
U N I V E R S I T Y O F T A R T U

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Chair of Theoretical Computer Science

Jevgeni Kabanov

Aranea—A Web Development and
Integration Framework

Master thesis (40 AP)

Supervisor: Varmo Vene, PhD

TARTU 2007

Contents

Acknowledgements 3

Introduction 4

1 Tutorial 7
1.1 Hello World! . 7
1.2 Reusing Widgets . 11
1.3 Flows . 14
1.4 Putting It Together . 18

2 Web Development Framework 21
2.1 Abstractions . 21
2.2 Assembly . 27
2.3 Aspects . 32
2.4 Implementation . 35

3 Web Integration Framework 38
3.1 Requirements . 38
3.2 Implementation . 39
3.3 Legacy Migration . 46

4 Extensions 49
4.1 Blocking Calls and Continuations . 49
4.2 Code Reloading . 51

Conclusions 58

Summary (in Estonian) 59

Bibliography 59

1

Acknowledgements

First of all I’d like to thank Webmedia, Ltd. and specially Taavi Kotka and Ivo Mägi

for believing in Aranea project success and thus making it possible.

Secondly, I’d like to thank my supervisor, Varmo Vene, who consistently gave me new

challenges, without which this thesis would never come to be.

Of course a great deal of gratitude goes to my reviewers. Mark Fishel spent 8 hours

one Sunday afternoon, helping me to polish and finish this thesis. Anton Litvinenko,

Vesal Vojdani and Ragne Hanni found a lot of last moment mistakes.

Aranea was not a one person effort. Oleg Mürk contributed to the core ideas behind

the framework. Maksim Boiko developed the initial prototype. Konstantin Tretjakov,

Toomas Römer, Taimo Peelo, Alar Kvell, Rein Raudjärv and Andrei Ivanov have all

contributed to the development of the open source implementation.

This work was partially supported by Estonian Science Foundation grant No. 6713.

Finally the greatest gratitude goes to the Flying Spaghetti Monster that kept me in

the reach of his noodly appendages at all time, blessing my pasta and beer, allowing me

to complete this work.

3

Introduction

During the last 10 years we have witnessed immense activity in the area of web

framework design. Currently, there are more than 30 actively developed open source

web frameworks in Java [33], not to mention commercial products, other platforms like

.NET and dynamic languages and in-house corporate frameworks that never saw public

light. Many different and incompatible design philosophies are used, but even within one

approach there are multiple frameworks that have small implementation differences and

are consequently incompatible with each other.

In this thesis we propose a minimalistic component model “Aranea” aimed at con-

structing and integrating server-side web controller frameworks in Java. It allows as-

sembling most of available web programming models out of reusable components and

patterns. We also show how to integrate different existing frameworks using Aranea

as a common protocol. In its default configuration Aranea supports both developing

sophisticated user interface using stateful components and nested processes, and high-

performance stateless components.

We propose to use this model as a platform for framework development, integration,

and research. This would allow using different ideas together and avoid reimplementing

the same features repeatedly.

Motivation

One of the main problems with enterprise applications is their size. After some point

in time the application becomes so large and so complex that a lot of work is required just

to maintain it. Even more work is required to improve existing or add new functionality.

The best known way to combat this problem is to decompose the application in

many modules or components. Most wide-spread way of doing it is Object-Oriented

Programming [5].

Object-Oriented Programming employs object encapsulation and abstraction to re-

duce the dependencies between components, thus also reducing the effort required to

understand and maintain the application.

However web applications have long suffered from lack of Object-Oriented approach.

From all the web frameworks only one known to us provides good Object-Oriented

abstractions—Wicket [38]. Even Wicket, however, does not provide first-class abstrac-

tions for pages and flows, which means that applications are still assembled using ad-hoc

4

approach.

Supporting Object-Oriented Programming was a major goal of Aranea project. Ev-

erything is a first-class abstraction and large enterprise applications have been successfully

built and deployed, employing Object-Oriented Development and Design to great benefit.

Another problem with enterprise applications is their age. Enterprises commonly ac-

cumulate a number of different applications developed for different business requirements

over some time. They may use a number of different technologies, often outdated. These

applications constitute the enterprise ecosystem, that software developers have to take

into account.

However it is not usually economically feasible to just start a completely fresh appli-

cation that fulfills all of those business requirements. It is more common to create an

application fulfilling only a part of business requirements (mostly not covered by existing

applications) and integrate it with the ecosystem.

Although there is a lot of solutions for integrating business logics, there is almost

nothing for integrating web applications. It is often the case, that users have to use several

separate web applications resorting to techniques like copy-paste to transfer information

between them.

The second major Aranea goal is to enable integration on the web level. This is

achieved by extending object encapsulation to allow implementing Aranea components

in arbitrary web frameworks and technologies. This approach enables Aranea-based ap-

plication to integrate enterprise ecosystem into a single coherent component-based appli-

cation. It also enables to painlessly migrate from outdated technologies, by allowing to

rewrite the applications component-by-component, instead of all-at-once.

Ecosystem

Before starting to describe Aranea we would like to give an overview of the web

framework ecosystem at the time of writing. A number of different approaches has been

implemented by various web frameworks, some of them only marginal and some highly

popular.

The first important approach is using stateless or reentrant components for high per-

formance and low memory footprint, available in such frameworks as Struts [19] and

WebWork [37].

An alternative one is using hierarchical composition of stateful non-reentrant compo-

nents with event-based programming model, available in such frameworks as JSF [30],

ASP.NET [25], Seaside [6], Wicket [38], Tapestry [27], FSM [12]. This model is often used

for developing rich user interfaces (UIs), but generally poses higher demands on server’s

CPU and memory.

The next abstraction useful especially for developing rich UIs is nested processes, often

referred to as modal processes, present for instance in such web frameworks as WASH

[22], Cocoon [24], Spring Web Flow [35], and RIFE [2]. They are often referred to by

5

the name of implementation mechanism—continuations. The original idea comes from

Scheme [11, 21].

All of these continuation frameworks provide one top-level call-stack—essentially flows

are like function calls spanning multiple web requests. A significant innovation can be

found in framework Seaside [6], where continuations are combined with component model

and call stack can be present at any level of component hierarchy.

Yet another important model is using asynchronous requests and partial page updates,

referred to as Ajax [23]. It allows decreasing server-side state representation demands

and increases responsiveness of UI. At an extreme, it allows creating essentially fat client

applications with sophisticated UI within browser.

Finally there are different forms of metaprogramming such as domain specific language

for describing UI as a state machine in Spring Web Flow [35] and domain-driven design as

implemented in Ruby on Rails [34] or RIFE/Crud [3]. This often requires the framework

to allow dynamic composition and configuration of components at run-time.

Prerequisites

This thesis implies the knowledge of basic software development and web practices,

technologies and approaches. It also implies some basic experience in web development

in Java and familiarity with at least one MVC web framework. A good introduction can

be found e.g. in [4].

Contributions and Outline

The first chapter is a tutorial introducing the reader to the application of OOP prac-

tices in Aranea. It also serves as a case study for the rest of the thesis. It is based on a

tutorial [15] written for first-time Aranea users.

The second chapter introduces the reader to the components, abstractions and assem-

bly of the Aranea framework. It is less concerned with the implementation details and

more with the ideas behind the framework. It is based on [20].

The third chapter describes how to use the framework components to enable web

application integration.

The fourth and final chapter describes Aranea extensions. The first section is based

on [20]. The second section is based on [16].

The main contribution is the open source Aranea project, comprising over 100 thou-

sand lines of code and over 200 pages of documentation with several examples and sub-

projects. The project was co-founded with Oleg Mürk and built under author’s leadership

by the Aranea team. The project distribution is available on the accompanying CD and

from the project website http://www.araneaframework.org.

6

http://www.araneaframework.org

Chapter 1

Tutorial

This chapter demonstrates the way Aranea applications are assembled from indepen-

dent widgets and how we can use these widgets to apply Object-Oriented idioms.

1.1 Hello World!

For the first introduction to Aranea, we present the example that has become classical

in computer literature for learning new languages and technologies–“Hello World!” [17].

Our variant of “Hello World!” will display a form where one can insert his name and

then display a personalized greeting. We will assume that all Java classes in the example

are in the example package.

Figure 1.1: Insert your name display

As we can see on Figure 1.1, we will split the example into two separate components

(that we refer to hereon as widgets, see 2.1.3). Generally one component would be more

than enough (for that matter a single JSP would be enough). The starting widget is

NameWidget that has an associated name.jsp and displays the form for inserting your

name. The source code of the widget follows:

7

public class NameWidget extends BaseUIWidget {

protected void init() throws Exception {

setViewSelector("name");

}

public void handleEventHello() throws Exception {

String name =

(String) getCurrentInput().getGlobalData().get("name");

getFlowCtx().replace(new HelloWidget(name), null);

}

}

The init() method is called when the widget is initialized by the framework and can

be used to perform initialization tasks. In this case the widget selects the JSP that will

be used for rendering by calling the setViewSelector("name"), which by default will

be /WEB-INF/jsp/name.jsp:

<?xml version="1.0" encoding="UTF-8"?>

<jsp:root

xmlns:jsp="http://java.sun.com/JSP/Page"

xmlns:ui="http://araneaframework.org/tag-library/standard"

version="1.2">

<ui:root>

<ui:viewPort>

<head>

<ui:importScripts/>

<title>Hello World!</title>

</head>

<ui:body>

<ui:systemForm method="GET">

Insert your name: <input type="text" name="name"/>

<ui:eventButton labelId="#Say hello" eventId="hello"/>

</ui:systemForm>

</ui:body>

</ui:viewPort>

</ui:root>

</jsp:root>

<ui:systemForm/> renders the actual HTML form and <ui:eventButton> renders a

button with a label “Say hello!” that will send the hello event to the NameWidget,

which calls its handleEventHello() method.

As soon as that occurs the first line of handleEventHello() method

String name = (String) getCurrentInput().getGlobalData().get("name");

8

will read the data submitted by the form input field ”name” (this is not the way it is

done usually in Aranea, but using forms would complicate this example). The second

line of this method

getFlowCtx().replace(new HelloWidget(name), null);

will create a new instance of HelloWidget passing it the read name as a constructor

argument. Then we replace the current widget in the flow with a new one, which causes

the NameWidget instance to be destroyed and the HelloWidget instance to become active.

The HelloWidget source follows:

public class HelloWidget extends BaseUIWidget {

private String name;

public HelloWidget(String name) {

this.name = name;

}

public String getName() {

return this.name;

}

protected void init() throws Exception {

setViewSelector("hello");

}

}

HelloWidget saves the constructor argument and makes it visible to the JSP via the

getter getName(). It will then delegate the rendering to the following JSP:

<?xml version="1.0" encoding="UTF-8"?>

<jsp:root

xmlns:jsp="http://java.sun.com/JSP/Page"

xmlns:c="http://java.sun.com/jstl/core"

xmlns:ui="http://araneaframework.org/tag-library/standard"

version="1.2">

<ui:root>

<ui:viewPort>

<ui:widgetContext>

<head>

<ui:importScripts/>

<title>Hello World!</title>

</head>

9

<ui:body>

Hello <c:out value="${widget.name}"/>!

</ui:body>

</ui:widgetContext>

</ui:viewPort>

</ui:root>

</jsp:root>

Finally we will need to deploy the example as a web application. The simplest way

to configure Aranea is to pass the application starting widget to its dispatcher servlet in

the Servlet web.xml:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app PUBLIC

"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<!-- Aranea session cleanup listener -->

<listener>

<listener-class>

org.araneaframework.http.core.StandardSessionListener

</listener-class>

</listener>

<!-- Aranea dispatcher servlet -->

<servlet>

<servlet-name>araneaServlet</servlet-name>

<servlet-class>

org.araneaframework.integration.spring.AraneaSpringDispatcherServlet

</servlet-class>

<init-param>

<param-name>araneaApplicationStart</param-name>

<param-value>example.NameWidget</param-value>

</init-param>

<load-on-startup>1</load-on-startup>

</servlet>

<!-- Aranea dispatcher servlet mapping -->

<servlet-mapping>

<servlet-name>araneaServlet</servlet-name>

<url-pattern>/main/*</url-pattern>

10

</servlet-mapping>

</web-app>

1.2 Reusing Widgets

Having presented a simple example we can go on to examine more complex topics.

Every widget can also be freely reused as a component inside any other widget. Let’s try

to reuse HelloWidget inside of NameWidget as shown on Figure 1.2.

Figure 1.2: HelloWidget in NameWidget

First we have to modify the HelloWidget, adding it a setter in addition to the getter:

public class HelloWidget extends BaseUIWidget {

private String name;

public String getName() {

return this.name;

}

public void setName(String name) {

this.name = name;

}

...

}

Then we modify the NameWidget to use HelloWidget directly instead of navigating to it:

public class NameWidget extends BaseUIWidget {

private HelloWidget helloWidget;

protected void init() throws Exception {

11

helloWidget = new HelloWidget("Stranger");

addWidget("hello", helloWidget);

setViewSelector("name");

}

...

}

This associates an instance of HelloWidget under name “hello” with the NameWidget

and passes it the default greeting of “Stranger”. We save this instance in a field to be

able to use it directly, which we do in handleEventHello():

public class NameWidget extends BaseUIWidget {

...

public void handleEventHello() throws Exception {

String name = (String) getInputData().getGlobalData().get("name");

helloWidget.setName(name);

}

}

We use the setter to update the HelloWidget state and display the submitted name. The

last thing we need to update is the name.jsp1:

...

<ui:systemForm method="GET">

<ui:widgetInclude id="hello"/>

Insert your name: <input type="text\ name="name"/>

<ui:eventButton labelId="#Say hello" eventId="hello"/>

</ui:systemForm>

...

An interesting fact to notice is that NameWidget doesn’t really have to depend on

HelloWidget. In fact all we need is a widget that has a setName(String name) method

as captured in the following interface:

public interface IHelloWidget extends Widget {

public void setName(String name);

}

and make NameWidget accept it into its constructor:

1This is a simplification, since hello.jsp also includes head, body and other general tags. However
in the next section we will show how to get rid of this repeating boilerplate and make leave only relevant
tags in widget JSPs. This way we would also put the current example to work.

12

public class NameWidget extends BaseUIWidget {

private IHelloWidget helloWidget;

public NameWidget(IHelloWidget helloWidget) {

this.helloWidget = helloWidget;

}

protected void init() throws Exception {

addWidget("hello", helloWidget);

setViewSelector("name");

}

...

}

Then we could easily implement e.g. a widget that doesn’t just display the greeting,

but also tells how many hits does Google give for this name as shown on Figure 1.3. For

Figure 1.3: HelloWidget with Google hits.

that we would just need a widget implementing IHelloWidget that searches Google on

setName() calls:

public class GoogleHelloWidget implements IHelloWidget {

private int hits;

public void setName(String name) {

//Connect to Google...

this.hits = //Get number of hits...

}

//... select JSP and render

}

Another interesting fact is that since our widgets are objects through and through it

is easy to make e.g. a widget that will use three independent HelloWidgets to display

greetings to three different people:

public class ThreeGreetingsWidget extends BaseUIWidget {

protected void init() throws Exception {

addWidget("hello1", new HelloWidget("Jevgeni Kabanov"));

addWidget("hello2", new HelloWidget("Taimo Peelo"));

addWidget("hello3", new HelloWidget("Alar Kvell"));

13

setViewSelector("threeGreetings");

}

}

We would of course also need to include those widgets in the JSP:

...

<ui:widgetContext>

<ui:widgetInclude id="hello1"/>

<ui:widgetInclude id="hello2"/>

<ui:widgetInclude id="hello3"/>

</ui:widgetContext>

...

1.3 Flows

Flows can be introduced by modifying the same example. First of all we can notice

that after the name is inserted, there is no going back—the widget on the flow has been

exchanged and unless we create a new browser session we will always get the same “Hello

Jevgeni!” message no matter how much we refresh. To remedy that let’s modify the

HelloWidget to have a back button as shown on figure 1.4.

Figure 1.4: HelloWidget with a back button.

We start by adding the button to hello.jsp:

...

Hello <c:out value="${widget.name}"/>!

<ui:eventButton labelId="#Back" eventId="back"/>

...

This button maps to the handleEventBack() in the HelloWidget:

public class HelloWidget extends BaseUIWidget {

...

public void handleEventBack() throws Exception {

getFlowCtx().replace(new NameWidget(), null);

}

}

14

Although this solution does the work, it has a number of drawbacks:

1. A new instance of NameWidget is constructed every time the back button is pressed.

This means that NameWidget state is lost and the inserted name is not preserved.

2. HelloWidget doesn’t really send us back, it just replaces itself with the NameWidget.

Thus HelloWidget has to know where to send us, and if more than one widget would

be able to create it we would return wrongly.

To solve this problem we have to update NameWidget and HelloWidget as follows:

public class NameWidget extends BaseUIWidget {

...

public void handleEventHello() throws Exception {

...

getFlowCtx().start(new HelloWidget(name), null);

}

}

public class HelloWidget extends BaseUIWidget {

...

public void handleEventBack() throws Exception {

getFlowCtx().finish(null);

}

}

Before the widgets replaced each other inside one and the same flow as shown on

Figure 1.5.

Figure 1.5: Widgets in same flow.

Now however widgets are in different flows as shown on Figure 1.6.

By calling getFlowCtx().start() we cause a new flow to be created containing a

HelloWidget instance. The previous flow containing a NameWidget instance becomes

inactive, and we can interact with the HelloWidget flow freely. After we call

getFlowCtx().finish() the current flow finishes execution freeing the HelloWidget

instance and the NameWidget flow becomes active again.

15

Figure 1.6: Widgets in different flows.

Now that the flows are covered, let’s try to get the JSP files smaller. Currently we

duplicate all of the root tags like head, body, etc in both widgets. In a real application

this can be handled by introducing a RootWidget:

public class RootWidget extends BaseUIWidget {

protected void init() throws Exception {

setViewSelector("root");

addWidget("flowContainer",

new StandardFlowContainerWidget(new NameWidget()));

}

}

StandardFlowContainerWidget is a widget that provides the FlowContext used for

navigation in the previous examples. It handles a stack of child widgets and implements

start() and finish() by pushing on and popping from the stack. And since it is just a

usual widget we can associate it with our RootWidget as usual and pass it a NameWidget

instance to be the starting flow.

Now we can put all of the boilerplate tags into root.jsp:

<?xml version="1.0" encoding="UTF-8"?>

<jsp:root

xmlns:jsp="http://java.sun.com/JSP/Page"

xmlns:c="http://java.sun.com/jstl/core"

xmlns:ui="http://araneaframework.org/tag-library/standard"

version="1.2">

<ui:root>

<ui:viewPort>

<ui:widgetContext>

<head>

<ui:importScripts/>

16

<title>Hello World!</title>

</head>

<ui:body>

<ui:widgetInclude id="flowContainer"/>

</ui:body>

</ui:widgetContext>

</ui:viewPort>

</ui:root>

</jsp:root>

Then the junk from other JSPs can also be removed. After that the name.jsp will

look as follows:

<jsp:root

xmlns:jsp="http://java.sun.com/JSP/Page"

xmlns:ui="http://araneaframework.org/tag-library/standard"

version="1.2">

<ui:widgetContext>

Insert your name: <input type="text\ name="name"/>

<ui:eventButton labelId="#Say hello" eventId="hello"/>

</ui:widgetContext>

</jsp:root>

and the hello.jsp as follows:

<jsp:root

xmlns:jsp="http://java.sun.com/JSP/Page"

xmlns:c="http://java.sun.com/jstl/core"

xmlns:ui="http://araneaframework.org/tag-library/standard"

version="1.2">

<ui:widgetContext>

Hello <c:out value="${widget.name}"/>!

<ui:eventButton labelId="#Back" eventId="back"/>

</ui:widgetContext>

</jsp:root>

<ui:widgetContext> is the only required tag that declares that this JSP belongs to a

widget.

The last thing to note, is that since StandardFlowContainerWidget is a usual widget,

it is possible to have several of them running in parallel:

17

public class RootWidget extends BaseUIWidget {

protected void init() throws Exception {

setViewSelector("root");

addWidget("flowContainer1",

new StandardFlowContainerWidget(new NameWidget()));

addWidget("flowContainer2",

new StandardFlowContainerWidget(new NameWidget()));

addWidget("flowContainer3",

new StandardFlowContainerWidget(new NameWidget()));

}

}

Of course we would also need to include them from the corresponding JSP, but this

would allow three independent instances of “Hello World” application to run unhindered

on a single page, with each application being completely independent of the rest 2 as

shown on Figure 1.7.

Figure 1.7: Three flow containers.

1.4 Putting It Together

Now that we have covered both widgets and flows let’s try to approach this example

as we would in a usual application, where each component can be a valuable reuse entity

later. We’d like to reuse the widgets both as resuable components and flows.

However if we include NameWidget as a child widget it will start a new flow with

HelloWidget in it, which might not be what we really want. We’d rather have NameWidget

notify us somehow. To do that we need it to declare a callback:

2This is a simplification, as all three widgets have a textbox with one and the same name, which
would conflict when submitted. In reality we would have to scope the name, adding a ${widgetId}
prefix to it and change getGlobalData() to getScopedData() in the parameter reading code. However
since in real-life use cases forms scope parameters automatically, we choose to ignore this problem in our
example as well.

18

public class NameWidget extends BaseUIWidget {

interface Callback extends Serializable {

void nameSelected(String name);

}

private Callback callback;

public NameWidget(Callback callback) {

this.callback = callback;

}

protected void init() throws Exception {

setViewSelector("name");

}

public void handleEventHello() throws Exception {

String name =

(String) getCurrentInput().getGlobalData().get("name");

callback.nameSelected("name");

}

}

Now we can just include NameWidget as a child and it will let us know when the user

clicks the button selecting the name. We can also wrap it as a flow easily:

public class NameFlowWidget

extends BaseUIWidget implements NameWidget.Callback{

protected void init() throws Exception {

addWidget("name", new NameWidget(this));

setViewSelector("nameFlow");

}

public void nameSelected(String name) {

getFlowCtx().start(new HelloFlowWidget(name));

}

}

where the nameFlow.jsp should just include the “name” widget.

We need HelloWidget to have a setter and its JSP should not have a back button

(just like in 1.2). Then the HelloFlowWidget wrapper class will look as follows:

public class HelloFlowWidget extends BaseUIWidget{

19

private HelloWidget helloWidget;

public HelloFlowWidget(String name) {

this.helloWidget = new HelloWidget(name);

}

protected void init() throws Exception {

addWidget("hello", helloWidget);

setViewSelector("helloFlow");

}

}

Finally we add the back button in the helloFlow.jsp:

<jsp:root

xmlns:jsp="http://java.sun.com/JSP/Page"

xmlns:ui="http://araneaframework.org/tag-library/standard" version="1.2">

<ui:widgetContext>

<ui:widgetInclude id="hello"/>

<ui:eventButton labelId="#Back" eventId="back"/>

</ui:widgetContext>

</jsp:root>

20

Chapter 2

Web Development Framework

This chapter introduces components, abstractions and assembly of the Aranea frame-

work.

2.1 Abstractions

Aranea framework is based on the abstraction of components arranged in a dynamic

hierarchy and two component subtypes: services that model reentrant controllers and

widgets that model non-reentrant stateful controllers. In this section we examine their

interface and implementation ideas. We omit the checked exceptions and some other

details from the interfaces for brevity.

2.1.1 Components

At the core of Aranea lies a simple notion of components arranged into a dynamic

hierarchy that follows the Composite pattern [9] with certain mechanisms for commu-

nicating between children and parents. This abstraction is captured by the following

interface:

interface Component {

void init(Environment env);

void enable();

void disable();

void propagate(Message msg);

void destroy();

Scope getScope();

Environment getEnvironment()

}

A component is an entity that

21

• Has a life-cycle that begins with an init() call and ends with a destroy() call.

• Can be signaled to be disabled and then enabled again.

• Has an Environment that is passed to it by its parent or creator during initialization

and can be retrieved using getEnvironment() method.

• Can propagate Messages to its children.

• Has a scope that signifies its position in the component hierarchy.

We imply that a component will have a parent and may have children. Aranea actually

implies that the component would realize a certain flavor of the Composite pattern that

requires each child to have a unique identifier in relation to its parent. These identifiers

are combined to create a scope that allows tracing the component starting from the

hierarchy root. The hierarchy is in no way static and can be modified at any time by any

parent.

The hierarchy we have arranged from our components so far is inert. To allow some

communication between different components we need to examine in detail the notions

of Environment and Message.

Environment is captured by the following interface:

interface Environment {

Object getEntry(Object key);

}

Environment is a discovery mechanism allowing children to discover services (named

contexts) provided by their parents without actually knowing, which parent provides it.

Looking up a context is done by calling the environment getEntry() method passing

some well-known context name as the key. By a convention this well-known name is the

interface class realized by the context. The following example illustrates how environment

can be used:

L10nContext locCtx = (L10nContext)

getEnvironment().getEntry(L10nContext.class);

String message = locCtx.localize("message.key");

Environment may contain entries added by any of the current component ancestors,

however the current component direct parent has complete control over the exact entries

that the current component can discover. It can add new entries, override old ones as well

as remove (or rather filter out) entries it does not want the child component to access.

This is done by wrapping the grandparent Environment into a proxy that will allow only

specific entries to be looked up from the grandparent.

Message is captured in the following interface:

22

interface Message {

void send(Object key, Component comp);

}

While the environment allows communicating with the component parents, messages

allow communicating with the component descendants (indirect children). Message is

basically an adaptation of the Visitor pattern [9] to our flavor of Composite. The idea

is that a component method propagate(Message m) will just call the message method

m.send(...) for each of its children passing the message both their instances and identi-

fiers. The message can then propagate itself further or call any other component methods.

It is easy to see that messages allow constructing both broadcasting (just sending the

message to all of the components under the current component) and routed messages

that receive a relative “path” from the current component and route the message to the

intended one. The following example illustrates a component broadcasting some message

to all its descendants (BroadcastMessage will call execute for all component under

current):

Message myEvent = new BroadcastMessage() {

public void execute(Component comp) {

if (comp instanceof MyDataListener)

((MyDataListener) comp).setMyData(data);

}

}

myEvent.send(null, rootComponent);

2.1.2 Services

Although component hierarchy is a very powerful concept and messaging is enough to

do most of the communication, it is comfortable to define a specialized component type

that is closer to the Controller pattern [9]. We call this component Service and it is

captured by the following interface:

interface Service extends Component {

void action(

Path path,

InputData input,

OutputData output

);

}

Service is basically an abstraction of a reentrant controller in our hierarchy of com-

ponents. The InputData and OutputData are simple generic abstractions over, corre-

spondingly, a request and a response, which allow the controller to process request data

and generate the response. The Path is an abstracted representation of the full path to

23

the service from the root. It allows services to route the request to the one service it is

intended for.

However since service is also a component it still can enrich the environment with

additional contexts that can be used by its children.

2.1.3 Widgets

In the next section we will examine in more detail how we can use services to put

a framework together. However although services are very powerful they are not too

comfortable for programming stateful non-reentrant applications. To do that as well as

to capture GUI abstractions we will introduce the notion of a Widget, which is captured

in the following interface:

interface Widget extends Service {

void update(InputData data);

void event(Path path, InputData input);

void render(OutputData output);

}

Widgets extend services, but unlike them widgets are usually stateful and are always

assumed to be non-reentrant. The widget methods form a request-response cycle that

should proceed in the following order:

1. update() is called on all the widgets in the hierarchy allowing them to read data

intended for them from the request.

2. event() call is routed to a single widget in the hierarchy using the supplied Path.

It allows widgets to react to specific user events.

3. render() calls are not guided by any conventions. If called, widget should render

itself (though it may delegate the rendering to e.g. template). The render()

method should be idempotent, as it can be called arbitrary number of times before

the next update() call.

Widgets inherit an action() method from the services. It may be used to interact with a

single widget, e.g. for the purposes of making an asynchronous request through Ajax [23].

action() calls are allowed to

So far we called our components stateful or non-stateful without discussing the persis-

tence of this state. A typical framework would introduce predefined scopes of persistence,

however in Aranea we have very natural scopes for all our components—their lifetime.

In Aranea one can just use the component fields and assume that they will persist until

the component is destroyed. If the session router is used then the root component under

it will live as long as the user session. This means that in Aranea state management is

non-intrusive and invisible to the programmer, as most components live as long as they

are needed.

24

2.1.4 Flows

To support flows (nested processes) we construct a flow container widget that essen-

tially hosts a stack of widgets (where only the top widget is active at any time) and

enriches their environment with the following context:

interface FlowContext {

void start(Widget flow, Handler handler);

void replace(Widget flow);

void finish(Object result);

void cancel();

}

This context is available in standard flow implementation by calling getFlowCtx(). Its

methods are used as follows:

• Flow A running in a flow container starts a child flow B by calling start(new B(...),

null). The data passed to the flow B constructor can be thought of as incoming

parameters to the nested process. The flow A then becomes inactive and flow B gets

initialized.

• When flow B is finished interacting with the user, it calls finish(...) passing the

return value to the method. Alternatively flow B can call the cancel() method if

the flow was terminated by user without completing its task and thus without a

return value. In both cases flow B is destroyed and flow A is reactivated.

• Instead of finishing or canceling, flow B can also replace itself by flow C by calling

replace(new C(...)). In such case flow B gets destroyed, flow C gets initialized

and activated, while flow A continues to be inactive. When flow C will finish flow A

will get reactivated.

Handler is used when the calling flow needs to somehow react to the called flow

finishing or canceling:

interface Handler {

void onFinish(Object returnValue);

void onCancel();

}

It is possible to use continuations to realize synchronous (blocking) semantics of flow

invocation, as shown in the section 4, in which case the Handler interface is be redundant.

2.1.5 Protecting Framework Abstractions

Several problems come up in framework design, when the objects that application

programmers use and extend also have a specific framework contract:

25

• Application programmer can call a framework method in a way that will break the

contract, e.g. in wrong order, which is hard to enforce.

• Application programmer may extend a framework object overriding the framework

method and again breaking the contract (even harder to enforce).

• Framework programmer may inadvertently call a method that is application-specific,

since framework and application methods share the same namespace.

• Since all methods are in the same namespace it may be hard to find the one you

need. There are frameworks that have 50 to 100 methods in core interfaces, some

of which have to be extended, others called.

Java allows to solve “breaking the contract by overriding framework method” problem

by declaring this method final. However this also has its drawbacks, as sometimes we

would want framework programmers to still be able to override or extend some of the

framework logic. Java however does not provide any good means to restrict visibility

based on namespace (unless the classes are in the same package).

The solution chosen for Aranea is to hide the framework interfaces in an inner class

behind an additional method call:

interface Component {

Component.Interface _getComponent();

interface Interface {

void init(Environment env);

void destroy();

void propagate(Message message);

void enable();

void disable();

}

}

The idea is that although we can’t enforce the contract onto application programmers we

can ensure that programmer is fully aware when he is calling a system method:

widget._getComponent().init(childEnvironment);

widget._getWidget().update(input);

Note that this also breaks the methods into namespaces with one global namespace

for public custom application methods and separate named namespaces for each of the

framework interfaces. This allows to document and use them in a considerably clearer

manner.

26

2.2 Assembly

Now that we are familiar with the core abstractions we can examine how the actual

web framework is assembled. First of all it is comfortable to enumerate the component

types that repeatedly occur in the framework:

Filter A component that contains one child and chooses depending on the request pa-

rameters whether to route calls to it.

Router A component that contains many children, but routes calls to only one of them

depending on the request parameters.

Broadcaster A component that has many children and routes calls to all of them.

Adapter A component that translates calls from one protocol to another (e.g. from

service to a widget or from Servlet [28] to a service).

Container A component that allows some type of children to function by enabling some

particular protocol or functionality.

Of course of all of these component types also enrich the environment and send messages

when needed.

Aranea framework is nothing, but a hierarchy (often looking like a chain) of compo-

nents fulfilling independent tasks. There is no predefined way of assembling it. Instead

we show how to assemble frameworks that can host a flat namespace of reentrant con-

trollers (á la Struts [19] actions), a flat namespace of non-reentrant stateful controllers (á

la JSF [30] components) and nested stateful flows (á la Spring Web Flow [35]). Finally

we also consider how to merge all these approaches in one assembly.

2.2.1 Reentrant Controllers

The reentrant controller model is easily implemented by arranging the framework in

a chain by containment (similar to pattern Chain-of-Responsibility [9]), which starting

from the root would look as follows:

1. Servlet [28] adapter component that translates the servlet doPost() and doGet()

to Aranea service action() calls.

2. HTTP filter service that sets the correct headers (including caching) and character

encoding. Generally this step consists of a chain of multiple filters.

3. URL path router service that routes the request to one of the child services using

the URL path after servlet. One path will be marked as default.

4. A number of custom application services, each registered under a specific URL to

the URL path router service that correspond to the reentrant controllers. We call

these services actions.

27

The idea is that the first component object actually contains the second as a field, the

second actually contains the third and so on. Routers keep their children in a Map. When

action() calls arrive each component propagates them down the chain.

The execution model of this framework will look as follows:

• The request coming to the root URL will be routed to the default service.

• When custom services are invoked they can render the HTML response (optionally

delegating it to a template language) and insert into it URL paths of other custom

services, allowing to route next request to them.

• A custom service may also issue an HTTP redirect directly sending the user to

another custom service. This is useful when the former service performs some

action that should not be repeated (e.g. money transfer).

Note that in this assembly Path is not used at all and actions are routed by the request

URL.

Of course in a real setup we might need a number of additional filter services that

would provide features like file uploading, but this is enough to emulate the model itself.

Further on we will also omit the optional components from the assembled framework for

brevity.

In general, steps 3-4 could be extended to be composed out of:

• Filter services that enrich InputData and OutputData based on some criteria and

then delegate work to the single child service.

• Router services that route request to one of their children based on remaining part

of URL, accessible from InputData.

Both filter and router services are stateful and reentrant. Router services could either

create a new stateless action for each request (like WebWork [37] does) or route request

to existing reentrant actions (like Struts [19] does). Router services could allow adding

and removing (or enabling and disabling) child actions at runtime, although care must

be taken to avoid destroying action that can be active on another thread.

We have shown above how analogues of Struts and WebWork actions fit into this

architecture. WebWork interceptors could be implemented as a chain of filter services that

decide based on InputData and OutputData whether to enrich them and then delegate

work to the child service. There could be filter services both before action router and

after. The former would be shared between all actions while the latter would be private

for each action instance. A disadvantage of such approach is that each request must pass

through all shared filters, although which filters are needed for particular action might

be possible to decide statically before the request arrives.

If this turns out to be a problem, we could introduce a new concept of interceptor:

28

interface Interceptor extends Component {

void intercept(

Service service,

InputData,

OutputData

);

}

Interceptor is a stateful reentrant component that does modifications to InputData and

OutputData and then calls action() method of the service. When creating a new action,

it could be wrapped into interceptors:

Interceptor i1 = ...

Interceptor i2 = ...

..

Service action = ...

Service p1 = new InterceptingProxy(i1, action);

Service p2 = new InterceptingProxy(i2, p1);

...

this.addService(pN);

Here InterceptingProxy(Interceptor, Service) proxies all method invocations to

the service except for the one method:

void action(InputData in, OutputData out) {

iterceptor.intercept(service, in, out)

}

There is no need to create more than one instance of each interceptor kind because

they can be shared between wrapped actions. Interceptors allow mimicking WebWork

interceptors more directly and are more space and time efficient as compared to chains

of filters performing the same role.

2.2.2 Stateful Non-Reentrant Controllers

To emulate the stateful non-reentrant controllers we will need to host widgets in the

user session. To do that we assemble the framework as follows:

1. Servlet [28] adapter component.

2. Session router that creates a new service for each new session and passes the

action() call to the associated service.

3. Synchronizing filter service that let’s only one request proceed at a time.

4. HTTP filter service.

29

5. Widget adapter service that translates a service action() call into a widget

update()/event()/render() request-response cycle.

6. Widget container widget that will read from request the path to the widget that

the event should be routed to and call event() with the correct path.

7. Page container widget that will allow the current child widget to replace itself with

a new one.

8. Application root widget which in many cases is the login widget.

This setup is illustrated on Figure 2.1.

A real custom application would most probably have login widget as the application

root. After authenticating the user, login widget would replace itself with the actual root

widget, which in most cases would be the application menu (which would also contain

another page container widget as its child).

The menu would contain a mapping of menu items to widget classes (or more generally

factories) and would start the appropriate widget in the child page container when the

user clicks a menu item. The custom application widgets would be able to navigate among

each other using the page context added by the page container to their environment.

The execution model of this framework will look as follows:

• The request coming to the root URL will be routed to the application root widget.

If this is a new user session, a new session service will be created by the session

router.

• Only one request will be processes at once (due to synchronizing filter). This means

that widget developers should never worry about concurrency.

• The widget may render the response, however it has no way of directly referencing

other widgets by URLs. Therefore it must send all events from HTML to itself.

• Upon receiving an event the widget might replace itself with another widget (op-

tionally passing it data through the constructor) using the context provided by

the page container widget. Generally all modification of of widget hierarchy (e.g.

adding/removing children) can be done during event part of the request-response

cycle only.

• The hierarchy of widgets under the application root widget (e.g. GUI elements like

forms or tabs) may be arranged using usual Composite widget implementations as

no special routing is needed anymore.

In the real setup page container widget may be emulated using flow container widget that

allows replacing the current flow with a new one.

Such an execution model is very similar to that of Wicket [38], JSF [30], or Tapestry [27]

although these frameworks separate the pages from the rest of components (by declaring

a special subclass) and add special support for markup components that compose the

actual presentation of the page.

30

Servlet

Servlet service adaptor

Components

Session router

Services

Synchronizing filter

HTTP filter

Widget adapter

Widget container

Widgets

Flow container

Application start

Request Response

Other session
components

Figure 2.1: Framework assembly for hosting pages

31

2.2.3 Stateful Non-Reentrant Controllers with Flows

To add nested processes we basically need only to replace the page container with a

flow container in the previous model:

1. Servlet [28] adapter component.

2. Session router service.

3. Synchronizing filter service.

4. HTTP filter service.

5. Widget adapter service.

6. Widget container widget.

7. Flow container widget that will allow to run nested processes.

8. Application root flow widget which in many cases is the login flow.

The execution model here is very similar to the one outlined in Subsection 2.2.2.

The only difference is that the application root flow may start a new subflow instead of

replacing itself with another widget.

This model is similar to that of Spring WebFlow [35], although Spring WebFlow

uses Push-Down Finite State Automaton to simulate the same navigation pattern and

consequently it has only one top-level call stack. In our model call stacks can appear

at any level of widget composition hierarchy, which makes our model considerably more

flexible.

2.2.4 Combining the Models

It is also relatively easy to combine these models, modifying the model shown on figure

2.1 by putting a URL path router service before the session router, map the session router

to a particular URL path and put a flow container in the end.

The combined model is useful, since reentrant stateless services allow to download

files from database and send other semi-static data comfortably to the user. They can

also be used to serve parts of the application that has the highest demand and thus load.

It is also worth noting that such a model allows cooperation between the flows and

reentrant services—e.g. widgets can dynamically add/remove them on need.

2.3 Aspects

Next we examine some typical web framework aspects and how they are realized in

Aranea.

32

2.3.1 Configuration

The first aspect that we want to examine is configuration. We have repeated through-

out the thesis that the components should form a dynamic hierarchy, however it is com-

fortable to use a static configuration to wire parts of that hierarchy that form the frame-

work core.

To do that one can use just plain Java combining a hierarchy of objects using setter

methods and constructors. But in reality it is more comfortable to use some configuration

mechanism, like an IoC container [8]. We use in our configuration examples Spring [14]

IoC container and wire the components together as beans. Note that even such static

configuration contains elements of dynamicity, since some components (á la root user

session service) are wired not as instances, but via a factory that returns a new service

for each session.

SessionRouterService srs =

new SessionRouterService();

srs.setSessionServiceFactory(

new ServiceFactory() {

Service buildService(Environment env) {

Service result = ...

//Build a new session service...

return result;

}

}

);

2.3.2 Security

The most common aspect of security that frameworks have to deal with is autho-

rization. A common task is to determine, whether or not the current user has enough

privileges to see a given page, component or GUI element. In many frameworks the

pages or components are mapped to a particular URL, which can also be accessed di-

rectly by sending an HTTP request. In such cases it is also important to restrict the

URLs accessible by the user to only those he is authorized to see.

When programming in Aranea using stateless re-entrant services they might also be

mapped to particular URLs that need to be protected. But when programming in Aranea

using widgets and flows (a stateful programming model) there is no general way to start

flows by sending HTTP requests. Thus the only things that need protection are usually

the menu (which can be assigned privileges per every menu item) and the active flow and

widgets (which can only receive the events they subscribe to).

This simplifies the authorization model to checking whether you have enough privi-

leges to start the flow before starting it. Since most use-cases should have enough privi-

leges to start all their subflows it is usually enough to assign coarse-grained privileges to

33

use-cases that can be started from the menu as well as fine-grained privileges for some

particular actions (like editing instead of viewing).

2.3.3 Error Handling

When an exception occurs the framework must give the user (or the programmer) an

informative message and also provide some recovery possibilities. Aranea peculiarity is

that since an exception can occur at any level of hierarchy the informing and recovery

may be specific to this place in the hierarchy. Default behavior for Aranea components

is just to propagate the error up the hierarchy to the first exception handler component

For example it might be required to be able to cancel a flow that has thrown an

exception and return back to the flow that invoked the faulty flow. A logical solution

is to let the flow container (and other similar components) to handle their children’s

exceptions by rendering an informative error subpage instead of the flow. The error page

can then allow canceling flows by sending events to the flow container.

With such approach when we have several flow containers on one HTML page, then

if two or more flows under different containers fail, they will independently show error

subpages allowing to cancel the particular faulty flows. Note also that such approach

will leave the usual navigation elements like menus intact, which will allow the user to

navigate the application as usual.

Alternatively we may want to render the error page outside the flow, hiding the usual

navigation element. To do that the flow container needs to re-throw the exception further

upwards to the top-level exception handler, accompanied by a service that will be used

to render the error page. This service will be given the flow container environment, thus

allowing it to cancel flows.

With such approach only one flow can generate exception at one time, since it will

escape the exception to the top-level exception handler. Both approaches have their

merits and Aranea allows the particular flow container to choose the suitable strategy.

Additionally Aranea provides a critical error handler that will render the exception stack

for an error occurring high in the framework part of the hierarchy.

It should also be noted that to handle exceptions occurring after some data has been

written to the response stream (e.g. during a render() call) we need to roll back this

data altogether and render an informative error page instead. This is easily accomplished

by wrapping the response stream with a buffer.

Certainly these approaches don’t cover all possible use cases and custom exception

handlers may be needed for new type of containers. However the approach is general

enough to be applied similarly in new use cases.

2.3.4 Concurrency

Execution model of Aranea is such that each web request is processed on one Java

thread, which makes system considerably easier to debug. By default Aranea does not

34

synchronize component calls. It does, however, protect from trying to destroy a working

component. If a service or widget currently in the middle of some method call will be

destroyed, the destroyer will wait until it returns from the call. To protect from deadlock

and livelock, after some time the lock will be released with a warning.

When we want to synchronize the actual calls (as we need for example with widgets)

we can use the synchronizing service that allows only one action() call to take place

simultaneously. This service can be used when configuring the Aranea framework to

synchronize calls on e.g. browser window threads. This will allow to program assuming

that only one request per browser window is processed at any moment of time. Note that

widgets should aways be behind a synchronizing filter and cannot process concurrent

calls.

2.4 Implementation

The previously described components are more-or-less straightforward to implement,

however to actually develop applications one needs considerably more functionality than

just a controller framework. In this section we present the components and extensions

that make Aranea a full-fledged web framework usable for productive development of

large applications.

2.4.1 Standard Components

Aranea includes standard implementations of the core abstractions: component, ser-

vice, widget, environment and message.

The standard component, service and widget implementations (named

StandardComponent, StandardService and StandardWidget) are similar to each other

and mainly provide children management and synchronization of destruction. The chil-

dren are managed using following methods (with “Component” substituted for accord-

ingly “Service” or “Widget”):

• addComponent(key, Component) and removeComponent(key) add and remove the

child to/from the parent as well as initializing/destroying it.

• enableComponent(key) and disableComponent(key) allow to enable/disable child

blocking it from receiving calls and notifying it via enable()/disable() calls.

• getChildComponentEnvironment() that can be overridden to supply the child ad-

ditional entries to its environment.

The standard component classes also implement call routing according to the Composite

pattern described in Section 2.1.

In addition to this, standard service and standard widget implement event listener

management that enable further discrimination between action/event calls to the same

service/widget. This allows for truly event-driven programming.

35

There are two standard implementations of message: RoutedMessage and

BroadcastMessage. The first one allows to send a message to a component with a known

full path, while the second one broadcasts the message to all components under current.

2.4.2 Reusable Widget Library

While standard widget and service implementations supply the base classes for cus-

tom and reusable application coarse-grained controllers, the reusable widget library im-

plements the fine-grained GUI abstractions like form elements, tabs, wizards and lists.

One of the most common tasks in Web is data binding/reading the values from the re-

quest, validation and conversion. Aranea Forms provide a GUI abstraction of the HTML

controls and allows to bind the data read from the request to user beans. Forms support

hierarchical data structures, change detection and custom validation and conversion.

Another common programming task is to display user a list (also called grid) that

can be broken in pages, sorted and filtered. Aranea lists support both in-memory and

database back-ends, allowing to generate database queries that return the exact data that

is displayed. This allows to make lists taking memory for the currently displayed items

only, which support tables with many thousands of records.

2.4.3 Presentation Framework

Finally Aranea also contains a JavaServer Pages [31] custom tag library that not only

allows to access services and widgets, but also facilitates expressing user interface with

less redundancy than W3C XHTML [36] and W3C CSS [26].

The core idea is to break the application UI into logical parts and capture them using

reusable custom tags. Then one can program using a higher-level model than XHTML,

operating with UI logical entities. The framework contains standard implementations

for the reusable widget library tags and base implementations for the custom application

tags together with specific examples.

<html>

<body>

<ui:systemForm method="POST">

<h1>Aranea Template Application</h1>

This renders the child widget

with id "myChild":

<ui:widgetInclude id="myChild"/>

</ui:systemForm>

</body>

</html>

36

Since Aranea controller in no way enforces particular rendering mechanism, every

other component may be rendered by a different view framework, so this particular JSP-

based rendering engine is in now way obligatory.

37

Chapter 3

Web Integration Framework

This chapter describes how to use the framework components to enable web applica-

tion integration.

3.1 Requirements

One of the main design decisions in Aranea was to enforce Object-Oriented principles

like encapsulation. This means that Aranea components are first-class objects that can

be used abstractly, without any care for their implementation. This immediately gives

raise to a question—is this abstraction powerful enough that we could implement Aranea

components using third-party frameworks?

Application integration has two main aspects1:

Encapsulation Ensures that application behavior does not depend on any other appli-

cations.

Communication Allows different applications to interact with each other.

It is obvious that these aspects are conflicting with each other, since the need to com-

municate breaks encapsulation. To solve this problem we introduce a level of indirection—

encapsulation will be provided by specific Aranea components that are aware of the ap-

plication implementation. All communication between different applications will only be

done using Aranea API. This way we provide full encapsulation from the Aranea point

of view as well as enable arbitrary communication when needed.

Let’s examine how our integrated application will be structured and what require-

ments encapsulation must satisfy.

First of all it is a logical step to embed encapsulation into component base classes. Al-

though both services and widgets can provide integration, we will examine widgets more,

since they are used more often and have more issues. For example Struts encapsulation

may have a StrutsWidget base class and JSF encapsulation a JsfWidget. These widgets

1We could also identify a third one—coherence—that ensures all applications are using the same basic
set of services, but this is less about application integration and more about framework integration.

38

should encapsulate a particular application, or rather an application module, by taking

a starting URI into their constructor. For example new StrutsWidget("/Logon.do").

To encapsulate a particular module we may create a widget that is tied to a particular

starting URI and takes any necessary extra parameters as constructor arguments. This

way we can use this widget as we do usually, both including it as a reusable component

and starting it in a flow. We can also include widgets from the encapsulated module,

including widgets implemented in yet another third-party framework. In fact we should

provide access to Aranea API also to the native integrated application modules, so that

they could make use of Aranea components and flows.

From this we can deduce several requirements:

• Several widgets can appear on one HTML page. Even more important those widgets

could be instances of one and the same class, thus implemented by one and the same

integrated module. In such a case encapsulation becomes all the more important,

since the integrated modules will definitely have overlapping namespace, state and

so on.

• All of the requests made from the integrated module must go through the Aranea

component hierarchy to the encapsulating component that originated the request

and only then the module should be included and rendered. Otherwise, if we let

the request go to the originating application, the response will display only the

integrated application, breaking the encapsulation.

• Since all inter-module communication takes place via Aranea components, we must

implement application basic features using Aranea. This includes such features as

authentication (usually implemented by a login screen) and module starting points

(menus and similar).

• To integrate the applications (or modules) they need to undergo some amount of

conversion. At the very least they will depend on Aranea API for communication

and use Aranea authentication services. This means that they will not be able to

run standalone anymore.

3.2 Implementation

Our approach allows to integrate several applications written using different web

frameworks inside a single web container2 application. The applications are inside the

same JVM and they share access to Java Servlet API. Thus we can simulate parts of this

API to enable independence of integrated applications and their modules.

2Since we use the term web applications generically we will use the term web container applications
to refer to the Java web application deployment unit that contains a single web.xml mapping.

39

3.2.1 Request and State

First of all let’s examine how servlets can interact with the user and among themselves:

Request URL. The basic URL that request was submitted to. Different servlets are

mapped to different URLs and the specific path after the servlet URL is used

for internal application communication. Since we want to fully encapsulate the

applications in Aranea components we need to ensure that all requests will go

through the Aranea component hierarchy to the correct component before being

processed.

Request parameters. Carry the information submitted by a user to the server. Since

different applications share the same namespace of parameter names we must make

sure that applications get access only to parameters submitted by themselves.

Request attributes. Allow communication between different components of a web ap-

plication inside the same request. Since these are also shared by all applications

involved in the request we must make sure that they do not influence each other.

Session attributes. Allow storing user session-specific data between requests. Also

shared by all applications, so we need to ensure that they can only access their own

attributes.

Servlet attributes. Allow communication between servlets in the same web container

application. Not as important as the rest, since web applications must anyway

assume this is shared and provide their own namespace.

It seems that most of the important interactions is request-based3. HTTP Request

is represented in Java by the interface HttpServletRequest, which includes methods

related to:

• Request URL, like getRequestURL(), getServletPath().

• Request parameters, like getParameter(), getParameterMap().

• Request attributes, like setAttribute(), getAttribute().

• Getting associated session: getSession().

Since HttpServletRequest is an interface, it can be wrapped using the Decorator

pattern [9]. Servlet API even provides a default wrapper implementation—

HttpServletRequestWrapper. Using this pattern we override the default behavior of the

methods by making them local as follows:

3Sessions in Servlet API are accessible only via the request

40

• We make the wrapper take the request URI as the constructor parameter. It should

return it and its derivatives from all associated methods. We can safely assume

that the URL part besides the URI (that is host, port, etc) is the same for all

applications.

• We assume that all of the request parameters have been prefixed with some name-

space. We take this namespace as a constructor parameter and make the application

see only the request parameters inside this namespace.

• We create a local request attribute map. All attribute modification methods act

only on this map, while all attribute query methods act first on the local map then

globally. This ensures that although application can see the global attributes (e.g.

set by Aranea) it cannot influence other applications.

Additionally, since HttpSession is an interface and can only be accessed from the

HttpServletRequest, we can also wrap it and provide a local attribute map acting same

way as the request attributes. A logical place to put the attribute map is the Aranea

component that encapsulates the module, since its scope should exactly correspond to

the user session with the integrated application.

The resulting wrapper will look something like this:

class RequestWrapper extends HttpServletRequestWrapper {

private Map localRequestAttributes = new HashMap();

private String prefix;

private String requestURI;

private SessionWrapper session;

public RequestWrapper(HttpServletRequest request,

String requestURI, String prefix, Map sessionAttributeMap) {

super(request);

this.prefix = prefix;

this.requestURI = requestURI;

this.session = new SessionWrapper(sessionAttributeMap);

}

public HttpSession getSession() {

return session;

}

public String getParameter(String name) {

if (name.startsWith(prefix))

return super.getParameter(name);

41

return null;

}

public void setAttribute(String name, Object o) {

localRequestAttributes.put(name, o);

}

public Object getAttribute(String name) {

if (localRequestAttributes.containsKey(name))

return localRequestAttributes.get(name);

return super.getAttribute(name);

}

public String getRequestURI() {

return requestURI;

}

//...

}

This wrapper encapsulates all of the basic servlet-to-servlet communication, and we

can proceed with implementing the rest of application integration.

3.2.2 Navigation

In most of the web frameworks request URL is used for navigation. In all of the web

frameworks that we are aware of request URL is relied upon by the framework for some

of it functionality.

Thus we must preserve the original URL when passing the request to the integrated

module. At the same time we must make sure that Aranea handles the request first and

includes the integrated module in its proper component. There are two problems with

these requirements:

1. Most of the web frameworks will have their servlet URLs hard-coded into their

HTML output, thus producing requests to their own servlets.

2. Even if they would produce requests to Aranea we would still need to know both

the original servlet path and some Aranea-specific data like the identifier of the

component hosting the integrated module.

To solve the first problem we make use of servlet filters. We implement the

IntegrationFilter filter that saves the current URL as a request parameter and after

42

that redirects to the Aranea servlet, then map this filter to all of the integrated application

servlets.

To solve the second one we need to wrap the HttpServletResponse in the encap-

sulating component. HttpServletResponse is the Java Servlet API abstraction for the

HTTP response to the submitted request, and besides the output stream and headers

it has a method encodeURL(). This method is used by the Servlet API to allow for

cookieless session tracking. To support this it must be called on all the URLs embedded

in the generated HTML output.

By overriding its default implementation we can add encoded Aranea-specific infor-

mation that allows IntegrationFilter to route the request to the intended Aranea

component. The resulting ResponseWrapper class may look something like this:

class ResponseWrapper extends HttpServletResponseWrapper {

//...

public String encodeURL(String url) {

StringBuffer urlB = new StringBuffer(url);

urlB.append(url.indexOf(’?’) != -1 ? ’&’ : ’?’);

urlB.append("araInfo=")

.append(’:’).append(topServiceId)

.append(’:’).append(threadServiceId)

.append(’:’).append(widgetEventPath);

return super.encodeURL(urlB.toString());

}

//...

}

The filter can then decode this information and dispatch the request to the Aranea

servlet that will cause the hosting component to set up the encapsulation and dispatch

the request further to the integrated module. This will appear as if the navigation took

place inside the component, since other components will not change.

3.2.3 Rendering

Now let’s look into rendering the hosting widgets4 and the integrated modules. There

are two main issues with rendering:

1. It would be logical to dispatch the request to the integrated module on render()

call. However we have to keep in mind that the integrated module has access to the

4Services need no additional support and can just dispatch the encapsulating request to the appro-
priate URI from the action() call.

43

Aranea API and thus can modify the component hierarchy e.g. by starting a new

flow. In this case rendering would be incorrect, as the flow container will render

the old flow (possibly failing).

2. Not every framework is capable of just re-rendering the current ”page”. Since in

Aranea only one component at a time receives an event, all the rest must re-render

their previous state. But for a framework like Struts this might mean calling an

action and possibly producing undesired side-effects.

Both problems admit one and the same solution. To allow component hierarchy

modification we do the actual rendering during an event event() call. We then cache

the resulting output as a character array and write it out during the actual render phase.

We save the cached character array between requests and render it again if no event

comes. Since at each request only one component gets an event call (typically the one

that originated the request), the rest of the components will just display the previously

cached response that is identical to the previous one.

To cache the output we must wrap the output stream provided by the

HttpServletResponse. We can do this by adding a getOutputStream() method to the

ResponseWrapper that returns the OutputStreamWrapper5:

class OutputStreamWrapper extends ServletOutputStream {

private ByteArrayOutputStream out;

OutputStreamWrapper() {

reset();

}

public void write(int b) throws IOException {

out.write(b);

}

//...

public void flush() throws IOException {

out.flush();

}

public void reset() {

out = new ByteArrayOutputStream(20480);

}

public byte[] getData() {

5We will also need to wrap it in a PrintWriter for the getWriter() method.

44

return out.toByteArray();

}

}

Although we fixed one problem, we introduced another. Since we want the integrated

modules to be able to include other widgets, they will also re-render by returning the

cached response. However widgets are perfectly capable of re-rendering themselves and

it is not a good idea to cache their output. The solution is to cache only those parts of

response that are produced by the integrated module, not by included widgets. To do

that we need to introduce a new tag <ui:hostedWidgetInclude> that would call the

hosting widget renderWidget() method. Then we can create an array of closures that

will render either the cached output or the included widget in the correct order as shown

on Figure 3.1.

Figure 3.1: Renderer chain

3.2.4 View Sanitizing

Although the response generated by the integrated modules is partially preprocessed

as described in subsection 3.2.2, it may still contain some HTML not acceptable in an

Aranea component. This is mostly due to HTML limitations:

1. Every HTML page can contain only one html tag, head tag and body tag.

2. form tag cannot be nested. Since Aranea defines a single root form, integrated

modules are not allowed to define their own forms.

3. Form element names must be prefixed with the component identifier to allow their

later separation as described in subsection 3.2.1.

45

These problems can be solved by one of the two approaches:

Conversion The simplest solution is to change the integrated module view code and

introduce the necessary changes (remove root tags like html, remove form tag and

prefix the element names). Most probably some associated changes will also have

to be done (Javascript references to form elements, form submission logics, etc).

The problem with this solution is that it implies a significant effort unless the logic

was already well encapsulated, which is a relatively rare case.

Postprocessing A different approach is to render the response and the postprocess

it by parsing the resulting HTML and applying the changes automatically. This

approach has the benefit of allowing in simpler cases to just drop the application

in and get integration to work in a number of minutes. The main drawback is the

inevitable decrease in performance.

In reality full conversion should only be used if the performance penalty is unac-

ceptable. The overhead is not as great as could be expected, since it does not involve

Input/Output, which is the main bottleneck in web applications.

Typically postprocessing is combined with some amount of conversion, since some

things are simpler to postprocess while other are simpler to just change in place. The

ratio of one to another depends on the particular application.

Postprocessing is applied on render() call and uses the cached response gather during

the event() call.

AJAX

The final issue to consider is handling AJAX calls from the integrated module. By

itself it does not differ much from usual integration, except that Aranea widgets are by

default synchronized, which may cause trouble if the request is expected to be processed

asynchronously.

The request will be submitted to some third-party servlet and should be handled by

mapping a subclass of the IntegrationFilter to the servlet. This subclass should be

able to distinguish AJAX requests from common ones (this distinction being, of course,

framework-specific) and send AJAX requests to the hosting widget as an unsynchronized

action call. The hosting widget should also define this action, which should just dispatch

the request to the integrated module after setting up request encapsulation.

3.3 Legacy Migration

Integration allows to integrate several applications together as illustrated by Figure

3.2. However in addition to that it also allows to migrate legacy applications from out-

dated technologies to newer ones.

To do that we need to prepare the application as follows:

46

Figure 3.2: Web integration illustration.

1. Implement adapters for in-house web frameworks. A typical legacy web application

is likely to use some in-house web framework. We need to introduce a specific

Aranea adapter component that will handle the framework-specific quirks.

2. Analyze the application design. Since most application do not use Object-Oriented

technologies we often need to reverse-engineer the design behind them. Mainly we

are interested in splitting the application into logical use cases and identifying their

interdependencies.

3. Convert the legacy application to use Aranea integration. This involves rewriting

some basic features and wrapping use cases in Aranea widgets. We also need to lift

all communication among use cases to use Aranea API. The result is a fully Object-

Oriented application with components implemented using the legacy technology.

After the application is prepared we may start implementing new use cases using any

other technology integrated with Aranea. We do it by defining a subclass of the wrapping

widget corresponding to the implementation technology. Since all communication among

use cases is done in terms of Aranea API the legacy components cannot be distinguished

from the non-legacy ones.

To actually migrate away from the outdated technology we apply this simple rule–

rewrite legacy use cases only when business requirements change. Since in such a case a

significant portion of the use case would have to be rewritten anyway and the development

costs using an outdated technology are higher, the migration overhead cost is very low.

We call such an approach step-by-step legacy migration, since instead of doing an

all-at-once rewriting of the system functionality we run the old and new technologies

side-by-side and migrate only when costs and time allow.

47

In addition to the direct economical benefit the following extra benefits are attained:

• Since development of features requiring a new technology can start immediately the

time-to-market decreases.

• Newer frameworks might provide features that increase usability without any extra

effort from the developers.

• Object-Oriented design means that development is easier to scale, since particular

use cases can be written by any third-party in technology of their choice.

• When a newer and better technology appears the enterprise is somewhat insured

against the migration costs, since the application design is already technology-

agnostic and migration to the newer beneficial technology can begin immediately.

48

Chapter 4

Extensions

This chapter describes different extensions to the core Aranea framework.

4.1 Blocking Calls and Continuations

Consider the following scenario:

1. When user clicks a button, a new subflow is started.

2. When this subflow eventually completes we want to assign its return value to some

text field.

In event-driven programming model the following code would be typical:

OnClickListener listener = new OnClickListener() {

void onClick() {

Handler handler = new Handler() {

void onFinish(Object result) {

field.setText((String)result);

}

}

getFlowCtx().

start(new SubFlow(), handler);

}

}

button.addOnClickListener(listener);

What strikes here is the need to use multiple event listeners, and as a result writing

multiple anonymous classes that are the Java equivalents of syntactical closures. What

we would like to write is:

OnClickListener listener = new OnClickListener() {

void onClick() {

49

String result = (String)getFlowCtx().

call(new SubFlow());

label.setText(result);

}

}

button.addOnClickListener(listener);

What happens here is that flow is now called using blocking semantics. Going further in

this direction, we would like to get rid of all event handlers in this example:

button.waitOnClick();

String result = (String)getFlowCtx().

call(new SubFlow());

label.setText(result);

Essentially, we would like to allow waiting for arbitrary events, even ANDs and ORs of

events—any monotonous propositions.

Typically blocking behavior is implemented by suspending executed thread and wait-

ing on some concurrency primitive like semaphore or monitor. The disadvantage of such

solutions is that operating system threads are expensive and using an extra thread for

each user session would be a major overkill—most application servers use a limited pool

of worker threads that would be exhausted very quickly. Besides, threads cannot be

serialized and migrated to other cluster nodes. A more conceptual problem is that the

suspended thread contains information regarding processing of the whole web request,

whereas it can be woken up by a different web request. Also, in Java blocking threads

would retain ownership of all monitors.

In [11, 21] continuations were proposed to solve the blocking problem in web appli-

cations, described above. Continuation can be thought of as a lightweight snapshot of

thread call stack that can be resumed multiple times. In the context of this problem the

differences between continuation and thread is that continuation is much more lightweight

in terms of OS resources, can be serialized, and can be run multiple times.

There still remains the problem that both thread and continuation contain information

regarding processing of the whole request, but can be woken up by a different web request.

To solve it we can use partial continuations [13]. Essentially the difference is that the

snapshot of the call stack is taken not from the root, but starting from some stack frame

that we will call boundary. In case of Aranea, the boundary is the stack frame of the

event handler invocation that may contain blocking statements. So in case of our previous

example the boundary will be the invocation of method onClick():

OnClickListener listener = new OnClickListener() {

@Blocking

void onClick() {

String result = (String)getFlowCtx().

call(new SubFlow());

50

label.setText(result);

}

}

button.addOnClickListener(listener);

To wait for an event we should do the following:

1. Take current partial continuation,

2. Register it as an event handler,

3. Escape to the boundary.

A similar approach can be also applied to services though mimicking such frameworks

as Cocoon [24] and RIFE [2]. We’d like to stress that by applying continuations to widget

event handlers we can create a more powerful programming model because there can be

simultaneous linear flows at different places of the same widget hierarchy, e.g. in each flow

container. This programming model is similar to that of the Smalltalk web framework

Seaside [6] that uses continuations to provide analogous blocking call semantics of flows,

but not event handlers in general.

Java does not support continuations in any form, but luckily there is an experimental

library [29] that allows suspending the current partial continuation and later resuming it:

Runnable myRunnable = new Runnable {

void run() {

...

Continuation.suspend();

...

}

}

Continuation cont1 =

Continuation.startWith(myRunnable);

...

Continuation cont2 =

Continuation.continuteWith(cont1);

Altogether we view blocking calls as “syntactic sugar” above the core framework.

At the same time we find that combining event-based and sequential programming in a

component framework is a powerful concept, since different parts of application logic can

be expressed using the most suitable tool.

4.2 Code Reloading

Zero turn-around usually refers to the way changes made to the code are immediately

visible in most interpreted languages. Indeed, since there is no compilation and almost no

51

deployment, the time from making a change to seeing it in the browser is a fast as pressing

Ctrl+S, Alt+Tab and F5. The situation in the Java language [10] is different—although

compilation is relatively fast, together with deployment, cache reloads and framework

initialization it might easily take up to a minute to see a change propagate in a large

application.

The problem is that JVM specification [18] clearly states that we can’t just reload

code of a single class after it has been loaded into the JVM. HotSpot JVM offers some

way by allowing to replace the code of the methods, but so far it forbids to anyhow alter

structure and signatures, so it is only of limited use. What we can do is to load classes

using a particular (possibly our own) classloader, and then let it to be garbage collected

among with all loaded classes. Then next time an instance is created the class will be

loaded anew.

However even this won’t give us the desired result, as any existing instance of a class

will still hold on to its previous definition (with the old classloader) and now we might

actually have two conflicting class definitions in two different classloaders which can lead

to all sorts of trouble. So we also need to somehow reload the object state in a new

classloader.

We can achieve this with serialization—we just need to modify the ObjectInputStream

to take a classloader parameter and load the instances using its classes. Thus what we

have to do is:

1. Load the classes using our classloader.

2. Serialize the state of the instances

3. Drop the old classloader and create a new one

4. Deserialize state of the instances in the new classloader

Of course if some objects cannot be serialized (e.g do not implement Serializable or

contain non-serializable fields) the whole scheme fails, since we cannot preserve their

state.

Let’s start with the reloading procedure that takes an object and reloads it using

a fresh classloader. We know it should work through serialization, so it should look

approximately like the following:

...

private Serializable reload(Serializable child)

throws Exception {

return deepCopy(newClassLoader(), child);

}

...

deepCopy should just serialize and deserialize the object. There is one catch though—

it should also resolve the classes using our own classloader, so we have to make a subclass

of ObjectInputStream:

52

...

private static class ReloadingObjectInputStream

extends ObjectInputStream {

private ClassLoader cl;

public ReloadingObjectInputStream(

ClassLoader cl,

InputStream in)

throws IOException {

super(in);

this.cl = cl;

}

/*

* This method is used to resolve the classes

* when creating object instances.

*/

protected Class resolveClass(ObjectStreamClass desc)

throws IOException, ClassNotFoundException {

String name = desc.getName();

return cl.loadClass(name);

}

}

...

The deepCopy() method itself is straightforward and we could have used Apache

SerializationUtils methods if it weren’t for the custom ObjectInputStream:

...

private Serializable deepCopy(

ClassLoader cl,

Serializable original) throws Exception {

//Serialize to a byte array

ByteArrayOutputStream baos =

new ByteArrayOutputStream(512);

ObjectOutputStream out =

new ObjectOutputStream(baos);

try {

out.writeObject(original);

}

finally {

out.close();

}

53

byte[] serialized = baos.toByteArray();

//Deserialize to an instance

ByteArrayInputStream bais =

new ByteArrayInputStream(serialized);

ReloadingObjectInputStream in =

new ReloadingObjectInputStream(cl, bais);

Object obj = in.readObject();

return (Serializable) obj;

}

...

We could have used a usual classloader (most common is URLClassLoader) and point

its classpath to the /WEB-INF/classes. However there is also the problem that the same

classes are in the classpath of the web application classloader. The Java specification

instructs classloaders to try loading classes with the parent classloader first, however in

our case we would be able to reload those classes, so we need to invert this preference by

delegating to the parent only if we cannot find the class in the classpath:

...

private static class ReloadingClassloader

extends URLClassLoader {

public ReloadingClassloader(

URL[] urls,

ClassLoader parent) {

super(urls, parent);

}

public Class loadClass(String name)

throws ClassNotFoundException {

//If already loaded just return

Class c = findLoadedClass(name);

if (c != null)

return c;

//First try own classpath

//then delegate to parent

try {

return findClass(name);

54

}

catch (ClassNotFoundException e) {

return super.loadClass(name);

}

}

}

...

We create the classloader by putting /WEB-INF/classes into the classpath:

...

private ClassLoader newClassLoader()

throws MalformedURLException {

//Get the ServletContext

ServletContext sctx =

(ServletContext) getEnvironment().getEntry(

ServletContext.class);

//Return a classloader for "/WEB-INF/classes"

return new ReloadingClassloader(

new URL[] {sctx.getResource("/WEB-INF/classes")},

getClass().getClassLoader());

}

...

Now we have most of the machinery in place and before we move on to implementing

the Aranea filter we can inspect the limitations of the solution. Obviously it will only

work on serializable classes. In addition to get actual gain from it all classes should have

serialVersionUID set to some fixed number (e.g. ”0”). This should be done so that

small changes in the method and class signatures wouldn’t cause a deserialization failure.

Even then removing a class (even an inner or anonymous class) will cause serialization

to fail as well as changing the field types or order. However it is still much more than

HotSwap would allow (at least at the moment).

Now we can go on with implementing the Aranea filter that will do the work. There

are several reasons why this solutions suits Aranea so well:

• Aranea is originally assembled from independent components by containment. There-

fore one filter can define the classloader to load its children and do the rest of the

tricks.

• All application widgets in Aranea are serializable and loaded by the parent class-

loader (most of the filters are configured by Spring and loaded by its classloader).

• Aranea components can only access their parents through the environment, which

can be taken away at any given moment. Moreover parents have references only to

55

their direct children, and can communicate with the indirect children only through

messages.

Thus we can create a filter and put it in appropriate place just above the application

widgets and we will be able to seamlessly reload all application widgets code.

At the moment we will assume that creating a new classloader and serializing and

deserializing does not visibly affect response time in development, so we will just reload

all classes before every request. Thus we do not need to check exactly which classes have

changed, since any possible changes will be reloaded.

Let’s start by creating the filter service itself. It will have to take the child class name

as a string, since we will need to load it reflectively in a freshly created classloader.

public class StandardClassReloadingFilterWidget

extends BaseApplicationWidget {

private String childClassName;

private RelocatableWidget child;

public void setChildClass(String childClass) {

this.childClassName = childClass;

}

protected void init() throws Exception {

//Create the classloader and use it

//to load the child class

ClassLoader cl = newClassLoader();

Class childClass = cl.loadClass(childClassName);

//Create an instance of child class and

//attach it to the filter

child =

new RelocatableDecorator(

(Widget) childClass.newInstance());

addWidget("c", child)’

}

...

Here we create the child widget reflectively in the classloader and add it under a name

”c”. The only interesting part is that we also wrap it into a RelocatableDecorator,

which we will return to later. The following method will do the actual reloading:

...

protected void update(InputData input)

56

throws Exception {

try {

//Remove all references to parents and

//reload the child classes

child._getRelocatable().overrideEnvironment(null);

child = (RelocatableWidget) reload(child);

}

catch (ClassNotFoundException e) {

log.error("Failed to reload widget classes", e);

}

finally {

//Restore the references to parents

child._getRelocatable()

.overrideEnvironment(getEnvironment());

}

//Reattach the child new instance to the filter

_getComposite().attach("c", child);

}

...

Here the point of wrapping the child into the RelocatableDecorator comes out—as

all references from children to parents in Aranea have to go through the environment, by

removing the environment from the child we also remove all possible links up allowing to

serialize children only.

Now the filter is complete (except for the trivial render() method) and can be tested

in e.g. main example or any other Aranea application by adding a similar configuration

entry:

<bean id="araneaApplicationStart" singleton="false"

class="org.araneaframework.framework.filter.

StandardClassReloadingFilterWidget">

<property name="childClass"

value="org.araneaframework.example.main.web.DevelWidget"/>

</bean>

instead of the usual:

<bean id="araneaApplicationStart"

class="org.araneaframework.example.main.web.LoginWidget"

singleton="false"/>

The DevelWidget should start the LoginWidget in a StandardFlowContainerWidget.

Otherwise the reloading filter is lost on login.

57

Conclusions

As the enterprise applications get bigger and older more and more technologies come

up that help to fight the arising complexity. In the business layer there is a number of es-

tablished technologies, both implementation-level (Spring [14] and similar) and protocol-

level (Web Services [1], SOA [7] and similar). However in the web layer no such technolo-

gies are known to be widely applied1.

Aranea was created to solve these problems in the web layer. In this thesis we have

described Aranea minimalistic component model, the web development framework built

around it and shown a case study illustrating Object-Oriented concepts application. De-

scriptions of several extensions that simplify web development have also been included in

the thesis.

We have described the integration facilities built on top of the framework and the

component model that allow component level web application integration. We have also

described an application of these facilities to allow step-by-step migration from outdated

web development technologies and frameworks.

In addition we have developed the open source project Aranea MVC implementing the

described principles. The project is available from http://www.araneaframework.org

and has a stable community. The distribution had more than 2700 downloads since the

first release on 22nd February 2006.

The proposed web development approach has been successfully applied in more than

seven projects known to the author providing a boost in productivity and simplifying

maintenance. The proposed web integration approach is in testing phase, and has so far

been applied to one project.

1WSRP [32] supports some integration and decomposition, but is specific to portal applications.

58

http://www.araneaframework.org

Aranea Veebiraamistik

Jevgeni Kabanov

Magistritöö

Kokkuvõte

Kuna ärirakendused kasvavad suuremaks ja järjest vananevad, on vajadus uute tehno-

loogiate järele, mis aitavad nendega kaasnavatest keerukustest jagus saada. Ärikihis on

tekkinud hulk ennast tõestanud tehnoloogiad, nii implementatsiooni (Spring [14] jms)

kui ka protokolli tasemel (Web Services [1], SOA [7] jms). Samas ei ole veebikihis sellised

tehnoloogiad laialdast kasutust leidnud.

Aranea on objekt-orienteeritud minimalistlik komponentmudel, veebiarenduse- ja veebi-

integratsiooniraamistik, mis on suunatud suurtele ärirakendustele. Selles töös kirjeldame

Araneat ning näitame, kuidas sellega saab lahendada tüüpilisi arendus- ja integratsiooni-

probleeme.

Esimene peatükk on sissejuhatus sellest, kuidas rakendatakse OOP metoodikat Aranea

puhul ning tutvustab ka juhtumuuringut, mis illustreerib ülejäänud töö poolt kirjel-

datud printsiipe. Peatükk põhineb tutorialil [15], mis on kirjutatud Aranea esmakasu-

tajate tarbeks. Teine peatükk tutvustab lugejale Aranea raamistiku komponente, abs-

traktsioone ja ülesehitust. Keskendutakse pigem raamistiku põhiideedele, mitte niivõrd

implementatsiooni detailidele. Peatükk baseerub konverentsiartiklil [20]. Kolmas peatükk

kirjeldab, kuidas raamistiku komponente saab kasutada veebirakenduste integratsiooni

võimaldamiseks. Neljas, ja ühtlasi viimane, peatükk käsitleb Aranea laiendusi: blokeeru-

vad jätkud ning koodi ülelaadimine. Neist esimene põhineb konverentsiartiklil [20] ning

teine veebiblogis publitseeritud artiklil [16].

Töö põhipanus on avatud lähtekoodiga Aranea projekt, mis hõlmab üle 100 tuhande

koodirea ning üle 200 lehekülje dokumentatsiooni mitmete näidete ja alamprojektidega.

Projekti algatajateks olid autor koos Oleg Mürkiga ning seda arendas autori poolt juhitud

Aranea meeskond. Projekti distributsioon on kättesaadav tööga kaasneval CD plaadil

ning projekti koduleheküljel http://www.araneaframework.org.

Pakutud lähenemine veebiarendamisele on leidnud edukalt rakendamist rohkem kui

seitsmes autorile teadaolevas projektis, tõstes produktiivsust ning lihtsustades hooldust.

Veebiintegratsiooniraamistik on testimisfaasis ning on siiani olnud kasutusel ühes projek-

tis.

59

http://www.araneaframework.org

Bibliography

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Archi-

tectures and Applications. Springer, 2004.

[2] G. Bevin. RIFE. Available at http://rifers.org/, visited on 12th May 2007.

[3] G. Bevin. RIFE/Crud. Available at http://rifers.org/wiki/display/

rifecrud/, visited on 12th May 2007.

[4] M. Boiko. Java web controller frameworks. B.Sc. thesis, University of Tartu, 2005.

[5] B. Cox. Object oriented programming: an evolutionary approach. Addison-Wesley

Longman Publishing Co., Inc. Boston, MA, USA, 1986.

[6] S. Ducasse, A. Lienhard, and L. Renggli. Seaside — a multiple control flow web

application framework. ESUG 2004 Research Track, pages 231–257, September 2004.

[7] T. Erl. Service-Oriented Architecture: A Field Guide to Integrating XML and Web

Services. Prentice Hall PTR Upper Saddle River, NJ, USA, 2004.

[8] M. Fowler. Inversion of Control Containers and the Dependency Injection pattern.

Actualizado el, 23.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of

reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.

Boston, MA, USA, 1995.

[10] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley

Longman Publishing Co., Inc. Boston, MA, USA, 1996.

[11] P. T. Graunke, S. Krishnamurthi, V. der Hoeven, and M. Felleisen. Programming

the web with high-level programming languages. In European Symposium on Pro-

gramming (ESOP 2001), 2001.

[12] B. Henderson. The Gospel of the Flying Spaghetti Monster. Villard Books, 2006.

[13] R. Hieb, K. Dybvig, and C. W. Anderson, III. Subcontinuations. Lisp and Sym-

bolic Computation, 7(1):83–110, 1994. Available at http://citeseer.ist.psu.

edu/hieb93subcontinuations.html, visited on 12th May 2007.

60

http://rifers.org/
http://rifers.org/wiki/display/rifecrud/
http://rifers.org/wiki/display/rifecrud/
http://citeseer.ist.psu.edu/hieb93subcontinuations.html
http://citeseer.ist.psu.edu/hieb93subcontinuations.html

[14] R. Johnson. Spring. Available at http://springframework.org, visited on 12th

May 2007.

[15] J. Kabanov. Aranea Introductory tutorial. Available at http://www.

araneaframework.org/docs/intro/html/, visited on 12th May 2007.

[16] J. Kabanov. Zero turn-around in Java? Blog post, available at http://blog.

araneaframework.org/2006/11/21/zero-turn-around-in-java/, visited on 12th

May 2007.

[17] B. Kernighan and D. Ritchie. The C programming language. Prentice-Hall, 1988.

[18] T. Lindholm and F. Yellin. Java Virtual Machine Specification. Addison-Wesley

Longman Publishing Co., Inc. Boston, MA, USA, 1999.

[19] C. R. McClanahan. Apache Struts project. Available at http://struts.apache.

org/, visited on 12th May 2007.

[20] O. Mürk and J. Kabanov. Aranea: web framework construction and integration

kit. In PPPJ ’06: Proceedings of the 4th international symposium on Principles and

practice of programming in Java, pages 163–172, New York, NY, USA, 2006. ACM

Press.

[21] C. Queinnec. The influence of browsers on evaluators or, continuations to program

web servers. ICFP ’00: Proceedings of the fifth ACM SIGPLAN international con-

ference on Functional programming, pages 23–33, 2000.

[22] P. Thiemann. An embedded domain-specific language for type-safe server-side web-

scripting. Available at http://www.informatik.uni-freiburg.de/~thiemann/

haskell/WASH/, visited on 12th May 2007.

[23] Ajax. Wikipedia encyclopedia article available at http://en.wikipedia.org/wiki/

AJAX, visited on 12th May 2007.

[24] Apache Cocoon project. Available at http://cocoon.apache.org/, visited on 12th

May 2007.

[25] ASP.NET. Available at http://asp.net/, visited on 12th May 2007..

[26] Cascading Style Sheets. Available at http://www.w3.org/Style/CSS/, visited on

12th May 2007.

[27] Jakarta Tapestry. Available at http://jakarta.apache.org/tapestry/, visited

on 12th May 2007.

[28] Java Servlet 2.4 Specification (JSR-000154). Available at http://www.jcp.org/

aboutJava/communityprocess/final/jsr154/index.html, visited on 12th May

2007.

61

http://springframework.org
http://www.araneaframework.org/docs/intro/html/
http://www.araneaframework.org/docs/intro/html/
http://blog.araneaframework.org/2006/11/21/zero-turn-around-in-java/
http://blog.araneaframework.org/2006/11/21/zero-turn-around-in-java/
http://struts.apache.org/
http://struts.apache.org/
http://www.informatik.uni-freiburg.de/~thiemann/haskell/WASH/
http://www.informatik.uni-freiburg.de/~thiemann/haskell/WASH/
http://en.wikipedia.org/wiki/AJAX
http://en.wikipedia.org/wiki/AJAX
http://cocoon.apache.org/
http://asp.net/
http://www.w3.org/Style/CSS/
http://jakarta.apache.org/tapestry/
http://www.jcp.org/aboutJava/communityprocess/final/jsr154/index.html
http://www.jcp.org/aboutJava/communityprocess/final/jsr154/index.html

[29] The Javaflow component, Jakarta Commons project. Available at http://jakarta.

apache.org/commons/sandbox/javaflow/index.html, visited on 12th May 2007.

[30] JavaServer Faces technology. Available at http://java.sun.com/javaee/

javaserverfaces/, visited on 12th May 2007.

[31] JavaServer Pages Technology. Available at http://java.sun.com/products/jsp/,

visited on 12th May 2007.

[32] OASIS Web Services for Remote Portlets. Available at www.oasis-open.org/

committees/wsrp/, visited on 12th May 2007.

[33] Open source web frameworks in Java. Available at http://java-source.net/

open-source/web-frameworks, visited on 12th May 2007.

[34] Ruby on Rails. Available at http://www.rubyonrails.org/, visited on 12th May

2007.

[35] Spring Web Flow. Available at http://opensource.atlassian.com/confluence/

spring/display/WEBFLOW/, visited on 12th May 2007.

[36] The Extensible HyperText Markup Language. Available at http://www.w3.org/

TR/xhtml1/, visited on 12th May 2007.

[37] WebWork, OpenSymphony project. Available at http://struts.apache.org/, vis-

ited on 12th May 2007.

[38] Wicket. Available at http://wicket.sourceforge.net/, visited on 12th May 2007.

62

http://jakarta.apache.org/commons/sandbox/javaflow/index.html
http://jakarta.apache.org/commons/sandbox/javaflow/index.html
http://java.sun.com/javaee/javaserverfaces/
http://java.sun.com/javaee/javaserverfaces/
http://java.sun.com/products/jsp/
www.oasis-open.org/committees/wsrp/
www.oasis-open.org/committees/wsrp/
http://java-source.net/open-source/web-frameworks
http://java-source.net/open-source/web-frameworks
http://www.rubyonrails.org/
http://opensource.atlassian.com/confluence/spring/display/WEBFLOW/
http://opensource.atlassian.com/confluence/spring/display/WEBFLOW/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://struts.apache.org/
http://wicket.sourceforge.net/

	Acknowledgements
	Introduction
	Tutorial
	Hello World!
	Reusing Widgets
	Flows
	Putting It Together

	Web Development Framework
	Abstractions
	Assembly
	Aspects
	Implementation

	Web Integration Framework
	Requirements
	Implementation
	Legacy Migration

	Extensions
	Blocking Calls and Continuations
	Code Reloading

	Conclusions
	Summary (in Estonian)
	Bibliography

