 
fields with variable spectral coherence properties are considered in [22, 55, 56]. 

 
 

2.2. Geneology and optical generation principles 
 

In previous section we derived general expression for axially symmetric 
propagation-invariant fields called localized waves, Eq. (5). Let us now classify 
the localized waves into four families based on the shape of the support of the 
spectrum in momentum space – hyperbola, line, parabola or ellipse [24]. The 
shape of the support of the spectrum is directly related to the group velocity of 
the wave field, but does not depend on the exact shape of the power spectrum or 
carrier frequency of the wave field. The principles of experimental generation of 
the wave field arise from the shape of the projection of the support line on 
(kz, kρ)-plane. This is the angular distribution of the plane wave, or the Bessel 
beam, constituents. 
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Figure 1. The classification of the localized waves into 4 families based on the group 
velocity and shape of the support of the spectrum. 1. – generic superluminal family with 
hyperbolic support of the spectrum; 1. a. – Subfamily of superluminal pulses with a 
propagation-invariant wavefunction with straight-line support of the spectrum; 2. – 
luminal family with parabolic support of the spectrum; 3. – subluminal family with 
elliptical support of the spectrum. 
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The names of specific localized wave solutions refer to certain closed form 
expressions with certain power spectrum and shape of the support of the 
spectrum. Those cannot be considered as a basis of wave field classification. 
Rather, the closed-from solutions serve as a well-known and thoroughly studied 
model fields for a specific family. 

In previous section we showed that the group velocity of a wave field is 
constant if the wavenumber and its longitudinal projection are combined 
linearly Eq. (3). The slope of the line is group velocity vg in the units of c, and 
the intercept b was related to the smallest wave number. Intersection of the 
dispersion cone and the plane defined by Eq. (3) constitutes the support of the 
spectrum in the (k, kz, kρ) space. Let us consider following special cases. 

 
 

2.2.1. Generic superluminal family 
 

The group velocity is superluminal, hence the slope of the line (3) is β > 1. 
Intercept b can take arbitrary values, except being equal to zero, b ≠ 0. The 
support of the spectrum in the (k, kz, kρ) space and also its projection to the 
(kz, kρ)-plane is hyperbola. See 1. on Figure 1. The smallest wave number 
kmin ≥ c × b/(vg + c), if b > 0 and kmin ≥ c b/(vg-c) if b < 0. The values of the 
group velocity range from c to infinity, c <vg<∞.  

The representatives of this family are the cylindrical wave of infinite group 
velocity [57] and focused X wave (FXW) [9]. Both have exponentially 
decaying, towards higher frequencies, spectrum shifted to optical region. The 
cylindrical wave can be considered as a “seed” wave to other superluminally 
propagating localized waves, which can be obtained via Lorentz transforming 
the cylindrical wave [24].  

The wavefunction of the FXW is obtained by inserting spectral function  

( ) 0( , ) exp ( / )FXW z z z zk k k k k k kγ β δ β γ Φ = − − Δ − −    

into Eq. (2) and with the help of Laplace transfom table, for example [58], the 
closed from expression for FXW is obtained: 
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,     (6) 

 
where Δ is a positive constant characterizing the length of the pulse and lowest 
wavenumber kmin is related to kz0 as  
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Figure 2. 3D scheme of the superluminal localized wave generator. Ultra wideband 
convergent conical light pulse (in region a) enters a cylindrical diffraction grating (b). 
The localized wavefield is formed within the dark rhombic region c. Brighter cones 
coming out from the generator depict propagation of the 0th diffraction order and – in 
accordance with the range of the source spectrum – the “red” and “blue” boundary 
surfaces of the 1st diffraction order. [III] 

 

 

 
 
Figure 3. The modulus of the SpLW. Dependence on z (increasing from the left to 
right) and a lateral coordinate ρ while ct = 0 is depicted. Plots are normalized and 
numerical values of the parameters are: the pulse velocity vg = 1.048c; the Gaussian 
spectrum with FWHM = 47 nm is centered on 800 nm. The plotting range for the lateral 
coordinate ρ is 144 μm while for the axial coordinate z it is 72μm. The gray shading in 
both plots is a result of ‘lighting’ used to better reveal the relief of the surface. The 
modulation pattern in the region of the central maximum appears due to the relatively 
narrow spectrum. 

 
 

 
 



 

22 

 min 0

1

1
zk k

β
β
+

≥ −
−

. 

  
In the limiting case vg → ∞, the FXW described with Eq. (6) becomes the 
cylindrical wave; if kz0 = 0, the X-wave and if vg → c, kz0 > 0 the focus wave 
mode. 

It has been demonstrated that the hyperbolic support of the spectrum can be 
generated exactly by means of a diffraction grating, whereas the group velocity 
is related to the angle of incidence towards grating normal θI = asin(β-1). In 
order to obtain axially symmetric field with almost equal to c, the cylindrical 
diffraction grating with circular grooves engraved to the inner surface of a 
reflective cylinder must be illuminated with a Bessel-X pulse. (See Figure 2) 
Illuminating a transmissive cylindrical diffraction grating normally, with 
cylindrical impulse converging towards the optical axis, will result in formation 
of the cylindrical wave of infinitely large group velocity. [III, IV, XII] 

The modulus of an experimentally feasible superluminally propagating 
localized wave (SpLW) is depicted on  

Figure 3. The exponentially decaying spectrum of FXW has been replaced 
with a Gaussian one and the numerical values of the parameters have been 
chosen suitably for an optical realization. 

 
  

2.2.2. Subfamily of superluminal pulses with  
a propagation-invariant wavefunction 

 
If the plane (3) in (k, kz, kρ)-space has slope β > 1 on (k, kz) plane, but it crosses 
the origin, i. e. the intercept b = 0, the group velocity is superluminal, but the 
support of the spectrum in the (k, kz, kρ) space and also its projection to the 
(kz, kρ)-plane degenerates from hyperbola to a straight line. This means that all 
the plane-wave constituents of the localized wave propagate under the same 
fixed angle θ, called cone angle, relative to the z-axis. See 1. a. on Figure 1. The 
smallest wave number of the support of the spectrum is 0.  

The group and phase velocities of the localized waves of this family are 
equal and thus the field amplitude as well as the intensity distribution propagate 
invariantly. 

Well known X-wave [59] and Bessel-X wave [53] belong to this family. The 
spectrum of the X-wave is white, whereas that of the Bessel-X pulse is 
Gaussian, having central wavelength in the optical region. 

The wavefunction of the X-wave can be derived taking kz0 = 0 in Eq. (6):  
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It is shown in [53] that the wave function of the Bessel-X pulse can be derived 
by inserting a Gaussian-like spectral function  
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where d0 is the pulse’s reciprocal bandwidth and k0 the carrier wavenumber, into 
Eq. (2). With a minor approximation, a resultant closed-form equation yields 
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where d = zc / vg – ct. 

The support of the spectrum of the Bessel-X pulses can be generated by 
means of annular slit and achromatic lens or conical lens called axicon, 
neglecting the dispersion of the axicon material. The Bessel-X pulses are most 
widely studied localized waves and are generated in several experiments 
[29, 31, 32, 34, 37, VI, XIII]. The field amplitude of an optically realizable 
Bessel-X pulse resembles that of the FXW depicted on Figure 3.  

 
 

2.2.3. Subluminal family 
 

If the slope of the line (3) is smaller than 1, β < 1, the group velocity vg < c is 
subluminal and intercept b < 0. The support of the spectrum in the (k, kz, kρ) 
space and also its projection to the (kz, kρ)-plane is ellipse. See 3. on Figure 1. 
The wave numbers vary in the range kmin ≥ c b/(vg+c) and kmax ≤ c b/(vg-c); the 
group velocity varies in the range from zero to c, 0 < vg < c.  

A Mackinnon pulse [60] is a representative of this family of localized waves. 
In principle, it is possible to generate the support of the spectrum in the finite 
bandwidth by combining dispersive, refractive and diffractive optical elements.  

A Lorentz transformation “seed” to a localized wave in this family is 
monochromatic spherical standing wave, with vg = 0. The larger the speed of 
the reference frame of the seed wave in respect to the laboratory frame, the 
larger the group velocity and the bandwidth of the wave in the laboratory frame. 
[24] 
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2.2.4. Luminal family 
 
If the slope of the line in Eq. (3) is equal to 1, β = 1, the group velocity vg = c is 
luminal and intercept b > 0. The support of the spectrum in the (k, kz, kρ) space 
and also its projection to the (kz, kρ)-plane is parabola. (See 2. on Figure 1.) The 
smallest wave number is kmin ≥ -b/2. 

A seed to the localized waves in the luminal family is a monochromatic col-
limated beam propagating in an ultrarelativistic frame towards negative 
direction of the z axis. In the laboratory frame it turns out to be a wideband lo-
calized wave propagating almost luminally in the positive direction of the z 
axis. [24]  

Well known and extensively studied focused wave mode (FWM) belongs to 
this family of the localized waves. Inserting the spectrum  
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into the Eq. (2) and integrating, yields the wavefunction of the FWM: 
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The field amplitude of optically realizable FWM resembles that of the FXW 

depicted on Figure 3. 
The support of the spectrum of the focused wave mode can be generated in a 

finite spectral range by combining axicons, diffraction gratings and glassy 
samples or wedges with suitable dispersion curve. The field amplitude of a 
wideband luminal localized wave has been measured in interferometric expe-
riment [33]. 

 
 

2.2.5. Negative group velocities 
 
A specific shape of the support of the spectrum corresponds to a fixed value of 
the group velocity, regardless in which region of the support of the spectrum 
lays the power spectrum. The hyperbolic, parabolic and elliptic support lines 
can extend to both negative and positive kz values.  

From here it follows that even if the power spectrum lies in the region of the 
negative kz values, i. e., the Bessel beam constituents propagate towards nega-
tive direction of the propagation axis z, the resulting wave field propagates at 
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specified group velocity, which may be sub-, super- or simply luminal, towards 
the positive direction of the propagation axis.  

As an alternative, one can choose the group velocity negative, which means 
the slope β < 0, and choose the angular distribution of the Bessel beam consti-
tuents on the support line to the region where the kz is positive. See also [61]. 

 
 

2.2.6. Asymptotic behavior of the wavefunctions  
 
Let us study the asymptotic behavior of the closed form localized wave 
solutions introduced above. In the first column of the Table 1 there are shown 
the radial asymptotic behavior at instant t = 0, position z = 0 and ρ → ∞ of the 
modulus of a wavefunctions of FXW, X-wave, Bessel-X pulse1 and FWM. In 
the second column is shown the longitudinal asymptotic behavior, t = 0, ρ = 0 
and z → ∞, of the same wavefunctions. 

 
 

Table 1. Asymptotic behavior of the closed-form localized wave solutions. 
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One can see that the FXW, Bessel-X pulse and FWM exhibit high localization 
in transversal plane, where the decay is faster than exponential dependence of 
the coordinate, exp(-ρ). In the longitudinal dimension the decay of all the wave 
fields, except Bessel-X pulse equals that of the Bessel function being reciprocal 
to the longitudinal coordinate. Different from the other localized wavefields 
considered, the Bessel-X pulse is comprised of plane wave pulses, where all the 
plane-wave constituents travel under the same angle towards optical axis. The 
decay in both longitudinal and transversal cross-sections is exponential. 

                                                      
1  An approximation was made to obtain the closed-form wavefunction of the Bessel-
X pulse. However, this should not affect the asymptotic behavior studied in this chapter. 
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However, the decay along the X-branches of the Bessel-X pulse is weak, being 
reciprocal to the inverse coordinate.  

Hence, the localized waves can exhibit high localization in two spatial 
coordinates (the radial ones) out of three. This is important and can be utilized, 
for example, in image transfer and detection with ultrafast temporal shutter.  

 
 
2.3. Accelerating and decelerating Bessel-type waves 

 
Accelerating and decelerating Bessel-like pulses are also shown to arise from 
diffraction off the annular obstacles or apertures [40], spherical aberration in 
lenses, and appropriately shaped nonlinear profiles of axicons [62]. Basically, if 
a surface of an axicon deviates from the cone, yet remains axially symmetric 
towards optical axis – for example the Gaussian-shaped microaxicon profiles 
[34, 63], or simply spherical tip of an axicon, will result in accelerating or 
decelerating Bessel-type pulses. The accelerating and decelerating pulses were 
measured in experiments [41, VII–XI]. 

A method to generate Bessel-X pulses relies on the fact that its Fourier’ 
transform is a ring. Hence, illuminating an annular aperture with ultrashort 
pulse and placing it to the focal plane of an achromatic lens will form the lo-
calized wave called Bessel-X pulse. In this arrangement the lens will transform 
spherical wave fronts emerging from the annular slit to double conical surface.  

Let us discard the lens and analyze the propagation of the ultrashort pulse 
behind an annular slit. For intuitive description we can use the Huygens-Fresnel 
principle. Each point of the slit can be considered as a source of spherically 
expanding waves whose temporal profile is governed by that of the primary 
wave. This will yield an expanding, semi-toroidal wave-field immediately 
behind the slit.  

As the pulse propagates further, the tube radius of the half torus becomes 
larger than the annular-slit radius R, and at times t > R/c the wave-field evolves 
like a spindle torus, i.e., different parts of the torus start to overlap. Of course, 
the wave-field is treatable as a mathematical surface only for infinitesimally 
short delta-like pulses in time. Real ultrashort pulses are at least several cycles 
long, and so yield an interference pattern in the overlap region (see insets of 
Figure 4). The radial dependence of the field in the interference region is 
approximately a zeroth-order Bessel function of the first kind. 

As the wavefield evolves in time, the intersection region propagates along 
the z-axis and the angle between the normal of the torus surface and the z-axis 
(θ) decreases. For ultrashort pulses, this intersection region is small, and the 
angle θ is approximately the same for all points within it at a given instant. 
Therefore the field in the intersection region is approximately equivalent to the 
center of a Bessel beam or the apex of a Bessel-X pulse (see also [40]). The 
smaller the angle θ – also called the axicon angle – the larger the spacing 
between the Bessel rings and the smaller the superluminal velocity of the pulse. 
Hence, an annular ring transforms an ultrashort pulse into a decelerating Bessel 
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wavepacket propagating along the z-axis. Of course, outside of the intersection 
region, where there is no interference to generate phase fronts that are perpendi-
cular to the z-axis or a Bessel profile, the phase and pulse fronts expand with a 
constant velocity c and propagate in their normal directions.  

It is also possible to generate such fields by axicon in combination with a 
lens. If the lens is concave, the field behind it evolves similarly to what was 
described above, and a decelerating pulse is generated. On the other hand, a 
convex lens (see Figure 4) results in an increasing angle θ as the pulse pro-
pagates and hence an accelerating pulse. In both cases their bullet-like, central, 
intense apex and accompanying Bessel rings become smaller or larger as the 
pulse propagates, depending on whether the torus shrinks towards a ring or 
expands towards a sphere. But the central spot of these pulses is still localized 
and intense over a propagation distance considerably longer than that of a 
Gaussian beam with a comparable waist size. 

Let us present here the mathematical description of the accelerating pulses 
for the case of ultrashort pulses for which is sufficient to considering only the 
intersection region close to the optical axis. Here the field is approximately 
conical, or it is a cylindrically symmetrical superposition of plane waves pro-
pagating at a fixed angle θ to the z axis. In this case, the field can be described 
using the known expression for the field of a Bessel-X pulse 

 
 

 
 
Figure 4. Schematic of the formation of accelerating pulses from a plane-wave pulse 
moving to the right with velocity c. The red strips depict the pulses’ intensity profiles in 
space at four different times. The conical surface of the axicon transforms the plane-
wave pulse into a Bessel-X pulse, and the convex lens then yields the accelerating pulse. 
The inset plots show the expected intensity vs. x and t for three different positions z. 
[VII] 
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where ρ, z, and t are the spatial (cylindrical) and temporal coordinates, and 
G(ω -ω0) is the (Gaussian-like) spectrum of the pulse having a central frequency 
ω0. However, unlike the case of the Bessel-X pulse, here the axicon angle 
depends on the propagation distance z from the lens with the focal length f as 
θ(z) = arctan[|f (f - z)-1| tanθa], where θa is the axicon angle without the lens. 
Because the group velocity of the wave-packet along the z direction is given by 
vg = c/cos(θ), the group velocity of the Bessel pulses will be superluminal and 
accelerate if f is positive and decelerate if f is negative. The approximations 
made in this approach are valid as long as the pulse duration τ is much shorter 
than its characteristic time of flight given by f/c.  
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3. INTERFEROMETRIC TECHNIQUES FOR 
SPATIOTEMPORAL MEASUREMENTS OF 

ELECTRIC FIELD 
 
In this chapter we give an overview of the methods and techniques used to mea-
sure the spatiotemporal dependence of electric field of the light bullets – ultra-
short optical pulses with a localized, bullet-like intense core and a residual 
double-conical spatial intensity profile. 

To reconstruct the electric field of an optical pulse in space and time one 
needs to measure both the field’s amplitude and phase over the space domain of 
interest. It is sufficient to determine the field’s amplitude and the phase in either 
the spectral or time domain because the amplitude and the phase in the other can 
be unambiguously reconstructed using the Fourier transformation. Although 
spatiotemporal couplings should not be ignored, let us, for the time being, ac-
quaint ourselves with the issues of temporal and spatial measurements sepa-
rately.  

First we will discuss, the temporal measurements. In the optical region the 
electric field oscillates about 1015 times per second, thus measuring the field 
with an oscilloscope would require sub-femtosecond resolution, which cannot 
be reached. To date the best temporal resolution, achieved in streak cameras is 
~100 fs, but they record the intensity versus time and thus loose the phase 
information. Another option is to measure the unknown pulse using a cross-
correlation technique with shorter pulse, but this is often not possible because 
there is no shorter reference pulse available in the femtosecond regime. And 
again, this would record only the temporal amplitude profile of the field. As a 
result, a method to fully characterize ultrashort optical pulses needs toencode 
the phase, which is lost in time-averaging intensity detection, in a measurable 
intensity from which it can be unambiguously reconstructed. 

Until recently, the second order autocorrelation measurement was most 
widespread method to characterize the temporal behavior of an ultrashort pulse. 
It allows one to find the root-mean-square duration of the pulse but the field’s 
(spectral) phase – the only thing that separates, for example, δ-like pulse from 
white noise – cannot be determined. But today there are two self-referencing 
methods that measure both the field amplitude and phase of an unknown pulse. 
These are: spectrally resolved autocorrelation, called Frequency Resolved Opti-
cal Gating (FROG) [64, 65, 66] and spectral shearing interferometry, called 
SPectral Interferometry for Direct E-field Reconstruction (SPIDER) [67, 68]. 
(See also [69] for an overview.) In addition, new methods, for example, 
multiphoton intrapulse interference phase scan (MIIPS) [70] have recently been 
introduced. Similar to the autocorrelation, self-referencing methods are based 
on instantaneous nonlinear processes and require relatively high pulse energies. 

Now, having in hand a temporal pulse characterization method, in a straight-
forward manner one could simply sample the spatial domain of interest with, 
say using a FROG or SPIDER device to yield the spatiotemporal behavior of 
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the pulse. Unfortunately there are technical difficulties with spatial resolution, 
lack of intensity, setup stability etc. Instead, a number of spatiotemporal pulse 
characterization techniques combined with FROG and SPIDER are emerging: 
two-dimensional sharing interferometry [71], wave-front sensing with Shack–
Hartmann detector [72] and complete retrieval of the optical amplitude and the 
phase using (k⊥,ω) spectrum (CROAK) [73, 74], for example. In this thesis we 
focus on linear interferometry between a suitably chosen and pre-characterized 
reference wave field and the ‘unknown’ wave field.  

In the following sections of this chapter we introduce the principles of 
spatial2 interferometry, spectral interferometry and a spatial-spectral interfero-
metric technique, called SEA TADPOLE. All the methods yield the phase of 
the unknown wave field in respect to the reference one. We show that the 
methods can be applied for finding the optical setup’s response function or 
measuring the spatial distribution of the input field.  

We study the performance of the interferometric measurement techniques 
under illumination with spatially coherent but spectrally non-correlated fields. 
This means that the field amplitude is random function of time yet the phase 
fronts are uniform in transverse direction. Hence, the results and properties 
discussed in this chapter are valid not only for coherent laser light, which is an 
important special case, but also applicable to the output of white light laser or 
spatially filtered (broad-spectrum) arc lamp. In the end of this chapter we 
discuss the ranges of application of different methods. 

 
 

3.1. Spatial interferometry 
 

Spatial interferometry, or simply interferometry, yields the interference pattern 
between a reference and unknown wave field in coordinate space, which allows 
one to resolve the phase difference between the two fields. 
 
 

3.1.1. The method 
 
Let us assume that the input field is spatially coherent and has a broadband 
spectrum, but is spectrally non-correlated meaning that the spectral phases of 
the frequency components are not correlated. To this end we add a stochastic 
phase term φ(ω) in the mathematical expression for field. We assume that the 
field remains statistically stationary and ergodic, which means that statistical 
ensemble averages can be substituted with averaging over time. Let us note that 

                                                      
2  To draw a distinction between use of the term interferometry as a general method, 
‘interferometry’ observed in coordinate space and ‘spectral interferometry’ measured 
with spectrometer in the frequency space, we use the term ‘spatial interferometry’ for 
the second case. In this thesis we also make distinction between spatial interferometry 
and its variant called spatial-spectral interferometry.  
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a train of ultrashort pulses with fixed intervals between the peaks, delivered, for 
example, by an ideal femtosecond laser, can be also treated as a stationary 
signal, if the initial phase of the pulse train varies from realization to realization. 
In the following, the phrase ‘propagation of the field’ is used to indicate the 
‘propagation of field’s intensity distribution’.  

Let us explicitly examine the setup based on the Mach-Zehnder inter-
ferometer [75], where the incident field is divided into two by beam splitter. A 
linear optical system generates the “unknown field” in the object arm while 
second part of the input field serves as a reference:ti travels on the reference 
arm and its wavefront is unchanged, only its delay in respect to unknown field 
can be adjusted. We assume that the auxiliary optical elements – beam splitters 
and mirrors – do not cause any additional and unwanted distortions to the fields. 
The interference pattern of the spatially superposed and delay-matched fields 
can be measured with a time-averaging 2D matrix intensity-recording device at 
a fixed position on propagation axis (see Figure 5). This setup also assures that 
in case the field intensities are low enough, the propagation through the optical 
system in the object arm remains linear and all the spectral components of the 
unknown wave field are also present in reference field. With these conditions 
met, the resolved spatial phase will not be distorted. 

 

 
 
Figure 5. Spatial interferometry setup based on a Mach-Zehnder interferometer. The 
unknown field in the object arm is formed by means of the conical lens called axicon. In 
the reference arm there is a variable delay line. It is assumed that the auxiliary optical 
elements do not cause any additional distortions to the phase front. In the inter-
ferometer’s output, the fields are overlapped both spatially and temporally. The 
resulting interference pattern I(x,y) at a fixed z and t is recorded with a time-averaging 
2D matrix intensity detector. 
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We denote the complex unknown field as ( ), , ,unk unkE E x y z t=  and the 

complex reference field as ( ), , ,ref refE E x y z t τ= + , where t stands for time, τ 
for adjustable delay and x, y, z for space coordinates, which in a more compact 
notation are referred to as the vector x y z= + +x y zr e e e  with orthogonal unit 

vectors ex, ey and ez. The z-axis is directed along the optical axis which is also 
the propagation direction of the fields. With the time-averaging 2D matrix 
detector one can record the intensity I=I(x,y) at a fixed position z  and a fixed 
delay τ: 

( ) ( )

( )

*

2 2 *2Re

ref unk ref unk
t

ref unk ref unk ttt

I E E E E

E E E E

= + +

= + +
, 

where 
1

( )
2

T

t T
T

F Lim F t dt
T→∞

−

=  denotes time the average of the argument 

function F and the ergodicity of fields Eunk and Eref allows us to replace 

ensemble averages with time averages. The first two components 
2

ref
t

E  and 

2

unk
t

E  are the time averaged intensities of the reference and unknown wave 

fields which can be easily recorded separately by blocking the other arm of the 
interferometer. The argument of the third component, the interference term, 

* *( , , , ) ( , , , )

( , , , )

ref unk ref unkt t
E E E x y z t E x y z t

x y z

τ

τ

= +

= Γ
, 

is the mutual coherence function of the two fields [76, 77]. Full 4-dimensional 
image is obtained while scanning both the z and τ parameter values and 
properly augmenting analyzed intensity I(x,y) traces. 

Conveniently, with a suitably chosen input and thus also a reference wave 
field, there is a simple and elegant method for measuring the additional phase 
generated by the optical system in object arm. As in the holography, the field on 
the reference arm is comprised of plane waves [22, 29, 33]. All plane-wave 
components propagate parallel to the optical axis and their phase fronts are flat. 
Following the example in chapter 4 from [77], let us represent Eref(r,t) as a 
Fourier’ integral with respect to the time variable:  

( ) ( )
( , , , ) ( )

i t i z i
c

refE x y z t s e d
ωω τ φ ω

τ ω ω
∞

+ − +

−∞

+ =  ,  (10) 

where the spectral density is defined by averaging the modulus square of the 

function s(ω) over different realizations of the field *( ) ( ) ( )
t

s s Sω ω ω= , and 

the function φ(ω) denotes the (stochastic) spectral phase originating directly 
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from the light source and it is the same for both the reference and the unknown 
fields. The function s(ω) is stochastic, as it varies from one realization to 
another. The spectral density S(ω), defined as the average over different reali-
zations of the function s(ω), is deterministic. 

The unknown field comprises plane waves with an arbitrary angular dis-
tribution introduced to the field by the optical system in the object arm. The 
electric field is given by: 

' ( , ') ( ')( , , , ) ( ') ( , ') 'i t i i
unkE x y z t s F e dω ϕ ω φ ωω ω ω

∞
+ +

−∞

=  rr ,  (11)  

where F(r,ω’) is a real function expressing the spatial distribution and ϕ(r,ω’) 
an additional phase introduced by the optical system. The transmittance of the 
optical system is taken into account by the function F(r,ω’). 

To explain the definition of the unknown field let us write it as a wave field 
that is a general solution g(r,t) to the scalar wave equation, so it is a sum of 
plane waves:  

( )( , ) ( , ) expg t A i t d dω ω ω
∞

−∞
 = −   r k kr k , 

where the real function A(k,ω) denotes the spectrum. Let us separate the 
temporal frequency spectrum σ(ω) and the part describing the angular dis-
tribution Ξ(k,ω): 

( ) ( ) ( ) ( )( , ) , ,x y zA k k kω σ ω ω ω ω = Ξ  k . 

Now, we can denote the field as ( )( , ) ( , )expF i dω ω  = Ξ  r k kr k  and 

( )( )( , ) arg ( , ) exp i dϕ ω ω  = Ξ  r k kr k .  

As an illustrative example, we assume cylindrical symmetry and pro-
pagation-invariant waves, where the angular distribution of the plane wave 
constituents is θF(ω). For this case we can write the field as follows: 

2 2
0

0

( , )

( ) sin ( ) exp cos ( )F F

g t

s J x y i t i z d
c

ωω ω θ ω ω θ ω ω
∞

=

  + −    

r

. (12) 

From the given equation 2 2
0( , ) sin ( )FF J x yω ω θ ω = +
 

r  and 

( , ) cos ( )Fz
c

ωϕ ω θ ω= −r . 

Let us now return to the construction of the spatial interferometry trace. As 
mentioned above, we can separately record the components  

2
( ) ( , ) ( )ref ref

t
I E t S dω ω

∞

−∞

= = r r , 
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and 
2

2
( ) ( , ) ( ) ( , )unk unk unk

t
I E t s F dω ω ω

∞

−∞

= = r r r   

by blocking the other arm of the interferometer, and later subtracting the 
intensity patterns from the interferometer trace.  

Before we start analyzing the interference term of the trace, it is important to 
stress that F(r,ω), describing spatial dependence of spectral amplitudes of the 
frequency components, and ϕ(r,ω), describing the phase introduced by the 
optical system, are deterministic functions and remain invariant with respect to 
the different realizations of the ensemble. The stochastic nature of the field is 
expressed in s(ω) and phase φ(ω). In case the field is ergodic and stationary, as 
we assumed earlier, the ensemble average can be substituted with time average 
and we can write for the cross-spectral density  

* *( ) ( ') ( ) ( ') ( ) ( ')
e t

s s s s Sω ω ω ω ω δ ω ω= = − .  (13) 

The interference term reads:  
( ) ( )

*

' ( , ') ( ')

( , )

( )

2Re 2Re

( ') ( , ') '

2Re ( ) ( , )

( , )

i t i z i
c

ref unk t
i t i i

t

i z i i
c

s e d

E E

s F e d

S F e d

V

ωω τ φ ω

ω ϕ ω φ ω

ω ϕ ω ωτ

ω ω

ω ω ω

ω ω ω

τ

∞
− + + −

−∞
∞

+ +

−∞

∞ + −

−∞

×
=

=

≡







r

r

r

r

r

, (14) 

which is basically mutatis mutandis the electric field of the unknown wave field: 
• Temporal dependence is replaced by that of the time delay τ, meaning that 

one can “freeze” the unknown field by interfering it with plane wave field;  
• The phase introduced by the optical system in the object arm ( , )ϕ ωr  is 

replaced by ( , )z
c

ω ϕ ω+ r , which rescales the z-axis by factor 

1
( , )

z

c z

ω
ϕ ω
⋅+

⋅
. For example, in experiment [29] the micrometer-range z 

dependence of the field was scaled into a centimeter range. 
• The frequency integration is carried out over the cross-spectral density 

instead of square root of the unknown field spectral density.  
In a spatial interferometry measurement, the transversal spatial resolution is 
determined by the pixel size of the detector, longitudinal spatial resolution by 

detector positioning step and the phase scaling factor ( , )z
c

ω ϕ ω+ r , and the 

temporal resolution depends on the delay step.  
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To illustrate the scaling property, let us benefit from the general expression 
for the cylindrically symmetric superposition of plane waves (12), from which 
one can see that for the case of localized waves the phase depends only on z-

coordinate ( , ) cos ( )Fz
c

ωϕ ω θ ω= −r  and rescaling factor is given by 

( )1 cos ( )Fc

ω θ ω− . 

In case the reference and the unknown fields are identical or only time-
shifted, the ‘spatial’ interference do not occur. Thus a wave field cannot be used 
to measure itself with interferometric techique. 

It is possible to adapt data analysis routine, which is very similar to that for 
spectral interferometery and is introduced in detail in the following section. The 
analysis involves extracting the interference term from the recorded intensity 
trace, Fourier’ transforming it to the spatial frequency space, shifting it to zero 
frequencies and inverse transforming the filtered trace to coordinate space. This 
allows one to extract the spatial phase at fixed instant t=τ of the unknown field. 

The unknown field can be reconstructed if the interference pattern can be 
completely resolved with the detector. This restricts the angular distribution of 
the plane wave constituents of the unknown field. Based on the Nyquist 
sampling criterion, the smallest spatial period Λ in the interference pattern 
ought to be at least twice as large as pixel linear dimension l. kρmax = 2π/2l is the 
largest transversal wave vector component which can be satisfactorily 
measured. Accordingly the plane wave constituent of the unknown field can 
deviate from the optical axis by the angle θ = kρmax/k, where k = ω/c = 2π/λ is 
the wave vector. For an optical experiment we can make a realistic estimation 
for the deviation angle θ. If the wavelength is λ = 600nm, and detector pixel 
side is l=5nm wide, the wave pattern can be resolved when the plane wave 
components are not dispersed from optical axis by more than 0.06rad or 3.4. 

Let us point out that spatial interferometry cannot be used for recording the 
fields when the k-vectors from different plane wave constituents are strongly 
dispersed. Namely, the z-axis scaling depends on the angular distribution 

( , )ϕ ωr  as ( , )z
c

ω ϕ ω− r . As a result the scaling is not uniform for the 

different plane wave constituents and the recorded field amplitude does not 
follow exactly the input field.  

These two restrictions are independent. For example, in an ultrashort 
localized wave, called a Bessel-X-pulse, all the plane wave constituents travel 
under the same angle towards optical axis and in this case the method works 
flawlessly if the angle θ, called axicon angle, is less than θ<kρmax/k. But the 
spectral interferometry measurement of the focused Gaussian pulse, where 
k-vectors of the plane-wave constituents are dispersed in the range 
0 deg < θ < kρmax/k, would yield a spatial field amplitude distribution different 
from that of the Gaussian field due to the z-axis rescaling. 
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3.1.2. Impulse and frequency response of optical system 
 

The spatially resolved impulse and frequency response of an optical system can 
be measured with spatial interferometry if the signal remains stationary, ergodic 
and spatially coherent. The response functions can be measured in the spectral 
range of the input field or, if the spectrum3 of the input signal can be ap-
proximated to white noise, in the whole transmittance region of the optical 
system on the object arm. 

The field Eunk(t) at a position P(x, y, z) is the time-convolution of the initial 
signal Ein(t) and the impulse response h(t) of the optical system at the same 
given space position P(x, y, z) on the object arm ( ) ( ) ( )unk inE t E t h t= ⊗ . Based 

on the Fourier transform convolution theorem, in the spectral representation the 
convolution operation is replaced by a product and the field reads 

( ) ( ) ( )unk inE E Hω ω ω=  , where H(ω) is the frequency response of the optical 

system. Based on Eq. (10) and, (11) we can write the initial and the unknown 
fields in frequency domain:  

( )( ) ( ) i
inE s e φ ωω ω= , 

 and  
( ) ( )( ) ( ) ( ) i i

unkE s F e ϕ ω φ ωω ω ω += .   

 

( )unkE ω  in respect to the initial field ( )inE ω  reads: 
( )( ) ( ) ( ) i

unk inE E F e ϕ ωω ω ω=  ,             (15) 

from which  follow the frequency response  
( )( ) ( ) iH F e ϕ ωω ω= ,              (16) 

and impulse response 

( ) ( ) ei th t H dωω ω
∞

−∞

=  .          (17) 

Different form the initial and the unknown field, the response functions cha-
racterize the optical system and neither of them depend on the stochastic phase 
ϕ(ω) or the field amplitude s(ω) of an ensemble realization.  

Bearing in mind, that the reference pulse is nothing but a delay-shifted initial 

pulse ( ) ( )ref inE t E t e ιωττ −− = , let us once more calculate the correlation 

function at a position P(x, y, z), where the unknown field is expressed through 

the impulse response ( )( ) ( ) ( ) i
unkE s H e φ ωω ω ω= : 

                                                      
3  Here the term ‘spectrum’ is used as a synonym of spectral density of the power 
spectrum. The field spectrum or field amplitude is sometimes referred also as square 
root of spectral density. 
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* ( ) ( ) ' ( ')( ) ( ') ( ') '

( ) ( ) ( )

i t i i t i
ref unk t

t

i

E E s e d s H e d

S H e d V

ω τ φ ω ω φ ω

ωτ

ω ω ω ω ω

ω ω ω τ

∞ ∞
− − − +

−∞ −∞

∞

−∞

=

= =

 


. (18) 

One can see that the correlation function depends on deterministic functions – 
the spectral density S(ω), defined by (13), the frequency response of the optical 
system H(ω), Eq. (16), and the delay τ. In case the spectrum of the input field 
can be approximated as white spectrum in the transmittance region of the 
optical system, the spatially resolved impulse response h(τ), Eq. (17), of the 
optical system can be retrieved directly from the correlation function V(τ), Eq. 
(18), by scanning the delay in spatial interference measurement.  

In the case where the width of the initial field spectral density function is 
finite, the later appears as an additional coefficient in the integration over the 
frequencies and can be eliminated, if the trace is Fourier’ transformed with 
respect to the time/delay τ, to frequency space: 

( ) ( ) ( ) ( )iV V e d S Hωτω τ τ ω ω
∞

−

−∞

= = . 

From there the frequency response can be extracted by dividing out the spectral 
density of the initial field S(ω): 

( )
( )

( )

V
H

S

ωω
ω

=


. 

Inverse Fourier transforming the frequency response to the time domain, Eq. 
(17), yields the impulse response of the optical system in the spectral region, 
where the initial field spectrum is defined and non-zero. 

We have shown that in order to retrieve the impulse or frequency response of 
the optical system at a space position P, the field intensities at different delay 
values can be recorded with a one pixel time-averaging detector. A matrix 
detector adds transversal spatial dimensions and scanning the detector position 
along z-axis allows to retrieve the full 3-dimensional impulse and frequency 
response. This allows one to characterize the optical system on the object arm.  

 

 

Figure 6. The principle of spectral interferometery. The reference field and the un-
known field are delayed with respect to each other and superposed collinearly. The 
fields enter the spectrometer where the time delay is manifested in spectral fringes. 
(From reference [78].) 
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Combining Eq. (15) and (16) it is obvious, that knowing the frequency response 
of the optical system, allows one to calculate also spatiotemporal field dis-
tribution as if the optical system was illuminated with a transform-limited pulse, 
which has the spectrum of the initial field. Moreover, this method does not have 
the restriction to the angular distribution of the plane wave constituents arising 
from the z-axis rescaling, as it was the case while deducing the field distribution 
directly from the interference term of the spatial interferometry measurement.  
 
 

3.2. Spectral interferometry 
 

Spectral interferometry is a linear frequency-domain interferometric technique. 
A time delay is introduced between collinearly propagating unknown and refe-
rence wave fields. This yields interference in the frequency domain and allows 
one to extract spectral phase of the unknown pulse in respect to that of the 
reference pulse [79]. To compare: in the case of spatial interferometry two 
wave fields were overlapped in space and their (spatial) interference was 
recorded. In this paragraph we generalize the treatment of the method for the 
case of frequency non-correlated reference and unknown fields originating from 
the same initial field.  

Again, let us assume that the ergodic and stationary input field has broad-
band spectrum, for which the phases of different frequency components are 
non-correlated and this is, again, manifested in stochastic phase term φ(ω). In 
analogy with spatial interferometry, the spatially coherent input field4 is divided 
into two parts and one part of the initial field constitutes the reference with 
adjustable delay and the other is shaped linearly to the unknown field by optical 
system on the object arm. (See Figure 5.) At the output of the interferometer the 
fields are overlapped and enter the spectrometer. See Figure 6.  

The reference field reads ( )
0( ) ( ) i i

refE E e φ ω ωτω ω +=  , where 0 ( )E ω is field 

complex amplitude. The optical system on the object arm adds the phase ϕ’(ω) 
and their transmission function is manifested in F(ω). The unknown field reads 

( ) '( )
0

'( )

( ) ( ) ( )

( ) ( )

i i
unk

i i
ref

E E F e

E F e

φ ω ϕ ω

ϕ ω ωτ

ω ω ω
ω ω

+

−

=

=

 


.      (19) 

From there it follows that the frequency response H(ω) of the optical system on 
the object arm is: 

'( )( ) ( ) i
SIH F e ϕ ωω ω=  (20) 

Again, we assume that the spectrum of the reference pulse contains all the 
spectral components of the unknown pulse. 
                                                      
4  In fact, the spatial coherence is required for formation the unknown field on the 
object arm. While recording only frequency-, not spatial-coordinate dependent phase 
distortions the method will work equally well with identical spatial modes on object and 
reference arm.  
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Spectrometer detector will record at its input time-averaged signal, which 
due to the ergodicity is equivalent to average over different realizations of 
ensemble: 

*

2 '( )

( ) [ ( ) ( )] [ ( ) ( )]

( ) ( ) ( ) 2Re ( ) ( )

SI ref unk ref unk e

i i

S E E E E

S S F S F e ϕ ω ωτ

ω ω ω ω ω

ω ω ω ω ω −

= + +

 = + +  

   
,   (21) 

where spectral density is *( ) ( ) ( )ref ref e
S E Eω ω ω=   . One can see that the 

phase of the interference term depends on delay and the phase shift introduced 
by the optical system on object arm, but not the stochastic phase originating 
from the initial field. As a result, the spatially resolved frequency response of 
the optical system (20) and the phase difference between the unknown and 
reference fields can be retrieved. The phase difference corresponds to unknown 
field phase in case the phase of the initial field is flat i. e. the initial field is 
transform-limited pulse.  

The spectral interferometry trace can be analyzed by Fourier’ transforming 
the output signal to pseudo-time space (because the intensity, not the field, is 
transfromed). The term, which is shifted towards pseudo-time axis positive 
values by τ, contains the phase difference between unknown and reference 
pulse. This term should be filtered out and shifted to pseudo-time origin, which 
removes the phase shift caused by delay τ. Inverse-transforming the term to 
frequency space will yield the desired phase. See Figure 7.  

 

 
 
Figure 7. Illustrative schematic of spectral interferometry trace analysis routine. From 
reference [78] 
 
 
Method called dual-quadrature spectral interferometry allows one to extract the 
phase difference with simpler data analysis, yet the experimental setup is more 
complex as both patterns corresponding to sine and cosine of the interference 
term must be recorded [66, 80]. 
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In case the spectrum of the input field can be approximated to white spect-
rum, i. e. is constant, in the transmittance region of the optical system on the ob-
ject arm of the interferometer, the interference term in the spectral inter-
ferometry trace (21) is the frequency response of the optical system (20) in that 
spectral region multiplied by the phase shift caused by the delay τ. If the spect-
rum of the input field is of finite extent and narrower than the transmittance 
region of the optical system and/or not constant, it is to be divided out from the 
interference term of (21) to obtain the frequency response of the optical system 
in the frequency range where the spectrum is non-zero.  

To characterize temporally the unknown field, one must know the spectral 
phase and amplitude of the reference field. In case of optical pulses, FROG or 
SPIDER technique can be used. The method combining FROG and spectral 
interferometry is called TADPOLE – Temporal Analysis by Dispersing a Pair 
Of Light E-fields [66, 81]. 

Spectrometer records a SSI(ω) trace at a fixed space position P=(x,y,z). To 
obtain a 4-dimensional trace SSI(r,ω), one should scan the space coordinates in 
all three dimensions. In experimental setup perfect collinearity between the 
reference and unknown fields has to be achieved in order to avoid introducing 
additional phase between the fields and thus the setup needs to be mechanically 
very stable. So far, this has become an obstacle while measuring the spatial 
distribution of the frequency response of the optical system from where the 
spatial distribution of the unknown field would follow. 

The spectral resolution required for spectral interferometry is reciprocal of 
the maximum temporal extent of the compound wave field duration: delay 
between the coherent fronts of the fields plus coherence times of both field. This 
means that one can resolve the phase difference with the price of loosing reso-
lution compared to simply measuring the unknown wave field spectrum. This 
may limit the spectral width of the fields that can be measured [66]. 

 
 

3.3. Spatial-spectral interferometry and  
SEA TADPOLE 

 
Spatial-spectral interferometry is a linear electric field characterization techni-
que in which the interfering reference and unknown fields are directed to an 
imaging spectrometer where the trace is resolved spectrally. The method, which 
bears an inherent resemblance to spectral holography [82], was originally used 
to determine group delay of optical elements, namely dielectric mirrors [83, 84], 
but was soon applied also for characterizing femtosecond pulses [85] and be-
came a practical supplement to both SPIDER (SEA SPIDER) [86] and FFOG-
based TADPOLE (SEA TADPOLE) [87] ultrashort pulse characterization 
methods. 

Often the SEA SPIDER and SEA TADPOLE are referred as spectral inter-
ferometry methods. We do not oppose this terminology but still prefer to use the 
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term spatial-spectral interferometry, originating form [85], in this thesis. Our 
motivation is to draw distinction between the spectral interferometry and its 
variant extended to two dimensions.  

 
 

3.3.1. Spatial-spectral interferometry method 
 

Although several different setups have been proposed [83, 85–87] the working 
principle is the same. Let us consider a setup, where the interferometer part is 
similar to both spatial and spectral interferometry schemes. We generalize the 
treatment of the method for the broadband, frequency non-correlated, spatially 
coherent and stationary fields. The input field is split into two: a reference field 
with adjustable delay and unknown field, which is generated by propagating the 
input field through the linear optical system on the object arm (see Figure 5). 
Fields entering the spectrometer are crossed under small angle 2θ yielding 
spatial interference fringes on a matrix detector. The fringes appear towards the 
axis ξ, perpendicular to the frequency ω axis. As a result, the interference 
pattern is spectrally resolved along the frequency axis. Resulting 2D image 
carries phase and amplitude information about electric field of the unknown 
field. The temporal delay between two fields is set to 0 avoiding occurrence of 
spectral fringes. Figure 8 illustrates the setup for SEA TADPOLE con-
figuration. 

Electric fields of the reference and the unknown fields read: 
( ) sin( )

0( , ) ( , )
i i i

c
refE E e

ωφ ω ωτ ξ θ
ω ω

+ +
=r r   
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( , ) ( , ) ( , )
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i i i
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i i ic
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E E F e

E F e e

ωφ ω ϕ ω ξ θ

ωϕ ω ξ θ ωτ

ω ω ω

ω ω

+ −

− −

=

=

r

r

r r r

r r

 


, 

where 0 ( , )E ωr is field complex amplitude and φ(ω) the (stochastic) phase. θ is 

the half of the crossing angle of the fields in the spectrometer. Consistently to 
the spatial and spectral interferometry description in the previous chapters, 
F(r,ω) and ϕ(r,ω) describe the deterministic changes introduced to the field by 
the optical system – the spatial distribution and the phase, respectively. We have 

also included the phase shift originating from delay, ie ωτ− , for the sake of gene-
rality. As noted above, it is convenient to choose τ = 0.  

One can easily see that the impulse response of the optical system at fixed 
position P=(x, y, z) is  

( , ) 2 sin( )
( , ) ( , )

i P i
cH P F P e
ωϕ ω ξ θ

ω ω
−

= .                    (22) 
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The spatial-spectral interferometry trace at space point P reads: 
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 where spectral density is *( , ) ( , ) ( , )ref ref e
S P E P E Pω ω ω=   . Different from 

the spectral interferometry, the trace is 2-dimensional (ξ,ω), and contains addi-

tional phase term 
2 sin( )i

ce
ωξ θ−

, which is caused by the setup and remains constant 
over different realizations of the ensemble. 
 
 

 
 
Figure 8. Experimental setup for spatial-spectral interferometry based on SEA 
TADPOLE technique: reference- and unknown pulses enter the imaging spectrometer 
from fibers. The fiber outputs are set at distance 2d from each other to yield spatial 
fringes in vertical ξ-axis. The interference pattern is spectrally resolved in horizontal 
direction yielding S(x,ω) distribution of the spectrum. [87] 

 
 

The results (22) and (23) demonstrate, that regardless of the phase relations 
between initial fields frequency components, from the interference term of the 
spatial-spectral interferometric measurement trace it is possible to (i) resolve the 
phase difference between the unknown and reference fields, and (ii) the fre-
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quency response of the optical system on object arm of the interferometer5. The 
result does not depend weather one used either white noise or train of δ-like 
pulses as the input field. The above shown principles apply also to SEA 
TADPOLE device – a realization of a spatial-spectral interferometry method 
described in following section. 
 

 
 
Figure 9. Illustrative algorithm for analyzing SEA TADPOLE and also spatial-spectral 
interferometry trace. [88] 

 
 
Although the spatial-spectral interferometry trace can be intuitively interpreted, 
the analyzing routine is similar to that of the spectral interference method. One 
should subtract Iref and Iunk from the intensity trace, Fourier’ transform inter-
ference term trace to spatial frequency space, discard negative frequency terms, 
shift the positive spatial frequency spectrum to zero-frequencies and remove the 
phase shift initiating from the field crossing under angle 2θ. (Though, the later 
is often negligible and does not need subtraction.) The Fourier’ inverse-trans-
form of the result to coordinate space yields spectral density and phase of the 
spectral component (see Figure 9).  

In analogy with spectral interferometry, in order to obtain the frequency 
response of the optical system on the object arm (22), the spectral density is to 
be divided out from the analyzed interference term (23). In case one divides the 
term with square root of spectral density, one obtains spectral amplitude and the 

                                                      
5  For example, in Ref. [88] the impulse response of the spectrometer of SEA 
TADPOLE device was measured with the help of an etalon. 
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phase of the field, which would have emerged from the optical system as if 
illuminated with transform-limited pulse having the same spectrum as the initial 
field did. 

The impulse response and temporal evolution of the phase difference is ob-
tained by Fourier’ inverse-transforming the retrieved trace in respect to the fre-
quency. The spatial dependence of them can be constructed by scanning the 
input field in all three space coordinates.  

 
 

3.3.2. SEA TADPOLE 
 

Spatiotemporal profiles of the light bullets have been successfully measured 
with SEA TADPOLE – Spatial Encoded Arrangement for Temporal Analysis 
by Dispersing a Pair of Light E-fields [VI–XI] – which is why we will briefly 
introduce this technique and its capabilities in following [88, 89, 90]. 

The SEA TADPOLE setup is shown on Figure 8. After propagating the 
fields through the interferometer both reference and unknown field are coupled 
into equal-length optical fibers. The spectral phase and amplitude of the un-
known field in respect to that of the reference field can be reconstructed at space 
point with coordinates (x, y, z). The spatial profile of the unknown field is ob-
tained by scanning the space coordinates of the unknown field with the tip of 
the fiber (in this case the device is called scanning SEA TADPOLE).  

Use of optical fibers for guiding the fields into spectrometer is a robust 
method for keeping crossing angle θ of the fields in spectrometer fixed and by 
this enhancing the device stability. In addition, the fiber mode size, which can 
be decreased down to the range of one micron, defines the spatial resolution of 
the measurement. As a result, electric fields with complex spatial intensity dis-
tribution have been successfully measured. Also, the SEA TASPOLE method is 
linear thus very weak fields can be measured or, consistently, intense fields can 
be recorded with high spatial resolution. The fields, in which plane wave cons-
tituents do not propagate towards optical axis at larger angles than the numerical 
aperture of the fiber, can be resolved without distortions. 

SEA TADPOLE spectral resolution enhances that of the spectrometer in the 
case of smooth and slowly changing phase of the unknown pulse. As the SEA 
TADPOLE measures complex field Eunk rather than its amplitude squared |Eunk|2, 
the spectra will be always better resolved in SEA TADPOLE than in the same 
device used as spectrometer by blocking the reference beam. While spectro-
meter is insensitive to phase information and measures convolution of its res-
ponse function and unknown field amplitude squared, the SEA TADPOLE mea-
sures convolution of spectrometers response function and field complex ampli-
tude. For example, in case of Guassian spectra the enhancement factor is √2, 
which can be understood that the width of the spectral field is √2 times wider 
than that of the intensity. Up to factor 7 times better resolution is obtained for 
measuring oscillatory field, double pulses for example, because eiωτ is eigen-
function of convolution operator. [88]  
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In case the unknown field’s phase features are smaller than the spectro-
meter’s spectral resolution, SEA TADPOLE ends up with less accurate results 
than the same setup configured as spectrometer. The SEA TADPOLE device re-
solves the convolution between complex unknown field, rather than the field 
modulus square, and spectrometer’s response function, which width is defined 
by the spectral resolution. Convolution acting on complex field can “mix up” 
the amplitude and phase information and yield distortions in retrieved spectrum 
of phase. [88] 

 
 
 

3.4. Discussion and Conclusions  
 

To conclude, the interferometry is a linear method, which allows one to record 
phase difference between two fields. Prerequisite conditions are stationarity and 
ergodicity of the fields. Thus the analysis and results obtained in this chapter are 
valid for describing the performance of the interferometric measurement techni-
ques under illumination by different optical fields, ranging from train of ultra-
short pulses to white-noise-like fields. All the frequency components of the un-
known field should be present also in the spectrum of the reference field. As we 
aim to characterize the light bullets, the spectrum ought to be broadband. But 
we do not expect that the phases of the different frequency components to be 
correlated. This means that a femtosecond pulse is nothing but a special case 
and one could obtain the same results with, for example, white light laser or 
(spatially filtered) broad-spectrum arc lamp. 

We have studied the configuration where the reference and unknown field 
originate from the same initial field and the unknown field with spatiotemporal 
couplings, bullet-like intense core and residual 3-dimensional double-conical 
spatial intensity profile is generated on object arm of the interferometer. In that 
case spatial coherence of the initial field is required also for spectral and spatial-
spectral interferometry measurements. Otherwise, spatial coherence and trans-
versal extent of the reference field, to match that of the unknown field, are 
essential only for the spatial interferometry measurement. In spectral or spatial-
spectral interferometry experiments identical spatial modes are sufficient if the 
field’s phase, which does not vary over space coordinates, is measured... 

 
Under those conditions we have shown that: 
Interference term in spatial interferometry, Eq. (14), measurement  
• Describes the impulse response of the optical system on object arm (18), if 

the spectrum of the input field is in a good approximation white in the 
spectral region of interest (the transmission bandwidth of the optical system). 

• Allows one to retrieve the impulse and frequency response of the optical 
system in the frequency range where the spectrum of the initial field is 
defined and not zero. 

• Follows the electric field distribution of the unknown field as if generated 
from transform-limited input pulse (i. e. its phase is constant) by the optical 
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system on object arm at fixed z and t=τ, where τ is delay, with minor 
rescaling, discussed in detail after Eq. (14).  

If the field structure is scanned in all 4 space-time coordinates, where the time is 
substituted by the delay τ, the optical system and its capability to form optical 
field with complex spatiotemporal couplings can be characterized.  

 
Interference term in spectral and spatial-spectral interferometry, Eq. (21) and 
(23) respectively 

• Equals the frequency response H(ω) of the optical system on the object arm, 
Eq. (20) and (22), respectively, in case the spectrum of the input pulse can be 
approximated to the white spectrum in the in the range of transmission of the 
optical system.  

• Allows one to retrieve the frequency and impulse response of the optical 
system in experiment with real light source having finite bandwidth, if the 
spectral density S(ω) is divided out.  

• Allows one to retrieve phase difference between unknown and reference 
fields. If all four space-time (frequency) coordinates are scanned, one can 
estimate optical system capability to form the unknown field with a 
transform-limited pulse, which power spectrum is identical to the spectral 
density of the initial frequency non-correlated field.  

 
From the results presented above, one can see, that as the spectrum of the fre-
quency non-correlated sources is broader, they have an advantage over femto-
second lasers in the experiments, which aim to characterize the optical system 
consisting of various types of refracting and diffracting optical elements.  

In addition, if the phase and amplitude of the initial field is known – say, the 
initial field is a femtosecond pulse, pre-characterized for example with FROG 
or SPIDER device – the unknown field can be fully spatiotemporally charac-
terized.  

The first experiments, in which the spatial behavior of superluminally pro-
pagating optical Bessel-X pulses and luminal Focus Wave Modes were mea-
sured, were based on spatial interferometry and carried out with spatially 
filtered Xe-arc lamp, which served as a optical white noise source [22, 29, 33]. 
Lately, the spatiotemporal characterization of the femtosecond Bessel-X pulse 
and accelerating-decelerating Bessel-type waves with spatial-spectral technique 
SEA TADPOLE [VI–XI, XIII] has been reported. The experiments are dis-
cussed and the results compared in the following chapter, Sections 4.2.5, 
4.2.6, 4.4.1 and 4.4.2.  

Here we abridge the analysis by saying that spatial interferometry is suitable 
for measuring the phase difference in either nearly monochromatic or very 
broadband fields with coherence time less than 10 femtosecond. The satisfac-
torily resolvable spectrum width of the spectral and spatial-spectral interfero-
metry measurements is determined by the spectrometer parameters and thus the 
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methods are most suitable for the region in the middle – for fields with cohe-
rence time in order of tens up to few hundreds of femtoseconds. 

Spatial, spectral and spatial-spectral interferometry are linear techniques and 
thanks to that they can measure very weak fields. For spectral interferometry it 
has been shown that train of pulses with pulse energy of 4.2×10–21J can be mea-
sured [81].  

Interferometric techniques can be also used to ‘amplify’ the weak signals 
with the price of loosing contrast. In case the reference pulse is M times more 
intense than the unknown pulse, the fringe intensity is 4√M that of the unknown 
pulse [66].  
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4. EXPERIMENTS 
 
Above we have introduced the theoretical background, principles of optical 
generation and classification of the localized waves and the light bullets in 
general. We have also gone through and elaborated on the interferometric mea-
surement techniques for registering complicated spatial and temporal field 
amplitude profiles with white-noise-like input fields. In this chapter we give an 
overview of the experiments on localized waves conducted so far and compare 
the complementary measurements where applicable.  

In optical generation of the localized wave the first task is to generate 
suitable angular distribution of the plane-wave constituents. This must lay on a 
quasi-singular support of the spectrum, which is either hyberbola, parabola, 
straight line or ellipse in momentum space (See chapter 2, Localized waves). 
For some families of the localized waves there are methods to form a suitable 
angular distribution in the whole transmittance range of the optical system, 
regardless the specific power spectrum of the light source. For other families the 
suitable angular distribution is achieved by carefully and precisely combining 
diffractive, refractive and dispersive optical elements. The angular distribution 
of the plane waves can be formed: 
• Exactly in the whole range of the support of the spectrum for the represen-

tatives of the superluminal family of the localized waves by means of reflec-
tive diffraction grating;  

• In good approximation in the whole range of the support of the spectrum for 
the superluminal localized waves with propagation-invariant-wave-function 
by means of axicon or combination of the annular slit and achromatic lens;  

• In the spectral bandwidth of the light source by combining dispersive, dif-
fractive and refractive optical elements for the luminal and subliminal lo-
calized waves.  

For the case of the accelerating and decelerating Bessel-type waves, the group 
velocity and hence also the angular distribution of plane waves varies smoothly 
with the coordinate z. Yet, the support of the spectrum, on which the plane wave 
constituents lay on, must be that of a localized wave at any instant and cor-
respondingly at any point on z-axis. 

For a successful experiment one needs also suitable light source with broad-
band and spatially coherent radiation. In previous chapter we showed that in 
interferometric experiments the frequency non-correlated sources could be uti-
lized as well.  

Next crucial aspect is the choice of the wave field detection method because 
the electric field of an optical signal cannot be recorded directly. Hence, the 
various properties of the wave fields have been studied with different methods: 
• Field’s profile and correlation time (duration of the transform-limited pulse) 

by recording the field cross-correlation with the plane wave field in inter-
ferometric measurement [29, 31]; 
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• Pulse’s first and second order autocorrelation profiles in autocorrelation 
measurements [34]; 

• Pulse’s velocity with snapshots of ionization front [32]; 
• Pulse’s spatiotemporal profile, group velocity and duration with spatial-

spectral interferometric techniques combined with FROG [VI–XI, XIII]. 
• Pulse’s spatiotemporal profile, group velocity and duration by angular spect-

rum detection with Shack-Hartmann sensor [37]. 
The choice of the optical elements and the light source must take into account 
the resolution of the detection device. One must assure that the smallest feature 
of the generated wave field would be resolvable. The later condition can set 
rather strict limitations to the deviation angle of the plane wave constituent of 
the wave field in respect to the optical axis as the optical wavelengths remain 
below one micron, but the CCD pixel or single-mode fiber tip dimensions are in 
the range of few microns and above.  

 
In the following we give an outline of the experiments on light bullets, con-
sidering all three above mentioned important aspects: generation of the support 
of the spectrum, choice of the light source, choice of the detection method and 
its realization. The experiment descriptions are organized based on the localized 
waves genealogy. In the frames of those subsets the experiment descriptions are 
in chronological order. 

First we discuss the experiments on linear superluminally propagating loca-
lized waves with hyperbolic support of the spectrum. Those have been gene-
rated in dispersive media by means of linear optical system and by means of 
nonlinear interaction between intense pump pulse and weak seed pulse.  

Secondly we study the special case – the Bessel-X pulses belonging to the 
‘subfamily of superluminal pulses with a propagation-invariant wavefunction’. 
Bessel-X pulse is most widely studied localized wave, which has been gene-
rated and measured in number of experiments. Different generation and mea-
surement methods are compared and their application ranges discussed. 

Thirdly we introduce the experiment on the focused wave mode with main 
emphasize on obtaining the suitable parabolic support of the spectrum.  

Finally we discuss the experiments on accelerating and decelerating Bessel-
type waves.  

 
 
4.1. Experiments on superluminal localized waves with 

hyperbolic support of the spectrum 
 

Let us start from considering the general case of the superluminally propagating 
localized waves where the support of the spectrum of the wave field is a hyper-
bola.  

First, we discuss here the first experimental proof on localized waves, which 
demonstrated their nondispersive propagation in the linear media [30, 31]. 
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Later, it was demonstrated that such a support can be generated exactly by 
means of a diffraction grating [III, IV, XII]. To obtain cylindrically symmetric 
field, the diffraction grating with low groove density ought to be engraved on 
the inner surface of reflective cylinder. Illuminating such a cylinder from one 
end with a light cone (Bessel-X pulse) would form a superluminally propa-
gating localized wave exiting the other end of the cylinder with superluminal 
group velocity close to c. Normally incident plane wave pulse on transmissive 
cylindrical grating would generate a cylindrical wave of infinite group velocity 
(See also Paragraph 2.2.1). The sophisticated interplay between the parameters 
has been studied in [IV] and the experiment is in preparation.  

Superluminally propagating localized waves with hyperbolic support of the 
spectrum have been generated in dispersive media by means of nonlinear inter-
action [V]. 

 
 

4.1.1. Propagation of the Bessel pulse in  
dispersive media [30, 31] 

 
An axially symmetric ‘nondiffracting pulse’ was generated by means of a holo-
graphic element called lensacon – a circular diffraction grating with varying 
groove density – and a lens transforming the laser beam into a point source in 
the vicinity of the lensacon focus. The lensacon was optimized for 610 nm, had 
focal length of f = 30 cm and cone angle θ = 0.01 rad. Broadband frequency 
non-correlated pulse with 210 fs correlation time and centered to 615 nm was 
delivered by Rhodamine 6G dye laser pumped by Ar-ion laser. 

The group-velocity-dispersion-caused spread of the pulse was compensated 
by careful choice of its angular spectrum, which resulted in a practically spread-
free propagation through 7 cm glassy sample. The nondispersive propagation in 
the sample was demonstrated by recording the field cross-correlation between 
the fields at the sample input and output faces. The consequent delayed traces 
were recorded with CCD device and the field autocorrelation was obtained by 
calculating the pattern visibility. 

In general, behind a circular diffraction grating with normal incidence, a 
subluminally propagating nondiffractive pulse is formed. In this experiment the 
proper positioning of the focusing lens in respect to the lensacon allowed to 
approximate the resulting angular dispersion to the linear dependence between 
longitudinal component of the k-vector and the frequency ω. As a result, the 
field generated in the experiment was an approximation to a superluminally pro-
pagating localized wave with hyperbolic support of the spectrum. (Calling it a 
Bessel-X pulse, as is done in the reference [31], is not fully accurate in the 
context of this thesis.) The experiment was robust in the sense that the cross-
correlation function width depended only on the phase difference gained in the 
glassy sample. 
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4.1.2. Linear X pulse by means of nonlinear interaction  
 

In [V] it has been shown that intense driving pulse, which propagates without 
diffracting or dispersing, induces the temporal refractive index change in media 
with χ(3) nonlinear susceptibility and can reshape a delay-matched weak probe 
pulse via cross phase modulation to nondiffractive and nondispersive pulse. 
Two experiments, with a filament and a pulsed Bessel beam as the strong dri-
ving pulse were performed. Experimental results from both measurements were 
verified with simulations, which solve numerically the nonlinear Schrödinger 
equation. 

In the first experiment 1055 nm central wavelength and 1.2 ps duration in-
tense pump pulse from Nd:glass laser was loosely focused on 2 cm thick fused 
silica sample. The pump pulse spontaneously formed a nondiffractive filament. 
Weak second harmonic probe pulse with 527 nm central wavelength was delay 
matched with the pump pulse and was subject to reshaping due to cross phase 
modulation induced by the pump pulse. There was no energy transfer between 
the spectrally well-separated pump and probe pulses. The angular distribution of 
the seed pulse was reshaped into hyperbola in the presence of the pump pulse. 
This was regarded as direct manifestation of the nondispersive propagation. The 
group velocity of the probe corresponded to that of the pump pulse and was 
superluminal. The nondiffractive nature of the reshaped probe pulse was ob-
served directly by recording the propagation of ~7.8 μm FWHM wide pulse 
peak over 5 mm in air. 

In the second experiment a pulsed Bessel beam was used as a pump pulse 
instead of the filament. The pulsed Bessel beam was generated by means of 
175 º apex angle axicon from a 35 fs Ti:sapphire pulse positively chirped to 1 ps 
duration, centered at 800 nm. The probe pulse of same duration was centered to 
the second harmonic frequency of 400 nm. Cross-phase modulation induced 
reshaping of the angular distribution of the weak probe pulse to a hyperbola 
occurred while the pump and probe pulses were spatially and temporally over-
lapped in the fused silica sample. Hence the cross phase modulation can be 
exploited to generate spectrally isolated linear localized waves in dispersive 
media. 

 
 

4.2. Experiments on Bessel-X pulses 
 

Bessel-X pulse is a special case of the superluminally propagating localized 
waves. Its support of the spectrum in the momentum space has degenerated into 
a straight line crossing the origin. Hence all plane wave constituents propagate 
under the same angle θ towards optical axis. If the material dispersion can be 
neglected, the angular distribution of the field, generated by means of an axicon 
or the annular slit in the focal plane of an achromatic lens, approximates closely 
that of the Bessel-X pulses. 
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4.2.1. Spatiotemporal measurement  
of the correlation function of the Bessel-X pulse [29] 

 
This is the original spatial interference experiment.  

The angular distribution of the axially symmetric Bessel-X pulse was ge-
nerated by placing an annular slit in the focus of an achromatic lens. This 
yielded in cone angle θ = 0.006 rad (0.34 º).  

The setup was illuminated with white light noise from a superhigh pressure 
Xe-arc lamp, which covered whole visible region from blue up to near infrared, 
with ‘carrier’ wavelength of 600 nm. The correlation time of the field was 
~ 3 fs. 

The Bessel-X field was cross-correlated with a plane wave pulse. To this end 
a pinhole was made in the center of the annular slit. The superluminally 
propagating Bessel-X pulse caught up with the preceding luminal plane wave 
pulse (its coherence front, to be exact). The group velocity difference served as 
“z-axis microscope”, which scaled the micrometer-range z dependence of the 
field into a centimeter range. The setup did not enable to chang delay between 
the Bessel-X and the reference fields. 

The field cross-correlation patterns were recorded with CCD camera, with 
pixel dimensions of 13.8 μm × 16 μm, in 70 positions along the z-axis. The 
measurement results were in good agreement with numerical calculations. 

The cross-correlation between a complicated pulse and the plane wave pulse 
is studied in previous chapter, Section 3.1.1. It is shown that the plane-wave 
pulse “freezes” the Bessel-X field, allowing to record the correlation function 
with time averaging detector. The correlation time of the field had to be sub 
10 fs to guarantee that the number of the interference fringes recorded is small 
enough to distinct the resulting pattern from trivial interference patterns and to 
resolve the X-branching of the field.  

 
 

4.2.2. Measurement of the superluminal group velocity  
in a gas chamber [32] 

 
The angular distribution of the plane wave constituents was generated by means 
of an axicon. The cone angle of the of the resulting pulse was rather large – 
24.2 º and the axicon material disperion was taken into account. (Hence the 
term pulse Bessel beam is used for the generated pulse.) 

Ultrashort femtosecond pulse of 70 fs duration, centered on 800 nm, was 
used to generate the pulse.  

By recording shadowgrams of argon ionization front, which moves at the 
group velocity of the pulse and leaves plasma track, which persists even after 
the pulse has left, the group velocity of (1.111 ± 0.012) c was recorded. This 
was in good agreement with theoretical prediction and frequency domain inter-
fereometry measurement.  
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4.2.3. Autocorrelation measurements  
of few-cycle Bessel-X pulses [34, 63, 91] 

 
Axially symmetric Bessel-X pulses and Bessel-like X-pulse arrays were ge-
nerated by means of concave axicon mirror and SiO2 microaxicon lenslet array. 
The cone angles were 0.1 º and ~0,27 º respectively. The microaxicon array was 
thoroughly studied in [63] was shown to have Gaussian profile. This only limits 
the field depth of the Bessel-X pulse propagation because only the region of the 
axicons where their profile can be approximated to cone can be utilized. 

Ti:sapphire laser and hollow fiber self-phase-modulation setup followed by 
chirp compensation system generated a sub 10 fs duration initial pulse, centered 
around 790 nm. In one hand the ultrashort pulse was necessary to reduce the 
number of interference fringes in the recorded pattern and on the other hand to 
allow recording of the second order autocorrelation of the Bessel-X pulse. 

First and second order autocorrelation functions of the Bessel-X (reflective 
axicon) and the Bessel-like X-pulse (microaxicons) pulse were measured. The 
patterns were recorded with CCD camera with imaging system. Thin, only 
100 μm thick, BBO crystal was used to obtain the second order autocorrelation 
images. Characteristic X-branching occurred on both autocorrelation maps and 
was in a good agreement with the theoretical predictions. 

 
 
4.2.4. Low-resolution spatiotemporal measurements of Bessel-X 

pulse with Shack-Hartmann detector [37] 
 

The angular distribution of the Bessel-X pulse was generated by means of a 
fused silica axicon, with apex angle 173.8 º. The cone angle of resulting pulse is 
so small that the dispersion arising from the axicon material can be neglected. 

The axicon was illuminated with ~30 fs duration femtosecond pulses centered 
to 790 nm and having 28 nm bandwidth (FWHM) from Ti:sapphire oscillator. 

A CCD camera was placed to the focal plane of the Shack-Hartmann 
detector, a lenslet array, to record the spatial phase derivative of the pulse, from 
which the field amplitude and the phase can be unambiguously retrieved. For 
spatiotemporal measurements a single FROG measurement must be taken in a 
space point where all frequency components are present. With several assump-
tions on the phase and propagation properties the spatiotemporal evolution and 
group velocity of the Bessel-X pulse were obtained. 

The use of Shack-Hartmann detector in combination with autocorrelation 
was first proposed in [92]. The method introduced in reference [37] was served 
as simple and economic measurement technique and demonstrated on Bessel-X 
pulse. The spatial resolution of the Shackled-FROG (an acronym for above 
described measurement technique where Hartmann-Shack sensor is used in 
combination with FROG measurement to retrieve both field’s amplitude and 
phase) is defined with the lenslet pitch and is in the order of tens of microns. 
Also, if the field has large bandwidth or strong spatial chirp, the frequency 
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dependent phase is to be resolved by using interference filters of directing the 
signal to imaging spectrometer after passing through the Shack-Hartmann 
sensor. One can claim also, that in case of the complicated pulses and single 
FROG measurement one will obtain temporal and spatial characterizations 
separately instead of the full spatiotemporal measurement.  

 
 

4.2.5. High-resolution spatiotemporal measurements  
of Bessel-X pulse with SEA TADPOLE [VI] 

 
The angular distribution of the Bessel-X pulse was generated by means of a fused 
silica axicon, with apex angle ~176 º and the cone angle θ = 0.92 º. The cone angle 
is so small that the dispersion arising from the axicon material can be neglected.  

The axicon was illuminated with 30 fs duration ultrashort pulses centered to 
800 nm and having 37 nm bandwidth (FWHM), originating from a Ti:sapphire 
oscillator. 

The spatiotempral profile E(x, z, t) of the axially symmetric Bessel-X pulses 
was measured with spatial-spectral interferometric device called SEA 
TADPOLE (See section 3.3.2). The temporal resolution of 17 fs was decreased 
to 4.6 fs by zero filling. The spatial resolution of ~5 μm was determined by the 
single-mode fiber tip size, but as the device measures complex field rather than 
the intensity, features with smaller dimensions can be resolved. 

From the high resolution “snapshots of flight” images of the Bessel-X pulse 
both the fine structure around the intense core and inherent X-branching are 
revealed, see Figure 10. In addition to demonstrating the invariant propagation 
of the wave field over 8 cm distance on z-axis, the group velocity of the pulse 
along the z axis was determined to be 1.00012 c—within 0.001% error of the 
expected value of 1.00013 c. 

 

 
 
Figure 10. Left, the measured field amplitude of the Bessel-X pulse at three different 
distances z after the axicon; right, the corresponding simulations. Intensity is indicated 
by the scale. We normalized each field to have a maximum of 1. The white bar is to 
emphasize the location of t=0. [VI] 
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 4.2.6. Discussion 
 

From the experiment descriptions one can recognize the amount of time and 
effort dedicated for measuring the Bessel-X pulse by number of workgroups 
over the last long dozen years. In all the experiments the parameters of optical 
field generation and detection devices are optimized to maximum performance 
and often the complicated interplay between different parameters required high 
experience and ingenious idea to achieve reliable results in the experiment. 

Out of all the experiments described above, the spatial and spatial-spectral 
interfeometric experiments, [29] and [VI], are somewhat complementary and 
comparable. In spatial interferometry experiment [29] a broadband optical 
white-noise-like signal was used to obtain short correlation time and by cross-
correlating the Bessel-X field with a plane wave field the impulse response of 
the optical system was measured. The later is mutatis mutandis of the field 
generated by transform-limited pulse with the spectrum of the white-noise-like 
input signal. In spatial-spectral interferometry experiment [VI] nearly transform 
limited 30 fs pulse was used and an unshaped portion of the input field served as 
a reference.  

One difference between the experiments was that in spatial-spectral inter-
ferometric measurement at fixed z position a field dependence E(ω), or its 
Fourier pair, temporal behavior E(t), was obtained. Scanning also lateral coordi-
nates yielded E(x, y, t). In spatial interferometry experiment with single mea-
surement spatial distribution E(x, y) was obtained. By scanning z-coordinate 
spatial dependence E(x, y, z) was recorded. For propagation-invariant fields the 
propagation coordinate z and time t are combined via dependence vgz – t, hence 
the E(x, y, z) and E(x, y, t) plots are equivalent and can be called “snapshots of 
flight”. For fields which do not propagate invariantly, the E(x, y, z) and E(x, y, t) 
representations are identical in a good agreement only if the plotting range of 
lateral coordinates x and y is small in respect to values of t and z. To obtain the 
electric field dependence E(x, y, t) in spatial interferometric experiments for non 
propagation-invariant field the time t, manifested in delay τ, ought to be scan-
ned with high resolution. And, respectively, to obtain the electric field depen-
dence E(x, y, z) in spatial-spectral interferometric experiments the coordinate z 
ought to be scanned with high resolution. 

The spatial interferometric technique to measure the cross-correlation 
between complicated field and plane wave field works best with ultrabroad-
band, i. e. short correlation time fields, where the number of interference fringes 
is minimal, or with nearly monochromatic fields, where the phase difference 
can be found from relative fringe replacement and the number of the fringes 
does not matter. The spatial-spectral interferometry works best well with ultra-
short pulses ranging from several picoseonds up to tens of femtoseconds. For 
shorter or longer pulses it can be challenging to achieve simultaneously neces-
sary spectral bandwidth and resolution.  
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4.3. Proof-of-the-principle experiment  
on focus wave mode [33] 

 
Focus wave mode (FWM) is “the original” localized wave introduced by 
Brittingham [4]. It propagates luminally in vacuum and linear media and the 
support of the spectrum in the momentum space is a parabola. Inherently the 
phase and group velocities of the pulse are not equal, thus the FWM can be 
considered as axially symmetric sum of tilted pulses of constant group velocity.  

The FWM has been observed in only one experiment [33], which was 
preceded by investigation on generation of plane wave distribution, which could 
be approximate that of the parabolic support of the spectrum in the spectral 
band of the light source [93], and derivation of finite energy FWM obtained by 
applying finite aperture [94]. 

At first it was demonstrated that by combining the dispersion of a plano-
concave axicon and diffraction grating and applying it to a light cone with apex 
angle θ0, allows one to approximate the parabolic support of the spectrum, in 
the range from 600 nm up to 1000 nm. Due to technical difficulties in manu-
facturing axially symmetric optical elements, in experiment the 2-dimensional 
FWM was generated instead of axially symmetric case. 

Similar to spatial interferometric Bessel-X experiment [29], the wave field 
was generated from spatially filtered optical white noise of superhigh pressure 
Xe-arc lamp. This yielded a field with spectral band ranging from 600 nm up to 
1000 nm with central wavelength of 800 nm and correlation time of ~ 6 fs.  

The FWM was measured in interferometric cross-correlation technique, 
which is insensitive to the phase of the initial field and yields the phase diffe-
rence introduced by the optical system. (See Chapter 3.)  

Two measurements were conducted. In first of them the time delay τ with 
0.43 fs step was scanned in three different z positions: z=0 cm, 25 cm and 
50 cm. Electric field profiles E(x, t) corresponding to the transform limited pulse 
with the spectral distribution of the initial field were retrieved. The mea-
surement confirmed invariant propagation of the FWM over 50 cm and revealed 
characteristic X-branching and tilted phase surfaces. 

In the second measurement the field was scanned over z axis with 3.1 mm 
step at fixed delay τ value. As the FWM propagates luminally, the envelope of 
the correlation pattern was position-invariant and the off-axis z-dependent 
pattern was a manifestation of the fact that the phase and the group velocities 
are not equal. The experimental results were in a good agreement with the 
theory. 
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4.4. Experiments on accelerating and  
decelerating Bessel-type waves 

 
Accelerating or decelerating pulses arising from defects in axially symmetric 
optical elements or circular apertures (for example a beam clipping by the lens 
holder) are far more common in experimental situation than expected but they 
are usually considered as unwanted effect, subject to elimination in most experi-
ments. In this research novel experimental methods have allowed us to observe 
the superluminally propagating pulses in time domain and classify them as co-
unterparts of the localized waves. (See also Section 2.3) 
 
 

4.4.1. Generation of accelerating and decelerating  
Bessel pulses by axicon and lens 

 
In experiment [VII] accelerating and decelerating Bessel pulses were generated 
by combining positive and negative lens (with focal lengths of 153 mm and –
152 mm, respectively) and a fused silica axicon (apex angle of 176 º and hence 
cone angle θ=0.92 º). The initial pulses originated from Ti:sapphire oscillator 
generating nearly transform limited pulses with 33 nm bandwidth, centered to 
805 nm.  
 

 
 
Figure 11. Comparison of the measured and calculated spatiotemporal profiles of the 
electric field amplitude of an accelerating Bessel pulse at three positions along the 
propagation axis (z). The color bar indicates the amplitude scale normalized separately 
for each plot. The white bar emphasizes t = 0, which is where the pulse would be 
located if it were propagating at c. [VII] 
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The accelerating and decelerating pulse evolution was recorded with ~5 μm 
spatial and ~5 fs temporal resolution using SEA TADPOLE (see also experi-
ment description in Section 4.2.5 and theoretical overview on spatial-spectral 
interferometeric technique in Sections 3.3.1 and 3.3.2).  

The axisymmetric field of accelerating Bessel pulses was scanned in one 
radial section on x axis, y = 0. The spatiotemporal field E(x, t) was retrieved at 
different positions on z axis. From the data it was possible to determine and 
verify with theoretical calculations the following properties of the field: 
• Spatiotemporal profiles of the field at different z values (see Figure 11); 
• The temporal shift of the accelerating and decelerating pulse compared to the 

reference pulse traveling at speed of light c; 
• The pulse group velocity from the interference fringe spacing. The accele-

ration from 1.0002 c up to 1.0009 c over 4 cm of propagation and dece-
leration from 1.00007 c down to 1.00003 c over 12 cm of propagation were 
recorded;  

• The compressing and stretching of the Bessel zone from 8 cm down to 5 cm 
in the case of accelerating pulse and up to 10 meters in the case of ac-
celerating pulse; 

• The decrease of the central maximum transversal dimensions of the 
accelerating pulse by the factor of 1.6 over 4 cm propagation and increase of 
the central maximum transversal dimensions of the decelerating pulse over 
10 cm of propagation by the factor of 1.4. 

 
 

4.4.2. Formation of decelerating Bessel pulse in diffraction 
 

In the case of ultrashort pulses, which are only few micrometers “thick”, the 
diffraction phenomena become spatiotemporal effect, which can be intuitively 
understood in the context of the boundary wave theory, first proposed by 
Young. According to his idea the diffraction pattern arises from the interference 
between a geometrical wave, “cut out” from the incident pulse by the aperture 
and propagating in accordance of the geometrical optics, and the boundary wave 
originating from the edge of the diffracting aperture. 

Proper mathematical formulation to the boundary wave theory was deve-
loped by Maggy, Rubinowicz, Miyamoto and Wolf [95, 96, 97] and was shown 
to be equivalent to the Fresnel-Kirchhoff theory for the case of plane or 
spherical incident waves. In addition, the boundary wave approach presents the 
diffraction as a single contour integral along the diffracting boundary instead of 
a two-dimensional integration in the Fresnel-Kirchhoff theory. 

It is shown theoretically [40] and experimentally [41, 98, 99, VIII–XI] that if 
the ultrashort plane wave or spherical pulse diffracts off the circular aperture, 
disk or slit, the on-axis radial distribution of boundary wave resembles that of 
the Bessel pulse and propagates superluminally in decelerating/ accelerating 
manner. The boundary wave pulse is known as the Arago-Poisson spot in 
monochromatic approach.  
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In Ref. [98] the formation of superluminal, decelerating phase front with 
continuous wave illumination was detected in both modified Young double slit 
experiment and in diffraction of a monochromatic field off a sphere. In the later 
a hole was drilled in the center of the sphere and the portion of the beam pro-
pagating thorough the hole served as a reference field, which intensity was 
modulated by the diffracted field. The intensity modulations were measured and 
the results were in good agreement with the theoretical predictions. Super-
luminal phase velocity behind an annular disk under continuous wave illumi-
nation has been observed also in [99]. 

A decelerating Bessel pulse was first observed in [41], where divergent 
spherical 20 fs duration ultrashort pulse was diffracted off a circular aperture. 
The on axis superluminal decelerating boundary wave pulse caught up the 
luminal geometrical pulse and caused modulations in the spectrum. Both axial 
intensity profile and the spectral modulations were measured and the existence 
of the decelerating pulse was confirmed. 

 

 
Figure 12. Formation and evolution of the diffracted field behind a circular hole 4 mm 
in diameter. The boundary waves interfere with each other and with the directly trans-
mitted pulse, but the interference maximum on the axis (actually a temporally resolved 
spot of Arago) lags behind the direct pulse, and eventually catches up with it. [VIII] 

 
 

Spatiotemporal measurements of electric field of 33 fs duration ultrashort pulse 
diffracting off an annular slit, disk and aperture were measured with high, ~5 μm 
spatial and ~5 fs temporal resolution using spatial-spectral interferometric 
technique SEA TADPOLE [VIII–XI]. Diffraction of an ultrashort pulse off a 
circular aperture is depicted on the left on Figure 12. The numeric calculations, 
based on boundary wave approach, show good agreement with the theory. 
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4.5. Conclusion  
 
Existence of the localized waves and their peculiar properties like invariant 
propagation of the intensity distribution and superluminal group velocity have 
been explicitly demonstrated in numerous experiments. So far, the spatial-spect-
ral interferometry combined with the FROG measurements has proven most 
comprehensive for registering full spatiotemporal profile of the wave fields with 
high spatial and spectral resolution. Although, demonstrating different pro-
perties of the wave fields might require different approach and measurement 
technique. 
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SUMMARY 
 
This thesis belongs to the field of physical optics and gives an overview of the 
principles of theoretical derivation; optical synthesis and experimental measure-
ment of optical wave fields called localized waves and accelerating and de-
celerating Bessel-type waves. These ultrashort localized waves have a broad 
spectrum, yet their energy is confined in an intense and spatiotemporally tightly 
localized peak and the intensity distribution propagates without any change or 
in strongly “subdiffractive” manner.  

 
In the scope of this thesis: 
• Superluminally propagating localized wave called Focused X Wave and its 

finite-energy modifications have been studied and their experimental imple-
mentation has been discussed; 

• An optical setup for generating superluminally propagating localized waves 
with hyperbolic support of the spectrum has been proposed and thoroughly 
analyzed; 

• The performance of spatial, spectral and spatial-spectral interferometry has 
been studied under illumination with spatially coherent white-noise-like 
signals. It was shown that all three methods allow for the retrieval of the im-
pulse response of the optical system and for the characterization of the 
optical systems capability to generate complicated optical wave fields. In 
case the reference field is an ultrashort pulse whose spectral phase and 
amplitude are known, interferometric techniques allow for the full spatio-
temporal measurement of the optical localized waves; 

• Superluminally propagating localized waves have been generated in disper-
sive media by means of χ(3) nonlinear process. The strong pump pulse 
reshaped the weak probe into a localized wave via cross phase modulation; 

• The full spatiotemporal profile of the superluminally propagating localized 
wave called Bessel-X pulse have been experimentally measured with high 
spatial and temporal resolution using a device called SEA TADPOLE, which 
is based on a spatial-spectral interferometric technique. The group velocity 
of the pulse was determined with high precision; 

• Superluminally propagating accelerating and decelerating Bessel pulses, a 
somewhat distorted modifications of Bessel-X pulses, were generated by 
propagating an input pulse through an optical system consisting of a lens and 
an axicon. The resulting spatiotemporal field was fully measured with the 
SEA TADPOLE; 

• Formation of superluminally propagating and decelerating Bessel pulses in 
the diffraction process was explicitly demonstrated by propagating ultrashort 
pulses through circular apertures, disks and slits. The resulting fields were 
measured with high spatial and temporal resolution using SEA TADPOLE. 
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SUMMARY IN ESTONIAN 
 

Superluminaalselt levivad lokaliseeritud  
valgusimpulsid 

 
Käesolev doktoritöö tegeleb füüsikalise optika valdkonda kuuluva lainelevi te-
maatikaga. Töös uuritakse laiaribalisi optilisi lainevälju – lokaliseeritud laineid – 
millel moodustub terava energiamaksimum mõõtmetega lainepikkuse suurus-
järgus. Kui enamlevinud fokuseeritud laineväljad, näiteks Gaussi impulss, säilita-
vad levides sellist lokaliseeritust väga lühikeste vahemaade kestel, võivad loka-
liseeritud lained levida teoreetilisel piiril lausa lõpmata pikki vahemaasid ilma 
kuju muutmata ning on seetõttu perspektiivikad paljude rakenduste jaoks.  

Käesolevas töös on esitatud ülevaade lokaliseeritud lainete teoreetilisest tule-
tamisest (Peatükk 2), eksperimentaalse genereerimise ning mõõtmise printsii-
pidest (Peatükid 2 ja 3) ja nende printsiipide reaalsetest rakendustest (Peatükk 
4). Dissertandi originaalpanus (vt lk 8) on publitseeritud artiklites [I–XIII], mil-
lest esimesed 11 kuuluvad ETIS’e kategooriasse 1.1, ja seisneb lühidalt järg-
nevas: 
• Ülevalgusekiirusega (superluminaalselt) leviva lokaliseeritud laine, mida 

kutsutakse fokuseeritud X laineks, ning tema lõpliku koguenergiaga modifi-
katsioonide tuletamine, teoreetiline uurimine ning optilise genereerimise 
võimalikkuse näitamine [I, II]. 

• Superluminaalselt levivate lokaliseeritud laineväljade, mille spektri kandja 
on hüperboolikujuline, optilise genereerimise printsiibi väljatöötamine ja 
uurimine [III, IV, XII]. 

• Superluminaalselt leviva lokaliseeritud lainevälja genereerimine dispergee-
rivas keskkonnas läbi mittelineaarse faaside ristmoduleerimise. Intensiivne 
“mittedifrageeruv” pumpav impulss indutseeris keskkonna murdumisnäitaja 
muutuse, mis omakorda tõi kaasa ajaliselt sünkroniseeritud prooviimpulsi 
muundumise leviinvariantseks laineväljaks [V]. 

• Ruumilise, spektraalse ja ruumilis-spektraalse interferomeetria kui elektri-
välja registreerimise ning rekonstrueerimise meetodite uurimine ruumiliselt 
koherentsete, ent spektraalselt mittekorreleeritud laineväljade, so valge-müra 
signaali, korral. Õnnestus demonstreerida, et kõik nimetatud inter-
feromeetrilised meetodid võimaldavad nimetatud tingimustel mõõta optilise 
süsteemi impulsskostet ning iseloomustada optilise süsteemi suutlikkust 
moodustada keeruka ruumilise struktuuriga optilist lainevälja ülilühikesest 
impulsist (Peatükk 30). Kasutades võrdlusimpulsina ülilühikest femto-
sekundimpulssi, mille välja amplituud ja faas on teada, on võimalik läbi viia 
lokaliseeritud laineväljade kõrgeresolutsioonilisi ajalis-ruumilisi mõõtmisi 
([VI–XI, XIII]). 

• Lokaliseeritud lainevälja, mida kutsutakse Bessel-X impulsiks, mõõtmine 
kõrge ajalise ja ruumilise lahutusega, mis võimaldasid muuhulgas suure täp-
susega määrata lainevälja superluminaalse rühmakiiruse. Mõõtmised viidi 
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läbi ruumilis-spektraalsel interferomeetrial põhineva SEA TADPOLE sead-
mega. [VI, XIII] 

• Superluminaalselt, kiirenevalt ja aeglustuvalt levivate Besseli impulsside, 
mis on Bessel-X impulsi modifikatsioonid, optiline moodustamine läätsest ja 
aksikonist koosneva optilise süsteemi abil ning nimetatud laineväljade kõrge 
lahutusega ajalis-ruumiline mõõtmine ja iseäralike parameetrite määramine 
eksperimendis SEA TADPOLE’ga [VII]. 

• Ülilühikeste impulsside difrageerumisel ümmarguselt avalt, kettalt ja pilult 
moodustuva lainevälja mõõtmine kõrge ajalise ja ruumilise lahutusega. Ni-
metatud ajalis-ruumilised mõõtmised SEA TADPOLE’ga kinnitavad ja või-
maldavad demonstreerida superluminaalselt, aeglustuvalt leviva Besseli im-
pulsi, mida teatakse Arago-Poissoni täpina, moodustumist kirjeldatud 
difraktsiooni protsesside käigus. [VIII–XI] 
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Abstract
In contradistinction to a widespread belief that the spatial localization of photons is restricted by a power-law falloff

of the photon energy density, Bialynicki-Birula [Phys. Rev. Lett. 80 (1998) 5247] has proved that any stronger – up to an

almost exponential – falloff is allowed. We are showing that for certain specifically designed cylindrical one-photon

states the localization is even better in lateral directions. If the photon state is built from the so-called focus wave mode,

the falloff in the waist cross-section plane turns out to be quadratically exponential (Gaussian) and such strong local-

ization persists in the course of propagation.
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Whilst quantum electrodynamics (QED) under-

went an impressive development and reached its

maturity in the middle of the last century, one of
its basic concepts – the photon wave function in free

space – was deprived of such fortune. Although the

presented in textbooks (e.g., [3,4]) may be summed

up as follows: (i) no position operator exists for the

photon, (ii) while the position wave function may
be localized near a space-time point, the measurable

quantities like the electromagnetic field vectors, en-
photon wave function in coordinate representation

and P

nhere

the ce

anati

ergy, and the photodetection probability remain

All rig

8; f
was introduced already in 1930 by Landau

erls [1] the concept was found to suffer from i

difficulties that were not overcome during

tury (see review [2]). The common expl
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nt

n-
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spread out due to their non-local relation with the

position wave function. However, just before the

turn of the century both of these widely espoused no-

tions were disproved [5,6] and in the new century a

fresh interest in the photon localization problem
seems to have been awakened (see, e.g., [7–9]), meet-

ing the needs of developments in near-field optics,

cavity QED, and quantum computing.

hts reserved.

ax:

mailto:Peeter.Saari@ut.ee 


temen

rongl

wav

ticall

orrec
ly con

on on

local

of th

tection

and i

s don

iction
e posi

e of

hoton

fically

e cas

hoton

allow

y such
wav

slowe

ythin

nstant

m say

ntain

unica
ction

estric

d even

o con

ith th

ction

stron

e. Th
chnol

tackl

use o

stud

ssical

e sim

Peierl
w th

locali

falloff

tics Co
Bialynicki-Birula [6] writes that the sta

‘‘even when the position wave function is st

concentrated near the origin, the energy

function is spread out over space asympto

like r�7/2’’ (citation from [4], p. 638) is inc
and that both wave functions may be strong

centrated near the origin. He demonstrates,

hand, that photons can be essentially better

ized in space – with an exponential falloff

photon energy density and the photode

rates. On the other hand, he establishes –

is even somewhat startling that nobody ha

it earlier – that certain localization restr
arise out of a mathematical property of th

tive frequency solutions which therefore ar

universal character and apply not only to p

states but hold for all particles. More speci

it has been proven in the Letter [6] for th

of spherically imploding-exploding one-p

wavepacket that the Paley–Wiener theorem

even at instants of maximal localization onl
asymptotic decrease of the modulus of the

function with the radial distance r that is

than the linear exponential one, i.e., an

slower than �exp(�Ar), where A is a co

The latter is what the Paley–Wiener theore

about a function whose Fourier spectrum co

no negative frequencies.

The purpose of the present short comm
tion is to indicate that one-photon wave fun

of a specific type can break the localization r

tion and exhibit the linear exponential an

faster falloff with the distance. Yet, there is n

tradiction either with the result of [6] or w

Paley–Wiener theorem, since the wave fun

are cylindrical and exhibit an exceptionally

localization in two dimensions out of thre
paper is interdisciplinary and involves a ‘‘te

ogy transfer’’ in the sense that in order to

the problem belonging to QED, we make

certain very recent results obtained in the

of the so-called localized acoustical and (cla

electromagnetic waves.

As an introduction, we consider briefly th

plest case of a one-dimensional Landau–
wave function in order to indicate ho

Paley–Wiener theorem restricts the spatial

zation of a photon. Then we study the radial
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for three different cylindrical wave functions, using

exactly the same formalism that has been pre-

sented in [6]. Finally, the discussion of our results

allows us to refine the analysis given in [6].

Let us consider a one-photon (1 ph) state that
corresponds to a plane-wave pulse propagating

unidirectionally, say, along the axis z, being polar-

ized along a lateral axis (say, the x-axis)

j1 phi ¼
Z 1

0

dkzf ðkzÞaþðkzÞjvaci; ð1Þ

where a+(kz) is the creation operator of a photon
and f(kz) is a properly normalized photon wave

function in the momentum representation. Then

the inverse Fourier transform (but including posi-

tive frequencies only!)

Uðz; tÞ ¼ 1

2p

Z 1

0

dkzf ðkzÞeiðkzz�xtÞ ð2Þ

¼ 1

2p

Z 1

0

dk f ðkÞeikðz�ctÞ ð3Þ

represents the corresponding position space wave

function of the photon in state |1 phæ (see, e.g.,

[4], p. 636). The modulus squared |U(z,t)|2 gives

the photon probability density, i.e., the degree of

localization along the axis z (in the given case in

the directions x and y any localization is absent).
If f(k) differs from zero within a wide frequency

band, the probability |U(z,t)|2 may be strongly

localized around a point z0 moving along the axis

z with the speed of light c. However, since U(z,t),

due to the absence of negative frequencies in the

integral of Eq. (2), is nothing but a complex

analytic signal, according to the Paley–Wiener the-

orem (or criterion) the asymptotic decrease of
|U(z,t)|2 with the distance r = |z � z0| has to be

weaker than �exp(�Ar), where A is a constant.

All the more excluded are any finite-support

functions in the role of U(z,t). To conclude the

introduction, let us notice that if the counterprop-

agating (with kz < 0) Fourier components are in-

volved in Eq. (2), the Paley–Wiener theorem does

not apply at the instant t = 0.
Following [6], we shall study the photon locali-

zation by examining the asymptotic behavior of

the positive frequency part of the Riemann–Silber-

stein vector F(r,t) (called the energy wave function)

which directly determines the energy density of a

mmunications 246 (2005) 445–450
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Fig. 1. Curves of the radial dependence in a decimal logarith-

mic scale. Curve A is for |Z(q,0,s = 0)|; B, |Z(q,0,s = 2.5l)|; C is

the same as B but with W taken from Eq. (9); D,

jo=osZðq; 0; s ¼ 0Þj; E is a reference curve exp(�q/l). The

curves A–C have been normalized so that |Z(0,0,0)| = 1. The

values of the remaining free parameters are D = 0.1l and

b = 0.8.

ptics C
one-photon state and is conveniently ex

through a ‘‘superpotential’’ Z(r,s)

Fðr; tÞ ¼ r � i
o

os
Zðr; sÞ þ r � Zðr; sÞ

� �
;

where s ” ct. The vector field Z(r,s) is noth

an analytic signal version of the Hertz po

i.e., Z(r,s) = mW(r,s), where m is a constant
that includes the proper normalization fact

W(r,s) is any solution of the scalar wave eq

which is taken in the form of the analytic si

should be stressed that Z(r,s) is a comp

Hertz potential and it comprises the posit

quencies only, i. e., the complexification

sponds to the very nature of the number st

quantized EM field and is not involved
for the sake of convenience as in the c

electrodynamics [2].

As the first example leading to a stronge

ization that one might expect from the

Wiener theorem, let us consider the photo

where m is directed along the axis z (any

orientation gives similar results) and W(r

superposition of cylindrically symmetric
functions J0 as a wavepacket with the expo

spectrum and a specific dispersion law for th

wavenumber kz(x) = constant = k0

Wðq; z; sÞ ¼
Z 1

jk0j
dk J 0 kqq

� �
e�kDe�iðks�k0zÞ;

where the radial coordinate q has been intr

and kq ¼ ðk2 � k2
0Þ

1=2
is the lateral compon

the wave vector of the monochromatic plan

constituents represented with the weight fu

e�kD whose width is D�1. The integral can b

with the help of a Laplace transform table

obtain

Zðq; z; sÞ ¼ m

exp �jk0j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ Dþ isð Þ2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ Dþ isð Þ2

q e

Eq. (6) describes a simple cylindrical pulse
lated harmonically in the axial direction an

ally converging (when s < 0) to the ax

thereafter (when s > 0) expanding from

intensity distribution resembling an infinite
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tube coaxial with the z-axis and with a time-depen-

dent diameter (see Fig. 6. in [10]). It follows from

Eqs. (6) and (4) that

jZðq!1; z; s ¼ 0Þj � q�1 expð�q=lÞ; ð7Þ
jFðq!1; z; s ¼ 0Þj2 � q�2 þ Oðq�3Þ

� 	
� expð�2q=lÞ; ð8Þ

where l ” |k0|�1 is the characteristic length (or

length unit). Thus, while the photon is delocalized

in the axial direction, its energy density falloff in

the lateral directions is exactly the linear exponen-

tial one at all times the conditions s� q� D are

fulfilled, see Fig. 1. The time derivative as well as
the spatial derivatives contain the same exponen-

tial factor, ensuring the exponential falloff of the

Riemann–Silberstein vector in Eq. (8). Hence, a

one-photon field given by Eq. (6) serves as the first

and simplest example where the localization in two

transversal dimensions is governed by different

rules than localization in three dimensions accord-

ing to [6].
The next example is readily available via the

Lorentz transformation of the wave function given

by Eq. (5) along the axis z, which gives another

possible solution of the scalar wave equation.

0 3 6 9 12 15

A

ρ/l

its
 10

-1

10
1
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The result is a new independent solution but i

also be considered as the wave given by Eq

and (6), which is observed in another inertial r

ence frame [10]

Wðq; z; sÞ ¼
exp �jk0j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ D� ic bz� sð Þð Þ

q�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ D� ic bz� sð Þð Þ2

q

� exp ick0 z� bsð Þð Þ;

where the relativistic factors c ” (1 � b2)�1/2

b ” v/c < 1 have been introduced, v being a

parameter – the relative speed between

frames.
In the waist region (see Fig. 2) this wave

tion has the same radial falloff as was give

Eq. (7), see curve ‘‘C’’ in Fig. 1, while the

localization follows a power law. The stro

localized waist and the whole amplitude dist

tion move rigidly and without any spread a

the axis z with a superluminal speed c/b.

wave with intriguing properties, named th
cused X wave (FXW) [11], belongs to the so-c

propagation-invariant localized solutions to

wave equation – a research field emerged in
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Fig. 2. The superluminal FXW given by Eq. (9). Shown are the

dependences (a) of the modulus and (b) of the real part of the

wavefunction on the longitudinal (z, increasing to the right) and

a transverse (say, x) coordinates. The distance between the grid

lines on the basal plane (x,z) is 22k, where k = 2p|k0|�1, k0 being

negative. The values of the remaining free parameters are D =

30k and b = 0.995 or c = 10.
1980s (see reviews [11–15]) and recently reached

its first experimental results [16–21]. It should be

noted here that there is nothing unphysical in the

superluminality of the localized waves – which is,

moreover, an experimentally verified fact – since
a superluminal group velocity does not mean

[13–16] as if energy or information could be trans-

mitted faster than c (for a thorough discussion of

this point see [22–24] and review [25]). Hence, in

its waist (cross-sectional) plane a one-photon field

given by the FXW possesses the same strong local-

ization at any time as the previously considered

cylindrical field does in any transversal plane at
the instant t = 0.

By making use of the historically first represen-

tative of localized waves – the so-called focus wave

mode (FWM) [26–28] (see also [10] and reviews

[11,15] and references therein) one readily obtains

an example of the field that exhibits even much

stronger than exponential localization. FWM is gi-

ven by the scalar function

Wðq; z; tÞ ¼
exp � q2

2l a�i z�sð Þð Þ

h i
a� i z� sð Þ exp � i zþ sð Þ

2l

� �
;

ð10Þ

where again l is a wavelength-type characteristic

length and the constant a controls the axial local-

ization length. Since the FXW in the limit b! 1

becomes a FWM [10], Fig. 2 gives also an idea
how a FWM looks like. Multiplying Eq. (10) by

m to build the vector Z(q,z,s) and inserting the lat-

ter into Eq. (4) we obtain that in this example the

photon localization in the waist plane is quadrati-

cally exponential (Gaussian falloff):

jZðq!1; z ¼ sÞj � expð�q2=2laÞ; ð11Þ
jFðq!1; z ¼ sÞj2 � q6 expð�q2=laÞ: ð12Þ

In Eq. (12) only the highest-power term with

respect to q is shown.

To start discussing our results let us ask first

whether the wave functions considered are some-

thing extraordinary. The answer is: yes, they are

indeed, since the browsing of various integral
transform tables reveals rather few examples where

both the real and imaginary part of a wave function
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and of its time derivative have simultaneo

exponential or stronger localization in c

tion with other requisite properties. Still,

of proper wave functions with an extrao

strong localization is not poor – in additio
optically feasible version [29] of the FWM

new interesting solutions can be derived [30

could be argued that the well-known G

beam pulse has the same quadratically expo

radial profile in the waist region. However

ing to the family of the Gaussian beam

Gauss–Laguerre and Gauss–Hermite beam

is irrelevant here. The reason is that all thes
are solutions of the wave equation only

paraxial approximation not valid in the

any significant localization of wide-band

superpositions of the beams, whereas in fa

an exact solution corresponding to a lowe

(axisymmetric) Gaussian beam has a weak

law radial falloff in the waist region [31,32

The next possible objection to the phys
nificance of the results obtained might ari

the infinite total energy [11] of the wave

by Eqs. (6), (9), and (10). However, at any

location the wave function is square in

with respect to time, thus the condition of

ley–Wiener theorem has been satisfied. Mo

physically feasible finite-energy versions o

ized waves generally exhibit even better l
tion properties, although not persisten

finite-energy version of the FXW, called th

ified focused X wave (MFXW [11]), has th

exponential factor as in Eq. (9), which is mu

by a fraction that allows to force the axial l

tion to follow an arbitrarily strong power-l

latter circumstance indicates that the strong

localization of the fields considered do
appear somehow at the expense of their axi

ization. As a matter of fact, energy-norma

of a wave function depends on how many p

it describes. It is easy to see that our derivat

results hold for any number state with N P
also for incoherent mixtures of such states

is important for experimental studies). H

not of interest to consider coherent stat
generally for states of electromagnetic fie

have classical counterparts one can escap

ready in the case of uniform spherical loca

P. Saari et al. / O
an

c-

ist

ry

an
us

, it

an

ial

rt-

he

c.)

s
he

of

d)

g.,

er

r-

ig-
m

en

ial

le

a-

er,

al-

a-
A

d-

e

ed

a-

he

al

ot
al-

on

ns

nd

nd

ch

is

ce
at

al-

on

– the constraints imposed by the Paley–Wiener

theorem [6].

The final crucial question is, are our results not

in contradiction with those of [6]? The answer is

no, since in the case of the cylindrical waves the ra-
dial distance and temporal frequency are not di-

rectly Fourier-conjugated variables. In order to

clarify this point, let us first take a closer look at

the proof of the Paley–Wiener limit for three-

dimensional isotropic localization. In [6] Eq. (24)

for Z(r,s) contains a superposition of spherically

symmetric standing waves

Z 1

0

dk hðlkÞ sin kr
r

e�iks / ir�1 g
sþ r

l


 �
� g

s� r
l


 �h i
;

ð13Þ

where h(lk) is the spectrum and g(.) is its Fourier

image. The sine in Eq. (13) results from the

imploding and exploding spherical wave

constituents of the standing wave, like an odd

one-dimensional standing wave arises from

counter- propagating waves. While the asymptotic

behavior of the function g(.) and hence of the func-

tion Z(r,s) for large values of the radial distance r

are generally restricted by the Paley–Wiener theo-

rem, strictly at the instant s = 0 of maximal local-

ization the integral is nothing but the sine

transform for which the theorem does not apply.

Indeed, the sine transform tables give examples

of the resultant functions with arbitrarily abrupt

falloff. However, it does not mean as if the locali-

zation restriction was lifted at the instant s = 0.
The explanation is that according to Eq. (4) the en-

ergy wave function involves also the time deriva-

tive of Z(r,s), but the sine transforms of two

functions h(lk) and h(lk)k cannot simultaneously

possess arbitrarily abrupt falloffs. In contrast, the

time derivative of the wave function given by Eq.

(6) or Eq. (5) has the same strong exponential fall-

off as the function itself, which persists for some
(not too long) time, see Fig. 1. By comparing

Eqs. (5) and (13) we notice that while in Eq. (13)

– as well as in its one-dimensional equivalent –

the argument of the sine function is the product

of the distance with the Fourier variable, in Eq.

(5) the argument of the Bessel function is the prod-

uct of the radial distance q with the radial wave-
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number kq the latter depending on the Fourie

iable through the square-root expression wi

constant parameter k0 – the lower limit of th

gration. As it follows also from Eqs. (7) and

condition k0 6¼ 0 is crucial for obtaining the
nential falloff. Hence, in the case of the cylin

waves considered by us, the apparent violat

the rules set by the Paley–Wiener theorem r

from the specific complicated relation be

the radial distance and the Fourier variable

In conclusion, we have shown that for c

cylindrical N-photon states (N = 1,2, . . .) the

ization in lateral directions breaks the limit
lished in [6] for the case of uniform spherica

functions. These results hold not only for ph

but for number states of any particles.
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Abstract
Simple practical model approximations to the so-called focused X wave—a
pulsed wave propagating superluminally in vacuum or in a linear medium,
which attracts attention due to its spread-free strong spatial
localization—are derived. The experimental feasibility of the model waves
in the optical domain is discussed and their radial decay is analysed.

Keywords: ultrashort electromagnetic pulses, localized waves, X wave,
focus wave mode, Bessel beam

1. Introduction

As is well known today, the scalar free-space wave equation has
a class of solutions that seemingly defy the laws of diffraction
and can preserve very sharp spatial and temporal localization
in the course of propagation over distances that many times
exceed the Rayleigh range. During the past two decades
the physical nature, mathematical apparatus and experimental
generation of such localized wave (LW) solutions have been
investigated in numerous papers (see [1, 2] for a general
overview of the topic). In particular, it has been shown that
the general sub-class of LW solutions of the scalar free-space
wave equation can be deduced by applying certain physical
conditions to the corresponding general solution. In one
approach the general expression for the LWs is derived by
means of applying the condition of wavelength-independent
group velocity along the optical axis over the entire spectrum of
wavefield [3–5]. The bidirectional plane wave decomposition,
introduced by Besieris et al [6], is based on a representation of
the solutions of the scalar wave equations into the products
of forward and backward travelling plane wave solutions.
In another approach the general classification scheme of the
LW solutions into luminal, super-and subluminal ones can
be derived in terms of the special theory of relativity [1, 7].
Also, during the past few years the experimental generation

3 Author to whom any correspondence should be addressed.

of LWs has been put in solid terms, so that the experimental
realizability of every LW can be estimated by means of
physically transparent conditions [2, 8, 9].

Though the general integral representations can be
used to express the wavefunctions, it is advantageous to
have explicit closed-form expressions in hand—not only for
analytical studies of the spatio-temporal amplitude and phase
distributions, but also since such expressions drastically reduce
computing time for simulations of temporal evolution and
propagation of the LWs, especially if long-range behaviour
of the wavefields is under consideration. Moreover, in many
practical cases when a detailed simulation of finite-energy
approximations of the LWs is required, numerical calculations
engender a very serious problem with the power of modern
personal computers. However, no such closed-form expression
is useful per se; it should also model some kind of practical
situation, for example, the propagation of an experimentally
feasible LW.

This paper deals with practical models of the so-
called focused X waves (FXW) [1, 10, 11]—superluminally
propagating LWs that due to their strong spatial localization not
only are promising for various applications but also appear to
be rather intriguing for mathematical and quantum optics [12].

We start by deriving a closed-form expression for the ideal
FXW, which like an ideal plane wave has an infinite energy.
We next derive and study two finite-energy modifications of
the FXW and then discuss their properties.

1464-4258/06/020118+05$30.00 © 2006 IOP Publishing Ltd Printed in the UK 118
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Modifications of focused X wave

2. The model

2.1. Propagation-invariant focused X wave

The comprehension of the physical nature of the FXW is
enhanced if its wavefunction is derived from a spectral picture.
It is convenient to start with a general expression of an
axisymmetric wavefield as a superposition of the zeroth order
Bessel beams propagating along the z axis (see, e.g., [7]):

� (ρ, z, t) =
∫ ∞

−∞
dkz

∫ ∞

|kz |
dk � (kz, k)

× J0

(
ρ

√
k2 − k2

z

)
exp(ikz z − ikct), (1)

where ρ is the radial coordinate, k = ω/c, the spectral
distribution has been denoted by � (kz, k) and kz is the
longitudinal wavenumber. One obtains the FXW by taking
a specific singular spectrum [1, 7],

�FXW (kz, k) = constant × δ[γ (kz − βk) − kz0]e−γ (k−βkz )�,

(2)
which depends, apart from the strength constant, on three
parameters: � > 0 determines the spectrum (�−1 is the 1/e-
width of the spectrum) and, consequently, spatial extension
of the peak of the wavefield, kz0 expresses a certain cut-off
value for longitudinal wavenumbers of the plane waves that
constitute the FXW andγ = (

1 − β2
)−1/2

andβ = v/c, β < 1
are the well known relativistic factors formed from a velocity-
type parameter v. Integration over k and kz in equation (1)
with the help of Laplace transform tables (e.g. [13]) yields the
following closed-form wavefunction of the FXW:

�FXW (ρ, z, t) = const × exp[iγ kz0 (z − βct)]

× exp
(−|kz0|

√
ρ2 + [� − iγ (βz − ct)]2

)
√

ρ2 + [� − iγ (βz − ct)]2
. (3)

As the FXW moves with a superluminal velocity vsl (which is
also a constant group velocity in the wavepacket [2, 3, 7]), it
is convenient to substitute the parameter v with this velocity
vsl = c2/v and, correspondingly, to use the superluminal
counterpart of the relativistic factor γsl = (

β−2 − 1
)−1/2

[1, 7].
In these designations it becomes obvious that the intensity
profile of the wave moves along the z axis without any change,
since the variables z and t enter the amplitude factor only
through the combination z − vslt :

�FXW (ρ, z, t) = exp(−|kz0|(
√

ρ2 + [� − iγsl(z − vslt)]2))√
ρ2 + [� − iγsl (z − vslt)]2

× exp

[
ikz0γsl

(vsl

c
z − ct

)]
, (4)

where the factor determining the amplitude has been written at
the beginning and henceforth the arbitrary amplitude multiplier
constant is omitted in the expressions.

A qualitative analysis of the FXW can be performed
by studying its wavefunction and spectral distribution. The
latter can be written as a product of two components:
�FXW (kz, k) = φ(kz, k)ϕ(kz, k). The first one φ(kz, k) =
δ (γ (kz − βk) − kz0) contains a singular function in the case
of an ideal localized wave and a highly localized function in
the case of a modified (finite-energy) wavefield. Here the
singularity is brought in as a δ-function; it defines the vanishing

width of the support line and its argument defines the slope of
the support line on the (k, kz)-plane. By the slope one can tell
the group velocity of the wavefield and the spatial distribution
of the plane waves composing the wavefield. So, in our case,
the slope β−1 > 1, thus the modulus of the wavefield moves
at a superluminal speed and the projection of the support line
into the

(
kz, kρ

)
-plane is a hyperbola. The second component

ϕ(kz, k) is the one that specifies the frequency spectrum of
the wavefield, which for the FXW and its modifications is
exponentially decaying, ϕ(kz, k) = e−γ (k−βkz )�.

2.2. Finite-energy modifications

The FXW itself is not physically feasible due to its infinite
energy resulting from the singularity of the spectrum. Thus,
in order to obtain a realistic model, the spectrum has to be
modified so that (i) it is non-singular, yet (ii) it yields a
closed-form expression for the wavefunction and (iii) the latter
still approximates the spatio-temporal behaviour of the FXW
sufficiently well. Of course, the propagation invariance will
be inevitably lost and replaced by a finite depth of spread-free
flight of the pulse, but its lateral strong localization need not
be sacrificed [2].

Such a modified FXW was first derived by Besieris et al
[1]—we call it ‘modification 1’ (M1). They have chosen an
expression for the spectral distribution which in our notation
reads

�M1 (kz, k) = (K − kz0)
q−1 exp[−a2 (K − kz0)]

× �(K − kz0) exp[−γ (k − βkz) �]/� (q) , (5)

where � is the Heaviside unit step, � denotes the Gamma
function and the Lorentz-transformed axial wavenumber K =
γ (kz − βk) has been used for brevity and comparison with
equation (4.5) of Besieris et al 4. The new parameters a2 and
q (a2, q > 0) adjust the finite width of the distribution across
the support boundary line given by equation K − kz0 = 0.
While this line is straight in the plane (k, kz), in the plane
(kρ, kz) of the lateral and axial components of the wave vector
it transforms to a hyperbola [2, 7].

The insertion of (5) into (1) and corresponding integration
indeed yields a closed-form expression, which in our notation
reads

�M1 (ρ, z, t) = �FXW (ρ, z, t) [F (ρ, z, t)]−q . (6)

This modified wavefunction differs from that of the original
FXW by a negative power of the factor

F (ρ, z, t) =
√

ρ2 + [� − iγsl (z − vslt)]2

+ a2 − iγsl

(vsl

c
z − ct

)
, (7)

which we call ‘the modifier’.
The modifier propagates with velocity c on the z-axis.

Thus, to maintain the shape of the central peak of the wavefield
during propagation, the group velocity vsl has to be chosen
almost equal to c and/or the effects caused by the modifier—
e.g., decay of the pulse peak at z = vslt at large times and
distances—have to be suppressed by appropriate choice of the

4 There is obviously a typo in equation (4.5) of [1]: a factor κ is absent,
which is equal to our K and—having in mind their slightly different general
definition of the spectral distribution—should be present there.
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Φ (kz,k ) 

kz=k0 
k =0 

 
 k

 

Figure 1. The spectrum � of the second modification of the FXW
according to equation (8). In this figure the dependence on the
wavevector component kz and a lateral one k⊥ = ±kρ is depicted.
Numerical values of the parameters have been chosen suitably for an
optical realization: the pulse velocity v = 1.001c; the minimal
wavenumber k0 = 2π(0.8 µm)−1, i.e., the reddest plane-wave
constituent of the pulse has wavelength 0.8 µm; the width
parameters � = 5 µm, a2 = 100 µm and q = 2. The lateral scale is
stretched in comparison to the axial scale: the plotting range for kz is
25 µm−1 while for k⊥ it is only 2.5 µm−1. The curves of the contour
plot at the bottom correspond to level 1/10 and to level 1/100 (the
rightmost curve) of the maximum value of �. Shown also at the
bottom is the wavevector of a plane-wave constituent of the pulse.

values of the parameters q and a2. Note, however, that the
lateral localization is even improved for the modified FXW as
the multiplier [F (ρ, z, t)]−q makes the radial decay stronger
by a factor of ρ−q .

Consulting the Laplace transform table [13] we found a
possibility to derive another modified FXW which has a closed-
form wavefunction. This ‘modification 2’ (M2) is generated
by the following spectral function:

�M2 (kz, k) = 1

γ (kz − βk)
�M1 (kz, k) . (8)

This spectrum is depicted in figure 1, which for the parameters
chosen also represents well the spectrum �M1 (kz, k).

Substituting (8) into (1) and integrating with the help of
equation (4.3.8) [13] yields the following wavefunction:

�M2 (ρ, z, t) = (kz0)
q−1 exp(kz0a2)�[1 − q, kz0 F (ρ, z, t)]√

ρ2 + [� − iγsl (z − vslt)]2
,

(9)
where F (ρ, z, t) is defined by equation (7) and � (. . . , . . .)

denotes the incomplete Gamma function. The wavefunction
�M2 (ρ, z, t) is plotted in figure 2 at the instant t = 0. In a
good approximation the plots also depict the wavefunctions
�M1 (ρ, z, t) and �FXW (ρ, z, t) considered earlier, since we
have chosen a set of parameter values which is suitable for
optical-domain realizations of the waves as discussed in the
following section.

Along the axis z the central peak of M1 decays as

�M1(0, z, t = z/vsl) =
∣∣∣∣∣∣

a2 + �

a2 + � + it
√

v2
sl − c2

∣∣∣∣∣∣
q

, (10)

while the decay of the modulus of M2 in the range of
parameters we are interested in can also be approximated rather

|Ψ(z ρ, ,t)|(a)

Re  (z, ,t)ρΨ
(b)

Figure 2. The modulus (a) and the real part (b) of the second
modification of the FXW according to equation (9). Dependence on
z (increasing from the left to right) and a lateral coordinate x = ±ρ
while ct = 0 is depicted. Plots are normalized and numerical values
of the parameters have been chosen suitably for an optical
realization; see the previous figure caption. The axial scale is
stretched in comparison to the lateral scale: the plotting range for
the lateral coordinate ρ is 100 µm while for the axial coordinate z it
is only 10 µm. The grey shading in both plots is a result of
‘lighting’ used to better reveal the relief of the surface.
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Figure 3. The evolution of the modulus of the central peak of the
first modification (solid line) and second modification (dashed line)
of the FXW over distance on the z-axis. A, B and C are axial
profiles of the modulus of the waves at the instances t = 0,
t = �z/vsl and t = 2�z/vsl, respectively, where �z is defined
by (11), q = 1. Decaying curves show the behaviour of the modulus
of the central peaks during propagation as a function of z, t = z/vsl.
Plots are normalized and numerical values of the parameters have
been chosen suitably for an optical realization (see figure 1). In
order to make axial profiles more distinguishable, they have been
stretched 100-fold with respect to the scale on the z-axis.

well by equation (10) taken with q = 1. Both curves are
plotted in figure 3. One can see from the curves that the
waves propagate without any significant decay over distances
exceeding their longitudinal dimensions by at least three orders
of magnitude. Also, we see that only after a substantial
propagation distance does the longitudinal profile change—
curve C reveals the breakaway of the peaks attributable to the
two factors in equation (6).
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Modifications of focused X wave

By our estimation, the spatial profile of the M1 modulus
moves without remarkable change or spread until

�z = vsl
a2 + �√
v2

sl + c2

√
q
√

2 − 1. (11)

The estimation has been derived from equation (10): the
central maximum on the z-axis decreases

√
2-fold while

travelling the distance �z. For non-spreading distance of the
wave M2, again, q = 1 in (11) gives an adequate estimation.

Due to the spread-out caused by the modifier, both M1 and
M2 lose their symmetry with respect to the co-propagating
axis z = vslt (see figure 3). However, the radial decay
and symmetry of the wavefunction are unaffected and remain
unchanged until t � γsl

c (a2 +
√

ρ2 + �2).

3. Discussion

Apart from the requirement of finiteness of the total energy
which in the case of the modified FXWs is satisfied by
definition, there are three additional conditions for a model
of LW to be useful for implementations in optics [14]. First,
although its spectrum has to be a wideband one, it cannot
extend down to zero frequency. Second, the LW has to contain
neither backward-propagating nor radially propagating plane-
wave constituents. Although the latter two conditions are not
mandatory ones and need not be fulfilled, say, in the case
of cavity-confined fields, they correspond to possibilities of
optical elements designed for handling light beams. Note that
in the case of the focus wave mode (FWM)—a luminal LW
which is most thoroughly investigated in theory of LWs—these
conditions are not met5. The reason is that for the FWM with
its wide spectrum of specific exponential shape the support
of the spectrum is a parabola which—as a conic section—
surrounds the origin in the plane (k⊥, kz) [7], while the support
of the FXW as a hyperbola has two options of its placement
depending on the sign of kz0 and in the case of positive kz0

does not surround the origin (see figure 1). Choosing the
positive value of kz0 sufficiently large so that the actual lowest
wavenumber

k0 = kz0

√
1 + β

1 − β

falls into the red spectral region and adjusting values of the
other parameters so that the spectrum essentially remains in
the optical region, one can make both modifications M1 and
M2 of the FXW realizable, in principle, from femtosecond-
duration light pulses by making use of linear-optical devices
(in particular, by conical mirrors and diffraction gratings).
However, with the exception of certain approximations to
the X waves (given by equation (3) or (4) if kz0 = 0),
generation of LWs remains a complicated task, although a
general approach [2] to optical synthesis of them is known.

The third, primarily technical, condition in optics is
paraxiality, which means that the spectrum must contain only
such plane-wave components that travel at reasonably small

5 This does not mean that luminal LWs are impossible in optics—a suitably
band-limited spectrum gives so-called FWM in a wide sense, which is shown
to be feasible in optics [8].

angles relative to the optical axis. The maximum of the
angle for the FXW and its modifications is less than π/2
in the case of a positive value of kz0 but depends on the
group velocity—the closer vsl is to c, the smaller the angle
θ : θ (k) = arccos((ck + kz0 (vsl − c)) /kvsl). Asymptotically,
θ(∞) = arccos (β), which is the maximum of the angle
and is equal to half of the angle between the asymptotes of
the hyperbola of the support boundary in figure 1 (called the
Axicon angle in the literature on diffraction-free and localized
waves).

As a matter of fact, an optical superluminal localized wave
possessing a comparatively narrow-band spectrum which is
much different from the one depicted in figure 1, but still
has a hyperbolic support, had been experimentally generated
from femtosecond laser pulses in the previous decade [15].
Thus, if we use the term FXW in a wide sense, i.e., regarding
any superluminal LW whose spectrum—irrespective of its
particular shape—possesses a hyperbolic support and the
Axicon angle has a corresponding dispersion, then we could
say that a certain approximation to the FXW has already been
realized in practice.

Finally, having in mind the strong lateral localization of
the FXW, let us consider the radial asymptotic behaviour of its
two finite-energy modifications. Comparing the three model
wavefunctions at t = 0, z = 0, and large values ρ → ∞

|�FXW (ρ, 0, 0)| ∼ exp(−ρkz0)/ρ

|�M1 (ρ, 0, 0)| ∼ exp(−ρkz0)/ρ
q+1

|�M2 (ρ, 0, 0)| ∼ � (1 − q, ρkz0) /ρ

we see that—as far as a numerical approximation with chosen
set of parameters and q at q = 1, 2, 3 reveals,

�M2 (ρ → ∞, 0, 0) ≈ exp(−ρkz0)/ρ
2

—both modifications have even stronger lateral decay than that
of the FXW. Apparently this difference in the lateral behaviour
can be explained as a result of the additional radial decay which
is introduced through the factor F (ρ, z, t) given by (7).

4. Conclusion

We have found a new finite-energy modification with a
closed-form wavefunction for the focused X wave—a specific
superluminally propagating localized wave. This wave can be
generated as a pulsed beam in the visible region and—due to
its strong lateral localization preserved over an extended depth
of propagation—is rather promising in various fields of optics.
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1. INTRODUCTION

In recent years, a lot of effort has been put into the
study of certain few- and subcycle nonspreading light
pulses—so-called localized waves (hereafter LWs, see
reviews [1–6])—which are represented by somewhat
exotic bullet-like Bessel wavepackets propagating in a
vacuum or linear media. Obviously, such spatial and
temporal localization makes the implementation of LW
solutions very attractive for applications where the lat-
eral and/or transversal diffractional spreading of optical
wave fields is the major limitation to system perfor-
mance (e.g., optical communication, metrology, moni-
toring, imaging, optical manipulation, and acceleration
of particles and femtosecond spectroscopy). In recent
years, it also has become obvious that the concept can
be used in constructing pulse-like wave fields in disper-
sive media [7, 8] and in nonlinear optics [9, 10]. How-
ever, for more than a decade after the pioneering theo-
retical paper of J.N. Brittingham [11], the feasibility of
electromagnetic LWs remained questionable due to the
their large spectral bandwidth and the spatiotemporal
nonseparability inherent to LWs. The ideas that have
been proposed for the generation of complicated LW
solutions in the papers of that period of the field (see [1]
for references) are hardly realizable in the optical
domain.

Experiments in the optical domain started by
launching Bessel–X pulses [7, 8, 12–15], where the
conventional Bessel beam generators under wideband
illumination were used. In [16], we proposed a physi-
cally transparent one-step derivation of fundamental
LW solutions (focus wave modes (FWM)) and proved
that good approximations to FWMs can be generated
through a combination of an axicon and a circular dif-
fraction grating [16–18]. The proposed principle has
also been verified in experiment [19].

In this paper, we introduce a surprisingly elegant,
one-step method for the optical generation of LWs. We
show that superluminal LWs with hyperbolic support of
angular spectrum of their plane wave constituents can

be generated by means of illuminating cylindrical dif-
fraction gratings by conical wavepackets—Bessel–X
pulses. We give the mathematical description of the
method and discuss the pros and cons of the new type
of setup.

2. DEFINITIONS AND GENEALOGY OF LWS

LWs can be introduced in several ways. Here, we
start with the general axisymmetric expansion over the
zero-order Bessel beams in the form

(1)

where 

 

A

 

(

 

k

 

z

 

, 

 

k

 

) is the angular spectrum of plane waves of
the wave field. Here, we notice that for 

 

|Ψ

 

(

 

ρ

 

, 

 

z

 

, 

 

t

 

)

 

|

 

2

 

 to be
propagation-invariant, i.e., to depend on 

 

z

 

 and 

 

t

 

 only
through the propagation variable 

 

z

 

 – 

 

v

 

g

 

ct

 

, where 

 

v

 

g

 

 is a
constant group velocity along the 

 

z

 

 axis in units of 

 

c

 

, the
variables 

 

k

 

 and 

 

k

 

z

 

 must be bound linearly (see, e.g., [6])

(2)

where 

 

b

 

 is a constant (see Fig. 1a). Consequently, the
spectrum has to be singular and may be factorized in
the following form

(3)

where 

 

A

 

(

 

k

 

) is any complex valued function of one real
positive variable and the Heaviside unit step 

 

Θ

 

(

 

x

 

) has
been introduced as a factor in order to allow for the 

 

k

 

-
integration in Eq. (1) to start from 

 

k

 

 = 0 instead of 

 

k

 

 =

 

|

 

k

 

z

 

|

 

.
We simply note that the physical meaning of condi-

tion (2) is obvious—it states, that the on-axis group
velocity of the wave field 

 

v

 

g

 

c

 

 = 

 

d

 

ω

 

/

 

dk

 

z

 

 should be con-
stant over the whole spectral range [16].
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An elegant graphical depiction of the general class
of LW solutions of scalar homogeneous wave equations
can also be given. Despite a general solution 

 

Ψ

 

(

 

r

 

, 

 

t

 

) of
the free-space scalar wave equation which depends on
four coordinates (

 

x

 

, 

 

y

 

, 

 

z

 

, and 

 

ct

 

), its transform domain

(

 

k

 

-space or spectral) representation (

 

k

 

, 

 

ω

 

/

 

c

 

) has only
three independent arguments due to the dispersion-rela-

tion restriction  +  +  – (

 

ω

 

/

 

c

 

)

 

2

 

 = 0 imposed by
the wave equation. In other words, the four-vector (

 

k

 

,

 

k

 

 

 

≡ ω

 

/

 

c

 

) of a light wave is always isotropic, whereas (

 

r

 

,

 

ct

 

) needn’t be and generally isn’t. Thus, in the four-
dimensional transform domain, the spectral function

(

 

k

 

, 

 

k

 

) is not equal to zero only on the surface of a

three-dimensional cone given by equation 

 

k

 

2

 

 =  +

 + . In other words, the support of the function

(

 

k

 

, 

 

k

 

) has to lie on that conical surface. In the case of
azimuthal symmetry, one can introduce the cylindrical

coordinates by replacing  +   , thus reduc-
ing the dimensionality of the support to two and gaining
the possibility of depicting the support as a conical sur-
face in the 

 

k

 

-space with three axes: 

 

k

 

z

 

, 

 

k

 

ρ

 

, and 

 

k

 

 (or ω/c),
see Fig. 1b. In those terms, the spectral support of LW
must be a line of intersection of the cone surface by a

Ψ̃

kx
2

ky
2

kz
2

Ψ̃
kx

2

ky
2

kz
2

Ψ̃

kx
2

ky
2

kρ
2

plane perpendicular to the plane (kz, k), and the projec-
tion of the spectral support onto the plane (kz, k) is a
straight line with the slope vg (see Fig. 1). Note that the
two-dimensional integration in Eq. (1) covers the area
of projection of the support on the cone onto the plane
(kz, k) [6].

If the slope of the spectral support on the (kz, k)
plane vg < 1, Eq. (1) gives the family of subluminal
LWs, and if vg = 1, the corresponding LWs are luminal.
In the case of vg > 1, we get superluminal LWs. The
special cases of vg > 1 and b = 0 correspond to Bessel–
X pulses [13].

3. OPTICAL GENERATION 
OF SUPERLUMINAL LWS

In the Fourier representation in Eq. (1) together with
Eq. (3) have a straightforward interpretation as being
the superposition of monochromatic Bessel beams of
which the cone angle and wave number are related as

(4)

where θ(k) is the angle between the optical axis z and
wave vector of the Fourier component (plane wave) of
the wave field and kz(k) = kcosθ(k). It has been shown
both theoretically and experimentally that in order to
generate a LW, the necessary and sufficient condition is
to control the spectral support of the generated wave
field. In particular, if the generated spectral support
obeys (4), then the corresponding wave field is always
LW. The physical limitations of a setup like finite aper-
ture or finite spectral bandwidth only have an effect on
the propagation length of the generated LWs [1, 16].
Also, the need for a spectral chirp in the source pulse to
generate LW with a transform-limited pulse length can
be satisfied by standard pulse-compression techniques.

In [16, 19], we demonstrated both theoretically and
experimentally that very good approximations to the
optical LWs can be generated by means of combining a
circular grating and axicon so that the angular disper-
sion required for a particular LW is obtained in the
resulting wave field. However, it tends to be a compli-
cated task to find the combination of angularly disper-
sive optical elements to generate the required spectral
support of plane waves.

Consider a simple diffraction grating that is illumi-
nated with a plane wave pulse as depicted in Fig. 2.
Using the grating equation, we can write

(5)

where m is the order of the diffracted field and Λ is the
period of the grating (see Fig. 2). Now, if we assume
that the grating is oriented parallel to the z axis (optical

θ k( )cos
k b–
v gk
-----------,=

φ fsin φisin–
mλ
Λ

-------,=

k

b

kz

vg > 1

vg =1

k

kz

kρ

(a)

(b)

Fig. 1. (a) Graphical illustration of the defining property of
an angular spectrum of the LWs in k-space, and (b) Forma-
tion of the hyperbolic spectral support as the intersection of
a conic surface in k, kz, kρ space.
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axis) and note that in this case θ0 = π/2 – φi , sinφi =
cosθ0 and sinφf = cosθ(k), we get

(6)

which is exactly the spectral support defined by the
condition (4) if we choose vg = 1/cosθ0 and b =
2πq/Λcosθ0. Thus, unlike the setups considered so far
in this case, the spectral support of plane waves of LWs
can be generated exactly by means of a single diffrac-
tion grating that is illuminated by a plane wave pulse.

In cylindrically symmetric cases, we replace the
plane diffraction grating with a cylindrical diffraction
grating and illuminate it by a Bessel–X pulse [13] as
shown in Fig. 3a. The initially conical spectral support
of the Bessel–X pulse is transformed into a hyperboloi-
dal by the angular dispersion of the grating, with the
effect of the physical dimensions of the setup being the
finite propagation length of the generated LW (see
striped region in Fig. 3 and [1, 16] for a related discus-
sion).

One can also calculate the spatiotemporal distribu-
tion of the wave field generated in such a setup. If we
insert the spectral support (6) into the general expres-
sion (1) and assume the Gaussian frequency spectrum,
we get

(7)

Clearly, this formula is a model, and not a simulation of
a realistic experimental situation. In particular, it essen-
tially assumes an infinite aperture of the system. How-
ever, in our previous publications, we have shown that
as far as the aperture A of the generated LW (see Fig. 3)
satisfies the condition A � λ/sinθ0, where θ0 stands for
the mean cone angle of the Bessel beam components of
LW, the integrals of the form of Eq. (7) can be used to
calculate the spatial distribution of the wave field in the
near-axis region inside the propagation length of the
LW with a very good approximation [18]. In Fig. 3, this
volume is depicted by the shaded region—this is where
all the Bessel beam components of different color that
diffract from the cylindrical grating overlap so that the
constructive interference can take place. How to con-
struct the setup so that the propagation length of the
generated wave field is sufficiently large is dependent
upon the choice of parameters.

In this setup, we have seven parameters: vg and b
define the spectral support, the frequency spectrum of
the light source A(k), the initial conical angle of the
Bessel–X pulse θ0, the grating period Λ, the diameter
D, and the length of the grating Lg. In order to under-

θ k( )cos θ0cos 2πm
ka
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k

2πq
Λ θ0icos
--------------------–

1
θ0cos

--------------k
----------------------------,= =

Ψ ρ z t, ,( ) k
k kz–

∆k
-------------–

2

J0 kρ θ k( )sin( )expd

0

∞

∫∼

× ikz θ k( )cos ikct–( ).exp

stand the interplay between the parameters, we should
note that given the light source A(k) the parameters of
the spectral support vg and b together can be used to
optimize for the average propagation direction of the
Bessel beam components θ(k0) and the diameter of the
central peak d—the two quantities are inversely propor-
tional as d ~ 1/sinθ(k0). The simple geometrical argu-
ments show that the parameters of the cylinder and
cone angle θ0 can be used to optimize for the propaga-
tion length and the position of the propagation volume
(see Fig. 3). Comparing Figs. 3a and 3b, one can also

G

θ0 θ(k)ϕi ϕf

z

Fig. 2. On the principle of the proposed optical setup. The
plane wave pulse propagating at angle θ0 relative to the
optical axis z (φi relative to the normal diffraction grating)
diffracts off the diffraction grating so that a tilted pulse with
angular dispersion (tilt) introduced by the grating is formed
behind the grating. It appears that the tilt θ(k) introduced to
a plane wave pulse in such a setup is exactly that of the LW.

zA

G

L

(a)

(b)

L

A z

G

Fig. 3. (a) The proposed optical setup. The Bessel–X pulse
diffracts off the cylindrical diffraction grating G so that a
superposition of tilted pulses with angular dispersion (tilt)
introduced by the grating is formed in the shaded region. A
stands for the aperture of the generated LW and L for the
propagation length of the LW; (b) If the Bessel–X pulse
propagate at smaller angles relative to the propagation axis,
the aperture A of the resulting LW is also smaller.
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see the general drawback of the optical schemes with
elements oriented along the propagation axis—the
aperture A of the generated LWs inevitably reduces as
we move towards the paraxial angles θ(k), so that the
optimization of the parameters must be treated care-
fully. One can also see that the propagation length L of
the generated LWL is less than or equal to the length of
the grating.

Working through the various choices of parameters
in the setup, we were able to find several practical sets
of parameters for the experiments. For example, if we
choose θ0 = 8 deg, Λ = 20 µm, D = 15 mm, Lg = 50 mm,
and use a Gaussian light source in the range of 55 nm—
600 nm, we get an LW that propagates �30 mm at
group velocity vg = 1.035. The simulated field distribu-
tion with these parameters is depicted in Fig. 4. Exper-
iments with this setup will be carried out in the near
future.

4. DISCUSSION

A three-dimensional formation of an LW in a cylin-
drical grating is depicted in Fig. 5.

The main advantage of the proposed setup is its
robustness. In the case of all the setups considered in
the literature, the material dispersion of conical disper-
sive elements have been used to optimize for the
required spectral support of LWs. In the present case,
the exact spectral support of finite-energy superluminal
LWs (see also [23]) is generated by means of a single
optical element. From the very nature of LWs it is also
implicit that, in principle, the setup is robust for the
spectral shape of the input pulse and for its cone angle.
Indeed, as it is constructed to generate certain support
of the spectrum, the frequency spectrum does not really
matter in the first approximation. As for the initial cone
angle, this appears as a parameter in Eq. (6), so that the
generated spectral support is this parameter of an LW in
every possible occasion. One still needs to give the ini-
tial Bessel–X pulse the phase distortion (chirp) in order
to generate the transform-limited pulse shape on the
optical axis of the system. However, this can be easily
achieved by applying standard pulse compres-
sion/expansion techniques. In fact, the only practical
difficulty in the described setup is the fabrication of the
cylindrical diffraction gratings.

5. CONCLUSIONS

We have proposed an easily realizable setup for the
generation of optical superluminal LWs that is robust
for the parameters of the source pulse (a Bessel–X
pulse in this case). We discussed the working principle
of the setup and presented numerical simulation for a
practical set of parameters.
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Abstract

Formation of superluminal localized waves (SpLW) – ultrawideband light pulses propagating faster than c without any spread or
distortion in free space – is studied. A general approach how to produce exactly the angular spectrum required for generating SpLW
in optical domain is introduced and analyzed. An experimentally realizable scheme, most suitable for generating SpLW of infinite group
velocity (shortly – infinitely superluminal localized wave – iSpLW) is derived from the general approach. Experimental set-up for launch-
ing the iSpLW has been designed and resulting wave field calculated.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction Due to the sophisticated non-separable temporal and
Localized waves (also known as nondiffracting or undis-
spatial dependencies in the wavefunctions of LW-s, in
order to generate them in reality the first task is to form
a
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fo
torted progressive waves) are ultrawideband wave packets
with both spatially and temporally highly localized instan-
taneous intensity distribution propagating without any
spread or distortion in free space or in linear media.
Physical nature of the localized waves (LW) has been put
to solid terms [1–7] and number of different localized wave
solutions to the scalar wave equation has been derived
during the last quarter of century (see [8,9] and overviews
[5–7]).

Optical LW-s are prospective in many areas of applica-
tion – particle manipulation, trapping and acceleration,
imaging, ultrafast spectroscopy, quantum optics and, espe-
cially, in nonlinear optics (see, e.g. [10–13] and references
therein). However, a real breakthrough here requires devel-
opment of practical methods of generation of LW-s.
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specific quasi-singular spatial distribution of the plane
ve constituents of the wave field. There are four families
LW-s distinguished by the shape of the support of the

stribution of the plane waves in the momentum space
d, correspondingly, by their superluminal, luminal or
bluminal group velocity along the propagation axis [7].
espite a number of experiments have been carried out

LW-s in acoustics, optics and microwave domain in free
ace and in dispersive media [14–17], the task has been
tisfactorily solved only for simplest superluminal pulses
the so-called X- or Bessel-X waves which can be gener-
ed from an ultrashort pulse by conical optics or annular
t and convergent lens. More complex LW called focus
ve mode which belongs to family of luminal LW-s has
en obtained by approximating the resulting angular dis-
rsion curve of optical elements to that required for the

[18].
The motivation of this paper is to elaborate methods

r obtaining exact spatial distribution of plane wave
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constituents of superluminally propagating localized wave
(SpLW). The simplest generator of a SpLW is cylindrica
diffraction grating [19]. In this paper we present a genera
ized optical scheme and analyze the formation of SpLW-
by means of an enhanced practical scheme.

In Section 2 the basic idea of generating the suitable spa
tial distribution of the plane wave constituents by means o
diffraction grating is introduced. Generalized optica
scheme is introduced in Section 3 and studied in detail i
Section 4 which presents also a numerical example.

2. Formation of the support of the spectrum

It is instructive here to start with treatment of ultrawide
band localized waves as superpositions of monochromati
plane waves with various frequencies and propagation direc
tions. To generate a nonspreading wave packet one must b
able to form certain specific spatial distribution of the plan
wave constituents. In the following we deduce the require
ment for the distribution in the momentum space.

A general solution to the free space scalar wave equatio
depends on 4 coordinates W = W(x,y,z, t). Transform of W
to the momentum space w(kx,ky,kz,x) depends on thre
independent spectral variables due to the dispersion relatio
k2 ¼ x2=c2 ¼ k2

x þ k2
y þ k2

z resulting from the wave equa
tion. In other words – the spectral function in the 4-dimen
sional momentum space (kx,ky,kz,k) is nonzero only on th
cone determined by the relation k2 ¼ k2

x þ k2
y þ k2

z . Assum
ing cylindrical symmetry – as it is common in the study o
LW-s – and introducing radial component of the wave vec
tor by relation k2

q ¼ k2
x þ k2

y , one can depict the domain o
wave numbers as a cone in 3D space (kq,kz,k), kz bein
the propagation axis of the wave packet (see Fig. 1).

Intensity profile of a wave packet propagates withou
any spread or distortion in free space or linear medium
in case the group velocity (along the propagation axis) i
constant over the whole temporal spectrum of the puls
[6]. The condition for the group velocity vg in k-space, i
nondispersive media,

c
dk
dkz
¼ vg ¼ const ð1

2 H. Valtna et al. / Optics
Fig. 1. Formation of the hyperbolic support of the spectrum. In order to
depict the whole cone, a lateral component of the wave vector k? = ± kq

has been taken as one of the axes instead of positively defined kq.
shows that the variables k and kz must be bound linearly

k ¼ vg

c
kz þ const0: ð2Þ

In the space (kq,kz,k) the condition defines a plane. The
intersection of a plane (2) with the cone ðk2 ¼ k2

q þ k2
z Þ is

a line. The power spectrum of a wave packet traveling at
constant group velocity must be determined only along
the line – the support of the spectrum of the localized wave.
The points of the support where the power spectrum of the
wave packet is not zero define the spatial distribution of
plane waves in k-space. Hence, for propagation invariance
of the intensity profile of the wave packet the support of its
spectrum in the momentum space has to be a line coincid-
ing with a conical section.

All LW-s can be grouped into four families [7] according
to the value of the slope vg/c of the plane and, equivalently,
according to the shape of the projection of the support line
onto the plane (kz,kq). The projection – as well as the sup-
port line itself – may be (i) hyperbola or (ii) its limiting case
– a straight line crossing the origin, in both cases vg/c > 1
and the pulse is superluminal, i.e. it propagates faster than
c along the axis z (see Fig. 1), (iii) parabola, vg/c = 1 and
the pulse is luminal, (iv) ellipse, vg/c < 1 and the pulse is
subluminal. Like the cone sections differ qualitatively from
each other, the formation methods of LW-s belonging to
different families are dissimilar.

In this paper we restrict ourselves to superluminally
propagating localized waves solely and thus are interested
in formation of hyperbolic support of the spectrum. Hence-
forth we call the projection of the support onto the (kz,kq)-
plane ‘the support line’ for brevity. Let us compare
diffraction grating equation, on the one hand,

sinðhÞ ¼ sinðhiÞ þ k
m
d
; ð3Þ

where h denotes the angle between the direction of
diffracted beam with respect to the normal of grating, hi

– the incidence angle, m – diffraction order, k = 2p/k –
wavelength, d – groove period; and equation of the hyper-
bolic support line, on the other hand:

sinðhÞ ¼ bþ k
k0ð1� bÞ

2p
; ð4Þ

where b = (vg/c)�1 < 1 may be treated as the well-known
parameter of Lorentz boost [7], k0 – wavenumber of inter-
section of the support line and the axis kz. Eqs. (3) and (4)
both carry the same dependence on wavelength k. Equiva-
lence between these two equations and the condition Eq.
(2) becomes even more obvious if we multiply Eqs. (3)
and (4) by k = 2p/k, introduce the grating vector kd = 2p/d
and denote k sinðhÞ ¼ kk, k sinðhiÞ ¼ ki

k which are nothing
but the components of the wave vector along the grating
surface. The rewritten equations read

kk ¼ ki
k þ mkd ð5Þ

munications 278 (2007) 1–7
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Fig. 2. Formation of the support of the spectrum while illuminating a
diffraction grating (dotted vertical line) with plane wave impulse (upper
left arrow). Incident light pulse travels at angle hi towards grating surface
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2

and

kk ¼ kbþ k0ð1� bÞ: ð6Þ

Having in mind orientation of the grating surface along the
propagation axis z, Eq. (5) coincides with Eq. (6) (see
Fig. 2).

Coincidence of wavelength or wavenumber dependen-
cies in Eqs. (3)–(6) verifies that the support of the spectrum
of a wideband pulse diffracted from a grating is always a
hyperbola. Consequently, the correspondence between the
constants in Eqs. (3) and (4) is as follows:

sinðhiÞ ¼ b;

m
d
¼ k0ð1� bÞ

2p
:

The latter equality shows that without diffraction, i.e. if
m/d = 0 the constant k0 = 0 and kz becomes simply propor-
tional to k. In this case the hyperbola degenerates into
straight line and we get the simple limiting case of the
SpLW – the (Bessel) X wave propagating rigidly with
superluminal velocity c/b, which has been generated
experimentally already [11,15,16]. The equality sin(hi) = b

normal, the diffracted light at angle h(k). As shown by Eqs. (3)–(6) the
diffraction grating transforms straight line spectrum to a hyperbolic one.

diffraction grating
incident
beam

α

ρ

mirror

η
χ

•

Z

Fig. 3. Schemes for obtaining the SpLW by means of a conical diffraction gratin
cone generatix may have acute, right or obtuse angle with respect to the optical

6

dicates that if the incident pulse falls along the normal
the grating surface, the group velocity of the wave pack-
generated will be infinitely large.
The following aspects have to be taken into account
ile constructing an optical scheme for forming SpLW

perimentally:

to generate cylindrically symmetric wave field one
should use a cylindrical reflective diffraction grating,
where ring-shaped grooves have been cut onto the inner
surface of the cylinder;
the impulse must be directed into the diffraction grating
from one end, almost parallel to grating surface, i.e. the
cylinder axis is also the propagation axis z of the output
pulse;
the maximum length of the invariant propagation of the
SpLW is determined by the length of the diffraction
grating and the wider the spectral bandwidth the shorter
the length of the invariant propagation.

e possibilities and restrictions of the scheme based on
lindrical reflective diffraction grating are discussed more
oroughly in [19].

Generalized optical scheme

The scheme for generating pulsed wave field with the
perbolic spectral support by means of cylindrical grating
n be generalized to a better one consisting of a conical
ffraction grating and a conical mirror as depicted in
g. 3. A pulse passing through the grating obtains hyper-
lic spectral support with respect to the direction of the
ating surface. To form hyperbolic support with respect
the optical axis, the pulse needs to be rotated towards
tical axis by the angle between grating surface and the
tical axis. This is done by conical mirror with proper
ne angle.
Let us verify that the hyperbolic support of the spectrum
formed in the scheme introduced. As the support line in

α

ρ

ications 278 (2007) 1–7 3
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g and a conical mirror. Two versions of the scheme emphasize that the
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the plane (kz,kq) defines the propagation directions o
monochromatic plane wave constituents of the wav
packet we have to take a closer look at the angular disper
sion introduced by the scheme. Describing the propagation
direction of a plane wave as a vector

B ¼
kq

kz

� �
;

allows us to operate with well-known rotation and reflec
tion matrixes.

The direction of the incident plane waves, traveling a
the angle a towards the optical axis, is denoted as

Bi ¼
ki

q

ki
z

 !
¼

k sin a

k cos a

� �
:

The angle between the normal of the diffraction grating and
the optical axis is denoted by v. To introduce the dispersion
of the diffraction grating, we describe the propagation o
the plane waves relative to grating normal:

Rð�vÞ ¼
cosð�vÞ sinð�vÞ
� sinð�vÞ cosð�vÞ

� �
:

(The matrix performs rotation of the coordinate system
clockwise by angle v). Grating dispersion is described b
matrix obtained from Eq. (3)

G ¼
sin a�vð Þþ2pm=kd

sinða�vÞ 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðsinða�vÞþ2pm=kdÞ2
p

cosða�vÞ

0
@

1
A

and the application of the backward-rotation matrix R(v
gives the propagation directions towards optical axis. To
introduce reflection we describe the plane waves with
respect to mirror normal by rotating the system by th

angle g, apply the reflection matrix M ¼ 1 0
0 �1

� �
and

rotate backwards by �g. The angle between the norma
of the mirror and optical axis g is half the angle between
grating surface and optical axis g = p/4 � v/2. Propagation
direction of emergent plane waves is described by

Bf ¼ Rð�gÞMRðgÞRðvÞGRð�vÞBi

¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðsinða� vÞ þ 2pm=kdÞ2

q
k sinða� vÞ þ 2pm=d

 !
:

For the hyperbolic support line the vector B should read:

B ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðbþ k0ð1� bÞ=kÞ2

q
kbþ k0ð1� bÞ

 !
:

Since according to the previous section b = sin(a � v) and
d = 2pm/k0(1 � b), we have shown that the conical puls
passing through the system of the conical grating and mir
ror obtains the hyperbolic support of the spectrum.

4 H. Valtna et al. / Optics
4. Analysis of the scheme

With the described setup it is (theoretically) possible to
generate the whole variety of SpLW-s – from cylindrical
waves of infinite group velocity [6] to those propagating
almost luminally. Following features of the scheme need
to be emphasized:

• Parameters describing the wave field and the diffracting
grating are related as follows:

vg ¼
c

sinða� vÞ ;

k0 ¼
2pm

ð1� sinða� vÞÞd :

• The scheme places some restrictions on the spectral
width of the wave field. The reddest plane wave compo-
nent transmitted by the scheme is the one that diffracts
slightly less than by p/2 towards grating normal and
its wavenumber is given as

kr ¼
2pm

dð1� sinða� vÞÞ : ð7Þ

The bluest plane wave (or Bessel wave) constituent re-
flects from mirror in case it is diffracted more than angle
g and its wavenumber is given as

kb ¼
2pm

dðsinðgÞ � sinða� vÞÞ : ð8Þ

Therefore, if the width of the spectrum has been pre-
scribed we can find allowable range for groove period
values:

2pm
kbðsinðgÞ � sinða� vÞÞ 6 d 6

2pm
krð1� sinða� vÞÞ ð9Þ

• One can see that by adjusting the incidence angle a of
illuminating pulse a SpLW with the desired group veloc-
ity vg = c/sin (a � v) can be formed with the help of dif-
ferent diffraction gratings. In principle, one specific
grating can be used to form the whole variety of
SpLW-s.

• Fig. 3 emphasizes the freedom in the choice of the angles
of the generatrix with respect to the optical axis. Let us
compare two schemes with different grating angles v. It
follows from Eq. (9): the larger the angle, the larger the
optimal groove period. Or, in case the gratings have the
same period the grating with larger angle v transmits
narrower spectrum.

• As the cone angle can be used to define the group veloc-
ity of resulting wave packet, one can use a plane wave
impulse (a = 0�) for illuminating the grating, hence the
input pulse needn’t to be pre-shaped into a conical one.

In real conditions such conical gratings with sufficiently
small thickness – required in order to neglect the dispersion
of the cone material – cannot be manufactured easily and the
schemes described so far are rather of theoretical interest.

unications 278 (2007) 1–7
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Fig. 4. Formation of cylindrical wave by means of plane grating (dotted
line) and conical mirror (two ‘‘sandy’’ triangles). Arrows left from the
grating depict illuminating pulse. Regions in which diffracted and reflected
plane waves travel behind the grating are shown in solid fill. Ab/2 denotes
radius of the illuminating aperture for the bluest wavelength and Ar/2 that
for the reddest wavelength. From disk Ar/2 � Ab/2 originates a cone
(hatched region) in which travel short wavelength plane waves which do
not reflect on mirror and thus do not contribute to formation of SpLW.
As seen from the figure those plane wave components shorten the range in
which the invariant propagation of SpLW can be registered (DZ < DZmax).
(For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Still, some practically obtainable schemes can be derived
from the approach based on conical grating and conical mir-
ror. In what follows we analyze few cases with special values
of the grating normal angle v�[�p/2;p/2].

In case v = p/2 the conical grating degenerates to a
cylindrical grating, the mirror becomes unnecessary. Basi-
cally, this is the scheme described in [19].

In case v = 0 one gets planar diffraction grating with
concentric, circular and radially equidistant grooves – a
sort of zone plate. The mirror is conical with cone angle
p/2, g = p/4. As stated earlier, with a conical grating and
accompanying mirror it is possible to generate whole vari-
ety of SpLW-s. However, to form a SpLW traveling almost
luminally with vg J c by means of the plane grating the
incidence angle a must be almost a right one and the illumi-
nating pulse must be almost flat cylindrically symmetrical
pulse converging to the optical axis – which is extremely
difficult to accomplish. In contrast, the scheme proposed
can be rather easily used for generation of the SpLW with
infinite group velocity, since in this case the scheme is to be
illuminated with plane wave pulse traveling along the opti-
cal axis.

Let us analyze possible setup for generating infinitely
superluminally propagating localized wave (henceforth
iSpLW) in further details. Altogether there are seven inde-
pendent parameters to characterize the system: a – inci-
dence angle of illuminating pulse; kr, kb – reddest and
bluest plane wave components transmitted; d – grating per-
iod; m – diffraction order; l – cone height (cone angle is
determined by v = 0) and as we see, it is useful to have a
central hole in the conical mirror with radius D. Most
important output parameters of the system are the propa-
gation range of the wave field DZ, wave field aperture a

(the largest diameter of the volume where the output wave
field comprises the propagation-invariant SpLW) and the
grating aperture A.

In the scheme for generating cylindrically symmetrical
iSpLW, we have a = 0�. The grating period determines
the widest possible spectrum width (kr, kb from Eq. (9)).

The grating period, mirror height and spectrum together
determine the aperture of the illuminating pulse. From
geometry of the scheme we can derive a formula for the
aperture for which a monochromatic plane wave
illuminates whole mirror. The aperture varies with the
wavelength:

AðkÞ ¼ 2Dþ 2l
2pmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðkdÞ2 � ð2pmÞ2
q :

While illuminating the scheme with light pulse which
aperture does not depend on the wavelength, one must take
into account that not all plane wave constituents, especially
with smaller wavelength, are reflected from the mirror and
thus their spectral support is not hyperbolic towards the
optical axis and they do not contribute to formation of
the SpLW, instead coinciding with the wave field they
shorten the range in which the SpLW can be registered

H. Valtna et al. / Optics Com
e central hole radius D1, by narrowing the spectrum or
shifting the spectrum to shorter wavelengths.
Cone height l is parameter characterizing the dimensions
the conical mirror. The larger l, the larger invariant

opagation range DZ and the larger aperture has to be
uminated.
While designing an experimental set-up for specific grat-

g one must bear in mind that the aperture of resulting
ve field depends on the mean wavelength of the illumi-
ting pulse as well. To widen the wave field aperture, its
ectrum should be shifted towards smaller wavelengths.
From geometry of the scheme one can derive the for-

ula describing maximum invariant propagation range

max dependence of the scheme parameters l,D,a and v:

max ¼ ðDþ lÞ
sinða� vÞ þ 2pm

kbdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðsinða� vÞ þ 2pm

kbd Þ
2

q � l

� D
sinða� vÞ þ 2pm

krdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðsinða� vÞ þ 2pm

krd Þ
2

q :

ne can see the equation describing the dependence is
ther complicated. Intuitive comprehension of the scheme
n be more easily achieved through understanding and
alyzing the geometrical interplays (Fig. 4) instead of
dying multi-dimensional space of parameters.

The central hole in conical mirror can be used also for measuring the
vefield in interferometric experiment.
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To conclude the analysis we present a numerical exam
ple verifying the realizability of the set-up.

The optimization calculations have been made for a
optical scheme consisting of a planar grating diamete
A = 55.2 mm and concentric grooves with density 156
1/mm, a conical mirror with height l = 10 mm and radiu
D = 1 mm of the central hole. As input a 60 fs pulse wit
Gaussian spectrum was assumed, which can be generate
by Ti:sapphire laser for example, with kr = 600 nm an
kb = 580 nm. If using the first diffraction order the invar
ant propagation range DZ ’ 10 mm was shown to b
achievable. The real part and modulus of the resultin
wave field [20] is depicted in Fig. 5.

5. Discussion

A comparatively simple and already accomplished tas
(see optical launching of Bessel-X impulse: [11,15,16])
to generate localized waves possessing equal superlumina
group and phases velocities and therefore propagating rig
idly with not only invariable intensity distribution but als
with propagation-invariant wavefunction. Their spectra
support has been degenerated from a hyperbola into
straight line and therefore simple methods of obtainin
conical waves – annular slit imaging, conical mirrors o
lens2 (axicons) do the job well. In contrast, there is n
one step technique to form parabolic support of a lumina
LW – the focus wave mode. In the only experiment carrie
out so far [18,21,22] glass wedges and diffraction gratin
were used in order to fit the resulting angular dispersio
curve to the required parabolic support line. One encoun
ters similar difficulties in the case of any curved suppor
line, including the hyperbolic one required for SpLWs.

The approach introduced in this paper for generation o
any general-type SpLW is important in the sense that

range for the lateral coordinate q is 6 lm while for the axial coordinate z

is 1 lm.

2 . . . in case of small axicon angle and thus vg J c material dispersio
can be neglected.
solves the task of obtaining the required shape of the spec-
tral support exactly over a wide range of spectrum and
without resorting to approximations.

The schemes proposed offer also the possibility to gener-
ate wave packets belonging to a family of superluminally
propagating localized waves in the whole velocity range –
c [ vg [1. The analysis of scheme reveals sophisticated
interplay between the parameters and finding the most
effective setup requires optimizing the parameter values.

Infinitely large group velocity, while being a rigorously
defined quantity, means simply that the intensity (modulus
squared) of the wave does not depend on the axial coordi-
nate z in the given case and its movement – implosion and
explosion – occurs in the radial direction only. Similarly is
the speed of movement of crossing point of scissor blades
infinitely large when the blades become parallel. That is
why there is nothing unphysical with such superluminal
movement – it cannot carry any causal signal between
two points along the axis and do not correspond to energy
flow (see [15] and a more thorough discussion in [23]).

It should be stressed that in order to generate a maxi-
mally localized (‘‘transform-limited’’) pulse on the optical
axis inside the invariant propagation volume, one needs
to give suitable chirp to the input pulse. The required linear
chirp can be easily achieved with the help of standard pulse
stretching techniques.

Finally, it is interesting to note the following. In a com-
mon arrangement with a planar circular grating only, whose
normal has been directed along the optical axis, the output
wave packet is not propagation-invariant and spreads out
longitudinally with the distance. The pulse can be made
localized only at a given distant point behind the grating
by appropriately pre-chirping the input pulse. In this
arrangement, however, Eq. (5) reduces to kq = mkd, i.e. to
a straight line equation kq = const. In turn, this means that
all monochromatic Bessel-beam constituents of the wave
packet have the same radial wavenumber and the wave field
does not change radially in the course of propagation. The
latter property of the wave field enables carrying out a sig-
nalling along the optical axis and therefore the pulse cannot
be and really is not superluminal.

6. Conclusion

We have generalized the scheme of forming superlumi-
nally propagating localized waves and, in particular, pro-
posed a new approach to generation of cylindrical waves
traveling with infinitely large group velocity. The proper-
ties of different versions of the generalized scheme have
been analyzed in detail. A realistic optical set-up has been
designed and a numerical example of resulting wave field
presented.
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We exploit cross-phase modulation by a strong driving pulse onto a weaker probe pulse at a different wave-
length to induce the formation of an X wave possessing the typical nondispersive and nondiffractive propa-
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gation properties. © 2008 Optical Society of America
OCIS codes: 190.7110, 320.2250.

X waves belong to the wider class of so-called “conical
waves,” i.e., wave packets in which the energy flow is
not axial but is directed along a cone centered around
the propagation axis. All conical waves share the
property of being nondiffractive (experimentally, over
a finite distance), but only X waves are able to
achieve also nondispersive propagation in dispersive
media [1], thanks to their angular dispersion that
also determines the X-wave group velocity, which is
in general different from that of a Gaussian pulse
centered at the same wavelength. Among other sys-
tems, spontaneous X-wave formation has been pre-
dicted and extensively studied in the process of opti-
cal pulse filamentation in Kerr media [2–4], which is
a spatiotemporal dynamic reshaping of the pulse
driven by nonlinear effects in the medium manifested
as the formation of a high intensity core propagating
over long distances without spreading [5]. Recently,
in the context of “two-color filamentation” studies—
where the filamenting pulse copropagates with a
pulse at a different wavelength—X-wave formation
induced by filaments has been reported in [6,7]. In
the presence of stimulated Raman scattering (SRS)
the reshaping of a Gaussian seed into an X wave and
its subsequent amplification by SRS were investi-
gated. In this interaction, cross-phase modulation
(XPM) was found to be responsible for seed reshap-
ing. Its effect can be described as a scattering poten-
tial that drives the probe to travel at the same group
velocity of the filament by transforming it into an
X wave.

In this Letter for the first time (to our knowledge)
we experimentally study in detail the effect of XPM
in the absence of energy transfer between a filament
�1055 nm� and a weak probe pulse �527 nm� in condi-
tions similar to those simulated in [8]. We observe
that XPM induces on the probe a reshaping into a lin-
ear X wave that travels at the same group velocity as

0146-9592/08/243028-3/$15.00
filament. As the X wave is well spectrally iso-
d, we filter out the filament at the end of the
ple and characterize the propagation of the
ave alone in air, which shows remarkable nondif-

cting properties. Moreover we show that, as long
the XPM-inducing pulse maintains a high inten-

over a long propagation distance, a filament is
strictly necessary to induce the X-wave reshap-

; to this purpose we repeat the experiment using a
sel pulse as the driving pulse.
xperiments in the filamentation regime were car-
out using 1.2 ps duration (FWHM) 1055 nm la-

pulses delivered by a 10 Hz amplified Nd:glass la-
. The beam was split into two by means of a 50/50
m splitter. On one arm the 527 nm pulse was gen-
ted by frequency doubling the fundamental pulse
h a potassium diphosphate crystal beyond which a
iable delay line was mounted. The green and IR
ses were then recombined with an IR high reflec-
ty dielectric mirror and focused with an
0 cm lens (as in [6,7]) to a diameter of 100 �m
o the input facet of a 2-cm-long long fused silica
ple. The energies of the two pulses �Epump,Eprobe�
e controllable independently by first-order half-

ve plates and polarizers. The absence of energy
nsfer from the filament to the green pulse was ex-
imentally verified by measuring the energy of the
en pulse before and after the sample with a power
ter (OPHIR, Nova).
n Fig. 1 we show the angularly resolved �� ,��
ctrum of the 527 nm pulse measured with an im-
ng spectrometer (Lot-Oriel, MS260i) after the
ple and recorded with a digital Nikon D70 cam-

. In Fig. 1(a) the IR pulse was blocked, and the
k green pulse was let to progagate alone inside
sample; as expected the intensity profile in the

ctrum is Gaussianlike. In Fig. 1(b) the filament-
IR pulse �Epump=20 �J� was spatially and tempo-

8 Optical Society of America
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rally superimposed to the central portion of the green
pulse �Eprobe=0.5 �J�. Although in the absence of any
energy transfer from the filament, the green seed
pulse clearly reshapes and developes conical tails,
which in the angularly resolved spectrum are the
well-known signature of X-wave formation [9].

To prove the genuine X-wave nature of this object,
however, it is necessary to show its nondispersive
and nondiffracting propagation. To demonstrate the
first, in Fig. 1(b) we fit the spectrum using the
X-wave relation that, for a given material and central
wavelength, describes in the �� ,�� spectrum the loci,
where the angular dispersion is able to compensate
the material dispersion. In �k� ,�� coordinates—
equivalent to �� ,��—this relation takes the simple
form [7]

kz��� = k��0� +
� − �0

vx
, �1�

where �0 is a reference central frequency and k����
=�k���2−kz���2 and vx is the group velocity of the
X wave. As can be seen in Fig. 1(b), the curve
matches very closely the experimental shape. We un-
derline that this simple spectral intensity character-
ization is sufficient to prove that the pulse propa-
gates without dispersing within the glass sample as,
indeed, for a given medium; pulse spreading along
the propagation direction is completely determined
by the pulse dispersion relation kz=kz���. We note
also that in our fit the group velocity of the X wave is
not a free parameter; indeed, it is the group velocity
of the driving pulse measured experimentally using
the method described in detail in [7] and yielding vx
=2.22±0.03�108 m/s. This allows us to confirm
experimentally the prediction made in [7,8] that the
X wave induced by XPM travels at the same group
velocity as the driving pulse.

We then verified the nondiffracting propagation of
the X-reshaped green pulse. To demonstrate this we
simply let the two pulses propagate out of the sample
in air, where the nonlinear refractive index is about

Fig. 1. (Color online) �� ,�� Spectrum of the 527 nm probe
pulse after the sample (a) when the IR pulse is blocked and
(b) when the IR filamenting pulse is copropagating with the
probe in the sample. XPM induces the formation of conical
structures on the probe spectrum. The dashed curve is the
plot of Eq. (1), describing the X-wave shape with the ex-
perimental group velocity of the X wave �vx� deduced from
the spectrum of the filament as described in [7].

Decem
0 times smaller than in silica, thus quenching the
ment and all nonlinear effects. We then removed
IR light with a low-pass filter and scanned the

en beam profile along its propagation in air, start-
from the output facet of the sample. Our imaging

tem was composed by a lens and a 12-bit CCD
era (DTA iCam 400 E).

n Fig. 2(a) the normalized intensity profile of the
be at the output facet of the sample is shown. The
ct of XPM from the filament is evident, with the
ation of a narrow �7.8 �m� FWHM central peak

rounded by slowly decaying tails. We could fit its
ial intensity profile with a rational function hav-
the form a / �br2+cr�, which agrees well with the

2 decay for large radii expected for a linear X wave
]. In Fig. 2(d) the measured FWHM of the beam
file along the z axis is shown. As can be seen, the
tral peak propagates nondiffractively, keeping its
HM constant within the experimental error for a

tance of about 5 mm, and then diffracts abruptly.
s behavior at the end of the nondiffracting zone is
ical of all the experimental realizations of conical
ves and is due to the finite energy contained in the
ical wave packet. Notably, on the same distance of
m a collimated Gaussian beam with the same ini-
diameter would have reached a FWHM of about
�m.
e performed a complementary experiment using

ulsed Bessel beam (PBB) instead of the filament
the driving pulse. Here our driving pulse was a
J, 35 fs pulse positively chirped to 1 ps (to opti-
e pump and seed temporal overlap) at 800 nm

an amplified Ti:sapphire laser system. The

. 2. (Color online) (a) Normalized intensity profile of
probe at the output of the sample in the presence of
. The dashed curve is the fit of the profile with a ratio-

quadratic function. In the insets the near field of the
en pulse is acquired with the CCD system (b) without

and (c) with XPM. Note that the probe energy was un-
nged between the two measurements. (d) Probe beam
HM along propagation after the sample (dashed curve
h solid circles), nondiffracting over 5 mm. The theoreti-
y predicted broadening for a Gaussian beam with the
e FWHM is shown for comparison (dashed curve).

5, 2008 / Vol. 33, No. 24 / OPTICS LETTERS 3029
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probe pulse was generated by frequency doubling
with a �-barium borate crystal. The setup scheme
was conceptually the same as the first experiment,
with the addition of a 175 apex angle axicon mounted
onto the IR beam line to reshape the driving pulse
into a Bessel beam.

As we show in Fig. 3(a), the probe pulse—as
expected—developed X wave tails in the �� ,�� spec-
trum due to XPM. We also performed a series of nu-
merical simulations to confirm the validity of this
last experimental result, using a code described in
detail in [5]. In Fig. 3 the numerically predicted �� ,��
spectra of the probe pulse with and without XPM re-
shaping are reported. As may be seen, the numerics
confirm our experimental findings. We note that the
driving Bessel pulse suffered no significant changes
owing to self-induced nonlinear effects as verified
both numerically and experimentally (data not
shown); i.e., no spectral broadening was observed.
These last results confirm that the XPM reshaping of
the probe pulse into an X wave is not necessarily
related to filamentation of the pump pulse. Indeed
Eq. (1) is derived under the sole assumption that the
scattering polarization is localized in space (allowing
the probe spectrum to spread in angle) and in time
(allowing the probe to spread its temporal spectrum)
[3].

In conclusion, in this Letter we have studied in de-
tail the spatiotemporal reshaping induced by XPM
from an intense driving pulse on a weaker probe at a
different wavelength in a bulk Kerr medium. We

Fig. 3. (Color online) (a) Experimentally measured �� ,��
spectrum for the probe pulse at 400 nm reshaped by XPM
driven from a PBB at 800 nm. The white curve is the
X-wave relation curve calculated with Eq. (1), where vx
=2.043�108 m/s is the theoretically predicted group veloc-
ity for the PBB. Numerically simulated �� ,�� spectrum for
the probe pulse (b) before interaction with the driving pulse
and (c) with XPM induced by the PBB.

3030 OPTICS LETTERS / Vol. 33, No. 24 / December 15,
e shown that XPM can be exploited to generate
trally isolated linear X waves that propagate
a finite distance with no dispersion and no dif-

tion. Moreover we have shown the generality of
mechanism, which holds as long as the driving
e propagates for a distance long enough with a
cient intensity. We think that these results will
seful both as a tool to better understand current
ies on two-color systems in the field of ultrashort

linear optics and to provide a feasible method to
erate X waves in the optical domain.
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We present direct measurements of the spatiotemporal electric field of an ultrashort Bessel-X pulse gener-
ated using a conical lens (axicon). These measurements were made using the linear-optical interferometric

2276 OPTICS LETTERS / Vol. 34, No. 15 / August 1, 2009
technique SEA TADPOLE, which has micrometer spatial resolution and femtosecond temporal resolution.
From our measurements, both the superluminal velocity of the Bessel pulse and the propagation invariance
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of the central spot are apparent. We verified our meas
America

OCIS codes: 320.7100, 320.5550.

Bessel-X pulses are of great interest because they
propagate in vacuum or linear media over large dis-
tances like an optical bullet—without exhibiting any
diffraction or temporal spread. Bessel pulses have
many applications, such as plasma generation [1],
light filamentation (see reviews [2,3]), imaging [4],
particle micromanipulation [5], and cell transfection
[6]. Bessel-X pulses are one type of axially symmetri-
cal localized wave (see [7–10] and references therein)
that corresponds to a broadband wave packet of co-
axial zeroth-order Bessel beams. Their longitudinal
and transverse wavenumbers (which determine the
spacing of the Bessel rings) are proportional to the
temporal frequency of the individual Bessel beam
constituents, and it is this characteristic that distin-
guishes them from other possible superpositions of
Bessel beams [7]. Their three-dimensional intensity
profile I�x ,y ,z� or I�x ,y , t� consists of a bright central
spot surrounded by weaker interference rings all in-
side of two cones that start at the origin, and one ex-
tends forwards and the other backwards in time (or
z). Therefore, an x– t or x–z slice of the field re-
sembles the letter X. In principle Bessel-X pulses can
propagate over an infinite distance without any
spread. But in practice, owing to finite aperture sizes
and aberrations in the Bessel beam generators, the
propagation invariant zone is restricted, though this
is still usually several orders of magnitude larger
than the Rayleigh range of a Gaussian beam with the
same focal spot size. Interestingly, the field of a
Bessel-X pulse propagates along the z axis with equal
phase and group velocities that are greater than c in
vacuum. It is important to measure these pulses, not
only to observe their interesting and useful proper-
ties but also to aid in their generation and applica-
tion. But Bessel-X pulses have a complex spatiotem-
poral shape, so a spatiotemporal measurement
technique with simultaneous femtosecond temporal
resolution and micrometer spatial resolution is
needed.

Several previous publications have reported ex-
perimental studies of Bessel-X pulses. The propaga-

0146-9592/09/152276-3/$15.00
nts with simulations. © 2009 Optical Society of

invariance of the small central spot of a Bessel-X
e in a dispersive medium was first shown in [9],
re a holographic element generated the field. Evi-
ce of X-like spatial profiles and the superluminal
agation of Bessel-X waves were demonstrated
g an annular slit and a pinhole to generate cross
elations of the fields with a white-light source
. Later, direct autocorrelation measurements
e made of the X profile of the pulses generated

sub-10 fs laser pulses [11]. The superluminal
d of Bessel-X pulses has also been measured by
rving the ionization front in argon gas owing to
central spot of an intense Bessel-X pulse gener-
using an axicon and 70 fs pulses [1]. Recently a

tman–Shack sensor and frequency-resolved opti-
gating were used to separately characterize both
spatial and the temporal fields of a Bessel-X
e [12]. But, to our knowledge, a direct measure-
t of the field [i.e., E�x ,z , t�] of a Bessel-X pulse in
course of its propagation has never been made.

this Letter we do so, reporting “snapshots in
t,” or measurements of the spatiotemporal X-like
le of a femtosecond Bessel-X pulse, including the

se versus time. Our results show propagation in-
ance over 8 cm, as well as the superluminal ve-
y of the Bessel-X pulse. To generate the Bessel-X
e, we propagated �37 nm bandwidth, �30 fs
es from a KM Labs Ti:Sa oscillator through a
d-silica axicon with an apex angle of 176°. The
size of the beam at the axicon’s front surface
4 mm. For the measurements we used the

ar-optical spectral interferometric technique,
TADPOLE [13,14], and we compared our mea-

ments with numerical simulations.
detailed description of SEA TADPOLE can be
d in [13,14]. Briefly, this device involves sam-
g a small spatial region of the Bessel pulse with a
le-mode optical fiber (having a mode diameter of
�m) and then interfering this with a reference
e in a spectrometer to reconstruct the pulse in-
ity and phase E��� [and hence also E�t�] at a
t in space. We scan the fiber transversely (versus

9 Optical Society of America
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x) and the axicon longitudinally (versus z) to yield the
spatiotemporal field, E�x ,z , t�. Our Bessel-X pulses
had cylindrical symmetry about the z axis, so we did
not scan versus y, but we could if necessary. Our tem-
poral resolution was 17 fs, enough to measure a pulse
with 37 nm of bandwidth, and zero filling decreased
the point spacing to 4.6 fs. Our spatial resolution is
at most equal to the fiber’s mode size, �5 �m, but,
because we resolve the complex field, rather than the
intensity, we often measure features several mi-
crometers smaller than this [14]. SEA TADPOLE
measures the spectral phase difference between the
unknown and the reference pulse. So, for these mea-
surements we placed a flat glass window with a
thickness equal to the center thickness of the axicon
in the reference arm to cancel the group-delay disper-
sion (GDD) introduced at the center of the axicon. In
principle there will still be a little radially varying

Fig. 1. (Color online) Experimental setup. A single-mode
optical fiber samples a small region of a Bessel pulse, gen-
erated using an axicon. The reference pulse is coupled into
an identical fiber. At the other end of the fibers, one lens is
used to collimate both beams, and this also causes them to
cross. A CCD camera is placed at their crossing point to
record the resulting interference. Wavelength is mapped
to the camera’s horizontal dimension, so that a two-
dimensional spectral interferogram is recorded, and E��� is
retrieved from this image [14]. To measure the spatiotem-
poral field, we scan the Bessel pulse’s sampling fiber in x
and the axicon in z, so that an interferogram at each fiber
position is measured, and from this, the field E�� ,x ,z� is
measured.

Fig. 2. (Color online) Left, the measured field amplitude at
sponding simulations. Intensity is indicated by the scale. We
is to emphasize the location of t=0.

A

D left in the beam, but because the axicon angle
o large, considering our bandwidth, this will be
ligible. Therefore, our measurements reflect the
tiotemporal intensity and phase introduced by the
con geometry, and not the group-velocity disper-

(GVD) of its material, or the input pulse. Our ex-
imental setup is shown in Fig. 1.
hree of our measurements are shown in Fig. 2.
ile our device measures the spatiotemporal inten-
and phase, most of the interesting features are in
intensity, and the measured pulse is chirp-free

ng to dispersion compensation, so here we only
w the measured pulse amplitude (the square root
he intensity).
e also performed numerical simulations, shown

the right in Fig. 2 that are in good agreement with
measurements, except that the wings in the

.5 cm image are shorter in the measurement, and
z=13.5 cm the fringe patterns are slightly differ-
. Both of these features are influenced by aberra-
s in the axicon that occur because they are diffi-

t to machine perfectly and, for example, the tip of
cone is usually slightly round [15]. Although we
e accounted for the shape of the tip in our simu-
ons, these aberrations are difficult to model pre-
ly, and so some discrepancies are present.
here are several interesting features in our mea-
ements. The central maximum of the measured
m has a FWHM spot size of 17.2 �m at z
5 cm, 17.3 �m at z=9.5 cm, and 18.6 �m at z
.5 cm, and the beam shape remains essentially
hanged over a propagation distance of 8 cm. At
3.5 cm, the interference pattern is just beginning

change owing to the aberrations in the axicon.
te that, for a Gaussian beam of this size, the waist

ld have expanded by 26 times after propagating
m. Also, the fringe periodicity is 27.8 �m in the
t two images and 27 �m in the last image, which
n good agreement with the theoretical prediction
7.8 �m. Again, in our measurements this quan-
changes with z by a small amount owing to the

rrations.
e also see the Bessel-X pulse’s superluminal

up velocity along the propagation axis, which does
violate Einstein’s causality if distinguished from

different distances �z� after the axicon; right, the corre-
lized each field to have a maximum of 1. The white bar
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the signal velocity [16]. SEA TADPOLE measures the
Bessel-X pulse’s arrival time with respect to the ref-
erence pulse, the latter of which is approximately
Gaussian in both space and time and travels at the
speed of light c. So, if the Bessel-X pulse were travel-
ing at the speed of light, then for each value of z, its
spatiotemporal intensity would be centered at the
same time (here t=0 and emphasized with the white
bar), but it is easy to see that this is not the case. Our
simulations predict that for our axicon’s angle the
Bessel-X pulse’s speed along the z axis should be
1.00013c. Therefore, over a distance of 8 cm the
Bessel-X pulse would lead our moving reference
frame (the reference pulse) by 35 fs. In our results
the center of the pulse is shifted in time by 32 fs be-
tween z=5.5 cm and z=13.5 cm, which is in good
agreement with our theoretical prediction. To verify
this result, we repeated the experiment five times
and consistently measured time shifts close to our
predictions for this axicon. We also realigned the ex-
periment in between these trials to assure that this
delay was not due to (or significantly affected by)
misalignment of the axicon’s scanning stage.

While both the phase and group velocity along the
propagation axis of the Bessel-X pulse are superlumi-
nal, these velocities should not be confused with the
propagation speed of the information or the signal ve-
locity [10]. Because these pulses are solutions to the
wave equation, they do not transmit information
superluminally and do not violate Einstein’s causal-
ity. Any attempt to make a signal “mark” in a
Bessel-X pulse would result in reshaping of the spa-
tial profile, and the mark would spread out luminally
and not propagate superluminally. On the other
hand, a different type of Bessel wavepacket, where
the lateral wavenumbers of the constituent Bessel
beams are all the same and are independent of their
temporal frequencies, would not possess the X-like
profile and can carry a signal without undergoing the
reshaping. But such pulses propagate subluminally
and spread out in time owing to their inherent free-
space GVD.

In conclusion, using SEA TADPOLE, we made di-
rect spatiotemporal recordings of the electric field of
Bessel-X pulses, and we verified these results with
simulations. We demonstrated both the propagation

2278 OPTICS LETTERS / Vol. 34, No. 15 / August 1, 200
riance of the Bessel-X pulse and its superluminal
p velocity along the z axis, which we found to be
012c—within 0.001% error of the expected value.
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Abstract: We measure the spatiotemporal field of ultrashort pulses with 
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decelerating ultrashort, localized, nonspreading Bessel-X wavepackets were 
generated from a ~27 fs duration Ti:Sapphire oscillator pulse using a 
combination of an axicon and a convex or concave lens. The wavefields are 
measured with ~5 µm spatial and ~15 fs temporal resolutions. Our 
experimental results are in good agreement with theoretical calculations and 
numerical simulations. 

©2009 Optical Society of America 

OCIS codes: (320.0320) Ultrafast optics; (320.5540) Pulse shaping; 

References and links 

1. H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, eds., Localized Waves: Theory and 
Applications (New Jersey: John Wiley & Sons Ltd, 2008). 

2. P. Saari, and K. Reivelt, “Evidence of X-Shaped propagation-invariant localized light waves,” Phys. Rev. Lett. 
79(21), 4135–4138 (1997). 

3. H. Sõnajalg, M. Rätsep, and P. Saari, “Demonstration of the Bessel-X pulse propagating with strong lateral and 
longitudinal localization in a dispersive medium,” Opt. Lett. 22(5), 310–312 (1997). 

4. K. Reivelt, and P. Saari, “Experimental demonstration of realizability of optical focus wave modes,” Phys. Rev. 
E Stat. Nonlin. Soft Matter Phys. 66(5), 056611 (2002). 

5. I. Alexeev, K. Y. Kim, and H. M. Milchberg, “Measurement of the superluminal group velocity of an ultrashort 
Bessel beam pulse,” Phys. Rev. Lett. 88(7), 073901–073904 (2002). 

6. R. Grunwald, V. Kebbel, U. Griebner, U. Neumann, A. Kummrow, M. Rini, E. T. J. Nibbering, M. Piche´, G. 
Rousseau, and M. Fortin, “Generation and characterization of spatially and temporally localized few-cycle 
optical wave packets,” Phys. Rev. A 67(6), 063820–063825 (2003). 

7. F. Bonaretti, D. Faccio, M. Clerici, J. Biegert, and P. Di Trapani, “Spatiotemporal amplitude and phase retrieval 
of Bessel-X pulses using a Hartmann-Shack sensor,” Opt. Express 17(12), 9804–9809 (2009). 

8. P. Bowlan, H. Valtna-Lukner, M. Lõhmus, P. Piksarv, P. Saari, and R. Trebino, “Measuring the spatiotemporal 
field of ultrashort Bessel-X pulses,” Opt. Lett. 34(15), 2276–2278 (2009). 

9. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” 
Phys. Rev. Lett. 99(21), 213901–213904 (2007). 

10. P. Saari, “Laterally accelerating airy pulses,” Opt. Express 16(14), 10303–10308 (2008). 
11. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel 

generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009). 
12. Z. L. Horváth, and Z. Bor, “Diffraction of short pulses with boundary diffraction wave theory,” Phys. Rev. E 

Stat. Nonlin. Soft Matter Phys. 63(2), 026601–026611 (2001). 
13. P. Bowlan, U. Fuchs, R. Trebino, and U. D. Zeitner, “Measuring the spatiotemporal electric field of tightly 

focused ultrashort pulses with sub-micron spatial resolution,” Opt. Express 16(18), 13663–13675 (2008). 
14. P. Bowlan, M. Lohmus, P. Piksarv, H. Valtna-Lukner, P. Saari, and R. Trebino, Measuring the spatio-temporal 

field of diffracting ultrashort pulses,” arXiv:0905.4381 (2009). 
15. M. Clerici, D. Faccio, A. Lotti, E. Rubino, O. Jedrkiewicz, J. Biegert, and P. Di Trapani, “Finite-energy, 

accelerating Bessel pulses,” Opt. Express 16(24), 19807–19811 (2008). 
16. P. Bowlan, P. Gabolde, A. Shreenath, K. McGresham, R. Trebino, and S. Akturk, “Crossed-beam spectral 

interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses 
in real time,” Opt. Express 14(24), 11892–11900 (2006). 

17. P. Bowlan, P. Gabolde, and R. Trebino, “Directly measuring the spatio-temporal electric field of focusing 
ultrashort pulses,” Opt. Express 15(16), 10219–10230 (2007). 

18. S. Akturk, B. Zhou, B. Pasquiou, M. Franco, and A. Mysyrowicz, “Intensity distribution around the focal regions 
of real axicons,” Opt. Commun. 281(17), 4240–4244 (2008). 

#113845 - $15.00 USD Received 7 Jul 2009; revised 4 Aug 2009; accepted 4 Aug 2009; published 7 Aug 2009

(C) 2009 OSA 17 August 2009 / Vol. 17,  No. 17 / OPTICS EXPRESS  1494831



19. D. Abdollahpour, P. Panagiotopoulos, M. Turconi, O. Jedrkiewicz, D. Faccio, P. Di Trapani, A. Couairon, D. 
Papazoglou, and S. Tzortzakis, “Long spatio-temporally stationary filaments in air using short pulse UV laser 
Bessel beams,” Opt. Express 17(7), 5052–5057 (2009). 

20. J.-M. Manceau, A. Averchi, F. Bonaretti, D. Faccio, P. Di Trapani, A. Couairon, and S. Tzortzakis, “Terahertz 
pulse emission optimization from tailored femtosecond laser pulse filamentation in air,” Opt. Lett. 34(14), 2165–
2167 (2009). 

1. Introduction 

Ultrashort, few-cycle optical pulses with special spatiotemporal properties have promising 
applications in many fields, including physical, quantum, and nonlinear optics; imaging; and 
particle and cell manipulation; to name a few. These applications often require pulses with a 
spatial and temporal profile that is much more sophisticated than a simple Gaussian beam in 
space or pulse in time. 

One class of pulses with uncommon, but useful properties are the so-called localized 
waves [1]. These are ultrabroadband wave packets that are well localized both spatially and 
temporally and propagate over long distances in linear media without spreading in space or 
time. Localized waves are difficult to generate experimentally because a specific coupling 
between the frequency and wavenumber of their Bessel beam constituents is required, and 
over a broad spectrum. But still several successful experiments have been reported and 
evidence of the complex spatiotemporal profiles of some types of localized waves has been 
demonstrated [2–8]. Their distortion-free and superluminal propagation along the cylindrical-
symmetry axis has also been observed. 

More recently, a type of laterally accelerating localized wave called an Airy beam (or 
pulse, if generated using ultrashort pulses), has attracted attention [9–11]. Pulses can also 
accelerate due to diffraction, spherical aberration in lenses, and appropriately shaped 
nonlinear profiles of axicons [12–15]. 

In this paper, we report spatiotemporal measurements of accelerating and decelerating 
Bessel pulses. The term was proposed in [15] where generation and properties of such pulses 
have been theoretically investigated. These pulses are similar to the localized waves known as 
Bessel-X pulses [2,3,6–8], with the main difference being that they are generated by crossing 
and interfering focusing pulses that have curved pulse fronts and form part of a spindle torus 
surface, rather than the double conical surface that is present in Bessel-X pulses. As a result, 
their bullet-like, central, intense apex and accompanying Bessel rings become smaller or 
larger as the pulse propagates, depending on whether the torus shrinks towards a ring or 
expands towards a sphere. But the central spot of these pulses is still localized and intense 
over a propagation distance considerably longer than that of a Gaussian beam with a 
comparable waist size. 

To make these measurements we used scanning SEA TADPOLE (Spatially Encoded 
Arrangement for Temporal Analysis by Dispersing a Pair of Light E-fields) [13,16], which is 
a linear-optical interferometric method for measuring the spatiotemporal field E(x,y,z,t) of 
complicated ultrashort pulses. Briefly, this method involves sampling a small spatial region of 
the Bessel pulse with a single-mode optical fiber and then interfering this pulse with a 
reference pulse in a spectrometer to reconstruct E(λ) for that spatial point. Then to measure the 
spatial dependence of the field, we scan the fiber axially (in x) throughout the cross section of 
the Bessel pulse, so that E(λ) is measured at each x, yielding E(λ,x). This field can be Fourier 
transformed to the time domain to yield E(t,x). In order to measure the z (propagation 
direction) dependence of the spatiotemporal field, the axicon and lens are translated along the 
propagation direction to bring them nearer or further from the sampling point (the fiber). As 
demonstrated previously [8,13,14,16,17], SEA TADPOLE can measure optical pulses with 
complex spatiotemporal intensities and phases with sub-micron spatial and femtosecond 
temporal resolutions. 

2. Theoretical description of accelerating Bessel pulses 

The formation of accelerating Bessel pulses can be intuitively described using the Huygens-
Fresnel principle. This involves treating each point on the wave-front as a source of 
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spherically expanding waves whose temporal profile is governed by that of the primary wave. 
Consider an ultrashort pulse impinging on a thin annular slit (~1 µm wide) at an instant t = 0. 
Thinking in terms of the Huygens-Fresnel principle, this will yield an expanding, semi-
toroidal wave-field immediately behind the slit. As the pulse propagates further, the tube 
radius of the half torus becomes larger than the annular-slit radius R, and at times t > R/c the 
wave-field evolves like a spindle torus, i.e., different parts of the torus start to overlap. Of 
course, the wave-field is treatable as a mathematical surface only for infinitesimally short 
delta-like pulses in time. Real ultrashort pulses are at least several cycles long, and so yield an 
interference pattern in the overlap region (see insets of Fig. 1). The radial dependence of the 
field in the interference region is approximately a zero

th
-order Bessel function of the first kind. 

As the wave-field evolves in time, the intersection region propagates along the z-axis and 
the angle between the normal of the torus surface and the z-axis (θ) decreases. For ultrashort 
pulses, this intersection region is small, and the angle θ is approximately the same for all 
points within it at a given instant. Therefore the field in the intersection region is 
approximately equivalent to the center of a Bessel beam or the apex of a Bessel-X pulse (see 
also [12]). The smaller the angle θ—also called the axicon angle—the larger the spacing 
between the Bessel rings and the smaller the superluminal velocity of the pulse. Hence, an 
annular ring transforms an ultrashort pulse into a decelerating Bessel wave-packet propagating 
along the z-axis. Of course, outside of the intersection region, where there is no interference to 
generate phase fronts that are perpendicular to the z-axis or a Bessel profile, the phase and 
pulse fronts expand with a constant velocity c and propagate in their normal directions. 

 

Fig. 1. Schematic of the formation of accelerating pulses from a plane-wave pulse moving to 
the right with velocity c. The red strips depict the pulses’ intensity profiles in space at four 
different times. The conical surface of the axicon transforms the plane-wave pulse into a 
Bessel-X pulse, and the convex lens then yields the accelerating pulse. (In the actual 
experiments, the positions of the axicon and lens were interchanged, but this does not influence 
the results.) The inset plots show the expected intensity vs. x and t for three different positions 
z. 

Since very little energy passes though an annular slit, it is more efficient to use an axicon 
in combination with a lens to generate such fields. If the lens is concave, the field behind it 
evolves similarly to what was described above, and a decelerating pulse is generated. On the 
other hand, a convex lens (see Fig. 1) results in an increasing angle θ as the pulse propagates 
and hence an accelerating pulse. 

There are two approaches for calculations elaborating the above qualitative treatment. The 
first approach involves considering only the intersection region close to the optical axis. Here 
the field is approximately conical, or it is a cylindrically symmetrical superposition of plane 
waves propagating at a fixed angle θ to the z axis. In this case, the field can be described using 
the known expression for the field of a Bessel-X pulse, which is a broadband wave-packet of 
monochromatic Bessel beams [1–3,5–7,15] 
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where ρ, z, and t are the spatial (cylindrical) and temporal coordinates, and G(ω–ω0) is the 
(Gaussian-like) spectrum of the pulse having a central frequency ω0. However, unlike the case 
of the Bessel-X pulse, here the axicon angle depends on the propagation distance z from the 

lens with the focal length f as θ(z) = arctan[|f (f-z)
−1

| tanθa], where θa is the axicon angle 
without the lens. Because the group velocity of the wave-packet along the z direction is given 
by vg = c/cos(θ) [1–3,5–7,15], the group velocity of the Bessel pulses will be superluminal 
and accelerate if f is positive and decelerate if f is negative. The approximations made in this 
approach are valid as long as the pulse duration τ is much shorter than its characteristic time 
of flight given by f/c. Considering our experimental parameters, which are given below, the 
phase fronts at the intersection (apex) region deviate from those of conical waves by less than 

10
−5

 of the wavelength, which is negligible. 
The second more general approach involves recognizing that a lens is a Fourier 

transformer and that the Fourier transform of the field just after the axicon is a good 
approximation to a thin ring. Therefore the temporally reversed field of the accelerating 
Bessel pulse can be calculated by integrating over monochromatic spherical wave pulses as if 
they were emerging from a thin annular slit: 
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Here ra = |f|tan(θa) is the radius of the ring along which the integration is carried out by the 
polar coordinate φ of the source points and the origin of the z axis is in the plane of the ring. 
One advantage to this approach is that we can take into account aberrations in the lens and 
axicon. For example, chromatic aberrations can be modeled using a frequency-dependent ring 
radius ra(ω). Also, this expression can be used for numerical calculations of the field under 
the conditions in which the previous approach is not valid, i.e., also outside of the apex region. 

3. Experimental results 

In our experiments, ultrashort, accelerating Bessel pulses were generated using a KM Labs 
Ti:Sa oscillator with 33 nm of bandwidth (FWHM) and an approximately Gaussian spectrum 
with a central wavelength λ0 = 805 nm. The spot size of the laser beam was 4 mm (FWHM). 
A fused-silica axicon with an apex angle of 176° was used, which transforms plane wave 
pulses at λ0 = 805 nm into conical wave pulses (Bessel-X pulses) with θa = 0.92°. We used 

lenses with focal lengths of + 153 mm and −152 mm. For convenience in the actual set-up, the 
axicon was mounted behind the lens in a lens tube, i.e., in reverse order of Fig. 1. So the two 
components effectively constituted a single thin phase element, whose transmission function 
does not depend on the ordering of components. However, the small distance between them (a 
few mm) was taken into account in our simulations. 

The spatiotemporal field after the compound optic was measured using SEA TADPOLE, 
using a reference pulse directly from our oscillator. At each position of the sampling fiber in 
SEA TADPOLE, we measured the spectral phase difference between the reference pulse and 
the Bessel pulse and its spectrum, so that our measurements reflect the phase added to the 
beam by the lens and axicon. Such differential measurements also allowed us to add glass to 
the reference arm of SEA TADPOLE, so that chirp introduced by the axicon and lens would 
essentially cancel out in the measurement. 

Our device had a spatial resolution of about 5 µm, determined by the mode size of the 
fiber that we use to sample the Bessel pulse. Our temporal resolution was ~17 fs and with 
zero-filling we reduced the point spacing on the time axis to 4.5 fs. Because the temporal 
resolution of SEA TADPOLE is given by the inverse of the spectral range of the unknown 
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pulse, and the smallest possible temporal feature in the pulse is given by the inverse of its 
bandwidth (which is several times less than the spectral range), our device should always have 
sufficient temporal resolution to measure the unknown pulse, regardless of its duration (even 
for single cycle pulses). Because the Bessel pulses were approximately cylindrically 
symmetrical, we only measured the field along one transverse coordinate, x. For more details 
about the SEA TADPOLE device that we used, see reference [13]. 

 

Fig. 2. Comparison of the measured and calculated spatiotemporal profiles of the electric field 
amplitude of an accelerating Bessel pulse at three positions along the propagation axis (z). The 
color bar indicates the amplitude scale normalized separately for each plot. The white bar 
emphasizes t = 0, which is where the pulse would be located if it were propagating at c. 

The spatiotemporal profiles of the accelerating Bessel pulses were measured at five 
different z positions and for the decelerating Bessel pulse at nine positions. In all cases, we 
measured the complete spatiotemporal intensity and phase, but we show only the 
spatiotemporal intensities here, as this information is more interesting. Three of these 
measurements for each are shown in Fig. 2 and Fig. 4. For comparison, numerical simulations 
were performed using Eq. (1) with the experimental parameters, and as seen in the figures, the 
two are in very good agreement. 

SEA TADPOLE also measures the Bessel-X pulse’s arrival time with respect to the 
reference pulse, the latter of which, after passing through the compensating piece of glass, 
travels at the speed of light c. The origin of our time axis can be considered as the location of 
the reference pulse if it propagated along the axis z with the Bessel pulses. So, if the Bessel 
pulse were traveling at the speed of light, then, for each value of z, its spatiotemporal intensity 
would be centered at the same time origin t = 0 which is emphasized with the white bar in the 
figures. But it is easy to see in Figs. 2 and 3 that this is not the case. The superluminal group 
velocity and the pulse’s acceleration or deceleration are both apparent from the z-dependent 
shifts of the pulses relative the origin t = 0. The time shifts were compared to theoretically 
calculated shift function and we found a good agreement, see Fig. 4. 
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Fig. 3. Comparison of measured and calculated spatiotemporal profiles of the electric field 
amplitude of decelerating Bessel pulse at three positions along the propagation axis z. 

The group velocity of Bessel pulses can also—indirectly but in the given case more 
precisely—be determined from the measured fringes in their spatial profile. This is because 
these fringes correspond to rings of intensity maxima, radii of which grow sequentially as 
governed by placement of maxima and minima of the Bessel function J0. Thanks to the many 
measurable fringes we could accurately determine the mean radial wavelength ΛB = λ0 /sinθ of 
the Bessel profile. 

 

Fig. 4. Experimentally determined (points) and theoretically predicted (solid curves) temporal 
shifts (in femtoseconds) of the accelerating/decelerating Bessel pulses in respect of the 
reference pulse. z is the propagation distance. 

Hence, having in mind the approximations that apply to Eq. (1) and the relation vg = 
c/cosθ, the distance-dependent group velocity can be found using the following equation: 

 [ ] .)(1)(v
2

0 zcz Bg Λ−= λ   (3) 

Equation (3) was used to estimate the group velocity of the measured pulses at various 
propagation distances, and these results are shown in Fig. 5 along with the theoretical values. 
The experimental values are in good agreement with our theoretical predictions, except for 
two points at z = 32 mm and 52 mm for the decelerating pulses. This discrepancy is likely due 
to the imperfect surface of the axicon as discussed below. 

Without a lens, the propagation depth over which the Bessel-X pulses last, starts, in 

principle, at the tip of axicon and ends at z ≈w/tanθa, where w is the radius of the input beam 
or aperture. Imperfections in our axicon reduce the distance over which the Bessel-X pulse 
maintains its perfect ring profile (let us call it the Bessel zone). At values of z less than 50 
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mm, the profile distortions were caused by the slightly spherical tip of the axicon (see, e. g., 
[18]). This axicon aberration also makes the pulse accelerate even without a lens, though this 
effect is small and did not significantly influence our measurements. Slight deviations of the 
surface of the axicon from an ideal cone are responsible for a reduction of the upper limit of 

the zone, which for our axicon stopped at z ≈130 mm [8]. Therefore the Bessel zone only 

lasted half as long as it would be expected to in the absence of aberrations (zmax ≈w/tanθa). At 
values of z > 130 mm, these deviations distort the phase-fronts of the interfering plane wave 
constituents of the conical wave to an extent that affects the shape of the central spot of the 
Bessel profile, but it does not noticeably affect the pulse's group velocity as established in [8] 
from direct temporal data. 

Placing lenses before the axicon compresses or stretches the Bessel zone (see, e. g., 
[19,20]). Without the lens the Bessel zone for the axicon that we used lasts for 80 mm ( = 130 
mm – 50 mm). When the positive lens is added, this decreases to about 50 mm, going from z 

≈30 mm to 80 mm. With the negative lens (decelerating Bessel pulses) the Bessel zone is 

greatly lengthened, and in principle to tens of kilometers starting at z ≈ 70 mm. Therefore the 
two points at z = 32 mm and 52 mm in Fig. 5 deviate (as clearly seen in the right plot with 
expanded ordinate scale) from the theoretical curve because they are outside of the Bessel 
zone. Although we could not measure the decelerating pulse kilometers from the axicon, the 
Bessel ring pattern was observable by eye on the lab wall ~10 m after the axicon, and, at this 
point, the radial wavelength ΛB had increased to about 1 mm. 

The full width of the central maximum of the accelerating Bessel pulse at 1/e of the 
maximum decreased by a factor of 1.6, from 23.0 µm to 14.8 µm, after 40 mm of propagation 
from z = 32 mm to 72 mm inside the Bessel zone. For the decelerating pulse, the spot size 
instead increased by a factor of 1.4, from 39.1 µm to 56.0 µm after 10 cm of propagation from 
z = 72 mm to 172 mm. This represents a much larger Rayleigh range than that of a Gaussian 
beam, which would only be 0.2 mm if the waist diameter were 14.8 µm or 1.5 mm if it were 
39.1 µm. 

 

Fig. 5. Comparison of experimentally and theoretically calculated group velocities for 
accelerating and decelerating Bessel pulses. The measured group velocities for the accelerating 
Bessel pulses are marked with blue crosses, and, for decelerating pulses, with red circles. The 
error bars show the standard deviations from the mean value. The solid lines show the 
theoretically predicted dependences. At the position z = 0, the theoretical curves for both pulses 
coincide because the same axicon was used to generate them. 

It should be stressed that the indirect evaluation of the group velocities from the 
interference patterns is slightly more precise than using the time shift data thanks to relatively 
high quality of our axicon (except the tip) and relatively narrow spectrum of the input pulse. 
In the case of shorter pulses—in certain sense “genuine” Bessel-X pulses contain only a few 
cycles—the number of fringes (Bessel rings) is correspondingly small and their spacing 
should be measurable with lower accuracy than the time shifts in the plots with femtosecond-
range temporal resolution. Similarly, if there are substantial phase distortions present in the 
optical elements the fringe patterns acquire irregularities; hence again the direct approach 
based on the time shifts is preferable not only principally but also practically. 
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5. Conclusions 

We directly measured the spatiotemporal field E(x,t,z) of ultrashort accelerating and 
decelerating Bessel pulses with micron spatial resolution and femtosecond temporal resolution 
using SEA TADPOLE. The field after a lens and axicon was described and modeled 
theoretically, and we used this model to analyze our experimental results. The features in the 
measured spatiotemporal profiles, including the ring spacings and the central spot sizes, were 
found to be in good agreement with our theoretical calculations and numerical simulations. 
We also measured the group velocities of the pulses along the propagation direction and 
observed their acceleration and deceleration. The accelerating Bessel pulse’s speed went from 
1.0002 c after 3.2 cm of propagation to 1.0009 c at 7.2 cm and the decelerating Bessel pulse 
had a speed of 1.00007 c after 5.2 cm and 1.00003 c after 17.2 cm of propagation. The 
measured group velocities were also in good agreement with our theoretical calculations. 
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1 1. INTRODUCTION

The bending of light waves in the shadow region
behind an opaque disk and the appearance of a bright
“Spot of Arago” in the shadow’s centre are manifesta�
tions of diffraction and have been known for centuries.
While the theory of diffraction, especially for mono�
chromatic waves, is rather well developed, the subject
has recently encountered some intriguing issues and
new directions. The discovery of superluminally prop�
agating “diffraction�free” wave�packets; the renais�
sance of an almost forgotten alternative interpretation
of diffraction by the notion of the “boundary wave;”
and the recent possibility of ultrashort�pulsed illumi�
nation all require some revisiting of the classical sub�
ject of optics.

Since the first observation of the diffraction of light
in the middle of the 17th century by R.M. Grimaldi,
tremendous progress was made in the mathematical
treatment of the phenomenon, resulting in the well
developed theory with Fresnel–Kirchhoff and Ray�
leigh–Sommerfeld versions (see, e.g., monographs [1,
2] and references therein). However, the approxima�
tions made in these theories, especially the neglect of
the perturbations of light waves near the boundaries of
openings and the treatment of obstacles as infinitely
thin and made from totally absorbing or infinitely con�
ducting idealized materials, remain under discussion.
In particular, such approximations fail in near�field
and subwavelength�geometry conditions, where mate�
rial surface excitations play a decisive role (see, e.g.,
review [3]).

In the beginning of the 18th century, Thomas
Young proposed, somewhat intuitively, that the dif�
fraction pattern arises from the interference between
the incident light propagating rectilinearly in accor�
dance with the laws of geometrical optics and an
omni�directionally propagating secondary wave origi�

1  The article is published in the original.

nated from the edge of the diffracting body. On the
other hand, Fresnel’s theory—relying on Huygens’
quite counter�intuitive assumption that each point of
the incident wave front is a fictitious source of the sec�
ondary wave—proved more successful and consigned
to oblivion Young’s idea. It was rediscovered in 1888
by Maggi [4] and only in the middle of the last century
was Young’s idea developed into the theory of the
boundary diffraction wave (BDW) by Rubinowicz [5],
Miyamoto and Wolf (references given in [2]). This the�
ory helped to resolve several issues of the standard
Fresnel–Kirchhoff theory, to which it is mathemati�
cally equivalent, at least in the case of plane or spheri�
cal incident waves. In addition, calculation of dif�
fracted fields according to the BDW theory is much
less cumbersome than in the standard theory because
only a simple contour integration along the opening
boundary need be performed instead of a two�dimen�
sional integration over the whole area of the opening,
where Huygens’ fictitious sources are located. Results
of Sommerfeld’s seminal rigorous calculation of dif�
fraction of the electromagnetic field by a straight�
edge—one of the few exactly solved diffraction prob�
lems—can easily be interpreted in terms of BDW. Yet,
the BDW theory has remained outside the mainstream
treatment of diffraction.

Nevertheless, diffraction from openings in opaque
screens is well described and understood by the notion
of the BDW theory. Especially intuitive should be the
formation of a diffracted field in the case of illumina�
tion by ultrashort laser pulses, available in recent
decades (see Fig. 1). Contrary to the traditional treat�
ment using monochromatic fields, in which the trans�
mitted waves fill large depths of space behind the
screen and overlap with each other there, ultrashort
pulses—typically femtoseconds long—are spatially
only few micrometers “thick” and therefore behave
almost like a solitary wave�front surface. Hence, the
time�domain study of diffraction in terms of pulsed
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BDWs is not only didactically preferable but also opens
new interesting directions and applications, such as in
the study of focusing and other transformations of
ultrashort pulses (see, e.g., paper [6] and references
therein). The formation of an ultrashort boundary
wave pulse on a circular aperture has been theoreti�
cally studied [7] and evidence for its existence experi�
mentally identified by measuring modulations in the
spectrum of the on�axis field and in CCD�recordings
of the time�integrated radial intensity distribution of
the field [8]. Our aim has been to directly record, with
simultaneous spatial and temporal resolution, the evo�
lution and interference of the boundary waves behind
various screens.

In 1987 “diffraction�free” light beams [9] were
introduced and now constitute a mature field with
numerous applications (see review [10]). These
beams—also known as Bessel beams—possess a con�
troversial quality: they preserve their tightly focused
central bright spot over large distances of propagation
as if the beam does not obey the laws of diffraction.

At the same time, quite independently, the topic of
undistorted or localized waves emerged in mathemati�
cal physics and deals with ultrabroadband pulses that
are not only “diffraction�free” in space but also propa�
gate without any spread in time [11–13]: “light bullets”
and “electromagnetic missiles.” To date, various local�
ized waves propagating in vacuum superluminally,
luminally (i.e., with velocity c = 299792.458 km/s), or
subluminally have been studied in detail, and promis�
ing applications have been proposed (see, e.g, reviews
[14–17] and the first monograph [18] on the field).
The feasibility of such light bullets moving faster than
c has been experimentally demonstrated more than
once [19–24], but, from time to time, papers still
appear in which the superluminal group velocity of
such wave�packets in vacuum is questioned. There�
fore, our second aim has been to accomplish, for the
first time, with appropriately high resolution and
accuracy, a direct spatiotemporal measurement of the
electric field and propagation velocity of the simplest
superluminal localized wave—the so�called Bessel�X
pulse [19], which comprises an energy lump of
micrometer diameter at the joint apex of a sparse dou�
ble�conical wave.

2. SPATIOTEMPORAL MEASUREMENT
OF LIGHT FIELDS

Our measurements not only required high spa�
tiotemporal resolution, but also high sensitivity. First
of all, we routinely measure the relatively high�inten�
sity spatially uniform reference pulse, which is the
pulse directly out of our laser, using a technique called
FROG (Frequency Resolved Optical Gating [25])—
which utilizes nonlinear optics and a sophisticated
inverse algorithm to retrieve the pulse’s field in time.
To obtain ultrahigh temporal resolution in conjunc�
tion with the required sensitivity, we used a technique
called SEA TADPOLE (Spatially Encoded Arrange�
ment for Temporal Analysis by Dispersing a Pair of
Light E�fields [26]), which is based on spectral inter�
ferometry. It involves measurement of the spectrum of
the sum of the known reference pulse and the
unknown pulse to yield the unknown pulse’s temporal
field, much like monochromatic�beam spatial inter�
ferometry or holography, where measurement of the
spatial intensity of the sum of a known spatial field and
an unknown monochromatic wave yields the
unknown wave field in space. A detailed description of
SEA TADPOLE can be found in [27–29]. Finally, we
achieved high spatial resolution by simply scanning
the micrometer�sized tip of the SEA TADPOLE input
fibre point�by�point through the space where the
unknown light field propagated.

GW

GW

BW

BW

AS

Fig. 1. Schematic of the formation of the Arago spot in the
case of illumination with ultrashort pulses. A pancake�
shaped pulsed wave hits a disk�shaped obstacle (D) from
the left. On passage of the wave, the obstacle cuts off its
central part according to the shadow boundaries (horizon�
tal dashed lines) forming the geometrical wave (GW) com�
ponent of the output field. Each point on the edge of the
obstacle emits a secondary spherical pulsed wave as indi�
cated by arrows, together forming the boundary diffraction
wave (BW), which expands from a ring torus shape trough
a spindle�torus�like stage (cross�section depicted in the
figure) into a spherical wave at infinity. On the axis, over�
lapping and interfering boundary waves form the Arago
spot. Around the shadow boundary in the overlap regions
(also indicated by red ovals) of the BW and GW the com�
mon interference rings appear. The Arago spot (AS) prop�
agates behind the front (indicated by vertical dashed line)
of the transmitted GW but catches up with the latter at
infinity because its velocity is superluminal.

D
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3. SPATIOTEMPORALLY RECORDED 
DIFFRACTION

Here we show two of our results on diffraction of
pulses through screens. The plots in Figs. 2, 3, 5 can be
viewed as still images or “snapshots in flight,” since
they are spatiotemporal slices of the magnitude of the
electric field |E(x, y, z, t)| behind the screen. While we
measured the complete pulse electric fields (amplitude
and phase), we show only plots of the pulse amplitude
because the phase of these pulses is less interesting. We
show pulses measured at different propagation dis�
tances z. For comparison, theoretical simulations are
presented on the right�hand side, which are carried
out using the one�dimensional integral formula [7] of
the boundary diffraction wave theory (the two�dimen�
sional formula of the common diffraction theory gave
the same results as expected).

First, according to the schematic in Fig. 1, we
propagated ultrashort pulses past an opaque disk of
4 mm diameter, making a hole in the beam, and we
measured the resulting spatiotemporal field at differ�
ent distances from the aperture to observe its evolu�
tion. These measurements reveal the spatiotemporal
structure of the weak boundary waves and the brighter
spot at the centre of the beam due to their constructive
interference, i.e., the spot of Arago, as it is known in
conventional diffraction theory. Interestingly, the plots
in Fig. 2 reveal that this spot is surrounded by coaxial
interference rings and, in the axial region the field,
generally resembles the Bessel�X pulse (considered in
the next Section). Moreover, as shown in Fig. 2, the

spot is indeed delayed in time with respect to the main
pulse front, and this delay decreases with z, indicating
a superluminal propagation speed along the z axis (the
main pulse front propagates at c), which has been
observed indirectly in a previous study [8] (where a
spherical initial wave was used). This occurs, because,
as z (or the distance from the disk) increases, the extra
distance that the boundary waves must propagate
(compared to the main pulse front) to reach the z axis
(x = 0) decreases, so the relative delay of the boundary
waves and the bright spot due to their interference
decreases. In fact, the group velocity of the Arago
spot—geometrically located at one pole of a luminally
expanding spindle torus—varies from infinity at z = 0
to c for very large values of z. Thus it is an example of a
decelerating light pulse.

Next, using the same initial field parameters, we
propagated the beam through a 4.4 mm diameter steel
circular aperture and measured the resulting diffrac�
tion. Again our measurements (Fig. 3) are in good
agreement with the simulations, but with a minor dis�
crepancy in the brightness of the main pulse front,
which is likely due to the thickness (3.1 mm) and
imperfect surface quality of our aperture. These mea�
surements show a boundary�wave pulse behind the
main pulse�front in time that eventually catches up
with it. The boundary�wave pulse in these measure�
ments looks very similar to that shown in Fig. 2. (The
boundary waves in these two measurements look a lit�
tle different because all of the images are normalized
to have maximum of 1, and the main pulse front is
much brighter in Fig. 3.) In fact, according to the
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Fig. 2. Formation and evolution of the Arago spot behind an opaque disk of 4 mm in diameter. The magnitude of the electric field
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according to our aim—to demonstrate how the simplest formula of the BDW theory describes properly the diffracted wave.
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boundary wave theory of diffraction, because the aper�
ture and disk have similar diameters, their boundary
waves are almost the same (but of opposite sign of the
wave�function in accordance with the Babinet princi�
ple). So, interestingly, the Arago spot occurs due to
any circular boundary and not just a circular disk.
Moreover, due to the temporal localization of the
pulsed illumination and the temporal resolution of our
measurements, we can directly visualize the small
delayed spot, which with longer pulses or continuous

radiation would have overlapped with the intense,
undiffracted beam.

4. RESULTS ON “DIFFRACTION�FREE” 
BESSEL�X PULSE

The most effective Bessel beam generator—a con�
ical lens (axicon)—refracts plane waves towards the
axis and thus shapes a femtosecond pulse into the
Bessel�X pulse with its characteristic double�conical
profile, as shown in Fig. 4. If the aperture radius R of
the axicon were infinitely large, the pulse would prop�
agate rigidly and without any spread of its micrometer�
size central bright spot at the joint apex of the cones
over an infinitely large distance. In the case of a limited
aperture, it follows from the geometry in Fig. 4 that the
depth of the invariant propagation of the pulse (let us
call it the Bessel zone) is restricted to zB = R/tanθ,
where θ (the so�called Axicon angle) is the angle of
inclination of rays toward the axis z.

Some such measured “snapshots” are shown in
Fig. 5, together with theoretical simulations (this time
calculated as axisymmetric superposition of plane
waves with Gaussian aperture). The two are in good
agreement except that the wings in the z = 5.5 cm
image are shorter in the measurement. This is because
axicons are difficult to machine perfectly; in particu�
lar, the tip of the cones are always distorted and gener�
ally the Bessel zone is shorter than what would be
achieved in the ideal case.

There are several interesting features in these plots.
The central maximum of the pulse has a width of
~20 μm, which—as well as the coaxial intensity rings
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Fig. 4. Schematic of the formation of the Bessel�X pulse as
a conical wave in the case of illumination of a conical lens
(axicon) with ultrashort pulses. zB indicates the range
along the propagation axis, where the pulse can be consid�
ered as “diffraction�free.” Ovals indicate the apex regions
where interference and formation of the Bessel ring pat�
tern take place.
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surrounding it—remains essentially unchanged in
shape from z = 5 cm through z = 13.5 cm. Thus the
apex flies rigidly as a light bullet together with its sparse
wings at constant speed. This is because the Bessel�X
pulse is a propagation�invariant conical wave in dis�
tinction to the expanding toroidal wave forming the
Arago spot, which possesses approximately the Bessel
profile (with expanding rings) near the axis only.

Also, the Bessel X�pulse’s superluminal speed is
apparent in these plots. SEA TADPOLE measures the
pulse’s arrival time with respect to the reference pulse,
which travels at the speed of light (c). Therefore, if the
Bessel X�pulse were traveling at the speed of light, then
at each z its spatiotemporal intensity would be cen�
tered at the same time (here t = 0 and emphasized with
the white line), but it is easy to see that this is not the
case. From our axicon’s angle θ (and from the simula�
tions), we find that the Bessel�X pulse’s speed (axial
group velocity) should be 1.00013c. From our experi�
mental plots we determined [29] it to be around
1.00012c—within 0.001% error of the expected value.

5. DISCUSSION

The superluminality of the Bessel�X pulse and that
of the Arago spot pulse are intriguing. Indeed, while
phase velocities greater than c are well known in vari�
ous fields of physics, a superluminal group velocity
more often than not is considered as a taboo, because,
at first glance, it seems to be at variance with relativis�
tic causality. However, thanks to the numerous studies
throughout the previous century—starting from Som�
merfeld’s works on propagation of plane wave pulses in
dispersive media—it is well known (see, e.g., a thor�
ough review [30]) that the group velocity need not be a
physically profound quantity and by no means should
be confused with the signal propagation velocity. But

in the case of Bessel�X�type pulsed waves no dispersive
medium need to be involved and still, not only is the
group velocity superluminal, but the pulse as a whole
rigidly propagates faster than a plane wave.

Naturally, one feels some unease in accepting this
startling circumstance. But here we experimentally
observe it in the most direct way. When forced to con�
cede the theoretically and experimentally verified
superluminality, one might feel the need to make
recourse to statements insisting that the pulse is not a
“real” one, but instead simply an interference pattern
rebuilt at every point of its propagation axis from truly
real plane wave constituents travelling at a slight tilt
with respect to the axis. Such argumentation is not
wrong but, alas, it leads nowhere. Of course, there is a
similarity between the superluminality of the X�wave
and a simple geometrical faster�than�light movement
of the cutting point in scissors (we refer here to
Gedanken experiments described in textbooks on rel�
ativity). But in the central highest�energy part of the
Bessel�X wave, there is nothing moving at the tilt
angle. The phase planes are perpendicular to the axis
and move rigidly with the whole pulse along the axis.
The Poynting vector, indicating the direction of energy
flow, lies also along the axis. However, the energy flux
is not superluminal. Hence, to consider the Bessel�X
waves as something inferior to “real” waves is not
sound. If we thought so, by similar logic we would
arrive at the conclusion that femtosecond pulses emit�
ted by a mode�locked laser are not real but “simply an
interference” between the continuous�wave laser
modes. In other words, one should not ignore the
essence of the superposition principle of linear fields,
which implies a reversible relation between “result�
ant” and “constituent” fields and does not make any
of the possible orthogonal bases—plane waves and
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cylindrical (Bessel) waves, for the given example—
inferior to others.

Another misunderstanding (the author of the
review [30] seems to agree) stems from oversight of the
fact that there are infinitely many ways to form a
pulsed wave�packet from single�frequency Bessel
beams. They depend on how the radial density of
intensity rings in the beam cross section is related—or
whether or not it is related at all—to the beam’s tem�
poral frequency. In the case of the Bessel�X pulse, this
is a proportionality relation, and therefore the group
velocity is perfectly defined with a single superluminal
value within the whole bandwidth of the wave�packet.
If, on the contrary, the radial density is frequency�
independent, we obtain a completely different wave�
packet, which does not belong to localized waves since
it has no definite group velocity over its whole spec�
trum and therefore spreads in the course of propaga�
tion. But such a wave�packet—named the “pulsed
Bessel beam” in the literature—propagates with
velocity less than c and can be used for sending signals
along the propagation axis. On the other hand, if one
tried to cut a signal “notch” into the core of the
Bessel�X pulse, the notch would behave like the
“pulsed Bessel beam”—spreading out while advanc�
ing subluminally. This is natural, since Maxwell’s
equations or the wave equation for EM fields does not
allow superluminal signalling.

6. CONCLUSIONS

By direct spatiotemporally resolved measurements
of pulsed light fields behind the simplest diffracting
screens we have shown for the first time experimen�
tally how the transmitted wave�field is gradually
formed as a superposition of the directly transmitted
pulse and an expanding boundary wave according to
the almost forgotten boundary diffraction wave theory.
In particular, we observed the formation and superlu�
minal, but decelerating, movement of a small pecu�
liarity caused by interfering boundary waves, which is
responsible for the appearance of the Arago spot in a
common steady�state diffraction pattern. With appro�
priate and higher�than�in�previous�studies resolu�
tions and accuracy we recorded directly the bullet�like
propagation of a “diffraction�free” Bessel�X pulse and
measured its superluminal speed. In summary, we
believe that time�resolved measurements and time�
domain treatment of diffracting waves not only turn
out to be fruitful in modern physical optics, especially
in micro� and meso�optics, but also promote the
understanding of diffraction phenomena.
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The wave-field produced by a ∼30 fs duration Ti:sapphire oscillator pulse behind a circular aperture and circular opaque
disk is measured using the ultrashort-laser-pulse measurement technique, scanning SEA TADPOLE. The high spatial and
temporal resolution of the measuring technique enables us to fully image the diffracted field behind the apertures and record
the interference pattern produced by the so-called boundary diffraction wave pulses.

Keywords: diffraction, interference
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1. Introduction

Throughout the history of describing and viewing
the effects of diffraction, it has usually been done by
using monochromatic light in order to make the diffrac-
tion pattern visible. However, using ultrashort laser
pulses and advanced techniques for measurement, it is
now possible to study diffraction in the time domain.
The diffraction of femtosecond pulses was theoretically
studied in [1] in the context of boundary diffraction
wave theory, where it was shown that, for the special
case of a circular aperture, with incident fields having
axial symmetry around the optical axis, the so-called
geometrical wave (geometric (direct) pulse)UG and the
boundary wave (boundary wave pulse) UB could have
comparable amplitudes on the optical axis. Three cases
for the incident femtosecond pulse front – plane, diver-
gent, and convergent pulse fronts – were studied and
it was shown that, when the pulses are short enough,
one could have two pulses with the same temporal pro-
file and comparable intensities propagating along the
optical axis after the diffractive element. One pulse
is caused by the incident field that goes through the
aperture undisturbed and the other is caused by the so-
called boundary diffraction wave pulse. The diffracted
field is said to arise from the superposition of the di-
rect and the boundary diffraction wave pulse. A later
study [2] reported the experimental demonstration of
the existence of the boundary wave pulse by measuring

the modulated spectrum on the optical axis (caused by
the two separate pulses) and the integrated radial inten-
sity distribution of the diffracted field behind a circular
aperture.

In this paper we present the results of the direct
measurement of the diffracted field behind a circular
aperture and circular opaque disk using high spectral
(temporal) and spatial resolution provided by the ultra-
short pulse measurement method called scanning SEA
TADPOLE [3]. The short nature of the pulses used in
the experiment, combined with the high spatiotemporal
resolution and sensitivity of the method used for mea-
surement, enables us to fully image the boundary wave
pulse and the direct pulse separated in time behind the
circular aperture and opaque circular disk. Taking mea-
surements at different distances from the apertures en-
ables us to study the temporal evolution of the diffrac-
tion of the propagating ultrashort laser pulses, and show
the superluminal speed of the boundary wave pulse on
the optical axis.

2. Numerical simulations

We performed numerical simulations for the dif-
fracted field behind the apertures on the basis of
the equation (12) in [1] derived from the work of
Miyamoto and Wolf [4]. According to the bound-
ary diffraction wave theory, the field of the boundary

c© Lithuanian Physical Society, 2010
c© Lithuanian Academy of Sciences, 2010 ISSN 1648-8504
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Fig. 1. The numerical simulation of a boundary diffraction wave
pulse at 17 cm behind a 4 mm circular aperture under pulsed illu-
mination. The interference fringes in the middle are caused by the
interference of the elementary boundary diffraction waves originat-

ing from the edges of the aperture.

diffraction wave pulse behind a circular aperture with
incident fields having axial symmetry around the opti-
cal axis can be expressed as

uB(r, z, t) =
u0 eiω0t

2π
(1)

×

π
∫

0

υ

(

t−
s(ψ)

c

)

e−ik0s(ψ)
(

1+
z

s(ψ)

)

g(K,ψ) dψ ,

where υ(t) is the temporal envelope of the incident
pulse, ω0 is the central angular frequency, and k0 is
the wave number at ω0. The expression s(ψ) =
√

z2 + a2 + r2 − 2ar cos(ψ), K = r/a is a dimen-
sionless variable, and g(K,ψ) = [K cos(ψ) − 1]/[1 +
K2

−2K cosψ]−1. The structure of the boundary-wave
pulse in the case of a plane wave illumination of a cir-
cular aperture can be seen on Fig. 1. The cylindrical

symmetry of the aperture leads to constructive inter-
ference of the elementary boundary diffraction waves
originating from the edge of the aperture on the axis
of symmetry of the circular aperture. This causes the
boundary diffraction wave to have significant intensity
on the optical axis that is comparable to the intensity of
the direct pulse. The diffracted field is then calculated
as the sum of the fields of the boundary wave pulse and
direct pulse:

u(P, t) = uG(P, t) + uB(P, t) , (2)

where P ≡ (x, y, z) is the point of measurement be-
hind the aperture and uG is calculated as

uG =







ui(P, t) , if P is in the direct beam ,

0 , if P is in the shadow ,
(3)

where ui(P, t) = u0 h(t− z/c) is the incident pulse. It
is evident that the direct pulse in this theory has a dis-
continuity on the edge of the aperture. This is compen-
sated by the discontinuity of the boundary wave pulse
across the aperture (in the centre of the brighter areas
of the boundary diffraction wave near the edge of the
aperture on Fig. 1) so the resulting diffracted field is a
continuous function of the position.

This equation for nonmonochromatic fields for cir-
cular apertures assumes that the incident field is a plane
wave (pulse) with a normal incidence. In the case of
laser-produced Gaussian beams, this assumption does
not exactly hold, but for truncated Gaussian beams the
boundary diffraction still appears as shown in [5]. A
comparison of measurements and simulations shows
that the error produced when the pulse fronts differ
slightly from a plane wave is negligible.

3. Scanning SEA TADPOLE

In order to record the complex structure of the
diffraction pattern behind the apertures, high spatial
and temporal (spectral) resolutions are needed. An ex-
perimentally simple version of spectral interferometry
called SEA TADPOLE was the first technique shown to
be able to directly measure the spatiotemporal electric
field of focusing ultrashort pulses [6]. The small mode
size of the optical fibres used in this method naturally
enables electric fields of ultrashort pulses to be mea-
sured with high spatial resolution. In a SEA TADPOLE
set-up, the previously characterized reference pulse and
the unknown pulse are coupled into two identical fi-
bres as seen in Fig. 2. The entrance of the unknown
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Fig. 2. Scanning SEA TADPOLE set-up. A reference pulse and an unknown pulse are coupled into two single-mode optical fibres. The
diverging beams from the fibres are collimated with a spherical lens. The collimated beams cross and the interference pattern is recorded
with a camera. In horizontal plane a grating and a cylindrical lens are used to make a spectrometer and to map the wavelength onto the

camera’s horizontal axis.

pulse’s fibre is placed on a scanning stage. The refer-
ence pulse’s fibre entrance and both of the fibres ends
are fixed. The diverging beams from the fibres are colli-
mated vertically by a spherical lens, and the collimated
beams cross and interfere. The interference pattern is
recorded with a camera. In the horizontal plane, a grat-
ing and a cylindrical lens are used to make a spectrom-
eter and to map wavelength on the camera’s horizontal
axis. This interferogram, recorded for every position
of the scanning stage, allows one to reconstruct the full
spatiotemporal field E(x, y, z, t).

4. Measurements

The experiments were carried out using KM Labs
Ti:sapphire oscillator with ∼37 nm FWHM bandwidth
spectrum with a central wavelength of 805 nm and
pulse duration of about 30 fs. The temporal resolution
of our SEA TADPOLE set-up was 4.6 fs. The circular
aperture and opaque disk were placed in the unknown
pulse arm of the SEA TADPOLE set-up, where the op-
tical fibre was placed on the 2D scanning stage. The
unmodified pulse (pulse directly from the laser) was
sent to the second fibre and was used as a reference.
For each aperture, the tip of the scanning fibre was first
moved into the bright central spot on the optical axis
caused by the interference of the elementary boundary
wave pulses. The fibre was then moved horizontally
back over the edge of the aperture, and a full scan on the
axis perpendicular to the pulse propagation was made
to produce the images. Due to the cylindrical symme-
try of the apertures and the resulting diffracted field,

only one scan in the plane of the aperture diameter (that
is, for various longitudinal distances after the aperture
and various transverse distances parallel to the plane of
the aperture) was necessary to obtain the full informa-
tion of the field. Measurements were taken at different
distances from the aperture and disk to study the time
evolution of the diffraction of the ultrashort pulses.

The spatial resolution of a SEA TADPOLE set-up is
determined by the mode size of the scanning fibre [6].
In our set-up we used a fibre that had a core diameter of
5.4 µm, which is also the achieved spatial resolution of
our measurements. Our step size of each consecutive
measurement in one scan was smaller than the actual
spatial resolution to obtain smoother images of the in-
terference pattern of the diffracted field.

5. Discussion

For the circular opaque disk, measurements at dis-
tances of 92, 172, and 252 mm are shown in Fig. 3
along with the simulations. The circular aperture mea-
surements form distances of 25, 55, and 85 mm are
shown in Fig. 4. The intensities in every image are in
arbitrary units with maximum of 1. The scanning range
of the fibre for the circular opaque disk was 8 mm and
for the circular aperture 4.4 mm. Each image displays
the amplitude of the electric field (square root of the
intensity) versus −t so that the parts of the diffracted
field that arrive earlier in time appear on the right-hand
side of the plots.

In the pictures it is easy to see two diffraction pat-
terns. One has a lower spatial modulation on the edges

36
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Fig. 3. The measured (left) and calculated (right) fields behind a 4 mm circular disk at different distances.

Fig. 4. The measured (left) and calculated (right) fields behind a 4 mm circular aperture at different distances.

of the direct pulse that is caused by the interference
between boundary wave pulse and the direct pulse. In-
terference fringes can also be seen around the bright
central spot analogous to the Bessel-X pulses [7, 8],
which are caused by the interference between the el-
ementary boundary diffraction waves originating from
the edge of the aperture. Also similar to the Bessel-X

pulse the boundary wave pulse has a letter X-like axial
cross-section and propagates on the optical axis super-
luminally. But while the group velocity of the former
has a constant value exceeding c, the central spot of the
boundary wave pulse is decelerating (see also [1, 9–11].
The elementary boundary diffraction waves emanating
from the edges of the aperture must travel a longer
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distance to reach the optical axis compared to the cen-
tre of the direct pulse and thus lag behind. The dif-
ference in distance they need to travel compared to the
distance travelled by the direct pulse decreases as the
pulse propagates. The superluminal speed can be eas-
ily seen as the constructive interference of the bound-
ary wave pulse on the optical axis catching up with the
direct pulse that has the propagation speed of c.

While the theoretical study shows that, when the
laser pulses are short enough to separate the boundary
wave pulse from the direct pulse, the two pulses prop-
agating on the optical axis should have comparable in-
tensities, this is not the case in our experiments. This
is due to the fact that the transverse intensity profile of
the pulses was Gaussian, with FWHM about 4 mm. So
the pulse intensity on the aperture was approximately
one half of that at the centre of the pulse. As a re-
sult, in our measurements, the intensity of the bound-
ary wave pulse or the constructive interference of the
elementary boundary-wave pulse on the optical axis is
smaller than the intensity of the direct pulse on the op-
tical axis. Also the accurate measurement of the inten-
sity of the boundary wave pulse is difficult to accom-
plish since, at the maximum distance from the aper-
ture (about 25 cm) where the interference pattern has
the lowest spatial modulation, the size of the central
bright spot of the interference pattern is still only about
50 µm. So any deviation from exact alignment of the
scanning fibre tip from the plane of the diameter of the
aperture will inevitably cause the maximum intensity
of the spot to be inaccurately measured. This becomes
even more critical when one considers measurements
that are done closer to the aperture where the fringe
spacing of the diffraction pattern becomes denser and
fringes themselves smaller.

6. Conclusion

The complete diffracted field, E(x, y, z, t), of ultra-
short laser pulses behind circular opaque disk and cir-
cular aperture is measured with high spectral and tem-
poral resolution using a method called scanning SEA
TADPOLE. The pulsed illumination of the apertures
allows us to image the so-called boundary diffraction

wave separately from the direct pulse. The high spa-
tial resolution reveals the fine diffraction fringes caused
by the interference of the elementary boundary wave
pulses near the optical axis. We also carried out nu-
merical simulations based on the boundary diffraction
wave theory. The simulations and the experimental
data are found to be in good agreement.
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TIESIOGINIS DIFRAKCIJOS REIŠKINIŲ REGISTRAVIMAS LAIKINĖJE SRITYJE
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Santrauka
Bangų laukas, sukurtas ∼30 fs trukmės Ti:safyro osciliatoriaus

impulsais už apskritos apertūros ir apskrito neperšviečiamo disko,
matuojamas ultratrumpųjų lazerio impulsų metodu, kuris angliškai

vadinamas skenuojančiuoju SEA TADPOLE. Taikyto metodo di-
delė erdvinė ir laikinė skyra leidžia atvaizduoti visą už apertūrų
difragavusį lauką ir užfiksuoti interferencinį vaizdą, susidarantį dėl
vadinamųjų kraštinių difragavusių bangų impulsų.
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We present an overview of our very recent results on the evolution of ultrashort pulses after propagating through various
optical elements. Direct spatiotemporal measurements of the electric field were made using the technique SEA TADPOLE.
Our SEA TADPOLE device can resolve spatial features as small as ∼5 µm and temporal features as small as ∼5 fs. The
experimental results are verified by theoretical calculations. The superluminality of pulses with Bessel-function-like radial
profiles is discussed.

Keywords: Bessel beam, boundary diffraction wave, Bessel-X pulse, superluminal propagation, Arago spot

PACS: 42.25.Fx, 42.25.Gy, 42.65.Re, 42.79.Bh

1. Introduction

In 1987 Bessel light beams [1] were introduced and
now constitute a mature field with numerous applica-
tions (see review [2]). These beams are important be-
cause they possess a controversial quality: they are
“diffraction-free” and so preserve their tightly focused
central bright spot over large distances of propagation
as if the beam were not obeying the laws of diffraction.
At the same time, quite independently, in mathemati-
cal physics, the topic of undistorted or localized waves
emerged, dealing with ultrabroadband pulses that are
not only “diffraction-free” in space but also propagate
without any spread in time [3–5]: “light bullets” or
“electromagnetic missiles.” To date, various localized
waves propagating in vacuum superluminally (faster
than the speed of light in vacuum), luminally, or sub-
luminally have been studied in detail, and promising
applications have been proposed (see, e. g., reviews
[6–10] and the first monograph [11] on the field). The
feasibility of such light bullets moving faster than c
has been experimentally demonstrated more than once
[12–17], but, from time to time, papers still appear in
which the superluminal group velocity in vacuum of
such wave packets is questioned. Therefore, recently
[18] we accomplished, for the first time, with appropri-
ately high resolution and accuracy, a direct spatiotem-
poral measurement of the electric field and propagation

velocity of the simplest superluminal localized wave –
the so-called Bessel-X pulse [13], which comprises an
energy lump of a micrometre in diameter at the joint
apex of a sparse double-conical wave. In this paper, we
first present an overview of this result.

Secondly, we touch briefly on our spatiotemporal
measurements of accelerating and decelerating Bessel
pulses [19]. The term was proposed in [20] where the
generation and properties of such pulses were theo-
retically investigated. These pulses are similar to the
Bessel-X pulses, with the main difference being that
they are generated by crossing and interfering focusing
(or defocusing) pulses, which have curved pulse fronts
and form part of a spindle torus surface, rather than the
double conical surface of Bessel-X pulses. As a result,
their bullet-like, central, intense apex and accompany-
ing Bessel rings become smaller or larger as the pulse
propagates, depending on whether the torus shrinks to-
wards a ring or expands towards a sphere. But the cen-
tral spot of these pulses is still localized and intense
over a propagation distance considerably longer than
that of a Gaussian beam with a comparable waist size.

The third topic that we will discuss involves view-
ing simple, well-known cases of diffraction, but in the
time domain. The bending of light waves in the shadow
region behind an opaque disk and the appearance of
a bright “Spot of Arago” in the shadow centre are
well-known manifestations of diffraction. Tremendous

c© Lithuanian Physical Society, 2010
c© Lithuanian Academy of Sciences, 2010 ISSN 1648-8504
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progress was made in the mathematical treatment of
diffraction, resulting in the well developed theory with
Fresnel–Kirchhoff and Rayleigh–Sommerfeld versions
(see, e. g., monographs [21, 22] and references therein).
An alternative theory, inspired by the early ideas of
Thomas Young, has been developed by Maggi [23],
Rubinowicz [24], Miyamoto, and Wolf (references
given in [22]). The boundary diffraction wave (BDW)
theory, as it was called, describes diffraction from
openings in opaque screens in a mathematically simple
manner. The BDW theory is especially intuitive when
describing the formation of the diffracted field for the
case of illumination with ultrashort laser pulses.

Contrary to the traditional treatment using mono-
chromatic fields, in which the transmitted waves fill
large depths of space behind the screen and overlap
with each other there, ultrashort pulses – typically only
few micrometres “thick” – behave almost like a soli-
tary wave-front surface. Hence, the time-domain study
of diffraction in terms of pulsed BDWs is not only di-
dactically preferable but also opens new interesting di-
rections and applications, such as in the study of focus-
ing and other transformations of ultrashort pulses (see,
e. g., paper [25] and references therein). The formation
of an ultrashort boundary wave pulse just after a cir-
cular aperture has been theoretically studied [26], and
experimental evidence for its existence was obtained
by measuring modulations in the spectrum of the on-
axis field as well as with CCD-recordings of the time-
integrated radial intensity distribution of the field [27].
Our aim has been to directly record, with simultaneous
spatial and temporal resolution, the evolution and inter-
ference of the boundary waves behind various screens.
The results obtained are presented in the paper by Lõh-
mus et al. which can be found in this issue, and here
we consider only the spot of Arago.

2. Spatiotemporal measurement of light fields

In our experiments we used a KM Labs Ti:Sa oscil-
lator with 33 nm of bandwidth (FWHM) and an ap-
proximately Gaussian spectrum with a central wave-
length λ0 = 805 nm. The spot size of the laser beam
was 4 mm (FWHM). Our measurements not only re-
quired high spatiotemporal resolution, but also high
sensitivity. First of all, we routinely measure the rel-
atively intense, spatially uniform pulse directly out of
our laser, which is the input pulse in these experiments,
and which also acts as a reference pulse in the mea-
surements, using the FROG technique [28]. To obtain

ultrahigh spatiotemporal resolution in both the inten-
sity and phase, in conjunction with the required sen-
sitivity, we used a technique called SEA TADPOLE
(Spatially Encoded Arrangement for Temporal Analy-
sis by Dispersing a Pair of Light E-fields [29]), which
is based on spectral interferometry. It involves mea-
suring the spectrum of the sum of the known refer-
ence pulse and the unknown pulse to yield the unknown
pulse’s temporal field. This approach is much like
monochromatic-beam spatial interferometry or holog-
raphy, where measurement of the spatial intensity of
the sum of a known spatial field and an unknown
monochromatic wave yields the unknown wave field in
space. Finally, we achieve the high spatial resolution of
the unknown field by simply scanning the micrometre-
sized tip of the SEA TADPOLE input fibre point-by-
point through the space where the unknown light field
propagates. SEA TADPOLE has demonstrated a spa-
tial resolution as small as 0.5 micrometres by using
near-field scanning optical microscopy fibre tips, but
5 micrometres is sufficient for these measurements, al-
lowing the use of standard off-the-shelf fibres. A de-
scription of the SEA TADPOLE set-up used can be
found in Refs. [18, 25] and in the paper by Lõhmus
et al. in the given issue. The plots from our SEA
TADPOLE measurements, which are shown below, can
be viewed as still images or “snapshots in flight,” since
they are spatiotemporal slices of the magnitude of the
electric field |E(x, y, z, t)| of the pulses.

3. Results on “diffraction-free” Bessel-X pulse

The most effective Bessel beam generator – a coni-
cal lens (axicon) – refracts plane waves towards its axis
and thus shapes a femtosecond pulse into the Bessel-X
pulse with its characteristic double-conical profile, as
shown in Fig. 1. If the aperture radius R of the axicon
were infinitely large, the pulse would propagate rigidly
and without any spread of its micrometre-size central
bright spot at the joint apex of the cones over an in-
finitely large distance. In the case of a limited aperture,
it follows from the geometry that the depth of the in-
variant propagation of the pulse (let us call it the Bessel
zone) is restricted to zB = R/tan θ, where θ (the so-
called axicon angle) is the angle of inclination of the
wave vectors of the constituent plane waves toward the
axis z.

Some measured “snapshots” of propagation of the
Bessel-X pulse are shown in Fig. 1, together with the-
oretical simulations (this time calculated as an axisym-
metric superposition of plane waves with a Gaussian
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Fig. 1. Left: the measured field amplitude at three different distances (z) after the axicon. Right: the corresponding simulations. The
greyscale bar indicates the amplitude, and we have normalized each field to have a maximum of 1. The white bar on the time axis emphasizes
t = 0 relative to the reference pulse, which is where the pulse would be located if it were propagating at velocity c. The “thickness” of each

of the X-branches indicates the duration of the input (and reference) pulse.

aperture). The two are in good agreement except that
the wings in the z = 5.5 cm image are shorter in the
measurement. This is because axicons are difficult to
machine perfectly; in particular, the tip of the cone is al-
ways distorted, so the Bessel zone is shorter than what
would be expected in the ideal case.

There are several interesting features in these plots.
The central maximum of the pulse has a width of
∼20 µm, which – as well as the coaxial intensity
rings surrounding it – remains essentially unchanged
in shape from z = 5 cm through z = 13.5 cm. Thus
the apex flies rigidly as a light bullet together with
its sparse wings at constant speed. This is because
the Bessel-X pulse is a propagation-invariant conical
wave. Also, the Bessel-X pulse’s superluminal speed
is apparent in these plots. SEA TADPOLE measures
the pulse’s arrival time with respect to the reference
pulse, which travels at the speed of light (c). Therefore,
if the Bessel-X pulse were travelling at the speed of
light, then at each z its spatiotemporal intensity would
have the same centre on the time axis (here t = 0 and
emphasized with the white line), but it is easy to see
that this is not the case. From the axicon angle value
θ = 0.92◦ (corresponds to our axicon’s apex angle
176◦) as well as from the simulations, we find that the
Bessel-X pulse’s speed (axial group velocity) should be
1.00013c. From our experimental plots we determined
[18] it to be 1.00012c – within 0.001% error of the ex-
pected value.

4. Results on accelerating and decelerating Bessel
pulses

In order to generate accelerating (or decelerating)
pulses we mounted a lens with focal length of +153 mm
(or −152 mm) before the axicon. All these results were
published in [19], and here we restrict ourselves to the
decelerating pulse case only.

The spatiotemporal profiles of the decelerating Bes-
sel pulse at nine positions were measured. In all cases,
we measured the complete spatiotemporal intensity and
phase, but we show only the spatiotemporal intensities
here, as this information is more interesting. Three of
these measurements for each case are shown in Fig. 2.
For comparison, numerical simulations were carried
out, and as seen in the figure, the two are in very good
agreement. The X-branching corresponding to the dou-
ble conical profile of the pulse is not seen because, due
to the lens and deceleration, the axicon angle θ is less
than in Fig. 1 and decreases with propagation distance.
Due to the negative lens the fronts of the pulses (and
phase fronts) obtain a curvature which decreases in the
course of propagation and therefore the axicon angle
θ on the axis also decreases – resulting in deceleration
of the movement of the strong interference field on the
axis, which is still in a good approximation nothing but
a Bessel-X pulse.

SEA TADPOLE measures the pulse’s arrival time
with respect to the reference pulse, the latter of which,
after passing through the compensating piece of glass,
travels at the speed of light c. The origin of our time
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Fig. 2. Comparison of the measured and calculated spatiotemporal profiles of the electric field amplitude of a decelerating Bessel pulse at
three positions along the propagation axis z.

Fig. 3. Experimentally determined group velocity of the deceler-
ating Bessel pulse as a function of the propagation distance. The

solid curve shows the theoretical function for comparison.

axis can be considered as the location of the reference
pulse if it propagated along the axis z with the Bessel
pulses. So, if the Bessel pulse were travelling at the
speed of light, then, for each value of z, its spatiotem-
poral intensity would be centred at the same time origin
t = 0 which is emphasized by the white bar in the fig-
ure. Again in Fig. 2, note that the superluminal group
velocity and the pulse’s deceleration are both appar-
ent from the z-dependent shifts of the pulses with re-
spect to the origin t = 0. The time shifts were used
for calculation of the pulse’s velocity at different prop-
agation distances (see Fig. 3). The decreasing super-
luminal velocity manifests itself also in the increase

of the fringe spacing (increasing radial period of the
Bessel profile; see Fig. 2). Accelerating and deceler-
ating Bessel pulses can be also observed when tightly
focusing an ultrashort pulse by a lens with spherical
aberration [25].

5. Spatiotemporally recorded diffraction

Here we consider formation of the Arago spot pulse
(for more results on diffraction of pulses through vari-
ous screens, see the paper by Lõhmus et al., also in this
issue).

We propagated ultrashort pulses past an opaque disk
of 4 mm diameter, making a hole in the beam, and we
measured the resulting spatiotemporal field at differ-
ent distances after the aperture to observe its evolution.
These measurements reveal the spatiotemporal struc-
ture of the weak boundary waves and the brighter spot
at the centre of the beam due to their constructive inter-
ference, i. e., the spot of Arago, as it is known in con-
ventional diffraction theory for stationary (monochro-
matic) fields. Interestingly, the plots (like the one in
Fig. 4 for a particular propagation distance) reveal that
this spot is surrounded by coaxial interference rings
and, in the axial region the field, is identical to a decel-
erating Bessel pulse, which we have considered in the
previous section. Moreover, the spot is delayed in time
with respect to the main pulse front, and this delay de-
creases with z, indicating a superluminal propagation
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Fig. 4. Schematic of the experiment and the measured time-domain
formation of the Arago spot behind an opaque disk with radius
2 mm. Inset: measured electric field amplitude (actually square
root of it – |E|1/2 – for better contrast) 9 cm behind the disk. This
measurement reveals the weak boundary waves that originate from
the points along the perimeter of the disk. The boundary waves
interfere with the plane wave pulse or the part of the field coming
from radii greater than that of the disk, which propagates accord-
ing to the rules of geometrical optics. Constructive interference
between the expanding boundary waves produces a brighter super-
luminally propagating spot on the axis. The strength of the field is
shown “in a negative colormap”, in which black corresponds to the

maximum strength.

speed along the z axis (the main pulse front propagates
at c). This occurs, because, as z (or the distance from
the disk) increases, the extra distance that the bound-
ary waves must propagate (compared to the main pulse
front) to reach the z axis (x = 0) decreases, so the rela-
tive delay of the boundary waves and the bright spot
due to their interference decreases. As a result, the
group velocity of the Arago spot – geometrically lo-
cated at one pole of a luminally expanding spindle torus
formed by the boundary diffraction wave pulse – varies
from infinity at z = 0 to c for very large values of z.
Therefore, the spot of Arago is in fact just a decelerat-
ing Bessel pulse.

6. Discussion

The superluminality of the Bessel-X-type pulses is
intriguing. Indeed, while phase velocities greater than
c are well known in various fields of physics, a su-
perluminal group velocity is still somewhat taboo, be-
cause, at first glance, it seems to be in violation of
relativistic causality. However, thanks to the numer-
ous studies throughout the previous century – starting
from Sommerfeld’s works on the propagation of plane

wave pulses in dispersive media – it is well known (see,
e. g., a thorough review [30]) that the group velocity
need not be a physically profound quantity and by no
means should be confused with the signal propagation
velocity (which must be less than or equal to c in vac-
uum). But in the case of Bessel-X-type pulsed waves,
no dispersive medium is needed, and still not only is the
group velocity superluminal, but the pulse as a whole
is also, that is, it rigidly propagates faster than a plane
wave.

Naturally, one may feel some unease in accepting
this startling circumstance. But here we experimentally
observe it in the most direct way. When forced to con-
cede the theoretically and experimentally verified su-
perluminality, one might feel the need to make recourse
to statements insisting that the pulse is not a “real” one,
but instead simply an interference pattern rebuilt at ev-
ery point of its propagation axis from truly real plane-
wave constituents travelling at a slight tilt with respect
to the axis. Such argumentation is not wrong but, alas,
leads nowhere. Of course, there is a similarity between
the superluminality of the X-wave and a simple geo-
metrical faster-than-light movement of the cutting point
in scissors (we refer here to Gedanken experiments de-
scribed in textbooks on relativity). But in the central
highest-energy part of the Bessel-X wave, there is noth-
ing moving at the tilt angle. The phase planes are per-
pendicular to the axis and move rigidly with the whole
pulse along the axis. The Poynting vector, indicating
the direction of energy flow, lies also along the axis.
However, the energy flux is not superluminal. Hence,
to consider the Bessel-X waves as something inferior to
“real” waves is not sound. If we thought so, by similar
logic we would arrive at the conclusion that femtosec-
ond pulses emitted by a mode-locked laser are not real
but “simply an interference” between the continuous-
wave laser modes. In other words, one should not ig-
nore the essence of the superposition principle of lin-
ear fields, which implies a reversible relation between
“resultant” and “constituent” fields and in which no
possible orthogonal bases – plane waves or cylindrical
(Bessel) waves, for the given example – are inferior to
any others.

Another misunderstanding (the author of the review
[30] seems to agree) stems from oversight of the fact
that there are infinitely many ways to form a pulsed ax-
isymmetric wave packet from single-frequency Bessel
beams. They depend on how the radial density of in-
tensity rings in the beam cross-section is related – or
whether or not it is related at all – to the beam’s tem-
poral frequency. In the case of the Bessel-X pulse,
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this is a proportionality relation, and therefore the ax-
ial group velocity is perfectly defined with a single su-
perluminal value within the whole bandwidth of the
wave packet. If, on the contrary, the radial density is
frequency-independent, we obtain a completely differ-
ent wave packet which is not a localized wave because
it has no definite group velocity over its whole spec-
trum and therefore spreads as it propagates. But such
a wave packet – named the ‘pulsed Bessel beam’ in
the literature – propagates with velocity less than c and
can be used for sending signals along the propagation
axis. On the other hand, if one tried to cut a signal
“notch” into the core of the Bessel-X pulse, the notch
would behave like the ‘pulsed Bessel beam’ – spread-
ing out while advancing subluminally. This is expected
since Maxwell’s equations, or the wave equation for
EM fields, do not allow superluminal signalling.

7. Conclusion

We have performed direct spatiotemporally resolved
measurements of pulsed light fields behind various op-
tical refracting and diffracting elements. We believe
that time-resolved measurements and a time-domain
treatment of diffracting waves not only turn out to be
fruitful in modern physical optics, especially in micro-
and meso-optics, but also promote the understanding of
diffraction phenomena.
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DIFRAGUOJANTYS IR NEDIFRAGUOJANTYS ŠVIESOS IMPULSAI ERDVĖJE IR LAIKE

P. Saari a, P. Bowlan b, H. Valtna-Lukner a, M. Lõhmus a, P. Piksarv a, R. Trebino b

a Tartu universiteto fizikos institutas, Tartu, Estija
b Džordžijos technologijos universiteto Fizikos mokykla, Atlanta, JAV

Santrauka
Pateikiame savo naujausių rezultatų apžvalgą apie ultratrum-

pųjų impulsų, perėjusių įvairius optinius elementus, evoliuciją.
Elektrinis laukas tiesiogiai matuotas erdvėje ir laike metodu,
angliškoje literatūroje vadinamu SEA TADPOLE. Mūsų SEA

TADPOLE prietaisas registruoja net ∼5 µm smulkumo ir vos ∼5 fs
trunkančius pokyčius. Eksperimentiniai rezultatai patvirtinti teori-
niais skaičiavimais. Aptartas impulsų, turinčių Beselio funkcijos
pavidalo radialųjį pjūvį, virššviesinis pobūdis.
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Abstract: Using a recently developed technique (SEA TADPOLE) for 
easily measuring the complete spatiotemporal electric field of light pulses 
with micrometer spatial and femtosecond temporal resolution, we directly 
demonstrate the formation of theo-called boundary diffraction wave and 
Arago’s spot after an aperture, as well as the superluminal propagation of 
the spot. Our spatiotemporally resolved measurements beautifully confirm 
the time-domain treatment of diffraction. Also they prove very useful for 
modern physical optics, especially in micro- and meso-optics, and also 
significantly aid in the understanding of diffraction phenomena in general. 
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1. Introduction 

The bending of light waves in the shadow region behind an opaque disk and the appearance of 
a bright “Spot of Arago” in the shadow centre are well-known manifestations of diffraction. 
Tremendous progress was made in the mathematical treatment of diffraction in the last two 
centuries, resulting in the well developed theory with Fresnel-Kirchhoff and Rayleigh-

#126119 - $15.00 USD Received 29 Mar 2010; revised 30 Apr 2010; accepted 30 Apr 2010; published 11 May 2010
(C) 2010 OSA 24 May 2010 / Vol. 18,  No. 11 / OPTICS EXPRESS 1108340



Sommerfeld versions. An alternative theory, inspired by the early ideas of Thomas Young, 
has been developed by Maggi [1], Rubinowicz [2], Miyamoto and Wolf (references given in 
[3]). The boundary-diffraction wave (BDW) theory, as it was called, describes diffraction 
from openings in opaque screens in a mathematically simple manner. The BDW theory is 
especially intuitive when describing the formation of the diffracted field for the case of 
illumination with ultrashort laser pulses [4]. 

In the traditional diffraction treatment using monochromatic fields, the transmitted waves 
fill large depths of space behind the screen and overlap with each other there. In contrast, 
diffracted ultrashort pulses—typically only a few micrometers “thick”—behave almost like 
solitary spherical wave-front surfaces emitted from the boundaries of the screen. As a result, 
for ultrashort pulses, the study of diffraction in terms of pulsed BDW’s in the time domain is 
not only didactically preferable but also opens new interesting directions and applications, 
such as in the study of focusing and other transformations of ultrashort pulses [5]. The 
formation of an ultrashort boundary-wave pulse just after a circular aperture has been 
theoretically studied [4], and experimental evidence for its existence was obtained by 
measuring modulations in the spectrum of the on-axis field, with CCD-recordings of the time-
integrated radial intensity distribution of the field, or using spatial interference [6–8]. 

In this publication, our aim has been to directly record, with simultaneous spatial and 
temporal resolution, the evolution and interference of the boundary waves behind an opaque 
disk and also behind a circular opening. We show that our high temporal resolution reveals 
similar spots of Arago for both types of screens. It also reveals that the spots are actually 
decelerating versions of the superluminal Bessel-X pulse (see [9–11] and references therein). 

 

Fig. 1. Schematic of the formation of the Arago spot in the case of illumination with ultrashort 
pulses. A pancake-shaped pulsed wave from the left illuminates a disk-shaped obstacle (D) 
with radius a. The obstacle removes its central region according to the shadow boundaries 
(horizontal dashed lines), forming the geometrical-wave (GW) component of the output field. 
In addition, the edges of the obstacle excite the boundary diffraction wave (BW), which 
expands from a ring torus shape trough a spindle-torus-like stage (cross-section depicted in the 
figure) into a spherical wave at infinity. On the axis, overlapping and interfering boundary 
waves form the Arago spot. Around the shadow boundary in the overlap regions (also indicated 
by ovals) of the BW and GW, the common interference rings appear. The Arago spot (AS) 
propagates along the axis behind the front (indicated by vertical dashed line) of the transmitted 
GW but catches up with the latter at infinity because its velocity is superluminal. 

2. Theoretical description of the boundary wave pulse 

According to the BDW theory [3] and its modification [4] for plane-wave incident pulses, the 
field after the diffracting screen consists of two components (see Fig. 1). The first—the so-
called geometrical wave—propagates in accordance with geometrical optics, i. e., it is 
identical to the incident pulse, except in the region of the geometrical shadow, where it is 
zero. The second component—the BDW pulse—is simply a sum of spherical waves emitted 
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along the disk’s edge having the temporal profile of the incident pulse. Therefore the BDW 
pulse for the case of a disk of radius a is given by the wave-function [12] 
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. The integration over φ stems from contour integration along 

the disk’s boundary and is one-dimensional—this is the known advantage of the BDW theory 
as compared to common diffraction theories based on 2D surface integrals. The BDW pulse in 
the case of a circular hole is given also by Eq. (1), but with the opposite sign [4,12]. This 
could be expected if we recall Babinet’s principle. Equation (1) was used for the numerical 
simulations of diffracted fields, which will be considered below. 

3. Experimental results in comparison with simulations 

In our measurements, we used a KM Labs Ti:Sa oscillator with 33 nm of bandwidth (FWHM) 
and an approximately Gaussian spectrum with a central wavelength λ0 = 805 nm. The spot 
size of the laser beam was 4 mm (FWHM). To perform the complete-spatiotemporal-
intensity-and-phase pulse measurements with the required resolution in both space and time, 
in conjunction with the required sensitivity, we used a technique called scanning SEA 
TADPOLE (Spatially Encoded Arrangement for Temporal Analysis by Dispersing a Pair of 
Light E-fields [13,14]) which a variation of spectral interferometry. To make a measurement, 
we sample a small spatial region of the unknown field with a micrometer sized fiber and then 
interfere this with a known reference pulse in a spectrometer to reconstruct E(λ) for that 
spatial point. Then to measure the spatial dependence of the field, we simply scan the fiber 
point by point through the space where the unknown light field propagates, so that E(λ) is 
measured at each position, yielding E(λ,x,z). This field can be Fourier transformed to the time 
domain to yield E(t,x,z). The plots from our SEA TADPOLE measurements, which are shown 
below, can be viewed as still images or “snapshots in flight,” since they are spatiotemporal 
slices of the magnitude of the electric field |E(x,z,t)| of the pulses. While we could also scan 
along the y-dimension of the beam, our set up had cylindrical symmetry, so we only scanned 
along the x-dimension with the fiber at y = 0. 

First we propagated ultrashort pulses past an opaque disk with a 4mm, generating a hole in 
the beam. We measured the resulting spatiotemporal field at different distances after the 
aperture to observe its evolution (Fig. 2). These measurements reveal the spatiotemporal 
structure of the weak boundary waves and the brighter spot at the center of the beam due to 
their constructive interference, i. e., the spot of Arago, as it is known in conventional 
diffraction theory for stationary (monochromatic) fields. Aside from the noise in the 
experimental results they are in good agreement with the simulations. The only discrepancy is 
in the spatial intensity profile of the GW pulse. This is because our beam’s spatial profile was 
Gaussian in the experiments, but to simplify the simulations we used a plane wave spatial 
profile (see Eq. (1)). In the measured spatiotemporal intensities shown in Fig. 2, two 
interference patterns are seen. The one with a broader spatial modulation consisting of rings at 
the edge of the direct (GW) pulse is due to the GW overlapping and interfering with the BW 
pulse. Another with a much higher spatial frequency—which decreases with the propagation 
distance [15]—can be seen around the bright central spot and is due to the interfering 
boundary waves. This part of the field is analogous to a Bessel-X pulse. 
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Fig. 2. Formation and evolution of the Arago spot behind an opaque disk 4mm in diameter. The 
magnitude of the electric field E is shown at three different propagation distances z in pseudo-
color code according to the color bar (white has been taken for the zero of the scale in order to 
better reveal areas of weak field). 

In the next measurement we propagated the beam through a circular hole with a diameter 
of 4.4mm (Fig. 3), which is almost the same as the disk’s diameter. The temporal localization 
of the pulse and our high temporal resolution allows the BW pulse with its central spot to be 
separated from the direct pulse. If longer pulses or steady-state illumination were used, these 
two contributions to the diffracted field would overlap and be indistinguishable from one 
another. These measurements make it clear that the so-called spot of “Arago” is also present 
due to diffraction from an aperture. This is expected considering that both the aperture and 
disk have the same boundaries, and should therefore also have the same boundary waves. 

 

Fig. 3. Formation and evolution of the diffracted field behind a circular hole 4mm in diameter. 
The boundary waves interfere with each other and with the directly transmitted pulse, but the 
interference maximum on the axis (actually a temporally resolved spot of Arago) lags behind 
the direct pulse, and eventually catches up with it. 

Interestingly, the plots for both screens reveal that the spot of Arago is surrounded by 
coaxial interference rings which, in the axial region the field, almost exactly follow the Bessel 
(J0) radial profile. Moreover, the spot is delayed in time with respect to the main pulse front, 
and this delay decreases with z, indicating a superluminal propagation speed along the z axis 
(the GW pulse front propagates at c). This occurs, because, as z (the distance from the screen) 
increases, the extra distance that the boundary waves must propagate (compared to the GW 
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pulse front) to reach the z axis (x = 0) decreases, so the relative delay of the boundary waves 
on the axis decreases. As a result, the axial group velocity of the Arago spot—geometrically 
located at one pole of a luminally expanding spindle torus formed by the boundary diffraction 
wave pulse—varies from infinity at z = 0 to c for very large values of z. Therefore, the spot of 
Arago is in fact just a decelerating superluminal Bessel pulse like that recently generated 
using compound refractive optical elements and also studied with SEA TADPOLE [11]. 

 

Fig. 4. Videos showing simulations of the diffraction of a plane wave pulse from a circular disc 
of d = 1 mm diameter. The pulse parameters are the same as in Figs. 2 and 3. Color represents 
the normalized amplitude of the electric field. (a) The reference frame is fixed with respect to 
the disc at z = 0 (Media 1). The diffracted field is calculated for z > 0 mm. (b) Close-up of the 
evolution of the boundary wave pulse in a reference frame moving at the luminal velocity c, or 
with the incident plane wave pulse (Media 2). Note that the x-scale in (b) is finer than in (a) by 
two orders of magnitude. 

Naturally, there is nothing startling about the superluminal speed of the spot, because it 
cannot carry any information superluminally. This is because it is reformed at every point 
along its propagation axis (the z-axis) by the expanding spherical-wave constituents, which 
travel at an angle with respect to the z-axis. It is important to realize that the central 
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interference region of the BDW pulse is not moving at this tilt angle. Its phase (and pulse) 
fronts are perpendicular to the z-axis and move along this axis. Its Poynting vector, indicating 
the direction of energy flow, also lies along the z-axis. However, the energy flux is not 
superluminal. The superluminal pulse’s velocity should not, of course, be confused with the 
signal velocity. As is well known, Maxwell’s equations, or the wave equation for 
electromagnetic fields, does not allow superluminal signaling. 

To further study the formation and evolution of the boundary-wave pulse, the propagation 
of an ultrashort pulse was computed in detail behind an opaque disk 1mm in diameter. In the 
simulations a smaller disk diameter was used in order to reveal the subtleties of the formation 
of the boundary wave pulse. Figure 4(a) (Media 1) shows the incident and diffracted pulse 
propagation in the laboratory reference frame where z = 0mm is the location of the disc. The 
simulations show the creation of the Arago spot at the moment when the expanding ring torus 
of the boundary-wave pulse becomes an expanding spindle torus. In the close vicinity after the 
disc, speeds much greater than c can be seen, where the boundary wave pulse literally jumps 
out of it. Due to the discrete color scale of the animations, the expanding spindle torus shape 
of the BDW pulse seems discontinuous during the first few picoseconds of the spot evolution, 
albeit it is only low in intensity in these particular directions. 

The Bessel-like radial pattern is depicted in greater detail in Fig. 4(b) (Media 2) where 
only the field near the axis’ center is shown. This time we use a reference frame that is 
moving with the incident plane-wave pulse. The origin of the frame z = 0mm is bound to the 
plane-wave pulse moving at velocity c to the right. The fringe pattern in the axial region of the 
boundary-wave pulse stretches during the propagation as the angle of intersection between the 
elementary wavelets decreases continuously. Correspondingly, the pulse velocity decreases as 
the fringe periodicity increases. Since the expansion rate of the spindle-torus is constant 
(equal to c), the spot on the axis propagates superluminally, decelerating toward the limiting 
value c. Interestingly, the first seconds of the video also reveal the back-diffracted pulse, 
which follows from the direct evaluation of Eq. (1). This backward propagating contribution 
is expected since the spherical waves generated at the boundary of the disk are emitted at all 
angles in the x-z plane. Of course, the intensity of the backward-moving pulse quickly 
decreases towards negative values of z and practically ceases to exist within the first 
millimeter of propagation. 

4. Conclusions 

In summary, we have performed direct spatiotemporally resolved measurements of pulsed 
light fields behind basic types of diffracting screens and have interpreted the results using the 
boundary diffraction wave theory. The latter provides a one-dimensional integral expression 
for the diffracted field, which enabled us in a computationally simple way to simulate the 
evolution of the diffracted field. We believe that time-resolved measurements and a time-
domain treatment of diffracting waves not only turn out to be fruitful in modern physical 
optics, especially in micro- and meso-optics, but also promote the understanding of diffraction 
phenomena. 
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Abstract- The feasibility of localized waves - the best approx-
imation to non-diffracting, spatially and temporally localized
"light bullets" in vacuum - has been discussed over the past
two decades. Recently the first experimental evidence of their
generation has been published. In this paper we propose an
optical setup for launching optical superluminal localized waves
that take advantage of the diffraction properties of a special
optical element - cylindrical diffraction grating.

I. INTRODUCTION

During the last two decades it has been established, that
the homogeneous wave equation has a number of so called
localized wave (LW) solutions, instantaneous, Gaussian pulse-
like intensity distribution of which propagates without any
distortions in free space (see, Refs. [1], [2] and references
therein). Obviously such spatial and temporal localization
makes the implementation of LW solutions very attractive for
applications, where the lateral and(or) transversal diffractional
spreading of optical wave fields is the major limitation of
system performance (e.g., optical communication, metrology,
monitoring, imaging, optical manipulation and acceleration of
particles and femtosecond spectroscopy). In recent years it
became also obvious, that the concept can be used in construct-
ing pulse-like wave fields in dispersive media [3], [4] and in
nonlinear optics [5], [6]. However, for more than a decade after
the pioneering theoretical paper of J. N. Brittingham [7] the
feasibility of electromagnetic LWs remained questionable due
to the their large spectral bandwidth and the spatio-temporal
non-separability inherent to LWs. The ideas that had been
proposed for generation of complicated LW solutions in the
papers of that period of the field (see [1] for the references)
are hardly realizable in optical domain.
The experiments in optical domain have been started by

launching the Bessel-X pulses [3], [4], [8], [9], [10], [11],
where the conventional Bessel beam generators under the
wideband illumination have been used. In Ref. [12] we
proposed a physically transparent, one step derivation of
fundamental LW solutions- focus wave modes (FWM) and
proved that good approximations to FWM's can be generated
by means of a combination of an axicon and a circular
diffraction grating [12]-[14]. The proposed principle has been
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University of Tartu
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Institute of Physics of University of Tartu
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also verified in experiment [15].
In this paper we introduce a surprisingly elegant, one-

step method for the optical generation of LWs. We show,
that superluminal LWs with hyperbolic support of angular
spectrum of their plane waves constituents can be generated
by means of illuminating cylindrical diffraction gratings by
conical wave packets - Bessel-X pulses. We give the math-
ematical description of the method and discuss the pros and
cons of the new type of setup.

II. ON DEFINITIONS AND GENEALOGY OF LWs

The LWs can be introduced in several ways. Here we start
with the general axisymmetric expansion over the zeroth-order
Bessel beams in the form

p0 00

I(p, z, t) / dkz / dk A(kZ )JO(J k/ k2p)
Jo00 Jkz

x exp (ikz -ikct) . (1)

where A(k, k) is the angular spectrum of plane waves of
the wave field. Here we notice that for 'I(p,z,t) 2 to be
propagation-invariant, i. e., to depend on z and t only through
the propagation variable z -vgct , where vg is a constant
group velocity along z axis in units of c, the variables k and
k, must be bound linearly (see e.g. [16])

k =vgkz +b (2)

where b is a constant (see Fig. la). Hence, the spectrum has
to be singular and may be factorized in the following form

ALW(k, k) = A(k) (k -vgkz -b) eO(k2 kk2) (3)
where A(k) is any complex-valued function of one real
positive variable and the Heaviside unit step EO (x) has been
introduced as a factor in order to allow the k-integration in
Eq. (1) to start from k = 0 instead of k = kz .

We just note, that the physical meaning of the condition 2
is obvious - it states, that the on-axis group velocity of the
wave field vgc = dw/dkz should be constant over the whole
spectral range [12].
An elegant graphical depiction of the general class of LW

solutions of scalar homogeneous wave equations can also be
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1

Fig. 2. On the principle of the optical setup proposed. The plane wave pulse
propagating at angle 0 relative to the optical axis z (i relative to the normal
of the diffraction grating) diffracts off the diffraction grating so that tilted
pulses with angular dispersion (tilt) introduced by the gratin is formed behind
the grating. It appears, that the tilt introduced to a plane wave pulse in such
setup is that of the LW 0 (k).

vg = 1 the corresponing LW's are luminal. In the case vg >
we get superluminal LW's. The special case vg < 1 and b =
corresponds to Bessel-X pulses.

1

0

(b)

Fig. 1. (a) The graphical illustration of the defining property of angular
spectrum of the LWs in k-space, (b) formation of the hyperbolic spectral
support as the intersection of conic surface in k, kz, kp space.

given. Despite a general solution T(r, t) of the free-space
scalar wave equation depends on 4 coordinates x, y, z, ct,
its transform domain (k-space or spectral) representation
T(k, w/c) has only 3 independent arguments due to the
dispersion-relation restriction k2 + k2 + k 2 _ (W/C)2 = 0
imposed by the wave equation. In other words, the 4-vector
(k, k _ w/c) of a light wave is always an isotropic one,

whereas (r, ct) needn't and generally isn't. Thus, in the 4-
dimensional transform domain the spectral function TI(k, k)
is not equal to zero only on the surface of a 3-dimensional
cone given by equation k2 k2 + k2 + k2. In other words,
the support of the function T(k, k) has to lie on that conical
surface. In the case of azimuthal symmetry one can introduce
the cylindrical coordinates by replacing k2+ k2 - k thus
reducing the dimensionality of the support to 2 and gaining
a possibility to depict the support as a conical surface in the
k-space with 3 axes: kz, kp, k (or w/c), see Fig. lb. In those
terms the spectral support of LW must be a line of intersection
of the cone surface by a plane perpendicular to the plane
(kz k) and the projection of the spectral support onto the plane
(kz k) is a straight line with the slope vg (see Fig. 1). Note,
that the the two-dimensional integration in 1 covers the area

of projection of the support on the cone onto the plane (kz, k)
[16].

If the slope of the spectral support on the (kz k) plane
Vg < 1 the Eq. (1) gives the family of subluminal LW's, if

III. OPTICAL GENERATION OF SUPERLUMINAL LW'S

In Fourier representation the Eq. (1) together with Eq. (3)
has an straightforward interpretation as being the the super-

position of monochromatic Bessel beams the cone angle and
wave number of which are connected as

cos 0 (k)
kb
vgk

(4)

where 0 (k) is the angle between the optical axis z and wave

vector of the Fourier component (plane wave) of the wave field
and k, (k) = k cos 0 (k). It has been shown both theoretically
and experimentally, that to generate a LW the necessary and
sufficient condition is to control the spectral support of the
generated wave field. In particular, if the generated spectral
support obeys (4) the corresponding wave field is always LW.
The effects of physical limitations of a setup like finite aperture
or finite spectral bandwidth have effect only when estimating
the propagation length of the generated LWs [1], [12]. Also,
the need for a spectral chirp in the source pulse to generate
LW with transform limited pulse length can be satisfied by
standard pulse compression techniques.

In Ref. [12], [15] we demonstrated both theoretically and
experimentally, that a very good approximations to the optical
LW's can be generated by means of combining a circular
grating and axicon so that the angular dispersion of the LW's
is generated in the resulting wave field. However, it tends to
be a complicated task to find the combination of angularly
dispersive optical elements to generate the required spectral
support of plane waves.

Consider a simple diffraction grating that is illuminated with
a plane wave pulse as depicted on Fig 2. Using the grating
equation we can write

sin of-sin Oi
mA

(5)

where m is the order of the diffracted field and A is the period
of the grating (see Fig. 2). Now, if we assume that the grating
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Fig. 3. (a) The optical setup proposed. The Bessel-X pulse diffracts off
the cylindrical diffraction grating G so that a superposition of tilted pulses
with angular dispersion (tilt) introduced by the grating is formed in the
striped region. A stands for the aperture of the generated LW and L for the
propagation length of the LW; (b) If the Bessel-X pulse propagate at smaller
angles relative to propagation axis the aperture A of the resulting LW is also
smaller.

is oriented parallel to the axis z (optical axis) and note that in
this case 00 = 7/2-i, sin Xi = cos 00 and sin of = cos 0 (k)
we get

2wm k 27rq
cos 0 (k) = cosOo - AACosOoi (6)

cos 00

and this is exactly the spectral support defined by the condition
(4) if we choose vg = 1/ cos Oo and b = 2wq/A cos Oo. Thus,
unlike in the setups considered so far in this case the spectral
support of plane waves of LWs can be generated exactly by
means of a single diffraction grating that is illuminated by a
plane wave pulse.

In cylindrically symmetric case we replace the plane dif-
fraction grating with a cylindrical diffraction grating and
illuminate it by a Bessel-X pulse [9] as shown on Fig. 3a.
As the effect of the cylindrical symmetry the initially conical
spectral support of the Bessel-X pulses is transformed into the
hyperboloidal one by the angular dispersion of the grating, the
effect of the physical dimensions of the setup being the finite
propagation length of the generated LW (see striped region in
Fig. 3 and [1], [12] for a related discussion).
One can also calculate the field distribution of the wave

field generated in such setup. If we insert the spectral support

(6) into the general expression (1) and assume the Gaussian
frequency spectrum, we get

IF(p, z,t) dk exp k- kz (7)
x JO (kp sin 0 (k)) exp (ikz cos 0 (k) -ikct)

Clearly, this formula is a model, not a simulation of a realistic
experimental situation, for example, it essentially assumes
infinite aperture of the system. However, in our previous
publications we have shown that as far as the aperture of the
generated LW A (see Fig. 3) satisfies the condition A >
A/ sin 0o where 0o stands for the mean cone angle of the
Bessel beam components of LW, the integrals of the form 7
can be used to calculate the spatial distribution of the wave
field in the near-axis region inside the propagation length of
the LW in very good approximation [14]. In Fig. 3 this volume
is depicted by the striped region - this is the region where all
the Bessel beam components that diffract from the cylindrical
grating are overlapped so that the constructive interference can
take place. How to construct the setup so that the propagation
length of the generated wave field is sufficiently large is up to
the choice of parameters.

In this setup we have seven parameters: vg and b to define
the spectral support, the frequency spectrum of the light source
A (k), the initial conical angle of the Bessel-X pulse 00, the
grating period A, the diameter D and the length of the grating
Lg. As to understand the interplay between the parameters
we have to notice, that given the light source A (k) the
parameters of the spectral support vg and b together can be
used to optimize for the average propagation direction of
the Bessel beam components 0 (k0) and the diameter of the
central peak d - the two quantities are inversely proportional
as d 1/ sin 0 (k0). The simple geometrical arguments show,
that the parameters of the cylinder and cone angle 00 can be
used to optimize for the propagation length and the position
of the propagation volume (see Fig. 3). Comparing Figs. 3a
and 3b one can also see the general drawback of the optical
schemes with elements oriented along the propagation axis -

the aperture of the generated LWs A inevitably reduces as we
move towards the paraxial anglesO (k) so that the optimization
of the parameters have to be treated carefully. One can also
see, that the propagation length of the generated LW L is less
or equal to the length of the grating.
Working through the various choices of the parameters

of the setup we were able to find several practical sets of
parameters for the experiments. For example, if we choose
So = 8 deg, A = 20,um, D = 15mm, Lg = 50mm and use
Gaussian light source in the range 550nm-600nm we get the
LW that propagates 30.2mm at the group velocity vg = 1.04.
The simulated field distribution is that depicted in Fig. 4. The
experiments with such setup will be carried out in near future.

IV. DIscusSION
The main advantage of the proposed setup is its robustness.

In all the setups discussed so far the material dispersion of
conical dispersive elements have been used to optimize for
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Fig. 4. The modulus of the superluminal LW that can be generated by the
proposed setup. The wave field has Gaussion frequency spectrum that extends
from 550nm to 600nm having bandwidth 50nm. The plotting range for the
lateral coordinate p is 180,um and for the axial coordinate z it is 90,um.

the required spectral support of LWs. In present case the exact
spectral support of superluminal LWs is generated by means
of a single optical element. From the very nature of the LWs
it is also implicit, that in principle the setup is robust for
the spectral shape of the input pulse and for its cone angle.
Indeed, as it is constructed to generate certain support of the
spectrum the frequency spectrum does not really matter in
first approximation. As for the initial cone angle - it appears
as parameter in Eq. (6), so that the generated spectral support
is this of a LW in every possible occasion. One still needs to
give the initial Bessel-X pulse the phase distortion (chirp) as
to generate the transform-limited pulse shape on the optical
axis of the system, however, this can be easily achieved by
applying standard pulse compression/expansion techniques. In
fact, the only practical difficulty in the described setup is the
fabrication of the cylindrical diffraction gratings.

V. CONCLUSION

We have proposed well-realizable setup for generation of
optical superluminal LWs that is robust on the parameters of
the source pulse (Bessel-X pulse in this case). We discussed
the working principle of the setup and presented numerical
simulation for a practical set of parameters.
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Measurement of the Spatiotemporal Electric 
Field of Ultrashort Superluminal Bessel-X Pulses
Pamela Bowlan, Heli Valtna-Lukner, Madis Lõhmus, Peeter Piksarv, 
Peeter Saari and Rick Trebino 

B essel-X pulses are of great interest 
because they propagate unchanged 

in vacuum or linear media over large 
distances.1 In other words, they act like 
optical bullets—without exhibiting any 
diff raction or dispersion—and do not 
spread in space or time. Bessel pulses 
have many applications, such as plasma 
generation, light fi lamentation, imag-
ing, particle micromanipulation and 
cell transfection. An x-z or x-t slice of a 
Bessel-X pulses’s spatiotemporal inten-
sity profi le I(x,y,z) or I(x,y,t) resembles 
the letter “X.” Interestingly, theory 
predicts that the electric fi eld of a Bessel- 
X pulse propagates with equal phase and 
group velocities, both greater than c in 
a vacuum. � is has been experimentally 
demonstrated several times since the 
original pioneering publication;1 never-
theless, the pulses’ superluminal group 
velocity is still occasionally questioned.

� is makes it important to directly 
measure these pulses. � e catch is that 
Bessel-X pulses have a complex spa-
tiotemporal shape, requiring a mea-
surement technique with simultaneous 
femtosecond temporal resolution and 
micrometer spatial resolution. 

We recently accomplished this 
task.2,3 To measure the electric fi eld 
of a Bessel-X pulse, we used the new 
ultrashort-laser-pulse measurement 
technique, SEA TADPOLE.4 It involves 
sampling a small spatial region of the 
pulse with a single-mode optical fi ber 
and then interfering this with a known 
reference pulse from another identical fi -
ber in a spectrometer, yielding the pulse 
intensity and phase E(λ)—and hence 
also E(t)— at each point in space. 

To generate the Bessel-X pulse, we 
propagated roughly 30 fs pulses from a 
Ti:sapphire oscillator through a fused-
silica axicon with an apex angle of 176°. 
While SEA TADPOLE measured the 
spatiotemporal intensity and phase, most 

of the interesting features were in the 
intensity, which is shown in the fi gure. 
Numerical simulations of the optical 
wave-packet are in good agreement.

Note that the central part (the apex 
of the double-conical shape) contain-
ing the bright spot remains essentially 
unchanged over a propagation distance 
of 8 cm. In contrast, a Gaussian beam 
of the same waist would have expanded 
by 26 times over this distance. We also 
measured the Bessel-X pulse’s superlu-
minal speed. SEA TADPOLE conve-
niently measured the Bessel-X pulse’s 
arrival time relative to the reference 
pulse, which traveled at the speed of 
light c. So, if the Bessel-X pulse were 
traveling at the speed of light, then, 
for each value of z, its spatio-temporal 
intensity would be centered at t = 0. 
However, it is easy to see that this was 
not the case. We measured our pulse’s 
speed along the z axis to be 1.00012c—
within 0.001 percent of the predicted 
value. (A superluminal Bessel-X pulse’s 
velocity should not, of course, be con-
fused with the signal velocity.)

(Left) Measured � eld amplitude vs. transverse position (x) and time (t) at three different dis-
tances (z) after the axicon. (Right) Corresponding simulations. Color indicates the modulus 
of electric � eld, normalized to have a maximum of 1. The white bar emphasizes the location 
of t = 0. 
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In a related study, we added a convex 
(or concave) lens in front of the axicon,3 
which resulted in an accelerating (or de-
celerating) modifi cation of the Bessel-X 
pulse, which had been theoretically 
studied in a recent paper.5 � e Bessel 
pulse’s group velocity accelerated from 
1.0002c to 1.0009c during 4 cm of 
propagation, and the decelerating Bes-
sel pulse slowed down from 1.00007c to 
1.00003c over a 12-cm distance. 

Pamela Bowlan (pambowlan@gatech.edu) and Rick 
Trebino are with the Georgia Institute of Technology, 
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ULTRAFAST OPTICS

Measurement of |E(x,y=0t)|

-t(fs) -t(fs)

z = 5.5 cm z = 5.5 cm9.5 9.513.5 13.5

0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Simulation of |E(x,y=0t)|





173 

CURRICULUM VITAE 
 
Name:  Heli Valtna-Lukner  
Date and place of birth:   1.11.1982, Tallinn, Estonia  
Citizenship: Estonia  
Marital status :  married, 1 child  
Occupation:   University of Tartu, Institute of Physics, researcher; 

(currently on parental leave, since 03.2009)  
Phone: +372 5691 5519 (cell phone)  
E-mail:   heli.lukner@ut.ee  
 

 
Education 

 
1989–1997  Lasnamäe Üldgümnaasium (primary school)  
1997–2000  Tallinn Secondary Science School  
2000–2004  University of Tartu, BSc in physics  
2004–2006  University of Tartu, MSc in physics, specializing to optics and 

spectroscopy  
2006–2010  University of Tartu, PhD studies, physics, optics and 

spectrocopy  
 
 

Professional Employment  
 
03.2006–11.2008 University of Tartu, Institute of Physics, engineer.  
12.2007–...  University of Tartu, Institute of Physics, researcher.  
 

 
Fellowships  

 
07–08 2006  Summer student in European Nuclear Research 

Centre (CERN), Geneva, Switzerland.  
03.2007–04.2008   Junior research fellow in Vilnius University Laser Research 

Centre, Lithuania; Marie Curie early stage training, ATLAS 
project.  

 
Awards and Honours  

 
• Estonian National Contest for Young Scientists at university level, I Prize 

(for master thesis) 2007.  
• Estonian Academy of Sciences, II award from student research contest (for 

master thesis), 2006.  
• Estonian National Contest for Young Scientists at university level, II Prize 

(for bachelor thesis) 2004. 

44



174 

ELULOOKIRJELDUS 
 
Nimi:   Heli Valtna-Lukner  
Sünniaeg ja -koht:   1. november, 1982, Tallinn  
Rahvus:  eestlane  
Kodakondsus:   Eesti  
Perekonnaseis:  abielus, 1 laps  
Praegune töökoht, amet: Tartu Ülikooli Füüsika Instituut, erakorraline teadur;  

(lapsehoolduspuhukusel alates 03.2009)  
Telefon:  5691 5519 (mobiil)  
E-post:  heli.lukner@ut.ee  

 
 

Haridustee  
 
1989–1997   Lasnamäe Üldgümnaasium  
1997–2000   Tallinna Reaalkool  
2000–2004  Tartu Ülikool, BSc füüsikas  
2004–2006  Tartu Ülikool, MSc füüsikas, spetsialiseerumine:  

optika ja spektroskoopia  
2006–2010  Tartu Ülikool, doktorantuur, füüsika, optika ja spektroskoopia  

 
 

Erialane teenistuskäik  
 
03.2006–11.2007 Tartu Ülikool, Füüsika Instituut, insener  
12.2007–...  Tartu Ülikool, Füüsika Instituut, erakorrline teadur  
 
 

Erialane enesetäiendus  
 

07–08 2006  osavõtt Euroopa Tuumauuringute Keskuse (CERN) 
suvetudengite programmist, Genf, Šveits.  

03.2007–04.2008 stažeerimine Vilniuse Ülikooli Laseriuuringute Keskuses, 
Leedus, nooremteadur Marie Curie mobiilsusprojekti ATLAS 
raames.  

 

 
Erialane tunnustus  

 
• Teadus- ja haridusministeeriumi üliõpilaste teadustööde riikliku konkursi 

preemia (magistritöö eest) 2007 a.  
• Eesti Teaduste Akadeemia tudengite teadustööde konkursi II preemia 

(magistrtitöö eest) 2006 a.  
• Teadus-ja haridusministeeriumi üliõpilaste teadustööde riikliku konkursi II 

preemia (bakalaureuse töö eest) 2004 a.  



175 

DISSERTATIONES PHYSICAE 
UNIVERSITATIS TARTUENSIS 

 
1. Andrus Ausmees. XUV-induced electron emission and electron-phonon 

interaction in alkali halides. Tartu, 1991. 
2. Heiki Sõnajalg. Shaping and recalling of light pulses by optical elements 

based on spectral hole burning. Tartu, 1991. 
3. Sergei Savihhin. Ultrafast dynamics of F-centers and bound excitons from 

picosecond spectroscopy data. Tartu, 1991. 
4. Ergo Nõmmiste. Leelishalogeniidide röntgenelektronemissioon kiirita-

misel footonitega energiaga 70–140 eV. Tartu, 1991. 
5. Margus Rätsep. Spectral gratings and their relaxation in some low-tempe-

rature impurity-doped glasses and chrystals. Tartu, 1991. 
6. Tõnu Pullerits. Primary energy transfer in photosynthesis. Model calcula-

tions. Tartu, 1991. 
7. Olev Saks. Attoampri diapasoonis voolude mõõtmise füüsikalised alused. 

Tartu, 1991. 
8. Andres Virro. AlGaAsSb/GaSb heterostructure injection lasers. Tartu, 1991. 
9. Hans Korge. Investigation of negative point discharge in pure nitrogen at 

atmospheric pressure. Tartu, 1992.  
10. Jüri Maksimov. Nonlinear generation of laser VUV radiation for high-

resolution spectroscopy. Tartu, 1992.  
11. Mark Aizengendler. Photostimulated transformation of aggregate defects 

and spectral hole burning in a neutron-irradiated sapphire. Tartu, 1992. 
12. Hele Siimon. Atomic layer molecular beam epitaxy of A2B6 compounds 

described on the basis of kinetic equations model. Tartu, 1992. 
13. Tõnu Reinot. The kinetics of polariton luminescence, energy transfer and 

relaxation in anthracene. Tartu, 1992.  
14. Toomas Rõõm. Paramagnetic H2– and F+ centers in CaO crystals: spectra, 

relaxation and recombination luminescence. Tallinn, 1993.  
15. Erko Jalviste. Laser spectroscopy of some jet-cooled organic molecules. 

Tartu, 1993.  
16. Alvo Aabloo. Studies of crystalline celluloses using potential energy calcu-

lations. Tartu, 1994.   
17. Peeter Paris. Initiation of corona pulses. Tartu, 1994.  
18. Павел Рубин. Локальные дефектные состояния в CuO2 плоскостях 

высокотемпературных сверхпроводников. Тарту, 1994. 
19. Olavi Ollikainen. Applications of persistent spectral hole burning in ultra-

fast optical neural networks, time-resolved spectroscopy and holographic 
interferometry. Tartu, 1996.  

20. Ülo Mets. Methodological aspects of fluorescence correlation spectros-
copy. Tartu, 1996. 

21. Mikhail Danilkin. Interaction of intrinsic and impurity defects in CaS:Eu 
luminophors. Tartu, 1997. 



176 

22. Ирина Кудрявцева. Создание и стабилизация дефектов в кристаллах 
KBr, KCl, RbCl при облучении ВУФ-радиацией. Тарту, 1997. 

23. Andres Osvet. Photochromic properties of radiation-induced defects in 
diamond. Tartu, 1998. 

24. Jüri Örd. Classical and quantum aspects of geodesic multiplication. Tartu, 
1998. 

25. Priit Sarv. High resolution solid-state NMR studies of zeolites. Tartu, 1998. 
26. Сергей Долгов. Электронные возбуждения и дефектообразование в 

некоторых оксидах металлов. Тарту, 1998. 
27. Kaupo Kukli. Atomic layer deposition of artificially structured dielectric 

materials. Tartu, 1999. 
28. Ivo Heinmaa. Nuclear resonance studies of local structure in RBa2Cu3O6+x 

compounds. Tartu, 1999. 
29. Aleksander Shelkan. Hole states in CuO2 planes of high temperature 

superconducting materials. Tartu, 1999. 
30. Dmitri Nevedrov. Nonlinear effects in quantum lattices. Tartu, 1999. 
31. Rein Ruus. Collapse of 3d (4f) orbitals in 2p (3d) excited configurations 

and its effect on the x-ray and electron spectra. Tartu, 1999. 
32. Valter Zazubovich. Local relaxation in incommensurate and glassy solids 

studied by Spectral Hole Burning. Tartu, 1999. 
33. Indrek Reimand. Picosecond dynamics of optical excitations in GaAs and 

other excitonic systems. Tartu, 2000. 
34. Vladimir Babin. Spectroscopy of exciton states in some halide macro- and 

nanocrystals. Tartu, 2001. 
35. Toomas Plank. Positive corona at combined DC and AC voltage. Tartu, 2001. 
36. Kristjan Leiger. Pressure-induced effects in inhomogeneous spectra of 

doped solids. Tartu, 2002. 
37. Helle Kaasik. Nonperturbative theory of multiphonon vibrational relaxa-

tion and nonradiative transitions. Tartu, 2002. 
38. Tõnu Laas. Propagation of waves in curved spacetimes. Tartu, 2002. 
39. Rünno Lõhmus. Application of novel hybrid methods in SPM studies of 

nanostructural materials. Tartu, 2002. 
40. Kaido Reivelt. Optical implementation of propagation-invariant pulsed 

free-space wave fields. Tartu, 2003. 
41. Heiki Kasemägi. The effect of nanoparticle additives on lithium-ion mobi-

lity in a polymer electrolyte. Tartu, 2003. 
42. Villu Repän. Low current mode of negative corona. Tartu, 2004. 
43. Алексей Котлов. Оксианионные диэлектрические кристаллы: зонная 

структура и электронные возбуждения. Tartu, 2004. 
44. Jaak Talts. Continuous non-invasive blood pressure measurement: compa-

rative and methodological studies of the differential servo-oscillometric 
method. Tartu, 2004. 

45. Margus Saal. Studies of pre-big bang and braneworld cosmology. Tartu, 
2004. 



46. Eduard Gerškevitš. Dose to bone marrow and leukaemia risk in external 
beam radiotherapy of prostate cancer. Tartu, 2005. 

47. Sergey Shchemelyov. Sum-frequency generation and multiphoton ioniza-
tion in xenon under excitation by conical laser beams. Tartu, 2006. 

48. Valter Kiisk. Optical investigation of metal-oxide thin films. Tartu, 2006. 
49. Jaan Aarik. Atomic layer deposition of titanium, zirconium and hafnium 

dioxides: growth mechanisms and properties of thin films. Tartu, 2007. 
50. Astrid Rekker. Colored-noise-controlled anomalous transport and phase 

transitions in complex systems. Tartu, 2007.  
51. Andres Punning. Electromechanical characterization of ionic polymer-

metal composite sensing actuators. Tartu, 2007. 
52. Indrek Jõgi. Conduction mechanisms in thin atomic layer deposited films 

containing TiO2. Tartu, 2007. 
53. Aleksei Krasnikov. Luminescence and defects creation processes in lead 

tungstate crystals. Tartu, 2007. 
54. Küllike Rägo. Superconducting properties of MgB2 

in a scenario with 
intra- and interband pairing channels. Tartu, 2008. 

55. Els Heinsalu. Normal and anomalously slow diffusion under external 
fields. Tartu, 2008.  

56. Kuno Kooser. Soft x-ray induced radiative and nonradiative core-hole 
decay processes in thin films and solids. Tartu, 2008. 

57. Vadim Boltrushko. Theory of vibronic transitions with strong nonlinear 
vibronic interaction in solids. Tartu, 2008. 

58. Andi Hektor. Neutrino Physics beyond the Standard Model. Tartu, 2008. 
59.  Raavo Josepson. Photoinduced field-assisted electron emission into gases. 

Tartu, 2008. 
60.  Martti Pärs. Study of spontaneous and photoinduced processes in mole-

cular solids using high-resolution optical spectroscopy. Tartu, 2008. 
61.  Kristjan Kannike. Implications of neutrino masses. Tartu, 2008. 
62. Vigen Issahhanjan. Hole and interstitial centres in radiation-resistant MgO 

single crystals. Tartu, 2008. 
63. Veera Krasnenko. Computational modeling of fluorescent proteins. Tartu, 

2008. 
64.  Mait Müntel. Detection of doubly charged higgs boson in the CMS detec-

tor. Tartu, 2008.  
65.  Kalle Kepler. Optimisation of patient doses and image quality in diag-

nostic radiology. Tartu, 2009. 
66.  Jüri Raud. Study of negative glow and positive column regions of capil-

lary HF discharge. Tartu, 2009. 
67.  Sven Lange. Spectroscopic and phase-stabilisation properties of pure and 

rare-earth ions activated ZrO2 and HfO2. Tartu, 2010.  
68.  Aarne Kasikov. Optical characterization of inhomogeneous thin films. 

Tartu, 2010. 

45


	pub.pdf
	1_OptComm_246_p445_2005.pdf
	Photon localization barrier can be overcome
	Acknowledgements
	References


	2_JOA8_p118_2006.pdf
	1. Introduction
	2. The model
	2.1. Propagation-invariant focused X wave
	2.2. Finite-energy modifications

	3. Discussion
	4. Conclusion
	Acknowledgment
	References

	4_OptComm278_p1_2007.pdf
	Methods for generating wideband localized waves of superluminal group velocity
	Introduction
	Formation of the support of the spectrum
	Generalized optical scheme
	Analysis of the scheme
	Discussion
	Conclusion
	Acknowledgement
	References






