
University of Tartu

Faculty of Science and Technology

Institute of Technology

Oleksandr Kurylenko

Development of CNN-Based Models for Short-Term Load Forecasting in
Energy Systems

Master’s thesis (30 ECTS)
Robotics and Computer Engineering

Supervisors:

Alan Henry Tkaczyk, PhD
Florentin Dam, MSc

Ulf Roar Aakenes, PhD

Tartu 2020

Resümee

Konvolutsioonilistel närvivõrkudel põhinevate mudelite arendus lühiajalise koormuse
prognoosimiseks energiasüsteemides

Selles magistritöös on arendatud kaks konvolutsioonilistel närvivõrkudel (CNN) põhinevat
sügavõppe mudelit, mis prognoosivad tunnipõhiselt elektri tarbimist järgmiseks kalendripäevaks.
Nende eesmärk on prognoosida tarbimiskoormuse algtaset, mis aitab hinnata elektri nõudlusele
reageerimise tulemuslikkust ja ennustada tarbimismuudatustest sõltuvate teenuste kätte-
saadavust.

Elektri tarbimise aegrea andmed pärinevad kolmest Norra piirkonnast. CNN struktuuril
põhinevaid mudeleid võrreldakse nelja tööstusstandardi mudeliga (Asymmetric High Five of
Ten, Similar Profile Five of Ten, Average, Daily Profile), lisaks tehakse võrdlusi naiivse (Naive)
ning autoregressiivse integreeritud libiseva keskmise (ARIMA) mudeliga, mis sisaldab
Fourieri rea komponente. Mudelite tulemuslikkust kontrollitakse kolme hindamisparameetri
põhjal. Magstritöös antakse detailne ülevaade metoodikast, töö käigust ning tulemustest.

CNN struktuuril põhinevate mudelitega tehtud katsed olid edukad järgmise päeva elektri tar-
bimise tunnipõhiseks prognoosimiseks. Mitme sisendi ja mitme väljundiga (MIMO) 24 tundi
ette prognoosivatest mudelitest näitasid parimaid tulemusi CNN struktuuril põhinev ning kom-
binatsioon CNN struktuuril põhineva ja pika lühiajalise mälu (LSTM) mudelist. Daily Profile
mudel andis parimaid tulemusi nende uuritud mudelite hulgast, mis ei võimalda 24 tundi ette
prognoosida või ei rakenda MIMO lähenemist. Lisaks võib välja tuua Average mudeli, mille
tulemuslikkus algtaseme koormuse hindamisel oli uuritud mudelite hulgas kõrgeim. Samas
saab Average mudelit rakendada vaid võrdluseks, sest see kasutab sündmusejärgseid andmeid.

Töö CNN struktuuril põhinevate mudelitega energia tarbimise prognoosimiseks oli edukas, eriti
arvestades seda, et CNN ja CNN+LSTM mudelid edestasid teisi sarnaseid prognoosimudeleid.
Edasisi uuringuid on võimalik jätkata kahes suunas: juba arendatud CNN struktuuril põhinevate
mudelite täiustamisega ning uute CNN struktuuril põhinevate arhitektuuride väljatöötamise ja
rakendamisega.

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-
teooria); T140 Energeetika

Märksõnad: konvolutsioonilised närvivõrgud (CNN), pikk lühiajaline mälu (LSTM), ühe
muutujaga aegrea prognoosimine, mitme muutujaga aegrea prognoosimine, elektri tarbimine,
elektri nõudlus

2

Abstract

Development of CNN-Based Models for Short-Term Load Forecasting in Energy Systems

In this work, two deep learning models based on convolutional neural networks (CNNs) are de-
veloped for one-day-ahead hourly electricity consumption forecasting for the next calendar day.
One-day-ahead electricity consumption forecasting is done to perform baseline load evaluation
for the assessment of Demand Response (DR) performance and to predict the availability of
flexibility products.

Using electricity consumption time series data for three regions in Norway, the developed CNN-
based models are compared to four industry-standard baseline models (Asymmetric High Five
of Ten, Similar Profile Five of Ten, Average, and Daily Profile). Additionally, comparisons are
made to a Naive model and an Autoregressive Integrated Moving Average (ARIMA) model,
which includes Fourier terms. Three evaluation metrics are used to estimate the models’ per-
formance. A detailed description of the methodology, work pipeline, and results is provided.

The conducted experiments were successful in developing and applying the CNN-based models
to the problem of one-day-ahead hourly electricity consumption forecasting for the next calen-
dar day. The developed CNN and combination “CNN + Long Short-Term Memory (LSTM)”
models showed the best performance results among the predictive models which employ the
Multiple-Input Multiple-Output (MIMO) strategy to forecast 24 hours ahead. The Daily Pro-
file model showed the best performance among models which cannot forecast 24 hours ahead
or do not necessarily employ the MIMO strategy. It is worth noting that the Average model
showed the best performance in the baseline load evaluation among all the considered models.
However, the Average model is only a reference comparison which does not actually perform
forecasting, but rather uses post-event data.

It can be concluded that the work was successful in developing and applying the CNN-based
models to short-term load forecasting in energy systems, especially since the developed CNN
and CNN+LSTM models outperformed other similar forecasting models. Two different paths
could be chosen for future work: one that intends to explore more and improve the CNN-based
models developed in this work, and the one which aims to explore new CNN-based architec-
tures.

CERCS: P170 Computer science, numerical analysis, systems, control; T140 Energy research

Keywords: Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM),
univariate time series forecasting, multivariate time series forecasting, electricity consumption,
electricity demand

3

Contents

Resümee 2

Abstract 3

List of Figures 6

List of Tables 7

Acronyms 8

1 Introduction 9
1.1 Problem Statement . 10
1.2 Objectives and Roadmap . 11
1.3 Structure of the Thesis . 11

2 Related Work 12

3 Methodology 14
3.1 Approach to Forecasting . 14

3.1.1 Types of Forecasting Models . 14
3.1.2 Multi-Step Forecasting Schemes . 15

3.2 Baseline Models . 16
3.2.1 Industry-Standard Baseline Models 16
3.2.2 Naive Model . 18
3.2.3 ARIMA . 18

3.3 Framing the Problem as Supervised Learning 19
3.4 Deep Learning Models . 20

3.4.1 Convolutional Neural Networks . 20
3.4.2 Long Short-Term Memory . 21
3.4.3 Developed CNN Model . 22
3.4.4 Developed CNN+LSTM Model . 24

3.5 Evaluation Metrics . 25
3.5.1 Root Mean Square Error (RMSE) . 25
3.5.2 Mean Absolute Error (MAE) . 26
3.5.3 Mean Absolute Percentage Error (MAPE) 26

3.6 Performance Estimation . 26
3.6.1 ARIMA . 26
3.6.2 Deep Learning Models . 27

4

4 Experiments 29
4.1 Data Description . 29

4.1.1 Electricity consumption data . 29
4.1.2 Weather data . 30

4.2 Data Pre-Processing & Feature Engineering 30
4.2.1 Baseline Models . 33
4.2.2 Deep Learning Models . 34

4.3 Implementation Details . 36
4.3.1 Industry-Standard Baseline Models 36
4.3.2 Naive Model . 36
4.3.3 ARIMA . 36
4.3.4 Deep Learning Models . 38
4.3.5 Technical Details . 41

5 Results and Discussion 42
5.1 Main Results . 42
5.2 Analysis of Models’ Performance . 42

5.2.1 Comparability of Models . 42
5.2.2 Asymmetric HFoT . 45
5.2.3 SPFoT . 46
5.2.4 Average . 46
5.2.5 Daily Profile . 47
5.2.6 Naive Model . 47
5.2.7 ARIMA + Fourier Terms . 48
5.2.8 CNN and CNN+LSTM Models . 49

5.3 Summary of Findings . 51

6 Conclusion 53

Bibliography 56

Appendices 60

Non-exclusive license 62

5

List of Figures

1.1 Demand Response (DR) event . 9
1.2 Incentive-based Demand Response (DR) system 10

3.1 Sliding window method . 19
3.2 An example of a two-dimensional convolution 20
3.3 An example of max pooling . 21
3.4 Architecture of LSTM . 21
3.5 LSTM unit . 22
3.6 Developed CNN model architecture . 23
3.7 Developed CNN+LSTM model architecture 24
3.8 Walk-forward cross-validation algorithm . 27

4.1 Hourly transformer data for 3 regions in Norway 31
4.2 Segment of data for region 1 from 15 October 2018 to 15 November 2018 . . . 32
4.3 Hourly transformer data by month . 33
4.4 Hourly transformer data by hour . 34

5.1 Values of RMSE on all data sets . 44
5.2 Values of MAE on all data sets . 44
5.3 Values of MAPE on all data sets . 44
5.4 Forecasted vs. Actual electricity consumption (Asymmetric HFoT) 45
5.5 Forecasted vs. Actual electricity consumption (SPFoT) 46
5.6 Forecasted vs. Actual electricity consumption (Average) 47
5.7 Forecasted vs. Actual electricity consumption (Daily Profile) 47
5.8 Forecasted vs. Actual electricity consumption (Naive model) 48
5.9 Forecasted vs. Actual electricity consumption (ARIMA + Fourier terms) 48
5.10 Evaluation metrics per forecast lead time (ARIMA + Fourier terms) 49
5.11 Forecasted vs. Actual electricity consumption (CNN, blocked 20-fold CV) . . . 50
5.12 Forecasted vs. Actual electricity consumption (CNN+LSTM, blocked 20-fold

CV) . 50
5.13 Evaluation metrics per forecast lead time (CNN, blocked 20-fold CV) 51
5.14 Evaluation metrics per forecast lead time (CNN+LSTM, blocked 20-fold CV) . 51

6

List of Tables

3.1 Parameters of convolution and max pooling layers of CNN model 23
3.2 Parameters of convolution and max pooling layers of CNN+LSTM model . . . 25

4.1 Weather data . 30
4.2 Variables with missing values . 31
4.3 The most significant periodogram frequencies and spectral densities 37
4.4 ARIMA optimal parameters and corresponding AICc 38
4.5 ARIMA + Fourier terms optimal parameters and corresponding AICc 38
4.6 CNN optimal hyperparameters . 40
4.7 CNN+LSTM optimal hyperparameters . 41

5.1 Mean evaluation metrics for Naive model, ARIMA + Fourier terms, CNN, and
CNN+LSTM . 43

5.2 Mean evaluation metrics for Asymmetric HFoT, SPFoT, Average, and Daily
Profile . 43

7

Acronyms

AICc - Corrected Akaike Information Criterion

ARIMA - Autoregressive Integrated Moving Average

CNN - Convolutional Neural Network

CV-RMSE - Coefficient of Variation of the Root Mean Square Error

DR - Demand Response

DRSP - Demand Response Service Provider

HFoT - High Five of Ten

LSTM - Long Short-Term Memory

MAE - Mean Absolute Error

MAPE - Mean Absolute Percentage Error

MIMO - Multiple-Input Multiple-Output

NMSE - Normalized Mean Square Error

NRMSE - Normalized Root Mean Square Error

PReLU - Parametric Rectified Linear Unit

ReLU - Rectified Linear Unit

RMSE - Root Mean Square Error

RRMSE - Relative Root Mean Square Error

SPFoT - Similar Profile Five of Ten

STLF - Short-Term Load Forecasting

TPE - Tree Parzen Estimator

8

1 Introduction

In the electric grid, it is crucial to maintain a balance between demand and supply. Any
significant imbalance in the demand-supply ratio may cause electric grid instability and failures
within the grid. One of the traditional ways to avoid such situations is to adjust the supply
according to the demand. However, this approach is quite limited from the electricity utility
providers’ side since some generating units may take a long time to ramp up to full power and
be too expensive to operate, as well as at times demand may be higher than the overall capacity
of all the available power plants.

Demand response (DR) mechanisms were designed to overcome these limitations. DR
mechanisms aim to reduce electricity consumption or shift it from on-peak to off-peak peri-
ods to reduce the risk of potential electric grid disturbances and to ensure higher efficiency
of usage of power plants for electric utility providers. It is done by reflecting supply expec-
tations through consumer price signals when power is cheaper at specific times of the day or
through smart metering when explicit requests or changes in pricing may be communicated to
consumers. [AES07,BPKS11] According to the United States Federal Energy Commission, DR
is defined as “changes in electric usage by end-use customers from their normal consumption
patterns in response to changes in the price of electricity over time, or to incentive payments
designed to induce lower electricity use at times of high wholesale market prices or when sys-
tem reliability is jeopardized”. [FER16] Therefore, DR mechanisms facilitate greater flexibility
within the electric grid.

Figure 1.1: Demand Response (DR) event

When the demand needs to be decreased, a DR event is activated. As can be seen from
Figure 1.1, during the DR event, demand is decreasing compared to business as usual load,
or load under the assumption of no DR event. The green area in Figure 1.1 represents the
curtailment in electricity consumption achieved during the DR event.

9

1.1 Problem Statement
To make DR mechanisms work on the market, the necessity to measure the real curtailment

during the DR events arises. It is crucial for defining the extent to which flexibility service
providers deliver the response. The actual load is compared to the business as usual load, known
as baseline load, to get the real curtailment during the DR event. The difference between the
baseline load and actual load during the DR event accounts for the DR performance.

As an example of the DR system,an incentive-based demand response system, given in
Figure 1.2, is reviewed.

Figure 1.2: Incentive-based Demand Response (DR) system

In the incentive-based DR system, Demand Response Service Providers (DRSPs), also
known as flexibility providers, gather electricity customers who have the potential to decrease
electricity consumption upon a request. Each DRSP aggregates such customers and offers an
aggregated DR resource, which is considered as a virtual generator. If consumption has to be
reduced, the DR event is activated, and DRSP distributes the request to the participating cus-
tomers who, in turn, decrease electricity consumption. In the next step, the real curtailment is
measured as a difference between the baseline load and load during the DR event. After the
electricity curtailment amount is measured, DRSP receives an incentive which is distributed
among the customers, excluding the commission. [KL18,WUO+14] Therefore, DRSPs sell the
deviation from the baseline load of their assets.

Different industry-standard baseline models such as Asymmetric HFoT, SPFoT, Average, or
Daily Profile are widely adopted for the baseline load evaluation in the modern electric grids.
They are developed to account for four main qualities of baseline models: accuracy, simplicity,
integrity, and alignment. [KEM13a, KEM13b, Ene09]

Nevertheless, alternative methods can be considered to both improve the baseline load eval-
uation and produce the electricity consumption forecasts to allow assessment of the availability
of the flexibility products on the market.

10

1.2 Objectives and Roadmap
The main objective of this work is to develop CNN-based deep learning models for the one-

day-ahead hourly electricity consumption forecasting for the next calendar day, which belongs
to short-term load forecasting (STLF). One-day-ahead forecasting of electricity consumption
would allow not only to assess the real curtailment in case of DR events but also to predict the
availability of flexibility products for that day.

The goal of this work is to demonstrate that the developed CNN-based deep learning archi-
tectures are relevant and flexible to allow ”plugging-in” deep learning algorithms into the pro-
cess of electricity consumption forecasting. As a powerful family of machine learning methods
based on artificial neural networks, deep learning has shown great benefits and promising appli-
cations in load forecasting tasks. Unlike statistical methods, deep learning methods can better
capture inherent non-linearity, volatility, and long-term dependencies present in the electricity
consumption data. Although deep learning methods are not characterized as being relatively
simple, they tend to provide high-accuracy forecasts, and ensure greater scalability, which is
an essential property for growing electric grids. The convolutional neural networks (CNNs), in
particular, have shown remarkable results in the scope of short-term load forecasting.

In this work, ARIMA and Naive model are used as baseline models for comparison to the
developed deep learning CNN-based models and industry-standard baseline models.

It is worth mentioning that different types of customers in different regions have different
electricity consumption behavior. Consequently, different models may be applied to each of the
customer segments in the electric grid to achieve higher accuracy. However, in this work, the
aim is to use the baseline load forecasting models for high-level aggregations of customers in
Norway without performing preliminary customer segmentation.

1.3 Structure of the Thesis
This thesis consists of 6 chapters:

– Chapter 2 highlights the related works in the field of load forecasting.

– Chapter 3 describes the methodology applied in this work.

– Chapter 4 gives an overview of the experimental part of the study.

– Chapter 5 provides the results of the experimental part alongside with analysis and dis-
cussion over the received results.

– Chapter 6 provides a summary of the key findings.

11

2 Related Work

The availability of vast amounts of energy data, along with the various challenges in the
energy sector, lead to an increased interest in short-term load forecasting. Different CNN-
based models are developed and studied for solving the problem of STLF in numerous works.
The demonstrated effectiveness, and high forecasting accuracy of hybrid CNN-based models
in STLF tasks serves as an impetus for applying CNN-based models to STLF. In this chapter,
some of the recent research, which has boosted the motivation to develop and employ CNN-
based models for STLF in this work is reviewed.

In [KH18], Kuo et al. propose a CNN-based load forecasting model. The presented model
is developed to make 72-hour-ahead forecasts based on the last week of hourly load data. The
experiments on the real-world data show that the proposed model outperforms the compared
models with MAPE and CV-RMSE of the proposed model being 9.77% and 11.66%. The
experiments prove the effectiveness of the CNN structure in forecasting.

In [TMZZ18], Tian et al. propose a hybrid CNN-LSTM model for short-term load fore-
casting. The proposed model consists of LSTM, CNN, and feature-fusion modules, and is
developed to make 24-hour-ahead forecasts based on the last three weeks of hourly load data.
The experiments on the real-world data show that the proposed model outperforms the com-
pared models by MAE, RMSE, and MAPE evaluation metrics averaged on eight partitions of
the test set. The results also show that the proposed CNN-LSTM model demonstrates stability
by being superior to the other models on all partitions of the test set.

In [LSSL19], Lang et al. perform a study on the performance of different modifications of
one-dimensional CNN models for 36-hour-ahead load forecasting. The experiments are done
on the real-life smart meter data sets of 15 minutes granularity, corresponding to a big apartment
building and a whole city district. The authors conclude that good forecasts for volatile load
profiles can be achieved already with rather simple CNN architectures.

In [HR19], Hong et al. propose a hybrid model based on CNN, cascaded with the Radial
Basis Function (RBF) neural network with a double Gaussian function as its activation function.
The proposed model takes into account the uncertainty of the wind power and is developed to
make 24-hour-ahead forecasts based on the last 50 hours of hourly load data. The experiments
on the real-world data show that the proposed model produces the best results considering
the structure of the CNN with two convolution and two pooling layers, and outperforms the
compared models based on R2, RMSE, NMSE, and MAPE evaluation metrics.

In [KCJL19], Kim et al. propose a hybrid power demand forecasting model (c, l)-LSTM-
CNN and introduce a bivariate-based context learning approach. In the proposed model, c
bivariate sequences for each type of contextual information in the format< Key, Context[1,c] >
are given as an input to c LSTM networks with l layers, which are cascaded with a CNN module.
The proposed model is developed to make n-day forecasts. The authors perform numerous
experiments on the different types of daily real-world power demand data. In particular, the
proposed model shows the best results in terms of MAPE and RRMSE compared to the other
considered models on the data set by day of the week without holidays.

12

In [HWG+19], Huang et al. propose a low training cost CNN-based model. The proposed
model is developed to make day-ahead forecasts based on the last week of half-hourly residen-
tial load data. The experiments on the real-world data show that the proposed model outper-
forms the compared models in terms of training time and accuracy of forecasts based on RMSE,
NRMSE, and MAE evaluation metrics. The authors emphasize that the forecasting accuracy of
the model can be improved by obtaining and employing external information in addition to the
electricity load data.

In [DWX+19], Deng et al. propose a multi-scale CNN with time cognition. The CNN mod-
ule of the proposed model is based on the one-dimensional multi-scale convolutions. Addition-
ally, the authors present periodic coding applied to the input time variables. The performance
of the proposed and compared models are estimated on the real-world data both for point and
probabilistic forecasts. Based on the experiments, the proposed model showed the best fore-
casting accuracy based on RMSE, MAE, and MAPE evaluation metrics for point forecasting,
and average pinball score for probabilistic forecasting.

13

3 Methodology

In this chapter, the methodology for short-term load forecasting applied to baseline load
evaluation is described. In section 3.1, the employed in this work approach to forecasting is
discussed. In section 3.2, baseline models used for comparison to the given in section 3.4 de-
veloped deep learning CNN-based models are described. In sections 3.5 and 3.6, the discussion
on the performance estimation of the implemented models is presented.

3.1 Approach to Forecasting
In this work, for baseline load evaluation, 24-hour-ahead hourly electricity consumption

forecasting, also referred to as multi-step STLF, is performed. STLF covers real-time planning
that aims to predict the availability of flexibility products to balance the requirements for the
next calendar day. In this section, a general overview of forecasting approaches is given.

3.1.1 Types of Forecasting Models
The main objective of forecasting problems is to predict the values for a forecast horizon H

based on the values of a time window W , where H is the number of steps for which the forecast
is done, and W is the period on which the forecast is based. Each step in the forecast horizon is
referred to as lead time.

For the cases H > 1, the problem is called a multi-step forecasting problem. In this work,
the 24-hour-ahead hourly forecast is done, i.e., H = 24. Therefore, multi-step forecasting
models for solving a multi-step forecasting problem are developed.

Multi-step forecasting models can be classified into two types: multi-step univariate fore-
casting models or multi-step multivariate forecasting models. In this work, both multi-step
multivariate and univariate forecasting models are employed.

Multi-step Univariate Forecasting Models

In the multi-step univariate forecasting models, the succeeding sequence members {xn, . . . ,
xn+H−1} depend only on the preceding members of the same time series {xn−W , . . . , xn−1} for
the forecast horizon H and time window W , as given in Eq. (3.1).

xn, . . . , xn+H−1 = f(xn−W , . . . , xn−1) (3.1)

In Eq. (3.1), f is some function which defines the dependency between the succeeding and
preceding values. [ASVVMM16]

14

Multi-step Multivariate Forecasting Models

Multivariate forecasting models are an extension to the univariate forecasting models. They
are used for the cases when the succeeding sequence members {xn, . . . , xn+H−1} depend not
only on the preceding members of the same time series {xn−W1 , . . . , xn−1} but also on the
members of another time series {ym−W2 , . . . , ym−1}, {zk−W3 , . . . , zk−1}, . . . for the forecast
horizon H and time windows W1,W2,W3, . . ., as given in Eq. (3.2).

xn, . . . , xn+H−1 = f(xn−W1 , . . . , xn−1, ym−W2 , . . . , ym−1, zk−W3 , . . . , zk−1, . . .) (3.2)

In Eq. (3.2), f is some function which defines the dependency between the succeeding
and preceding values. It is assumed that the time series {yt}t∈T , {zt}t∈T , . . . are changing and
measured synchronously with the time series {xt}t∈T . [ASVVMM16]

3.1.2 Multi-Step Forecasting Schemes
In this section, an overview of five different strategies for multi-step forecasting is given. In

this work, the MIMO strategy for performing a multi-step STLF is adopted for the developed
models.

Recursive Strategy

While employing a recursive strategy, a single predictor f is designed to make a one-step-
ahead forecast xi based on xi−W , . . . , xi−1 for time window W .

For forecasting the succeeding sequence members xn, . . . , xn+H−1 in the forecast horizon
H , the value for each time step tn, . . . , tn+H−1 is recursively forecasted and added to the
time series sequence, being treated as a correct one. Therefore, for each time step ti, i ∈
n+ 1, n+H − 1, the previously forecasted preceding value xi−1 is being used in forecast-
ing. [GLA19]

Direct Strategy

While employing a direct strategy, a set of independent predictors fk, k ∈ 1, H is being
designed to make forecasts xi, . . . , xi+H−1 independently for each of the time steps ti+k−1, k ∈
1, H in the forecast horizon H . The forecasts xi, . . . , xi+H−1 are made by fk, k ∈ 1, H based
on the same input xi−W , . . . , xi−1 for time window W . [GLA19]

DiRec Strategy

DiRec strategy is a combination of the recursive and direct strategies.
While employing a direct strategy, a set of independent predictors fk, k ∈ 1, H is being

designed to make forecasts xi, . . . , xi+H−1 independently for each of the time steps ti+k−1, k ∈
1, H in the forecast horizon H .

For forecasting the succeeding sequence members xn, . . . , xn+H−1, each of the predictors
fk, k ∈ 1, H uses an enlarged input set, obtained by adding the values xi, predicted at the
previous time steps ti, i ∈ n, n+ k − 2, k ≥ 2. [GLA19]

MIMO Strategy

While employing a MIMO strategy, a single predictor f is designed to forecast the whole
output sequence xn, . . . , xn+H−1 in the forecast horizon H . [GLA19]

15

DIRMO Strategy

DIRMO strategy represents a trade-off between the Direct and MIMO strategies.
While employing a DIRMO strategy, the forecast horizon H is divided into smaller forecast

horizons of length l, H1, . . . , Hm,m = dH
l
e. This way, m forecasting problems for each of

the forecast horizons H1, . . . , Hm are created, each of which is solved employing the MIMO
strategy. [GLA19]

3.2 Baseline Models
Baseline models provide a reference to make sure the developed CNN-based models are not

performing worse. In this section, three types of baseline models are introduced.

3.2.1 Industry-Standard Baseline Models
In this work, along with the developed models, the aim is to explore the performance of the

industry-standard baseline models. Industry-standard baseline models are widely used to evalu-
ate whether flexibility has been offered or not. They account for four main qualities of baseline
models: accuracy, simplicity, integrity, and alignment. Accuracy is necessary to provide ade-
quate DR performance assessment. Simplicity is essential to make it easier for the stakeholders
to estimate the real incentives depending on the load curtailment. Integrity is required to pre-
vent the attempts of stakeholders to ”game the system.” Alignment is necessary to avoid the
situations of under- or overestimation of the real load curtailment efforts.

Baseline load adjustments may be applied to models to capture customers’ recent behavior
on the day of the DR event. These adjustments are based on the day-of-event conditions and
mitigate the possible bias in baseline load evaluation, which may occur since customer demand
is often the heaviest on the event days. Instances of baseline load adjustments are symmetric or
asymmetric. Symmetric adjustments shift the estimated initial baseline up if the estimated base-
line load is lower than the event-day profile, and down if the estimated baseline load is higher
than the event-day profile. Asymmetric adjustments only shift the estimated initial baseline load
up if the estimated baseline load is lower than the event-day profile. [Ene09, WUO+14]

Asymmetric HFoT

Asymmetric HFoT (”high five of ten”) baseline load evaluation model was developed by
EnerNOC and is described in [Ene09].

For a given time interval t, baseline load bt is estimated as shown in Eq. (3.3) (the calculation
is done for each time interval during the DR event).

bt =
ctd1 + ctd2 + ctd3 + ctd4 + ctd5

5
+ max[

ct−1 − bt−1 + ct−2 − bt−2

2
; 0] (3.3)

The first summand represents the initial baseline load estimation, while the second one
represents the additive upward asymmetric adjustment. The initial baseline load is equal to
the average electricity consumption of corresponding hours from five days with the highest
consumption ctd1-ctd5 within the last ten non-event days excluding holidays. Baseline load
adjustment is equal to the difference in observed electricity consumption ct−2 and ct−1 and
evaluated baseline load bt−2 and bt−1 beginning two hours before the DR event activation with
the minimum adjustment of zero.

16

This baseline model satisfies all four crucial qualities of the baseline. Using a 10-day base-
line time window, it provides a proper balance to take into account the recent trends and to limit
possibilities for manipulations. The formula utilizes the corresponding hours with the highest
consumption, specifically to avoid understating the customers’ baseline load.

SPFoT

SPFoT (”similar profile five of ten”) baseline load evaluation model was developed for Low
Carbon London and is described in [WUO+14].

For a given time interval t, baseline load bt is estimated as shown in Eq. (3.4) (the calculation
is done for each time interval during the DR event).

bt =
ctds1 + ctds2 + ctds3 + ctds4 + ctds5

5
+
ct−1 − bt−1 + ct−2 − bt−2

2
(3.4)

The first summand represents the initial baseline load estimation, while the second one rep-
resents the day-of-event symmetric adjustment. The initial baseline load is equal to the average
load consumption of corresponding hours from five days with a similar electricity consump-
tion profile ctds1-ctds5 within the last ten non-event days excluding holidays. The electricity
consumption profile similarity between the event day and other days is defined by (Pearson)
correlation coefficient. Baseline load adjustment is equal to the difference in observed electric-
ity consumption ct−2 and ct−1 and evaluated baseline load bt−2 and bt−1 beginning two hours
before the DR event activation.

Since SPFoT estimates the baseline load based on the daily electricity consumption profile
of a similar shape, not just based on the days with the highest consumption, more variable
profiles can benefit from this approach.

Average

Average baseline load evaluation model was proposed in [EAL17].
For a given time interval t, baseline load bt is estimated as shown in Eq. (3.5) (the calculation

is done for each time interval during the DR event).

bt =
ct−1 + ct+1

2
(3.5)

Baseline load is equal to the average electricity consumption one hour before ct−1 and one
hour after ct+1 the DR event activation.

Daily Profile

Daily Profile baseline load evaluation model was proposed in [EAL17].
For a given time interval t, baseline load bt is estimated as shown in Eq. (3.6) (the calculation

is done for each time interval during the DR event).

bt =
cd,t−1 · cd−1,t

cd−1,t−1

(3.6)

Baseline load is equal to the electricity consumption within the preceding hour cd,t−1 mul-
tiplied by the increase/decrease of electricity consumption in the corresponding hours cd−1,t−1

and cd−1,t a day before the DR event activation.

17

3.2.2 Naive Model
Naive model, also known as persistence model, is a conventional benchmark in forecasting.

For the forecast horizon H , a formula for forecasting the values x̂T+h, h ∈ 1, H , succeeding
after xT , with the Naive model is given in Eq. (3.7). [HA18, Chapter 3.1]

x̂T+h|T = xT (3.7)

Naive model belongs to a class of multi-step univariate forecasting models.

3.2.3 ARIMA
Autoregressive Integrated Moving Average ARIMA(p, d, q), where p, d and q are parame-

ters, represents a class of models which model time series (or stochastic processes—collections
of random variables indexed by time) based on its own lagged values and lagged forecast errors.
ARIMA(p, d, q) is the compound of autoregressive AR(p) (Eq. (3.8)), integrating I(d), and
moving average MA(q) (Eq. (3.9)) parts.

AR(p) : xt =

p∑
i=1

ai · xt−i + εt (3.8)

MA(q) : xt =

q∑
j=1

bj · εt−j + εt (3.9)

In Eq. (3.8) and (3.9), εt is white noise, εt ∼ N(0, σ2
ε). AR(p) establishes the relationship

between the value at time t, xt, and its lagged values xt−p, . . . , xt−1. MA(q) establishes the
relationship between the value at time t, xt, and lagged forecast errors εt−q, . . . , εt−1.

Adding AR(p) and MA(q), an Autoregressive Moving Average ARMA(p, q) model given
in Eq. (3.10) is obtained; εt ∼ N(0, σ2

ε).

ARMA(p, q) : xt =

p∑
i=1

ai · xt−i +

q∑
j=1

bj · εt−j + εt (3.10)

Applying a backshift operator B, given in Eq. (3.11), ARMA(p, q) can be rewritten in the
way given in Eq. (3.12).

Bxt = xt−1 (3.11)

ARMA(p, q) :

q∑
j=1

bj · Bjεt + εt = (1−
p∑
i=1

ai · Bi)xt = θ(B)xt (3.12)

ARMA(p, q) is restricted to modelling stationary (statistical characteristics do not change
over time) stochastic processes only. Still, time series are not usually realizations of station-
ary stochastic processes. For example, a time series may contain a trend and is, therefore, a
realization of a non-stationary stochastic process.

Stationarity of a stochastic process is satisfied in case all of the absolute values of the inverse
roots rk, k ∈ 1, p of the characteristic equation (3.13) (solved for B) are lower than unity, i.e.,
|rk| < 1, k ∈ 1, p. If one or more of the inverse roots rk satisfy the condition |rk| = 1 (unit root
is the solution of the characteristic equation (3.13)), the stochastic process is considered to be

18

non-stationary. In case a trend is present in time series, the multiplicity of a unit root defines its
order.

θ(B) = 0 (3.13)

To transform the non-stationary process with a unit root of the characteristic equation (3.13)
of multiplicity d into a stationary stochastic process, a difference operator ∇, given in Eq.
(3.14), is applied to the values of time series for d times.

∇xt = xt − xt−1 = (1− B)xt (3.14)

ARIMA(p, d, q) is the modification of ARMA(p, q) which involves the integrating part
I(d) = ∇d and can be used for both stationary and non-stationary stochastic processes. The
formula for ARIMA(p, d, q) is given in Eq. (3.15); εt ∼ N(0, σ2

ε).

ARIMA(p, d, q) : xt =

p∑
i=1

ai · ∇dxt−i +

q∑
j=1

bj · εt−j + εt (3.15)

Any of the parameters p, d or q may be set to zero and in that case the corresponding part
(AR(p), I(d) or MA(q)) of the ARIMA(p, d, q) model is not used. [LHZS16, Zha18, Rao18]

ARIMA belongs to a class of multi-step univariate forecasting models.

3.3 Framing the Problem as Supervised Learning
Supervised learning is solving a problem of predicting target values (labels) y given input

values (features) x. The goal of supervised learning is to construct a model fΘ that maps x to
y, fΘ(x) = y. The parameters Θ of the fΘ are chosen based on some collection of n labeled
instances {xi, yi}ni=1 to establish the relationship between the input and target values and be able
to correctly predict target values for previously unobserved input values. [ZLLS20]

In this work, supervised learning is applied to fit deep learning models for electric load fore-
casting based on historical data. The considered forecasting problem is a regression problem
where H values are forecasted based on W historical observations; H is a forecast horizon,
H > 1; W is a time window, W > 1.

Figure 3.1: Sliding window method

The aforementioned regression problem can be framed as a supervised learning problem by
applying the sliding window method to the time series: a window of size W is placed on the
input sequence, and a window of size H is placed on the corresponding target sequence. The

19

target sequence is usually located right after the input one. To cover all the time series data, the
widows are simultaneously shifted to the end of the time series by a fixed step s, s is usually
taken equal to one. The process of applying the sliding window method to time series data is
visualized in Figure 3.1.

3.4 Deep Learning Models
In this work, two CNN-based models are applied to the multi-step univariate and multivari-

ate forecasting problems. In this section, a description of CNNs and LSTM networks as well as
the two developed CNN-based models is provided.

3.4.1 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) were first introduced by LeCun et al. in [LBD+89].

Usually, the CNNs consist of convolution layers, pooling layers, and fully connected layers. The
CNNs are capable of capturing the local trend and scale-invariant features when the nearby data
points have a strong relationship with each other. The CNNs typically combine three important
properties: sparse connectivity, parameter sharing, and equivariant representations. [GBC16,
Chapter 9]

Figure 3.2: An example of two-dimensional convolution [GBC16, Chapter 9]

A convolution layer is a key component of the CNN architecture where feature extraction
is performed. In a convolution layer, a convolution operation is applied to its inputs, which
are multidimensional arrays, or tensors. A convolution operation is ”a dot product operation
between a grid-structured set of weights and similar grid-structured inputs drawn from different
spatial localities in the input volume.” [Agg18, Chapter 8] For instance, for two-dimensional
input tensor, such as an image, a discrete convolution is defined as given in Eq. (3.16), where I
is a two-dimensional input tensor, K is a kernel, and S(i, j) is an output of the convolution op-
eration. In practice, an infinite summation is implemented as a summation over a finite number
of elements of the input and kernel arrays. An example of a two-dimensional convolution op-

20

eration is given in Figure 3.2. [GBC16, Chapter 9] The outputs of convolution layers are called
feature maps, or activation maps.

S(i, j) = (I ∗K)(i, j) =
+∞∑

m=−∞

+∞∑
n−∞

I(m,n)K(i−m, j − n) (3.16)

A pooling layer typically follows convolution layers. In a pooling layer, a downsampling op-
eration is applied to its input, i.e., rectangular neighborhoods of input feature maps are summa-
rized into single output neurons. For example, max pooling outputs the maximum value within
a rectangular neighborhood, as shown in Figure 3.3. Downsampling results in dimensionality
reduction, which minimizes computational load, and reduces overfitting. [GBC16, Chapter 9]

Figure 3.3: An example of max pooling [CS220]

Fully connected layers are typically added at the end of the CNN architecture. Neurons in
fully connected layers have full connections to all neurons in the previous layer as in the regular
neural networks.

3.4.2 Long Short-Term Memory
Long Short-Term Memory (LSTM) networks, introduced in [HS97], are a variation of Re-

current Neural Networks (RNNs), designed to overcome the problems of vanishing and ex-
ploding gradient issues in RNNs, and solving the problem of learning long-term dependencies.
LSTM networks, same as RNNs, are intended for processing sequences. The architecture of
LSTM is given in Figure 3.4. In Figure 3.4, the yellow rectangles are learned neural network
layers, the pink circles are pointwise operations, the merging lines denote concatenation.

Figure 3.4: Architecture of LSTM [Ola15]

A more detailed view of an LSTM memory cell, or unit, is given in Figure 3.5.
An LSTM unit gets the hidden state ht−1 and the cell state Ct−1 as inputs from the previous

step as well as the input xt. Each unit has gates that control the flow of the information in and out
of the cell. An LSTM unit has three types of gates: forget gate ft, input gate it, and output gate

21

Figure 3.5: LSTM unit [BFOS19]

ot. [Agg18, Chapter 7.5] The information flow in an LSTM unit is represented by Eqs. (3.17) to
(3.22); σ is a sigmoid function, σ(x) = 1

1+e−x ; tanh is a hyperbolic tangent, tanh(x) = e2x−1
e2x+1

;
W and b are weights and biases of the neural network layers respectively. [BFOS19]

ft = σ(Wf · [ht−1, xt] + bf) (3.17)

it = σ(Wi · [ht−1, xt] + bi) (3.18)

C̃t = tanh(Wc · [ht−1, xt] + bc) (3.19)

ot = σ(Wo · [ht−1, xt] + bo) (3.20)

Ct = ft � Ct−1 + it � C̃t (3.21)

ht = ot � tanh(Ct) (3.22)

3.4.3 Developed CNN Model
A major part of the architecture of the developed CNN model is adopted from [KH18] and

is given in Figure 3.6. As an input, the model takes hourly electricity consumption data for the
last week in the shape of (168, 1). The explanation of the choice of the input sequence length
as one week is given in section 4.2.

The developed CNN model consists of one-dimensional convolution layers (Conv1D), one-
dimensional max pooling layers (MaxPooling1D), Dropout layer (Dropout), flattening layer
(Flatten), fully connected layer (Dense), and two activation layers—leaky rectified linear unit
(LeakyReLU) and parametric rectified linear unit (PReLU). The kernel sizes of the convolution
and pooling layers, and the depths of feature maps of the convolution layers (in order from input
to output of the model) are given in Table 3.1. Number of units in the Dense layer is equal to
the forecast horizon H = 24. The developed CNN model is implemented using Keras library
with Tensorflow backend; Figure 3.6 is made using Netron version 4.1.4 [Net].

In the proposed architecture, after each Conv1D layer, a leaky ReLU activation function is
employed, given in Eq. (3.23), instead of the widely used ReLU activation function,ReLU(z) =
max(0, z). It is done to overcome the ”dying ReLU” problem, which refers to the neurons

22

Figure 3.6: Developed CNN model architecture

Table 3.1: Parameters of convolution and max pooling layers of CNN model

Layer Kernel Depth of the
size feature maps

Conv1D 9 16
MaxPooling1D 2 -

Conv1D 5 32
MaxPooling1D 2 -

Conv1D 5 64
MaxPooling1D 2 -

becoming inactive during training phase (once the sum of the weighted inputs of the neu-
rons becomes negative) and only outputting zeros from that point on for any input. In Eq.
(3.23), α ≤ 1 controls the leak for z < 0 and is set to a constant value for the whole training
phase. [RGH+20, Chapter 3.4]

LeakyReLU(z) =

{
z, z > 0

αz, z ≤ 0
(3.23)

Additionally, parametric ReLU (PReLU) activation function, given in Eq. (3.24), is applied
to the output of the Dense layer. It is stated in [HZRS15] that ”PReLU improves model fitting
with nearly zero extra computational cost and little overfitting risk.” As opposed to leaky ReLU,
in the parametric ReLU parameter a ≤ 1 is trainable and is learned using the backpropagation
method during the training phase. [HZRS15]

PReLU(z) =

{
z, z > 0

az, z ≤ 0
(3.24)

The necessity for using leaky ReLU and parametric ReLU as activation functions in the de-
veloped CNN model instead of the ReLU activation function also stems from the data. After the
pre-processing, described in section 4.2, the vast amount of transformed electricity consumption
data values lies below zero. Hence, using ReLU activation both after the Conv1D layers and
the Dense layer would result in a large number of zeros being predicted by the model. Overall,
using leaky and parametric ReLU activation functions resulted in the best performance of the
developed CNN model during the experiments performed in chapter 4 as compared to using
ReLU, sigmoid, and hyperbolic tangent activation functions.

The Dropout layer is added before the Flatten layer to reduce overfitting. A dropout is
an approach to regularization which drops out a random fraction of neurons and corresponding
activations with some probability pDropout during the forward and backward propagation at each
step of the training phase. [RGH+20, Chapter 3.4]

23

The developed CNN model belongs to a class of multi-step univariate forecasting models.

3.4.4 Developed CNN+LSTM Model
The architecture of the developed CNN+LSTM model is given in Figure 3.7. The major

part of CNN channels’ architecture is adopted from [HWG+19]. The horizontal CNN channel
is aimed to extract the electricity consumption regularity among a day, and the vertical CNN
channel is aimed to extract the electricity consumption regularity between days. The LSTM
branch is added to process the weather and day information data. In the developed model,
the features extracted by the CNN channels and the dependencies learned by the LSTM are
fused together and forwarded to the fully connected layer. As an input, the model takes hourly
electricity consumption data for the last week in the shape of (7, 24, 1) and weather and day
information data for the next calendar day, for which the forecast is done, in the shape of
(24, 12) (for 12 input features). The explanation for the choice of the input sequence length as
one week is given in section 4.2.

The developed CNN+LSTM model consists of two-dimensional convolution layers (Conv2D),
two-dimensional max pooling layers (MaxPooling2D), LSTM layer (LSTM), Dropout layers
(Dropout), batch normalization layer (BatchNormalization), concatenation layers (Concate-
nate), flattening layers (Flatten), fully connected layer (Dense), and two activation layers—
leaky rectified linear unit (LeakyReLU) and parametric rectified linear unit (PReLU).

The kernel sizes of the convolution and pooling layers, and the depths of feature maps of the
convolution layers (in order from input to output of the model) are given in Table 3.2. Number
of units in the Dense layer is equal to the forecast horizon H = 24. In the LSTM layer, the
hidden state output for each input time step is returned; the number of LSTM units is a model
hyperparameter. The developed CNN+LSTM model is implemented using Keras library with
Tensorflow backend; Figure 3.6 is made using Netron version 4.1.4 [Net].

Figure 3.7: Developed CNN+LSTM model architecture

The necessity for using leaky ReLU, given in Eq. (3.23), and parametric ReLU, given in
Eq. (3.24), as activation functions in the developed CNN+LSTM model instead of the widely
used ReLU activation function stems mostly from the data. After the pre-processing, described
in section 4.2, the vast amount of transformed electricity consumption data values lies below
zero. Hence, using ReLU activation after the Conv2D layers in the CNN channels, the Batch-
Normalization layer in the LSTM branch, and the Dense layer would result in a large number of
zeros being predicted by the model. Overall, using leaky and parametric ReLU activation func-
tions resulted in the best performance of the CNN model during the experiments performed in
chapter 4 as compared to using ReLU, sigmoid, and hyperbolic tangent activation functions.

24

Table 3.2: Parameters of convolution and max pooling layers of CNN+LSTM model

Horizontal channel Vertical channel
Layer Kernel Depth of the Layer Kernel Depth of the

size feature maps size feature maps
Conv2D (1,7) 16 Conv2D (4,1) 16
Conv2D (1,5) 24 MaxPooling2D (1,2) -

MaxPooling2D (1,2) - Conv2D (4,1) 24
Conv2D (1,5) 24 MaxPooling2D (1,2) -

MaxPooling2D (1,2) - Conv2D (3,1) 24
Conv2D (1,4) 64 Conv2D (3,1) 64

MaxPooling2D (2,1) - MaxPooling2D (1,2) -
Conv2D (1,3) 64 Conv2D (2,1) 64

MaxPooling2D (2,1) - MaxPooling2D (2,1) -
Conv2D (1,3) 64 Conv2D (2,1) 64

The Dropout layers are added before the concatenation of electricity consumption patterns
extracted by both CNN channels to reduce overfitting. The recurrent dropout, which drops the
linear transformation of the recurrent state with some probability pRecDropout, is employed in
the LSTM.

The batch normalization layer is added after the LSTM layer to reduce the internal covariate
shift by normalizing the inputs. The internal covariate shift is ”the change in the distribution
of network activations due to the change in network parameters during training” [IS15]. Batch
normalization facilitates faster convergence during training and additionally has a regularization
effect. [IS15]

The developed CNN+LSTM model belongs to a class of multi-step multivariate forecasting
models.

3.5 Evaluation Metrics
Well-adopted in papers, RMSE, MAE, and MAPE evaluation metrics are used for perfor-

mance estimation of the models considered in this work.

3.5.1 Root Mean Square Error (RMSE)
Root Mean Square Error (RMSE) belongs to the class of scale-dependent metrics, and is

given in Eq. (3.25), where yi is the actual value, ŷi is the forecasted value, and n is the number
of observations.

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
(3.25)

RMSE has the same order as the input data and is equivalent to the square root of the
variance of the model output if it is unbiased. Larger error terms are penalized more, and
RMSE tends to become significantly larger than MAE for outliers. [HK06]

25

3.5.2 Mean Absolute Error (MAE)
Mean Absolute Error (MAE) belongs to the class of scale-dependent metrics, and is given

in Eq. (3.26), where yi is the actual value, ŷi is the forecasted value, and n is the number of
observations.

MAE =
1

n

n∑
i=1

|ŷi − yi| (3.26)

MAE measures the average magnitude of the forecast errors without taking into account
their direction. [HK06]

3.5.3 Mean Absolute Percentage Error (MAPE)
Mean Absolute Percentage Error (MAPE) belongs to the class of metrics based on percent-

age errors, and is given in Eq. (3.27), where yi is the actual value, ŷi is the forecasted value, and
n is the number of observations.

MAPE =
100%

n

n∑
i=1

| ŷi − yi
yi
| (3.27)

One of the main drawbacks of MAPE is being infinite or undefined for yi = 0 and having a
considerably skewed distribution for yi being close to zero. [HK06] However, since in this work
the aim is to use MAPE for performance evaluation of electricity consumption forecasting for
high-level aggregations of customers, yi is not expected to be close to zero.

3.6 Performance Estimation
In this section, the methods used for the performance estimation of the ARIMA and the

developed CNN-based deep learning models are described. ARIMA and deep learning models
require special attention in terms of performance estimation since multiple approaches can be
utilized for their assessment. However, the aim is to choose the ones that produce the least
biased estimates for the sake of a fair comparison of the models.

3.6.1 ARIMA
One of the most popular approaches to the performance estimation of regression models is

out-of-sample evaluation, i.e., holding out the last Wlast records of the time series as a test data.
Nevertheless, the choice of Wlast plays a significant part in the final performance estimate.

In [HA18, Chapter 3.4], Hyndman et al. suggest utilizing walk-forward cross-validation
for time series forecasting problems. Walk-forward cross-validation works by forming a series
of test sets, each containing H observations, where H is the forecast horizon; H > 1. The
corresponding training sets are formed as the observations prior to the test set. The initial
training set consists of m observations, which is a sufficient amount of data to obtain a reliable
forecast; m > 1.

Therefore, at the first iteration of walk-forward cross-validation, {xi}mi=1 is taken as a train-
ing set, {xi}m+H

i=m+1 as a test set. At the next iteration, training set is formed as {xi}m+s
i=1 , test

set is formed as {xi}m+s+H
i=m+s+1, where s ≥ 1 is an algorithm step, and so on. The final perfor-

mance estimate is taken as the average of performance estimates at each iteration. The process
of walk-forward cross-validation is visualized in Figure 3.8.

26

Figure 3.8: Walk-forward cross-validation algorithm

In this work, walk-forward cross-validation is applied to the performance estimation of the
ARIMA.

3.6.2 Deep Learning Models
Originally, the intention was to use k-fold cross-validation as a good and robust solution for

the performance estimation of deep learning models. K-fold cross-validation algorithms work
by splitting the data into k separate sets and at each iteration use each of the k sets as a test
set, while the rest k − 1 sets are used as a training set. K-fold cross-validation guarantees an
effective usage of data for the model training and evaluation. K-fold cross-validation is known
for giving a more robust performance estimation than out-of-sample evaluation.

K-fold cross-validation is considered to be the most appropriate approach in case both in-
dependence and identical distribution among observations can be assumed. However, these as-
sumptions are usually not valid for the time series data. In most sources, k-fold cross-validation
is not recommended for the time series forecasting tasks. Despite that, research has been done
in this direction.

In [BB12] Bergmeir et al., based on the empirical study, suggest the usage of blocked k-fold
cross-validation, together with the adequate control for stationarity of the time series. Blocked
k-fold cross-validation works by splitting the data into k separate adjacent continuous sets J =
{J1, . . . , Jk}, where Ji ∩i 6=j Jj = ∅. Let Ji− = ∪i 6=jJj . Then, for the i-th iteration of blocked
k-fold cross-validation, Ji− is utilized as a training set, Ji is utilized as a test set; i ∈ 1, k. The
final performance estimate is taken as the average of estimates at each iteration.

In [BHK18], Bergmeir et al. elaborate on the previous results and both theoretically and em-
pirically prove that in the case of purely (non-linear and non-parametric) autoregressive models,
it is possible to utilize standard k-fold cross-validation as long as the considered models have
uncorrelated errors. In the case of serial correlation of errors, k-fold cross-validation is consid-
ered to be biased. Although, based on the simulation study, as long as the data are fitted well
by the model, k-fold cross-validation showed to be a better choice than out-of-sample evalua-
tion. The authors recommend avoiding cross-validation if the models underfit the data as using
cross-validation in case of underfitting may lead to underestimation of the real error.

In [CTM19], Cerqueira et al. elaborate on the topic by comparing different evaluation
techniques on two case studies. Empirical results suggest the usage of blocked k-fold cross-
validation for the stationary time series, while for non-stationary ones out-of-sample evaluation
shows the most accurate performance estimation of the models.

As an alternative to using blocked k-fold cross-validation in this work, a prequential block

27

method is considered. It shows comparatively good empirical results in the study [CTM19]
performed by Cerqueira et al. and is similar in its approach to the walk-forward cross-validation
chosen for the evaluation of ARIMA. Prequential block method works by splitting the data into
k separate adjacent continuous sets J = {J1, . . . , Jk}, where Ji ∩i 6=j Jj = ∅. Then, for the
i-th iteration of prequential block algorithm, sets {Jj}j≤i are utilized as a training set, Ji+1 is
utilized as a test set; i ∈ 1, k − 1. The final performance estimate is taken as the average of
performance estimates at each iteration.

Based on the empirical studies in [CTM19], k-fold cross-validation tends to underestimate,
while the prequential method tends to overestimate the real error. Employing both performance
estimation methods in this work can help to better assess the real performance of the CNN-based
deep learning models.

More specifically, in this work, an adjusted prequential block method is used: the initial
training set is formed as the first m sets {Jj}j≤m. This adjustment helps to diminish the bias of
the prequential block performance estimation method since deep learning models require large
amounts of data to properly capture the present in the data patterns, and a non-sufficient amount
of training data would result in a drop in the models’ performance.

28

4 Experiments

In this chapter, the models discussed in section 3 are applied to the problem of short-term
load forecasting. A description of the data, the specific models’ and data configurations, and
the implementation details of the experiments are provided.

4.1 Data Description

4.1.1 Electricity consumption data
This work is done in collaboration with a national operator of a Norwegian Energy Monitor-

ing System (EMS), Enoco AS, that provided total electricity consumption hourly data for three
regions in Norway from 1 a.m. on the 1st of January, 2016, to 12 a.m. on the 1st of January,
2019.

Electricity is nationally distributed through a cable grid and the power is downscaled in a
regular tree structure by transformers (nodes) down to a fine mesh of consumers. At a particular
level in the tree, a region can be represented by 2–3 transformers. The sum of a load of these 2–3
transformers reflects the total consumption for the specific region and is defined as transformer
consumption data.

However, a regular tree structure would not be sufficiently robust for a modern society.
Therefore, the grids are designed with redundancy. Electricity can be routed to the end con-
sumer through different paths and transformers (nodes). Just as in a mesh network, a failure
in one node may cause a sudden change of load traffic in the neighboring transformers. Such
grid construction and operational behavior can lead to unusual load curves in a single or a set of
transformers. Therefore, the information around grid operational issues is needed while using
the transformer data.

A different approach to get the total consumption of the specific region without operational
grid disturbance is to summarise metering data from all consumers in the region: households,
industry, office buildings, etc. The complete set of metering data is present, but not accessible,
in the Norwegian national data hub EL-Hub. The closest approach to get the full metering data
set is through a regionally dominating utility company. But since this is not a monopoly market,
there are many suppliers in every region and their number of subscribers varies continuously.
Enoco AS has a significant share of the regional meters in its database. Nevertheless, the number
of subscribers in the Norwegian EMS database strongly varies on a daily basis. Therefore, it is
not possible to be sure that the metering data set represents the actual total consumption of the
region.

Hence, to use a more precise total electricity consumption in each of the three regions, in
this work, the hourly transformer data is used in the experiments.

29

4.1.2 Weather data
In this work, hourly weather data, collected from the Norwegian Meteorological Institute’s

web page eKlima1 is used. The description of the collected data is given in Table 4.1.

Table 4.1: Weather data

Variable Explanation Units
FF Average wind speed at 10 meters above the ground in the last m/s

10 minutes before the time of observation
DD The general wind direction (ref. FF) in the last 10 minutes degrees

before the time of observation
FG1 The highest wind speed at 10 meters above the ground in the m/s

last hour before the time of observation
TA Air temperature at 2 meters above the ground at the time of oC

observation
TAX The highest noted temperature during the hour of observation oC
TAN The lowest noted temperature during the hour of observation oC
RR1 Amount of precipitation in the last hour before the time mm

of observation
UU Relative air humidity at the time of observation %

4.2 Data Pre-Processing & Feature Engineering
As a first step of the data pre-processing, the originally collected data is expanded with the

additional variables: DOW (day of the week), values are from 0 to 6 (corresponding to Monday
to Sunday); Week (ISO week number), values are from 1 to 53; Holiday (holiday flag), 1 for
weekends and national holidays in Norway, 0 otherwise. The total electricity consumption is
saved under the variable Load.

At the further data exploration step, the data was checked for the missing values as well as
for the correlations between the variables. As a result of the data exploration step, the variables
TAX and TAN were removed due to the high correlation with the variable TA (>99%). The
variables with missing values and the corresponding percentages of missing values for each
region data are given in Table 4.2.

Based on Table 4.2, the variable RR1 was removed due to a high number of missing values.
The rest of the missing values are imputed using the R implementation of multivariate imputa-
tion by chained equations (MICE) [vBGO11]. MICE creates multiple imputations for the same
missing data, which are later pooled together. The data is imputed variable by variable accord-
ing to the imputation method defined. In this work, a predictive mean matching imputation
method is applied for the imputation of m = 10 multiple imputations for each region data. In
the predictive mean matching, each missing entry is imputed with a value, randomly chosen
from a small set of observed donor values with the regression-predicted values being the closest
to the regression-predicted value for the missing entry. [vB18, Chapter 3.4]

The final variables present in the data set are: Date (date of the measurement), Week (ISO
week number), DOW (day of the week), Time (hour of the measurement), Holiday (holiday

1http://sharki.oslo.dnmi.no

30

http://sharki.oslo.dnmi.no

Table 4.2: Variables with missing values

Variable Region 1 Region 2 Region 3
Load <0.1 % <0.1 % <0.1 %
FF 0.1 % 0 % <0.1 %
DD 0.1 % 0.2 % 1.5 %
FG1 0.1 % 0.2 % 1.3 %
TA 0.3 % 0 % <0.1 %

RR1 22.4 % 100 % 100 %
UU 0.3 % 0 % <0.1 %

flag), Load (total electricity consumption at the given date and hour), FF (average wind speed
at 10 meters above the ground in the last 10 minutes), DD (the general wind direction (ref.
FF) in the last 10 minutes), FG1 (the highest wind speed at 10 meters above the ground in the
last hour), TA (air temperature at 2 meters above the ground at the given date and hour), UU
(relative air humidity at the given date and hour). Total electricity consumption for 3 regions
obtained after imputing missing values is visualized in Figure 4.1.

Figure 4.1: Hourly transformer data for 3 regions in Norway

Based on 4.1, one segment initially present in the data with significant outliers can be ob-

31

served for the region 1 data in October–November, 2018, where a significant reduction for
approximately 20000 kWh occurred for around 10 days. The closer inspection of this segment
is given in Figure 4.2. Based on the information provided by Enoco AS, one of the reasons for
this behavior is one of the transformers used for calculating the total electricity consumption
for region 1 being out of function, and electricity is being routed via a different transformer in
the grid. Another reason can also be missing measurements for one of the transformers for this
specific period.

Figure 4.2: Segment of data for region 1 from 15 October 2018 to 15 November 2018

Other unusual electricity consumption curves initially present in the data include the reduc-
tion of the electricity consumption for approximately 8000 kWh for a couple of hours on the
8th of January, 2018, for region 3 data which can be caused by a large industry player stopping
their production for a short period; and an unexpected reduction for approximately 6 000 kWh
during night hours between the 18th and 19th of November, 2017, for region 1 data which may
also be caused by an industry player stopping their production.

All the unusual data curves mentioned above were preserved unmodified in the data since
they represent the real-life transformer data patterns. A small number of other irregularities with
data being missing for an hour, which are supposedly errors that occurred in the production of
the data sets, were fixed in the process of data pre-processing by the imputation procedure.

Continuing to explore the total electricity consumption data, based on Figure 4.1, the pres-
ence of yearly patterns in the data can be observed. To have a better overview of these patterns,
box plot visualizations of the electricity consumption per month were created for each region,
given in Figure 4.3. Box plot visualizations allow examination of the data distribution by dis-
playing the minimum, first quartile, median, third quartile, and maximum values. Figure 4.3
shows that total electricity consumption data has a yearly pattern for all three regions: electricity
consumption is the lowest during summer months and the highest during winter months. The
extensive usage of heating devices can explain high electricity consumption during the winter
months.

The data was also explored for other patterns, such as daily and hourly regularities. It was
found that electricity consumption is lower during holidays/weekends as well as that there is
an hourly pattern of electricity consumption as given in Figure 4.4. From Figure 4.4, it can be
observed that electricity consumption is generally lower during the night hours than during the
rest of the day.

32

Figure 4.3: Hourly transformer data by month

4.2.1 Baseline Models
Here, an overview of the data preparation for use in the baseline models (the industry-

standard baseline models, Naive model, and ARIMA) is provided.

Industry-Standard Baseline Models & Naive Model

For the industry-standard baseline models and Naive model, the data from 00:00 on the 2nd
of January, 2016, to 23:00 on the 31st of December, 2018, is used. A subset of the initial data
is taken to conduct a performance estimation on the same data for all models in this work.

No modifications are applied to the data.

ARIMA

For the ARIMA, the data from 00:00 on the 2nd of January, 2016, to 23:59 on the 31st
of December, 2018, is used. A subset of the initial data is taken to conduct a performance
estimation on the same data for all models in this work.

Box-Cox power transformation is applied to the electricity consumption variable Load, as
given in Eq. (4.1), where xt is the original value, λ is the transformation parameter, and ψ(λ, xt)
is the transformed value. Box-Cox transformation helps to stabilize the variance, eliminate
skewness, and makes the data look approximately normally distributed. It is applied to strictly

33

Figure 4.4: Hourly transformer data by hour

positive values and helps the model to better capture the present in the data patterns, as simpler
patterns are easier to model. [HA18, Chapter 3.2]

ψ(λ, xt) =

{
log(xt), λ = 0

(xλt − 1)/λ, λ 6= 0
(4.1)

Parameter λ is defined to maximize the profile log-likelihood of a linear model fit to the
transformed data. [BC64] In this work, sklearn implementation of Box-Cox transformation
is used.2

4.2.2 Deep Learning Models
For the deep learning CNN and CNN+LSTM models, the data from 00:00 on the 2nd

of January, 2016, to 23:59 on the 31st of December, 2018, is used. A subset of the initial data
is taken since the deep learning models are applied to the problem of one-day-ahead hourly
electricity consumption forecasting for the next calendar day, starting from 00:00. Accordingly,
in this work, only the hourly data for the full days, from 00:00 to 23:59 included, is used.

Week, DOW and Time variables expose periodic behavior, e.g., they repeat with some pe-
riodicity T each. Therefore, keeping them sequential, i. e., in a natural encoding, causes the

2https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
PowerTransformer.html

34

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PowerTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PowerTransformer.html

loss of information since natural encoding has no explicit representation of periodic behavior.
To explicitly represent the periodic behavior of the variables, the periodic coding [DWX+19],
given in Eq. (4.2), is applied to the variables DOW, Week, and Time, where n is the value in
natural encoding, and T is the length of the period. T = 52.5 for Week, T = 7 for DOW, and
T = 24 for Time. As a result, each of the periodically encoded variables is replaced by the
respective sin and cos representations.{

psin = sin 2πn
T

pcos = cos 2πn
T

(4.2)

Yeo-Johnson power transformation is applied to the variables Load, FG1, FF, DD, TA, and
UU, as given in Eq. (4.3), where xt is the original value, λ is the transformation parameter,
ψ(λ, xt) is the transformed value. Similarly to Box-Cox transformation, Yeo-Johnson transfor-
mation helps to stabilize the variance, eliminate skewness, and makes the data look approxi-
mately normally distributed. Yeo-Johnson transformation can be applied to both positive and
negative values.

ψ(λ, xt) =

((xt + 1)λ − 1)/λ, λ 6= 0, xt ≥ 0

log(xt + 1), λ = 0, xt ≥ 0

−((−xt + 1)2−λ − 1)/(2− λ), λ 6= 2, xt < 0

−log(−xt + 1), λ = 2, xt < 0

(4.3)

Parameter λ is defined to maximize the profile log-likelihood of a linear model fit to the
transformed data. [YJ00] In this work, the sklearn implementation of Yeo-Johnson transfor-
mation is used.3

After applying the Yeo-Johnson transformation, all the continuous variables are put in ap-
proximately the same range employing Z-score normalization, given in Eq. (4.4), to the vari-
ables Load, FG1, FF, DD, TA, and UU; xt is the original value, µ is the mean of the values
of each separate variable, σ is the standard deviation of the values of each separate variable.
Putting variables in approximately the same range eliminates the prevalence of one variable’s
values over the other variables’ values in the deep learning model and facilitates faster conver-
gence during training.

zt =
xt − µ
σ

(4.4)

In the experiments, the best results were achieved by employing Z-score normalization, as
compared to Min-Max normalization, given in Eq. (4.5), and Decimal scaling normalization,
given in Eq. (4.6), where j is the smallest integer such that max |yt| < 1.

yt =
xt −min
max−min

(4.5)

yt =
xt
10j

, j ∈ Z (4.6)

Eventually, the data is transformed to supervised learning, as described in section 3.3.
The serial correlations between the daily electricity consumption profiles, i.e., hourly se-

quences from 00:00 to 23:59 for each day, for 28 lags (=4 weeks) are examined to define how
”informative” for the one-day-ahead hourly forecast is the data from the lag l day.

3https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
PowerTransformer.html

35

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PowerTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PowerTransformer.html

The results have shown a strong correlation (> 0.7) for all 28 lags for all three regions’ data
sets. The highest correlations (≈ 0.9 or > 0.9) are observed for the lags 7 · n for n = 1, 4. It
shows the presence of a weekly pattern in the data for all three regions. This observation is also
supported by the previous exploration of the data sets.

It was decided to use the previous week’s observations as an input sequence for the CNN
and CNN+LSTM models to have the right balance between the models’ training time and per-
formance. However, in future works, it would be useful to choose the input sequence length as
each model’s hyperparameter.

To transform the total electricity consumption variable Load to supervised learning samples,
the time window is specified as W = 168 (one week of hourly observations), the forecast
horizon as H = 24, the step for shifting the input/target windows as s = 24. As for the rest of
the variables, only the input (training) set is created utilizing the values which correspond to the
time steps for the Load variable’s target (test) set.

4.3 Implementation Details

4.3.1 Industry-Standard Baseline Models
Industry-standard baseline models, described in section 3.2.1, are used for the baseline load

evaluation and are not meant for the 24-hour-ahead hourly electricity consumption forecasting.
Hence, the performance estimation of the industry-standard baseline models differs from an
approach used for the rest of the models in this work.

To evaluate the performance of the industry-standard baseline models, each model is applied
to every date/time present in the data (where applicable according to the model definition), and
the specified in section 3.5 metrics are calculated on the whole data sets at once. For Asymmet-
ric HFoT and SPFoT, for baseline load estimation for holidays, holidays are not excluded. In
this work, the performance estimation of the industry-standard baseline models is done under
the assumptions of DR events not lasting over an hour and being activated at the beginning of
the hour.

4.3.2 Naive Model
In this section, estimation of the performance of the Naive model, described in section 3.2.2,

is done. The Naive model is solving the problem of the one-day-ahead hourly electricity con-
sumption forecasting for the next calendar day, starting from 00:00. For each day present in the
data, total electricity consumption is forecasted according to the Eq. (3.7) where applicable. It
means that hourly electricity consumption for the day, for which the one-day-ahead forecast is
done, is forecasted as electricity consumption at 23:00 of the preceding day. The specified in
section 3.5 metrics are calculated on the whole data sets at once.

4.3.3 ARIMA
In this section, estimation of the performance of the ARIMA, described in section 3.2.3, is

done. The ARIMA is solving the problem of 24-hour-ahead forecasting. Based on the previous
data exploratory analysis, the data for all regions contain periodic (seasonal) patterns. However,
the previously described ARIMA model does not capture periodic patters and consequently
cannot possibly model the periodic (seasonal) data well enough.

36

To check for the data periodicity, the R implementation of periodogram 4 is used. Peri-
odogram is a mathematical tool used to compute the significance of different frequencies in
time-series. It is calculated by averaging the squared absolute value of discrete Fourier trans-
form (DFT) of the signal and returns spectral density estimates for various frequencies of the
signal. [SS17, Chapter 4.3] After computing the periodogram, the two most significant frequen-
cies for each region data are taken. The chosen frequencies and the corresponding spectral
density estimates are given in Table 4.3. In Table 4.3, values of Frequency are rounded to 6
decimal places, values of Period and Spectral density are rounded to the nearest integers.

Table 4.3: The most significant periodogram frequencies and spectral densities

Data # Frequency Period=1/Frequency Spectral density
(cycles/hour) (hours) (kWh2/(cycles/hour))

Region 1 1 0.000111 9000 444529
Region 1 2 0.041667 24 72424
Region 2 1 0.000111 9000 31698710
Region 2 2 0.041667 24 7940782
Region 3 1 0.000111 9000 1307294
Region 3 2 0.041667 24 226819

As can be seen from the table, all regions data has the same periodicity: p1 = 9000 and
p2 = 24. To capture the multiple periodicity in the model, a modification of the ARIMA by
adding Fourier terms for the corresponding periods p1 and p2 is implemented. The modification
of the ARIMA is given in Eq. (4.7).

xt = a+
M∑
i=1

Ki∑
k=1

[αsin(
2πkt

pi
) + βcos(

2πkt

pi
)] +Nt (4.7)

In Eq. (4.7), Nt is a pure ARIMA model, as described in section 3.2.3, M is a number of
periods pi, and Ki is a number of Fourier terms per each period. Based on the blog of Rob
J Hyndman [Hyn10], this modification especially helps to handle the data with long seasonal
periods like p1 = 9000.

The best ARIMA + Fourier terms model coefficients are determined using the corrected
Akaike Information Criterion (AICc): the smaller value of AICc corresponds to the better
model. Based on [HA18, Chapter 8.6], the formula of AICc for model presented in Eq. (4.7) is
given in Eq. (4.8).

AICc = −2 · log(L) +
2 · T · (p+ q + k +

∑M
i=1 2 ·Ki + 1)

T − p− q − k −
∑M

i=1 2 ·Ki − 2)
(4.8)

In Eq. (4.8), L is the likelihood of the data, i.e., the probability of the data coming from
the estimated model, T is the number of observations in the data, and k = 1 if a 6= 0, k = 0
otherwise.

T R function auto.arima() 5 is used to determine the parameters p, d, q of the ARIMA
model Nt for each region data set. The order of differencing d is determined by utilizing

4https://www.rdocumentation.org/packages/TSA/versions/1.2/topics/
periodogram

5https://www.rdocumentation.org/packages/forecast/versions/8.12/topics/
auto.arima

37

https://www.rdocumentation.org/packages/TSA/versions/1.2/topics/periodogram
https://www.rdocumentation.org/packages/TSA/versions/1.2/topics/periodogram
https://www.rdocumentation.org/packages/forecast/versions/8.12/topics/auto.arima
https://www.rdocumentation.org/packages/forecast/versions/8.12/topics/auto.arima

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. KPSS test is testing the null hypothesis of
time-series stationarity around a fixed level against an alternative of a unit root. [KPSS92] p and
q are determined as such which minimize AICc of the model.

As the first step of performance estimation of ARIMA + Fourier terms model, the values
Ki, i = 1, 2, and parameters p, d, q are chosen by minimizing AICc on the whole data sets.

First of all, the pure ARIMA Nt is fitted on the whole data sets. The optimal parameters
and corresponding AICc are given in Table 4.4. Values of AICc in Table 4.4 are rounded to the
nearest integers.

Table 4.4: ARIMA optimal parameters and corresponding AICc

Data p d q AICc
Region 1 2 1 2 33913
Region 2 2 1 4 160354
Region 3 4 1 5 59729

In the next step, the goal is find the optimal Ki and p, d, q to minimize AICc compared
to the pure ARIMA. The optimal K1 and K2 are determined by applying brute-force search.
For K1, the search is performed among values 1, 5, for K2, among values 1, 12. By definition,
Ki ≤ pi

2
. p, d, and q are determined separately for each combination of K1 and K2. The

optimal parameters obtained are given in Table 4.5. Values of AICc in Table 4.5 are rounded to
the nearest integers.

Table 4.5: ARIMA + Fourier terms optimal parameters and corresponding AICc

Data K1 K2 p d q AICc
Region 1 1 12 3 1 1 22098
Region 2 1 12 2 1 1 148020
Region 3 2 12 5 1 4 43291

Comparing AICc in Table 4.4 and Table 4.5, a significant improvement in models AICc can
be seen after complementing pure ARIMA with Fourier terms.

In order to evaluate the performance of the determined in Table 4.5 ARIMA + Fourier terms
model configurations using specified in section 3.5 metrics, walk-forward cross-validation, de-
scribed in section 3.6.1, is applied. As an initial data set, the first 9000 observations, corre-
sponding to the period p1 for each region data, are taken. The walk-forward cross-validation is
implemented with the step s = 24 and the forecast horizon H = 24.

4.3.4 Deep Learning Models
In this section, estimation of the performance of the CNN and CNN+LSTM models, de-

scribed in section 3.4, is done. Both the CNN and CNN+LSTM are solving the problem of the
one-day-ahead hourly forecasting for the next calendar day.

Training (fitting) of the models is done by applying a gradient descent optimization al-
gorithm Adam (Adaptive Moment Estimation) [KB14] to the minimization of the RMSE loss

38

function given in Eq. (4.9). RMSE increases as increases the variance linked with the frequency
distribution of error magnitudes. It is beneficial when large errors are particularly undesirable.
In Eq. (4.9), X̂f is the vector of forecasted values, Xf is the vector of true values.

loss(X̂f , Xf) =

√√√√ 1

24
·
T+24∑
i=T

(xi − x̂i)2 (4.9)

Each model architecture and model training process is described by a set of hyperparam-
eters such as dropout rate, leaky ReLU α, learning rate, etc. Optimally chosen hyperparam-
eters guarantee faster and better convergence of the models during training process. In this
work, Tree Parzen Estimator (TPE) method is used for hyperparameter optimization proposed
in [BBBK11] by Bergstra et al. TPE method is suitable for high-dimensional optimization tasks
and small model fitness evaluation budgets.

Tree Parzen Estimator (TPE) is a hyperparameter optimization method which belongs to the
Sequential Model Bayesian Optimization (SMBO) family of methods. SMBO methods, which
are a succinct formalism of Bayesian optimization, work by sequentially narrowing down a
search space specified for each hyperparameter based on the previous results.

TPE works in the way of trials (iterations). At first, hyperparameters are chosen randomly
from the search space. At each of the following iterations, given a search history in the for-
mat of (hyperparameter, loss) and stochastic expression of each separate hyperparameter, the
algorithm chooses the hyperparameter value for the next trial. Correlation between the hyper-
parameters is not taken into account, e.g., the algorithm is applied separately to each axis of the
search space.

The ultimate goal of the TPE algorithm is to maximize the criterion of Expected Improve-
ment (EI) given in Eq. (4.10).

EIy∗(x) =

∫ y∗

−∞
(y∗ − y) · p(y\x)dy (4.10)

In Eq. (4.10), x is the hyperparameter, y∗ is the target performance, and y is the loss. y∗ is
defined as some quantile γ of the observed y values so that the condition given in Eq. (4.11) is
fulfilled.

γ = p(y < y∗) (4.11)

TPE algorithm models p(y) and p(x\y) instead of modelling directly p(y\x). TPE defines
p(y\x) as given in Eq. (4.12), where l(x) is the density formed by using the observations {xi}
for which the corresponding loss y(xi) < y∗, and g(x) is the density formed by using the rest
of the observations.

p(y\x) =

{
l(x), y < y∗

g(x), y ≥ y∗
(4.12)

Eventually, the main task of the algorithm comes down to Eq. (4.13). In each trial, the
algorithm returns a candidate x∗ with the largest EI.

EIy∗(x) =

∫ y∗

−∞
(y∗ − y) · p(x\y) · p(y)

p(x)
dy ∝ (γ +

g(x)

l(x)
· (1− γ))−1 → max (4.13)

In the modification of TPE algorithm proposed in [BYC13] Bergstra et al.,
√
T/4 top-

performing trials are used to estimate density l(x) and the rest to estimate density g(x). Another

39

modification proposed in the same work is assigning weights to the results of each trial: the most
recent 25 trials results are assigned full weight, and older trials are assigned weights as values
of a linear ramp from 0 to 1.0.

In this work, Hyperas 6 wrapper for Hyperopt7 implementation of the TPE algorithm
with the modifications mentioned above is used. For optimizing hyperparameters for each
model for each region data, 15% of the data are taken as a validation set, and 85% are taken as a
training set. Samples for the validation set are picked at equal intervals from all the supervised
learning samples for each region data, resulting in the well representative of each region data
validation sets. The validation loss minimization is used as an objective for the TPE algorithm.

CNN

Using the described in this section TPE algorithm, a hyperparameter optimization is per-
formed for the developed CNN model. The search spaces were chosen based on the initial
manual hyperparameters tweaking.

After 70 trials of TPE algorithm, the optimal hyperparameters, given in Table 4.6, are ob-
tained for each region data set. In Table 4.6, U(a, b) represents a uniform distribution at the
interval (a, b). All values in Table 4.6 are rounded to at least 8 decimal places.

Table 4.6: CNN optimal hyperparameters

Data
Hyperparameter Search space Region 1 Region 2 Region 3

Batch size 64, 72, 80, 88 64 88 80
Number of epochs 100, 150, 200, 250 100 100 250

Learning rate U(0.00001, 0.01) 0.00213016 0.00338289 0.00072592
Dropout rate U(0.2, 0.5) 0.49 0.37 0.35

Leaky ReLU α1 U(0.2, 1.0) 0.96220293 0.63699618 0.62338190
Leaky ReLU α2 U(0.2, 1.0) 0.54657803 0.98549111 0.688064096
Leaky ReLU α3 U(0.2, 1.0) 0.88307523 0.57319752 0.73069689

In order to evaluate the performance of the determined in Table 4.6 CNN model configu-
rations using specified in section 3.5 metrics, blocked k-fold cross-validation and prequential
block method are employed. The necessity of utilizing both performance estimation methods
and their description are provided in section 3.6.1.

The number of folds used in both methods is taken as k = 20. In the prequential block
method, the first 10 folds are used as the initial training set. The visualizations of the perfor-
mance estimation methods for the deep learning models are provided in Appendices.

CNN+LSTM

Using the described in this section TPE algorithm, a hyperparameter optimization is per-
formed for the developed CNN+LSTM model. The search spaces were chosen based on the
initial manual hyperparameters tweaking.

6https://github.com/maxpumperla/hyperas
7https://github.com/hyperopt/hyperopt

40

https://github.com/maxpumperla/hyperas
https://github.com/hyperopt/hyperopt

Table 4.7: CNN+LSTM optimal hyperparameters

Data
Hyperparameter Search space Region 1 Region 2 Region 3

Batch size 64, 72, 80, 88 80 80 80
Number of epochs 100, 150, 200, 250 200 250 200

Learning rate U(0.0001, 0.01) 0.00322775 0.00295860 0.00590047
Number LSTM units 6, 8, 16, 24 6 8 8

Dropout rate U(0.2, 0.5) 0.31 0.24 0.3
(CNN vertical channel)

Dropout rate U(0.2, 0.5) 0.43 0.49 0.45
(CNN horizontal channel)

Recurrent LSTM U(0.2, 0.5) 0.32 0.49 0.32
dropout rate

Leaky ReLU αv U(0.2, 1.0) 0.84586596 0.89359327 0.91367263
(CNN vertical channel)

Leaky ReLU αh U(0.2, 1.0) 0.48200531 0.41049660 0.50027713
(CNN horizontal channel)

Leaky ReLU αlstm U(0.2, 1.0) 0.48754533 0.40702055 0.66107681
(LSTM)

The same leaky ReLU αv was assigned for all leaky ReLU layers in the CNN vertical
channel, and the same leaky ReLU αh was assigned for all leaky ReLU layers in the CNN
horizontal channel. Therefore, one leaky ReLU α hyperparameter was optimized per each
CNN channel of the CNN+LSTM model.

After 70 trials of TPE algorithm, the optimal hyperparameters, given in Table 4.7, are ob-
tained for each region data set. In Table 4.7, U(a, b) represents a uniform distribution at the
interval (a, b). All values in Table 4.7 are rounded to at least 8 decimal places.

In order to evaluate the performance of the determined in Table 4.7 CNN+LSTM model
configurations using specified in section 3.5 metrics, blocked k-fold cross-validation and pre-
quential block method are employed. The necessity of utilizing both performance estimation
methods and their description are provided in section 3.6.1.

The number of folds used in both methods is taken as k = 20. In the prequential block
method, the first 10 folds are used as the initial training set. The visualizations of the perfor-
mance estimation methods for the deep learning models are provided in Appendices.

4.3.5 Technical Details
This work has been done on a PC with 8 CPUs Intel(R) Core(TM) i7-7700HQ @ 2.80GHz

and 1 GPU NVIDIA GeForce GTX 1050Ti. An overview of the packages used in the imple-
mentation of this work is given in Appendices.

41

5 Results and Discussion

In this chapter, the results of the performance estimation of the explored models obtained
after running experiments with the configurations described in section 4.3 are presented. Visual
representations of the results are presented as well as the discussion on the comparability of the
performance estimates of the considered models is introduced.

5.1 Main Results
Mean evaluation metrics obtained after running the experiments with configurations de-

scribed in section 4.3 are given in Tables 5.1 and 5.2. In Table 5.1, ”method A” denotes
prequential block method (20 folds, 10 folds as the initial training set), ”method B” denotes
blocked 20-fold cross-validation for performance estimation. All values in Tables 5.1 and 5.2
are rounded to 2 decimal places. The evaluation metrics are calculated based on the forecasted
and actual electricity consumption values after applying transformations inverse to the ones
applied to the data as described in section 4.2.

Here, mean evaluation metrics for the Asymmetric HFoT, SPFoT, Average, and Daily Profile
models are presented separately from the rest of the methods. The differences in approaches to
forecasting between the Asymmetric HFoT, SPFoT, Average, and Daily Profile, and the rest of
the models explain the necessity for this separation. This point is discussed in more detail in
subsection 5.2.1.

Visual representations of the results presented in Tables 5.1 and 5.2 together with the stan-
dard deviations of evaluation metrics for the ARIMA + Fourier terms, CNN, and CNN+LSTM
(due to performance estimation on various folds of the data) are given in Figures 5.1, 5.2, and
5.3. In Figures 5.1, 5.2, and 5.3, the yellow, purple, and orange bars are the mean values of
evaluation metrics, and the error bars are the standard deviation of the evaluation metrics. The
evaluation metrics for the methods with no error bars were calculated on the whole data sets at
once.

5.2 Analysis of Models’ Performance

5.2.1 Comparability of Models
In this work, the Naive model, ARIMA + Fourier terms, CNN, and CNN+LSTM are im-

plemented to facilitate 24-hour-ahead hourly electricity consumption forecasting. It is done to
allow not only baseline load evaluation in case the DR event was activated but also an assess-
ment of the availability of flexibility products for the specific day.

On the other hand, the industry-standard baseline models, described in section 3.2.1, are
used for the baseline load evaluation and are not meant for 24-hour-ahead hourly electricity
consumption forecasting (considering the assumption of DR events not lasting over an hour).

42

Table 5.1: Mean evaluation metrics for Naive model, ARIMA + Fourier terms, CNN, and
CNN+LSTM

Model Data RMSE (kWh) MAE (kWh) MAPE (%)

Naive model Region 1 3936.76 3273.45 11.64
ARIMA + Fourier terms Region 1 2326.62 1945.49 6.80

CNN (method A) Region 1 1971.47 1385.02 4.93
CNN (method B) Region 1 1864.74 1311.84 4.50

CNN+LSTM (method A) Region 1 1819.89 1230.75 4.61
CNN+LSTM (method B) Region 1 1742.67 1217.40 4.37

Naive model Region 2 4152.95 3469.20 14.46
ARIMA + Fourier terms Region 2 2628.48 2147.61 9.12

CNN (method A) Region 2 1820.58 1344.11 5.79
CNN (method B) Region 2 1813.34 1344.06 5.51

CNN+LSTM (method A) Region 2 1645.46 1309.29 6.31
CNN+LSTM (method B) Region 2 1411.83 1095.82 4.79

Naive model Region 3 3253.71 2701.60 13.08
ARIMA + Fourier terms Region 3 1786.83 1517.23 7.40

CNN (method A) Region 3 1173.38 888.67 4.20
CNN (method B) Region 3 1125.18 852.76 4.02

CNN+LSTM (method A) Region 3 981.21 739.37 3.55
CNN+LSTM (method B) Region 3 912.90 702.30 3.34

Table 5.2: Mean evaluation metrics for Asymmetric HFoT, SPFoT, Average, and Daily Profile

Model Data RMSE (kWh) MAE (kWh) MAPE (%)

Asymmetric HFoT Region 1 4427.94 3035.47 11.64
SPFoT Region 1 1819.74 1294.30 4.79

Average Region 1 474.45 328.83 1.17
Daily Profile Region 1 818.92 504.12 1.79

Asymmetric HFoT Region 2 5014.45 3472.48 15.98
SPFoT Region 2 1810.66 1365.44 5.97

Average Region 2 637.14 430.28 1.76
Daily Profile Region 2 1067.56 720.70 3.00

Asymmetric HFoT Region 3 3387.97 2382.75 12.23
SPFoT Region 3 1274.84 972.09 4.80

Average Region 3 394.58 274.42 1.33
Daily Profile Region 3 618.80 406.01 1.98

43

Figure 5.1: Values of RMSE on all data sets

Figure 5.2: Values of MAE on all data sets

Figure 5.3: Values of MAPE on all data sets

44

Moreover, the approach they use for the baseline load evaluation significantly differs from the
one employed in the Naive model, ARIMA + Fourier terms, CNN, and CNN+LSTM.

The industry-standard baseline models considered in this work can be divided into two
classes: predictive models and analytic models. Predictive models use only the electricity
consumption data prior to the DR event activation, while analytic models may also use the
electricity consumption data following the DR event activation.

SPFoT and Average belong to the class of analytic models: Average uses the electricity
consumption data one hour following the DR event activation for baseline load evaluation, and
SPFoT uses data for the whole calendar day (independent of time of the DR event activation)
to detect the days with the most similar electricity consumption patterns. Analytic models tend
to be more accurate due to the usage of future electricity consumption data (following the DR
event activation) and cannot be used in forecasting in the way the Naive model, ARIMA +
Fourier terms, CNN, and CNN+LSTM are implemented. Throughout the chapter, by ”forecast”
for SPFoT and Average models, an evaluation of the baseline load is meant.

Asymmetric HFoT and Daily Profile belong to the class of predictive models. However,
in the forecasts, they rely on the most recent electricity consumption data: Asymmetric HFoT
uses the electricity consumption data from 1-2 hours before the DR event activation for the
upward adjustment calculation, and Daily Profile uses the electricity consumption data from
one hour before the DR event activation. Usage of the very recent electricity consumption data
differs from the MIMO strategy with a 24-hour forecast horizon, employed in the Naive model,
ARIMA + Fourier terms, CNN, and CNN+LSTM. Usage of more recent data gives a significant
advantage to the Asymmetric HFoT and Daily Profile models over the Naive model, ARIMA +
Fourier terms, CNN, and CNN+LSTM.

Based on the above arguments, the results for the Asymmetric HFoT, SPFoT, Average,
and Daily Profile are presented separately from the Naive model, ARIMA + Fourier terms,
CNN, and CNN+LSTM. Nevertheless, the comparison of the performance estimates of all used
models is performed, keeping in mind the massive advantages of the Asymmetric HFoT, SPFoT,
Average, and Daily Profile over the rest of the models.

5.2.2 Asymmetric HFoT
Summarizing by all evaluation metrics, the Asymmetric HFoT performs as one of the worst

(at approximately the same level as Naive model) among the models presented in Tables 5.1
and 5.2.

Figure 5.4: Forecasted vs. Actual electricity consumption (Asymmetric HFoT)

From Figure 5.4, it can be seen that the Asymmetric HFoT tends to overestimate the actual

45

electricity consumption. Significant deviations from the actual consumption can be observed
for all regions’ data. The deviations occur since in the electricity consumption forecast the
Asymmetric HFoT relies on the days with the highest electricity consumption, and only an
upward asymmetric adjustment based on the recent electricity consumption and baseline load
evaluations is applied.

5.2.3 SPFoT
Summarizing by all evaluation metrics, the SPFoT performs better than the Asymmetric

HFoT among the models presented in Table 5.2, and better than the ARIMA + Fourier terms
and Naive model presented in Table 5.1.

Figure 5.5: Forecasted vs. Actual electricity consumption (SPFoT)

From Figure 5.5, it can be seen that the SPFoT tends to rather equally under- and overes-
timate the actual electricity consumption. Considerably significant deviations from the actual
consumption can be observed, especially for region 1 data, as shown in 5.5a. One of the reasons
for deviations to occur may be sudden changes in electricity consumption patterns.

Comparatively good results by the SPFoT can be explained by the usage of the electricity
consumption data from after the time for which the ”forecast” is made to detect the days with
the most similar electricity consumption patterns as well as by the usage of the most recent
electricity consumption data for the symmetric adjustment calculation.

5.2.4 Average
Summarizing by all evaluation metrics, the Average performs the best among the models

presented in Tables 5.1 and 5.2.
From Figure 5.6, it can be seen that the Average tends to equally under- and overestimate

the actual electricity consumption and produces quite precise ”forecasts” of electricity con-
sumption. Deviations from the actual consumption are rather rare and do not seem to affect the
”forecasting” ability of the model significantly. One of the reasons for deviations to occur may
be sudden changes in electricity consumption patterns.

Good results by the Average can be explained by the usage of the most recent information
as well as the future information (following the DR event activation) about the electricity con-
sumption for making the ”forecast”, namely one hour before and one hour after the time for
which the ”forecast” is made.

46

Figure 5.6: Forecasted vs. Actual electricity consumption (Average)

5.2.5 Daily Profile
Summarizing by all evaluation metrics, the Daily Profile performs worse than the Average

but better than the rest of the models presented in Tables 5.1 and 5.2.

Figure 5.7: Forecasted vs. Actual electricity consumption (Daily Profile)

From Figure 5.7, it can be seen that the Daily Profile tends to rather equally under- and
overestimate the actual electricity consumption. Considerably significant deviations from the
actual consumption can be observed, especially for the data for regions 1 and 2, as shown in
5.7a and 5.7b. One of the reasons for deviations to occur may be sudden changes in electricity
consumption patterns.

Good results by the Daily Profile can be explained by the usage of the most recent informa-
tion about electricity consumption for making the forecast, namely one hour before the time for
which the forecast is made.

5.2.6 Naive Model
Summarizing by all evaluation metrics, obtained by applying Eq. (3.7) to the one-day-ahead

hourly electricity consumption forecasting for the next calendar day, the Naive model performs
as one of the worst (at approximately the same level as the Asymmetric HFoT) among the
models presented in Tables 5.1 and 5.2.

From Figure 5.8, it can be seen that the Naive model tends to underestimate the actual
electricity consumption. Significant deviations from the actual consumption can be observed
for all regions’ data. The deviations occur since the Naive model does not learn the patterns

47

Figure 5.8: Forecasted vs. Actual electricity consumption (Naive model)

present in the data and propagates the electricity consumption at 23:00 as the constant hourly
forecast for the next calendar day, for which the one-day-ahead forecast is done.

Figure 5.8 shows that the Naive model produces reliable forecasts for the first lead time,
while for the later lead times, the model mostly produces values rather deviated from the actual
electricity consumption. One of the reasons for such behavior is the recentness of the informa-
tion used for each lead time in the forecast horizon. For the first lead time, which is 00:00 of
the next calendar day, for which the forecast is done, the value from one hour before is used as
a forecast, which is a relatively short period. There is a low probability of significant changes
in electricity consumption in a short period. However, the probability of significant changes in
electricity consumption increases with the increase of the time interval between 23:00 and the
lead time. Supposedly, utilizing a smaller forecast horizon H would yield better performance
estimates of the model.

5.2.7 ARIMA + Fourier Terms
Summarizing by all evaluation metrics, obtained by walk-forward cross-validation as

described in section 3.6.1, the ARIMA + Fourier terms model performs better than the Naive
model but worse than the CNN and CNN+LSTM among the models presented in Table 5.1.
Comparing to the models presented in Table 5.2, the ARIMA + Fourier terms performs better
than the Asymmetric HFoT but worse than the rest of the models.

Figure 5.9: Forecasted vs. Actual electricity consumption (ARIMA + Fourier terms)

From Figure 5.9, it can be seen that the ARIMA + Fourier terms tends to quite equally
under- and overestimate the actual electricity consumption. Considerably significant deviations

48

from the actual consumption can be observed for all regions’ data. The deviations may occur
due to the new (not experienced in the training set) data patterns in the test set, or the inability
of the final model to capture more complex patterns.

Figure 5.9 shows that the ARIMA + Fourier terms produces reliable forecasts for the first
lead time, while for the later lead times, the model mostly produces forecasts rather deviated
from the actual values. One of the reasons for such behavior may be the recentness of the
information used for each lead time in the forecast horizon. The forecast for the first lead time
is made by employing the most recent information about the electricity consumption, while the
forecasts for the later lead times are made by employing the information from at least 2 to 24
hours before. Supposedly, utilizing a smaller forecast horizon H for ARIMA + Fourier terms
would yield better performance estimates of the model.

Figure 5.10: Evaluation metrics per forecast lead time (ARIMA + Fourier terms)

Based on the mean evaluation metrics per lead time for the ARIMA + Fourier terms pre-
sented in Figure 5.10, all evaluation metrics have the lowest values for the first lead time. The
highest evaluation metrics for all three regions’ data are observed at the lead times 8 to 10.

5.2.8 CNN and CNN+LSTM Models
In this work, the performance of the CNN and CNN+LSTM models was estimated by em-

ploying the prequential block method (20 folds, 10 folds as the initial training set) and blocked
20-fold cross-validation, described in section 3.6.2. Summarizing by all evaluation metrics,
the CNN and CNN+LSTM models, employing both methods of performance estimation, have
shown the best results among the models presented in Table 5.1. Comparing to the models pre-
sented in Table 5.2, the CNN and CNN+LSTM models outperform the SPFoT (except for the
data for region 1, where the CNN model shows worse performance than the SPFoT) but show
worse results than the Average and Daily Profile.

The CNN+LSTM model has shown better results than the CNN model for all regions’ data
and both methods of performance estimation, except for the data for region 2, where the CNN
model has shown better mean MAPE for the prequential block method. It shows that the usage
of more sophisticated CNN architectures, along with additional data like weather and day infor-
mation the way it was done in the CNN+LSTM model, is beneficial for the forecasting ability
of the models.

One of the crucial questions raised in section 3.6.2 was a choice of the performance esti-
mation approach for the developed CNN-based models. Based on the results in Table 5.1, it
can be seen that blocked 20-fold cross-validation produced significant results comparing to the
prequential block method despite the concerns about the validity of cross-validation for time

49

series data. By significant results, it is meant that the ranks by evaluation metrics of the devel-
oped CNN-based models stay the same, independent of the choice of performance estimation
approach as compared to the rest of the models and one another. Consequently, the aim is to
study only visualizations for the results obtained by blocked 20-fold cross-validation (CV) as it
can give a better overview of model performance by utilizing all available data for training and
evaluation.

Figure 5.11: Forecasted vs. Actual electricity consumption (CNN, blocked 20-fold CV)

Figure 5.12: Forecasted vs. Actual electricity consumption (CNN+LSTM, blocked 20-fold CV)

Based on Figures 5.11 and 5.12, it can be seen that the developed CNN-based models pro-
duce relatively good forecasts comparing to the other methods presented in Table 5.1. Both
the CNN and CNN+LSTM models tend to rather equally under- and overestimate the actual
electricity consumption. However, there are considerably significant deviations from the actual
values for both the CNN and CNN+LSTM models for the data for region 1, as shown in Figures
5.11a and 5.12a. The deviations may occur due to the new (not experienced in the training set)
data patterns in the test set or the inability of the final model to capture more complex patterns.

From Figures 5.11 and 5.12, it can be observed that both the CNN and CNN+LSTM mod-
els produce reasonably good results for the first lead time, while for the later lead times the
models mostly produce forecasts rather deviated from the actual values. One of the reasons for
such behavior may be the recentness of the information used for each lead time in the forecast
horizon. The forecast for the first lead time is made by employing the most recent information,
while for the later lead times the forecasts are made by employing the information from at least
2 to 24 hours before. Supposedly, utilizing a smaller forecast horizon H would yield better
performance estimates of the CNN and CNN+LSTM models.

50

Figure 5.13: Evaluation metrics per forecast lead time (CNN, blocked 20-fold CV)

Based on the mean evaluation metrics per lead time for the CNN model, presented in Figure
5.13, all evaluation metrics have the lowest values for the first lead time and tend to increase
for the later lead times. The same behavior is observed for the mean evaluation metrics per
lead time for the CNN+LSTM model, presented in Figure 5.14. In some cases, mean evaluation
metrics stay on nearly the same level starting from some lead time t (MAPE in Figures 5.13b,
5.14b, and 5.14c; RMSE and MAE in Figure 5.14c), or even decrease starting from some lead
time t (RMSE and MAE in Figures 5.13a, 5.13b, and 5.14a).

Figure 5.14: Evaluation metrics per forecast lead time (CNN+LSTM, blocked 20-fold CV)

5.3 Summary of Findings
In this chapter, the analysis and comparison of the performance of the Asymmetric HFoT,

SPFoT, Average, Daily Profile, Naive model, ARIMA + Fourier terms, CNN, and CNN+LSTM
models were performed.

The developed CNN+LSTM model showed the best performance results among the models
presented in Table 5.1 which belong to the class of predictive models and perform the 24-hour-
ahead forecasting by employing the MIMO strategy. However, as deep learning models require
large amounts of data to properly capture the patterns present in the data, the performance for
the same model could be improved if more data is available.

The Daily Profile showed the best performance among the predictive models which do not
necessarily employ the MIMO strategy or are not capable of performing 24-hour-ahead fore-
casting. However, it should be taken into account that considering the assumption of DR events

51

not lasting over an hour, the Daily Profile in this work can only be applied to one-hour-ahead
forecasting. It is assumed that given a sufficient amount of data, the CNN and CNN+LSTM
models would outperform the Daily Profile if implementing one-step-ahead forecasts.

It is worth noting that the Average showed the best performance in the baseline load evalu-
ation among all the models presented in Tables 5.1 and 5.2. However, the Average belongs to
the class of analytic models which use the electricity consumption data following the DR event
activation and consequently cannot be applied to electricity consumption forecasting.

52

6 Conclusion

In this work, two CNN-based deep learning models for the one-day-ahead hourly electricity
consumption forecasting for the next day employing the MIMO strategy were developed. The
industry-standard baseline models Asymmetric HFoT, SPFoT, Average, and Daily Profile, along
with ARIMA + Fourier terms and Naive model, were used as baseline models for comparison.

The performance of the models was estimated on the electricity consumption data for three
regions in Norway. Configurations of the developed CNN and CNN+LSTM models as well
as configurations for the ARIMA + Fourier terms were determined separately for each region
data. Performance estimation of the CNN-based models was done by employing both 20-fold
cross-validation and prequential block method (20-folds, 10 folds as an initial training set).
Performance estimation of the ARIMA + Fourier terms was done by employing walk-forward
cross-validation.

The developed CNN+LSTM model showed the best performance results among the Naive
model, ARIMA + Fourier terms, and CNN-based deep learning models that belong to the class
of predictive models and perform the 24-hour-ahead hourly forecasting for the next calendar day
by employing the MIMO strategy. It shows that using more sophisticated CNN architectures,
along with additional data like weather and day information as it was done in the CNN+LSTM
model, is beneficial for the models’ forecasting ability.

The Daily Profile showed the best performance among the predictive models which do not
necessarily employ the MIMO strategy or are not capable of performing 24-hour-ahead hourly
forecasting. However, considering the assumption of DR events not lasting over an hour, the
Daily Profile in this work can be applied only to one-hour-ahead forecasting and is not suitable
in case a more extended forecast is needed.

The Average showed the best performance in the baseline load evaluation among all the
models considered in this work. However, the Average belongs to analytic models which use
the electricity consumption data following the DR event activation and consequently cannot be
applied to electricity consumption forecasting.

The experiments have also shown that k-fold cross-validation produced significant results
comparing to the prequential block method for performance estimation, despite the concerns
about its validity in time-series forecasting. By significant results, it is meant that the ranks by
evaluation metrics of the developed CNN-based models stayed the same, independent of the
choice of performance estimation approach.

It can be concluded that the experiments with developing and applying the CNN-based
models to the problem of the one-day-ahead hourly electricity consumption forecasting for the
next calendar day were successful. Both the CNN and CNN+LSTM models have shown the
best results among the models which employ the MIMO strategy for performing 24-hour-ahead
hourly forecasting. Two different paths could be chosen for future work: one that intends to
explore more and improve the CNN-based models developed in this work, and the one which
aims to explore new CNN-based architectures.

53

Possible improvements and future work

• Using another loss function for training of the CNN-based models.

• Using other activation functions in the CNN-based models, for instance, Exponential
Linear Unit (ELU) [CUH15], which is smooth for all input values, helping to speed up
the training.

• Modifying architectures of the CNN-based models.

• Defining the input sequence length for the CNN-based models as a hyperparameter.

• Using other hyperparameter optimization methods.

• Performing diagnostics of forecast residuals for better estimation of performance of the
models. [HA18, Chapter 3.3]

• Exploring other hybrid CNN-based architectures.

• Applying the models considered in the current work to the problem of one-hour-ahead
forecasting for comparison to the Daily Profile industry-standard baseline model.

• Applying the models considered in the current work to the problem of lower-level aggre-
gations of consumers.

54

Acknowledgements

I would like to thank my thesis supervisors Alan Henry Tkaczyk of Institute of Technology
at the University of Tartu, Florentin Dam at Akka Technologies, and Ulf Roar Aakenes at Enoco
AS for helpful discussions and guidance.

I am grateful to my family, who were supporting and encouraging me throughout my stud-
ies, and during researching and writing this work. This accomplishment would not have been
possible without them.

This work has been supported by the EU-SysFlex project, funded from the European Union’s
Horizon 2020 research and innovation programme under Grant Agreement No. 773505. This
publication reflects only the authors’ view; responsibility for the information and views ex-
pressed herein lies entirely with the authors. Neither the European Commission nor the In-
novation and Networks Executive Agency is responsible for any use that may be made of the
information contained in this publication.

55

Bibliography

[AES07] M. H. Albadi and E. F. El-Saadany. Demand Response in Electricity Markets:
An Overview. In 2007 IEEE Power Engineering Society General Meeting,
pages 1–5. IEEE, June 2007.

[Agg18] Charu C. Aggarwal. Neural Networks and Deep Learning. Springer, 2018.

[ASVVMM16] Igor Aizenberg, Leonid Sheremetov, Luis Villa-Vargas, and Jorge Martinez-
Muñoz. Multilayer Neural Network with Multi-Valued Neurons in time series
forecasting of oil production. Neurocomputing, 175:980–989, January 2016.

[BB12] Christoph Bergmeir and José M. Benı́tez. On the use of cross-validation for
time series predictor evaluation. Information Sciences, 191:192–213, May
2012.

[BBBK11] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algo-
rithms for Hyper-Parameter Optimization. In Advances in Neural Information
Processing Systems 24, pages 2546–2554. Curran Associates, Inc., December
2011.

[BC64] G. E. P. Box and D. R. Cox. An Analysis of Transformations. Journal of
the Royal Statistical Society: Series B (Methodological), 26(2):211–243, July
1964.

[BFOS19] Salah Bouktif, Ali Fiaz, Ali Ouni, and Mohamed Adel Serhani. Single and
Multi-Sequence Deep Learning Models for Short and Medium Term Electric
Load Forecasting. Energies, 12(1), January 2019.

[BHK18] Christoph Bergmeir, Rob J. Hyndman, and Bonsoo Koo. A note on the va-
lidity of cross-validation for evaluating autoregressive time series prediction.
Computational Statistics & Data Analysis, 120:70–83, April 2018.

[BPKS11] V. S. K. Murthy Balijepalli, Vedanta Pradhan, S. A. Khaparde, and R. M.
Shereef. Review of demand response under smart grid paradigm. In ISGT2011-
India, pages 236–243. IEEE, December 2011.

[BYC13] James Bergstra, Dan Yamins, and David D. Cox. Making a Science of Model
Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision
Architectures. In JMLR Workshop and Conference Proceedings, volume 28
(1), pages 115–123, June 2013.

[CS220] CS231n Convolutional Neural Networks for Visual Recognition. https:
//cs231n.github.io/convolutional-networks/, Stanford Uni-
versity, 2020. [Online; accessed 15-May-2020].

56

https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/

[CTM19] Vı́tor Cerqueira, Luı́s Torgo, and Igor Mozetic. Evaluating time series forecast-
ing models: An empirical study on performance estimation methods. ArXiv,
abs/1905.11744, 2019.

[CUH15] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and Ac-
curate Deep Network Learning by Exponential Linear Units (ELUs). arXiv,
abs/1511.07289, 2015.

[DWX+19] Zhuofu Deng, Binbin Wang, Yanlu Xu, Tengteng Xu, Chenxu Liu, and Zhil-
iang Zhu. Multi-Scale Convolutional Neural Network With Time-Cognition
for Multi-Step Short-Term Load Forecasting. IEEE Access, 7:88058–88071,
2019.

[EAL17] Elering, AST, and Litgrid. Demand Response Through Aggregation — A Har-
monized Approach In Baltic Region: Concept proposal, 2017.

[Ene09] EnerNOC. The Demand Response Baseline (White Paper), 2009.

[FER16] FERC. A National Assessment & Action Plan on Demand Response Potential.
https://www.ferc.gov/industries/electric/indus-act/
demand-response/dr-potential.asp, 2016. [Online; accessed
02-March-2020].

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[GLA19] Alberto Gasparin, Slobodan Lukovic, and Cesare Alippi. Deep Learning for
Time Series Forecasting: The Electric Load Case. ArXiv, abs/1907.09207,
2019.

[HA18] R. J. Hyndman and G. Athanasopoulos. Forecasting: principles and practice,
2nd edition. OTexts: Melbourne, Australia, 2018. https://OTexts.com/
fpp2/ [Online; accessed 22-April-2020].

[HK06] Rob J. Hyndman and Anne B. Koehler. Another look at measures of forecast
accuracy. International Journal of Forecasting, 22(4):679–688, October 2006.

[HR19] Ying-Yi Hong and Christian Lian Paulo P. Rioflorido. A hybrid deep learning-
based neural network for 24-h ahead wind power forecasting. Applied Energy,
250:530–539, September 2019.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural
Computation, 9(8):1735–1780, November 1997.

[HWG+19] Yunyou Huang, Nana Wang, Wanling Gao, Xiaoxu Guo, Chen Huang, Tian-
shu Hao, and Jianfeng Zhan. LoadCNN: A Low Training Cost Deep Learn-
ing Model for Day-Ahead Individual Residential Load Forecasting. arXiv,
abs/1908.00298, 2019.

[Hyn10] Rob J. Hyndman. Forecasting with long seasonal periods. https://
robjhyndman.com/hyndsight/longseasonality/, 2010. [On-
line; accessed 25-March-2020].

57

https://www.ferc.gov/industries/electric/indus-act/demand-response/dr-potential.asp
https://www.ferc.gov/industries/electric/indus-act/demand-response/dr-potential.asp
http://www.deeplearningbook.org
https://OTexts.com/fpp2/
https://OTexts.com/fpp2/
https://robjhyndman.com/hyndsight/longseasonality/
https://robjhyndman.com/hyndsight/longseasonality/

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
In 2015 IEEE International Conference on Computer Vision (ICCV). IEEE,
December 2015.

[IS15] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In Proceedings of the
32nd International Conference on Machine Learning, volume 37 of Proceed-
ings of Machine Learning Research, pages 448–456, July 2015.

[KB14] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-
tion. arXiv, abs/1412.6980, 2014.

[KCJL19] Myoungsoo Kim, Wonik Choi, Youngjun Jeon, and Ling Liu. A Hybrid Neural
Network Model for Power Demand Forecasting. Energies, 12(5), March 2019.

[KEM13a] AEMO DNV KEMA. Development of Demand Response Mechanism Base-
line Consumption Methodology – Phase 1 Results Final Report. No. 20320008,
2013.

[KEM13b] AEMO DNV KEMA. Development of Demand Response Mechanism Base-
line Consumption Methodology – Phase 2 Results Final Report. No. 20320008,
2013.

[KH18] Ping-Huan Kuo and Chiou-Jye Huang. A high precision artificial neural net-
works model for short-term energy load forecasting. Energies, 11(1), January
2018.

[KL18] Jimyung Kang and Soonwoo Lee. Data-Driven Prediction of Load Curtail-
ment in Incentive-Based Demand Response System. Energies, 11(11), October
2018.

[KPSS92] Denis Kwiatkowski, Peter C.B. Phillips, Peter Schmidt, and Yongcheol Shin.
Testing the null hypothesis of stationarity against the alternative of a unit root.
Journal of Econometrics, 54(1-3):159–178, October–December 1992.

[LBD+89] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson,
Richard E. Howard, Wayne E. Hubbard, and Lawrence D. Jackel. Backprop-
agation Applied to Handwritten Zip Code Recognition. Neural Computation,
1(4):541–551, December 1989.

[LHZS16] Chenghao Liu, Steven C. H. Hoi, Peilin Zhao, and Jianling Sun. Online
ARIMA Algorithms for Time Series Prediction. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, pages 1867–1873, 2016.

[LSSL19] Christian Lang, Florian Steinborn, Oliver Steffens, and Elmar Wolfgang Lang.
Electricity Load Forecasting - An Evaluation of Simple 1D-CNN Network
Structures. arXiv, abs/1911.11536, 2019.

[Net] Netron: Visualizer for neural network, deep learning and machine learning
models. https://www.lutzroeder.com/ai. [Online; accessed 20-
April-2020].

58

https://www.lutzroeder.com/ai

[Ola15] Christopher Olah. Understanding LSTM Networks. https://colah.
github.io/posts/2015-08-Understanding-LSTMs/, 2015.
[Online; accessed 15-May-2020].

[Rao18] Suhasini Subba Rao. A course in Time Series Analysis. https://www.
stat.tamu.edu/˜suhasini/teaching673/time_series.pdf,
Texas A&M University, December 2018. [Online; accessed 15-March-2020].

[RGH+20] João Paulo Pereira Rosa, Daniel J. D. Guerra, Nuno Horta, Ricardo Martins,
and Nuno M T Lourenço. Using Artificial Neural Networks for Analog Inte-
grated Circuit Design Automation. Springer Briefs in Applied Sciences and
Technology. Springer, 2020.

[SS17] Robert H. Shumway and David S. Stoffer. Time Series Analysis and Its Appli-
cations: With R examples. Springer Texts in Statistics. Springer, fourth edition,
2017.

[TMZZ18] Chujie Tian, Jian Ma, Chunhong Zhang, and Panpan Zhan. A deep neural
network model for short-term load forecast based on long short-term memory
network and convolutional neural network. Energies, 11(12), December 2018.

[vB18] Stef van Buuren. Flexible Imputation of Missing Data. Interdisciplinary Statis-
tics. Chapman and Hall/CRC, second edition, July 2018.

[vBGO11] Stef van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate Imputa-
tion by Chained Equations in R. Journal of Statistical Software, 45(3), 2011.

[WUO+14] Matt Woolf, Tatiana Ustinova, Enrique Ortega, Hariet O’Brien, Predrag Djapic,
and Goran Strbac. Distributed generation & demand side response services for
smart distribution networks, Report A7 for the ”Low Carbon Learning Lab”
LCNF project, September 2014.

[YJ00] In-Kwon Yeo and Richard A. Johnson. A new family of power transformations
to improve normality or symmetry. Biometrika, 87(4):954–959, December
2000.

[Zha18] Mingda Zhang. Time Series: Autoregressive models AR, MA, ARMA,
ARIMA. http://people.cs.pitt.edu/˜milos/courses/
cs3750/lectures/class16.pdf, University of Pittsburgh, October
2018. [Online; accessed 14-March-2020].

[ZLLS20] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into
Deep Learning. 2020. https://d2l.ai [Online; accessed 10-May-2020].

59

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.stat.tamu.edu/~suhasini/teaching673/time_series.pdf
https://www.stat.tamu.edu/~suhasini/teaching673/time_series.pdf
http://people.cs.pitt.edu/~milos/courses/cs3750/lectures/class16.pdf
http://people.cs.pitt.edu/~milos/courses/cs3750/lectures/class16.pdf
https://d2l.ai

Appendices

I. Visualizations of the performance estimation methods for the deep learning models

Figure 1: Blocked 20-fold cross-validation

Figure 2: Prequential block method (20 folds, 10 folds as the initial training set)

60

II. An overview of the packages used in the implementation of this work

• numpy version 1.18.1 used for manipulation of data arrays in Python

• pandas version 1.0.1 used for manipulation of tables and time series data in Python

• pandasql version 0.7.3 used for manipulation of tables using SQL commands in
Python

• pickle version 4.0 used for manipulation of Python objects

• dill version 0.3.1.1 used for manipulation Python objects

• matplotlib version 3.1.3 used for creating visualizations in Python

• seaborn version 0.10.0 used for creating visualizations in Python

• sklearn version 0.22.1 used for facilitating machine learning routines in Python

• tensorflow version 2.1.0 used for implementation and training of deep learning
models in Python

• keras version 2.3.1 used for implementation and training of deep learning models in
Python

• hyperopt version 0.2.3 used for hyperparameter optimization in Python

• hyperas version 0.4.1 used for hyperparameter optimization in Python

• missingno version 0.4.2 used for working with missing values in Python

• rpy2 version 3.2.6 used for incorporating R libraries and commands into Python
code

• data.table version 1.12.8 used for manipulation of tables in R

• dplyr version 0.8.5 used for manipulation of data in R

• mice version 3.8.0 used for data imputation in R

• TSA version 1.2 used for manipulation of time series data in R

• forecast version 8.12 used for ARIMA implementation in R

61

Non-exclusive licence to reproduce thesis and
make thesis public

I, Oleksandr Kurylenko

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation, including for adding to the DSpace dig-
ital archives until the expiry of the term of copyright, and

1.2. make available to the public via the web environment of the University of Tartu,
including via the DSpace digital archives, under the Creative Commons licence CC
BY NC ND 3.0, which allows, by giving appropriate credit to the author, to repro-
duce, distribute the work and communicate it to the public, and prohibits the creation
of derivative works and any commercial use of the work from 08/12/2020 until the
expiry of the term of copyright,

“Development of CNN-Based Models for Short-Term Load Forecasting in Energy
Systems”

supervised by Alan Henry Tkaczyk, Florentin Dam, Ulf Roar Aakenes

2. I am aware of the fact that the author retains the rights specified in p. 1.

3. I certify that granting the non-exclusive licence does not infringe other persons’ intellec-
tual property rights or rights arising from the personal data protection legislation.

Oleksandr Kurylenko
12.05.2020

	Resümee
	Abstract
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Problem Statement
	Objectives and Roadmap
	Structure of the Thesis

	Related Work
	Methodology
	Approach to Forecasting
	Types of Forecasting Models
	Multi-Step Forecasting Schemes

	Baseline Models
	Industry-Standard Baseline Models
	Naive Model
	ARIMA

	Framing the Problem as Supervised Learning
	Deep Learning Models
	Convolutional Neural Networks
	Long Short-Term Memory
	Developed CNN Model
	Developed CNN+LSTM Model

	Evaluation Metrics
	Root Mean Square Error (RMSE)
	Mean Absolute Error (MAE)
	Mean Absolute Percentage Error (MAPE)

	Performance Estimation
	ARIMA
	Deep Learning Models

	Experiments
	Data Description
	Electricity consumption data
	Weather data

	Data Pre-Processing & Feature Engineering
	Baseline Models
	Deep Learning Models

	Implementation Details
	Industry-Standard Baseline Models
	Naive Model
	ARIMA
	Deep Learning Models
	Technical Details

	Results and Discussion
	Main Results
	Analysis of Models' Performance
	Comparability of Models
	Asymmetric HFoT
	SPFoT
	Average
	Daily Profile
	Naive Model
	ARIMA + Fourier Terms
	CNN and CNN+LSTM Models

	Summary of Findings

	Conclusion
	Bibliography
	Appendices
	Non-exclusive license

