E-Voting Wasm Cryptography

David Ruescas and Eduardo Robles

Sequent
david,edu@sequentech.io
http://https://sequentech.io/

Abstract. The Sequent Voting Platform is an open-source E2EV inter-
net voting system currently used in private organisations and non-legally
binding elections of public organisations. The system employs standard
cryptographic techniques following in the steps of well-established voting
schemes proposed in the academic literature.

We demo core cryptographic components that are being developed for the
next generation of Sequent’s platform. The main novelty demonstrated is
the execution of (heavyweight) cryptographic operations in the browser,
in a performant way. Potential applications of this technique are listed
and possible benefits for security, privacy and verifiability are suggested.

Keywords: evoting - cryptography - webassembly.

1 Introduction

Like many other systems proposed in the literature, the closest ancestor in Se-
quent’s genealogy tree is Helios[1] in its original mixnet variant. The most sig-
nificant departures from that Helios design are the use of a threshold distributed
key generation mechanism, described in Pedersen[2] and featured in CGS[3] and
Distributed Helios[4], and the use of a Terelius-Wikstrom[5] style mixnet rather
than the Sako-Kilian[6] one. Other systems with which Sequent shares techniques
are Wombat[7] and CHVote[9].

Research and development into Sequent’s next generation system is currently
underway. Part of this effort has been centred around the use of Rust[10] as a
core technology. One of the interesting aspects of this technology is its ability to
target WebAssembly[11] through the LLVM][12] toolchain.

Internet voting systems require the use of a client component with which
voters select and encrypt their votes, typically in a browser. In the past, these
components have been written in javascript or related languages. These com-
ponents replicate some of the cryptography (for example, ElGamal encryption)
that later processes votes in the backend. The initial motivating factor for our
investigation of Rust’s WebAssembly target was the possibility of merging this
overlapping cryptography into a single unified codebase. But there are further
interesting possibilities.



2 David Ruescas and Eduardo Robles

2 Applications

2.1 Vote casting

Voting client software can reuse common cryptography packaged in a library
compiled to wasm, eliminating duplication.

Suggested benefits

— Security: A unified code base reduces the likelihood of mismatches between
client and server cryptography, and reduces the attack surface. The amount
of code that needs to be audited is also reduced.

— Performance: Higher performance compared to javascript implementations.

2.2 Ballot verification

Ballot verifiers implementing the Benaloh challenge can reuse common cryp-
tography packaged in a library compiled to wasm, eliminating duplication.

Suggested benefits

As above.

2.3 Election verification

Election verification, usually carried out by specialised software that must be
downloaded and configured, can be executed in the browser with no installation.

Suggested benefits

— Verifiability: Making election verification procedures significantly more us-
able can achieve higher rates of exercised verification, moving the “universal”
part of universal verifiability closer to practice.

Note that achieving performant implementations in this use case is particularly
difficult as election verification involves compute intensive operations that a
priori seem impossible in a browser. We have not listed performance as a benefit
here as we are comparing with non-browser, native implementations; in other
words, performance is a must-have rather than a benefit for this use case.

2.4 Trustee protocols

Running full trustee nodes on the browser with reduced deployment, adminis-
tration and training costs.

Suggested benefits



E-Voting Wasm Cryptography 3

Real world experience has taught us that one of the barriers to running mixnet-
based elections with a larger number of independent trustees is the cost that
these trustees must incur in terms of deployment, administration and training.
This is especially true for elections with fewer resources in human capital and
infrastructure. As a result, it is not always easy to procure independent trustees
to assume this important responsiblity.

Any objective that is presumably achieved through distribution into inde-
pendent trustees could be achieved to a greater degree when some of the costs
of this distribution are reduced. For example:

— Privacy: Ballot secrecy safeguards achieved through the distribution of pri-
vate key material and mixing permutations would be achieved to a higher
degree if more trustees participate.

— Security: Correctness safeguards achieved through distribution of mixing and
tallying would be achieved to a higher degree if more trustees participate.

See previous section regarding performance as a benefit.

References

1. Ben Adida. Helios: Web-based Open-Audit Voting.

2. Torben Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing.

3. Ronald Cramer, Rosario Gennaro, Berry Schoenmakers. A secure and optimally
efficient multi-authority election scheme.

4. Véronique Cortier, David Galindo, Stéphane Glondu, Malika Izabachéne. Dis-
tributed ElGamal a la Pedersen: Application to Helios.

5. Bjorn Terelius, Douglas Wikstrom. Proofs of Restricted Shuffles.

6. Kazue Sako, Joe Kilian. Receipt-free mix-type voting scheme — a practical solution
to the implementation of a voting booth.

7. Wombat Voting https://wombat.factcenter.org/

8. Niko Farhi. An Implementation of Dual (Paper and Cryptographic) Voting System.
http://www.cs.tau.ac.il/ amnon/Students/niko.farhi.pdf

9. Rolf Haenni, Reto E. Koenig, Philipp Locher, Eric Dubuis. CHVote Protocol Spec-
ification. https://eprint.iacr.org/2017/325

10. https://www.rust-lang.org/

11. https://webassembly.org/

12. https://llvm.org/



