

TARTU RIIKLIKU ÜLIKOOLI FOIRIJA JASABAD

Per. A-1169

-564

УЧЕНЫЕ ЗАПИСКИ ТАРТУСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА АСТА ЕТ COMMENTATIONES UNIVERSITATIS TARTUENSIS

564

ИССЛЕДОВАНИЯ ПО ДИНАМИКЕ КОНСТРУКЦИЙ

Matemaatika- ja mehaanika-alaseid töid Труды по математике и механике

Per. A- 1169

1

ТАКТU RIIKLIKU ÜLIKOOLI TOIMETISED УЧЕНЫЕ ЗАПИСКИ ТАРТУСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА АСТА ЕТ COMMENTATIONES UNIVERSITATIS TARTUENSIS ALUSTATUD 1893.a. VIHIK 564 ВЫПУСК ОСНОВАНЫ В 1893.г.

ИССЛЕДОВАНИЯ ПО ДИНАМИКЕ КОНСТРУКЦИЙ

Matemaatika- ja mehaanika-alaseid töid Труды по математике и механике

1

Тарту 1981

Redaktsioonikolleegium:

Ü. Lepik(esimees), L. Ainola, K. Kenk, M. Kilp, Ü. Lumiste, E. Reimers, E. Tamme.

Редакционная коллегия:

Ю.Лепик(председатель), Л.Айнола, К.Кенк, М.Кильп, Ю.Лумисте, Э.Реймерс, Э.Тамме.

Tartu Riikliku Uikooli Roamatukogu

Ученые защики Тартуского государственного университета. Выпуск 564. ИССЛЕДОВАНИЯ ПО ДИНАМИКЕ КОНСТРУКЦИЙ. Труды по математике и механике. На русском языке. Тартуский государственный университет. ЭССР, 202 400, г.Тарту, ул.Юликоли, I&. Ответственный редактор 3. Сакков. Корректоры Г. Оленев, Х. Конка. Поплисенный редактор 3. Сакков. Корректоры Г. Оленев, Х. Конка. Поплисено к печати 12.05.1981. МВ J3893. Формат ЗОх45/4. Яумаге печатная. Мишнопись. Ротаринт. Учетно-издат. листов 6,I2. Печатных 6,50+I вкл. Тирах 400. Заказ & 608. Цена 90 коп. Типограция ТТУ, ЭССР, 202400, г.Тарту, ул.Пялсона, I4.

С Тартуский государственный университет, 1981

К ШЕСТИДЕСЯТИЛЕТИЮ ПРОФЕССОРА Ю.ЛЕПИКА

Заведующему кафедрой теоретической механики Тартуского государственного университета, профессору Юло Рудольфовичу Лепику 11 июля 1981 года исполнилось 60 лет со дня рождения.

Ю.Лепик родился в городе Тарту в семье рабочего. После окончания гимназии Г.Треффнера в Тарту (в настоящее время I Средняя школа им. А.Г.Таммсааре) Ю.Лепик поступил в Тартуский университет на физическое отделение естественно-математического факультета, которое окончил в 1948 году.

Вся научная и педагогическая деятельность юбиляра связана с кафедрой теоретической механики Тартуского госуниверситета. В 1946-1954 гг. он работал старшим лаборантом, ассистентом и старшим преподавателем кафедры, в 1954 г. был избран доцентом кафедры и в 1960 г. ему было присуждено ученое звание профессора. С 1959 г. он работает заведующим кафедрой теоретической механики. Защита кандидатской диссертации состоялась в 1952 г. и с 1959 г. Ю.Лепик доктор физикоматематических наук.

Проф. Ю.Лепик ценится среди студентов как отличный педагог-преподаватель. Его лекции по теоретической механике, механике сплошной среды, теории упругости и пластичности, пластин и оболочек, теории оптимального управления, а также по высшей математике и математической статистике стоят на высоком научном уровне и изящны по изложению. Курсовые и дипломные работы студентов, написанные под руководством Ю.Лепика как правило содержат новые научные результать.

Ю.Лепиком в соавторстве с Л.Роотсем написан первый эстонский учебник по теоретической механике. Издательством ТГУ изданы учебные пособия по теории оптимального управления, механике сплошной среди, теории вероятностей и математической статистике, написанные Ю.Лепиком в соавторстве с коллегами по кафедре. Цикл его лекций по теории оптимального управления с применениями в теории пластин и оболочек издан Польской Академией наук.

Проф. Лепик неоднократно выступал лекциями в ряде научных центров, напр. в Институте проблем механики АН СССР,Институте математики и механики Азербайджанской АН, Воронежском Госуниверситете, Хабаровском политехническом институте. Инс-

титуте основных проблем техники в Варшаве, Хельсинкском техническом университете, Датском техническом университете.

Ю.Лепик действует и популяризатором науки. В различных журналах появлялись его статьи на научно-популярные темы и он выступал популярными лекциями перед слушателями разных профессий. Он член ряда всесоюзных и республиканских научных и методических комиссий. Под его руководством проведено в Тарту четыре всесоюзные летние школы по механике.

Благодаря усилиям Ю.Лепика создавалась Тартуская школа механиков, известная во всем Советском Союзе. Под руководством проф. Лепика защищено IO кандидатских диссертаций.

Ю.Лепик пришел в науку, увлеченный работами и идеями А.А.Ильюшина в области теории малых упруго-пластических деформаций. Первое десятилетие на пути ученого связано изучением устойчивости пластин и стержней в упруго-пластической стадии. Он обобщил уравнения Кармана гибких пластин на случай упруго-пластических деформаций и предложил метод решения своих уравнений. Ю.Лепик является в нашей стране одним из пионеров применения ЭВМ в теории пластин и оболочек. Так как подробный обзор исследований (работы [I – 48]) проф. Ю.Лепика за период 1950-1970 можно найти в статьях "Обзор работ по теории пластин и оболочек, выполненных в Тарту за период 1950-1968 гг.", Уч. зап. Тартуск. ун-та, 253, 1970, 26-37 и "К пятидесятилетию проф. Ю.Лепика", Уч. зап. Тартуск. ун-та, 281, 1971, 3-6, то на этом периоде останавливаться не будем.

В настоящем обзоре рассматривается научная деятельность Ю.Лепика за последнее десятилетие.

В список литературы не включены учебно-методические и научно-популярные статьи, а также тезисы докладов конференций.

В последнее десятилетие научная деятельность Ю.Лепика охватывает широкий круг вопросов, которые можно разделить на три группы: I) применение принципа максимума Понтрягина к решению задач оптимального проектирования пластических конструкций; 2) динамика элементов конструкций типа балок, пластин и оболочек; 3) оптимальное проектирование при динамическом нагружении.

Такая классификация является весьма условной поскольку при оптимальном проектировании динамически нагруженных конструкций (третье направление) применяются различные методы решения задач динамики (вторая группа вопросов), а также методы теории оптимального управления (первая группа).

Кроме того, продолжено исследование проблем реферированных в предыдущих обзорах. Так, например, в [49] найдены точные решения задач предельного равновесия растянуто-изогнутых и сжато-изогнутых круглых пластин, защемленных по внешнему контуру. Обобщая идеи Гадоу, в работе найдены распределения радиальных напряжений. В работе [53] предлагается приближенный метод построения поверхности текучести для любого кусочно-линейного условия пластичности.

I. Применение принципа максимума Понтрягина.

0. Лепик является одним из первых, который применяет принцип максимума Л.С.Понтрягина при оптимальном проектировании пластических пластин и оболочек.

Задачи минимального веса пластических конструкций рассматривались уже в середине пятидесятых годов многими авторами. Однако решения этих задач в случае кусочно-линейных условий текучести, полученные методами Дракера-Шилда, приводят часто к нереальным проектам. Эти проекты, как правило, имеют нулевые толщины и поэтому не могут сопротивляться перерезывающим силам.

Ю.Лепик показал в [51-52]; [57 - 59]; [63], что это затруднение можно обойти применением принципа максимума. В этом случае легко учитывать ограничения на толщину конструкций. Если потребовать, чтобы толщина ограничена сверху и снизу, то получаемый проект нулевых толщин не имеет. Основные результаты обсуждаются в обзоре [57].

В работах [51, 52] решается задача минимального веса равномерно нагруженных круглых пластин. В [51] рассматривается однородная пластина, материал которой подчиняется условию пластичности Прагера, а в [52] идеальная трехслойная пластично в случае произвольного кусочно-линейного условия пластичности.

Подобные результаты для круговых цилиндрических оболочек получены в работе [59]. Показывается, что в случае анизотропного материала реализуются проекты, для которых один несущий слой имеет постоянную, а другой – переменную толщину.

Работа [58] посвящена исследованию проблемы минимального веса оболочек вращения с учетом ограничений на перерезывающие силы.

Во всех вышеизложенных работах применяется принцип максимума Понтрягина, известный в теории оптимального управле-

5

ния. Кроме принципа максимума Понтрягина применяются в ряде других работ Ю.Лепика и вариационные методы теории оптимального управления, в частности и в тех, которые будем реферировать в третвем разделе данного обзора. Математические аспекты теории оптимального управления рассматриваются в работах [63] и [68].

2. Динамика неупругих конструкций.

Целый ряд работ проф. Ю.Лепика посвящен задачам динамического поведения пластических конструкций.

2.1. <u>Распространение ударных волн под действием высоких</u> <u>давлений</u>. Ю.Лепиком обращено должное внимание изучению распространения пластических волн в толстых пластинах. Для решения задач исползовался метод характеристик. Но в работе [50] задача о распространении и взаимодействии плоских волн высокой амплитуды решается методом конечных элементов. Обнаруживается хорошее совпадение результатов, найденных обоими методами.

Исследуя поведение деформируемых тел под действием динамической нагрузки высокой интенсивности (порядка 10⁵-10⁶ ат) реальную среду можно заменить гидродинамической моделью. Используя такую модель материала в [61] и [62] изучается поведение осесимметричных тел, нагруженных высоким давлением. В [61] задача решается методом конечных элементов, причем для улучшения устойчивости расчетной схемы вводятся разные варианты искусственной вязкости. В работе [65] применяется для решения поставленной задачи модифицированный метод свободных точек Дъяченко.

2.2. <u>Динамический изгиб жестко-пластических конструкций</u>. Проф. Ю.Лепиком внесен значительный вклад в развитие приближенных методов решения динамических задач пластических элементов конструкций. В работах [54 - 56], [60] приводятся некоторые модификации приближенного метода Калисского. В [55] решается задача об изгибе круглой пластины под действием нагрузки, действующей в центральной части пластины. В работе [66] рассматривается бесконечная пластина, материал которой подчиняется условию пластичности Губера-Мизеса. В этих статьях учитывается движение пластических шарниров.

Работы [56] и [60] посвящены исследованию поведения пластин и оболочек под действием нагрузок локального типа.

В [60] изучается влияние образования кратера на динамическое поведение пластины, а в [56] выработана методика для определения границы деформированной области.

В работах [74], [75], [78], [79] применяется метод квазимодальных движений при решении задач деформирования жестко-пластических элементов конструкций. Этот метод разработан в [74], [75] и заключается в том, что скорость прогиба задается в форме

$$\dot{w}(x,t) = \sum_{i=1}^{n} \varphi_i(t) n s_i(x,s_1,...,s_m)$$
.

Здесь ω_i - квазимодальные формы движения; $\delta_1, \dots, \delta_m$ - некоторые параметри, зависящие от времени.

В [75] исследуется вопрос устойчивости высших модальных форм движения. Показывается, что вторая модальная форма является неустойчивой.

В статье [83] приводятся результати исследований по автоматизации расчета пластических балок ступенчато-постоянной высоти в случае динамического нагружения.

3. Оптимальное проектирование при динамическом нагружении.

Последние работы проф. Ю.Лепика связаны с оптимальным проектированием неупругих конструкций в случае динамического нагружения. По этой теме впервые им написана уникальная монография [89], также содержательный обзор [86], в которых обсуждаются различные постановки задач и методы их решения.

Первой работой Ю.Лепика в этой области является статья [71] (завершенная уже в 1975 году), где исследуется проблема оптимизации оболочек вращения при осесимметричных нагрузках. Предполагается, что материал оболочки подчиняется условию текучести Губера-Мизеса.

3.1. <u>Жестко-пластические конструкции ступенчато-пос-</u> тоянной толцины. С конца 1975 года начинается плодотворное сотрудничество проф. Ю.Лепика с проф. З.Мрузом из Польской АН. В совместных работах [66], [70] рассматриваются задачи оптимизации пластических балок и пластин ступенчато-постоянной толщины. Поставленные задачи решаются методом модальных движений. В [70] учитываются и несимметричные формы движения.

В статье [72] представляется усовершенствованная мето-

дика решения задачи оптимизации пластической балки с помощью метода модальных движений. Этот же метод, который в [72] был использован для свободно опертой балки, применяется в [73] для защемленной балки.

В поздних работах [80], [82], [84], [86], [89] решаются задачи оптимального проектирования жестко-пластических балок ступенчато-постоянной толщины как в точной постановке так и методом модальных движений. Показывают, что метод модальных движений приводит к результатам, хорошо совпадающим с точными решениями как при импульсивном так и силовом нагружении.

3.2. Конструкции плавно изменяющей толщины. Проблемы оптимального проектирования конструкций с плавным изменением толщины исследованы в [67], [76], [77], [85], [86] и [89]. Задачи оптимизации нелинейно-вязких балок и кольцевых пластин, подверженных динамическим воздействиям, решены в [67], [76] и [77] методом модальных движений. Балки из жестко-пластического материала рассматривались в [67] и [85].

В работе [85] поставлена и решена параметрическая задача оптимизации: закон изменения высоты балки задается в виде $f_{k} = f_{k} \left[1 + \kappa (1 - x/l)^{n} \right]$, где к и n – неизвестные постоянные. Показывается, что и в этом случае метод модальных движений обеспечивает хорошую точность.

3.3. Оптимизация расположения дополнительной опоры. Нахождению оптимального расположения дополнительной опоры к нелинейно-упругой или вязкой балке посвящены работы [64] и [69]. Опоры могут быть или упругие или жесткие. В [64] применяется метод модальных движений и за критерий качества выбирается объем балки. Доказывается, что при сделанных допущениях остается в силе условие оптимальности Мруза-Розвани, выведенное для статически нагруженных балок. В статье [69] обобщается условие Мруза-Розвани на случай пройзвольной меры податливости балки.

Задачи оптимального расположения дополнительной опоры для жестко-пластических балок, нагруженных начальным импульсом, рассмотрены в [64], [76], [81] и [87]. Оказывается ([64], [81]), что в случае модального движения применимо условие Прагера-Мруза-Розвани [$Q_{(S)}W'(S)$]= 0, где Q – перерезывающая сила, W' – наклон прогиба, а квадратные скобки обозначают скачок в точке S. Решая поставленную задачу в точной постановке Ю.Лепик показал ([81],[87],[88]), что при определенных

предположениях действительно условие Прагера-Мруза-Розвани в интегральной форме.

Я.Леллеп,

. К.Соонетс

Научные труды проф. Ю.Леника

(продолжение)

- 49. К несущей способности растянуто-изогнутых и сжато-изогнутых круглых пластин. Изв. АН СССР. Мех. тверд. тела, 1972, № 3, 13-19.
- 50. Применение метода конечных элементов для решения задачи о распространении плоских ударных волн в толстой пластине. Уч. зап. Тартуск. ун-та, 1972, 305, 273-281 (соавтор М.Зимирев).
- 5I. Minimum weight deşign of circular plates with limited thickness. Int. J. Non-Linear Mech., 1972, 7, № 4, 353-360.
- 52. Application of Pontryagin's maximum principle for minimum weight design of rigid-plastic circular plates. Int.J. Solids and Struct., 1973, 9, Nº 5, 615-624.
- 53. К определению несущей способности осесимметричных оболочек в случае кусочно-линейных условий пластичности. Изв. АН СССР, Мех. тверд. тела, 1973, № 2, 144-150 (соавтор Я.Леллеп).
- 54. К приближенному решению задач динамического изгиба жестко-пластических пластин. Прикл. мех., 1974, № 5, 33-39.
- 55. 0 динамическом изгибе бесконечных жестко-пластических пластин. Прикл. мех., 1974, № 6, 61-65.
- 56. Приближенный метод решения задач динамики жестко-пластических конструкций под действием нагрузок локального типа. Уч. зап. Тартуск. ун-та, 1974, 342, 303-310.
- 57. Применение принципа максимума Понтрягина в задачах прочности, устойчивости и колебаний тонкостенных конструкций. Механика. Период. сб. пер. ин. статей, 1974, № 6, 126-141.
- 58. К оптимальному проектированию жестко-пластических оболочек вращения с учетом влияния перерезывающих сил. Мех. деформир. тел и конструкций. М., 1975, 243-250.
- 59. Применение принципа максимума Понтрягина для оптимального проектирования цилиндрических оболочек из жестко-

3

пластического материала. Успехи мех. деформир. сред. М., 1975, 340-349.

- влиянии образования кратера на динамический изгиб пластин. Уч. зап. Тартуск. ун-та, 1975, 374, 273-279.
- 61. О динамике осесимметричных тел, нагруженных высоким давлением. Уч. зап. Тартуск. ун-та, 1975, 374, 280-292 (соавторы К.Соонетс, Э.Сакс).
- 62. Научная школа по проблеме "Динамические задачи пластических пластин и оболочек". Изв. АН СССР. Мех. тверд. тела, 1975, № 1, 172-173 (соавтор К.Соонетс).
- 63. Podstawy teorii sterowania optymalnego oraz jej zastosowania w mechanice ciał odkształcalnych. Warszawa, PAN, 1976.
- 64. Оптимальное проектирование неупругих балок с дополнительными опорами в случае динамического нагружения. Уч. зап. Тартуск. ун-та, 1977, 430, 132-143.
- 65. Интегрирование уравнений движения осесимметричных тел при высоких динамических давлениях. Прикл. мех., 1977, № 2, 3-8 (соавторы С.Коскель, Э.Тамме).
- 66. Optimal design of plastic structures under impulsive and dynamic pressure loading. Int.J. Solids and Struct., 1977, 13, Nº 7, 657-674 (with Z.Mróz).
- 67. Оптимальное проектирование конструкций при импульсном нагружении. Мех. полимеров, 1977, № 6, 1021-1028 (соавтор З.Мруз).
- 68. Основы математической теории оптимального управления. Изд. ТГУ, Тарту, 1978 (соавтор Я.Леллеп).
- 69. Optimal design of beams with minimum compliance. Int.J. Non-Linear Mech., 1978, 13, N: 1, 33-42.
- 70. Optimal design of impulsively loaded plastic beams for asymmetric mode motions. Int.J. Solids and Struct., 1978, 14, Ng 10, 841-850 (with Z.Mróz).
- 71. Об оптимизации жестко-пластических оболочек вращения при динамических нагрузках. Изв. АН СССР. Мех. тверд. тела, 1978, № 2, 136-144.
- 72. Оптимальное проектирование жестко-пластических балск под действием динамических нагрузок. Уч. зап. Тартуск. ун-та, 1979, 487, 16-28.
- 73. Дополнение к динамической задаче оптимизации жестко-пластических балок в приближенной постановке. Уч. зап. Тартуск. ун-та, 1979, 487, 37-39 (соавтор Э.Сакков).

- 74. The method of quasimodal form solutions for the dynamic response of rigid-plastic structures. Mech.Res.Commun., 1979, 6, N 23, 135-140.
 - 75. On the dynamic response of rigid-plastic beams. J.Struct. Mech., 1980, 8, Nº 3, 227-235.
 - 76. Application of the control theory for optimal design of non-elastic beams under dynamic loading. Proc. IUTAM Symp. on Struct.Control, Waterloo, 1979. North-Holland Publish. Comp., 1980, 447-457.
 - 77. Оптимальное проектирование нелинейно вязких кольцевых пластин при импульсном нагружении. "Тр. XII всес.конф. по теории оболочек и пластин", Ереван, 1980, I.III, 5-IO.
 - 78. Решение задач динамического изгиба жестко-пластических конструкций методом квазимодальных форм движения. "Прикладные пролемы прочности и пластичности", Горький, (в печати).
 - 79. Динамический изгио жестко-пластических балок под действием сосредоточенной нагрузки. Прикл. мех., 1981, № 4.
 - 80. Optimal design of rigid-plastic simply supported beams under impulsive loading. Int.J.Solids and Struct., 1981 (in print).
 - 8I. On optimal design of rigid-plastic beams with additional supports in the case of impulsive loading. Int.J.Non-Linear Mech., 1981, 16, No.1, 19 - 26.
 - 82. Optimal design of rigid-plastic simply supported beams under dynamic pressure loading. Int.J.Solids and Struct. (in print).
 - 83. Автоматизированный расчет динамического изгиба жесткопластических балок ступенчато-постоянной высоты. Настоящий сборник, стр.12-23 (соавтор М.Юст).
- 84. Оптимальное проектирование жестко-пластических балок ступенчато-постоянной высоты под действием импульсного нагружения. Изв. АН СССР. Мех. тверд. тела (в печати).
- 85. Оптимальное проектирование жестко-пластических балок переменной высоты под действием динамической нагрузки. "Прикладные проблемы прочности и пластичности", Горький (в печати).
- 86. Оптимальное проектирование неупругих конструкций при динамических воздействиях (обзор). Прикл. мех. (в печати).

- 87. Определение оптимального положения опор для жестко-пластической балки в случае импульсного нагружения. Уч. зап. Тартуск. ун-та (в печати).
- 88. Об условии оптимальности балок с дополнительными опорами при динамических нагрузках. Уч. зап. Тартуск. унта (в печати).
- 89. Оптимальное проектирование неупругих конструкций в случае динамического нагружения (монография, в печати).

АВТОМАТИЗИРОВАННЫЙ РАСЧЕТ ДИНАМИЧЕСКОГО ИЗГИБА ЖЕСТКО-ПЛАСТИЧЕСКИХ БАЛОК СТУПЕНЧАТО-ПОСТОЯННОЙ ВЫСОТЫ

Ю.Лепик и М.Юст Тартуский государственный университет

Расчет конструкций на динамические нагрузки является в настоящее время одной из важнейших проблем механики деформируеного твердого тела. Если нагрузка достаточно высока . то мы можем пренебречь упругими свойствами материала и, таким образом придем к модели жестко-пластического материала. При проектировании балочных конструкций часто применяются балки ступенчато-постоянной высотой (технология изготовления таких элементов конструкций значительно проще, чем, например, в случае балок плавно изменяющейся высоты). В случае жестко-пластического материала в некоторых сечениях таких балок возникают пластические шарниры. Для определения их положения нало проанализировать ряд вариантов, что требует много усилий и времени. Поэтому важно автоматизировать такие расчеты. Для этой цели в данной работе составлены алгоритм расчета и пакет программ ДИНОПТ.

Высота балки считается кусочно-постоянной функцией от координаты вдоль оси балки. Концы балки могут быть свободно опертыми, заделанными или свободными. К балке приложены статические и динамические нагрузки; считается, что динамические нагрузки изменяются по закону прямоугольного импульса. Поле остаточных прогибов в момент прекращения движения

определяется методом модальных движений.

Составленный пакет программ применим и в случае импульсного нагружения, когда задано поле начальных скоростей. Можно решать и оптимизационные задачи; в таком случае при заданном объеме надо определить такие параметры конструкции, при которых максимальный остаточный прогиб является минимальным.

§ I. Основные уравнения

Представим уравнения движения балки в виде

$$\frac{\partial M^*}{\partial x} = Q^*, \quad \frac{\partial Q^*}{\partial x} = \rho Bh(x) \frac{\partial^2 w^*}{\partial t^2} - p^*(x), \quad (I)$$

где M^* – изгибающий момент; \mathfrak{x} – координата вдоль оси балки; Q^* – перерезывающая сила; \mathfrak{g} – плотность материала; B, k – ширина и высота балки; \mathfrak{ns}^* – прогиб; t – время; \mathfrak{p}^* – распределенная нагрузка.

В некоторых сечениях $\mathfrak{X} = \mathfrak{X}_{i}$, $\mathfrak{L} = \Lambda, 2, \ldots, m$ могут быть приложены сосредоточенные силы P_{i}^{\star} . В точках их приложения должны быть выполнены требования

$$Q^*(x_i+) - Q^*(x_i-) = -P_i^*$$
. (2)

Нагрузки p^* и P_L^* могут быть статические или динамические. В случае динамических нагрузок будем считать, что они в некотором промежутке времени $t \in [0, t_A]$ постоянны; при $t = t_A$ они снимаются и дальнейшее движение происходит по инерции (в таком случае мы будем говорить, что нагрузки изменяются по закону прямоугольного импульса).

Целесообразно перейти к следующим безразмерным величинам:

$$\xi = \frac{x}{l}, \quad \gamma = \frac{h(x)}{h(0)}, \quad M = \frac{4M^{*}}{\sigma_{\sigma}Bh^{2}(0)}, \quad Q = \frac{4lQ^{*}}{\sigma_{\sigma}Bh^{2}(0)}, \quad (3)$$

где 2l – длина балки и 5- предел текучести материала.

Пусть на отрезках (η_i, η_{i+1}), i = 1, 2, ..., m балка имеет постоянную толщину $\gamma = \gamma_i$, тогда объем балки равняется $V = 2h(0)BL\Delta$, где

$$\Delta = \sum_{i=1}^{m} \gamma_i (\eta_{i+1} - \eta_i). \qquad (4)$$

13

Если мы хотим решить оптимизационную задачу, то следует принять V = const и, следовательно, величина $\mathcal{L}(0)$ вычисляется по формуле

$$h(\mathbf{0}) = \frac{V}{2BL\Delta} . \tag{5}$$

Безразмерные величины р. и Р. введем по формулам

$$p = \frac{16Bl^4 p^*}{\epsilon r_0 V^2}, P_i = \frac{16Bl^3 P_i^*}{\sigma_0 V^2}.$$

Символами т и соответственно значения безразмерного времени и остаточного прогиба, причем при импульсном нагружении

$$\tau = \frac{3\sigma_0 V^2 t}{4BJt^3}, \quad w = \frac{3\sigma_0 \rho V^3 w^*}{4BJ^2t^3},$$

где 🗍 - количество движения.

В случае силового нагружения возьмем

$$\tau = \frac{t}{t_1}, \quad w = \frac{4\varrho B l^3 w^*}{3 \sigma_0 V t_1^2},$$

где t, - время снятия нагрузки.

В задачах динамического изгиба величина h(0) задана, а $V \neq const.$ Безразмерные величины ξ , γ , M, Q вычисляем по формулам (3), а величины р и P_{c} введем теперь в виде

$$p = \frac{4l^2 n^*}{\sigma_0 B h^2(0)}, \quad P_i = \frac{4l P_i^*}{\sigma_0 B h^2(0)}$$

Величины τ и ω представляем в случае импульсного нагружения в виде

$$\tau = \frac{3\sigma_0 h(0)t}{4qv_0^* l^2}, \quad w = \frac{3\sigma_0 h(0)w^2}{8qv_0^* l^2},$$

где символом ***** обозначена начальная скорость балки. В случае силового нагружения примем

$$\tau = \frac{t}{t_1}, \quad \omega = \frac{2 q l^2 \omega^*}{3 \sigma_0 h(0) t_1^2}.$$

Условия (I)-(2) представляются теперь в виде

$$\frac{\partial M}{\partial \xi} = \Omega, \quad \frac{\partial Q}{\partial \xi} = 6\Delta \gamma(\xi) \dot{w} - \mu \Delta^2, \quad (6)$$
$$\Omega(\xi_i +) - \Omega(\xi_i -) = -P_i \Delta^2.$$

Здесь и в дальнейшем точками обозначены производные по безразмерному времени τ . Начало координаты ξ поставим в левый конец балки. Легко видеть, что уравнения (6) применимы как для решения оптимизационных задач, так и для задач динамического изгиба, если в последнем случае взять $\Delta = 1$.

§ 2. Метод решения

Уравнения (6) будем интегрировать методом модальных решений, применяя формулы

$$\dot{w}(\xi,\tau) = \Psi(\tau) f(\xi), \quad \ddot{w}(\xi,\tau) = \Psi(\tau) f(\xi).$$
 (7)
Такие решения имеют место как для фазы нагружения ($\tau < 1$),
так и для фазы инерциального движения ($\tau > 1$), но пространст-

венные моды $f(\xi)$ в обеих фазах различны. Так как материал балки жестко-пластический, то в тех сечениях, где изгибающий момент M^{*} равен его предельному значению M_S = 0,25 B ℓ_{ν}^{2} σ₀, возникают пластические шарниры, а участок балки между шарнирами остается жестким. В случае модальных решений все шарниры стационарны. Такие пластические шарниры могут возникнуть: I) в сечениях, где высота балки изменяется скачком; 2) в сечениях, где приложены сосредоточенные силы; 3) в краевых сечениях. Кроме того, шарниры могут появляться и внутри отрезков балки постоянной высоты, если в этих точках изгибающий момент имеет предельное значение. В таких случаях положения этих шарниров неизвестны и их приходится определять в ходе решения задачи. В данной работе для упрощения считается, что таких шарниров с неизвестными координатами не больше одного.

Обозначим положения возможных шарниров через α_i , где i = 1, 2, ..., n, включая сюда и координаты концов балки $\alpha_1 = 0, \alpha_n = 2$. Безразмерную высоту между возможными шарнирами (α_i, α_{i+1}) обозначим через γ_i , а безразмерные угловые ускорения в шарнирах $\xi = \alpha_i -$ через Q_i (рис. I). Ускорение doна отрезке $\xi \in [\alpha_k, \alpha_{k+1}]$ определяется по формуле

$$\omega(\xi) = \lambda + \sum_{i=1}^{k-1} q_i(\alpha_{i+1} - \alpha_i) + q_k(\xi - \alpha_k)$$
(8)

(если $\kappa = \Lambda$, то $\dot{w}(\xi) = \Lambda + q_{\Lambda}(\xi - \alpha_{\Lambda}))$, где $\Lambda = \dot{w}(0)$. Принимая $\dot{w}(\alpha_{n}) = \dot{w}(2) = \Lambda$, получим, что

$$S_{4} = S + \sum_{i=1}^{n-1} q_{i} (\alpha_{i+1} - \alpha_{i}). \qquad (9)$$

Рис. 1

Рис. 2

Перейдем теперь к интегрированию системы (6). Обозначим символами $Q_4(\xi)$ и $M_4(\xi)$ ту часть величин $Q(\xi)$ и $M(\xi)$, которая не зависит от распределенной нагрузки $p(\xi)$, тогда для отрезка $\xi \in [\alpha_{\kappa}, \alpha_{\kappa+1}]$ имеют место соотношения

$$Q_{+}(\xi) = Q_{+}(\alpha_{\kappa}) + 6\Delta\gamma_{\kappa}[s + \sum_{i=1}^{\kappa-1} q_{i}(\alpha_{i+1} - \alpha_{i})](\xi - \alpha_{\kappa}) + + 3\Delta\gamma_{\kappa}q_{\kappa}(\xi - \alpha_{\kappa})^{2} - \Delta^{2}P_{\kappa},$$
(10)

$$M_{+}(\xi) = M_{+}(\alpha_{\kappa}) + [\Omega_{+}(\alpha_{\kappa}) - \Delta^{2}P_{\kappa}](\xi - \alpha_{\kappa}) + + 3\Delta\gamma_{\kappa}[s + \sum_{i=1}^{\kappa-1} q_{i}(\alpha_{i+1} - \alpha_{i})](\xi - \alpha_{\kappa})^{2} + \Delta\gamma_{\kappa}q_{\kappa}(\xi - \alpha_{\kappa})^{3}.$$

Функции $Q_{+}(\xi)$ и $M_{+}(\xi)$ вычисляются рекуррентно для всего отрезка $[\alpha_{4}, \alpha_{m}]$, начиная с соотношений $Q_{+}(\alpha_{4}) = Q_{o}$ и $M_{+}(\alpha_{4}) = M_{o}$, где символами Q_{o} и M_{o} обозначены значения безразмерных величин – перерезывающей силы и изгибающего момента в сечении $\alpha_{s} = 0$. Обозначая еще

$$\pi_1(\xi) = \int_0^{\xi} \mu(\xi) d\xi \quad \pi_2(\xi) = \int_0^{\xi} \pi_1(\xi) d\xi,$$

получим формулы

$$Q(\xi) = Q_{+}(\xi) - \Delta^{2} \pi_{1}(\xi), \qquad (II)$$

$$M(\xi) = M_{+}(\xi) - \Delta^{2} \pi_{2}(\xi), \qquad (II)$$

где $\xi \in [a_{\kappa}, a_{\kappa+1}], \kappa = 1, 2, ..., n - 1.$

Не все возможные шарниры реализуются. Надо исследовать все возможности. Вначале допустим, что реализуется лишь один пластический шарнир. После этого комбинируем возможные шарниры попарно, по три, по четыре и т.д.. Если в некотором сечении $\xi = \alpha_{i}$ шарнира не будет, то $q_{i} = q_{i,-4}$, $i = 2,3,\ldots,n-4$. Среди точек α_{i} может быть и неизвестная координата $\alpha_{j} = \alpha_{i}$, при которой $\gamma_{i} = \gamma_{j-4}$. Если левый конец балки защемлен и первый пластический шарнир возникает в сечении $\xi = \alpha_{i,+4}$, то $q_{i} = q_{i} = \cdots = q_{i_{k}} = 0$ (при правом защемленном конце аналогично $q_{n-4} = 0$ и т.д.). Рассматриваемую краевую задачу охарактеризуем двузнач-

Рассматриваемую краевую задачу охарактеризуем двузначным числом i_{d} , где i = 1,2,3 и j = 1,2,3,4, причем номером I обозначено свободное опирание, 2 – жесткая заделка и 3 – свободный конец. Если задача симметрична относительно центра балки $\xi = 1$, то достаточно рассмотреть лишь половину

балки ξε[0;4]. Этот случай отмечается второй цифрой j = 4. Таким образом, имеем вообще I2 типов краевых условий 4j.

Для определения величин s, s₄, Q₀, M₀, q₁, q₂,...

 в действительных шарнирах должны быть выполнены условия

$$M(\alpha_{\kappa}) = \widetilde{M}_{\kappa} , \qquad (12)$$

где

$$\widetilde{M}_{K} = \begin{cases} \pm 1 \text{ для } K = 1, \\ \pm [\min(\gamma_{K-1}, \gamma_{K})]^{2} \text{ для } K = 2,3,...,n-1, \quad (I3) \\ \pm \gamma_{n-1}^{2} \text{ для } K = n \end{cases}$$

(знак у предельных моментов $\widetilde{\mathsf{M}}_{k}$ следует выбирать по интуиции);

2) coothomethe (9);

3) краевые условия.

Таким образом, получается линейная система с одинаковым числом уравнений и неизвестных.

При наличии неизвестного шарнира для определения координаты α_{*} надо решить нелинейное уравнение $Q(\alpha_{*}) = 0$ при помощи некоторой численной процедуры.

В качестве примера рассмотрим вариант граничных условий 12 и допустим, что в балке имеется ℓ действительных шарниров. Так как опоры не могут смешаться в вертикальном направлении, то $\beta = \beta_1 = 0$. Краевые условия при $\xi = 0$ дадут $M_c = 0$. Дальше надо рассмотреть два подварианта:

I) Если пластический шарнир возникает при $\xi = 2$, то $M(2) = \pm \gamma_{n-4}^{2}$. Неизвестными являются l + 4 угловых ускорений q_{1} и величина Q_{0} . Для определения этих величин имеем l + 4 условий (12) и уравнение (9).

2) Если в сечении $\xi = 2$ шарнира не будет, то краевое условие для момента M(2) заменяется равенством $q_{\gamma\gamma\gamma} = 0$ и число уравнений (а также неизвестных) теперь l + 1.

Полученное решение должно удовлетворять следующим требованиям:

 Энергия диссипации на шарнирах должна быть положительной, т.е.

$$\widetilde{M}_{i}(\omega_{i-1}-\omega_{i}) \ge 0, \qquad (I4)$$

где символами ω_i обозначены угловые скорости на шарнирах α_i . Предельные моменты \widetilde{M}_i вычисляются по формулам (I3). В случае модальных движений имеем $\omega_i: \omega_{i-1} = q_i: q_{i-1}$. В фазе нагружения движение балки ускоренное, и величины ω_i , q_i одинаковы по знаку, причем неравенство (I4) представляется в виде

$$M_i(q_{i-1}-q_i) \gg 0.$$
 (15)

В фазе инерциального движения, а также в случае импульсного нагружения движение балки замедляется и величины ω_i , q_i различаются по знаку, поэтому

$$\widetilde{\mathsf{M}}_{i}(q_{i-1}-q_{i}) \leq 0, \qquad (16)$$

причем в неравенствах (I5)-(I6) $q_{ro} = q_{rn} = 0$.

2) Изгибающий момент не может превосходить предельного момента, т.е.

$$|\mathsf{M}(\boldsymbol{\xi})| \leq \gamma_{\kappa}^{2}, \qquad (17)$$

где $\xi \in [\alpha_{\kappa}, \alpha_{\kappa+1}]$, $\kappa = 1, 2, ..., n - 1$.

Если хотя бы одно из неравенств (I4) и (I7) нарушается, то выбранный нами вариант распределения действительных шарниров не подходит, и придется выбрать некоторую другую комбинацию пластических шарниров.

§ 3. Определение остаточных прогибов

В случае силового нагружения возьмем $ii(\xi, \tau) = f(\xi)$, где функция $f(\xi)$ определяется на основании формулы (8). Так как скорость балки и прогибы при $\tau = 0$ равны нулю, то в момент снятия нагрузки $\tau = 1$ получим

$$\dot{w}(\xi, 1-) = f(\xi), \quad \omega(\xi, 1-) = \frac{1}{2}f(\xi).$$
 (18)

В стадии инерциального движения имеет место некоторая другая мода движения $\dot{w}(\xi, \tau) = g(\xi)$. Обозначая скорость для этой моды символом $v_{+} = \dot{w}(\xi, 1+)$, получим

$$\dot{w}(\xi,\tau) = v_{+}(\xi) + g(\xi)(\tau - 1),$$
(19)
$$w(\xi,\tau) = w(\xi,1-) + v_{+}(\xi)(\tau - 1) + \frac{1}{2}g(\xi)(\tau - 1)^{2}.$$

Движение прекращается при ὦ(ξ,τ,) = 0. Из первого уравнения системы (I9) находим время движения

$$\tau_{\xi} = 1 - \lambda , \qquad (20)$$

где $\lambda = v_{\xi}(\xi)/g(\xi)$; остаточный прогиб $w_{\xi}(\xi) = w(\xi, \tau_{\xi})$ находим из второго уравнения (19):

$$\omega_{\mathfrak{g}}(\xi) = \frac{1}{2} [f(\xi) - \lambda^2 g(\xi)]. \qquad (21)$$

В случае импульсного нагружения фаза нагружения отсутствует. Функция μ(ξ) задана (поле начальных скоростей известно), а функция g(ξ) определяется из уравнения (8). Формулы (20)-(21) получают вид

$$\tau_{\downarrow} = -\lambda, \ \omega_{\downarrow}(\xi) = -\frac{1}{2}\lambda^2 g(\xi). \tag{22}$$

Следует еще определить множитель λ . Дж. Мартин и П. Саймондс [I] показали, что метод модальных решений имеет наибольшую точность, если выполняется условие $\int_{2}^{2} \gamma(\xi) \dot{w}^{2}(\xi, 1+) d\xi = \int_{0}^{2} \gamma(\xi) \dot{w}(\xi, 1-) \dot{w}(\xi, 1+) d\xi.$ (23)

Так как $\dot{w}(\xi, 1+) = \lambda g(\xi)$ и $\dot{w}(\xi, 1-) = \xi(\xi)$, то из (23) получается, что

$$\lambda = \alpha / \mathcal{b}, \qquad (24)$$

где

$$\alpha = \int_{0}^{2} \gamma(\xi) f(\xi) g(\xi) d\xi = \int_{0}^{2} \gamma(\xi) g^{2}(\xi) d\xi. \quad (25)$$

Решение, найденное методом модальных движений, может оказаться в фазе инерциального движения неединственным. В случае импульсного нагружения в работе [2] рекомендуется выбрать из всех возможных решений то, для которого величина $\Delta = \chi - \chi^*$ имеет наименьшее значение (в этой формуле символами χ и χ^* обозначены начальные кинетические энергии действительного и модального движений). Этот критерий применим и в случае силового нагружения, если величины χ и χ^* истолковать как кинетические энергии в моменты времени $\tau = 1$ и $\tau = 1$ +. Так как решение в фазе нагружения единственное, то для всех сравниваемых решений величина χ имеет одинаковое значение, и наш критерий получит вид $\chi^* = mox$. В данном случае

$$\mathcal{K}^* = \lambda^2 b, \qquad (26)$$

где величина 1 вычисляется по формуле (25).

Решение задачи о динамическом изгибе этим и заканчивается. В случае оптимизационной задачи придется найти такие параметри α_{i} , γ_{i} , чтобы

nex
$$w_{f}(\xi) = min$$
.

Для этого надо добавить в пакет программ еще оптимизационную программу.

§ 4. Пакет программ ДИНОПТ

Для решения описанного задания составлен пакет программ ДИНОПТ на языке Фортран-IV. Пакет состоит из II программных модулей. Начальные данные (координаты возможных шарниров, относительные толщины балки, знаки предельных моментов, распределение нагрузки или начальных скоростей и т.д.) вводятся с перфокарт. Сразу можно решать несколько задач. Максимальное число возможных шарниров n = 8. Координата неизвестного шарнира ∞_{\star} определяется методом Мюллера. Для вычисления интегралов (25) используется метод Симпсона. Время движения и остаточные прогибы при импульсном нагружении вычисляются по формулам (22), а в случае силового нагружения – по формулам (20) и (21). Если решение неединственно, то выбирается вариант, при котором величина \mathcal{X}^{\star} (см. формулу (26)) имеет максимальное значение.

В качестве применения пакета ДИНОПТ рассмотрим два следующих примера:

Пример I. Консольная балка состоит из трех сегментов, безразмерные длины и высоты которых указаны на рис. 2,а. К балке приложены равномерное давление p = 3 и сосредоточенная сила P = 3, причем в момент времени $\tau = 1$ эти нагрузки снимаются. Надо найти остаточный прогиб.

В ходе решения выяснилось, что в фазе нагружения пластические шарниры возникают в сечениях $\xi = 0$, $\xi = 1,0$ и $\xi =$ = 1,5. В фазе инерциального движения возможны два решения: в первом случае шарнир возникает в сечении $\xi = 0$, а во втором – в сечении $\xi = 1$. Распределение изгибающих моментов и кривые остаточных прогибов даны соответственно на рис.2,6 и рис.2, в (кривая I соответствует фазе нагрузки, кривые 2 и 3 дают решения в фазе инерциального движения). Вычисляя величину \mathcal{X}^* для обоих решений, получим $\mathcal{X}^* = 5,24$ и $\mathcal{X}^* = 4,98$. Следовательно, решение с шарниром при $\xi = 0$ (кривая 2 на рис.2, в) предпочтительнее.

П р и м е р 2. Рассматривается изгиб двухступенчатой балки под действием равномерно распределенной нагрузки μ = = 15. В сечении ξ = 1,5 приложена сосредоточенная сила P = = 30. Балка изображена на рис.3,а.

В промежутке $\xi \in (0,5; 4,5)$ появляется шарнир с неизвестной координатой; после решения уравнения $\zeta_{(\infty_{\chi})} = 0$ получим, что в фазе нагружения $\infty_{\chi} = 4,05$, а в фазе инерциального движения $\infty_{\chi} = 4,14$. Кроме того, шарниры возникают

2I

в сечениях $\xi = 0$ и $\xi = 1,5$ - в фазе нагружения, а в сечении $\xi = 0$ - в фазе инерциального движения.

На рис.3,6 изображены распределения моментов M(ξ): пунктирной линией – в фазе нагружения, а сплошной линией – в фазе инерциального движения. На рис.3,в изображено распределение остаточных прогибов в момент времени прекращения движения.

П р и м е р 3. Рассмотрим балку левый конец которой заделан, правый – свободно оперт. Задано поле начальных скоростей $w(\xi)$. Размеры балки и распределение скоростей $w(\xi)$ указаны на рис. 4,а-б. Решение в данном случае единственное ; пластические шарниры возникают при $\xi = 0$ и $\xi = 0.7$. Изгибающий момент и остаточный прогиб представлены на рис. 4, в-г.

Литература

- Martin, J.B., Symonds, P.S., Mode approximation for impulsively loaded rigid-plastic structures. J.Eng. Mech.Div.Proc. ASCE, 1966, 92, 43-66. (Русск. перев. в сб. "Механика", 1973, № 5, 128-149).
- Symonds, P.S., The optimal mode in the mode approximation technique. Mechanics Research Communications, 1980, 7(1), 1-6.

Automatic calculation for dynamic bending of rigid-plastic stepped beams

U.Lepik and M.Just

Summary

Rigid-plastic beams of piecewise constant cross-sections are considered. The ends of the beams are simply supported, clamped or free. Two types of loading are taken into consideration: (i) distributed or concentrated loads are applied; (ii) the initial velocity field is prescribed. Making use of the method of mode form motions the locations of plastic hinges and residual deflections are calculated.

For automatic calculation of such beams a packet of "Fortran" programs DINOPT has been put together.

Three examples are given.

ОПТИМИЗАЦИН ФОРМЫ ИМПУЛЬСИВНО НАГРУЖЕННОЙ ДВУХСТУПЕНЧАТОЙ ЖЕСТКО ЗАДЕЛАННОЙ БАЛКИ

К. Соонетс

Тартуский государственный университет

Вопроси оптимизации динамически нагруженных ступенчатых балок рассматривались в статьях [1-5]. Был использован приближенный метод модальных решений, и лишь в [5] решалась задача с учетом нестационарных пластических шарниров. В настоящей статье используются и точный и приближенный методы изучения движения ступенчатой балки с целью выяснения приемлемости и точности метода модальных решений.

I. Исходные уравнения. Рассмотрим жестко заделанную балку двухступенчатой толщины, размеры которой указаны на рис.I, ширина балки В. Материал балки считается жестко-пластическим с пределом текучести σ_{c} . Балке сообщается постоянная по длине начальная скорость V_{c} . Следует подобрать геометрические характеристики A и $\gamma = H_{1}/H_{2}$ так, чтобы среди балок равного объема $V = 2 B[AH_{1} + (L - A)H_{2}] = const или$ I) остаточный прогиб в середине балки или 2) суммарный прогиб достиг бы минимального значения. Из-за симметрии достаточно рассмотреть лишь половину балки. Координаты указанына рис.I.

Дифференциальные уравнения движения элемента балки при отсутствии внешних сил имеют вид:

$$\frac{\partial Q}{\partial r} = \delta B H(x) \frac{d^2 W}{dr^2}, \quad \frac{\partial M}{\partial x} = Q, \quad (I)$$

где Q и M - соответственно перерезывающая сила и изгибающий момент, d - плотность материала, W - прогиб и τ - время.

Дальнейшие рассуждения проводим в безразмерных величинах

$$x = \frac{\mathcal{X}}{L}, \quad \alpha = \frac{A}{L}, \quad q = \frac{L}{M_{c2}} \alpha, \quad m = \frac{M}{M_{o2}}, \quad h = \frac{H(\mathcal{X})}{H_2},$$
$$\omega = \frac{\sigma_0 V W}{2 B L^3 V_c^2}, \quad t = \frac{\sigma_0 V \tau}{\sigma B L^3 V_c}, \quad \Delta = 1 + \alpha (\gamma - 1);$$
IIDEGENTING MOMENT B TOHKOЙ VACTUR Map = $B H_0^2 \sigma_0 / 4$

Уравнения (I) примут в безразмерных величинах вид:

$$\frac{\partial \mathbf{q}}{\partial x} = \Delta h(x) \tilde{\boldsymbol{w}}, \quad \frac{\partial m}{\partial x} = \mathbf{q}.$$
 (2)

К уравнениям (2) принадлежат дополнительные условия:

$$q(0,t) = 0, m(1,t) = -1; w(x,0) = 0, \dot{w}(x,0) = 1;$$

 $\dot{w}(0,t) = w(1,t) = \dot{w}(1,t) = 0$

и условия непрерывности величин Q, m, w в точке x = a. Согласно модели жестко-пластического тела в утолщенной час-

ти балки $|m(x)| \leq \gamma^2$, в тонкой части $|m(x)| \leq 1$.

Известно, что в импульсивно нагруженной балке появляется на опоре пластический шарнир, который перемещается к середине балки. Анализ показал, что в ступенчатой балке подвижный шарнир на первом этапе дойдет до сечения x = a, а затем на втором этапе возможны различные схемы деформирования в зависимости от параметров балки. Проанализируем оба этапа, задавая кинематически возможные поля скорости прогиба, интегрируя основные уравнения (2) и удовлетворяя дополнительным условиям. Получим распределение усилий, продолжительность отдельных этапов и распределение прогибов. В конечном счете находим момент прекращения движения балки t_i и соответствующее этому моменту распределение остаточных прогибов в зависимости от геометрических параметров α и γ^{\sim} .

2. Первый этап деформирования. Изложим анализ первого этапа движения балки подробнее и приведем результаты для второго этапа в более сжатом виде.

Возникший в заделке пластический шарнир займет положение $s = s(t), \alpha \leq s \leq 1$. Кинематически возможным является поле скоростей прогиба (рис. 2а)

$$\dot{\boldsymbol{w}}(\boldsymbol{x},\boldsymbol{t}) = \begin{cases} 1 & , \ 0 \leq \boldsymbol{x} \leq \boldsymbol{s} \\ \frac{1-\boldsymbol{x}}{1-\boldsymbol{s}} & , \ \boldsymbol{s} \leq \boldsymbol{x} \leq \boldsymbol{1} \end{cases}$$
(3)

По (3) находим ускорение, подставим в уравнения (2) и проинтегрируем с учетом дополнительных условий. Получим изгибаюций момент

$$m(x) = \begin{cases} 1 & x \le 5, \\ 1 - \frac{\Delta \dot{s}}{6(1-s)^2} (x-s)^2 (x+2s-3), & x \ge 5. \end{cases}$$

Условие m(I) = -I дает дифференциальное уравнение относительно s(t) с начальным условием s(0) = I. Решением является закон перемещения шарнира

$$s = 1 - \sqrt{\frac{12t}{\Delta}}.$$

Первый этап кончится в момент $\#_{\alpha} = \Delta (1-\alpha)^2/12$, когда шарнир достигнет сечения x = a.

Интегрируя (3) по времени, узнаем распределение прогиба ao(x,t) и в момент t_{x} имеем:

$$w_{o}(x, t_{o}) = \begin{cases} (1-\alpha)^{2} \Delta/12, & x \leq \alpha, \\ (1-x)(1+x-2\alpha)\Delta/12, & x \geqslant \alpha. \end{cases}$$
(4)

3. Второй этап. Первый тип. Если изгибающий момент в утолщенной части $|m(x)| < \gamma^2$, то она движется и дальше, как твердое тело, и в точке x = a сохраняется стационарный пластический шарнир. Кинематически возможное поле скоростей прогиба имеет вид (рис. 26):

$$\dot{w}(x,t) = \begin{cases} v(t), & x \leq \alpha, \\ v(t) \frac{1-x}{1-\alpha}, & x \geqslant \alpha. \end{cases}$$
(5)

Интегрирование уравнений (2) даст распределение изгибающего момента, и условие m(I) = -I приводит к дифференциальному уравнению $\alpha v = -6$ с начальным условием $n(t_o) = 1$. Получим

$$w = 1 - \frac{6}{\alpha}(t - t_0), \quad \alpha = \Delta(1 - \alpha)(3\alpha\gamma - \alpha + 1).$$
 (6)

Приращение прогиба при первом типе движения определим из (5) путем интегрирования по времени с учетом (6). Момент прекращения движения балки получится из условия $w(t_i) = 0$, откуда $t_i = t_o + \alpha/6$. Приращение остаточного прогиба имеет вид:

$$w_{1}(x,t_{1}) = \begin{cases} \frac{\alpha}{12} , & x \leq \alpha, \\ \frac{\alpha}{12} & \frac{4-x}{1-\alpha}, & x \geqslant \alpha. \end{cases}$$
(7)

Первый тип деформирования возможен, если $m(0) \leq \gamma^{2}$, и момент по длине убывает. На плоскости параметров $a - \gamma^{2}$ реализуется первый тип в той области, где выполняется неравенс-

$$(\gamma^{-1})(1-\alpha)(5\alpha\gamma^{+1}-\alpha)-5\gamma^{-\alpha}>0.$$
 (8)
и легко проверить, что на отрезке [0,а] действительно $m'<0.$

4. Второй тип. Этот тип движения распадает на две фазы. В первой фазе существуют стационарные шарниры в сечениях x=а и x=0, то есть $m(0) = \gamma^2$, $m(\alpha) = 1$. Правая половина балки распадается на два звена, и поле скоростей имеет вид (рис. 3а):

$$\dot{w} = \begin{cases} (1-\alpha)\dot{\varphi} + (\alpha-x)\dot{\theta}, & x \leq \alpha, \\ (1-x)\dot{\varphi}, & x > \alpha, \end{cases}$$
(9)

где φ и Θ - угловые скорости звеньев.

Первая фаза длится до тех пор, пока $\dot{w}'(a_-, t_q) = \dot{w}'(a_+, t_q)$, откуда следует, что, начиная с момента t_q , имеет место равенство $\dot{\varphi}(t) = \dot{e}(t)$, и во второй фазе правая часть балки движется, как одно целое, до остановки, и в сечении $\mathbf{x} = 0$ существует стационарный шарнир; поле скоростей имеет вид (рис. 36): $\dot{w} = \psi(t)(4-x)$. (10) Интегрирование уравнений (2) даст распределение момента и решение системы уравнений m(a) = I, m(I) = -I определяет угловые ускорения $\ddot{\varphi}$, $\ddot{\Theta}$. Для обеспечения выпуклости формы поля скоростей прогиба должна угловая скорость $\dot{\Theta}$ быть возрастающей, и, следовательно, $\ddot{\Theta} > 0$. Кроме того, экстремум изгибающего момента должен находиться в точке $\mathbf{x} = 0$, и поэтому $m''(0) \leq 0$. Из этих требований следует, что второй тип возможен при несоблюдении неравенства (8) и соблюдении неравенства $(\gamma^2 - 1)(1 - \alpha)[3\alpha\gamma + 2(1 - \alpha)] - 2\alpha^2\gamma > 0$. (II)

Начальные условия при нахождении угловых скоростей следующие: $\dot{\Theta}(t_o)=0$, $\ddot{\varphi}(t_o)=1/(1-\alpha)$. Первая фаза кончится в момент $t_1=t_o+[(1-\alpha)(\ddot{\Theta}-\vec{\varphi})]^{-1}$. Приращение прогиба за первую фазу будет равно

$$w_{2}(x,t_{1}) = \begin{cases} \frac{(2-\alpha-x)\ddot{\theta}-(1-\alpha)\ddot{\psi}}{2(1-\alpha)^{2}(\ddot{\theta}-\ddot{\psi})^{2}}, & x \leq \alpha, \\ \frac{(1-x)(2\ddot{\theta}-\ddot{\psi})}{2(1-\alpha)^{2}(\ddot{\theta}-\ddot{\psi})^{2}}, & x \neq \alpha. \end{cases}$$
(12)

Во второй фазе находим изгибающий момент из (2), имея скорость в форме (10). Функцию $\psi(t)$ определим из условия m(1) = -1 с начальным условием $\psi(t_4) = \ddot{\psi}(t_4)$ и получим

$$w(t) = \frac{\ddot{\omega}}{(1-\alpha)(\ddot{\omega}-\ddot{\varphi})} - \frac{3(1+\gamma^2)}{\Delta[\gamma^2-(\gamma-1)(1-\alpha)^3]}(t-t_4).$$

Движение прекращается в момент t_{\downarrow} , и приращение прогиба за эту фазу равно

$$nv_{3}(x,t_{f}) = \frac{\Delta \left[\gamma - (\gamma - 1)(1 - \alpha)^{5}\right]}{6(1 + \gamma^{2})} v^{2}(t_{1})(1 - x).$$
 (13)

5. Третий тип. Этот тип второго этапа складывается из трех фаз: I) стационарные шарниры находятся в сечениях x = aи $x = b_o$, причем $0 < b_o < \alpha$; 2) шарнир в x = a исчезает и второй шарнир перемещается из сечения $x = b_o$ в сторону центра балки; 3) в центре имеется стационарный шарнир до прекращения движения балки.

В первой фазе зададим поле скоростей прогиба в форме (рис.3в)

$$\dot{w} = \begin{cases} 1, & x \leq b_0, \\ 1 - (x - b_0) v(t) / (a - b_0), & b_0 \leq x \leq a, \\ (1 - v) (1 - x) / (1 - a), & x \gg a. \end{cases}$$
(14)

Условия для изгибающего момента m(a) = I и m(I) = -I служат для нахождения величин b_o и δ . Получим

$$w(t) = \frac{6(\gamma^2 - 1)}{\Delta \gamma (\alpha - b_0)^2} (t - t_0),$$

$$b_0 = \alpha - \frac{4(1 - \alpha)\sqrt{\gamma^2 - 1}}{\sqrt{\gamma^2 (9\gamma^3 - 9\gamma + 16)} - 3\gamma\sqrt{\gamma^2 - 1}}.$$

Третий тип возможен, если $0 < b_o < \alpha$, и это выполнено при несоблюдении неравенства (II).

Первая фаза кончится в момент t_2 , когда $\dot{w}'(a_-,t_2)=$ = $\dot{w}'(a_+,t_2)$ и приращение прогиба за эту фазу равно

$$w_{4}(x,t_{2}) = \begin{cases} A_{2}, & 0 \leq x \leq b_{o}, \\ \frac{A_{2}}{2(1-b_{o})} (2-b_{o}-x), & b_{o} \leq x \leq a, \\ \frac{A_{2}(2-b_{o}-x)}{2(1-b_{o})(1-a)} (1-x), & x > a, \end{cases}$$
(15)
$$A_{2} = \frac{\Delta \gamma (a-b_{o})^{3}}{6(\gamma^{2}-A)(1-b_{o})}.$$

Во второй фазе пластический шарнир движется из начального положения x = k_{r_e} к центру балки, и имеем (рис. 3г)

$$\dot{w} = \begin{cases} 1 & , \ x \le b, \\ \frac{1-x}{1-b(t)}, & x > b. \end{cases}$$
(16)

Функцию b(t) находим путем решения дифференциального уравнения, получаемого из условия m(I) = -I. Получим

$$t - t_{2} = \frac{\Delta(k_{0} - b)}{3(A + \gamma^{2})} \left[\frac{\gamma}{2} (2 - b_{0} - b) - \frac{(\gamma - 1)(A - a)^{3}}{(A - b_{0})(A - b)} \right],$$

откуда определится и момент окончания t, второй фазы ($U(t_3)=0$). Нахождение прогибов непосредственным интегрированием

(16) затруднительно. Поэтому используем преобразование $\dot{w}(b) = -\dot{k} \partial w / \partial b$ и получим

$$\frac{\partial w}{\partial b} = \begin{cases} \dot{b}^{-1}, & x \leq b, \\ \dot{b}^{-1} \cdot \frac{1-x}{1-b}, & x \geq b. \end{cases}$$

Теперь нетрудно найти приращение прогиба за вторую фазу

$$w_{5}(x,t_{3}) = \begin{cases} x i^{-1} db + \int_{x}^{0} \frac{1-x}{1-b} i^{-1} db, & x \le b_{0}, \\ b & x \\ \int_{x}^{0} \frac{1-x}{1-b} db, & x \ge b_{0}. \end{cases}$$
(17)

В третьей, заключительной фазе существует в центре балки стационарный шарнир и поле скоростей прогиба имеет вид (рис.36) $\dot{w} = w(t)(\lambda - x)$. Дальнейшие рассуждения аналогичны второй фазе второго этапа с начальным условием $w(t_3) = \lambda$. Движение прекращается в момент t_{t} и приращение прогиба

$$w_{\tilde{c}}(x,t_{f}) = 0,5(t_{f}-t_{3})(1-x).$$
 (18)

Остаточный прогиб находится путем суммирования приращений прогиба на первом и втором этапах, например, при третьем типе деформирования

 $w(x, t_{2}) = w_{c}(x, t_{o}) + w_{4}(x, t_{2}) + w_{5}(x, t_{3}) + w_{6}(x, t_{f}).$ Также можно найти интегральный прогиб $\overline{w}(t_{1})$ по длине балки.

6. Модальное решение. Рассуждения были проведены и методом модальных решений в духе статьи [3]. В настоящем случае выбиралось поле начальных скоростей четырьмя различными способами: I) приравнялись начальная кинетическая энергия балки с кинетической энергией балки при поле скоростей в модальной форме, то есть

$$H_{1}\int_{0}^{A}V_{0}^{2}d\mathfrak{X} + H_{2}\int_{A}^{C}V_{0}^{2}d\mathfrak{X} = H_{1}\int_{0}^{A}\dot{W}^{2}d\mathfrak{X} + H_{2}\int_{A}^{L}\dot{W}^{2}d\mathfrak{X};$$

2) приравнялись начальные импульсы; 3) равными считались моменты импульса относительно заделки; 4) начальные утловые скорости определились согласно способу, предложенному П.Саймондсом и Дж.Мартином в [6]:

$$H_{1} \int_{0}^{A} V_{0} \dot{W} d\mathcal{X} + H_{2} \int_{0}^{L} V_{0} \dot{W} d\mathcal{X} = H_{1} \int_{0}^{A} \dot{W}^{2} d\mathcal{X} + H_{2} \int_{0}^{L} \dot{W}^{2} d\mathcal{X}.$$
(19)

Поле скоростей прогиба задавалось в виде (9), который можно представить в форме

$$\dot{w} = \begin{cases} \dot{\varphi} [1 - \alpha + \lambda (\alpha - x)], \ x \leq \alpha, \\ \dot{\varphi} (1 - x), & x > \alpha, \end{cases}$$

где согласно методу модальных решений $\dot{\Theta}/\dot{\varphi} = \dot{\Theta}/\ddot{\varphi} = \lambda = const.$ Проинтегрируя уравнения (2), приходим к системе

$$m(a) - m(0) = \frac{1}{6} \Delta \gamma a^{2} [2a\ddot{\Theta} + 3(1-a)\ddot{\varphi}],$$

-1 - m(a) = $\frac{1}{6} \Delta (1-a) [3a^{2}\gamma \ddot{\Theta} + 2(1-a)(3a\gamma + 1-a)\ddot{\varphi}].$

В зависимости от параметров балки возможны три различных варианта деформирования: I $m(0) = \gamma^2, m(\alpha) \le 4$ и $\lambda = 4$; II $m(0) \le \gamma^2, m(\alpha) = 4$ и $\lambda = 0$; III $m(0) = \gamma^2, m(\alpha) = 4$ и $0 < \lambda < 4$. Из равенств для моментов находим угловые ускорения, неравенства для моментов определяют на плоскости параметров $\alpha - \gamma$ границы возможной реализации отдельных вариантов. Оказывается, что существует малая область, где могут реализоваться все три варианта деформирования.

Остаточный прогиб в центре и интегральный прогиб следу-

$$w_m(0,t_i) = \frac{\varphi_0^2}{2|\varphi|} (1-\alpha+\lambda\alpha); \quad \overline{w_m} = \frac{\varphi_0^2}{4|\varphi|} (1-\alpha^2+\lambda\alpha^2).$$

7. Анализ численных результатов. В дальнейшем типы деформирования для точного решения обозначены арабскими, для модального решения - римскими цифрами. На рис.4 указаны границы областей отдельных типов деформирования. Области типов 4 и II совпадают, граничная кривая определена равенством (8). Кривая раздела областей типов 2 и 3 определяется равенством (II), тип 2 реализуется в сравнительно узкой области. Область неединственности модального решения примыкается к кривой с крестиком на стороне области типа 2 и она очень узкая - в направлении оси абсцисс не превышает 0,02. При типе 1 длительность второго этапа (стационарный шарнир) составляет 85-95 % от полного времени движения и на этом этапе доля прогиба в центре от полного прогиба около 75-95 %. При типе З занимает третья фаза (стационарный шарнир в центре) от полного времени движения 2/3 и больше и за эту фазу набирается около 0,5 от полного прогиба. Поля скоростей прогиба в этих фазах совпадают по форме с соответствующими полями скоростей модального решения. Поэтому в области типа I по прогибам модальное решение в хорошем согласии с точным. Если начальные скорости определены способом Саймондса или приравниванием моментов импульса, то невязка не превышает IO % и вблизи граничной кривой не больше I-3 %. В области типа 2 может расхождение доходить до 20 % (эта область узкая!), в области типа 3 колебается около IO %. Сильно преувеличенные прогибы дают способы приравнивания кинетических

· 3I

энергий и импульсов - даже I,5-2 раза. Отметим, что в статье [3] на рис.3 области вариантов I и 2 перепутаны.

Минимальный прогиб в центре балки тог $w(0,t_1) = 0,1441$ в точке а = 0,3877, $\gamma = 1,2000$, которая лежит на граничной кривой области I (крестик на рис.4). Назовем эту кривую кривой оптимальности; вдоль её прогибы меняются медленно (см. таблицу I).

Таблица I.

r	I,I	I,I5	I,20	I,40	I,50	2,00
å	0,274	0,336	0,388	0,432	0,59I	0,760
w	0,146	0 ,I45	0,144	0,I49	0,154	0,I78

Это оставляет определенную свободу при выборе параметров . обеспечивающих проект, близкий к оптимальному. Для балки постоянной высоты прогиб в центре $f_o = 0,1666$ и $f_{\tau}/f_o = 0,86$. На рис.5 указан характер изменения остаточного прогиба при фиксированном параметре а. Приведена и аналогичная кривая при модальном решении по способу Саймондса. Точка условного минимума прогиба при фиксированном значении а при модальном и точном решениях совпадают. В точке $\gamma = 1,2$ и a = 0,388 модальное решение неединственное (при типе I имеем fm = = 0,181, II - fm = 0,147, III - fm = 0,166). Глобальный минимум по способу Саймондса единственный минимум на кривой оптимальности и совпадает с минимумом точного решения. Там же экстремум по способу момента импульса. По остальным двум способам глобальный минимум в другой точке кривой оптимальности и прогибы меняются вдоль этой кривой очень медленно . В таблице 2 приведены минимальные прогибы, в последнем столбце отношение модального прогиба к прогибу точного решения при одних и тех же параметрах балки. В случае двух последних способов в нижней строке приведены еще прогибы в точке минимума точного решения.

Если за критерий оптимальности принимать интегральный прогиб, то ступенчатая балка не имеет преимуществ перед балкой постоянной высоты – максимальный выигрыш около 4 % и это достигается на границе области 3. В других областях нет выигрыша. Интегральные прогибы по модальному решению при способе момента импульса и Саймондса левее кривой 3 (рис. 4) имеют заниженные значения по сравнению с точным или близкие к нему, при способах кинетической энергии и импульса сильно повышенные значения. В области 3 подальше от граничной кри-

вой получим в приближенной постановке всюду завышенные значения.

Таблица 2.

	a	r	fm	fm/fg	fmlf
По Саймондсу Момент имп. Импульс	0,388 0,388 0,528	I,200 I,200 I,386	0,147 0,140 0,196 0,218	I,02 0,97 I,32	I,02 0,97 I,36
Кинет. эн.	0,528	Î,386 I,200	0,171 0,180	I 15 I 25	I,19 I,23

В заключение скажем следующее. Оптимальные параметры балки следует искать на кривых оптимальности (кривые раздела между отдельными областями деформирования). Это облегчает значительно вычислительную работу. Метод модальных решений даст хорошую точность при оптимизации и может быть также успешно применен для исследования движения балки, если поле начальных скоростей выбрано по способу Саймондса. Ступенчатая балка имеет преимущества перед балкой постоянной высоты, если нужно уменьшить максимальные прогибн и не даст эффекта для уменьшения интегрального прогиба.

Литература

- I. Лепик Ю., Оптимальное проектирование жестко-пластических балок под действием динамических нагрузок. Уч. зап. Тартуск. ун-та, 1979, 487, 16-28.
- Сакков Э., К оптимальному проектированию жестко-пластической свободной балки ступенчато-переменной толщины под действием динамической нагрузки. Уч. зап. Тартуск. ун-та, 1979, 487, 40-44.
- Соонетс К., Хартикайнен А., Оптимизация динамически нагруженной жестко закрепленной балки ступенчато-переменной толщины. Уч. зап. Тартуск. ун-та, 1979, 487, 45-51.
- Lepik, U., Mróz, Z., Optimal design of plastic structures under impulsive and dynamic pressure loading. Int. J. Solids Structures, 1977, 13, 657-674.
- Lepik, U., Optimal design of rigid-plastic simply supported beams under dynamic pressure loading. Int.J.Solids and Struct. (in print).
- Martin, J.B., Symonds, P.S., Mode approximation for impulsively loaded rigid-plastic structures. J.Eng.Mech.

33

Div.Proc. ASCE, 1966, 92, 43-66 (русский перевод в сб. "Механика", 1973, № 5, 128-149).

Optimal design of two-stepped clamped beam under impulsive loading

K.Soonets

Summary

A two-stepped beam with clamped ends under impulsive loading is discussed. The material of the beam is regarded as rigid plastic. Optimal values of beam parameters for which the permanent deflections are minimal must be found on the condition that the volume of the beam is prescribed. For the problem in question exact and mode form solutions are found. It follows from the calculations that the method of mode form motions guarantees the exactness which is fully sufficient for practice.

ОПТИМИЗАЦИЯ ЖЕСТКО-ПЛАСТИЧЕСКИХ БАЛОК СТУПЕНЧАТО-ПЕРЕМЕННОЙ ТОЛЩИНЫ ПОД ДЕЙСТВИЕМ ДИНАМИЧЕСКИХ НАГРУЗОК

Э.Сакков, Г.Славин Тартуский государственный университет

Задача оптимального проектирования жестко-пластических динамически нагруженных балок со ступенчато-постоянной толщиной исследована Ю.Лепиком и З.Мрузом [2]. В этой работе объем считается заданным, минимизируются остаточные прогибы. Поставленная задача решается при помощи метода модальных решений, представленного Дж.Мартином и П.Саймондсом [4].

В настоящей работе ограничиваются случаем импульсного нагружения. В таких задачах возникает всегда вопрос о выборе начального поля скоростей. В работе [2] начальная скорость
для модальной задачи получена из закона сохранения механической энергии балки. В данной работе этот вопрос решается путем приравнивания I) начальных кинетических энергий, 2) начальных количеств движения балки, 3) начальных моментов количества движения относительно центра балки, 4) начальных моментов количества движения относительно опоры.

I. Постановка задачи. Рассмотрим балку длины 2*l*, ступенчато-переменной высоты *h* и прямоугольного сечения шириной В (фиг.Ia). Материал балки считаем жестко-пластическим (без упрочнения). Предполагаем, что балке сообщена некая импульсивная нагрузка, величина которой считается заданной. Следуя идеям работы [4], применим метод модальных решений. Согласно этому методу, поле скоростей представляется в следующем виде:

$$\dot{w}_{i}(\mathbf{x},t) = w_{i}(\mathbf{x})\vec{\Phi}(t), \qquad (I.I)$$

где $w_{t}(x,t)$ и $w_{t}(x,t)$ обозначают прогиб и скорость элемента балки, $w_{t}(x)$ - пространственная мода, $\overline{\mathcal{P}}(t)$ - функция, зависяцая только от времени. Этот метод значительно упрощает решение проблемы и нашел широкое применение в задачах оптимизации.

Задача оптимизации состоит в определении параметров $\alpha = \alpha/\ell$ и $\gamma = k_a/h_3$ так, чтобы при заданном объеме V остаточный

Фиг. 1

Фиг. 2

прогиб в центре балки в момент прекращения движения был бы минимальным. Балка может быть свободно опертой или жестко защемленной. Пластические шарниры в балке появляются при достижении в некоторых сечениях предельного момента $M_0 = \frac{4}{4} B \sigma_s \lambda^2$ где σ_s - предел текучести материала. Шарниры могут возникать в точках изменения толцины и в центре балки A. В случае жесткой заделки шарниры возникают и на месте защемления. При изгибе ось балки принимает форму, указанную на фиг. Iб. Скорость прогиба определяется формулой

$$\dot{w}(x,t) = \begin{cases} (l-a)\dot{\psi}(t) + (a-x)\dot{b}(t), & x \in [0,a], \\ (l-a)\dot{\psi}(t), & x \in [a,l]. \end{cases}$$
(1.2)

2. <u>Решение основных уравнений</u>. Уравнения движения балки имеют вид:

$$\frac{\partial M}{\partial x} = Q, \quad \frac{\partial Q}{\partial x} = \rho Bh(x).\dot{w}, \quad (2.1)$$

где Q = Q(x,t)и M=M(x,t) соответственно перерезывающая сила и изгибающий момент, q – плотность материала. Эти уравнения будем интегрировать при следующих граничных условиях:

 $M(L) = 0, \quad Q(0) = 0, \quad (2.2)$

$$M(\ell) = -M_{o}, Q(0) = 0.$$
(2.3)

Первое из этих условий соответствует свободному опиранию балки, второе – жесткому закреплению. К этим условиям прибавляются еще условия непрерывности величин М и Q в точке x = a:

$$M(a+0) = M(a-0),$$
 (2.4)
 $Q(a+0) = Q(a-0).$

Результать этих вычислений могут быть в случае свободного опирания представлены в виде

$$M(0) = -\varsigma Bh_{3} l^{3} (A_{1} \ddot{\vartheta} + A_{3} \ddot{\psi}) / 6, \qquad (2.5)$$
$$M(a) = -\varsigma Bh_{3} l^{3} (C_{1} \ddot{\vartheta} + C_{3} \ddot{\psi}) / 6,$$

где обозначено

$$A_{1} = \gamma \alpha^{2} (3-\alpha),$$

$$A_{3} = [3\alpha \gamma (2-\alpha) + 2(1-\alpha)^{2}](1-\alpha),$$

$$C_{1} = 3\gamma \alpha^{2} (1-\alpha),$$

$$C_{3} = 2 (3\alpha \gamma - \alpha + 1)(1-\alpha)^{2}.$$

Моменты, определяемые формулами (2.5), не могут превышать значения предельных моментов, т.е.

$$M(0) \leq \frac{1}{4} B \sigma_{s} h_{1}^{2}, M(\alpha) \leq \frac{1}{4} B \sigma_{s} h_{3}^{2}.$$
 (2.6)

Перейдем к следующим безразмерным величинам:

$$N = \frac{3\sigma_3 V}{4g \ell^4 B}, \quad P = -\frac{\partial}{N}, \quad R = -\frac{\dot{\gamma}}{N}.$$

Неравенства (2.6) можно тогда с учетом (2.5) переписать в виде: $\Delta P + \Delta Q < \infty^2 / \Lambda$ (2.7)

$$A_{1}P + A_{3}R \leq \gamma^{-}/\Delta, \qquad (2.7)$$

$$C_{4}P + C_{3}R \leq 1/\Delta, \qquad (2.8)$$

где $\Delta = 1 - \alpha + \alpha \gamma$. Соответствующая система неравенств для жесткого закрепления имеет следующий вид:

$$A_{4}P + A_{3}R \leq \frac{\gamma^{2}+1}{\Delta}, \qquad (2.9)$$

$$C_{A}P + C_{3}R \leq \frac{2}{\Delta} . \tag{2.10}$$

Как видно, системы неравенств (2.7)-(2.8) и (2.9)-(2.10) отличаются друг от друга лишь правыми сторонами. Это обстоятельство позволяет для получения численных результатов воспользоваться одной и той же программой.

При анализе возможных пластических механизмов оказалось, что в рассматриваемом случае возможны три следующих варианта:

I. Пластический шарнир возникает только в центре балки (фиг.2а). Отметим, что в случае жесткого закрепления имеем всегда шарнир и в точке защемления. Тогда $\psi = \vartheta$ и P = R и в формулах (2.7) и в (2.9) следует принять знак равенства. Неравенства (2.8) и (2.10) должны быть выполнены.

II. Пластический шарнир возникает только в сечении С (фиг.26). Тогда $\vartheta = P = 0$ и величина R вычисляется соответственно из формулы (2.8) или (2.10). Неравенства (2.7) и (2.9) должны везде быть выполнены.

III. Работают шарниры А и С (фиг.2в). Тогда (2.7) – (2.8) и (2.9)-(2.10) превращаются в системы уравнений, из которых можно найти ускорения Р и R.

3. <u>Нахождение остаточного прогиба</u>. Остаточный прогиб центра балки в момент прекращения движения $t - t_{\downarrow}$ вычисляется по формуле

$$w(0,t_{f}) = l[(1-\alpha)\mu + \alpha]\partial(t_{f}), \qquad (3.1)$$

где $\mu = \psi/\dot{\mathfrak{G}}$. По идее метода модальных решений величина μ является постоянной. Так как и $\ddot{\mathfrak{G}}(t) = \text{const}$, то путем интегрирования получим

$$\vartheta(t) = t \ddot{\vartheta} + \vartheta(0), \quad \vartheta(t) = \frac{1}{2} t^2 \ddot{\vartheta} + t \vartheta(0).$$

Момент остановки балки получается из условия $\vartheta(t_{i})=0$, следовательно,

$$t_{\downarrow} = -\frac{\hat{\mathcal{T}}(0)}{\hat{\mathcal{T}}}$$

Таким образом, остаточный прогиб центра балки х = 0 равен

$$w(0,t_{i}) = -\frac{1}{2} l[(1-\alpha)\mu + \alpha] \frac{\delta^{2}(0)}{\delta^{2}} . \qquad (3.2)$$

Искомую величину $\mathcal{T}(0)$ определим четырымя способами. Сперва предположим, что в момент времени t = 0 балке сообщена кинетическая энергия K_o , величину которой считаем известной

$$K_0 = B_{g} \int_{-\infty}^{1} (x) \dot{w}^2(x, 0) dx$$
. (3.3)

Подставляя (I.2) в выражение (3.3), после интегрирования получим:

$$-\frac{\delta^2(0)}{\delta} = \frac{8 \kappa_0 l^2 B\Delta}{\sigma_2 V^2 P[3\gamma \mu^2 (\Lambda - \alpha)^2 \alpha + 3\mu \gamma (\Lambda - \alpha) \alpha^2 + \gamma \alpha^3 + \mu^2 (\Lambda - \alpha)^3]}$$
Функцию (3.2), подлежащую минимизации, можно привести к виду

$$w(0,t_{i}) = \frac{4K_{o}l^{3}B}{\sigma_{i}V^{2}}F(\alpha,\gamma,R,P), \qquad (3.4)$$

где через F обозначен функционал

$$F(\alpha, \gamma, R, P) = \frac{(1-\alpha)R + \alpha P]\Delta}{3\alpha \gamma (1-\alpha)^2 R^2 + 3\alpha^2 \gamma (1-\alpha) RP + P^2 \gamma \alpha^3 + (1-\alpha)^3 R^2}$$

Для оптимального проекта должно быть F(α, γ, R, P)= min. Параметрами, подлежащими минимизации, являются α и γ . Ускорения R и P вычисляются из систем (2.7)-(2.8) или (2.9) – (2.10) в соответствии с тем, какая форма прогиба реализуется.

Задавая вместо кинетической энергии Коначальный импульс балки Р, придем к следующему функционалу:

$$F(\alpha,\gamma,R,P) = \frac{\left[(\Lambda-\alpha)R + \alpha P\right]\Delta^2}{\left[2\gamma(\Lambda-\alpha)\alpha R + \gamma \alpha^2 P + R(\Lambda-\alpha)^2\right]^2}$$
(3.6)

Приведем без вывода и функционалы, полученные приравниванием начальных моментов импульса, вычисленных относительно центра и крайней опоры балки.

$$F(\alpha,\gamma,R,P) = \frac{\left[(1-\alpha)R + \alpha P\right]\Delta^2}{\left[\Im R\gamma(1-\alpha)\alpha^2 + P\gamma\alpha^3 + \Im R(1-\alpha)^2 - \Im R(1-\alpha)^3\right]^2},$$
(3.7)

$$\mathbf{F}(\alpha,\gamma,\mathbf{R},\mathbf{P}) = \frac{\left[(\Lambda-\alpha)\mathbf{R} + \alpha\mathbf{P}\right]\Delta^{2}}{\left[\Lambda^{2}(\Lambda-\alpha^{2})\mathbf{R} - 4(\Lambda-\alpha^{3})\mathbf{R} + 6\alpha^{2}(2-\alpha)\mathbf{P}\right]^{2}}$$
(3.8)

4. <u>Численные результаты</u>. К настоящему времени имеются и точные решения поставленной проблемы. Для свободного опирания они были получены в работе [3], для жесткого защемления – в работе [I]. Отметим, что решение задачи в точной постановке является математически довольно сложным – нужно учесть и возможность перемещения шарниров. Поэтому, как это кажется авторам, сохраняет свою актуальность и решение задач оптимизации методом модальных решений. В приложенной таблице приведены оптимальные значения параметров для разных видов функционалов (3.5)-(3.8).

Тип закрепл.балки	Свободн.		Жестк.	
параметры критерий	œ	r	æ	r
K=K。 P=P。 光= 2。 え= 2。	0,82 0,84 0,83 0,52	I,79 I,89 I,84 I,2I	0,53 0,68 0,82 0,33	I,39 I,72 2,33 I,I5
Точное решение	0,79	I,66	0,43	I,25

Символами \mathcal{L} и \mathcal{I} обозначены соответственно момент импульса относительно центра и опоры балки.

Анализ численных результатов показал, что во всех случаях минимум был найден при выполняющемся типе II. Тип III всегда выполнялся только совместно с типами I и II.

Литература

- I. Соонетс К., Оптимизация формы импульсивно нагруженной двухступенчатой жестко заделанной балки. Настоящий сборник, стр. 24 - 34.
- Lepik, U., Mróz, Z., Optimal design of plastic structures under impulsive and dynamic pressure loading. Int. J. Solids Structures, 1977, 13, 657-674.
- 3. Lepik, U., Optimal design of rigid-plastic simply supported beams under impulsive loading. 1981, in print.

4. Martin, J.B., Symonds, P.S., Mode approximation for impulsively loaded rigid-plastic structures. J.Eng.Mech. Div. Proc. ASCE, 1966, 92, 43-66.

Optimal design of rigid-plastic stepped beams under dynamic loading

E.Sakkov and G.Slavin

Summary

The problem of optimal design of rigid-plastic beams under dynamic loading was considered by U.Lepik and Z.Mroz [2]. In this paper the beam's volume has been considered as a constant, a minimum of residual deflections was sought. The problem under discussion was solved with the aid of mode form solutions, presented by J.Martin and P.Symonds [4].

In the present paper the case of impulsive loading is considered. In such cases the question concerning the choice of initial velocity field always comes forth. In paper [2] the initial velocity for the modal problem was found from the equation of the energy balance. This paper solves the problem by equalizing 1) initial kinetic energies, 2) initial impulses of beam, 3) initial angular momenta of beam.

The cases of simply supported and clamped beams are sol ved. The optimal parameters of the beam are determined.

ОБ УСЛОВИЯХ ОПТИМАЛЬНОСТИ РАСПОЛОЖЕНИЯ ПОПОЛНИТЕЛЬНОЙ ОПОРЫ

Я.Леллеп

Тартуский государственный университет

Одним из самых простых способов увеличения жесткости (уменьшения податливости) конструкции является построение к ней дополнительных опор. Расположение опор разумно выбирать так, чтобы критерий качества (например, максимальный прогиб или средний прогиб) был бы минимален.

В случае статического нагружения задачи такого типа были поставлены и решены в [7-I0]. В работе [9] для пластических балок выведено условие оптимальности, которое будем называть условием Прагера-Розвани. Определению оптимальногс расположения дополнительной опоры для динамически нагруженных жестко-пластических балок посвящены работы [I-4], [6]. Ю.Лепиком показано, что условие Прагера-Розвани остается в силе и в случае модального движения динамически нагруженной иластической балки [2]. Однако в случае балки, один конец которой свободен, точное решение удовлетворяет интегральному условик Прагера-Розвани [3].

В данной статье рассматривается задача оптимального расположения дополнительной опоры для пластической балки, оба конца которой закреплены и которой сообщена начальная скорость. С помощью вариационных методов теории оптимального управления выводятся необходимые условия оптимальности. Показывается, что условия оптимальности можно представить в различных формах, в частности, и в виде интегрального условия Прагера-Розвани. Статья прежде всего имеет методический характер. Выработанная методика применима для решения аналогичных задач и в случаях осесимметричных пластин и оболочек вращения.

§ І. Основные уравнения и предположения

Рассмотрим жестко-пластическую балку длинн ℓ , левый конец которой жестко заделан, правый – шарнирно закреплен. Пусть начало координат находится в центре тяжести левого конца балки. Допустим, что в начальный момент времени все

4I

точки балки, (кроме опорных), имеют скорость $\partial W(x,0)/\partial t = x_0 \varphi(x/\ell)$, где W – прогиб, t – время. Поставим задачу найти такое расстояние S дополнительной жесткой опоры от начала координат, при котором средний (интегральный) остаточный прогиб имеет минимальное значение. Для удобства введем следующие безразмерные величины:

$$\xi = \frac{x}{l}, \quad s = \frac{S}{l}, \quad m = \frac{M}{M_o}, \quad (I.I)$$
$$\tau = \frac{M_o t}{\mu v_o l^2}, \quad w = \frac{M_o W}{\mu v_o^2 l^2},$$

где M - изгибающий момент, M_o - предельный момент поперечного сечения балки, μ - масса, приходящаяся на единицу длины. С помощью (I.I) запишем уравнение движения в виде

$$m'' = \dot{w}, \qquad (I.2)$$

где штрихом обозначено дифференцирование по Е, а точкой - по с.

Искомое решение уравнения (I.2) должно удовлетворять начальным условиям

$$w(\xi, 0) = 0, w(\xi, 0) = \varphi(\xi)$$
 (I.3)

(где и обозначает скорость прогиба), а также краевым условиям $r = r + (4 - \pi) = r$

$$(S_{i-1}, \tau) = w(1, \tau) = v(S_{i-1}, \tau) = v(1, \tau) = 0,$$

 $m(S_{i-1}, \tau) = -1, m(1, \tau) = 0.$

Здесь и в дальнейшем предполагается, что индекс λ принимает значения 1, 2, а $\partial_{2} = 1$, 2, 3, 4, причем $\delta_{0} = 0$, $\delta_{4} = \delta$, $\delta_{2} = 1$.

Чтобы решить уравнение движения (I.2), придется задать кинематически допустимое распределение скорости прогиба, зависящее от некоторых заранее неизвестных функций времени ['], [6]. Допустим, что $w = \sigma_{ij} [\xi, \eta_j(\pi), \omega_i(\pi), \alpha_i, \delta]$ для точек $(\xi, \tau) \in D_{ij}$, где D_{ij} – некоторые области на плоскости $\xi \tau$ (фиг.I), $\exists \eta_j(\pi) u \omega_i(\pi)$ -неизвестные функции времени. Величины α_i и τ_{ij} (фиг.I) определяются соотношениями

$$\eta_{2i-1}(\tau_{i1}) = \eta_{2i}(\tau_{i1}) = \alpha_i . \tag{I.5}$$

Предположим, что движение левой (*i* = 1) и правой (*i* = 2) частей балки происходит в течение двух фаз [1]. Зададим скорость прогиба для первой фазы в виде

$$w(\xi,\tau) = \begin{cases} \varphi(\xi)(\xi - s_{i-1})/(\eta_{2i-1} - s_{i-1}), \ \xi \in [s_{i-1}, \eta_{2i-1}], \\ \varphi(\xi), & \xi \in [\eta_{2i-1}, \eta_{2i}], \\ \varphi(\xi)(\xi - s_i)/(\eta_{2i} - s_i), & \xi \in [\eta_{2i}, s_i], \end{cases}$$

а для второй фазы в виде

$$\boldsymbol{w}(\boldsymbol{\xi},\tau) = \begin{cases} \boldsymbol{w}_{i}(\tau) \; \frac{\boldsymbol{\xi} - \boldsymbol{\delta}_{i-1}}{\boldsymbol{\alpha}_{i} - \boldsymbol{\delta}_{i-1}} , & \boldsymbol{\xi} \in [\boldsymbol{\delta}_{i-1}, \boldsymbol{\alpha}_{i}], \\ \boldsymbol{w}_{i}(\tau) \; \frac{\boldsymbol{\xi} - \boldsymbol{\delta}_{i}}{\boldsymbol{\alpha}_{i} - \boldsymbol{\delta}_{i}} , & \boldsymbol{\xi} \in [\boldsymbol{\alpha}_{i}, \boldsymbol{\delta}_{i}]. \end{cases}$$

При этом в точках $\xi = \infty_i$ имеем $(m' = q_i)$:

$$m(\alpha_i, \tau) = 1, \quad q(\alpha_i, \tau) = 0.$$
 (I.8)

Время движения левой и правой частей балки может быть различным. В момент прекращения движения скорость прогиба обращается в нуль, т.е.

$$v(\xi, \tau_{i2}) = 0, \quad \xi \in [s_{i-1}, s_i].$$
 (1.9)

Заметим, что уравнение движения (I.2) имеет в областях D_{AO} и D_{2.0} (фиг.I) тривиальное решение

$$m = 1, q = 0, v = \varphi(\xi), w = \varphi(\xi)\tau,$$
 (I.IO)

удовлетворяющее начальным условиям (I.3) и соответствующее распределению скорости прогиба (I.6).

В дальнейшем будет удобнее вместо уравнения (I.2) воспользоваться системой

 $m'=q, q'=\dot{v}, \dot{w}=v, v=v_{ij}(\xi, \eta_j, w_i, \alpha_i, \beta), (\xi, \tau) \in D_{ij}$ (I.II) rge переменные m, q, w, v считаем непрерывными при всех $(\xi, \tau) \in int D_{ij}$ (фиг.I). Однако при переходе через линии $\xi = \beta$ величины q, w' и v' могут претерпевать разрыв.

§ 2. Необходимые условия оптимальности

Поставленную задачу будем рассматривать как вариационную задачу теории оптимального управления с распределенными параметрами. Для выведения необходимых условий оптимальности составим расширенный функционал [5]

$$\sum_{i=1}^{2} \sum_{j=1}^{4} \iint [\psi_{ij}^{4}(m'-q) + \psi_{ij}^{2}(q'-i) + \psi_{ij}^{3}(w-v) + \psi_{ij}^{4}(v-v_{ij})] d\xi d\tau, (2.1)$$
где Э обозначает минимизируемый функционал

$$J = \int w(\xi, \tau_{12}) d\xi + \int w(\xi, \tau_{22}) d\xi, \qquad (2.2)$$

а $\psi_{ij}^{4}, \dots, \psi_{ij}^{4}$ - сопряженные переменные в области D_{ij}^{*} . Для краткости записи в (2.1) опущены слагаемые с криволинейными интегралами через линии Γ_{ij}^{*} , ограничивающими области D_{ij}^{*} . Эти интегралы позволяли бы учитывать на линиях Γ_{ij}^{*} значения переменных m, q, w, v, заданных формулами (1.4),

Фиг. І

(I.6), (I.8) и (I.9). Но эти условия будем учитывать прямо при варьировании.

Пусть D_{ij} = { (ξ, τ) : $\xi_{ij} \le \xi \le \xi_{ij}^+$, $\tau_{ij} \le \tau \le \tau_{ij}^+$ }. Как видно из фиг. I, ξ_{ij}^\pm могут быть функциями времени, а τ_{ij}^\pm могут зависеть от ξ_{ij}^\pm . В случае криволинейных областей D_{ia} и D_{i2} величины ξ_{ij}^\pm и τ_{ij}^\pm определяются неединственно. Действительно, например, при D_{ia} можно выбрать либо $\xi_{i4}^+ = 0$, $\xi_{i4}^+ =$ $\eta_A(\tau), \tau_{i4}^- = 0, \tau_{i4}^+ = \tau_{i4}$, либо $\xi_{i4}^- = 0, \xi_{i4}^+ =$ $\tau_A(\xi), \tau_{i4}^+ = \tau_{i4}$, где функции $\xi = \eta_A(\tau)$ и $\tau = \tau_4(\xi)$ взаимно обратные. Чтобы различать эти комбинации параметров ξ_{i4}^\pm . будем обозначать через $\xi_{i4}^\pm (\tau)$ величину, которая может за висеть от τ , но через $\xi_{i4}^\pm -$ постоянную.

Вычисляя полную вариацию функционала (2.1) с учетом (2.2), получим:

$$\Delta \exists_{x} = \sum_{i=1}^{2} \sum_{j=1}^{4} \iint_{Dij} [-\psi_{ij}^{4} \delta m - (\psi_{ij}^{4} + \psi_{ij}^{2}) \delta q - \psi_{ij}^{3} \delta w + (\psi_{ij}^{2} - \psi_{ij}^{3} + \psi_{ij}^{4}) \delta w - \psi_{ij}^{4} (\frac{\partial v_{ij}}{\partial n_{i}} \delta n_{j} + \frac{\partial v_{ij}}{\partial \alpha_{i}} \Delta \alpha_{i} + \frac{\partial v_{ij}}{\partial A} \Delta s)] d\xi d\pi +$$

$$+ \int_{0}^{4} \Delta w (\xi, \tau_{12}) d\xi + \int_{0}^{4} \Delta w (\xi, \tau_{22}) d\xi + \sum_{i,j} \{\int_{ij}^{\tau_{ij}^{4}} [\psi_{ij}^{4} \delta m + \psi_{ij}^{4}] \delta w + \int_{0}^{2} \Delta w (\xi, \tau_{22}) d\xi + \sum_{i,j} \{\int_{ij}^{\tau_{ij}^{4}} [\psi_{ij}^{4} \delta m + \psi_{ij}^{4}] \delta w + \int_{0}^{2} \Delta w (\xi, \tau_{22}) d\xi + \sum_{i,j} \{\int_{ij}^{\tau_{ij}^{4}} [\psi_{ij}^{4} \delta m + \psi_{ij}^{4}] \delta w + \int_{0}^{2} \Delta w (\xi, \tau_{22}) d\xi + \sum_{i,j} \{\int_{ij}^{\tau_{ij}} [\psi_{ij}^{4} \delta m + \psi_{ij}^{4}] \delta w + \int_{0}^{2} \Delta w (\xi, \tau_{22}) d\xi + \sum_{i,j} \{\int_{ij}^{\tau_{ij}} [\psi_{ij}^{4} \delta m + \psi_{ij}^{4}] \delta w + \int_{0}^{2} \Delta w (\xi, \tau_{22}) d\xi + \sum_{i,j} \{\int_{ij}^{\tau_{ij}} [\psi_{ij}^{4} \delta m + \psi_{ij}^{4}] \delta w + \int_{0}^{2} \Delta w (\xi, \tau_{22}) d\xi + \sum_{i,j} \{\int_{ij}^{\tau_{ij}} [\psi_{ij}^{4} \delta m + \psi_{ij}^{4}] \delta w + \int_{0}^{2} \Delta w (\xi, \tau_{22}) d\xi + \sum_{i,j} \{\int_{ij}^{\tau_{ij}} [\psi_{ij}^{4} \delta m + \psi_{ij}^{4}] \delta w + \int_{0}^{2} \Delta w (\xi, \tau_{22}) d\xi + \sum_{i,j} \{\int_{ij}^{\tau_{ij}} [\psi_{ij}^{4} \delta m + \psi_{ij}^{4}] \delta w + \int_{0}^{2} \Delta w (\xi, \tau_{22}) d\xi + \sum_{i,j} [\psi_{ij}^{4} \delta m + \psi_{ij}^{4}] \delta w + \int_{0}^{2} \Delta w (\xi, \tau_{22}) d\xi + \sum_{i,j} [\psi_{ij}^{4} \delta m + \psi_{ij}^{4}] \delta w + \int_{0}^{2} \Delta w (\xi, \tau_{22}) d\xi + \sum_{i,j} [\psi_{ij}^{4} \delta m + \psi_{ij}^{4}] \delta w + \int_{0}^{2} \Delta w (\xi, \tau_{22}) d\xi + \sum_{i,j} [\psi_{ij}^{4} \delta m + \psi_{ij}^{4}] \delta w + \int_{0}^{2} \Delta w (\xi, \tau_{22}) d\xi + \sum_{i,j} [\psi_{ij}^{4} \delta m + \psi_{ij}^{4}] \delta w + \int_{0}^{2} \Delta w (\xi, \tau_{22}) d\xi + \sum_{i,j} [\psi_{ij}^{4} \delta m + \psi_{ij}^{4}] \delta w + \int_{0}^{2} \Delta w (\xi, \tau_{22}) d\xi + \sum_{i,j} [\psi_{ij}^{4} \delta m + \psi_{ij}^{4}] \delta w + \int_{0}^{2} \Delta w (\xi, \tau_{22}) d\xi + \sum_{i,j} [\psi_{ij}^{4} \delta m + \psi_{ij}^{4}] \delta w + \int_{0}^{2} \Delta w (\xi, \tau_{22}) d\xi + \sum_{i,j} [\psi_{ij}^{4} \delta m + \psi_{ij}^{4}] \delta w + \int_{0}^{2} \Delta w (\xi, \tau_{22}) d\xi + \sum_{i,j} [\psi_{ij}^{4} \delta m + \psi_{ij}^{4}] \delta w + \int_{0}^{2} \Delta w (\xi, \tau_{22}) d\xi + \sum_{i,j} [\psi_{ij}^{4} \delta m + \psi_{ij}^{4}] \delta w + \int_{0}^{2} \Delta w (\xi, \tau_{22}) d\xi + \sum_{i,j} [\psi_{ij}^{4} \delta m + \psi_{ij}^{4}] \delta w + \int_{0}^{2$$

$$+ \gamma_{ij}^{2} \delta q \Big]_{\xi = \xi_{ij}(\tau)}^{\xi = \xi_{ij}(\tau)} d\tau + \int \left[\gamma_{ij}^{\pm} \delta w - \gamma_{ij}^{2} \delta v \right]_{\tau = \tau_{ij}(\xi)}^{\tau = \tau_{ij}(\xi)} d\xi \Big\}, (2.3)$$

где δz – вариация переменной z, а $\Delta \alpha$ – прирадение параметра α . Считая вариации δm , δq , δw , δw при $(\xi, \tau) \in int D_{ij}$ независимыми, находим с помощью (2.3) сопряженную систему

 $\psi_{ij}^{\prime\prime} = 0, \quad \psi_{ij}^{2\prime} + \psi_{ij}^{4} = 0, \quad \psi_{ij}^{3} = 0, \quad \psi_{ij}^{4} - \psi_{ij}^{3} + \psi_{ij}^{2} = 0.$ (2.4) Как в формуле (2.1), так и в (2.3) опущены двойные интегралы по областям D_{i0} , поскольку согласно вышеуказанному j = I,2,3,4. Но в этих областях фазовые переменные определены формулой (I.I0).

В формуле (2.3) величины ξ_{ij}^{\pm} и τ_{ij}^{\pm} являются в случае прямоугольных областей $D_{i,3}$ и $D_{i,4}$ постоянными. Они выражаются через Λ , Λ_i , $\tau_{i,1}$ и $\tau_{i,2}$. В случае криволинейных областей $D_{i,4}$ и $D_{i,2}$ к ним добавляются величины $\eta_i(\tau)$.

Вариации переменных m, q, ω и v на линиях $\xi = \xi_{ij}$ и $\tau = \tau_{ij}^{\pm}$ определяем по следующей схеме

$$\delta_{\mathcal{Z}}(\xi^{\pm}, \tau) = \Delta_{\mathcal{Z}}(\xi^{\pm}, \tau) - \epsilon'(\xi^{\pm}, \tau) \cdot \Delta \xi^{\pm}, \qquad (2.5)$$
$$\delta_{\mathcal{Z}}(\xi, \tau^{\pm}) = \Delta_{\mathcal{Z}}(\xi, \tau^{\pm}) - \epsilon(\xi, \tau^{\pm}) \cdot \Delta \tau^{\pm},$$

где $\Delta_{\mathcal{F}}(\xi^{\pm}, \tau)$ и $\Delta_{\mathcal{F}}(\xi, \tau^{\pm})$ – полные вариации \mathcal{F} на линиях $\xi = \xi^{\pm}$ и $\tau = \tau^{\pm}$ соответственно.

Вычисляя полную вариацию функционала (2.1) с учетом (2.3), (2.5), (1.4)-(1.11) и приравнивая к нулю коэффициенты при независимых вариациях, получим совокупность уравнений для определения сопряженных переменных и оптимального расположения дополнительной опоры. Коэффициенты при вариациях величин η_1 и ω_i равны соответственно:

$$\int_{3i-1}^{12i-1} \psi_{i1}^{4}(\xi - s_{i-1}) \varphi d\xi = \int_{2i}^{3i} \psi_{i2}^{4}(\xi - s_{i}) \varphi d\xi = 0, \quad (2.6)$$

$$\int_{\lambda_{i-1}}^{\infty_{i}} \psi_{i3} \frac{\partial v_{i5}}{\partial w_{i}} d\xi + \int_{\omega_{i+1}}^{\infty_{i}} \frac{\partial v_{i4}}{\partial w_{i}} d\xi = 0. \quad (2.7)$$

Независимость полных вариаций $\Delta \omega(\xi, \tau_i)$, $\Delta \omega$

$$\begin{split} \psi_{ij}^{3} &= -\mathbf{1} , \ \psi_{iA}^{2}(\xi_{j},\tau_{i,1}) = \psi_{iS}^{2}(\xi_{j},\tau_{i,1}), \ \psi_{iZ}^{2}(\xi_{j},\tau_{i,1}) = \psi_{iH}^{2}(\xi_{j},\tau_{i,1})(2.8) \\ \psi_{i1}^{2}(0,\tau) &= \psi_{iS}^{2}(0,\tau) = \psi_{iZ}^{2}(s_{-},\tau) = \psi_{iH}^{2}(s_{-},\tau) = \psi_{iH}^{2}(s_{+},\tau) = \\ &= \psi_{25}^{2}(s_{+},\tau) = \psi_{22}^{2}(1,\tau) = \psi_{24}^{2}(1,\tau) = C. \end{split}$$

Приравнивая к нулю множители при вариациях Ат. и Ат. в разложении (2.3), получим с учетом условий (2.8) $\int_{-\infty}^{\infty} \psi_{i1}^{2}(\xi,\tau_{i1}) \frac{\xi - s_{i-1}}{\alpha_{i} - s_{i}} \left[\hat{w}_{i}(\tau_{i1}) + \varphi \frac{\dot{\eta}_{2i-1}(\tau_{i1})}{\alpha_{i} - \alpha_{i}} \right] d\xi +$ $+\int_{\alpha_{1}}^{2}\psi_{i2}^{2}(\xi,\tau_{i4})\frac{\xi-s_{i}}{\alpha_{1}-s_{i}}\left[\omega_{i}(\tau_{i4})+\varphi\frac{\eta_{2i}(\tau_{i4})}{\alpha_{1}-s_{i}}\right]d\xi=0,$ (2.10) $\int_{-\frac{1}{2}}^{\frac{1}{2}} \psi_{i3}^{2}(\xi,\tau_{i2}) \frac{\xi-s_{i-1}}{\alpha_{i}-s_{i-4}} d\xi + \int_{-\frac{1}{2}}^{\frac{1}{2}} \psi_{i4}^{2}(\xi,\tau_{i2}) \frac{\xi-s_{i}}{\alpha_{i}-s_{i}} d\xi = 0.$ Коэффициенты при Да, в (2.3) равны $\int_{\tau_{i1}}^{\tau_{i2}} \left\{ w_{i} \left[\int_{\tau_{i-1}}^{\tau_{i}} \frac{\xi - \lambda_{i-1}}{(\alpha_{i} - \lambda_{i-1})^{2}} d\xi + \int_{\tau_{i+1}}^{\tau_{i}} \frac{\xi - \lambda_{i}}{(\alpha_{i} - \lambda_{i})^{2}} d\xi \right] + \left[\psi_{i+1}^{2} (\alpha_{i}, \tau) - \frac{1}{\tau_{i}} \frac{\lambda_{i-1}}{(\alpha_{i} - \lambda_{i-1})^{2}} d\xi + \int_{\tau_{i+1}}^{\tau_{i+1}} \frac{\xi - \lambda_{i}}{(\alpha_{i} - \lambda_{i})^{2}} d\xi \right] + \left[\psi_{i+1}^{2} (\alpha_{i}, \tau) - \frac{1}{\tau_{i}} \frac{\lambda_{i-1}}{(\alpha_{i} - \lambda_{i-1})^{2}} d\xi + \int_{\tau_{i+1}}^{\tau_{i+1}} \frac{\xi - \lambda_{i}}{(\alpha_{i} - \lambda_{i})^{2}} d\xi \right] + \left[\psi_{i+1}^{2} (\alpha_{i}, \tau) - \frac{1}{\tau_{i}} \frac{\lambda_{i-1}}{(\alpha_{i} - \lambda_{i-1})^{2}} d\xi + \int_{\tau_{i+1}}^{\tau_{i+1}} \frac{\xi - \lambda_{i}}{(\alpha_{i} - \lambda_{i})^{2}} d\xi \right] + \left[\psi_{i+1}^{2} (\alpha_{i}, \tau) - \frac{1}{\tau_{i}} \frac{\lambda_{i-1}}{(\alpha_{i} - \lambda_{i-1})^{2}} d\xi + \int_{\tau_{i+1}}^{\tau_{i+1}} \frac{\xi - \lambda_{i}}{(\alpha_{i} - \lambda_{i})^{2}} d\xi \right] + \left[\psi_{i+1}^{2} (\alpha_{i}, \tau) - \frac{1}{\tau_{i}} \frac{\lambda_{i-1}}{(\alpha_{i} - \lambda_{i-1})^{2}} d\xi + \int_{\tau_{i+1}}^{\tau_{i+1}} \frac{\xi - \lambda_{i}}{(\alpha_{i} - \lambda_{i})^{2}} d\xi \right] + \left[\psi_{i+1}^{2} (\alpha_{i}, \tau) - \frac{1}{\tau_{i}} \frac{\lambda_{i}}{(\alpha_{i} - \lambda_{i-1})^{2}} d\xi + \int_{\tau_{i+1}}^{\tau_{i+1}} \frac{\xi - \lambda_{i}}{(\alpha_{i} - \lambda_{i-1})^{2}} d\xi \right] + \left[\psi_{i+1}^{2} (\alpha_{i} - \lambda_{i-1})^{2} (\alpha_{i} - \lambda_{i-1})^{2}} d\xi + \int_{\tau_{i+1}}^{\tau_{i+1}} \frac{\xi - \lambda_{i}}{(\alpha_{i} - \lambda_{i-1})^{2}} d\xi \right] + \left[\psi_{i+1}^{2} (\alpha_{i} - \lambda_{i-1})^{2} (\alpha_{i} - \lambda_{i-1})^{2}} d\xi \right] + \left[\psi_{i+1}^{2} (\alpha_{i} - \lambda_{i-1})^{2} (\alpha_{i} - \lambda_{i-1})^{2} (\alpha_{i} - \lambda_{i-1})^{2} (\alpha_{i} - \lambda_{i-1})^{2} (\alpha_{i} - \lambda_{i-1})^{2}} d\xi \right] + \left[\psi_{i+1}^{2} (\alpha_{i} - \lambda_{i-1})^{2} (\alpha_{i} - \lambda_{i-1})^{2$ Наконец, вариация величины & дае: $\int_{0}^{\tau_{M}} \left[-\psi_{42}^{4}(s^{-},\tau)q(s^{-},\tau) + \int_{0}^{s} \psi_{42}^{4} \varphi \frac{\eta_{2}-\xi}{(h_{2}^{-}s)^{2}} d\xi \right] d\tau +$ + $\int_{1}^{1} \left[\psi_{21}^{4}(s+,\tau)q(s+,\tau) + \int_{1}^{1} \psi_{21}^{4} \varphi \frac{\eta_{3}-\xi}{(\eta_{3}-s)^{2}} d\xi \right] d\tau +$ $+\int \left[-\psi_{14}^{4}(s_{-},\tau)q_{1}(s_{-},\tau)+\int \psi_{14}^{4}w_{1}\frac{\alpha_{1}-\xi}{(\alpha_{1}-s)^{2}}d\xi\right]d\tau+$ $\tau_{2,2} + \int \left[\psi_{2,3}^{4}(s+,\tau)q_{1}(s+,\tau) + \int \psi_{2,3}^{4} \psi_{2}^{4} \psi_{2} \frac{\alpha_{2}-\xi}{(\alpha_{2},-s)^{2}} d\xi \right] d\tau = 0.$ (2.12)

Уравнения (2:4), (2.6)-(2.12) представляют условия оптимальности. Они позволяют найти сопряженные переменные и оптимальное значение величины 3.

§ 3. Определение сопряженных переменных

Для того чтобы придать условию (2.12) более простой вид, требуется определить переменные $\psi_{ij}^{4} - \psi_{ij}^{4}$ из системы (2.4) с учетом (2.6)-(2.11). Решение уравнении (2.4), удовлетворяющее условиям трансверсальности (2.9), имеет вид:

$$\psi_{ij}^{4} = \varphi_{ij}(t), \psi_{ij}^{2} = \varphi_{ij}(t)(s_{ij}-\xi), \psi_{ij}^{3} = -1, \psi_{ij}^{4} = -1 + \varphi_{ij}(\xi - s_{ij}), (3.1)$$

где зіі обозначают элементы матрицы

$$\begin{bmatrix} \delta_{14} & \delta_{12} & \delta_{13} & \delta_{14} \\ \delta_{21} & \delta_{22} & \delta_{23} & \delta_{24} \end{bmatrix} = \begin{bmatrix} 0 & \delta & 0 & \delta \\ \delta & 1 & \delta & \Lambda \end{bmatrix}$$
(3.2)

Чтобы определить сопряженные переменные, надо узнать распределение начальной скорости $\varphi(\xi)$. Допустим, для простоты, что $\varphi \equiv 1$, т.е. балке созбщена постоянная начальная скорость.

Вычисляя с учетом (3.1), (3.2) интегралы в формулах (2.6), (2.7), получим:

$$\dot{\varphi}_{i1} = \frac{3}{2(\eta_{2i-1} - s_{i-1})}; \quad \dot{\varphi}_{i2} = \frac{3}{2(\eta_{2i} - s_{i})} \quad (3.3)$$

И

$$\dot{\varphi}_{i3}(\alpha_i - s_{i-1})^2 - \dot{\varphi}_{i4}(\alpha_i - s_i)^2 = \frac{3}{2}(s_i - s_{i-1}). \quad (3.4)$$

С помощью (3.1), (3.2) можно условиям (2.10) придать вид:

$$\varphi_{i1}^{(\tau_{i1})}(\alpha_i - s_{i-1})[\gamma_{2i-1}(\tau_{i1}) + (\alpha_i - s_{i-1})\hat{w}_i(\tau_{i1})] =$$

$$= \varphi_{i2}^{(\tau_{i1})}(\alpha_i - s_i)[\gamma_{2i}^{(\tau_{i1})} + (\alpha_i - s_i)\hat{w}_i(\tau_{i1})];$$

$$(\alpha_i - s_{i-1})^2 \varphi_{i3}(\tau_{i2}) = \varphi_{i4}^{(\tau_{i2})}(\alpha_i - s_i)^2.$$
Аналогично вышеуказанному, уравнения (2.11) примут вид:

$$\int_{\tau_{i1}}^{\tau_{i2}} [\dot{\varphi}_{i3}(\alpha_i - s_{i-1}) - \dot{\varphi}_{i4}(\alpha_i - s_i)] + (3.6) + 3\dot{\omega}_i [\varphi_{i3}(\alpha_i - s_{i-1}) - \varphi_{i4}(\alpha_i - s_i)] d\tau = 0.$$

Заметим, что уравнения ($\bar{3}.6$) удовлетворены, если $\varphi_{i,3}(\tau)(\alpha_i - s_{i-1}) = \varphi_{i,4}(\tau)(\alpha_i - s_i)$ (3.7) С учетом (3.7) и (3.4) получим:

$$\varphi_{i3} = \frac{3(\tau - \tau_{i2})}{2(\sigma_{1} - \sigma_{i1})}, \quad \varphi_{i4} = \frac{3(\tau - \tau_{i2})}{2(\sigma_{1} - \sigma_{i1})}. \quad (3.8)$$

Вычисляя ў и із по методике, указанной в [I], [6], находим:

$$\dot{\eta}_{i} = \frac{6}{\eta_{i} - s_{i-1}}, \quad \dot{\eta}_{s} = \frac{6}{\eta_{s} - s}, \quad \dot{\eta}_{4} = \frac{3}{\eta_{4} - 1}, \quad (3.9)$$
$$\dot{w}_{4} = \frac{-6}{(s - \alpha_{4})^{2}}, \quad \dot{w}_{2} = \frac{-3}{(1 - \alpha_{2})^{2}}.$$

Имея в виду (3.8), можно уравнениям (3.3) придать вид:

$$\varphi_{i1} = \frac{1}{4} \dot{\eta}_{2i-1}, \quad \dot{\varphi}_{12} = \frac{1}{4} \dot{\eta}_{2}, \quad \dot{\varphi}_{2,2} = \frac{1}{4} \dot{\eta}_{4}.$$
 (3.10)

Интегрируя уравнения (3.9) с учетом условий трансверсальности (2.8), получим:

$$\varphi_{14} = \frac{\eta_1 - s}{4}, \ \varphi_{12} = \frac{\eta_2}{4}, \ \varphi_{24} = \frac{4}{4} (\eta_5 - 2\alpha_2 + s), \ \varphi_{22} = \frac{4}{4} (\eta_4 - 2\alpha_2 + 1)_{(3.II)}$$

Подставляя функции φ_{ij} из (3.8) и (3.11) в (3.1), можно найти все сопряженные переменные $\psi_{ij}^{4} - \psi_{ij}^{4}$. Хотя при определении функции φ_{ij}^{4} мы непосредственно не пользовались условиями (3.5), они все-таки удовлетворены. Действительно, согласно (3.8) последние два уравнения в (3.5) имеют вид: $\varphi_{i3}(\tau_{i2}) = \varphi_{i4}(\tau_{i2}) = 0$, но первые два превращаются в тождества, если подставить η_{ij}^{4} и ω_{ij}^{4} из (3.9) в (3.5) с учетом (1.5).

§ 4. Оптимальное расположение дополнительной опоры

Условие для определения величины 5 представляет формула (2.12). Придадим ей более простой вид. Вычисляя интегралы по § в (2.12) с учетом (3.1), (3.2), (3.8) и (3.11), получим:

$$\frac{4}{4} \left[w(a_{1}, \tau_{12}) - w(a_{2}, \tau_{22}) \right] - \int_{0}^{\tau_{11}} \varphi_{12} q(s_{-}, \tau) d\tau + (4.1)$$

$$\frac{\tau_{24}}{+ \int_{0}^{\tau_{24}} q(s_{+}, \tau) d\tau - \int_{0}^{\tau_{12}} \varphi_{14} q(s_{-}, \tau) d\tau + \int_{0}^{\tau_{22}} \varphi_{23} q(s_{+}, \tau) d\tau = 0.$$

$$\frac{\tau_{44}}{\tau_{24}} = \frac{\tau_{42}}{\tau_{24}} = \frac{\tau_{42}}{\tau_{24}}$$
Tak kak (cm. [1], [6])
$$w(a_{i}, \tau_{i2}) = 2\tau_{i1}, \tau_{i1} = \frac{4}{12} (a_{i} - s)^{2}, \tau_{2i} = 3\tau_{1i}, (4.2)$$

$$q(s_{-}, \tau) = \frac{4}{2} \dot{\eta}_{2}, \tau \in (0, \tau_{41}), q(s_{+}, \tau) = \frac{-3}{s - \alpha_{1}}, \tau \in (\tau_{41}, \tau_{42}),$$

$$q(s_{+}, \tau) = \frac{4}{2} \dot{\eta}_{3}, \tau \in (0, \tau_{24}), q(s_{+}, \tau) = \frac{3}{\alpha_{2} - s}, \tau \in (\tau_{24}, \tau_{22}).$$
To vorther functions and the set of the

$$\tau_{12} = \tau_{22}$$
 (4.3)

Условие (4.3) означает, что движение левой и правой частей балки прекращается в один и тот же момент времени. При этом оптимальное расположение дополнительной опоры

$$s_o = \frac{2\sqrt{2}}{1+3\sqrt{2}}$$
(4.4)

Этот результат совпадает с результатом, полученным в [I] иной методикой. В случае оптимального значения 3 имеем:

$$w(\alpha_{1},\tau_{12}) = w(\alpha_{2},\tau_{22}).$$
 (4.5)

Вычисляя скорость прогиба и прогиб, можно проверить, что

$$\begin{aligned} \varphi_{12} &= \frac{3}{2} \omega'(s_{-,\tau}) + \frac{s_{0}}{4} ; \quad \varphi_{21} &= \frac{3}{2} \omega'(s_{+,\tau}) - \frac{s_{0}}{4} ; \\ \varphi_{14} &= -3\tau_{14} \dot{\omega}'(s_{-,\tau}); \quad \varphi_{23} &= -3\tau_{14} \dot{\omega}'(s_{+,\tau}). \end{aligned}$$

$$(4.6)$$

С помощью (4.3)-(4.6) условию (4.1) можно придать вид: τ_{12} τ_{12} (4.7)

$$\int_{0} [w(s)q(s)] d\tau = 2\tau_{11} \int_{0} [w(s)q(s)] d\tau, \qquad (4.7)$$

orde $[z(s)] = z(s+0) - \overline{z}(s-0).$

Непосредственная проверка показывает, что обе стороны равенства (4.7) равны нулю при оптимальном расположении дополнительной опоры, заданный формулой (4.4). Кроме того, в этом случае выполняются и условия

$$\int \left[w'(s)q(s) \right] d\tau = 0 \tag{4.8}$$

$$\int_{0}^{\tau} [\dot{w}'(s)q(s)] d\tau = 0, \qquad (4.9)$$

где 🕶 обозначает время движения балки.

Формула (4.8) представляет интегральное условие Прагера-Розвани, полученное в [3] при иных предположениях, а также при помощи иной методики.

Литература

- I. Леллеп Я., Оптимальное расположение дополнительной опоры для импульсивно нагруженной пластической балки. Уч. зап. Тартуск. ун-та, 1979, 487, 52-57.
- Лепик Ю., Оптимальное проектирование неупругих балок с дополнительными опорами в случае динамического нагружения. Уч. зап. Тартуск. ун-та, 1977, 430, 132-143.
- Лепик Ю., Об условии оптимальности балок с дополнительными опорами при динамических нагрузках. Уч. зап. Тартуск. ун-та, в печати.
- Лепик Ю., Определение оптимального положения опор для жестко-пластической балки в случае импульсного нагружения. Уч. зап. Тартуск. ун-та, в печати.

- 5. Лурье К.А., Оптимальное управление в задачах математической физики. М., "Наука", 1975.
- Lellep, J., Optymalizacja położenia podpór belki sztywnoplastycznej obciążonej impulsem prędkości. Mech.teoret. i. stosow., 1978, 16, 4, 573 - 582.
- Iepik, U., Optimal design of beams with minimum compliance. Int. J. Non-Linear Mech., 1978, 13,1, 33-42.
- Mróz, Z., Rozvany, G.I.N., Optimal design of structures with variable support conditions. J. Optimiz. Theory and Appl., 1975, 15, 1, 85 - 101.
- 9. Prager, W., Rozvany, G.I.N., Plastic design of beams: optimal locations of supports and steps in yield moment. Int. J. Mech. Sci., 1975, 17,10, 627 - 631.
- Rozvany, G.I.N., Optimal design of flexural systems. Pergamon Press, 1976.

Optimality conditions for location of the additional support

J. Lellep

Summary

The problem of the optimal location of an additional support for a rigid-plastic beam is considered. The beam is subjected to the action of an uniform initial transverse impulse. Necessary optimality conditions are derived with the aid of the variational methods of the optimal control theory on the condition that the residual mean deflection has the minimal value. It is shown that the optimality conditions could be converted into different forms. It appears that the optimality criterias derived by Prager, Mróz, Rozvany and Lepik in different ways also hold good.

ОПТИМАЛЬНОЕ РАСПОЛОЖЕНИЕ ОПОР К УПРУТОЙ БАЛКЕ В СЛУЧАЕ ИМПУЛЬСНОГО НАГРУЖЕНИЯ

Г.Оленев

Тартуский государственный университет

Одним из способов увеличения жесткости конструкций является установка дополнительных опор к ее элементам. В случае статических нагрузок задача оптимального расположения дополнительных опор рассматривалась З.Мрузом и Г.Розвани [2] для упругих и В.Прагером и Г.Розвани [3] – для жестко-пластических конструкций. Б.Лепик [1], применяя метод модальных решений, обобщил выведенные ими условия оптимальности на случай динамического нагружения и, применяя выработанную им методику, нашел оптимальное расположение симметрических жестких опор к упругой балке, подверженной динамическому нагружению.

Представляет интерес выяснить, насколько хорошие результаты дает этот метод, поэтому в настоящей статье данная задача решается другим методом.

Рассматриваются разные поля начальных скоростей, которые указаны на фиг.I. Распределение скоростей из фиг.Ia соответствует методу модальных решений. Проведенные вычисления показывают хорошее совпадение результатов, полученных методом модальных решений и для поля постоянных начальных скоростей из фиг.Id.

В случае треугольного и параболического распределения начального поля скоростей (фиг.Ів-г), оказывается, что дополнительные опоры должны быть расположены ближе к середине балки, чем в случае распределения начального поля скоростей, соответствующего модальному методу решения.

I. Постановка задачи и основные соотношения. Рассмотрим балку из упругого материала, свободно опертую на опоры, симметрично расположенные относительно середины балки. Пусть ось х направлена по длине балки, концы балки имеют координаты $\pm l$, а опоры – координаты $\pm S$. Уравнения движения балки имеют вид: $\partial^2 M$ $\partial^2 \omega$ $M = \Box \propto \partial^2 \omega$

$$\frac{\partial^2 M}{\partial x^2} = m \frac{\partial^2 w}{\partial t^2}, \quad M = -E \Im \frac{\partial^2 w}{\partial x^2},$$

51

TRU Raamatukogu

Фиг. I

Фиг. 2

где M - изгибающий момент, m - масса балки на единицу длины, w(x,t) - прогиб, EJ - жесткость балки при изгибе. Отсюда получим уравнение:

$$\frac{\partial^2 w}{\partial t^2} = -\alpha^2 \frac{\partial^4 w}{\partial x^4} \qquad \left(\alpha^2 = \frac{EJ}{m}\right).$$

После перехода к безразмерной координате $\xi = x/\ell$ и замены переменной $\tau = at/\ell^2$ будем иметь уравнение:

$$\frac{\partial^2 w}{\partial \tau^2} = -\frac{\partial^4 w}{\partial \xi^4}, \qquad (I)$$

которое надо решить при начальных условиях.

$$w(\xi,0)=0, \ \frac{\partial}{\partial\tau}w(\xi,0)=v_{o}(\xi); \qquad (2)$$

функция $v_{c}(\xi)$ задает начальное поле скоростей. При обозначении $s = S/\ell$ краевые условия будут иметь вид:

$$w'(0,\tau)=0, w''(0,\tau)=0, w(A-,\tau)=0, w(A+,\tau)=0, w'(A-,\tau)=w''(A+,\tau), w''(A-,\tau)=w''(A+,\tau), (3) w''(A+,\tau)-w'''(A-,\tau)=R(A,\tau), w''(1,\tau)=0, w'''(1,\tau)=0;$$

здесь штрихами обозначены производные по ξ , а $R(\Lambda, \tau)$ - сила реакции на опоре.

Прогиб ищем в виде

$$w(\xi,\tau) = \sum_{\kappa=4}^{n} W_{\kappa}(\xi) T_{\kappa}(\tau),$$

при этом функции $W_k(\xi)$ и $T_k(\tau)$ должны удовлетворять уравнениям:

$$W_{\kappa}^{W}(\xi) - \lambda_{\kappa} W_{\kappa}(\xi) = \mathbf{0}, \qquad (4)$$

$$T_{\kappa}''(\tau) + \lambda_{\kappa} T_{\kappa}(\tau) = 0.$$
 (5)

Из требования, чтобы ненулевая функция $W_{\kappa}(\xi) \cdot T_{\kappa}(\tau)$ удовлетворяла условиям (3), легко получаются аналогичные краевые условия уравнения (4); здесь λ_{κ} - неизвестные пока собственные числа.

Учитывая эти краевые условия, легко видеть, что $\lambda_{k} \neq 0$. Предположив, что $\lambda_{k} < 0$, для его определения получим некоторое трансцендентное уравнение, которое при s > 0,016 решений не имеет. Поэтому достаточно рассмотреть случай $\lambda_{k} > 0$.

Если обозначить $\lambda_{\kappa} = \mu_{\kappa}^{4}$, где $\mu_{\kappa} > 0$, то для нахождения μ_{κ} получим уравнение:

$$\cos \mu s [ch \mu \cdot cos(\mu - \mu s) - sh\mu \cdot sin(\mu - \mu s) + ch \mu s] + (6)$$

$$+ ch \mu s [cos\mu \cdot ch(\mu - \mu s) + sin \mu \cdot sh(\mu - \mu s) + cos\mu s] = 0.$$

Соответствующее решение уравнения (4) будет иметь вид:

$$W(\xi) = \cos \mu \xi - \frac{\cos \mu s}{ch \mu s} ch \mu \xi +$$

$$+ \begin{cases} 0, & n \mu \quad 0 \leq \xi \leq s, \quad (7) \\ \frac{\cos \mu s}{ch \mu s} - \frac{\sin \mu ch \mu s}{ch \mu s} [\sin (\mu s - \mu \xi) - sh (\mu s - \mu \xi)], \\ \frac{\cos \mu s}{ch \mu s} [\cos (\mu - \mu s) + ch (\mu - \mu s)] \end{cases}$$

$$n \mu \mu \quad s \leq \xi \leq 1.$$

Пусть $\mu_1, \mu_2, ..., \mu_n$ будут и наименьших положительных корней уравнения (6), расположенных в порядке возрастания.

Обозначим через $W_{\kappa}(\xi)$ функцию, вычисляемую по формуле (7) при $\mu = \mu_{\nu}$.

ле (7) при $\mu = \mu_{\kappa}$. Имея решение $T_{\kappa}(\tau) = A_{\kappa} \cos(\mu_{\kappa}^{2}\tau) + B_{\kappa} \sin(\mu_{\kappa}^{2}\tau)$ уравнения (5) при $\lambda_{\kappa} = \mu_{\kappa}^{4}$ и удовлетворяя для $\omega(\xi, \tau)$ условиям (2), будем иметь:

$$A_{k}=0, \ \kappa=1,2,...,n \ \mu$$
$$\sum_{k=1}^{n} \mu_{k}^{2} B_{k} W_{k}(\xi) = v_{0}(\xi),$$

откуда получим линейную систему для нахождения В.:

$$\sum_{k=1}^{n} a_{jk} B_{k} = 0, \quad j = 1, 2, ..., n,$$

$$r_{Ae} a_{jk} = \mu_{k}^{2} \int_{0}^{1} W_{j} W_{k} d\xi, \quad b_{j} = \int_{0}^{1} a_{j} W_{j} d\xi, \quad j, k = 1, 2, ..., n.$$

Так как для упругой балки все точки одновременно не достигают нулевой скорости, то за момент времени τ_{\downarrow} , для которого внчисляется средний прогиб, возьмем наименьший положительный корень уравнения

$$\int \frac{d}{d\tau} w(\xi, \tau_f) d\xi = 0.$$
⁽⁸⁾

Наконец, для упругой балки за меру величины прогиба (критерий качества) удобно взять функцию

$$J(s) = \int w^{2}(\xi, \tau_{f}) d\xi. \qquad (9)$$

Оптимальным будем считать такое значение β , при котором интеграл J(β) имеет наименьшее значение.

2. <u>Обсуждение результатов</u>. Из решения задачи видно, что оптимальные значения \mathcal{A}_4 и \mathcal{A}_2 , полученные для функций распределения начальных скоростей $\mathcal{A}_{04}(\xi)$ и $\mathcal{A}_{02}(\xi)$, отличающихся лишь на постоянный множитель (т.е. таких, что $\mathcal{A}_{04}(\xi) = c \mathcal{A}_{02}(\xi)$, где с - const), равны между собой. Однако, начальное поле скоростей $\mathcal{A}_{0}(\xi)$ существенно влияет на конечный результат. Так, если $\mathcal{A}_{0}(\xi) = const$ (фиг. Id), то $\mathcal{A}_{opt} = 0,53$. Пять наименьших положительных корней уравнения (6) при этом значении будут

$$\mu_1 = 2,36$$
, $\mu_2 = 4,26$, $\mu_3 = 8,60$, $\mu_4 = 10,21$, $\mu_5 = 14,92$.

Решая уравнение (8), находим т, = 2,17. Прогио в этот момент времени для случая из фиг. Io показан на фиг. 26. Как видно, здесь результат хорошо согласуется с результатом, полученным методом модальных решений, при котором $\Lambda_{opt} = 0,56$, а начальное распределение скоростей и прогио показаны на фиг. Ia и 2a.

В случае треугольного и параболического распределения скоростей (фиг.Ів,г) оптимальные значения Λ равны соответственно $\Lambda_{opt} = 0,36$ и $\Lambda_{opt} = 0,38$. В первом случае пять наименьших положительных корней уравнения (6) будут

 $\mu_1=2,16$, $\mu_2=5,20$, $\mu_3=7,11$, $\mu_4=11,48$, $\mu_5=14,17$, BO BTOPOM -

 $\mu_1 = 2,18$, $\mu_2 = 5,05$, $\mu_3 = 7,22$, $\mu_4 = 11,69$; $\mu_5 = 13,70$.

В случае треугольного начального поля скоростей момент времени максимального среднего прогиба равен $\tau_{i} = 4,49$, а сам прогиб в этот момент показан на фиг.2в.

При параболическом начальном поле скоростей $\tau_{\ell} = 1,58$, а прогиб в момент времени τ_{ℓ} показан на фиг.2г.

Таким образом, мы увидели, что в случае треугольного или параболического распределения начального поля скоростей найденные положения опор значительно отличаются от значения, полученного методом модальных решений.

Автор благодарит профессора Ю. Лепика за ценные советы при решении задачи.

Литература

- Лепик Ю.Р., Оптимальное проектирование неупругих балок с дополнительными опорами в случае динамического нагружения. Уч. зап. Тартуск. ун-та, 1977, 430, 132-143.
- 2. Mróz, Z., Rozvany, G.I.N., Optimal design of structures with variable support conditions. J. Optimiz. Theory Appl., 1975, 15, N[≗] 1, 85 - 101.
- Prager W., Rozvany G.I.N., Plastic design of beams: Optimal locations of supports and steps in yield moment. Int. J. Mech. Sci., 1975, 17, Nº 10, 627 - 631.

Optimal location of supports of an elastic beam in the case of impulsive loading

G. Olenev

Summary

An elastic beam on two symmetric supports is considered. The beam is subjected to initial velocity field. Optimal location of supports for which the beam attains a minimum of mean deflection is sought. Constant, triangular and parabolic initial velocity fields are regarded. These results are compared with the result obtained by the method of modal solutions.

О ДИСПЕРСИИ В ДВУМЕРНЫХ ВОЛНОВЫХ ПРОЦЕССАХ

Ю.Энгельбрехт Таллинский политехнический институт

Введение

Во многих задачах нелинейной акустики [2, 4], гидродинамики [I] и в других разделах физики направленные волновые процессы описываются уравнениями Заболоцкой-Хохлова (ЗХ) или Кадомцева-Петвиашвили (КП). Для пучка с аксиальной симметрией они выписываются в виде

$$\frac{\partial}{\partial \zeta} R(\beta(\sigma, \zeta, \eta)) = n \Delta \left(\frac{\partial^2 \beta}{\partial \eta^2} + \frac{1}{\eta} \frac{\partial \beta}{\partial \eta} \right), \qquad (I)$$

где β – амплитудный фактор (скорость частицы), ζ , σ , η – лучевые координаты, Δ – параметр дифракции и R – главный волновой оператор в осевом направлении [4]. При этом n = I соответствует уравнению ЗХ [2] и n = -1 – уравнению КП [4]. Уравнение ЗХ получено из уравнений Навье-Стокса путем асимптотического анализа [2] и уравнение КП – из уравнений мел-кой воды при помощи введения дополнительного члена, учиты-вакщего влияние дисперсии. Более строгий вывод двумерных

уравнений переноса на базе уравнений сплошной среды дан в [4]. Главный волновой оператор может быть либо дифференциального типа

$$R = \frac{\partial \beta}{\partial \sigma} + a_{o1} \beta \frac{\partial \beta}{\partial \zeta} + a_{o}\beta + a_{1} \frac{\partial \beta}{\partial \zeta} + a_{2} \frac{\partial^{2} \beta}{\partial \zeta^{2}} + a_{3} \frac{\partial^{3} \beta}{\partial \zeta^{3}} + ..., (2)$$

либо интегро-дифференциального типа

$$R = \frac{\partial \beta}{\partial \sigma} + \int_{-\infty}^{\infty} K(\zeta - x) \frac{\partial \beta}{\partial x} dx , \qquad (3)$$

где $a_{0,4}$, a_0 , a_A , ... – коэффициенты и ядро K(x) – заданная функция. Одномерные уравнения переноса имеют простую структуру (4)

$$R=0$$
 (4)

и дисперсионные свойства таких уравнений хорошо исследованы [3]. В частности, общее дисперсионное соотношение, вытекающее из (4) с соблюдением (3) получит форму

$$\omega = \frac{1}{2} \int_{-\infty}^{\infty} K(y) \exp(-iky) dy, \qquad (5)$$

где ω , k - частота и волновое число соответственно.

В данной статье рассматривается проблема построения дисперсионных соотношений для двумерной задачи, описываемой уравнением переноса (I).

§ I. Общее решение

иде I.I. Постановка задачи. Выберем волновой оператор в виде $D = \frac{\partial \beta}{\partial \beta} = \alpha - \beta \frac{\partial \beta}{\partial \beta} + m \Omega^{-2} \frac{\partial^3 \beta}{\partial \beta}$ (6)

$$R = \frac{\partial \beta}{\partial \sigma} - a_{01}\beta \frac{\partial \beta}{\partial \zeta} + m\Omega^{-2} \frac{\partial^{2}\beta}{\partial \zeta^{3}}.$$
 (6)

Здесь выполняется $a_{cn} > 0$, $\Omega^{-2} > 0$ – параметр дисперсии, $m = \pm 1$. Оператор (6) является оператором Кортевега-де Вриза (КдВ), который описывает эволюцию волны в нелинейной диспергирующей среде. Свойства оператора (6) известны как в линейной [7], так и в нелинейной [5] приближениях. В случае же двумерной задачи (1) поперечное распределение не должно быть осщиллирующим и должно затухать при больших значениях поперечной координаты η . Имея в виду нелинейный оператор (6), построим, следуя [3], последовательную схему нахождения дисперсионных соотношений и соответствующих решений. Предполагаем решение уравнения (1) в виде

$$\beta = \varepsilon \beta_{o}(\theta) \mathcal{Y}_{o}(\eta) + \varepsilon^{2} \beta_{4}(\theta) \mathcal{Y}_{1}(\eta) + \dots, \qquad (7)$$

где фаза $\Theta = \& \zeta - \omega \sigma$, \mathcal{E} - малый параметр и $\mathcal{Y}_i(\eta)$ - функция поперечного распределения в цучке. Подставляя соотношение

(7) в уравнение (I), получим последовательную совокупность уравнений для определения искомых величин. С точностью до членов 5 получим

$$-k\omega\beta_{o}''y_{o}+m\Omega^{-2}k^{4}\beta_{o}''y_{o}=n\Delta\beta_{o}y_{onn}+n\Delta\eta^{-1}\beta_{o}y_{on}; \quad (8)$$

$$-k\omega\beta_{1}^{"}y_{1} + m\Omega^{-2}k^{\beta}\beta_{1}^{"}y_{1} - k^{2}a_{o1}y_{0}^{2}(\beta_{0}^{'}\beta_{0}^{'} + \beta_{0}\beta_{0}^{''}) =$$

$$= n\Delta\beta_{1}y_{1\eta\eta} + n\Delta\eta^{-1}\beta_{1}y_{1\eta} \qquad (9)$$

и т.д.. Здесь штрих обозначает дифференцирование по 🕗 и индекс η - дифференцирование по координате η .

I.2. Линейное приближение. Уравнение (8) допускает разделение переменных, в результате чего получим

$$-\boldsymbol{k}\,\omega\boldsymbol{\beta}_{o}^{"}+\boldsymbol{m}\boldsymbol{\Omega}^{-2}\boldsymbol{k}^{4}\boldsymbol{\beta}_{o}^{"}=-\boldsymbol{A}^{2}\boldsymbol{n}\boldsymbol{\Delta}\boldsymbol{\beta}_{o}\,,\qquad(\mathrm{IO})$$

$$y_{o\eta\eta} + \eta^{-1} y_{o\eta} = -A^2 y_o,$$
 (II)

где $A^{l} = const$. Разумеется, решение уравнения (IO) есть (12)

 $\beta_o = \sum_{j=1}^{4} b_{oj} \exp \lambda_j \theta$, (I2 где λ_j - корни соответствующего характеристического урав-нения, $b_{oj} = \text{const.}$ Так как нас интересуют только осцилли-рующие решения, то выберем постоянную A^2 так, чтобы определенный $\lambda_n = i$. Этому соответствует

$$A^{2} = -n\Delta^{-1}(k\omega + m\Omega^{-2}k^{4}) \qquad (13)$$

и соответствующее осциллирующее решение имеет вид

$$\beta_0 = b_0 \exp i\theta.$$
 (14)

Теперь легко определить У, из уравнения (II), который является уравнением Бесселя. Его решение приобретает вид [6]

$$\mathcal{Y}_{o} = \mathbf{I}_{o}(A\eta),$$
 (15)

где І. - функция Бесселя нулевого порядка.

I.3. Нелинейное приближение. Имея в виду решение (I4), следующее приближение целесообразно предполагать в форме

$$\beta_1 = k_1 \exp 2i\theta. \tag{16}$$

Тогда поперечное распределение описывается уравнением

$$\mathcal{Y}_{1\eta\eta} + \eta^{-1} \mathcal{Y}_{1\eta} + \mathcal{B}^{2} \mathcal{Y}_{\eta} = 2k^{2} \alpha_{01} b_{0}^{2} b_{1}^{-1} \overline{\Delta}^{-1} \mathbf{I}_{0}^{2} (A_{\eta}), \quad (17)$$

$$B^{2} = 4A^{2} - 12n\Delta^{-1}m\Omega^{-2}k^{4}.$$
 (I8)

Уравнение (17) является неоднородным уравнением Бесселя, решение которого можно найти в виде суммы общего и частного решений:

 $\mathcal{Y}_{A} = I_{o}(B_{\eta}) + \mathcal{L}_{1}I_{o}^{2}(A_{\eta}) + \mathcal{L}_{2}I_{1}^{2}(A_{\eta}) + \mathcal{L}_{3}I_{o}(A_{\eta})I_{1}(A_{\eta}).$ Коэффициенты \mathcal{C}_{i} являются решениями системы

$$P = \begin{vmatrix} B^{2} - A^{2} & 0 & 2A^{2} + \eta^{-1}A(1+A) \\ 2A^{2} & B^{2} - 2A^{2} - 2\eta^{-2}A(1-A) & 3\eta^{-4}A^{2} \\ 2\eta^{-4}A(1-A) & 2\eta^{-4}A(1-3A) & B^{2} - 4A^{2} - \eta^{-4}A(1-A) \end{vmatrix}, (21)$$

$$\vec{C} = \begin{vmatrix} C_{4} \\ C_{2} \\ C_{3} \end{vmatrix}, \quad \vec{Q} = \begin{vmatrix} 2k^{2}a_{0}m\Delta^{-4}k_{0}^{2}k_{0}^{-4} \\ 0 \\ 0 \end{vmatrix}, \quad (22)$$

полученной методом вариации.

Вполне понятно, что в принципе следующие приближения можно найти аналогично, хотя трудоемкость существенно увеличивается.

§ 2. Дисперсионное соотношение

Соответствующее данному волновому оператору (6) одномерное дисперсионное соотношение принимает вид

$$\omega = -m\Omega^{-2}k^3. \tag{23}$$

Коэффициент m управляет знаком фазовой и групповой скоростей, обе скорости ограничены при $k \rightarrow 0$ и неограниченно растут при $k \rightarrow \infty$. В рассматриваемом двумерном случае дисперсионное соотношение принимает вид:

$$\omega = -A^2 n \Delta k^{-1} - m \Omega^{-2} k^3, \qquad (24)$$

зависящее, кроме волнового числа и параметров среды, также от параметра A^2 , т.е. от характера поперечного распределения в пучке. Зависимость частоты от параметра A^2 показывает, что узким пучкам соответствуют большие частоты. Теперь имеем также

$$c_g = A^2 n \Delta k^{-2} - 3m \Omega^{-2} k^2,$$
 (25)

$$c_{pn} = -A^2 n \Delta k^{-2} - m \Omega^{-2} k^2.$$
 (26)

Вполне ясно, что при &<1 двумерность задачи оказывает существенное влияние. В частности, при m = 1, n = 1 (или m = -1, n = -1) изменяется знак групповой скорости, что означает движение пакета в противоположное направление по сравнению с движением гребней. В связи с этим необходимо подчеркнуть, что лучевая координата ζ , с которой связано волновое число &, считается с фронта переходной волны $c_ot - \chi^4 = 0$, где c_o - скорость звука. Поэтому отставание или опережение пакета по сравнению с движением гребней в данной системе координат означает относительное движение в движущейся системе координат.

При определенном & возможна $c_g = 0$, т.е. решение приобретает форму стоячей волны [7]. С другой стороны, возможен и случай, когда $\omega = 0$ ($c_{pn} = 0$), значит, в данной диспергирующей среде не существует решения в виде гармонических волн, а решение затухается с ростом ζ .

Рассмотрим теперь частные случаи.

I) Уравнение ЗХ (n = 4). (a) В случае отрицательной дисперсии (m = 1) в одномерной постановке групповая скорость убывает при возрастании k, сохраняя свой знак $(c_g < 0)$. В двумерном случае однако групповая скорость меняет знак, при малых k является положительной и при $k > (\frac{4}{3}D)^{1/4}$, $D = A^2 \Delta \Omega^2$ становится отрицательной. При больших k влияние дифракционной расходимости пренебрежимо. Стоячей волны не образуется. (d) В случае положительной дисперсии (m = -1) в одномерной постановке групповая скорость возрастает с k, сохраняя свой знак $(c_g > 0)$. В двумерном случае групповая скорость убывает при возрастании k и достигнет своего минимума при $k = (\frac{4}{3}D)^{4/4}$. При этом всегда соблюдается $c_g > 0$. Стоячан волна $(c_{pn} = 0)$ образуется при $k = D^{4/4}$. 2) Уравнение КП (n = -1). В случае отрицательной дисперсии (m = 1) в двумерной постановке наблюдается следующая ситуация. Групповая скорость, соблюдая условие $c_g < 0$, уменьшается по абсолютной величине с возрастанием k до величины $k = (\frac{4}{3}D)^{1/4}$ и потом возрастает снова по абсолютной величине. При $k = D^{1/4}$ образуется стоячая волна. (б) В случае поло-

жительной дисперсии (m = -1) и двумерной постановки грул-

-0

повая скорость является отрицательной при малых k и меняет свой знак при $k = (\frac{4}{3}D)^{4/4}$, после чего соблюдается $c_g > 0$. Стоячей волны не образуется.

Дисперсионные кривые, соответствующие изложенным ситуациям, представлены на фигуре I.

С точностью двух приближений $\omega = const и вторая гармони$ $ка образуется с частотой <math>2\omega$ с поперечным распределением (19). Если $|B^2| > A^2$, то она существенна в параксиальной области, что вполне соответствует известным результатам нелинейной акустики [2]. Однако второе приближение содержит также поправку с поперечным распределением первого приближения.

Если волновой оператор (2) содержит также четние производние, то частота комплексная, т.е. волна подвергается

ØMT. I

ФИТ.І. Дисперсионные кривые при $A^2 = \Omega^2 = \Delta = 1$. (I) - n = 1, m = 1, (2) - n = 1, m = -1, (3) n = -1, a = 1, (4) - n = -1, m = -1; (I) - уравнение ЗХ без учета дисперсии, (II) - уравнение КП без учета дисперсии. диссипации. В случае интегро-дифференциального оператора (3) дисперсионное соотношение получит вид:

$$\omega = -A^2 n \Delta k^{-1} - mk \int_{-\infty}^{\infty} K(y) \exp(-iky) dy, \qquad (27)$$

который свидетельствует о существенном влиянии дифракционного рассеяния при малых значениях k.

Литература

- Петвиашвили В.И., Неодномерные солитоны. В сб.: Нелинейные волны, под ред. А.П.Ганонова – Грехова, Москва, 1979, 5-19.
- Руденко О.В., Солуян С.И., Теоретические основы нелинейной акустики. Москва, 1975.
- 3. Уйзем Дж., Линейные и нелинейные волны. Москва, 1977.
- Энгельбрехт Ю.К., Нигул У.К., Нелинейные волны деформации. Москва, 1980.
- Jeffrey, A., Kakutani, T., Weak nonlinear dispersive waves: a discussion centered around the Korteweg-de Vries equation. SIAM Review, 1972, 14,4, 582 - 643.
- Kamke, E., Differentialgleichungen, Lösungsmethoden und Lösungen. I - Gewöhnliche Differentialgleichungen. Leipzig, 1967.
- 7. Leibowich, S., Seebass, A. R., eds., Nonlinear Waves, Ithaca, 1974.

On dispersion in two-dimensional wave processes

J. Engelbrecht

Summary

The two-dimensional evolution equations of Zabolotskaya-Khokhlov and Kadomtsev-Petviashvili types that govern the two-dimensional wave processes in a dispersive medium are considered. The dispersion relations have been found in the case when the distribution function in a wave-beam is given by Bessel functions. In such a beam the sign changes of the group velocities are possible in certain critical wavenumbers. The influence of the transverse distribution in the wave process is more essential for smaller wavenumbers.

К ТЕОРИИ ЗНАКОПЕРЕМЕННОГО НАГРУЖЕНИЯ

К.Кенк

Таллинский политехнический институт

В теории пластичности предполагается, что приращение деформации определяется достигнутым состоянием материала и приращением напряжений. В вариантах теории, использующих одну поверхность нагружения, принимается, что состояние материала определяется системой действующих в данный момент напряжений и функцией, определяющей форму и положение поверхности нагружения в пространстве напряжений. Основными проблемами в этих теориях являются определение функции упрочнения в ассониированном законе течения и установление закономерностей изменения поверхности нагружения в пропессе деформирования материала. Согласно условию непрерывности пластического деформирования пластические деформации могут развиваться лишь тогда, когда точка нагружения находится на поверхности нагружения. Приращения напряжений, направленные во внутрь или влоль поверхности нагружения. внанвают прирашение только обратимых деформаций. Кроме того, обычно предполагают, что любое приращение напряжений, направленное во вне поверхности нагружения, всегда сопровождается изменением пластической деформации, а поверхность нагружения может измениться лишь в случае изменения пластической деформации. Наибольшее применение нашла в теории модель транлиционно-изотропного упрочнения с первоначальной поверхностью текучести в форме поверхности Мизеса. Приращение пластической деформации считается направленным по нормали к поверхности нагружения. Обзор предложенных вариантов такой теории приведён, например, в [I]. Нетрудно однако убедиться, что при знакопеременных и сложных нагружениях обнаруживается существенное отклонение действительного поведения материалов от предсказываемого теорией. Известно, что если после сложного нагружения осуществить простое нагружение, то влияние сложной предварительной истории нагружения бистро ослабевает и устанавливается соосность приращений напряжений и деформаций. В случае вышеуказанной модели такая соосность становится возможной, если центр поверхности нагружения

выходит на луч нагружения и начинает перемещаться вдоль него. Но тогда соосность приращений напряжений и деформаций должна иметь место и в случае реверса нагрузки и нагружении вдоль того же луча в обратном направлении. Экспериментальные результати [8] показывают существенное отклонение от этого положения. Это создаёт впечатление, что при некоторых режимах деформирования материал какон забывает свою сложную предисторию, а затем при других режимах её снова вспоминает. Но память о предистории физически реализуется в конкретных изменениях структуры материала, и если материал вспоминает какую-то особенность своей предыстории, то она вообще не была забыта, а при некоторых режимах деформирования лишь не проявляется.

Такое поведение материала возможно описать при помощи структурной модели, где элемент материала предполагают состоящим из подэлементов с различными реологическими параметрами. Допустим, что при простом нагружении после предварительного сложного нагружения некоторые подэлементы, упрочнённые в процессе предварительного деформирования, MOLAL выключаться из пластического деформирования. Эти подэлементи сохраняют память о предыстории. Но после выключения их из пластического деформирования предыстория не проявляется в прирашении пластической деформации элемента. Но при других путях нагружения, например, при реверсе нагрузки и нагружении в обратном направлении, эти подэлементы могут снова включаться в пластическое деформирование и проявить влияние сложной предыстории. С такой моделью материала возможно объяснить, например, тот факт, что предыстория не проявляется при нагружениях, где напряжение превышает своё максимальное значение, достигнутое за произвольную предысторию. Taкое поведение материала обнаружено в [I0], а используется в [7] и во всех работах, основанных на схеме Мазинга.

В работе [5] наблюдались ступеньки на диаграмме активного однократного деформирования материала. На рис.І приведена диаграмма испытания латунного тонкостенного образца. Существование участков диаграммы, параллельных с упругой прямой, указывает на то, что даже при активном простом нагружении могут те подэлементы, в которых уже началось пластическое деформирование, выключаться из пластического деформирования, и существуют интервалы возрастания макроскопического напряжения, в течение которых ни один подэлемент не деформируется пластически. При этом, конечно, могут

существовать ещё подэлементы, которые пока ещё не включились в пластическое деформирование, и они подключаются лишь тогда, когда напряжение достигает достаточно высокого, критического для каждого подэлемента значения. Это приводит к выводу, что у каждого подэлемента, кроме поверхности нагружения, существует ещё поверхность выключения из пластического деформирования.

Для конкретизации соответствующей структурной модели материала важно исследовать форму и положение поверхностей нагружения и включения подэлементов, а также их возможное изменение в процессе пластического деформирования элемента. Следует также конкретизовать функции упрочнения подэлементов.

Рассмотрим некоторые простейшие варианты структурной модели с применением поверхностей выключения подалементов.

Пусть поверхности нагружения и выключения подэлемента определяются соответственно уравнениями

$$(S_{ij}^{\kappa} - \alpha_{ij}^{\kappa})(S_{ij}^{\kappa} - \alpha_{ij}^{\kappa}) = C_{\kappa}^{2}, \qquad (I)$$

$$(S_{ij}^{\kappa} - \beta_{ij}^{\kappa})(S_{ij}^{\kappa} - \beta_{ij}^{\kappa}) = \mathfrak{D}_{\kappa}^{2},$$

где 5. – девиатор напряжений к – го подэлемента, С_к – радиус его поверхности нагружения, \mathfrak{D}_{k} – радиус его поверхности выключения, а девиаторы $\boldsymbol{\alpha}_{ij}$ и $\boldsymbol{\beta}_{ij}$ определяют положение центров этих поверхностей. Приращение пластической деформации подэлемента определим ассоциированным законом течения

$$d p_{ij}^{\kappa} = g_{\kappa} (S_{ij}^{\kappa} - \alpha_{ij}^{\kappa}) (S_{lm}^{\kappa} - \alpha_{lm}^{\kappa}) dS_{lm}^{\kappa}, (S_{ij}^{\kappa} - \alpha_{ij}^{\kappa}) (S_{ij}^{\kappa} - \alpha_{ij}^{\kappa}) = C_{\kappa}^{2}, (S_{ij}^{\kappa} - \beta_{ij}^{\kappa}) (S_{ij}^{\kappa} - \beta_{ij}^{\kappa}) < \mathfrak{D}_{\kappa}^{2}, (2) (S_{lm}^{\kappa} - \alpha_{lm}^{\kappa}) dS_{lm}^{\kappa} > 0, (S_{lm}^{\kappa} - \alpha_{lm}^{\kappa}) dS_{lm}^{\kappa} > 0, (S_{ij}^{\kappa} - \beta_{ij}^{\kappa}) (S_{ij}^{\kappa} - \beta_{ij}^{\kappa}) > \mathfrak{D}_{\kappa}^{2}$$
 или
 $(S_{ij}^{\kappa} - \alpha_{ij}^{\kappa}) (S_{ij}^{\kappa} - \beta_{ij}^{\kappa}) (S_{ij}^{\kappa} - \alpha_{lm}^{\kappa}) dS_{lm}^{\kappa} < 0$ или
 $(S_{ij}^{\kappa} - \alpha_{ij}^{\kappa}) (S_{ij}^{\kappa} - \alpha_{ij}^{\kappa}) (S_{lm}^{\kappa} - \alpha_{lm}^{\kappa}) dS_{lm}^{\kappa} < 0$ или
 $(S_{ij}^{\kappa} - \alpha_{ij}^{\kappa}) (S_{ij}^{\kappa} - \alpha_{ij}^{\kappa}) < C_{\kappa}^{2},$

где dp.j- приращение пластической деформации подэлемента, g_k - функция его упрочнения. С учётом условия непрерывности в уравнениях (2) предполагается, что точка нагружения никогда не выходит за пределы поверхности нагружения, а при увеличении напряжений сама поверхность нагружения необходимым образом изменится.

У большинства материалов не наблюдается ступенек на диаграмме простого активного деформирования. Пусть подэлементы пронумерованы в порядке возрастания их первоначальных пределов текучести, а макроскопические напряжение и деформация связаны с локальными напряжениями и деформациями соотношениями:

$$S_{ij} = S_{ij}^{\kappa}, P_{ij} = \sum P_{ij}^{\kappa}$$
 (3)

Тогда на основе уравнений (2) можно получить непрерывную диаграмму деформирования, если, например,

$$\mathcal{D}_{\kappa} = \mathcal{C}_{\kappa+1}, \quad \beta_{ij} = \alpha_{ij}^{\kappa+1}. \quad (4)$$

Нетрудно убедиться, что при выполнении условий (4) одновременно может пластически изменяться лишь один подэлемент.

При определении параметров структурной модели диаграмму одноосного активного деформирования обычно представляют как ломаную. Естественно предположить, что каждому прямолинейному участку этой ломаной соответствует развитие пластической деформации соответствующего отдельного подэлемента. Тогда в уравнениях (2)

$$g_{\kappa} = A_{\kappa} C_{\kappa}^{2}$$
 (5)

где A_к - тангенс угла наклона соответствующего прямолинейного участка диаграммы, построенной в координатах S_{ii}~P_{ij}.

В простейшем случае можно A считать не зависящим от предыстории деформирования, т.е. A = ccnst.

Для полной конкретизации модели следует ещё установить зависимость \mathcal{C}_{κ} и $\boldsymbol{\alpha}_{i}^{k}$ от предыстории деформирования.

Для выполнения условия непрерывности пластического деформирования следует допустить возможность изменения поверхности нагружения подэлемента и после его выключения из пластического деформирования. Такое пассивное изменение поверхностей нагружения рассматривается, например, и в работах [9, 2], но там рассматривается плоские поверхности. Следует отметить, что обычно предполагают, что поверхность нагружения может измениться лишь в случае изменения пластической деформации. Допустим, что поверхность нагружения подэлементов может измениться лишь в том случае, если точка нагружения находится на соответствующей поверхности. Одна из возможностей дальнейшей конкретизации модели заключается в предположении, что $dC_{\kappa} = 0$, если $d \varphi_{ij}^{\kappa} = 0$. Тогда при пассивном движении поверхности нагружения происходит лишь его трансляция.

При этом из условия непрерывности $df_{\kappa} = 0$, где $f_{\kappa} = (S_{ij}^{\kappa} - \alpha_{ij}^{\kappa})(S_{ij}^{\kappa} - \alpha_{ij}^{\kappa}) - C_{\kappa}^{2} = 0$, получим $(dS_{ij}^{\kappa} - d\alpha_{ij}^{\kappa})(S_{ij}^{\kappa} - \alpha_{ij}^{\kappa}) - 2C_{\kappa}dC_{\kappa} = 0$. (6) Если $dC_{\kappa} = 0$, то

$$(dS_{ij}^{k} - d\alpha_{ij}^{k})(S_{ij}^{k} - \alpha_{ij}^{k}) = 0.$$
 (7)

Условие (7) выполняется, если допустить

$$d\alpha_{ij}^{k} = dS_{ij}^{k} \quad \text{или} \qquad (8)$$

$$d\alpha_{ij}^{\ \kappa} = \frac{S_{ij}^{\ \kappa} - \alpha_{ij}}{C_{\kappa}^{2}} (S_{ml}^{\ \kappa} - \alpha_{ml}^{\ \kappa}) dS_{ml}^{\ 2}.$$
(9)

Следует отметить, что вариант (9) применяется чаще, чем (8), но и вариант (8) предполагают использовать, например, в [8].

Если в дальнейшем рассматривать одномерное знакопеременное нагружение и допустить, что $dC_{\kappa}=0$ и в случае $dp_{ij} \neq C$, то получим широко применяемую схему Мазинга. Но здесь отпадает необходимость в предложенной в [I] системе "запоминания" и "забывания" материалом своей предыстории, а всё вытекает непосредственно из поведения модели.

Если допустить при $dp_{ij}^{\kappa} \neq 0$ возможность $dC_{\kappa} \neq 0$, то, очевидно, получим обобщённую диаграмму циклического деформирования, которая неоднократно предлагалась на основе экспериментальных данных [6]. Если учесть, что при циклическом нагружении поведение материала стабилизируется, то это можно получить, допуская, что

$$C_{\kappa} = C_{\kappa}(\lambda_{\kappa}),$$

где $d\lambda_{\kappa} = \sqrt{dp_{ij}^{\kappa} dp_{ij}^{\kappa}}$ и с увеличением λ_{κ} функция C_{κ} стремится к постоянному значению. Развитие при большом числе циклов циклического разупрочнения можно описать, допуская, что после достижения определённого значения λ_{κ} , функция C_{κ} начинает убывать. Согласно указанной модели образующие установившихся петель пластического гистерезиса при различных амплитудах являются частями одной кривой. Это действительно наблюдается в экспериментах, где применялись циклы различной амплитуды, но с одинаковым максимальным напряжением цикла [3]. Но при различных максимальных напряжениях цикла образующие установившихся петель принадлежат однопараметрическому семейству кривых [4]. Всё это можно учесть, допуская, что

 $C_{\kappa} = C_{\kappa} (\lambda_{\kappa}; T_{max}^{\kappa}),$ где $T_{\kappa}^{\kappa} = \sqrt{S_{ij}^{\kappa}} S_{ij}^{\kappa}$, а T_{max}^{κ} - максимальное значение её за всю предисторию. Для учёта нестабильных свойств типа старения в аргументы функции C_{κ} следует ещё добавить время. Отметим, что в поведении функции C_{κ} наблюдаются закономерности в некотором отношении коррелирующие с закономерностями изменения скорости ползучести. Это касается таких фактов, как стабилизация, нарушение стабильности при изменении режима нагружения, подобие кривых при различных максимальных напряжениях и т.д. По-видимому, через эту функцию можно осуществить связь между теорией пластичности и теорией ползучести.

Выше рассматривались лишь некоторые простейшие случаи поведения материала, основанные на уравнениях (2). Видоизменив условия (3), (4) и (5), можно получить модели для описания более сложных эффектов, в том числе и ступенек на диаграмме активного простого деформирования. Но уже и рассмотренные простейшие варианты модели позволят описать многие основные экспериментально обнаруженные закономерности.

Литература

- Гохфельд Д.А., Кононов К.М., Садаков О.С., Чернявский О.Ф., Проблемы прочности термонапряжённых конструкций. Итоги науки и техники. Механика деформируемого твёрдого тела, 1978, 12, 91-194.
- 2. Кадашевич Ю.И., Новожилов В.В., О предельных вариантах теории пластичности, учитывающей начальные микронапряжения. Изв. АН СССР, МТТ, 1980, № 3, 91-96.
- Кынк К.Р., 0 поведении меди при несимметричных циклах напряжения кручения. В сб.: Проблемы механики твёрдого деформированного тела. Л., "Судостроение", 1970, 205-207.
- 4. Кенк К.Р., О связи между напряжением и сдвигом при кручении. Инж.ж. МТТ, 1968, № 5, 134-139.
- Кенк К.Р., Экспериментальная проверка применимости соотношений основных теорий пластичности к описанию процесса деформирования при знакопеременном кручении. Канд. диссерт. Ленгосуниверситет, Л., 1967.
- Шнейдерович Р.М., Гусенков А.П., Деформационно-кинетические подходы к оценке длительной циклической прочности. В сб.: Материалы Всес. симпоз. по малоцикл. усталости при повышен. температурах. Вып. З.Челябинск, 1974, 140-163.
- Ghamian, M.M., Krishnasmy, S., Sherbourne, A.W., Irelastic deformations of mildsteel beams under symmetrical and unsymmetrical cyclic bending. Exp. Mech., 1974, Nº 2, 49 - 56.
- Phillips Aris, Lee Chong-Won., Yield surfaces and loading surfaces. Experiments and recommendations. Int. J.Solids and Struct., 1979, 15, Nº 2, 715 - 729.

- 9. Sanders, J.L., Jr., Plastic stress-strain relations based on linear loading functions. Proc. of the second U.S. Nat. Congr. of Appl. Mech., 1954, 455 460. Перевод: Механика. Период.сб. перев. ин. статей, 1956, № 3, 99 109.
- Suhara, J., Shugyo, M., Fukuda, J., Nagano, H., The stress-strain behaviours of mild steel under complex loading history. Rept. Res. Inst. Appl. Mech., 1975, 23, Nr. 72, 1 - 30.

On the theory of signchanging loading

K. Kenk

Summary

A structural model for describing the plastic behaviour of the materials which have not a smooth deformation diagram, is presented. The existence of steps on the deformation diagram of brass has been shown by an experiment.

The model takes into account the subelements switchingout surfaces from the plastic deformation at larger stresses. The behaviour of the materials with a smooth deformation diagram may be described by a suitable choice of model parameters. The simplest variants include the Masing scheme and the generalized curve of the cyclic deformation.
О ПРИМЕНЕНИИ ПРИНЦИПА НАСЛЕДСТВЕННОСТИ ПРИ ОПИСАНИИ ИЗМЕНЕНИЯ ВЕРТИКАЛЬНОГО ОСЕВОГО УСИЛИЯ КОНИЧЕСКОГО ИНДЕНТОРА В СТРУКТУРИ-РОВАННОЙ ДИСПЕРСНОЙ СРЕДЕ

А.Ряни

НИПИ "Силикатобетон", Таллин

Теоретический и практический интерес представляют методы и приборы для определения реологических параметров структурированных дисперсных сред. В последние годы заметен рост внимания к применению для этих целей конического индентора [I,3-7,IO-II].

Возможность определения реологических параметров структурированных дисперсных сред по кривым изменения вертикального осевого усилия конического индентора, полученных как для периода погружения индентора в среду, так и для периода релаксации усилия при постоянной глубине погружения индентора, доказана в работах [I0-I3].

Из результатов опытов в смеси полимер-минерального шпаклевочного состава "СИПА I" видно (см. рис.I), что характер релаксации вертикального осевого усилия $\mathcal{P} = f(\varepsilon)$ конического индентора и его величина, а также величина значения отрелаксированного вертикального осевого усилия зависят от интенсивности роста вертикального осевого усилия в период погружения индентора в среду. Иными словами, деформация в структурированной дисперсной среде в данный момент зависит не только от величины напряжения, действующего в этот момент, но и от истории предшествующего деформирования, как бы наследуя влияние действовавшего ранее напряжения [2]. Следовательно, имеется основание описать упомянутый процесс, опираясь на принцип наследственности.

Наиболее простое уравнение процесса или состояния, базирующееся на принципе наследственности, имеет вид [2,8-9]:

$$\sigma(t) = \sigma_0 + E\{\varepsilon(t) - \int_0^t K(t-\tau)\varepsilon(\tau) d\tau\}, \quad (I)$$

или

$$\sigma_{t}(t) = E\{\varepsilon(t) - \int_{0}^{t} K(t-\tau)\varepsilon(\tau)d\tau\}, \quad (2)$$

- Рис.І. Характер роста и релаксации при **k** = const вертикального осевого усилия **P** конического индентора в смеси полимер-минерального шпаклевочного состава "СИПА I"
- I при погружении индентора в среду за постоянное время t_o с различной постоянной скоростью
- II при погружении индентора в среду за различное время до одной и той же глубины h_o

 $---- \mathsf{P} = \mathbf{f}(t); --- \mathsf{k} = \mathbf{f}(t).$

odoshavne $\sigma_1(t) = \sigma(t) - \sigma_0$.

Уравнение (2) является интегральным уравнением Вольтерра второго рода.

Предполагая, что значение $\sigma_{\overline{o}}$ известно, и опираясь на формулу (2), задача изыскания математической зависимости функции $\sigma_{\overline{i}}(t)$ от функции $\varepsilon(t)$ при соблюдении соответствия данным эксперимента сводится к определению значения константы E и функции $K(t-\tau)$.

Подберем ядро со структурой

$$K(t-\tau) = m_1 e^{-(t-\tau)/\tau_1} + m_2 e^{-(t-\tau)/\tau_2}, \quad (4)$$

(3)

где константи $\tau_1 \ge 0$ и $\tau_2 \ge 0$; а константи m_1 и m_2 могут иметь и отрицательное значение.

Ндро (4) имеет монотонно затухающую память, при этом

$$\max |K(t-\tau)| = |K(0)| = |m_1 + m_2|. \quad (5)$$

Подставив формулу (4) в уравнение (2) и учитывая формулу (3), получим конкретное уравнение состояния типа Вольтерра

$$\sigma(t) = \sigma_0 + E \{ \varepsilon(t) - m_1 \int_{e}^{t} e^{\frac{t-\tau}{\tau_1}} \varepsilon(\tau) d\tau - m_2 \int_{e}^{t} e^{\frac{t-\tau}{\tau_2}} \varepsilon(\tau) d\tau \}.$$
(6)

Если структура ядра оправдывает себя в виде (4), то могут быть определены значения констант E, m_4 , τ_4 , m_2 и τ_2 таким образом, что применение уравнения (6) даст результаты, хорошо согласующиеся с результатами опыта.

Найдем дифференциальное уравнение второго порядка, эквивалентное полученному нами интегральному уравнению состояния типа Вольтерра второго рода.

Обозначим

$$J_{j}(t) = \int_{0}^{t} e^{-\frac{t-\tau}{\tau_{j}}} \varepsilon(\tau) d\tau, \quad j=1,2.$$
 (7)

Можно доказать, что

$$J_{j}(t) = \varepsilon(t) - \frac{1}{\tau_{j}} J_{j}(t). \qquad (8)$$

При применении обозначения (7) формула (6) принимает вид:

$$\sigma(t) = \sigma_0 + E \{ e(t) - m_1 J_1(t) - m_2 J_2(t) \}.$$
(9)

Дифференцируя формулу (9) и учитывая формулу (8), полу-

$$\dot{\sigma}(t) = E \{ \dot{\varepsilon}(t) - (m_1 + m_2) \varepsilon(t) + \frac{m_1}{\tau_1} J_1(t) + \frac{m_2}{\tau_2} J_2(t).$$
(10)

чим:

Дифференцируя формулу (10) и применяя снова формулу (8), получим:

$$\ddot{\sigma}(t) = E\left\{ \ddot{\varepsilon}(t) - (m_{A} + m_{2})\dot{\varepsilon}(t) + (\frac{m_{I}}{\tau_{A}} + \frac{m_{2}}{\tau_{2}})\varepsilon(t) - \frac{m_{1}}{\tau_{A}^{2}} J_{A}(t) - \frac{m_{2}}{\tau_{2}^{2}} J_{A}(t) \right\} (II)$$

Применяя формулы (9) и (I0), әлиминируем $J_4(t)$ и $J_2(t)$ из формулы (II) и получим:

$$\tau_{1}\tau_{2}\sigma(t) + (\tau_{1} + \tau_{2})\sigma(t) + \sigma(t) - \sigma_{0} = E\{(1 - m_{1}\tau_{1} - m_{2}\tau_{2})\varepsilon(t) + (12) + (12) + \tau_{1}\tau_{2} + \tau_{1} - \tau_{1}\tau_{2}(m_{1} + m_{2})\}\varepsilon(t) + \tau_{1}\tau_{2}\varepsilon(t).$$

Если обозначить независимые параметры

$$\tau_{1}\tau_{2} = \mu_{2}; \quad \tau_{1} + \tau_{2} = \mu_{1}; \quad E \mu_{2} = q_{2};$$

$$E[\mu_{1} - \mu_{2}(m_{1} + m_{2})] = q_{1}; \quad E[1 - m_{1}\tau_{1} - m_{2}\tau_{2}] = q_{0},$$
(I3)

то дифференциальное уравнение второго порядка (I2), эквивалентное интегральному уравнению (6), принимает стандартный вид:

$$p_{2}\ddot{\sigma}(t) + p_{1}\dot{\sigma}(t) + \sigma(t) - \sigma_{0} = q_{0}\varepsilon(t) + q_{1}\dot{\varepsilon}(t) + q_{2}\dot{\varepsilon}(t). (14)$$

Дифференциальное уравнение реологической модели с двумя временами релаксации, полученной в результате параллельного соединения моделей Шведова-Бингама и Максвелла, приведено в работе [I3]

$$n_{4}n_{2} \overset{P}{P} + (n_{4}+n_{2})\overset{P}{P} + P = P_{m}s + (\eta_{4}+\eta_{2}+n_{2}P_{m})\dot{s} + (h_{4}\eta_{2}+n_{3}\eta_{4})\dot{s}(15)$$

где P - вертикальное осевое усилие; P_{m} - пластическая проч-
ность; s - площадь поверхности соприкосновения конуса со
средой; $n_{4} = \frac{\eta_{4}}{L_{4}}u n_{2} = \frac{\eta_{4}}{L_{2}}$ - времена релаксации; η_{4} и η_{2} - вяз-
кости; E_{4} и E_{2} - упругие жесткости.

Для нахождения связи между коэффициентами дифференциального уравнения реологической модели и коэффициентами дифференциального уравнения, эквивалентного интегральному уравнению состояния типа Вольтерра, учитываем соответствие

$$\sigma(t) \to P; \quad \varepsilon(t) \to s; \quad \tau_1 \to n_1; \\ \tau_2 \to n_2; \quad q_0 \to P_m; \quad \sigma_0 \to 0,$$

а также формулу (I3), и в результате получим систему уравнений:

$$\begin{cases} E (1 - m_{4}n_{4} - m_{2}n_{2}) = P_{m}, \\ E [n_{4} + n_{2} - n_{4}n_{2}(m_{4} + m_{2})] = \eta_{4} + \eta_{2} + n_{2}P_{m}, \\ E n_{4}n_{2} = n_{4}\eta_{2} + n_{2}\eta_{4}, \end{cases}$$
(16)

74

откуда

$$E = \frac{\eta_1}{\eta_1} + \frac{\eta_2}{\eta_2}, \qquad (17)$$

$$n_{4} = \frac{n_{2}(\eta_{4} - n_{4}P_{m})}{n_{4}(n_{2}\eta_{4} + n_{4}\eta_{2})}, \qquad (18)$$

$$m_{z} = \frac{n_{1} \eta_{2}}{n_{2} (n_{2} \eta_{4} + n_{4} \eta_{2})}, \qquad (19)$$

Если закон погружения индентора в среду s = s(t), то при начальных условиях P(0)=0 и $\dot{P}(0)=0$ решение дифференциального уравнения (15) имеет вид: $P(t)=n_{A}^{-4}(P_{m}-\eta_{A}n_{A}^{-4})\int_{0}^{t}se^{-(t-\tau)/n_{A}}d\tau - \eta_{2}n_{2}^{-2}\int_{0}^{t}se^{-(t-\tau)/n_{2}}d\tau - -[s(c)(\eta_{A}n_{A}^{-4}+n_{2}(n_{A}-n_{2})^{-4}P_{m})+\dot{s}(0)(n_{4}\eta_{2}+n_{2}\eta_{4})(n_{A}-n_{2})^{-4}]e^{-t/n_{4}}$ (20)

$$-\left[\varsigma(0)\left(\frac{\eta_{2}}{n_{2}}+\frac{n_{2}}{n_{2}-n_{1}}P_{m}\right)+\varsigma(0)\frac{n_{4}\eta_{2}+n_{2}\eta_{4}}{n_{2}-n_{4}}\right]e^{-t/n_{2}}+\left(\frac{\eta_{4}}{n_{4}}+\frac{\eta_{2}}{n_{2}}\right)\varsigma,$$

и при релаксации вертикального осевого усилия конического индентора в среде при $s = s(t_o) = s_o$.

$$S(t) = \begin{cases} S(t), \ t \leq t_o, \\ S_o, \ t > t_o, \end{cases}$$

$$P(t) = \frac{1}{n_1} (P_m - \frac{\eta_1}{n_1}) \int_{0}^{t_0} e^{-\frac{t-\tau}{n_1}} d\tau - \frac{\eta_2}{n_2} \int_{0}^{t_0} e^{-\frac{t-\tau}{n_2}} d\tau - (P_m - \frac{\eta_1}{n_1}) e^{-\frac{t-t_0}{n_1}} + \frac{1}{n_1} e^{-\frac{\eta_1}{n_1}} e^{-\frac{t-\tau}{n_1}} d\tau - \frac{\eta_2}{n_2} e^{-\frac{t-\tau}{n_2}} d\tau - (P_m - \frac{\eta_1}{n_1}) e^{-\frac{t-\tau}{n_1}} e^{-\frac{t-\tau}{n_1}} e^{-\frac{t-\tau}{n_1}} e^{-\frac{t-\tau}{n_1}} e^{-\frac{t-\tau}{n_1}} e^{-\frac{t-\tau}{n_1}} e^{-\frac{t-\tau}{n_2}} e^{-\frac{t-\tau}{n_2}} e^{-\frac{t-\tau}{n_1}} e^{-\frac{t-\tau}{n_1}} e^{-\frac{t-\tau}{n_1}} e^{-\frac{t-\tau}{n_1}} e^{-\frac{t-\tau}{n_2}} e^{-\frac{t-\tau}{n_2}} e^{-\frac{t-\tau}{n_2}} e^{-\frac{t-\tau}{n_1}} e^{-\frac{t-\tau}{n_1}} e^{-\frac{t-\tau}{n_1}} e^{-\frac{t-\tau}{n_1}} e^{-\frac{t-\tau}{n_2}} e^{-\frac{t-\tau}{n_2}$$

$$+\frac{\eta_{2}}{n_{2}}s_{o}e^{-\frac{t-t_{o}}{n_{2}}}+s_{o}\left(P_{m}-\frac{\eta_{1}}{n_{4}}-\frac{\eta_{2}}{n_{2}}\right)-\left[s(0)\left(\frac{\eta_{1}}{n_{4}}+\frac{n_{2}}{n_{a}-n_{2}}P_{m}\right)+s(0)\frac{n_{a}\eta_{z}}{n_{a}-n_{2}}+\right.$$
(21)

$$+\dot{s}(0)\frac{n_{2}\eta_{1}}{n_{4}-n_{2}}]e^{-\frac{t}{n_{4}}}-[5(0)(\frac{\eta_{2}}{n_{2}}+\frac{n_{2}}{n_{2}-n_{4}}P_{m})+\dot{s}(0)\frac{n_{4}\eta_{2}+n_{2}\eta_{4}}{n_{2}-n_{4}}]e^{-\frac{t}{n_{2}}}+5(\frac{\eta_{1}}{n_{4}}+\frac{\eta_{2}}{n_{2}}).$$

При учитывании работы [12] больший интерес для определения реологических параметров структурированной дисперсной среды представляет режим погружения индентора в среду по закону

$$s=at^2$$
. (22)

Принимая $s = at^2$ и учитывая, что s(0)=0, $\dot{s}(0)=0_{\rm H}$ $\frac{\eta_1}{\eta_1} + \frac{\eta_2}{\eta_2} = E$, нолучим из формул (20) и (21) интегральное уравнение состояния типа Вольтерра второго рода для периода погружения индентора в среду в виде

$$P(t) = E\left\{at^{2} - m_{1}\int_{0}^{t} \frac{t-\tau}{\tau_{1}}a\tau^{2}d\tau - m_{2}\int_{0}^{t} \frac{t-\tau}{\tau_{2}}a\tau^{2}d\tau \quad (23)\right\}$$

и для периода релаксации в виде

$$P(t) = E \left\{ at^{2} - m_{1} \int_{e}^{t} e^{-(t-\tau)/\tau_{1}} a\tau^{2} d\tau - m_{1} \int_{e}^{t} e^{-(t-\tau)/\tau_{1}} at_{0}^{2} d\tau - m_{2} \int_{e}^{t} e^{-(t-\tau)/\tau_{2}} a\tau^{2} d\tau - m_{2} \int_{e}^{t} e^{-(t-\tau)/\tau_{2}} at_{0}^{2} d\tau \right\}.$$
(24)

Аналогичное уравнение мы можем получить из формулы (6).

В целях упроцения вывода дальнейших формул целесообразно определить

$$\mu_{1} = 2 a n_{1} (\eta_{1} - n_{1} P_{m})$$
 (25)

И

$$\mu_2 = 2an_2\eta_2 \cdot \tag{26}$$

Применяя интегрирование по частям, после упрощения получим P=f(t) в окончательном виде соответственно для периода погружения ($t \leq t_o$)

$$P(t) = \left(\frac{\mu_{1}}{n_{4}} + \frac{\mu_{2}}{n_{2}}\right)t - \mu_{1}\left(4 - e^{-t/n_{4}}\right) - \mu_{2}\left(4 - e^{-t/n_{2}}\right) + at^{2}P_{m} \qquad (27)$$

и для периода релаксации (t > t_o)

$$P(t) = \frac{\mu_{1}}{n_{4}} \left[(t_{0} - n_{4})e^{-\frac{t - t_{0}}{n_{4}}} + n_{4}e^{-\frac{t}{n_{4}}} \right] + \frac{\mu_{2}}{n_{2}} \left[(t_{0} - n_{2})e^{-\frac{t - t_{0}}{n_{2}}} + n_{2}e^{-\frac{t}{n_{4}}} \right] + at_{0}^{2} P_{m}.(28)$$

Полученные формулы (27) и (28) идентичны соответствующим формулам в работе [I3].

Для получения пяти независимых реологических характеристик P_m , η , η_2 , E_4 и E_2 целесообразно определить по графику P = f(t) значения усилия P как минимум при пяти различных значениях времени t и решить систему уравнений.

Выводы

Доказана возможность применения в качестве модели структурированной дисперсной среды математической модели наследственной среды в виде линейного интегрального уравнения Вольтерра с экспоненциальным ядром. При этом установлено, что дифференциальное уравнение второго порядка, эквивалентное интегральному уравнению состояния типа Вольтерра второго рода, в случае применения ядра, состоящего из суммы двух экспонентов, соответствует дифференциальному уравнению реологической модели упруго-вязко-пластичных тел с двумя временами релаксации, полученной в результате параллельного

76

соединения моделей Шведова-Бингама и Максвелла.

Литература

- І. Берней И.И., Белов В.В., Теория и метод. измерения вязкости и предельного напряжения сдвига дисперсных систем на усовершенствованном коническом пластометре. Реология бетонных смесей и ее технологические задачи. Тез. докл. Ш Всес. симпозиума, Рига, 1979, 144-146.
- 2. Вялов С.С., Реологические основы механики грунтов. М., Высшая школа, 1978, 128, 218-222.
- Вяльямяэ Г.Х., Гордон Б.И., Сеппель С.А., Тильк И.И., Уутма Т.Х., Эйнер Л.К., Автоматический конический пластометр КП-І. Реология бетонных смесей и ее технологические задачи. Тез. докл. Ш Всес. симпозиума, Рига, 1979, 147-149.
- 4. Гордон Б., Сеппель С.А., Эйнер Л.К., Классификация, функциональные и структурные схемы, основные зависимости приборов Вейлера-Ребиндера и конических пластометров. Реология бетонных смесей и ее технологические задачи. Тез. докл. Ш Всес. симпозиума, Рига, 1979, 136-139.
- Здороненко В.А., Тупицын Ю.А., О корреляции между показателем по Суттарду и предельным напряжением сдвига ячеистобетонной смеси. Реология бетонных смесей и ее технологические задачи. Тез. докл. Ш Всес., симпозиума, Рига, 1979, 187.
- Качура Б.А., Тупицын Ю.А., Реометр для технологического контроля качества ячеистобетонной смеси. Реология бетонных смесей и ее технологические задачи. Тез. докл. Ш Всес. симпозиума, Рига, 1979, 186.
- 7. Мчедлов-Петросян О.П., Качура Б.А., Тупицын Ю.А., Расчетная формула для вычисления предельного напряжения сдвига пластично-вязких сред методом погружающегося конуса. Реология бетонных смесей и ее технологические задачи. Тез. докл. Ш Всес. симпозиума, Рига. 1979,153.
- 8. Работнов Ю.Н., Ползучесть элементов конструкций. М., Наука, 1956.
- 9. Работнов Ю.Н., Элементы наследственной механики твердых тел. М., Наука, 1977.
- IO. Рандма И.D., Куннос Г.Я., Гордон Б.И., Ряни А.Э., Эйнер Л.Н Релаксация пластической прочности дисперсных композиций. В сб. II Национальная конференция по механике и

технологии композиционных материалов с участием зарубежных представителей, Варна, НР Болгария, 1979, 471-474.

- II. Ряни А.Э., Рандма И.Ю., Куннос Г.Я., Рандма О.Х, Гордон Б.И., Методика исследования упруговязкой характеристики дисперсной системы при помощи конического индентора. Реология бетонных смесей и ее технологические задачи. Тез. докл. Ш Всес. симпозиума, Рига, 1979, 150-152.
- 12. Ряни А.Э., Рандма О.Х., Рандма И.Ю., Куннос Г.Я., Определение упруговязкой характеристики дисперсной среды при помощи конического индентора. В сб. "Производство и применение силикатных бетонов". Таллин, 1981, 146-152.
- 13. Ряни А.Э., Об определении упруго-пластично-вязких свойств структурированных дисперсных систем при помощи конического индентора. Коллоидный журнал, М., 1981.

On making use of the heredity principle for description of the axial force in the conic indenter in case of structural dispersive medium

A. Reani

Summary

A mathematical model of the linear hereditary medium is used for description of the behaviour of the structural dispersive medium in experiments carried out with the aid of a conic indenter. The kernel function of the mathematical model (in the Volterra type linear integral equation) used in this investigation is a sum of two exponential functions. It is shown that in case of such kernel function the Volterra type linear integral equation is equivalent to the linear differential equation obtained by making use of a rheological model which consists of two classical models: Schwedoff-Bingham model and Maxwell model.

ИЗУЧЕНИЕ ПЕРЕМЕШЕНИЙ ЭЛЕМЕНТОВ КУПОЛА ПОЛ ДЕЙСТВИЕМ ВЫСОКИХ ДИНАМИЧЕСКИХ НАГРУЗОК

Л.Росомахо, Г.Руммель, Э.Сакс, Р.Свердлова Тартуский государственный университет

В статье дано решение задачи о перемещениях элементов сферического сегмента при его динамическом нагружении. Для описания процесса деформации сегмента использованы уравнения вязкой сжимаемой среды (уравнения Навье-Стокса) и ударные адиабаты материалов. При получении численного решения применен метод свободных точек Дьяченко. Для удобства практической реализации построены упрощенные математические модели в критериальной форме.

§ I. Постановка задачи и основные соотношения

Рассмотрим деформирование сферического купола под действием динамических нагрузок высокой интенсивности. Допустим, что плоский фронт давления набегает на элементы сегмента купола со скоростью, направленной вдоль оси симметрии тела. После прохождения фронта давления последнее сохраняется постоянным по времени. Для повышения прочности конструкшии на внутренней поверхности сегмента имеется пополнительный усиливающий слой из другого материала.

Введем следующие обозначения:

р - давление на фронте ударной волны;

- Е, Е, модули упругости соответственно основного и дополнительного слоев;
- 91,92 плотности материала основного и дополнительного слоев:
- R радиус внешней поверхности сферического сегмента;
 δ₁, δ₂ толщины основного и дополнительного слоя соответственно:
 - № скорость перемещения нагрузок по сферическому сег-MeHTY:

Н - высота сегмента.

С целью удобного расположения результатов численного счета на распечатку, а также возможности более широкого

использования результатов численного интегрирования уравнений Навье-Стокса, введем безразмерные параметры:

 $x_A = p/E_A$; $x_2 = \delta_A/R$; $x_3 = \delta_2/R$; $x_4 = v^2 g_A/E_A$; $x_5 = H/R$; $x_6 = E_2/E_A$; $x_7 = g_2/g_A$; $4 = v^2 R^{-4}(g_A/E_A)^{1/2} t'$, где t' - размерное время. Вследствие осесимметричности естественно ввести цилиндрическую систему координат $\pi' \theta z'$, от которой полезно переходить к безразмерным координатам $\pi = \pi'/R$ и z = z'/R.

Численная схема строится на базе метода свободных точек []]. Для каждого внутреннего узла разыскивается 6 соседних узлов (на эту операцию вместе с необходимыми упорядочениями этих узлов требуется очень много машинного времени). Введем дополнительно следующие безразмерные величины:

*ω*_ι, *ω*_ι - скорости перемещения узлов в радиальном и осевом направлениях соответственно;

с. - скорость распространения продольной волны;

*q*_k, *R*_k − полярные угол и радиус на плоскости осевого сечения сегмента соответственно.

Точка над величиной означает производную по времени t. Верхний индекс n обозначит порядковый номер временного слоя, а нижний индекс i (к,к+1) порядковый номер узла (сектора).

Приведем основные формулы для расчета во внутренних и осевых узлах сегмента:

$$\begin{split} \dot{u}_{i}^{n+1} &= \left[\frac{c_{i}}{4} \sum_{k=4}^{6} \left(u_{k,k+1}^{\tau} + w_{k,k+1}^{2}\right) \Delta \sin \varphi_{k,k+1} - \frac{c_{i}^{2}}{2\pi \eta_{i}} \sum_{k=4}^{6} \eta_{k,k+4}^{\tau} \Delta \varphi_{k,k+4}\right]^{n}; \\ & u_{i}^{n+1} = \left[-\frac{c_{i}}{4} \sum_{k=4}^{6} \left(u_{k,k+4}^{\tau} + w_{k,k+4}^{2}\right) \Delta \cos \varphi_{k,k+4} - \frac{c_{i}}{2\pi \eta_{i}} \sum_{k=4}^{6} \eta_{k,k+4}^{2} \Delta \varphi_{k,k+4}\right]^{n}; \\ & (I.I) \\ & -\frac{c_{i}}{2\pi \eta_{i}} \sum_{k=4}^{6} \eta_{k,k+4}^{2} \Delta \varphi_{k,k+4} - \eta_{k,k+4}^{2} \Delta \cos \varphi_{k,k+4} - \frac{c_{i}}{\eta_{i}} \sum_{k=4}^{6} \left(\eta_{k,k+4}^{\tau} \Delta \sin \varphi_{k,k+4} - \eta_{k,k+4}^{2} \Delta \cos \varphi_{k,k+4}\right) - \frac{c_{i}\eta_{i}}{2\pi \chi_{i}} \sum_{k=4}^{6} \left(u_{k,k+4}^{\tau} + w_{k,k+4}^{2}\right) \Delta \varphi_{k,k+4} - \frac{u_{i}\eta_{i}}{\eta_{i}} \right]^{n}, \end{split}$$

$$f_{\kappa,\kappa+1}^{n} = \frac{\delta f_{\kappa} \quad \delta f_{\kappa+1}}{\sin \varphi_{\kappa,\kappa+1}}; \quad f_{\kappa,\kappa+1}^{\Xi} = \frac{\delta f_{\kappa+1} \quad \delta f_{\kappa}}{\sin \varphi_{\kappa,\kappa+1}}; \quad f_{\kappa,\kappa+1}^{\Xi} = \frac{\delta f_{\kappa+1} \quad \delta f_{\kappa}}{\sin \varphi_{\kappa,\kappa+1}};$$

где

$$\delta f_{\kappa} = \frac{f_{\kappa} - f_{i}}{R_{\kappa}};$$

$$\Delta F_{K,K+1} = F_{K+1} - F_{K}; \quad R_{k} = \sqrt{(z_{k} - z_{i})^{2} + (n_{k} - n_{i})^{2}},$$

причем κ - порядковый номер узла, соседнего к λ -ому (при $\kappa = 6$ принять $\kappa + 1$ равной 1).

Далее находятся величины на следующем временном слое $t^{n+1} = t^n + \Delta t$:

 $u_i^{n+1} = u_i^n + u_i^{n+1} \Delta t$; $r_i^{n+1} = r_i^n + u_i^{n+1} \Delta t$; аналогично находятся w_i^{n+1} , η_i^{n+1} н z_i^{n+1} .

Расчет в граничных узлах связан с определенными неудобствами, вызванными односторонними аппроксимациями производных, а особенно с сильными искажениями контура. Ради краткости эти формулы приводить не будем, так как они сходны с формулами (I.I).

§ 2. Применение метода планирования расчетов

На основании результатов численного решения данной задачи могут быть получены формулы для инженерных расчетов, как правило, это полиномы второго порядка. Вычисления коэффилментов аппроксимлрующих полиномов значительно упрощаются, если использовать метод планирования многофакторных расчетов [3,4].

Идея этого метода заключается в том, что все переменные (факторы), характеризующие процесс, варьируются одновременно, в соответствии с планом многофакторного эксперимента [2] Метод этот позволяет достаточно просто определять коэффициенты аппроксисмрующих полиномов, и, так как каждый коэффициент вычисляется по результатам расчета всех вариантов,

13

предусмотренных планом, дисперсия получается минимальной [2].

Переменные варьируются на двух уровнях, причем для удобства вычислений вводятся кодовые переменные X_i , принимающие на концах интервалов варьирования значения +I и -I, т.е. принимается

$$X_i = (x_i - x_{iep}) / \Delta, \qquad (2.1)$$

где $x_{cp} = \frac{1}{2} (x_{max} + x_{min}); \Delta = \frac{1}{2} (x_{max} - x_{min}).$ Для определения свободного члена вводится фиктивная переменная $X_o = + 1$. Для примера в табл. I приводится матрица планирования для двух переменных, варьируемых на двух уровнях.

	Тас	бли	ца I
xo	xI	^x 2	У
+	+	+	уI
+	-	+	y2
+	+	-	у _З
+	-	-	y ₄

В табл. І символы "+I" и "-I" для простоты заменены знаками "+" и "-". В последнем столбце, не относящемся к матрице планирования, приводятся результаты вычислений. Если необходимо учесть члены

второго порядка, следует ввести дополнительные переменные $X_3 = X_4^2$ и $X_4 = X_2^2$. Знаки в столоцах для

произведения X₁ X₂ вычисляются путем перемножения второго и третьего столоцов. При составлении матрицы из трех переменных повторяют дважды матрицу планирования для двух переменных: один раз при X₃ = +I, второй - при X₃ = -I. Аналогично получают матрицы для четырех и большего числа переменных. Вычисление коэффициентов аппроксимирующего полинома

$$y = b_0 + b_1 X_1 + b_2 X_2 + b_{12} X_{12} + \dots$$

производится по простым формулам

$$b_{i} = \frac{1}{N} \sum_{j=1}^{N} X_{ij} y_{j} \quad (i = 0, 1, 2, ..., \kappa), \quad (2.2)$$

где к - номер последнего столбца в матрице планирования; N - число строк; j - номер строки.

Как указывалось в § I, рассматриваемый нами процесс характеризуется десятью параметраки.

Предварительные расчеты показывали, что варьирование переменных x_{c} и x_{7} в широком диапазоне их изменения практически не влияет на величину перемещений, поэтому при расчетах они принимались постоянными, равными их средним значениям: $x_{c} = 4,5$; $x_{7} = 2,0$. В табл. 2 представляется матрица

Таблица 2

Ne	xI	x2	x ₃	x4	x ₅	Ne	xI	x2	x3	^x 4	x 5
I	-	-	-	-	-	17	-	-	-	-	+
2	+	-	-	-	-	I8	+	-	-	-	+
3	-	+	-	-	-	I9	-	+	-	-	+
4	+	+	-	-	-	20	+	+	-	-	+
5	-	-	+	-	-	2I	-	-	+	-	+
6	+	-	+	-	-	22	+	-	+	-	+
7	-	+	+	-	_	23	-	+	+	-	+
8	+	+	+	-	-	24	+	+	+	-	+
9	-	+	-	+		25	-	-	-	+	+
IO	+	-	-	+	-	26	+	-	-	+	+
II	-	+	-	+	-	27	-	+	-	+	+
12	+	+	-	+	-	28	+	+	-	+	+
I3	-	-	+	+	-	29	-	-	+	+	+
14	+	-	+	+	-	30	+	-	+	+	+
15	-	+	+	+	-	3Ī	-	+	+	+	+
16	+	+	+	+	-	32	+	+	+	+	+

планирования расчетов, составленная для первых пяти переменных.

В соответствии с этим планом было произведено численное решение уравнений Навье-Стокса и определены перемещения для ряда точек двухслойного сферического сегмента. Минимальные и максимальные значения параметров, использованных при численном интегрировании, приведены в табл. З соответственно во второй и третьей строках.

<u> </u>	а	Q	л	И	Ц	а	- 3
					_		

xI	^x 2	^х з	×4	x ₅
0,5	0,3	0,02	0,25	0,6
I,0	0,4	0,05	I,0	I,0

Адиабаты Югоньо для основного и дополнительного слоя принимались следующими:

 $p/E_{1} = 0,6(\eta - 1) + 1,4(\eta - 1)^{2} + 0,3(\eta - 1)^{3};$ $p/E_{2} = (\eta - 1) + 2(\eta - 1)^{2} + 0,5(\eta - 1)^{3}.$

По формуле (2.2) были определены коэффициенты аппроксимирующих полиномов для перемещений вершинной (z_4) и внутренней (z_2) , лежащей на оси симметрии на расстоянии $x_2 + x_3$, точек при различных значениях времени t для линейных членов и попарных произведений. Их значения приведены соответственно в табл. 4 и 5.

Таблица 4

bo	b.	b2	bz	64	65	612	613	614	bis	b23	824	\$25	b34	635	\$45
28,9	10,2	-0,I	-0,4	-0,I	0,2	0,2	-0,5	-0,2	0,I	-0,6	-0,2	0,3	-0,5	0,2	0,4
84,I	23,I	-2,4	-I,8	0,8	I,9	-0,7	-2,2	-I	0,4	0,0	-0,8	0,0	-I,3	0,5	0,4
132,3	3I,5	-2,2	-2,7	-0,I	3	-0,8	-I,5	-0,3	-I,2	0,4	-0,5	0,6	-0,3	-0,8	I,2
I8I,I	44,I	-3,8	-4,2	0	6	-I,2	-I,2	2	0,5	-0,4	-0,2	-0,7	I,2	-0,I	I,8
240,9	59,3	-4,8	-4,6	I,4	II,6	I	-0,6	7,I	4,0	0,8	-I,4	0,3	-0,2	I,2	-0,I
315,4	79,3	-8,6	-9,4	7,3	18,2	3,I	-I,8	14,3	3,4	3,7	-2,I	0,9	I,5	4,8	- 0,9
	b , 28,9 84,1 132,3 181,1 240,9 315,4	b.b.28,910,284,123,1132,331,5181,144,1240,959,3315,479,3	b. b. b. 28,9 10,2 -0,1 84,1 23,1 -2,4 132,3 31,5 -2,2 181,1 44,1 -3,8 240,9 59,3 -4,8 315,4 79,3 -8,6	b _o b ₁ b ₂ b ₃ 28,9 10,2 -0,1 -0,4 84,1 23,1 -2,4 -1,8 132,3 31,5 -2,2 -2,7 181,1 44,1 -3,8 -4,2 240,9 59,3 -4,8 -4,6 315,4 79,3 -8,6 -9,4	b ₀ b ₁ b ₂ b ₃ b ₄ 28,9 10,2 -0,1 -0,4 -0,1 84,1 23,1 -2,4 -1,8 0,8 132,3 31,5 -2,2 -2,7 -0,1 181,1 44,1 -3,8 -4,2 0 240,9 59,3 -4,8 -4,6 1,4 315,4 79,3 -8,6 -9,4 7,3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b_o b_1 b_2 b_3 b_4 b_5 b_{A2} 28,910,2-0,1-0,4-0,10,20,284,123,1-2,4-1,80,81,9-0,7132,331,5-2,2-2,7-0,13-0,8181,144,1-3,8-4,206-1,2240,959,3-4,8-4,61,411,61315,479,3-8,6-9,47,318,23,1	b_o b_1 b_2 b_3 b_4 b_5 b_{A2} b_{A3} 28,910,2-0,1-0,4-0,10,20,2-0,584,123,1-2,4-1,80,81,9-0,7-2,2132,331,5-2,2-2,7-0,13-0,8-1,5181,144,1-3,8-4,206-1,2-1,2240,959,3-4,8-4,61,411,61-0,6315,479,3-8,6-9,47,318,23,1-1,8	b_o b_1 b_2 b_3 b_4 b_5 b_{A2} b_{A3} b_{44} 28,910,2-0,1-0,4-0,10,20,2-0,5-0,284,123,1-2,4-1,80,81,9-0,7-2,2-1132,331,5-2,2-2,7-0,13-0,8-1,5-0,3181,144,1-3,8-4,206-1,2-1,22240,959,3-4,8-4,61,411,61-0,67,1315,479,3-8,6-9,47,318,23,1-1,814,3	b_o b_1 b_2 b_3 b_4 b_5 b_{A2} b_{A3} b_{44} b_{15} 28,910,2-0,1-0,4-0,10,20,2-0,5-0,20,184,123,1-2,4-1,80,81,9-0,7-2,2-10,4132,331,5-2,2-2,7-0,13-0,8-1,5-0,3-1,2181,144,1-3,8-4,206-1,2-1,220,5240,959,3-4,8-4,61,411,61-0,67,14,0315,479,3-8,6-9,47,318,23,1-1,814,33,4	b_o b_4 b_2 b_3 b_4 b_5 b_{A2} b_{A3} b_{44} b_{15} b_{23} 28,910,2-0,1-0,4-0,10,20,2-0,5-0,20,1-0,684,123,1-2,4-1,80,81,9-0,7-2,2-10,40,0132,331,5-2,2-2,7-0,13-0,8-1,5-0,3-1,20,4181,144,1-3,8-4,206-1,2-1,220,5-0,4240,959,3-4,8-4,61,411,61-0,67,14,00,8315,479,3-8,6-9,47,318,23,1-1,814,33,43,7	b_o b_1 b_2 b_3 b_4 b_5 b_{A2} b_{A3} b_{44} b_{15} b_{23} b_{24} 28,910,2-0,1-0,4-0,10,20,2-0,5-0,20,1-0,6-0,284,123,1-2,4-1,80,81,9-0,7-2,2-10,40,0-0,8132,331,5-2,2-2,7-0,13-0,8-1,5-0,3-1,20,4-0,5181,144,1-3,8-4,206-1,2-1,220,5-0,4-0,2240,959,3-4,8-4,61,411,61-0,67,14,00,8-1,4315,479,3-8,6-9,47,318,23,1-1,814,33,43,7-2,1	b_o b_1 b_2 b_3 b_4 b_5 b_{A2} b_{A3} b_{44} b_{15} b_{23} b_{24} b_{25} 28,910,2-0,1-0,4-0,10,20,2-0,5-0,20,1-0,6-0,20,384,123,1-2,4-1,80,81,9-0,7-2,2-10,40,0-0,80,0132,331,5-2,2-2,7-0,13-0,8-1,5-0,3-1,20,4-0,50,6181,144,1-3,8-4,206-1,2-1,220,5-0,4-0,2-0,7240,959,3-4,8-4,61,411,61-0,67,14,00,8-1,40,3315,479,3-8,6-9,47,318,23,1-1,814,33,43,7-2,10,9	b_o b_1 b_2 b_3 b_4 b_5 b_{A2} b_{A3} b_{44} b_{15} b_{23} b_{24} b_{25} b_{34} 28,910,2-0,1-0,4-0,10,20,2-0,5-0,20,1-0,6-0,20,3-0,584,123,1-2,4-1,80,81,9-0,7-2,2-10,40,0-0,80,0-1,3132,331,5-2,2-2,7-0,13-0,8-1,5-0,3-1,20,4-0,50,6-0,3181,144,1-3,8-4,206-1,2-1,220,5-0,4-0,2-0,71,2240,959,3-4,8-4,61,411,61-0,67,14,00,8-1,40,3-0,2315,479,3-8,6-9,47,318,23,1-1,814,33,43,7-2,10,91,5	b_{o} b_{1} b_{2} b_{3} b_{4} b_{5} b_{A2} b_{A3} b_{44} b_{15} b_{23} b_{24} b_{25} b_{34} b_{35} 28,910,2-0,1-0,4-0,10,20,2-0,5-0,20,1-0,6-0,20,3-0,50,284,123,1-2,4-1,80,81,9-0,7-2,2-10,40,0-0,80,0-1,30,5132,331,5-2,2-2,7-0,13-0,8-1,5-0,3-1,20,4-0,50,6-0,3-0,8181,144,1-3,8-4,206-1,2-1,220,5-0,4-0,2-0,71,2-0,1240,959,3-4,8-4,61,411,61-0,67,14,00,8-1,40,3-0,21,2315,479,3-8,6-9,47,318,23,1-1,814,33,43,7-2,10,91,54,8

Таблица 5

•

- 35 - 45
0,2 0,0
0,9 0,0
0,I 3,2
-4,2 4,3

84

По аппроксимирующим формулам были произведены расчеты всех 32 вариантов, представленных в матрице планирования. Если даже ограничиться линейными членами, то погрешность, как правило, не превышала IO - I5 %.

В табл. 6 для ряда вариантов приведены результаты численного интегрирования (первые строки) и результаты расчета по аппроксимирующим формулам (вторые строки). На третьих строках приведены данные с учетом только линейных членов.

NIO	- 403			٦	5		
IN-	2×10	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,6				
	Z,	20	60	I00	I 3 6	182	230
		19	58	96	I38	179	227
3		19	58	98	I3I	I68	211
	02.			IO	55	I28	217
	4			8	59	133	229
				8	52	127	213
	Z,	42	I0 7	I59	217	29 0	400
		4 0	102	I59	218	293	398
12		40	II6	I6I	220	290	385
	Δz2			25	III	236	396
				26	III	238	402
				28	II9	25I	412
	ZA	19	65	I06	I45	I9 5	260
		I9	68	IOI	I4I	196	259
21		I9	63	103	I43	192	246
	DZ2			24	72	162	275
				22	73	I 60	264
				26	82	173	274
	Z,	39	102	I58	234	325	435
		39	I09	I63	230	324	435
30		39	110	I66	231	313	419
	Δz2			49	I6 0	309	496
				51	I56	302	485
				47	149	297	473

Таблица б

Сопоставление результатов, полученных по упрощенной математической модели с результатами численного интегрирования свидетельствует о целесообразности применения метода планирования многофакторных расчетов для получения упрощенных математических моделей.

Литература

- І. Дьяченко В.Ф., Метод свободных точек для расчета гидродинамических задач. Докторская диссертация. Институт прикладной математики АН СССР. Москва, 1970.
- 2. Налимов В.В., Статистические методы планирования экстремальных экспериментов. Москва, 1965.
- 3. Сб. трудов "Проблемы планирования эксперимента". Москва, 1969.
- Филаретов Г.Ф., О так называемом планировании расчетов. Тезиси докладов IУ Всесоюзной конференции по планированию и автоматизации эксперимента в научных исследованиях. Москва, 1973.

The investigation of displacements of elements of cupola under dynamical loading of high intensity

L. Rosomakho, G.Rummel, E.Saks, R.Sverdlova

Summary

Series of problems for finding the displacements of the elements of the spherical segment, made from two different materials, and that is under dynamic loading, have been solved. Navier-Stokes' equations for viscous compressable medium and Hugoniot's adiabates have been used to describe the process of deformation. The method of free points by Dyachenko [1] has been employed to get a numerical algorithm. For the purposes of the practical realization of the algorithm simplified mathematical models have been presented.

РЕШЕНИЕ ЗАДАЧИ ПРОДОЛЬНО-ПОПЕРЕЧНОГО ИЗГИБА БАЛОК ЗА ПРЕДЕЛОМ УПРУГОСТИ МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ

Г.Арясов, Л.Зубко, А.Снитко Таллинский политехнический институт

Проблеме расчёта балок на продольно-поперечный изгиб посвящено большое число исследований различных авторов [1, 2,4]. Однако некоторые важные аспекты этой проблемы ещё слабо освещены, в частности, учёт сложной геометрии сечений и нелинейного физического закона деформирования материала. Применение с этой целью метода конечных элементов позволяет удовлетворить запросы практики с достаточной степенью надёжности.

Рассмотрим неразрезную балку (рис.1), лежащую на подвижных шарнирных упругих опорах. Крайние опоры могут быть шарнирными (подвижными и неподвижными) и защемляющими. Изгибная жёсткость балки Е I переменна по длине. Балка нагружена плоской системой сил. Поперечные сечения имеют произвольную форму, но симметричную относительно плоскости нагрузки (рис. 2). Материал конструкции физически нелинейный, обладает анизотропией механических свойств при растяжении и сжатии. Связь между компонентами деформаций ε_i и напряжений σ_i описывается диаграммой кусочно-линейного вида (рис. 3).

Разрешающее дифференциальное уравнение задачи принимается в виде

$$E(x)I(x)y'' = M + Ny \qquad (I)$$

Знак деформационного момента N₃ выбирается в зависимости от знака нормального усилия N.

где

x₁ < x₂ < x₃ < ... < x_m - заданные значения координат опорных узлов;

{[] - матрица-столбец граничных условий;

т - количество опорных узлов.

Отыскивается функция {у}, удовлетворяющая уравнениям (I.2). Решение строится на основе вариационного уравнения Лагранжа. Основные неизвестные - прогибы, углы поворота и горизонтальные смещения. Положительные направления узловых неизвестных и порядок их нумерации соответствуют приведённым на рис. І.

Хорошие практические результаты в нелинейных залачах даёт аппроксимация узловых неизвестных в пределах конечного элемента полиномами Эрмита [I] :

$$w(x) = \sum_{j=1}^{4} g_j \partial_j(x), \qquad (3)$$

 $u(x) = g_5 \mathcal{F}_5(x) + g_6 \mathcal{F}_6(x),$ где {Э_j} = {Э₁, Э₂,..., Э₆} - полиномы Эрмита. Из выражения для потенциальной энергии

$$\Pi = \frac{1}{2} E I \int_{0}^{1} [w''(x)]^{2} dx + \frac{1}{2} E F \int_{0}^{1} [u'(x)]^{2} dx \qquad (4)$$

в результате варьирования по вектору узловых неизвестных [9]

$$\frac{\partial \Pi}{\partial \{q\}} = 0 \tag{5}$$

и выполнения процедуры интегрирования в пределах конечного элемента можно прийти к матричному уравнению

$$[K]{g} = {R},$$
 (6)

где [K] - матрица жёсткости конечного элемента,

{R} - вектор-столбец узловых усилий,

{g} – вектор-столбец узловых перемещений. Наличие упругих опор с жёсткостью С; требует введения дополнительной матрицы [С] в уравнение (6)

$$[K]{g} = {R} + [C]{g}, \qquad (7)$$

где [С] - диагональная матрица жёсткостей спорных узлов. Уравнение (7) удобнее записать в следующем виде:

$$([K]-[C]){g} = {R}.$$
 (8)

Матрица [К], приведённая в монографии [2], получена с использованием принципа независимости действия сил. KOторый при расчёте по деформированной схеме неприменим.

Продольное усилие N в балке определяем численным интегрированием выражения

$$N = \frac{EF}{2\ell} \int_{0}^{\ell} (u')^2 dx$$
⁽⁹⁾

с последующим уточнением по рекуррентной зависимости

$$\{M\}_{i+1} = \{M\}_i - N_i \{y\}, \qquad (10)$$

где {M}_i, {M}_{i+4} - векторы моментов в узлах конечных элемен-тов, {y} - функция прогибов.

В общем случае система уравнений (7) является нелинейной. Её решение осуществляется на ЭВМ путём линеаризации в соответствии с рекуррентной формулой

$$[K^{*}(g^{S-1})]{g}^{S} = {R}, S = 1, 2, ..., n, (II)$$

где 5 - номер этапа приближения.

n - требуемое количество итераций по методу переменных параметров упругости, [K*(g⁵⁻¹)]- линеаризованная матрица жёсткости по парамет-

рам предыдущего шага итерации.

Процесс последовательных решений уравнений (II) и уточнения значения матрицы жёсткости [К*] на каждом этапе прополжается до тех пор. пока разница между результатами не станет достаточно малой.

Величина n определяется из условия

$$\frac{g_{3}^{5} - \{q\}^{5-1}}{\{q\}^{5-1}} \leq \{\Delta\}, \qquad (12)$$

где { Δ } - матрица-столбец допусков на контроль за точностью.

На каждом шаге итерационного процесса метода последовательных приближений уточняются геометрические характеристики сечений из условий равновесия, записанных для і -гс узла стержня:

$$\int \sigma_j dF_j = N_i, \quad v_i^{"} \int \sigma_j (y_j - \eta_j) dF_j = M_i + N_i y_i^{c}. \quad (I3)$$

$$F_j \qquad F_j$$

Решение системы интегральных уравнений (13) нетрудно осуществить, используя формулы Ньютона-Котеса. Имея в виду зависимости

$$\varepsilon_{j} = v_{j}''(\mathbf{x})(y_{j} - \eta_{j}) - \varepsilon_{i}^{\circ}, \qquad (14)$$
$$\sigma_{j} = E_{j}^{\circ} \varepsilon_{j},$$

где 🕰 - продольная деформация нейтрального волокна конечного элемента в с-ом узле;

$$\begin{split} & F_{d}^{c} - \operatorname{cekymun modyn}_{b} \operatorname{ynpyroctu}_{j} - \operatorname{om snementaphom monocku}_{cevenus crepxhs,} \\ & \operatorname{nocne}_{psda npeodpasoBahum moxed nonyvurb ypaBhehus othocu$$
tensho benuvuh kpuBushu v'' i-ro ysaa $& (w'')^{2}(A_{A}A_{3}-A_{2}^{2}) + w''(N_{i}A_{2}-A_{4}M_{i}) - (\varepsilon_{i}^{c}\varepsilon_{i}^{c}A_{4}^{2} + N_{i}A_{4}\varepsilon_{i}^{c}) = 0, (15) \\ & \operatorname{rge}_{A_{4}} = \frac{\Delta u}{3} \cdot (\{E^{c}\}_{4}\{B\}_{4} + \{E^{c}\}_{k+4}\{B\}_{k+4} + A' + A''), \\ & A_{2} = \frac{\Delta u}{3} \cdot (\{E^{c}\}_{4}\{B\}_{4}\{Y\}_{4} + \{E^{c}\}_{k+4}\{B\}_{k+4}\{Y\}_{k+4} + B' + B''), \\ & A_{3} = \frac{\Delta u}{3} \cdot (\{E^{c}\}_{4}\{B\}_{4}\{Y\}_{4} + \{E^{c}\}_{k+4}\{B\}_{k+4}\{Y\}_{k+4} + B' + B''), \\ & A_{3} = \frac{\Delta u}{3} \cdot (\{E^{c}\}_{4}\{B\}_{4}\{Y\}_{4}\}_{4}), \quad A'' = \sum_{t=2}^{L} (2\{E^{c}\}_{t+4}\{B\}_{t+4}), \\ & A'_{2} = \sum_{t=2}^{K,2} (A_{1}\{Y\}_{t}), \quad B'' = \sum_{t=2}^{K,2} (A_{t+4}\{Y\}_{t+4}), \\ & B'_{2} = \sum_{t=2}^{K,2} (A_{1}'\{Y\}_{t}), \quad C'' = \sum_{t=2}^{K,2} (A_{t+4}'\{Y\}_{t+4}\{Y\}_{t+4}), \\ & C' = \sum_{t=2}^{K,2} (A_{1}'\{Y\}_{t}), \quad C'' = \sum_{t=2}^{K,2} (A_{1}''\{Y\}_{t+4}\{Y\}_{t+4}), \end{split}$

 количество элементарных полосок, на которое дробится с-ое сечение стержня;

∆у - шаг интегрирования по высоте сечения.

Здесь суммирование по индексу t ведётся с шагом 2. В результате решения уравнения (15) определяется величина v.", после чего уточняется положение нейтральной оси η ;

$$\eta_i = \frac{\varepsilon_i^{\circ} A_A + \omega_i^{\prime\prime} A_2 - N_i}{\sigma_i^{\prime\prime} A_4} .$$
 (16)

Компоненти диаграммы $\sigma - \epsilon$ в общем случае задаются таблицей значений. Практика показывает, что вполне достаточно задать IO-I2 точек на диаграмме. Регулярность рассматриваемой области упрощает процедуру описания топологии и облегчает процесс задания исходной информации по постановке задачи.

Учитывая соотношение между числом степеней свободы узла n_{43} и шириной матрицы жёсткости h_{3} ,

9I

hz= 2. nys

и определяя порядок разрешающей системы уравнений

$$max = (h_{\lambda} + 1) \cdot n_{y3},$$

легко автоматизировать весь процесс формирования системы (II), пользуясь рекомендациями работн [3].

Сходимость внчислительного процесса и допустимая величина погрешности счёта обеспечивается рядом профилактических мер. Хорошие результаты получаются при использовании процедуры численного дифференцирования по пятиузловой схеме Лагранжа с последующим сглаживанием полиномом третьей степени. На рис.4 приведены результаты решения тестовой задачи с оценкой точности в зависимости от используемых схем дифференцирования и сглаживания и от количества конечных элементов системы.

Таким образом, для произвольной геометрической формы сечений балки и исходной диаграммы напряжений задача легко разрешима с помощью ЭВМ, поэтому данный алгоритм может быть рекомендован к использованию в автоматизированных системах.

Литература

- I. Безухов Н.И., Лужин О.В., Приложение методов теории упругости и пластичности к решению инженерных задач. Висшая школа, М., 1974.
- 2. Постнов В.А., Хархурим И.Я., Метод конечных элементов в расчетах судовых конструкций. Судостроение, Л., 1974.
- Снитко А.Н., Высоцкий В.И., Зубко Л.Б., К вопросу описания топологии заданной области в конечно-алементарной процедуре. Межвузовский тематический сборник трудов "Исследования по расчету строительных конструкций", ЛИСИ, Л., 1978.
- 4. Тимошенко С.П., Сопротивление материалов. Наука, М., 1965.

The solution of problem of longitudinal-transverse bending of beams beyond the elastic limit by the finite element method

G.Aryasov, L.Zubko and A.Snitko

Summary

This paper presents an investigation of longitudinaltransverse bending of the elastic-plastic beams with complex geometry of the cross-section. The material of structure is assumed to be physical non-linear and it possesses anisotropic mechanical properties in compression and tension. The solution of the boundary-value problem of bending is carried out by the finite element method. The numerical example is given.

О ВЫВОДЕ УРАВНЕНИЙ КОЛЕБАНИЯ СТРУНЫ И МЕМБРАНЫ

Х. Рельвик

Таллинский политехнический институт

В статье расширяют область применения уравнения возможной мощности (УВМ) [1,2] на простейшие движения упругих тел – для составления уравнений колебания струны и мембраны.

рим элемент струны AB (фиг. I) длиной ds \approx dx и массой dm. На этот элемент действуют силы натяжения T_0 и T_0' ($T_0 = T_0' =$ = const), а также внешняя сила $\vec{F} =$ = $f' dx \vec{u}$. УВМ элемента будет dm $\vec{a}_c \cdot \{\vec{w}_c\} =$ = $\vec{F} \cdot \{\vec{w}_c\} + \vec{T}_0' \{\vec{w}_B\}$.

Ho $\{\vec{v}_{A}\} = \{\vec{v}_{c}\} + \{\vec{v}_{Ac}\}$ и $\{\vec{v}_{B}\} = \{\vec{v}_{c}\} + \{\vec{v}_{Bc}\}$ и, следовательно, $dm \vec{a}_{c} \cdot \{\vec{v}_{c}\} = (\vec{F} + \vec{\tau}_{c} + \vec{\tau}_{c}') \cdot \{\vec{v}_{c}\} + \vec{\tau}_{c} \cdot \{\vec{v}_{Ac}\} + \vec{\tau}_{c}' \cdot \{\vec{v}_{Bc}\},$ где $\{\vec{v}_{c}\}, \{\vec{v}_{Ac}\}$ и $\{\vec{v}_{Bc}\}$ друг от друга не зависят, и поэтому

$$dm\bar{a}_{c} \cdot \{ \vec{v}_{c} \} = (F + \vec{T}_{o} + \vec{T}_{o}') \cdot \{ \vec{v}_{c} \}.$$

Считая перемещение элемента АВ малым и возможным только в направлении оси *с*, получим

$$\vec{v}_{c} = \frac{\partial u}{\partial t}\vec{u}, \quad \vec{a}_{c} = \frac{\partial^{2}u}{\partial t^{2}}\vec{u}, \quad \{\vec{v}_{c}\} = \{\frac{\partial u}{\partial t}\}\vec{u}, \\ dm \frac{\partial^{2}u}{\partial t^{2}}\{\frac{\partial u}{\partial t}\} = (\vec{F} + \vec{T}_{o} + \vec{T}_{o}') \cdot \{\frac{\partial u}{\partial t}\}\vec{u}$$

или

$$\dim \frac{\partial^2 u}{\partial t^2} = F - T_0 \sin \alpha + T_0 \sin \alpha_1.$$

Пусть струна натянута с постоянной силой То. Рассмот-

Учитывая теперь, что $dm \approx \lambda dx$ (λ – линейная плотность струны), ($\partial u\lambda$ ($\partial u\lambda$

$$\sin\alpha = \left(\frac{\partial u}{\partial x}\right)_{A}, \sin\alpha_{A} = \left(\frac{\partial u}{\partial x}\right)_{B} \qquad \frac{\sin\alpha_{A} - \sin\alpha}{dx} = \frac{\left(\frac{\partial u}{\partial x}\right)_{B}}{dx} = \frac{\partial^{2} u}{\partial x^{2}}, \quad \text{Halligen} \quad \frac{\partial^{2} u}{\partial t^{2}} = \frac{t'}{\lambda} + \frac{T_{o}}{\lambda} \frac{\partial^{2} u}{\partial x^{2}}.$$

Обозначая $t'/\lambda = t$ и $T_o/\lambda = \alpha^2$, перепишем полученное уравнение следующим образом:

$$\frac{\partial^2 u}{\partial t^2} = \alpha^2 \frac{\partial^2 u}{\partial x^2} + f.$$

Это и есть уравнение колебания струны [3].

§ 2. Мембрана

Пусть мембрана находится в напряженном состоянии. Тог-

да на ее прямоугольный элемент (фиг. 2) действурт силы натяжения T_0 , T'_0 , S_0 , S'_0 ($T_0 = T'_0 =$ = const и $S_0 = S'_0 =$ = const) и внешняя нагрузка F = f' dx dy u. УВМ [I,2] элемента мембраны будет

Фиг.2.

 $dm\vec{a}_{c} \{\vec{v}_{e}\} = \vec{F} \cdot \{\vec{v}_{c}\} + \vec{T}_{o} \cdot (\{\vec{v}_{c}\} + \{\vec{v}_{Bc}\}) + \vec{T}_{o} \cdot (\{\vec{v}_{c}\} + \{\vec{v}_{Bc}\}) + \vec{S}_{o} \cdot (\{\vec{v}_{c}\} + \{\vec{v}_{Bc}\}) + \vec{S}_{o} \cdot (\{\vec{v}_{c}\} + \{\vec{v}_{Ec}\}),$

откуда по независимости и произвольности величин в фигурных скооках (dm $\approx \sigma dxdy$) $\sigma dxdy \frac{\partial^2 u}{\partial t^2} \left\{ \frac{\partial u}{\partial t} \right\} = (f' dxdy + T_o' sina_A - T_o sina + S_o' sin\beta_A - S_o sin\beta \left\{ \frac{\partial u}{\partial t} \right\}$) или $\frac{\partial^2 u}{\partial t^2} = \frac{f'}{\sigma} + \frac{T_o' sina_A - T_o sina}{\sigma dx dy} + \frac{S_o' sin\beta_A - S_o sin\beta}{\sigma dx dy}$. Если элемент мембраны находится под одинаковым напряжением r со всех сторон (в более общем случае напряжения на гранях не равны), то $T_0 = T'_0 = pdy$, $S_0 = S'_c = pdx$, и уравнение движения примет вид:

$$\frac{\partial^{2} u}{\partial t^{2}} = \frac{f'}{\sigma} + \frac{p}{\sigma} \left(\frac{\sin \alpha_{h} - \sin \alpha}{dx} + \frac{\sin \beta_{h} - \sin \beta}{dy} \right),$$

$$\frac{\partial^{2} u}{\partial t^{2}} = \frac{f'}{\sigma} + \frac{p}{\sigma} \left(\frac{\sin \alpha_{h} - \sin \alpha}{dx} + \frac{\sin \beta_{h} - \sin \beta}{dy} \right),$$

$$\frac{\partial^{2} u}{\partial t^{2}} = \frac{f'}{\sigma} + \frac{p}{\sigma} \left(\frac{\partial u}{\partial x} \right)_{h}}{dx} = \frac{\partial^{2} u}{\partial x^{2}},$$

$$\frac{\sin \alpha_{h} - \sin \alpha}{dx} = \frac{\left(\frac{\partial u}{\partial y} \right)_{h}}{dx} - \left(\frac{\partial u}{\partial y} \right)_{h}}{dx} = \frac{\partial^{2} u}{\partial x^{2}},$$

$$\frac{\sin \beta_{h} - \sin \beta}{dy} = \frac{\left(\frac{\partial u}{\partial y} \right)_{h}}{dy} = \frac{\partial^{2} u}{\partial y^{2}},$$

$$\frac{\partial^{2} u}{\partial y^{2}} = \frac{\partial^{2} u}{\partial y^{2}},$$

$$\frac{\partial^{2} u}{\partial y^{2}} = \frac{\partial^{2} u}{\partial y^{2}},$$

получим уравнение колебания мембраны [3]:

$$\frac{\partial^2 u}{\partial t^2} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + \frac{1}{2},$$

Литература

- I. Гольст Г.К., Рельвик Х.А., Сильде О.М., Основные вопросы аналитической механики. Уравнение возможной мощности. "Валгус", Таллин, 1979.
- Сольст Г.К., Рельвик Х.А., Сильде О.М., Уравнение возможной мощности в теоретической механике. ТПИ, Таллин, 1978.
- Смирнов В.И., Курс внешей математики т. II. Гос. изд. тех.-теор. лит., М., 1954.

About the derivation of the equations of vibration of string and membrane

H.Relvik

Summary

In this paper the domain of the possible power equation [1, 2] is extended onto the simplest motions of elastic bodies. By means of this method the well-known equations of vibration of string and membrane are obtained.

The exactness of deducing is in accordance with the traditional method used in [3].

ЗАДАЧА КАЧЕНИЯ ТЕЛА ПРОИЗВОЛЬНОЙ ФОРМЫ С ГЛАДКОЙ ВЫПУКЛОЙ ПОВЕРХНОСТЬЮ НА ПЛОСКОСТИ

А.Хайтин

Таллинский политехнический институт

В статье рассматривается задача качения без проскальзывания тела произвольной формы с гладкой выпуклой поверхностью на плоскости. В основу решения принят метод уравнения возможной мощности (УВМ). Полученные результаты апробируются в задаче движения шара по плоскости.

§ I. Вывод формул

Введем неизменно связанную с телом декартову систему координат $C \times y_2$, где C – центр масс тела, а координатные оси – главные центральные оси инерции тела.

Поверхность задана с помощью двух параметров и и и :

$$x = x(u, v); y = y(u, v); z = z(u, v).$$
 (I)

Радиус-вектор точки поверхности $\vec{A} = x\vec{i}+y\vec{j}+\vec{z}\vec{k}$ здесь будет рассматриваться приведённым в точку A, являющейся переменной точкой поверхности, с которой поверхность в данный момент касается неподвижной плоскости (см. рис. I). Дифференциал радиус-вектора будет:

$$d\tau = t du + v dv, \qquad (2)$$

где

$$\vec{u} = \frac{\partial \vec{r}}{\partial u} , \quad \vec{v} = \frac{\partial \vec{v}}{\partial v} . \tag{3}$$

Векторы и и и находятся в касательной плоскости, т.е. в плоскости п, и являются базисными векторами поверхности.

$$\vec{u}' = \vec{u} + \frac{\partial \vec{u}}{\partial u} \partial u + \frac{\partial \vec{r}}{\partial u} \partial v, \qquad (4)$$

$$\vec{r}' = \vec{v} + \frac{\partial \vec{u}}{\partial v} \partial u + \frac{\partial \vec{v}}{\partial v} \partial v, \qquad (5)$$

где учтены (~/ .. (J).

Рис. 2

Обозначим вектор мгновенной угловой скорости тела

$$\vec{\omega} = \omega_{\mathbf{x}}\vec{\mathbf{i}} + \omega_{\mathbf{y}}\vec{\mathbf{j}} + \omega_{\mathbf{z}}\vec{\mathbf{k}}.$$
 (6)

За время dt вектор й' перейдёт в

$$\vec{u}'' = \vec{u}' + \vec{\omega} \times \vec{u} dt, \qquad (7)$$

где учтено (4) и отброшены члены бесконечно малые высшего порядка по сравнению с остальными.

Аналогично

$$\vec{\sigma}'' = \vec{\kappa}' + \vec{\omega} \times \vec{\kappa} \, dt \,. \tag{8}$$

Теперь необходимо определить dt'так, чтобы векторы d' и d' оказались в плоскости d, для этого

$$\vec{u}'' \cdot (\vec{u} \star \vec{r}) = 0, \qquad (9)$$

$$\vec{x}''(\vec{u} \times \vec{x}) = 0. \tag{I0}$$

Подставляя в (9) и (IO) выражения (3), (7) и (8), где учитываются (4), (5), (6), и выразив все векторы через орты \vec{c} , \vec{j} , $\vec{\kappa}$, после упрощений соответственно получим:

$$BD + GL + NM = 0, \qquad (II)$$

$$BK + GJ + NT = 0, \qquad (12)$$

где введены следующие обозначения:

$$B = \frac{\partial y}{\partial u} \frac{\partial z}{\partial v} - \frac{\partial z}{\partial u} \frac{\partial y}{\partial v};$$

$$D = \frac{\partial^2 x}{\partial u^2} du + \frac{\partial^2 x}{\partial v \partial u} dv + (\omega_y \frac{\partial z}{\partial u} - \omega_z \frac{\partial y}{\partial u}) dt;$$

$$K = \frac{\partial^2 x}{\partial u \partial v} du + \frac{\partial^2 x}{\partial v^2} dv + (\omega_y \frac{\partial z}{\partial v} - \omega_z \frac{\partial y}{\partial v}) dt;$$

$$\mu u \kappa n u e c k d n e pectaho B k d x, y, z nony value c B b p a x e h u s
G u N u s B, L u M u s D, J u T u s K.$$

Выражая из (II) и (II2) производные $\frac{\partial u}{\partial t}$, $\frac{\partial v}{\partial t}$ и подставляя их в (2), в котором $d\vec{r} = d\vec{r}'$, найдём скорость

$$\vec{v}_{\rm g} = \frac{d\vec{t}'}{dt} = \vec{u}\frac{du}{dt} + \vec{x}\frac{dv}{dt}.$$
 (13)

При составлении уравнений движения тела можно использовать разные формулы для $\{ \stackrel{+}{\top} \}$ из [I]. Например, (3.65) на стр.77, в которой в данном случае $\{ \stackrel{+}{v_A} \} = 0$, имеет вид:

$$\{\dot{\tau}\} = [\vec{L}_c + M(\vec{\tau}_c \times \vec{a}_c)] \cdot \{\vec{\omega}\}, \qquad (14)$$

куда надо подставить че=-к,

$$\vec{a}_{c} = \vec{x} \times \vec{\omega} + \vec{\omega} \times (\vec{v}_{c} - \vec{v}_{a}), \qquad (15)$$

где учтено

N

$$\vec{n} = \vec{v_B} - \vec{v_c}$$
, cm. [I] cTp.74. (I7)

В итоге из (I4) с учётом правой части $\{N\}$ получим три уравнения, содержащие линейно $\dot{\omega}_x$, $\dot{\omega}_y$, $\dot{\omega}_z$ и аналогично (II), (I2) с \dot{u} и \dot{v} .

Полученные результаты апробируем на примере.

§ 2. Пример

Каченце без проскальзывания однородного шара радиуса n = I и массой М по горизонтальной плоскости. Активной силой является только сила тяжести. Для поверхности шара имеем

x = соби собя, y = соби sin v, z = sin и. (18) Выполнив необходимые вычисления, из (11) и (12) найдём:

$$\dot{u} = -\omega_x \sin nr + \omega_y \cos nr, \qquad (19)$$

$$\dot{\sigma} = \omega_x \tan \cos v + \omega_y \tan v - \omega_z$$
.

$$\vec{n}_{B} = (-\omega_{x}\sin\omega + \omega_{z}\cos\omega\sin\nu)\vec{t} + (\omega_{x}\sin\omega - (20))$$
$$= \omega_{z}\cos\omega\cos\nu)\vec{t} + (-\omega_{x}\cos\omega\nu)\vec{t} + (\omega_{x}\sin\omega - (20))$$

 $-\omega_{x}$ сози созг/, другой стороны,

 $\vec{x}_c = \vec{x} \times \vec{\omega} = (\omega_z y - \omega_z z)\vec{i} + (\omega_z z - \omega_z x)\vec{j} + (\omega_y x - \omega_z y)\vec{k}$. (21) Подставив в (21) выражения (18) и сранив с (20), увидим, что $\vec{x}_c = \vec{x}_B$, и, следовательно, из (17) имеем $\vec{k} = 0$. Теперь из (15) получим:

где
$$\vec{\omega} = \vec{\omega}_x \vec{i} + \vec{\omega}_y \vec{j} + \vec{\omega}_z \vec{k}$$
.

Подставим в (I4) выражение (22) и $L_c = J\omega$, где J - момент инерции шара относительно диаметра. После упрощений и скалярных перемножений получим:

$$\{\dot{\tau}\} = (J\dot{\omega}_{x} + M\pi^{2}\dot{\omega}_{x} - M\kappa x)\{\omega_{x}\} + (J\dot{\omega}_{y} + M\pi^{2}\dot{\omega}_{y} - M\kappa^{2})\{\omega_{y}\} + (J\dot{\omega}_{z} + M\pi^{2}\dot{\omega}_{z} - M\kappa^{2})\{\omega_{z}\},$$

$$(23)$$

$$\text{ THe } \kappa = (\chi\dot{\omega}_{x} + \chi\dot{\omega}_{y} + \Xi\dot{\omega}_{z}).$$

Учитывая, что возможная мощность действующих сил равна нулю, из (23) получим уравнения движения шара:

$$(J + M\pi^2) \dot{\omega}_x - M\kappa x = 0,$$
 (24)

$$(J + M\pi^2)\dot{\omega}_y - M\kappa_y = 0,$$
 (25)

$$(J + Mn^2)\dot{\omega}_{z} - M\kappa_{z} = 0.$$
 (26)

Из комбинации уравнений (24) с (25), (25) с (26) и (24) с (26) получим соответственно:

Уравнения (19) принимают вид:

$$\dot{u} = -c_1 \sin v + c_2 \cos \tau,$$

$$\dot{v} = c_2 tgu \cos v + c_2 tgu \sin v - c_3$$
(27)

Частные случаи:

I. Угловые скорости $c_1 = c_2 = 0$, а $c_3 = \omega_2$, тогда из (27) $\dot{u} = 0$ и u = const; $\dot{v} = -c_3$, $v = -c_3 t + c_{30}$. Отсюда следует, что линия касания на шаре будет параллель $u = -\varphi$ (см. рис.2). На плоскости следом касания шара будет прямая линия, так как $\vec{v}_c = \text{const}$.

2. Угловне скорости $c_2 = c_3 = 0$, а $c_1 = \omega_x$, тогда из (27) получим дифференциальные уравнения, после решения которых придём к такому же выводу относительно движения шара, что и в I-ом случае.

Литература

I. Г.Гольст, Х.Рельвик, О.Сильде, Основные вопросы аналитической механики. Таллин, 1979.

The problem of body rolling on a convex smooth surface of a plane

A. Haitin

Summary

In the paper the problem of body rolling on a convex smooth surface of a plane is discussed. The method of possible power equation is used to resolve the problem. The result obtained was applied in the problem of sphere rolling on a plane.

СОДЕРЖАНИЕ

i

Н.Леллеп, К.Соонетс, К шестидесятилетию профессора Юло Лепика	3
Ю.Лепик, М. Юст, Автоматизированный расчет динами- ческого изгиба жестко-пластических балок ступен- чато-постоянной высоти	12
К. Соонетс, Оптимизация формы импульсивно нагружен- ной двухступенчатой жестко заделанной балки	24
Э.Сакков, Г.Славин, Оптимизация жестко-пластических балок ступенчато-переменной толщины под действием динамических нагрузок	34
Н.Леллеп, Об условиях оптимальности расположения дополнительной опоры	41
Г.Оленев, Оптимальное расположение опор к упругой балке в случае импульсного нагружения	51
Ю.Энгельбрехт, 0 дисперсии в двумерных волновых процессах	56
 К.Кенк, К теории знакопеременного нагружения А.Ряни, О применении принципа наследственности при описании изменения вертикального осевого усилия конического индентора в структурированной 	63
дисперсной среде	71
высоких динамических нагрузок	79
дольно-поперечного изгиба балок за пределом упругости методом конечных элементов	87
и мембраны	95
формы с гладной выпуклой поверхностью на плоскости	98

CONTENTS

J.Lellep, K.Soonets, On the occasion of	
prof. U.Lepik's 60-th birthday	3
U.Lepik, M.Just, Automatic calculation for dynamic	10
bending of rigid-prastic stepped beams	12
K.Soonets, Optimal design of two-stepped clamped beam under impulsive loading	24
E.Sakkov, G.Slavin, Optimal design of rigid-plastic stepped beams under dynamic loading	34
J.Lellep, Optimality conditions for location of the additional support	41
G.Olenev, Optimal location of supports of an elastic beam in the case of impulsive loading	51
T Pre-lbrecht On dispersion in the dimensional	
wave processes	56
K.Kenk, On the theory of signchanging loading	63
A.Reani, On making use of the heredity principle for	
description of the axial force in the conic in-	
dium	71
L.Rosomakho, G.Rummel, E.Saks, R.Sverdlova, The in-	
la under dynamical loading of high intensity	79
G.Aryasov, L.Zubko, A.Snitko, The solution of problem of longitudinal-transverse bending of beams beyond	
the elastic limit by the finite element method	87
H.Relvik, About the derivation of the equations of vibration of string and membrane	95
A.Haitin, The problem of body rolling on a convex smooth surface of a plane	98

90 коп.

.

