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Model Driven Development and Analysis for Embedded Automotive
Software

Abstract:
Model-driven development and analysis is the state of the art method in the automotive

industry. One of the reasons for its heavy utilization is coming from the black box nature
of the components developed by the automotive vehicle manufacturers. The other reasons
are coming from the pressure to produce quality software that complies with all regulatory
standards but can fit the pricing model of automotive vehicle manufacturers.

Validity and standard compliance of the components can be verified using models
before the actual piece of software is deployed into an automotive vehicle. The utilization
of the model also creates challenges: how to produce final software that precisely reflects
how the model works. An automatically generated software from a model is deemed as
an answer since it is coming from the already verified model and also will inherently
retain consistency with the model. As software gets more and more critical inside an
automotive vehicle, a model to create the software is getting more and more complicated
and along with the automated software generation process.

This thesis examines the model-driven development and analysis process for auto-
motive software by conducting model conversion from MATLAB/Simulink model into
AUTOSAR. The application developed for this thesis provides analysis and insights
for every step of the conversion process. From the insights gathered along the process,
it shows that the different model and transformation method creates a different model
representation that affects the final structure of the AUTOSAR result. In the end, there
are several possible alternatives on the way a model can be seen and transformed into an
AUTOSAR file. It is also concluded that the iterative process in this project is not final
and can be further improved.

Keywords:
Model Driven Development, Model Driven Analysis, Embedded System, AUTOSAR,
Automotive Software

CERCS: P170 Computer science, numerical analysis, systems, control
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Autotööstuse tarkvara mudelipõhine arendamine ja analüüs

Lühikokkuvõte:
Mudelipõhine arendamine ja analüüs on autotööstuses kasutatav uus meetod. Seda

rakendatakse mootorsõidukite tootjate poolt, kuna hajusale komponentide arendusele
sobib olemuslikult spetsifitseerimine musta-kasti printsiibil. Muud põhjused tulenevad
survest toota kvaliteetset tarkvara, mis vastab kõigile regulatiivsetele standarditele, kuid
mis sobib autotööstuse tootjate hinnamudeliga. Mudeli kasutamisel saab komponentide
kehtivuse ja standardse vastavuse kontrollida enne, kui tegelik tarkvara on autosse
paigaldatud.

Mudeli kasutamine tekitab ka väljakutseid, et toota lõpuks tarkvara, mis kajastab
täpselt mudeli toimimist. Mudelist automaatselt genereeritud tarkvara loetakse vastuseks,
kuna see on stabiilne ja pärit juba kontrollitud mudelist. Kuna tarkvara muutub autotöös-
tuses üha olulisemaks, muutuvad tarkvara loomise mudel ja genereerimise protsess üha
keerulisemaks.

Käesolev töö uurib mudelipõhist autotööstuse tarkvara arendamise ja analüüsimise
protsessi — teisendades MATLAB/Simulink mudel AUTOSAR mudeliks. Lõputöö
raames loodud programmid teostavad analüüsi erinevate teisendussammude tarbeks.
Protsessi analüüsides selgus, et teisenduse meetoodika mõjutab oluliselt mudeli esitust
ning ka lõpptulemuseks saadud AUTOSAR mudeli struktuuri. Näeme erinevaid võima-
likke alternatiive sellele, kuidas mudelit saab vaadata ja muuta AUTOSAR-failiks. Selles
lõputöös vaadeldud iteratiivne prosess pole lõplik ja seda saab veel täiustada.

Võtmesõnad:
mudelipõhine arendamine, mudelipõhine analüüs, manussüsteem, AUTOSAR, autotöös-
tuse tarkvara

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-
teooria)
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1 Introduction

1.1 Automotive Software Engineering
Automotive Software Engineering is one of the niche fields in software engineering,
and it has increasing importance within automotive vehicle development. Nowadays,
automotive vehicles manufacturers are using software to give competitive advantage
and differentiation on their products. Around 80% of the value creation came from the
computer system [LH02]. The incorporation of software into an automotive vehicle
itself was quite a new thing. It was started from the usage of an Electronic Control Unit
(from now on will be addressed as ECU), which is an embedded electronic device with
sensor and actuator. At the beginning of automotive software integration inside a vehicle,
an ECU runs an isolated and dedicated task/program such as braking, steering, and
controlling the engine. ECU itself uses a highly optimized machine code that focuses on
consuming resource as small as possible because the automotive industry uses price unit
model where each component must fit the pricing constraint of the vehicle manufacturing
process. As the automotive industry grows, more and more ECUs integrated into an
automotive vehicle to do various functionalities. There’re also needs of data sharing
between ECUs that creates the bus system to enable effective communication between
ECUs.

The modern car nowadays can have more than 100 ECUs [EJ09] with more functions
require ECUs to communicate with each other. One of the examples of the feature
where it integrates several independent functions is the Central Locking System. A
Central Locking System integrates the locking and unlocking car doors functionality with
comfort functions (such as adjusting seats), with safety (such as locking the car beyond a
minimum speed), and with human-machine-interface functions (such as signaling the
locking and unlocking using the car’s interior and exterior lighting system) [Bro03].
Since the ECU uses a highly optimized code to do a specific task, integrating a new
feature that needs to have subsystems previously never interact with each other to work
together is not a trivial task to do. On top of there’s no straightforward way to integrate
the system, the car integrated system also faces problems that commonly can be found in
the distributed system [FSN+03b, FSN+03a].

An automotive software engineering has its quirks. Most of the time the exact way
software works inside the vehicle parts are unknown because the components can come
from different manufacturers and suppliers. Manufacturers and suppliers are usually not
sharing the code inside the components since it is part of their trade secret. Each car
manufacturer (referred to as "OEMs") have to make their tests against this black box
system to figure out the full functionalities and limitations of the components. OEMs also
need to adjust their software to accommodate coordination with these vast component
differences. With this software engineering environment, solving the distributed system
problems in an automotive vehicle becomes even more challenging. The recent partner-
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ship project between various OEMs and suppliers named AUTOSAR (AUTomotive Open
System ARchitecture) tried to provide better standardization by creating a model-based
middleware layer. AUTOSAR is a worldwide partnership that was started by the auto-
motive industry leaders such as BMW, Bosch, Continental, DaimlerChrysler, Siemens,
and Volkswagen to create an open standard for electronic/engineering architecture for
automotive vehicles [AUTb]. This open standard allows automotive software engineers
to work together to create better architecture that can solve the multiplex communication
problem.

1.2 Model Driven Development
Since the automotive software engineering process is strongly affected by the black
box nature of the components inside an automotive vehicle, model driven development
becomes the most popular method in automotive software development [BBR+05,
TKWE03]. The components’ capabilities and limitations are mapped into models that
can represent how the component works and interact with the other component. In order
to create a model that can represent the real thing, car assemblers have to conduct tests to
find out of the functionalities and the limitations of the components and how it interact
with the other components in static or dynamic way. A detailed report on how each
component behaves is critical to ensure the final product’s successful integration.

There are several common modelling approaches in the automotive software engi-
neering. The most common procedure is using models of control theory created with
tools like MATLAB/Simulink [WM95]. Another commonly used model is information
processing model that is represented using UML/State Machine [RBvdBS02]. Although
information processing model is much more common in the business IT field, it starts to
gain popularity in the automotive software engineering due to the growing complexity of
the data exchange inside automotive vehicle’s components. Both approaches are used
together in automotive software engineering to create a comprehensive view of how the
system works since only using one model will never be enough to cover the entire aspects
of the integrated system inside an automotive vehicle [SS04].

1.3 Motivation & Thesis Goals
This thesis is trying to explore two most commonly used model in the automotive
software engineering: control theory model and information processing model and to
do auto-generation from existing control theory and information processing model into
AUTOSAR compliant file. Creating an auto-generation software itself is an endless
pursuit in automotive software engineering with several companies and research groups
have dedicated their time and effort to create the most reliable auto-generation software.
In the ideal world, good auto-generation software can expedite the automotive software
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development process, reducing time and cost needed to create the model, and also
enhancing safety by reducing errors from manual creation process.

The auto-generated AUTOSAR compliant file underwent a sanity testing and data
dependency analysis to test its validity. Sanity check provides a broad overview of
the system and checks the potential static error as the result of model conversion and
data dependency analysis is needed to asses the complex communication problem of
the distributed system. During model conversion, there is a lot of simplification and
design decision on the way to convert the model. The decision relies heavily on data
visualization to show components dependencies. Graph coloring technique is also
employed in the visualization to understand better the relationship between components
and checking data dependencies. This technique is useful to solve distributed system
problem such as resource management and scheduling to create an assessment to convert
the model. This thesis provides the thought process from the initial MATLAB/Simulink
model assessment, AUTOSAR model transformation, and analysis of the auto-generated
AUTOSAR file. This thesis also provides suggestions for future improvement for this
whole process.

This thesis is organized into seven chapters. The first chapter contains an introduction
to the automotive software engineering world. It provides context on why model-driven
development is the most common practice on the automotive software industry and
became the main idea of this thesis. The second chapter explores the different types of
models commonly used in automotive software engineering with the emphasize on the
MATLAB/Simulink control theory model, UML based information processing model,
and AUTOSAR. The third chapter describes the mapping strategies to transform the
MATLAB/Simulink model to AUTOSAR along with visualization combined with graph
coloring technique to identify complex interconnected components. Chapter four lists
methods to check result validity by conducting a sanity testing and data dependency
analysis and chapter five details the software developed to analyze the models and
converting MATLAB/Simulink model into AUTOSAR. The result of the analysis and
software developed is described in chapter six. Chapter seven contains the conclusion
from the whole model conversion process and future improvements. There are also
appendixes that give the walkthrough details of the application developed and lists of the
components inside the model used for this thesis
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2 Model Mapping
This section gives an overview of automotive software models and provides some idea
model creation process to represent an automotive system. Software components of
an automotive vehicle mapped into a model with different angles of abstraction and
different point of views. The two most popular approaches in mechanical engineering /
electrical engineering and software engineering: control theory model and information
processing model are also explored in this section since it is the main idea of creating
auto-generation software from MATLAB/Simulink file into AUTOSAR compliant file.

2.1 Automotive Software Models
In automotive software engineering, one single model won’t be able to represent the
whole view of the integrated system inside an automotive vehicle. Automotive software
modeling process starts from the user level (the highest level of the abstraction) until
the software can be deployed to the hardware and work together as an integrated system
inside an automotive vehicle. The level breakdown of an automotive software engineering
architecture can be seen in figure one with an explanation as follow [Bro03]:

1. Functionality Level - Users View
This functionality level-user view aims to capture all the software-based func-
tionality of an automotive vehicle to the users. Users in this context are not only
limited to drivers and passengers but also garage and maintenance staff, people
involved in car manufacturing and so on. This level provides the understanding of
how the software services are offered, its dependencies, and on how it interacts
with other services. Function hierarchy is usually utilized to model this level.
Techniques such as Message Sequence Charts can be used to capture services and
their interactions [RFH+05, IT99, AHKPM05].

2. Design Level - Logical Architecture
The design level captures the logical component architecture. The functional
hierarchy from the user level is decomposed into a distributed system of interacting
components. Whether the components are implemented by hardware or software
and the number of different components performs the function are not described
in this design level. By reducing the system into an interaction between services,
common services needed across vehicle infrastructures can be identified. It also
promotes conceptual reuse for services that differ only in the way they are deployed
from one vehicle line to another [NP04].
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Figure 1. Comprehensive automotive software engineering architecture [Bro06].

3. Cluster Level
This level is one level before software architecture. The logical architecture is
rearranged in a way so it can be ready for the deployment. Software components
are decomposed further until a sufficiently fine-grained granularity is reached and
then reorganized into clusters. The clusters itself form the units of deployment.

4. Task Level - Software Architecture
The software architecture consists of the classical division of software in platforms
like operating systems and bus drivers on one side and the application software
represented by tasks, which are scheduled by the operating system, on the other
side. This software has to be deployed onto the hardware. The high-level software
architecture is derived quite straightforwardly from the logical architecture. It is a
representation of the logical architecture by programs.
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5. Platform Level - Hardware Architecture
The hardware architecture consists of all the devices including sensors, actuators,
bus systems, communication lines, ECUs, MMI, and many more. The macroscopic
view of the hardware architecture consists of the network of buses, the ECUs, the
gateways that route and adapt the signals between several domains and busses, and
the sensors and actors that are connected within the network. The tiny part is the
hardware architecture inside an ECU (for example processor, memory, I/O).

When the software is finally deployed to the actual hardware, hardware/software
components interaction should be the implementation of the logical architecture. In the
modern automotive vehicle, the design of this hardware/software interaction grows more
and more similar to the chip design process due to the distributed nature of computing
in a car [GFL+02]. Currently, there are two popular models used to represent this
distributed nature: control theory model and information processing model.

2.2 Control Theory Model
Control theory is a discipline used in mathematics and engineering field. This field
deals with the dynamical response of a system to input. The goal is to create a control
model for controlling system that is optimum without delay or overshoot and ensuring
safety by managing the system response to inputs and disturbance. Control theory
explores problems such as stability (the way system response on inputs and disturbance),
robustness (tolerance in the variation of the parameters), tracking (small error for specific
input) [MT]. In the automotive vehicle, systems are connected to sensors and actuators
where the software/hardware have to deal with real-time input and output of physical
data. In this sense, the classical control theory model is suitable to represent how the
system works.

Control theory is usually visualized using a block diagram. One of the tools that
commonly utilized to create this block diagram is MATLAB/Simulink [Thec]. MAT-
LAB/Simulink is a block diagram environment for multi-domain simulation and model-
based design. In automotive component design, MATLAB/Simulink simulates the
complete control system, including the control algorithm in addition to the physical
plant. MATLAB/Simulink is especially useful for generating the approximate solutions
of mathematical models that might be difficult to solve manually. Figure two shows
MATLAB/Simulink’s user interface describing vehicle’s (a train locomotive with one
additional car) movement and the braking system where the sequence of controls are
described using blocks to represent the physical forces that control the train’s movement
with the locomotive provides signals to control of the whole system.

There have been numerous efforts in building frameworks that can link control theory
model with implementation languages for both hardware and software [FGI+05, Thea].
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Figure 2. Simulink control model user interface example. Vehicle’s movement and
braking system [MT].

This thesis also starts from the Simulink model as its base to generate the AUTOSAR
model that’s ready for the actual deployment of an automotive vehicle.

2.3 Information Processing Model
Another common approach in modeling software engineering is to model services
interaction in the form of data flow commonly found in information processing discipline.
This approach is getting more popular due to the data transfer process is getting more
complex inside the modern-day automotive vehicle. In designing the model using
information processing model, there are differences between the practice in business IT
and automotive software engineering. In automotive software engineering, the goal is
not to change the system or component structure at runtime, but to have more flexibility
for the distribution of software components over different ECUs, while designing the
board net (the set of implemented functions and their mapping to hardware, including
communication dependencies) of a car [Bro06].

There is already an existing effort to convert MATLAB/Simulink model directly to
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UML-like model, called Massif [Via]. Massif is an Eclipse plugin created by Viatra
that can convert the MATLAB/Simulink model to an XML file for Eclipse Modeling
Framework (EMF). EMF itself is an Eclipse-based modeling framework and code gener-
ation facility for building tools and other applications based on a structured data model.
All information for each MATLAB/Simulink block’s type is stored in the generated
meta-model that makes it possible to convert the model back to the Simulink file.

In this thesis, Massif is utilized to convert MATLAB/Simulink model into Eclipse-
EMF model before converting it into an AUTOSAR model. The reasoning behind this
process is to make the development of AUTOSAR model converter application easier
since the model runs in Java-Eclipse environment where the other AUTOSAR helper
tools are already available there. Converting the MATLAB/Simulink model into a UML-
like diagram of the Eclipse-EMF model also provide another view about how the system
works that can help the mapping process from a Simulink model into an AUTOSAR
model.

2.4 AUTOSAR
AUTOSAR (AUTomotive Open System ARchitecture) is an open and standardized
automotive software architecture that is jointly developed by OEMs, suppliers and tool
developers who are the industry leaders in the automotive industry. In the automotive
software modeling view, AUTOSAR positioned itself as a middleware layer where it
provides an abstraction between hardware and custom software for automotive vehicle
system with technical goals of modularity, scalability, transferability, and reusability.

Modularity enables tailoring software elements to the individual requirements of
electronic control units and their tasks. AUTOSAR model should be scalable so that
common software modules can be easily adapted to different vehicle platforms to avoid
software redundancy with similar functionalities. Transferability ensures that the opti-
mization of the use of resources available throughout a vehicle’s electronic architecture.
In reusability, the product quality and reliability can be easily reinforced across product
lines [Sch05].

To achieve these goals, AUTOSAR provides a common software infrastructure for
automotive systems of all vehicle domains based on standardized interfaces for the
different layers. The architecture of this AUTOSAR infrastructure is designed in layers
to enable separation of concerns that is useful to maintain and debug the software. Three
main layers in AUTOSAR architecture are the Application layer, Basic Software layer,
and AUTOSAR Runtime Environment (RTE). AUTOSAR itself is an operating system
that is running inside the microcontrollers that power the automotive vehicle system.
This layered architecture can be seen in figure 3.

This thesis model conversion takes place in the application layer of AUTOSAR that
consists of software components, the smallest part of a software application that has
specific functionalities. Application functionality resides in this application layer, and it’s
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Figure 3. AUTOSAR main layers: Application layer, Basic Software layer, and AU-
TOSAR Runtime Environment (RTE) [Ges11].

a custom application that can utilize more low-level functionality in the Basic Software
(BSW) layer using APIs provided in AUTOSAR Runtime Environment (RTE). One of
the examples of how AUTOSAR works can be found in figure 4. This figure describes a
wiper washer system of an automotive vehicle using AUTOSAR model. Each washer in
the front and the back of the car is controlled by a software component (Washer atomic
software component). WiperWasherMgr atomic software component does the triggers
to activate the front and rear washer where it gives the order to activate components in
Washer such as rear washer for example.

Below is the list of commonly found AUTOSAR components in automotive vehicle
modeling:

• AUTOSAR Package (ARPackage)
An AUTOSAR Package (ARPackage) is a bundle to group Software Components,
data types, and other elements of AUTOSAR. It creates a namespace where it
within one system with unique naming. with standardized naming convention
[AUTc]. Its sub-packages have categories such as standard, blueprint, and sample.
Wrapping components into package ensure separation of concern that is important
for code reusability and modularity. The standardized package structure can be
seen in figure 5.
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Figure 4. Multiple component prototype interaction between two software components
in the wiper washer system [AUT18].

• AUTOSAR Software Component (SWC)
An AUTOSAR Software component (formally SwComponentTypes) is a self-
contained unit where application software within AUTOSAR are organized. It is
an encapsulation of the implementation of software functionality and behavior also
providing well-defined connection points using ports (formally PortPrototypes)
for external access. The software component can also be found in RTE layer and
BSW layer.

An AUTOSAR software component (referred to as AUTOSAR SWC) exists in sev-
eral flavors. The most prominent of these flavors are atomic software component
(formally AtomicSwComponentType) and composition software component (for-
mally CompositionSwComponentType). Composition software component has the
purpose to aggregate SwComponentTypes to create units of higher complexity al-
lowing system and subsystem abstraction. It groups existing software-components
and hides the complexity when viewing or designing logical software architecture
without any possible functionality.

An atomic software component, on the other hand, is the smallest possible granu-
larity of software component (atomic, as the name already indicates). It contains
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Figure 5. ARPackage structure [AUTc]

Internal Behavior (formally InternalBehavior) that carries a detailed description of
the inner structure of an atomic software component in terms of internal data and
execution units (formally called RunnableEntities) as well as the links between
the internal structure to the ports on the surface of the atomic software component.
The actual implementation of automotive application software happens within the
atomic software components. Figure 6 illustrates the software component’s and its
Runnables content.

• Ports
Ports (formally PortPrototypes) are parts of an AUTOSAR SWC to interact with
other AUTOSAR SWCs, and it’s where the data flows. A port belongs to exactly
one AUTOSAR SWC and characterized by port interfaces (formally PortInter-
faces). Port interfaces describe the communication paradigm of the ports. Several
communication paradigms that are supported in AUTOSAR:

– services or data are required (this specialization utilizes RPortPrototype)

– services or data are provided (this specialization utilizes PPortPrototype)
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Figure 6. AUTOSAR Software component structure and its runnables

– services or data are provided and requested at the same time (this specializa-
tion utilizes PRPortPrototype)

• Internal Behavior
The internal structure of an atomic software component is described by Internal
Behavior (formally InternalBehavior). It is characterized mainly by runnable
entities, RTE events. A runnable entity is a sequence of instructions that can be
started by the run time environment in the context of a task. It also can be executed
concurrently by mapping them into different tasks.

An RTE event can be described as all possible situations that can trigger the
execution of a runnable entity by the run time environment. RTE events can address
timing, data sending and receiving, invoking operations, call server returning, mode
switching, or external events. It also can either activate a runnable entity or wakeup
a runnable entity at its wait points.

• Virtual Function Bus
Virtual function bus is the abstraction of the AUTOSAR SWCs interconnections
of the entire vehicle, and Virtual Function Bus defines the communication pattern
inside AUTOSAR. The central structural element in AUTOSAR is the component
where it has a well-defined port for interaction between components. Virtual func-
tion bus assembles and integrates software components to a virtual AUTOSAR
system to verify the consistency of the communication relationship between soft-
ware components. This approach allows car manufacturers to break down the
complexity of their systems in a very early design phase of the product develop-
ment cycle.

AUTOSAR interface defines the services or data that are provided on or required
by a port of a component. The most commonly used AUTOSAR Interfaces are
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Client-Server Interfaces and Sender-Receiver Interfaces, which allows the usage
of data-oriented communication mechanisms over the Virtual function bus. Other
kinds of interfaces are allowing the communication of modes, non-volatile or fixed
data, and the triggering of processes.
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3 Mapping Methodology
This thesis uses a single Simulink file that describes the control flow of a braking
system inside an automotive vehicle provided by Augsburg University named RISA. This
MATLAB/Simulink file is a complex model where it consists of in total 1820 components
excluding port connections and also 85 subsystems and sub-subsystems. There are several
steps involved during the process of converting this MATLAB/Simulink model into an
AUTOSAR file. The conversion from MATLAB/Simulink file itself utilizes an open
source existing tools called Massif to convert MATLAB/Simulink model into much more
readable EMF (Eclipse Modelling Framework) XML file before the model is converted
into AUTOSAR model. Figure 7 describes the file conversion flow

There was a realization during the conversion process and conversion experiments
that each component in this Simulink model can’t be translated one by one and have to
be simplified and analyzed. The converted model is validated over and over using the
standard sanity testing, and data dependency analysis is conducted to examine component
interaction within the model. This thesis employs different visualization in the EMF
model to get a comprehensive view of the component interactions.

3.1 Simulink to AUTOSAR Mapping
There are several challenges during the model conversion process from MATLAB/Simulink
file into AUTOSAR compliant file. One of them because MATLAB/Simulink is pro-
prietary software. A proprietary software behaves like a black box that sometimes its
behavior is hard to predict, and the users have no other way to tweak or figure out the so-
lution by themselves. Reading the MATLAB/Simulink file directly from its source turns
out to be a complicated ordeal. Several methods have been used to read and convert the

Figure 7. Model conversion flow in this thesis
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MATLAB/Simulink with one of the solutions is reading creating an application to read
the file without MATLAB/Simulink application to understand the structure and transform
it as needed without the limitation from the original MATLAB/Simulink application.

This thesis utilizes an already existing tool from Viatra named Massif to simplify
the reading process of the MATLAB/Simulink file. Massif converts MATLAB/Simulink
control theory model into information processing model. This step creates a much easier
to read file since the model is converted into EMF (Eclipse Modelling Framework) XML
file that is an open source product that can be easily tweaked or adjusted. The final XML
file is also more familiar file to read with many library options to read the file. The
conversion from Simulink to EMF also provides a broader understanding of how the
system works in the information processing model perspective.

Figure 8. Different import modes in Massif plugin [HRS]

Massif reorganizes each Simulink components into an XML block under tag contains.
Information about value and variables of a Simulink block is stored in property under
the properties tag. The SimulinkRef tag is used to store information about the Simulink
block name and the sourceBlockRef tag is used to store information about the block
type and category. Ports and connections define data flow structure between blocks.
Massif also provides various conversion options. It has several modes that can be used to
convert (called import in the application) the model. The options are are: Shallow import
(only blocks within non-referred systems are imported hierarchically), Deep import (each
block inside each subsystem is imported. Each referenced model is imported as an
individual model with direct model referenced in the parent model), Flattening import
(each model reference block is imported as though it was a subsystem), Referencing
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import (For blocks with active library links, each source library is imported once as an
individual model but may be referenced multiple times). This thesis also explores the
use of different import methods to find the suitable mode for model conversion. The
illustration of the different import modes can be seen in figure 8

Another hard challenge is coming from the AUTOSAR documentation itself. AU-
TOSAR version 3.x has mapping guidelines to map Simulink components into AU-
TOSAR Components [AUTa]. However, since AUTOSAR version 3.x is no longer
utilized and this thesis will convert the model into AUTOSAR version 4.x these mapping
rules need to be updated and improved based on AUTOSAR version 3.x mapping rules.

3.2 Component Visualization
Component visualization plays a vital role in the various aspect of the component
such as ensuring converted model validity, provides a broad overview of the unknown
system, debugging process and giving insights to convert the model better. There are
two applications utilized to do visualization, model assessment application to assess
the MATLAB/Simulink model, EMF model, and AUTOSAR model and AutoAnalyze
[KSS+17] application that is used only for AUTOSAR.

Figure 9. Blocks visualization of the generated EMF model

The model assessment application has undergone multiple iterations to provide the
most concise view possible of the system. At first, the MATLAB/Simulink model is
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displayed in a block model. The visualization result is hard to read and can’t provide
much information more than some rough perception of the system’s complexity as can
be seen in figure 9. After several iterations to improve the readability of the model, the
EMF model transformation into a tree force diagram creates a better visualization of the
system (figure 10).

Figure 10. Force diagram visualization of the EMF model

3.3 Graph Coloring
Graph Coloring is a way to label vertices of a graph using colors such that no two adjacent
vertices share a color. Graph coloring has many applications including task scheduling,
parallel computation, network design, and many more. In the component visualization
graph coloring to quantify the complexity of interaction between components in the EMF
file. Graph coloring is integrated inside component visualization and implemented quite
later in model analysis application after finding complex subsystems that are difficult to
translate.

Backtracking algorithm is selected to color the nodes since this algorithm ensures that
all components are colored correctly and there’s no urgency to perform a fast algorithm.
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Each subsystem in the model is a small graph consist of less than 100 components
(vertices that need to be colored). This algorithm works by assigning colors one by one
to different vertices, starting from the vertex 0. Before assigning a color, the algorithm
checks the already assigned colors to the adjacent vertices and iterates recursively within
the graph until all adjacent nodes don’t have the same color [Lew15].
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4 Sanity Testing & Data Dependency Analysis
Sanity testing and data dependency analysis are used in this project due to the unknown
final result. Sanity testing process is chosen as it is simple and can provide an overview
of the system and dependency analysis is selected because the model contains complex
interconnected components that can result in data race condition. The analysis is done
iteratively and continuously in every step of the model conversion process.

4.1 Sanity Testing
The purpose of a sanity testing is to ensure that the system does not fail and the returned
results can pass the most straightforward correction test. Sanity testing runs on the
premise that if the system can’t pass the simple test, it will not be able to withstand more
complicated test [ZKP+08]. Sanity testing saves time and effort before creating a more
sophisticated test. In this thesis, the sanity testing can also give a broad overview of the
system when checking the information discrepancy during the model conversion process.

Sanity testing process for this thesis is written in the form of ad-hoc scripts. One of it
is a Python script to check whether there are missing MATLAB/Simulink component
names on the generated EMF file. During the EMF model checking process, the tree
graph also highlights possible defect components in the form of parts that have no relation
with other components. If it occurs that some components have no connection with the
other components, the original model gets double checked to ensure its validity.

The verification of the final generated AUTOSAR file relies heavily on the Auto-
Analyze application developed by the University of Augsburg. AUTOSAR file with
obvious component defects can’t be to run on AutoAnalyze application or won’t be able
to produce a component graph.

4.2 Data Dependency Analysis
The modern automotive vehicle software has complex bus level communication architec-
ture that creates a high possibility of the data race condition between its component. The
data race condition is a situation that is commonly found in the distributed system and
the compiler theory. It can be generally described as the condition where two programs
(in the compiler theory, it is threads) are accessing a single data source with at least
one of the two accesses is a write [HJM04]. The problem occurs when at least one of
the program’s action is dependent on the accessed variable value to make a decision.
This condition can be catastrophic if it happens in the safety function of an automotive
vehicle.

There are several approaches to detect data race possibility with the majority of the
approaches are based on the lockset principle and or happens-before principle [Bec].
The lockset principle lies on the assumption that race condition occurs because of shared
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variables are not appropriately connected by an appropriate lock. By using this principle,
the interconnected component is flagged as having the possibility to create race detection,
and this approach might not be suitable for a big and complex system with numerous
interlocking parts since it creates a combinatorial number of possibilities where the data
race might happen.

Happens-before principle can be commonly found in the data flow or state flow
simulation. It detects data races between current access and maintained previous accesses
by comparing their happens-before relation using logical time stamp like vector clocks
[Ha13]. It might not check every possibility where the data race can occur so the analysis
can be conducted within a reasonable amount of time. The majority of tools to monitor
data race condition combines these two principles. This thesis tried to combine these two
principles where the produced graph is trying to flag all interlocking components that
have a high level of data dependencies using graph coloring visualization. In checking
the validity of the generated AUTOSAR compliant file, this project uses AutoAnalyze
application which provides a comprehensive analysis to describe data dependencies
between components inside the AUTOSAR file.
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5 Software Development
There are two applications created for this thesis: Model assessment application and
AUTOSAR file generator application. Both applications work together with AutoAn-
alyze application to improve the auto-generated AUTOSAR file as in figure 11 below.
The model assessment application works as the initial step for the research where all ma-
terials to generate an AUTOSAR file is read, summarized, and transformed into various
graphs. The goal of this application is to provide insights and guidance for translating
the MATLAB/Simulink model into an AUTOSAR model.

Figure 11. Interaction between softwares developed for this thesis

Since the AUTOSAR documentation only consists of the standards for the compo-
nents’ structure and there are no strict rules for mapping MATLAB/Simulink components
into AUTOSAR components, the conversion procedure is usually tuned to the automo-
tive vehicle manufacturers needs and this thesis is exploring several possibilities of the
model conversion rules and methods. This thesis is doing continuous iteration between
AUTOSAR generator tool and model assessment tool is needed to improve and optimize
the generated AUTOSAR file. The features in the model assessment application are
added gradually to provide a better granularity of the system. The different degree of
dimensions and granularity is important when it comes to translating MATLAB/Simulink
component into its AUTOSAR counterpart.

5.1 Model Assessment Application
The model assessment application is a web-based application to open and assess different
models explored in this thesis: MATLAB/Simulink model, Massif generated EMF model
and AUTOSAR model. The purpose of this application is to give insights for generating
AUTOSAR model from the target MATLAB/Simulink model. This application provides
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various model visualization that can give an overview of the model from a different angle
or perspective. The application has three main features:

• MATLAB/Simulink Model Assessment
This feature opens the MATLAB/Simulink model directly without using its native
application. It gives general file information about the number of components
inside the model, name, and type of the components, and the structure of the
elements in block representation. This feature also displays the sanity test result
from checking the component name difference between Massif generated EMF
file and the actual MATLAB/Simulink file. The user interface of this feature can
be seen in figure 12.

Figure 12. User interface for MATLAB/Simulink component assessment. The left side
shows the file structure, the middle part shows all unique components inside the model,
and in the right side is the ad-hoc script result to display important information

An important insight that came out from this feature is that Massif application
discards other components outside basic Simulink block diagrams. Stateflow
components [Thed], HDL coder components [Theb], and MATLAB formulas
are missing in the generated EMF file. This feature tried to reconstruct Simulink
blocks components, but it has inferior quality compared to the visualization from
the EMF Model Assessment feature. The assessment shows that the generated
EMF file retains all needed information to create a complete graph of the system.
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Because of that, the development to improve block component visualization from
MATLAB/Simulink file is not pursued further.

• Simulink EMF Model Assessment
This feature is assessing the model by creating a visualization from the generated
EMF model. It shows various kind of visualizations that is the result of the iterative
process of EMF model assessment. The visualization from the first iteration tried
to recreate block diagrams similar to MATLAB/Simulink model and managed
to provide a rough overview of the system complexity where it has multi-level
subsystems and a high degree of interconnected components. Based on this initial
visualization, more improvement is created to assess this system complexity. The
depth of the system can be seen in figure 13.

Figure 13. The hierarchy structure of the target RISA MATLAB/Simulink file shows the
depth of the system

In the later iteration, the difficulty in comprehending the structure of the compo-
nents inside the system and subsystems was tackled by changing block visual-
ization method into interconnected node graph created with the D3 visualization
library. The system depth is shown using a hierarchy diagram and component
interactions in each subsystem is represented using a force diagram. This visual-
ization shows a fresh perspective on the system’s structure and gives some ideas
on how the MATLAB/Simulink model can be structured into AUTOSAR software
components.

In the component interaction force diagram (figure 14), each node has a different
color code based on the MATLAB/Simulink block reference type and category.
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This coloring is given to make it easy to find out which components can be
merged or discarded. Discarding component is necessary since not all Simulink
components must or can be translated into AUTOSAR components [AUTa] and
adding color to components can help the process of discarding unused components.
Components such as the arithmetic function, logical function, and data conversion
function are merged into a software component or a runnable entity.

Figure 14. The interconnected components force diagram visualization on the first level
of the target RISA MATLAB/Simulink file. Node is colored based on block category

Besides coloring based on MATLAB/Simulink block reference type and category,
graph coloring technique is also implemented in this feature were the connected
nodes always have different colors. It addresses the cyclic data dependency pattern
that might cause data race and highlight parts that more attention when transform-
ing the components into AUTOSAR components.

• AUTOSAR Model Assessment
This feature provides general information on the building block of an AUTOSAR
model as can be seen in figure 15. This tool created to get familiar with AUTOSAR
file structure by showing several samples of the valid AUTOSAR files and analyze
its structure. Along with AUTOSAR modeling guideline [AUTd], this feature
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provides some ideas on the strategy that can be employed to structure the EMF
model into a valid AUTOSAR file.

Figure 15. AUTOSAR Model Assessment feature shows AUTOSAR components in
block structure and its depth level

There’s no further improvement for this feature because AutoAnalyze software
can provide better AUTOSAR file validation and comprehensive visualization.
The feature is kept for debugging purpose of retracing the AUTOSAR XML
components validity when the AutoAnalyze application can’t read the generated
AUTOSAR file.
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5.2 AUTOSAR Generator
AUTOSAR Generator is a straightforward Java program without any interactive graphical
user interface to convert the EMF model generated from the MATLAB/Simulink file.
This application uses Java programming language since the AUTOSAR library provided
by AUTOSAR Consortium is already in Java, so it is more convenient for accessing valid
AUTOSAR version 4.x components.

Since the official AUTOSAR documentation shows there’s no strict instruction on
how each MATLAB/Simulink components can be mapped into an AUTOSAR and the
document only gives MATLAB/Simulink to AUTOSAR model conversion for version
3.1 [AUTa], there are a lot of researches, improvisations, and iterations to fill the gap.
MATLAB/Simulink creator already has a product named Embedded Coder [Thea]
that can transform MATLAB/Simulink file into an AUTOSAR file, but this product is
only available for their industry or academic clients focused on automotive software
engineering. Based on the Embedded Coder documentation, users need to decide which
Simulink component transformed into what AUTOSAR component. It shows that there
are still many rooms for improvement for AUTOSAR model transformation especially
in the open source area.

Figure 16. AUTOSAR generator program stucture

The benefit of transforming the Simulink file to EMF model is that it can be trans-
formed into EMF eCore metamodel. By using metamodel, accessing eSimulink system
and subsystem classes for a direct component to component transformation can be much
easier to do. It is a straightforward conversion action if the counterpart AUTOSAR
components are already defined. However, this method is unsuitable if there are a lot of
experimentations on assembling the AUTOSAR structure. The second process inside
this program was reading the Simulink EMF file into generic XML and create a custom
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structure as it can be seen in figure 16. This process gives more freedom to create
experiments on the AUTOSAR file result.

The custom structure requires back and forth validation with the graph model in the
EMF assessment application. EMF model visualization was improved several times
to give a better understanding of the component interactions. The custom structure is
necessary to discard or merged components so it won’t be translated into AUTOSAR
component or transformed into an AUTOSAR component if it matches the rule given.
Without the custom structure, the transformation result was a valid but nonsensical
AUTOSAR file since it doesn’t represent how the system works. Modifying custom
structure also provides more options to do the conversion. There are a lot of things that
can be done using custom structure and the current state of the software is less than ideal
where the structure is hardcoded and tuned into Simulink RISA structure.

The first appendix of this thesis covers the detailed walkthrough of the model as-
sessment application and AUTOSAR generator application. Each feature inside model
assessment application and the model transformation result is explained in this part along
with the relevant visualization results. In the AUTOSAR generator, since it doesn’t
have a user interface, figure 29 describes the start difference between not using custom
structure and using custom structure.
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6 Result & Validation
The result of this project comprises of the step by step journey for MATLAB/Simulink
to AUTOSAR model transformation along with the analysis involved, supporting ap-
plications, and the AUTOSAR compliant file result. The model conversion processes
described in this project be repeated iteratively to create more improvements in the future.

• Model Assessment Result
The web application software developed for model assessment is heavily focused
on the EMF model assessment because the generated EMF file and AutoAnalyze
application already cover everything to assess the AUTOSAR file. The main
challenge is to understand the system better and create a reasonable conversion
rule based on it. Because of it, the application has undergone multiple iterations to
improve components visibility and highlight the interconnected components. The
application shows that the target RISA MATLAB/Simulink file is quite complex
in terms of depth and also components interaction.

Model assessment application maps complex component interaction inside every
subsystem into a color-coded force diagram. Several color code rules such as
coloring based on its Simulink block category and graph coloring technique are
utilized to give better information on the structure of the system. Different color
coding method serves a different purpose on the component transformation decision
with all methods complement each other to fill in the gap where the other methods
are lacking.

Sanity testing is used continuously in building model assessment application to find
missing components or structure during the conversion process. Massif discarded
components that are not part of basic MATLAB/Simulink component such as
Stateflow and HDL Coder and this may or may not important for the AUTOSAR
result file. Data dependency analysis can be seen in the graph coloring assessment
where subsystem with complex data flow can be seen at a glance. The future use
of this technique is to regulate the scheduling analysis that is not implemented in
this thesis. Figures below show one of the complex subsystems structure.

• AUTOSAR file generator result
The goal of this thesis is to be able to produce an AUTOSAR compliant file from
the MATLAB/Simulink file. Since the transformation from MATLAB/Simulink
component into AUTOSAR component is not defined strictly by the AUTOSAR
Consortium, this thesis focus on iteration and experimentation on how to produce a
valid AUTOSAR file that can represent the system. This thesis relies on AutoAn-
alyze software developed by Augsburg University to verify the final AUTOSAR
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Figure 17. AUTOSAR model visualization in AutoAnalyze

file generated by the application. Visualization and verification of AutoAnalyze
software are in figure 17.

During AUTOSAR file generation, a valid AUTOSAR file can look nonsensical
and don’t represent the system correctly. In order to shape the AUTOSAR end
result to look more reasonable, the AUTOSAR generator application include
custom structure from imported generic XML structure of the Simulink EMF
model. This generic XML structure is rearranged to be able to detect sequential
Simulink blocks that consist of mathematical or logical functions data block. These
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components are then assembled into a runnable entity. Figure 18 shows the idea of
how transformation for sequential blocks is performed.

Figure 18. Custom structure that converts sequence of controls into a runnable entity

One of the custom structure runs recursively through the system and subsystems
then generates separate AUTOSAR file based on the subsystem. This custom
structure works on a complex subsystem but doesn’t make sense for a simple
subsystem that only has one or two blocks. It also not suitable for components with
cyclic connections between variables. Another custom structure experimentation
creates a nested component from the deepest level of the MATLAB/Simulink
model until the top level of the component that produces a single AUTOSAR
file. These custom structure experimentations give different insights on the way
components can be transformed into an AUTOSAR model. The actual deployment
to the automotive vehicle depends on the specification of the car manufacturers
and it’s is outside the scope of this thesis project
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7 Conclusions & Future Improvements

7.1 Conclusions
Model-driven development and analysis have a vital role in automotive software en-
gineering due to the black-box nature of the components integrated inside a vehicle.
The automotive software engineering adopts various modeling concepts such as control
theory model from mechanical engineering discipline and information processing model
from business IT. Both models are complementing each other to provide a better way to
understand a complex system inside an automotive vehicle

This thesis can meet the initial goal to convert MATLAB/Simulink model into an
AUTOSAR compliant file. The experimentation to create the conversion processes is
largely done on a MATLAB/Simulink file named RISA that is provided by Augsburg
University. The first step was creating a web application to extract MATLAB/Simulink
file content and structure. The web application is also able to check missing components
as the result of the conversion to the EMF model. Although several parts are missing
during conversion into the EMF model, it’s not vital, and the conversion result can
still be used to convert the model into the AUTOSAR model. The EMF model still
retains the overall hierarchical structure of the essential MATLAB/Simulink component
interactions.

The EMF model was visualized in various manners, and the visualization features
have undergone several iterations. This continuous improvement is necessary to provide
as many as possible useful insights that can be utilized for converting the model into the
final product, AUTOSAR compliant file. The insights from the EMF model visualizations
are integrated into custom structure code in the AUTOSAR file generator application.
The AUTOSAR generator application is a straightforward Java application without a
user interface that converts the EMF model into an AUTOSAR compliant file. The result
is several valid AUTOSAR files from different custom structures that can be validated
using AutoAnalyze application. Both model visualization and AUTOSAR generator are
described in detail inside application walkthrough appendix.

Within the development process, the transformation and visualization of the Simulink
data into EMF model managed to provide various insights on the way a model can be
explored. Instead of sticking into a block diagram structure style in Simulink, trans-
forming the information processing model into another form like force diagram gave a
fresh point of view to analyze and transform the component into the AUTOSAR model.
Exploration with the color code and graph coloring technique provide early information
on data dependency and data race pitfalls even before the code is generated into the
AUTOSAR model. The fact that there’s no strict guide to convert MATLAB/Simulink
model into AUTOSAR model provides an opportunity for further exploration, but it is
also problematic since the correct solution entirely depends on the automotive vehicle
manufacturers to deploy the final result into the actual machine. As a result, the current
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result of the AUTOSAR generated file is too broad and has many assumptions.

7.2 Future Improvements
There are a lot of spaces for future improvements for this project. In the technical side,
creating a graphical user interface for the AUTOSAR generator software to create custom
structure rules and insert model dynamically can be a priority. Creating a tool chaining
from model assessment application into AUTOSAR file generator application also can be
an interesting future project to make model transformation smoother. Testing with more
MATLAB/Simulink files can help to find the current modeling process shortcomings
along with implementing more sophisticated testing method than sanity testing and
happens-before data dependency analysis.
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Appendix

I. Application Walkthrough
The target Simulink model in this project is a specific Simulink file named RISA. This
Simulink file describes the control flow of a braking system inside an automotive vehicle
provided by Augsburg University named RISA. RISA MATLAB/Simulink file has 1820
components excluding port connections and also 85 subsystems and sub-subsystems.
The first level of the system opened using its native application can be seen from figure
19 below.

Figure 19. First level visualization of RISA MATLAB/Simulink model in MATLAB
application

MATLAB/Simulink application doesn’t have much flexibility to skim the whole
components at a glance which makes it difficult to start the project. A separate web
application is created to overcome this problem. This application can do a thorough
assessment of the file such as providing the model’s hierarchical structure, the list of the
components, and other custom views to understand the model better. The user interface
of the application can be seen in figure 20 where the left side shows the file structure, the
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Figure 20. Custom reader application for MATLAB/Simulink shows different assessment
on the components inside RISA file

Figure 21. Block diagram created by custom reader application for MATLAB/Simulink
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middle part shows all unique components inside the model, and in the right side is the
ad-hoc script result to display relevant information.

This application also tries to recreate block component visualization directly from
MATLAB/Simulink file, but the result is far inferior compared to the visualization
using EMF model generated by Massif as it can be seen in figure 24. The EMF model
produces the same structure as the structure built using custom MATLAB/Simulink reader
application that can be seen in figure 24. Since EMF model is an XML file that is much
easier to read and manipulate, the further improvement for custom MATLAB/Simulink
reader block visualization is stopped, and the development is focused more on the EMF
model visualization.

Figure 22. The first version of the EMF model visualization where all information of the
block component is stored inside yellow dropdown box

Custom MATLAB/Simulink application also runs a comparison between converted
EMF model and the original MATLAB/Simulink model. The result shows that the
generated EMF model retains the structure to produce block diagrams but missing
additional components that’s not part of the basic MATLAB/Simulink application such
as Stateflow and HDL Coder items. Since these components are not that crucial for the
conversion, the EMF model is still used in the conversion to AUTOSAR file. Ideally,
Massif can be improved to retain these components since it’s an open source project.

EMF model visualization has undergone multiple iterations that can be seen in figure
22 - 24. Figure 22 is the initial version of the visualization where subsystems are stored
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Figure 23. The second iteration where all components are shown inside nested blocks

Figure 24. Third iteration removes non-essential information and starts to connect
components. The block color is based on its MATLAB/Simulink category
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in dropdown boxes. It was difficult to comprehend the system’s depth using this method
and figure 23 is trying to answer this shortcoming by displaying everything without
dropdown. This version also not very good since there’s too much information and
also tricky to skim the system since there’s a long scrolling to get to the end of the
block structure. In figure 24, the block diagram is much more readable compared to
the previous iteration after discarding much of the non-essential information. However,
this visualization is also not yet satisfying since it is still difficult to see component
interactions. Coloring components based on its MATLAB/Simulink category helps a
little bit to see what’s happening within the system.

Figure 25. Graph coloring technique doesn’t show an interesting view in the first level of
the system

The final version can be seen in figure 27 where it’s decided to used the D3 visual-
ization library. The depth of the system is represented using a hierarchy diagram and
the connection between components is described using a force diagram. Users also can
check the structure of each subsystem. This visualization is much easier to understand
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with each node is colored based on certain rules such as based on its MATLAB/Simulink
category or based on graph coloring technique.

Figure 26. Components colored with graph coloring technique only works for complex
interconnected component

Different coloring method is useful for different cases. In figure 25, the first level
RISA system components are colored using a graph coloring technique, and it’s not
showing anything interesting. Coloring with graph coloring technique is much more
reasonable for complex interconnected components such as RISA_SPP subsystem that
can be seen in figure 26. Because of this reason, several coloring modes are kept inside
the application to provide understanding depending on the case.

The last feature in the assessment application is AUTOSAR reader, this feature is
initially created to get familiar with the AUTOSAR environment. Later this feature is
used to do AUTOSAR file debugging when the AutoAnalyze application can’t open the
AUTOSAR file to check components’ structure validity. The user interface can be seen
in figure 28 where it shows AUTOSAR component blocks in different granularity level.

Since there’s no user interface for AUTOSAR generator, the general concept of the
application has been explained in figure 16 in chapter 5.2. The initial version of the
application is a valid AUTOSAR file that can be read by AutoAnalyze software but
nonsensical as it can be seen in the left-hand side of figure 29. The implementation of
custom structure creates a much more reasonable AUTOSAR file that can be seen in
the right-hand side of figure 29. Figure 30 shows the user interface of the AutoAnalyze
software
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Figure 27. Final EMF visualization using D3 Javascript library. System depth visualized
using hierarchy diagram and component interaction with force diagram
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Figure 28. Custom AUTOSAR components visualization

Figure 29. Comparison between the initial direct component conversion in AUTOSAR
and the component conversion using custom structure
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Figure 30. User interface of the AutoAnalyze software
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II. List of Reference Tables
Below’s table is the Simulink blocks inside RISA Simulink file. It provides information
on the block functionality for consideration when transforming the MATLAB/Simulink
model into AUTOSAR model.

Table 1. Extracted Simulink Block Libraries

Name Description
Continuous Continuous function blocks such as Derivative and Integrator
Dashboard The Dashboard Scope block shows connected signals during

simulation on a scope display.
Discontinuities Discontinuous function blocks such as Saturation
Discrete Blocks in the Discrete library that are optimized for HDL

Code generation
Logic and Bit Opera-
tions

Logic or bit operation blocks such as Logical Operator and
Relational Operator

Lookup Tables Lookup table blocks such as Cosine and Sine
Math Operations Mathematical function blocks such as Gain, Product, and

Sum
Model Verification Blocks for self-verifying models, such as Check Input Reso-

lution
Model-Wide Utilities Model-wide operation blocks such as Model Info and Block

Support Table
Ports and Subsystems Blocks related to subsystems, such as Inport, Outport, Sub-

system, and Model
Signal Attributes Modify signal attribute blocks such as Data Type Conversion
Signal Routing Route signal blocks such as Bus Creator and Switch
Sinks Display or export signal data blocks such as Scope and To

Workspace
Sources Generate or import signal data blocks such Sine Wave and

From Workspace
String String manipulation blocks
User-Defined Functions Custom function blocks such as MATLAB Function, MAT-

LAB System, Simulink Function, and Initialize Function
Additional Math and
Discrete

Mathematical and discrete function blocks such as Decre-
ment Stored Integer

HDL Coder HDL-optimized blocks
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Below are all block details inside the RISA MATLAB/Simulink file of the Simulink
block libraries listed in table one.

Table 2. Extracted Blocks and Its Description

Blocks Description Block Libraries
1-D Lookup Table Approximate one dimensional function Lookup Tables
Abs The Abs block outputs the absolute value of

the input.
Math Operations

Assignment The Assignment block assigns values to spec-
ified elements of the signal.

Math Operations

Bitwise Operator The Bitwise Operator block performs the
bitwise operation specified on one or more
operands. Unlike logic operations of the log-
ical operator block, bitwise operations treat
the operands as a vector of bits rather than a
single value.

Logic and Bit Op-
erations

Bus Creator The Bus Creator block combines a set of sig-
nals into a bus.

Composite
Signals

Bus Selector The Bus Selector block outputs a specified
subset of the elements of the bus at its input.
The block can output the specified elements
as separate signals or as a new bus.

Composite
Signals

Constant The Constant block generates a real or com-
plex constant value. The block generates
scalar, vector, or matrix output, depending
on the dimensionality of the constant value
parameter and the setting of the interpret vec-
tor parameters as one dimension parameter

Sources

Data Store Mem-
ory

The Data Store Memory block defines and
initializes a named shared data store, which is
a memory region usable by Data Store Read
and Data Store Write blocks that specify the
same data store name.

Data Stores

Data Type Con-
version

The Data Type Conversion block converts
an input signal of any Simulink data type to
another specified data type.

HDL Floating
Point Operations

Continued on next page
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Table 2 – Continued from previous page
Blocks Description Block Libraries
Demux The Demux block extracts the components

of an input vector signal and outputs separate
signals. The output signal ports are ordered
from top to bottom.

Signal Routing

Discrete Filter The Discrete Filter block independently fil-
ters each channel of the input signal with the
specified digital IIR filter

Discrete

Divide The Divide block’ outputs the result of divid-
ing its first input by its second. The inputs can
be scalars, a scalar and a nonscalar, or two
nonscalars that have the same dimensions.

Math Operations

Enable The Enable’ block allows an external sig-
nal to control execution of a subsystem or
a model.

Ports and Subsys-
tems

Fcn The Fcn’ block applies the specified mathe-
matical expression to its input.

User-Defined
Functions

For Iterator The For Iterator’ block, when placed in a
Subsystem block, repeats the execution of a
subsystem during the current time step un-
til an iteration variable exceeds the specified
iteration limit.

Ports and Subsys-
tems

From Workspace The From Workspace’ block reads signal data
from a workspace and outputs the data as a
signal.

Sources

Gain The Gain block multiplies the input by a con-
stant value (gain). The input and the gain can
each be a scalar, vector, or matrix.

Math Operations

Ground The Ground block connects to blocks whose
input ports do not connect to other blocks. If
you run a simulation with blocks that have un-
connected input ports, Simulink issues warn-
ings. Using a Ground block to ground those
unconnected blocks can prevent these warn-
ings.

Sources

Inport Inport blocks are the links from outside a
system into the system.

Sources

Continued on next page
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Table 2 – Continued from previous page
Blocks Description Block Libraries
Logical Operator Logical Operator block performs the speci-

fied logical operation on its inputs. An input
value is TRUE (1) if it is nonzero and FALSE
(0) if it is zero.

Logic and Bit Op-
erations

Math Function The Math Function block performs numerous
common mathematical functions.

Math Operations

MinMax The MinMax block outputs either the mini-
mum or the maximum element or elements
of the inputs.

Math Operations

Mux The Mux block combines its inputs into a
single vector output. An input can be a scalar
or vector signal. All inputs must be of the
same data type and numeric type.

Signal Routing

Outport Outport blocks are the links from a system to
a destination outside the system.

Sinks

Reciprocal Sqrt Calculate square root, signed square root, or
reciprocal of square root (HDL Coder)

Math Operations

Relational Opera-
tor

Perform specified relational operation on in-
puts

Logic and Bit Op-
erations

Saturation The Saturation block produces an output
signal that is the value of the input signal
bounded to the upper and lower saturation
values.

Discontinuities

Selector The Selector block generates as output se-
lected or reordered elements of an input vec-
tor, matrix, or multidimensional signal.

Signal Routing

Subsystem A Subsystem block contains a subset of
blocks within a model or system. The Subsys-
tem block can represent a virtual subsystem
or a nonvirtual subsystem.

Ports and Subsys-
tems

Switch The Switch block passes through the first in-
put or the third input signal based on the value
of the second input. The first and third inputs
are data input. The second input is a control
input.

Signal Routing

Continued on next page
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Table 2 – Continued from previous page
Blocks Description Block Libraries
Tapped Delay Tapped Delay block delays an input by the

specified number of sample periods and out-
puts all the delayed versions. This block is
used to discretize a signal in time or resample
a signal at a different rate.

Discrete

Terminator Use the Terminator block to cap blocks whose
output ports do not connect to other blocks.

Sinks

To Workspace The To Workspace block inputs a signal and
writes the signal data to a workspace. Dur-
ing the simulation, the block writes data to
an internal buffer. When the simulation is
completed or paused, that data is written to
the workspace. Data is not available until the
simulation is stopped or paused.

Sinks

Trigonometric
Function

The Trigonometric Function block performs
common trigonometric functions and outputs
the result in rad.

Math Operations

Unit Delay The Unit Delay block holds and delays its
input by the sample period you specify. When
placed in an iterator subsystem, it holds and
delays its input by one iteration.

Discrete

Below is the list of the tags inside Massif generated EMF file. It comprises all
information that matches with the elements inside MATLAB/Simulink file
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Table 3. Massif Class name and its explanation

Name Description
Block This EClass represents the basic building block of Simulink

systems. Each block has properties, ports and can refer to
a source block that was used as the template from a library
to create the element. The properties are not a map, so the
block may have multiple properties with the same name, or
even same name-value pair. Attribute name value is com-
puted from the name feature of the SimulinkReference stored
in simulinkRef. The different type of ports are accessible
through computed filtered lists.

Block (subBlock) The value of the reference is computed by finding the el-
ement with the same name and qualifier as stored in the
sourceBlockRef.

BusCreator This EClass represents a bus creator block that bundles the
signals on its inports into a bus on its outport. This reference
points to the creator of the incoming bus signal. Either
a bus creator or a bus selector with outputAsBus = true.
Always determined as backward navigation on signals is
deterministic.

BusSelector This EClass represents a bus selector block that separates the
signals from the bus received on its inport into its outports.
Since it is possible to select only some of the signals and
even embedded signals from a bus inside the bus, mapping
entries (BusSignalMapping) are used to indicate which out-
port (mappingTo) selects which signals originating from a
given outport (mappingFrom). The outputAsBus attribute is
true if the selected signals are bundled into a bus and placed
on a single outport.

BusSignalMapping This EClass represents a signal mapping entry in the BusSe-
lector to define which signals are selected from a bus.

BusSpecification This EClass is an abstract supertype for blocks that handle
bus signals. A bus signal is used for bundling a set of signals
into one signal to reduce the number of ports and connections
required in the model.

Connection This EClass represents the connection between Block ele-
ments in order to trans- fer data from an outport to one or
more inports.

Continued on next page
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Table 3 – Continued from previous page
Name Description
Enable This EClass represents an enable port of a Block. The values

are computed by fltering Enable ports from the values of the
ports feature.

EnableBlock This EClass represents a port block of a Enable port with an
outport that can be used by blocks inside the subsystem.

EnableStates This EEnum represents the possible settings of a Enable port
for specifying what happens to the states of blocks in the
enabled system upon disabling.

From The From block accepts a signal from a corresponding Goto
block, then passes it as output. The data type of the output
is the same as that of the input from the Goto block. From
and Goto blocks allow you to pass a signal from one block
to another without actually connecting them.

Goto The Goto block passes its input to its corresponding From
blocks. From and Goto blocks allow you to pass a signal
from one block to another without actually connecting them.

GotoTagVisibility The Goto Tag Visibility block defines the accessibility of
Goto block tags that have scoped visibility. The tag specified
as the Goto tag parameter is accessible by From blocks in
the same subsystem that contains the Goto Tag Visibility
block and in subsystems below it in the model hierarchy.

IdenfitierReference This is a specific class used as a unique identifier for
Simulink elements.

InPort This EClass represents an inport of a Block. The values are
computed by filtering Inports from the values of the ports
feature.

InPortBlock This EClass represents a port block of a InPort with an
outport that can be used by blocks inside the subsystem.

LibraryLinkReference This is a specific class used for representing links to Simulink
elements. Disabled links mean that the block was originally
copied from a library but it was modified later.

ModelReference This EClass represents a SimulinkModel included as a block
in this model.

MultiConnection This EClass represents a connection between a single Out-
Port and multiple InPort. Each inport is connected by a
SingleConnection contained by this con- nection.

Continued on next page
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Table 3 – Continued from previous page
Name Description
OutPort This EClass represents an outport of a Block. The values are

computed by filtering Outports from the values of the ports
feature.

OutPortBlock This EClass represents a port block of a OutPort with an
inport that can be used by blocks inside the subsystem.

Port This EClass represents the abstract supertype of block ports
that are used for allowing data communication and signaling
between blocks.

PortBlock This EClass represents the abstract supertype of blocks that
represent ports of a subsystem.

Property This EClass represents properties of Block elements. Each
property has a name, a type and a value. The value is stored
as a character string but is validated based on the type.

SimulinkElement This EClass represents the abstract supertype of elements in
Simulink systems that can be identified uniquely with a fully
qualified name consisting of a name and a qualifier.

SimulinkModel Elements on a Simulink model that can be identified and
named are subtypes of SimulinkElement, which stores the
identifier as a SimulinkReference element. The root element,
SimulinkModel, stores the file path and version for the origi-
nal Simulink system it represents to help in handling changes
in the represented system. The Simulink model contains a
hierarchy of Block elements that may have properties and
specify a source block from a Simulink library. The source
block is set if the internal structure and behavior of the block
is defined by a library block. The communication between
blocks is done through Port elements, that can be either out-
put or input. Each port is represented by a PortBlock inside
the block. The output ports are connected to input ports
using Connection elements that can be one-to-one single
connections or one-to-many multiconnections.

Continued on next page
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Table 3 – Continued from previous page
Name Description
SimulinkReference This abstract EClass represents a reference for a Simulink

element. The identifier is a fully qualified name constructed
from a qualifier (the fully qualified name of the parent of
the element) and a name. Since a SimulinkElement can be
identified based on its fully qualified name, it is possible to
reference an element by cloning and storing the reference
instead of a direct link to the element itself.

SingleConnection This represents port connection
SourceBlockRef This represents original location and block name inside

Simulink file
SubSystem This abstract EClass represents another complex system

inside an already existing system
TagVisibility The Tag Visibility is a parameter of Goto blocks to determine

the location of From blocks that access the signal.
Trigger This EClass represents a trigger port of a Block. The values

are computed by filtering Trigger ports from the values of
the ports feature.

TriggerBlock This EClass represents a port block of a Trigger port with an
outport that can be used by blocks inside the subsystem.

TriggerType This EEnum represents the possible events that can trigger
the execution of a subsystem with a Trigger port.

VirtualBlock This EClass represents the abstract supertype of blocks that
do not explicitly affect the simulation of the Simulink system.
These blocks are called virtual and are added as syntactic
sugar, for example Goto and From can be used instead of a
direct Connection to connect blocks.

AUTOSAR has provided guidelines to do the transformation from Simulink compo-
nents to AUTOSAR version 3.x [AUTa]. The complete list of components’ equivalent
can be found on the table below:
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Table 4. Extracted Blocks and Its Description

Blocks Description Block Libraries
Atomic Software
Component

Smallest non-dividable software entity,
connected to the AUTO- SAR Virtual
Functional Bus, relocatable.

Can be represented as
any type of subsys-
tem (virtual & non-
virtual) also by a model.
AUTOSAR’s notion of
atomic should not to
be confused with a
Simulink atomic subsys-
tem.

P-Port Provide-
Port

Specific Port providing data or providing
a service of a server.

Outport for sender/re-
ceiver communication

R-Port Require-
Port

Specific Port requiring data or requiring a
service of a server.

Inport for sender/re-
ceiver communication

PortInterface A PortInterface characterizes the informa-
tion provided or required by a port. Can
be either sender/receiver interface or clien-
t/server interface.

Abstract class without
realization in Simulink.

ComSpec ComSpec defines specific communication
attributes

No Simulink representa-
tion

Sender/Receiver
Interface

A sender-receiver interface is a special
kind of port-interface used for the case
of sender- receiver communication. The
sender-receiver interface defines the data-
elements which are sent by a sending com-
ponent (which has a p-port providing the
sender-receiver interface) or received by a
receiving component (which has an r-port
requiring the sender-receiver interface).

BusObject and bus se-
lector/creators

Client/Server In-
terface

The client-server interface is a special kind
of port-interface used for the case of client-
server communication. The client-server
interface defines the operations that are
provided by the server and that can be used
by the client.

Specific blocks, realiz-
ing RTE-API

Continued on next page

59



Table 4 – Continued from previous page
Blocks Description Block Libraries
Sender Receiver
Annotation

Annotation of the data elements in a port
that realizes a sender/receiver interface.

Description field as-
signed to a specific
DataElementPrototype
inside the Runnable
subsystem

Sensor Actuator
Software Compo-
nent

AUTOSAR SWC dedicated to the control
of a sensor or actuator.

Virtual subsystem

Services An AUTOSAR Service is a logical entity
of the basic software offering general func-
tionality to be used by various AUTOSAR
software components.

Virtual subsystem

Runnable A Runnable Entity is a part of an Atomic
Software-Component which can be exe-
cuted and scheduled independently from
the other Runnable Entities.

Function call subsystem

RTEEvents An RTEEvent encompasses all possible
situations that can trigger execution of a
runnable entity by the RTE.

Function calls

Exclusive Areas Exclusive Areas prevent runnables from
being preempted by other runnables.

Atomic subsystem
marked as Exclu-
siveArea.

Composition Composition encapsulates a collaboration
of Components thereby hiding detail and
allowing the creation of higher abstraction
levels.

Virtual subsystems

Datatypes AUTOSAR datatypes are either primitive
or complex they are used to type data-
elements, arguments of the operations in a
client-server interface and constants.

Simulink built-in types

Primitive
Datatype

All primitive datatypes allow an efficient
mapping to programming languages like
C

Simulink built-in types

Continued on next page
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Table 4 – Continued from previous page
Blocks Description Block Libraries
Complex data
types

Composite or complex datatypes are ei-
ther arrays or records. An array consists
of numberOfElements elements that each
have the same type, arrays have zero based
indexing. A record describes a non- empty
set of objects, each of which has a unique
identifier.

Simulink wide signal
for arrays. Simulink bus
signal for records.

Characteristics Values of characteristics can be changed
on an ECU via calibration data manage-
ment tool or an offline calibration tool

Overloaded
Simulink.Parameter
class suitable for online
calibration.
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