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1 Introduction

It is di�cult to overestimate the importance of the e�ects caused by Brownian
motion for soft condensed matter physics. An object of special attention has been
Brownian motion in periodic structures, which has various applications in condensed
matter physics, chemical physics, nanotechnology, and molecular biology [1, 2, 3, 4].
Furthermore, the idea that adding noise to deterministic motion can give nontriv-
ial results has led to many important discoveries, such as stochastic resonance [5],
resonant activation [6], noise-induced spatial patterns [7], noise-induced multista-
bility as well as noise-induced phase transitions [3, 8, 9, 10, 11], ratchets [2], and
hypersensitive transport [12], to name just a few of the new phenomena in this �eld.

Thermal di�usion of Brownian particles in tilted periodic potentials has been an
active �eld of research in recent years [13, 14, 15, 16]. In Ref. [13] overdamped and
underdamped motion was considered and the phenomenon of the enhancement of
di�usion was found. Refs. [14, 15] provided an analytic description of the e�ect. A
giant ampli�cation of di�usion up to fourteen orders of magnitude was predicted in
Refs. [15] and a nonmonotonic behavior of the di�usion coe�cient as a function of
temperature was found in Ref. [14]. Whereas Refs. [16, 17] describe analogue e�ects
observed in systems with spatially periodic friction coe�cient and temperature,
respectively.

Usually, when addressing di�usion enhancement, a tilted harmonic spatial periodic
potential is used. However, it is known that some features of the ratchet transport
mechanism (e.g., the current reversals [18]) are extremely sensitive to the shape of
the potential.

The aim of the present work is to carry out a comprehensive study of the dependence
of di�usive and coherent motion of overdamped Brownian particles on temperature
and tilting force for various shapes of tilted periodic potentials. The target can be
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achieved in great accuracy using piecewise linear potential.

Piecewise linear potential is important for at least three reasons: It can be used
as a �rst approximation of the shape of arbitrary potential, and it is su�ciently
simple to allow an exact algebraic treatment of the relevant quantities. The third
feature is that varying only some parameters it is possible to obtain a new shape of
the potential, enabling to use the same analytic equations for the quantities under
investigation.

The study consists of two parts. First we investigate the overdamped Brownian mo-
tion in tilted simple sawtooth potentials, which provides all the e�ects characteristic
of tilted periodic potentials with one minimum per period. As a surprising result we
show that this particular simple model allows one to obtain also all the phenomena
attained in systems with spatially periodic temperature [17] and nonhomogenous
dissipation [16]. Secondly, we study the transport of Brownian particles in tilted
piecewise linear potentials with two potential barriers per period. This particular
case is of great importance, whereas in order to describe many systems in biology
and condensed matter physics, more complicated potentials than the simple saw-
tooth type potential are required. The transport properties in potentials of such a
type have in general a similar character as in the simple potentials, exhibiting at the
same time in certain parameter regions qualitatively di�erent features. Although
being often extremely sensitive to the potential and environment parameters, these
features can be relevant in some complicated systems, in particular in biology.

The results of this study have been published in Physical Review E and Physica A
(see List of publications).

5



2 Basic concepts

The aim of this Section is to give a background of the basic concepts of Brownian
motion, which are relevant to the rest of the present work. This will be done in the
framework of the Langevin equation, in which the presence of a thermal environment
is taken into account through the superposition of a damping and a �uctuating
random force.

2.1 Langevin equation

If a particle of mass m is immersed in a �uid, a friction force will act on the particle.
The simplest expression for such a friction or damping force Fd is given by Stoke's
law

Fd = −ηv , (2.1)

where v is the velocity of the particle and η is the coe�cient of viscous friction.
Stoke's law (2.1) is valid if the particle is so large that there are many simultaneous
collisions of the �uid molecules with it and if the velocity is low enough so that there
is no turbulence. For a spherical particle the coe�cient of viscous friction reads

η = 6πγR , (2.2)

where R is the radius of the particle and γ is the viscosity.

Therefore, according to Newton's law, the equation of motion for the particle in the
absence of additional forces has the form

m
dv

dt
+ η v = 0 . (2.3)

Thus an initial velocity v(0) decreases to zero according to the law

v(t) = v(0)e−t/τ , (2.4)
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with a relaxation time τ = m/η.

The physical mechanism underlying friction is the collision process between the
molecules of the �uid and the particle. The momentum of the particle is transferred
to the molecules of the �uid and therefore the velocity of the particle decreases to
zero. The di�erential equation (2.3) is a deterministic equation, i.e., the velocity v(t)

at time t is completely determined by the initial value according to (2.4). However,
Eq. (2.3) is valid only if the mass of the particle is large so that its velocity induced
by thermal �uctuations is negligible.

We now take into account the fact that the environment is a heat bath at thermal
equilibrium having temperature T . We also assume that all transients have died out
and the particle is in thermal equilibrium with the bath. From the equipartition
law, it is known that in equilibrium the mean kinetic energy of the particle reaches
(in one dimensional dynamics) the value

1

2
m〈v2〉 =

1

2
kBT , (2.5)

where kB is Boltzmann's constant. For a small enough mass m the thermal velocity
vth =

√
kBT/m may be observable and therefore the velocity of the particle can no

longer be described exactly by Eq. (2.3) with the solution (2.4): The particle will
be in an animated and irregular state of motion.

If the mass of the particle is still large compared to the mass of the molecules, one
expects (2.3) to be valid approximately. Therefore, it must be modi�ed so that
it leads to the correct thermal energy (2.5). The result is achieved by adding a
stochastic force ξ(t) to the right-hand side of Eq. (2.3), i.e., the total force F (t),
due to the molecules acting on the Brownian particle, is now decomposed into a
continuous damping force Fd(t) and a �uctuating force ξ(t) [19] (cf. also Ref. [20,
21]):

F (t) = Fd(t) + ξ(t) = −ηv(t) + ξ(t) . (2.6)
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The properties of the random force ξ(t), which is also called Langevin's force, are
given only on average.

Thus, Brownian motion is the motion of a macroscopically small but microscopically
large particle that is subject to the collisional forces exerted by the molecules of a
surrounding �uid. Considering Eq. (2.6) the equation of motion of the Brownian
particle is given as

m
dv(t)

dt
= −ηv(t) + ξ(t) . (2.7)

Equation (2.7) is called Langevin's equation and was the �rst example of stochastic
di�erential equation � a di�erential equation which contains a stochastic term ξ(t).

The method of the Langevin equation gives a natural way for a stochastic gen-
eralization of the deterministic description. However, an adequate mathematical
grounding for the approach of Langevin was not available until more than 40 years
later, when Itô provided his formulation of stochastic di�erential equations [22].

2.2 Gaussian white noise

The right-hand side of Eq. (2.7) represents the e�ects of the thermal environment
� energy dissipation, modelled as viscous friction, and randomly �uctuating forces
in the form of the thermal noise ξ(t). These two e�ects are not independent of each
other since both of them have the same origin, namely the interaction of the particle
with a huge number of microscopic degrees of freedom of the environment.

The assumptions of the environment being at thermal equilibrium and of a dissipa-
tion mechanism of the form −ηv(t) completely �x the statistical properties of the
�uctuations ξ(t) in Eq. (2.7).

The fact that the friction force on the right hand side of Eq. (2.7) is linear in v(t),
i.e., no spatial direction is preferred, suggests that, due to their common origin, also
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the thermal �uctuations are unbiased, that is

〈ξ(t)〉 = 0 , (2.8)

for all times t, where 〈. . .〉 indicates the average over independent realizations of the
random process ξ(t). The condition (2.8) ensures also that the equation of motion
of the average velocity 〈v(t)〉 is given by the deterministic limit (2.3). Similarly,
the fact that the friction force only depends on the present state of the system and
not on what happened in the past has its counterpart in the assumption that the
random �uctuations are uncorrelated in time, i.e.,

〈ξ(t)ξ(t′)〉 = 0 if t 6= t′ . (2.9)

Furthermore, the fact that the friction involves no explicit time dependence has its
correspondence in the time-translation invariance of all statistical properties of the
�uctuations, i.e., the noise ξ(t) is a stationary random process. Finally, the continu-
ity of the friction force in time indicates that the same is valid for the �uctuations.
During a small time interval the e�ect of the environment thus consists of a large
number of small and, according to Eq. (2.9), practically independent contributions.
Due to the central limit theorem [23] the net e�ect of all these contributions on the
particle coordinate x(t) will thus be Gaussian distributed.

Bearing in mind all these features one can obtain the �uctuation-dissipation relation
[1, 2, 24],

〈ξ(t) ξ(t′)〉 = 2 ηkBT δ(t− t′) , (2.10)

where δ(t − t′) is Dirac's δ-function. The quantity 2ηkBT is called the intensity of
the noise or the noise strength of the Langevin force [1]. Since ξ(t) is a Gaussian
random process, all its statistical properties are completely determined [1, 23, 25] by
the mean value (2.8) and the correlation function (2.10). The only particle property
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which enters the characteristics of the noise is the friction coe�cient η, which may
thus be viewed as the coupling strength to the environment.

A noise force with the δ-correlation (2.10) is called white noise, because the spectral
distribution [1], which is given by the Fourier transform of (2.10), is independent of
frequency. If the stochastic forces are not δ-correlated, i.e., if the spectral density
depends on frequency, one uses the term colored noise. White noise does not exist
as a physically realizable process. It is, however, fundamental in a mathematical,
and indeed in a physical sense, in that it is an idealization of many processes that do
occur. Furthermore, situations in which white noise is not a good approximation can
often be indirectly expressed quite simply in terms of white noise [22]. In this sense,
white noise is the starting point from which a wide range of stochastic descriptions
can be derived.

2.3 Einstein's relation

Particles, described by the equation of motion in the form (2.7), exhibit free thermal
di�usion, whereas there are no additional external forces acting on them.

Multiplying Eq. (2.7) by the position x(t) and averaging over a large number of
di�erent particles, one can write,

m

2

d2〈x2〉
dt2

−m〈v2〉 = −η

2

d〈x2〉
dt

+ 〈ξ(t) x〉 . (2.11)

A crucial implicit assumption [22] in Eq. (2.7) is the independence of the friction
force, and hence also of the �uctuation force, from the system x(t), i.e.,

〈ξ(t)x(t′)〉 = 0 , (2.12)

for all times t ≥ t′. It re�ects the assumption that the environment can be rep-
resented as a heat bath so that its properties are practically not in�uenced by the
behavior of the particle x(t) [2].
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Considering the latter fact and Eq. (2.5) one �nds that the general solution of
Eq. (2.11) is

d〈x2〉
dt

=
2kBT

η
+ Ce−t/τ , (2.13)

where C is an arbitrary constant. For asymptotically large times t (cf. Ref. [1]) one
can neglect the last term in Eq. (2.13) [19, 22] and integrate once more to obtain

〈x2(t)〉 = 2t
kBT

η
. (2.14)

Thus, we have for the free di�usion coe�cient the expression [26, 22]

D0 =
kBT

η
, (2.15)

known as Einstein's relation. Equation (2.15) implies that �uctuation and dissi-
pation are intimately related, and that one cannot be present without the other.
However, dissipation would also occur if the collisions with the molecules were not
randomly distributed, but occurred at regular intervals. In that case the motion of
the particle would be damped, but would not �uctuate and hence Eq. (2.14) would
not be applicable. The reason for the relation between dissipation and �uctuation
is that the time between collisions is a random variable [21].
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3 Brownian motion in periodic potentials

This Section tries to yield an inkling of the content of the ratchet model that leads
to the speci�cation of the problem of our interest. A short description of the features
of Brownian motion in periodic potentials is presented and the de�nitions of current
and di�usion coe�cient � the characteristics of macroscopic transport � are given.
The closed analytical expression for the current has been derived by Stratonovich
in 1958, but it took more than 40 years to obtain a corresponding compact formula
for the di�usion coe�cient. The review at the end of this Section presents some
relevant landmarks from this period.

3.1 Ratchet model

The investigation on Brownian motion in periodic potentials originates from the
question, whether it is possible � and how � to gain useful work out of unbiased
random �uctuations. In the case of macroscopic �uctuations, the task can be ac-
complished by various types of mechanical and electrical recti�ers. More subtle is
the case of microscopic �uctuations when one wants to convert Brownian motion
into useful work. The basic idea can be traced back to a talk given by Smoluchowski
in 1912 [27], and was later extended by Feynman [28].

The main ingredient of Smoluchowski and Feynman's Gedankenexperiment is an
axle with at one end vanes and at the other end a so-called ratchet, reminiscent of a
circular saw with asymmetric saw-teeth (see Fig. 1). The whole device is surrounded
by a gas at thermal equilibrium. So, if it could turn freely around, it would perform
a rotatory Brownian motion due to random impacts of gas molecules on the paddles.
Whereas the pawl blocks the turns of the axle in one direction and allows it to turn
in the other one, it seems quite convincing that the whole gadget will perform on the
average a systematic rotation in one direction, even if a small load in the opposite
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Figure 1: The Smoluchowski-Feynman ratchet and pawl machine.

direction is applied [2]. However, this is in contradiction with the second law of
thermodynamics. The paradox of the Smoluchowski-Feynman ratchet is explained
in Ref. [28] and a critical analysis of the Feynman gadget is presented in Ref. [29].

In Feynman's lectures [28] one can �nd an extension of the original Gedankenex-
periment, where the gas surrounding the two ends of the machine are not at the
same temperature � this problem was considered only by Feynman, and is referred
to as the Feynman ratchet. The resulting average motion is then nonzero and the
e�ciency of the device is the same as that of the Carnot cycle. But in this case, a
net mean motion of the axle is caused by the macroscopic gradient of temperature.

The Smoluchowski-Feynman ratchet has been experimentally realized on a molec-
ular scale by Kelly, Tellitu, and Sestelo [30]. Their synthesis of triptycene helicene
incorporates into a single molecule all essential components: The triptycene "paddle-
wheel" functions simultaneously as a circular ratchet and as paddles, the helicene
serves as pawl and provides the necessary asymmetry of the system. Both compo-
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nents are connected by a single chemical bond, giving rise to one internal degree of
rotational freedom [2]. A discussion of the experimental realizations of the Feynman
ratchet can be found in Sec. 4.5 of Ref. [2], and in the references therein.

A faithful modelling and analysis of the ratchet and pawl gadget as it stands is
possible but rather involved, especially on a microscopic level (see Ref. [2]). How-
ever, one can focus on a considerably simpli�ed mathematical model, which still
retains the basic qualitative features, and is formulated as Brownian motion in a
one-dimentional spatially periodic potential V0(x) = V0(x+L), which corresponds to
the ratchet (wheel). Whereas the symmetry of the ratchet is broken, because of the
pawl mechanism (teeth are asymmetrical), also the re�ection symmetry of the poten-
tial is broken: No real number x′ exists such that the relation V0(x

′−x) = V0(x
′+x)

is ful�lled for every x.

Thus, in the case of the Smoluchowski-Feynman ratchet the equation of motion for
the particle is

m
d2x(t)

dt2
+

dV0(x)

dx
= −η

dx(t)

dt
+ ξ(t) . (3.1)

As we mentioned in Sec. 2.3, the properties of the environment are practically not
in�uenced by the behavior of the system x(t). Especially, the statistical properties
of the �uctuations do not depend on the choice of the potential V0(x), thus Eqs. (2.8)
and (2.10) are valid also in the case V0(x) 6= 0.

In Eq. (3.1) the potential force

f0(x) = −dV0(x)

dx
(3.2)

is zero when averaged over the period L:

〈f0(x)〉L =
1

L

L∫

0

f0(x) dx = − 1

L
[V0(L)− V0(0)] = 0 . (3.3)
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Considering the Feynman ratchet, the equation of motion can be written in the form

m
d2x(t)

dt2
= f0(x)− η

dx(t)

dt
+ ξ(t) + ζ(t) , (3.4)

where one has assumed that instead of the temperature gradient there is a driving
nonthermal and nonequilibrium force ζ(t) of zero mean acting on the system [31].

3.2 Overdamped ratchet

3.2.1 Equation of overdamped motion

The dynamics of �uctuations of microscopic systems can very often be described
within a good approximation with the overdamped dynamics [32, 33]. As an exam-
ple, we consider the kinesin which is one of the biological (molecular) motors [34].
The kinesin moves along microtubules inside the cells [35, 36, 37] and after its head
detaches from the microtubule binding site, it engages in Brownian movement [38].
Microtubules are spatially periodic structures built of tubulin heterodimers which
are arranged in rows called proto�laments which, in turn, are oriented nearly parallel
to the microtubule axis. A heterodimer is about 8 nm long and is composed of two
di�erent globular subunits: α- and β-tubulin. This leads to the re�ection symmetry
breaking of the microtubules. As a consequence, the corresponding potential V0(x)

with period L = 8 nm is asymmetric.

One should note that the velocity ẋ = dx/dt in Eq. (3.4) is the velocity of the
kinesin head during the di�usion phase, which should be distinguished from the
overall velocity of the kinesin moving along microtubules. The radius of the kinesin
head (the ellipsoidal catalytic core head is approximated as a sphere) is R = 2.94 nm,
and the mass of the head is approximately m = 6× 10−20 g. The aqueous medium
of the cell around the kinesin head has a viscosity of approximately γ = 0.01 g/cm s.
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Therefore, η = 5.54× 10−8 g/s and the Langevin relaxation time is

τ = 1.08× 10−12 s , (3.5)

which is so fast that the inertial term in the equation of motion can be neglected
[38]. Hence the second order di�erential equation (3.4) can be approximated by the
�rst-order di�erential equation

η
dx(t)

dt
= f0(x) + ξ(t) + ζ(t) , (3.6)

which describes the overdamped dynamics of Brownian particles. For the above-
mentioned example of kinesin it is a very good approximation to the starting model
(3.4). We also remark that setting formally m = 0 a�ects neither the �uctuation-
dissipation relation (2.10) nor the Einstein relation (2.15).

3.2.2 Overdamped ratchet in equilibrium

Under equilibrium conditions, nonthermal �uctuations are excluded, i.e., ζ(t) = 0,
and Eq. (3.6) reduces to the form

η
dx(t)

dt
= f0(x) + ξ(t) , (3.7)

which is the "minimal" Smoluchowski-Feynman ratchet model.

Due to the random force ξ(t) it is natural to introduce a statistical ensemble of
the stochastic processes in (3.7), related to independent realizations of the random
�uctuations ξ(t) [1]. The corresponding probability density P (x, t) at position x

and time t describes the distribution of the Brownian particles and follows as an
ensemble average of the form

P (x, t) = 〈δ(x− x(t))〉 . (3.8)
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An immediate consequence of this equation is the normalization

∞∫

−∞
dx P (x, t) = 1 . (3.9)

Another straightforward consequence is that P (x, t) ≥ 0 for all x and t.

In order to determine the time-evolution of P (x, t), one can �rst consider in Eq. (3.7)
the special case f0(x) = 0. This corresponds to free di�usion with di�usion constant
D0. Consequently, P (x, t) is governed by the di�usion equation

∂

∂t
P (x, t) = D0

∂2

∂x2
P (x, t) . (3.10)

Next one can address the deterministic dynamics, obtained by setting ξ(t) = 0 in
Eq. (3.7). In complete analogy to classical Hamiltonian mechanics, one then �nds
that the probability density P (x, t) evolves according to a Liouville equation of the
form [2]

∂

∂t
P (x, t) = − ∂

∂x

[
f0(x)

η
P (x, t)

]
. (3.11)

Since both Eq. (3.10) and (3.11) are linear in P (x, t), the general case follows by
combination of both contributions, i.e., one obtains the Kramers equation [1, 25],

∂

∂t
P (x, t) = − ∂

∂x

[
f0(x)

η
P (x, t)

]
+ D0

∂2

∂x2
P (x, t) . (3.12)

The �rst term on the right hand side is the drift term and the second one the
di�usion term.

One can also write Eq. (3.12) in the form of a continuity equation for the probability
density P (x, t):

∂

∂t
P (x, t) = − ∂

∂x
J(x, t) , (3.13)
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where J(x, t) is the probability current,

J(x, t) =
f0(x)

η
P (x, t)−D0

∂

∂x
P (x, t) . (3.14)

Equations (3.13) and (3.14) are valid also for the reduced probability density and
current [2] determined as

P̂ (x, t) =
∞∑

n=−∞
P (x + nL, t) , (3.15)

Ĵ(x, t) =
∞∑

n=−∞
J(x + nL, t) . (3.16)

We henceforth devote ourselves to these quantities, taking into account that

P̂ (x + L, t) = P̂ (x, t) , (3.17)

L∫

0

dx P̂ (x, t) = 1 . (3.18)

In the stationary state, the density P̂st(x) = limt→∞ P̂ (x, t) and the probability
current Ĵst = limt→∞ Ĵ(x, t) = const, whereby

Ĵst =
f0(x)

η
P̂st(x)−D0

d

dx
P̂st(x) . (3.19)

The solution of the Kramers equation for P̂st(x) is

P̂st(x) = N−1e−V (x)/kBT , (3.20)

N =

L∫

0

dx e−V (x)/kBT . (3.21)

From Eq. (3.7) one obtains, taking (2.8) into account, that

〈ẋ〉 =
〈f0(x)〉

η
=

L∫

0

dx
f0(x)

η
P̂st(x) . (3.22)
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On the basis of Eqs. (3.19) and (3.17), we thus get

〈ẋ〉 = LĴst . (3.23)

Whereas for the periodic potential V0(x), under consideration, V0(x+L)−V0(x) = 0,
the average slope of the potential is zero, and the transition rates from a state of
local minimum of the potential to the left valley (Ĵ−) and to the right valley (Ĵ+)
are the same. The stationary mean velocity depends on the di�erence between the
transition rates in the positive and negative directions: Ĵ = Ĵ+ − Ĵ−. Hence, Ĵ = 0

and there is no macroscopic transport; This is nothing but detailed balance. In turn,
if 〈ẋ〉 6= 0 then the particles perform macroscopic directed motion and stochastic
transport occurs in the system.

3.3 Tilted Smoluchowski-Feynman ratchet

A chance to violate the principle of detailed balance is to change the constant di�u-
sion coe�cient D0 into a di�usion function D0(x). Di�usive motion with a di�usion
coe�cient which depends on the state of the system plays an important role in a
number of physical systems, e.g., non-linear self-excited oscillators in the presence
of noise [39], diodes [25, 40, 41], current instabilities in bulk semiconductors [42] and
in ballast resistors [43]; as well as in biological systems [44].

Transport as a consequence of state-dependent di�usion was studied by Büttiker [45]
and van Kampen [46]. In Ref. [45] it was demonstrated that the state-dependent
di�usion can induce transport in a system which is at equilibrium in the presence
of thermal noise only. It was also shown that for small modulation amplitudes the
motion of a particle in a periodic potential V0(x), subject to state-dependent noise,
is equivalent to that of a particle subject to thermal noise in the potential

V (x) = V0(x)− Fx , (3.24)
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which consists of a driving force potential −Fx superimposed on the periodic po-
tential V0(x). The equation of motion can be written in this case as

η
dx(t)

dt
= f0(x) + F + ξ(t) . (3.25)

The last equation is a generalization of the overdamped Smoluchowski-Feynman
ratchet model (3.7) in the presence of an additional homogeneous, static force F . In
the original ratchet and pawl gadget (see Fig. 1) such a force F models the e�ect of a
constant external torque due to a load. This scenario represents a kind of "hydrogen
atom" among ratchet models, in that it is one of the few exactly solvable cases.

The solution for the Kramers equation (3.12), where f0 is replaced with f0 + F , is

P̂st(x) =
1

N
e−V (x)/kBT

x+L∫

x

dy eV (y)/kBT , (3.26)

N =

L∫

0

dx e−V (x)/kBT

x+L∫

x

dy eV (y)/kBT . (3.27)

3.4 Transport in periodic potentials

In Secs. 3.1 and 3.2 the periodic potential V0(x) was assumed to be asymmetrical.
However, in the following we do not make such a restriction.

The total potential V (x) = V0(x)− Fx is a corrugated plane with an average slope
determined by the external force F , called also tilt (see Fig. 2). The Langevin
equation (3.25) describes Brownian motion along such a corrugated plane. There
exists a value of the tilting force F = Fc such that for values F > Fc the e�ective
potential V (x) has no minima, whereas for F < Fc minima do occur.

In the systems under the in�uence of the deterministic and stochastic forces, directed
transport and di�usion occur. The quantity of foremost interest in the context of

20



F=1.5

F=1

F=0.5

F=00

–4

–8

–12

–16

V(x)

2 4 6 8 10 12x

Figure 2: The total potential V (x) = V0(x) − Fx as a function of x for di�erent
values of tilting force F ; V0(x) = sin(x).

transport in periodic systems is the average particle current in the long-time limit,
de�ned as

〈ẋ〉 = lim
t→∞

〈x(t)〉
t

, (3.28)

while the di�usion coe�cient, characterizing the spreading, is

D = lim
t→∞

〈x2(t)〉 − 〈x(t)〉2
2t

. (3.29)

The asymptotic Brownian motion in a tilted periodic potential (3.24) is qualitatively
well known. Brownian particles in a tilted washboard subject to friction and noise
will di�use and drift in the direction of the bias.

For a �nite value of the tilting force and in the absence of the noise ξ(t) the particle
performs, in the overdamped regime, a creeping motion. If minima of the total
potential V (x) exist, the particles �nally reach them. This solution is called locked
solution. If minima do not exist, the particles move down the corrugated plane;
This solution is termed running solution. In the presence of noise, the particles do
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not stay permanently in the locked state but will sometimes be kicked out of their
wells, moving to the lower neighboring well and so forth. The particles thus perform
a hopping process from one well to the next lower one [1].

In the systems where inertial e�ects become important, in the absence of the noise
a locked solution may occur if minima exist. There may, however, also be a running
solution, even if the minima of the potential are present. Because of their momentum
the particles may overcome the next hill if the friction constant is small enough. In
the presence of the noise, the particles may be kicked out of their well, i.e., out of
their locked state. If the damping is small enough, they do not lose their energy
very rapidly and therefore they may no longer be trapped in the neighboring lower
well, as they are for large friction. The particles may thus get in the running state
and may stay in this state for some time. Due to the Langevin forces, the energy of
the particle �uctuates; The energy of the particles may thus decrease and they may
again be trapped in one of the wells, now again being in the locked state [1]. Low
damping di�usion accounts for most inertial e�ects that play a crucial role in real
experiments, e.g. dislocation losses in metals [47], I − V characteristics of shunted
Josephson junctions [48, 49], dissipation in certain hysteretic systems [50].

Despite the knowledge of the qualitative behavior of Brownian motion in tilted pe-
riodic potential, the determination of the e�ective di�usion coe�cient of the system
for arbitrary temperature, bias and periodic potential remained even in the over-
damped limit a challenging task for decades, and can be performed in the general
damped case only by simulations or by a numerical solution of the Fokker-Planck
equation.

The analytical solution for the current (3.28) in tilted periodic potentials goes back
to Stratonovich [51] and has subsequently been rederived many times [1, 15, 14].

Stratonovich gave also an approximate expression for the e�ective di�usion coe�-
cient. This approach holds true for a weak tilting of the potential and small noise
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intensity. In this case the particle rarely jumps from one potential minimum into
the next one to the right or left, whereby one of the directions is preferred due to
the bias. Stratonovich assumed that in this regime the process can be modelled by a
biased random walk. Thus, the di�usion coe�cient is determined by the transition
rate from the minimum to the left and right potential barriers (maxima of the po-
tential). This approach neglects the relaxation time from barrier to minimum that
becomes relevant for stronger tilt. It fails completely for a so-called supercritical tilt
for which minima and maxima of the potential vanish since in this case the process
cannot be described by a Poissonian hopping process anymore.

A closed expression for the di�usion coe�cient (3.29) in the absence of a tilt F was
derived by Lifson and Jackson in Ref. [52] (see also Ref. [53]). They showed that the
e�ect of any one-dimensional non-tilted periodic �eld is to produce a macroscopic
di�usion constant which is always smaller than the free di�usion constant:

D =
D0

L∫
0

dx
L

eV0(x)/kBT
L∫
0

dy
L

e−V0(y)/kBT

, (3.30)

where the denominator is always larger than unity, by the Cauchy-Schwartz inequal-
ity [54].

During the 1970's, an exact expression for the di�usion coe�cient was calculated for
the special limit of vanishing bias [53, 55] (see also Ref. [1]). Another approximation
for a �nite bias was used later on by Costantini and Marchesoni in Ref. [13]. They
obtained in the overdamped regime an analytic expression which relates the particle
di�usion constant to its mobility, and allows one to have an inkling of the enhance-
ment of the di�usion due to the tilting. An unusually large di�usion coe�cient was
revealed as well in the underdamped regime through numerical simulations.

In 2001, a closed analytical expression for the di�usion coe�cient was derived by
Lindner et al. by mapping the continuous dynamics onto a discrete cumulative
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process [14], and a nonmonotonic behavior of the di�usion coe�cient and coherence
level of the transport of Brownian particles as a function of temperature was found.
An independent work by Reimann et al. [15] led to a similar result, enabling one to
obtain a giant acceleration of free di�usion by using tilted periodic potentials in the
overdamped regime.

The starting point [15] are the following exact expressions for the particle current
and for the di�usion coe�cient [15, 56, 57, 58]:

〈ẋ〉 =
L

〈t(x0 → x0 + L)〉 , (3.31)

D =
L2

2

〈t2(x0 → x0 + L)〉 − 〈t(x0 → x0 + L)〉2
〈t(x0 → x0 + L)〉3 , (3.32)

where x0 is an arbitrary reference point and 〈tn(a → b)〉 is the nth moment of the
�rst passage time from a to b > a for a stochastic trajectory obeying (3.25), with
the assumption that F > 0 in order to keep those moments �nite. The moments of
the �rst passage time, for the dynamics (3.25), are given by the analytical recursion
relation [59]

〈tn(a → b)〉 =
n

D0

b∫

a

dx eV (x)/kBT

x∫

−∞
dy 〈tn−1(y → b)〉 e−V (y)/kBT , (3.33)

for n = 1, 2, . . . and with 〈t0(y → b)〉 = 1. By introducing (3.33) into (3.31) and
(3.32), one �nds the result of Ref. [15], which we will reveal in the next section.

As a further generalization, the approach developed by Reimann et al. [15] has
been applied in Ref. [16] to show that a non-homogeneous dissipation can induce a
minimum in the di�usion coe�cient vs the applied external force, an enhancement
and suppression of the di�usion as a function of temperature, as well as an increase
of the order level of the Brownian motion in a tilted symmetric periodic potential
(cf. Ref. [60]). Similar anomalies were observed in systems with spatially modulated
Gaussian white noise [17] (see also Ref. [14]).
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4 Brownian motion in tilted piecewise linear
periodic potentials: Results

In this Section the results of the thesis are presented. We investigate the overdamped
motion of Brownian particles modelled with equation (3.25) in tilted piecewise linear
potentials with one and two minima per period. We derive the explicit algebraic
expressions for the di�usion coe�cient, particle current, and coherence level of Brow-
nian transport. Their dependencies on temperature, tilting force, and the shape of
the potentials will be analyzed.

4.1 Quantities of interest

Investigating the stochastic transport, the basic quantities of interest are the average
particle current in the long-time limit (3.28) and the e�ective di�usion coe�cient on
the same time-scale (3.29). The e�ective di�usion coe�cient (3.29) for the model
(3.25) with F ≥ 0 can be written as [15]

D =
D0

N3

x0+L∫

x0

dx

L
I+(x) I2

−(x) , (4.1)

where x0 is an arbitrary point and

N =

x0+L∫

x0

dx

L
I−(x) , (4.2)

I±(x) =
1

D0

e−FL(1±1)/2kBT e±V (x)/kBT

x+L∫

x

dy e∓V (y)/kBT . (4.3)

The Stratonovich formula [51] for the current can be expressed in the form

〈ẋ〉 = N−1 (1− e−LF/kBT ) . (4.4)
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The third quantity of interest is the Péclet number, which characterizes the coherence
level of Brownian motion [14, 61],

Pe =
L〈ẋ〉
D

. (4.5)

By coherent motion one means large particle current with minimal di�usion; hence
the greater is the Péclet number, the greater the coherence of Brownian transport.

Sometimes it is more convenient to use, instead of the Péclet number, the random-
ness parameter [62, 63], which is actually measured in experiments, de�ned as the
long time limit of the ratio between the variance of the particle's position and the
product of its average position and periodicity,

r = lim
t→∞

〈x2(t)〉 − 〈x(t)〉2
〈x(t)〉L . (4.6)

The de�nition of the di�usion coe�cient and current imply

r =
2 D

〈ẋ〉L . (4.7)

Thus Pe = 2 r−1, and it is easy to switch between Péclet number and randomness
parameter.

4.2 Choice of the potentials and dimensionless units

The piecewise linear periodic potentials with one minimum per period is character-
ized by the asymmetry parameter k: 0 < k < L. The potential is symmetric if
k = L/2 (see Fig. 3). The critical tilting force is given by Fc = A/(L− k) , where A

is the amplitude of the potential. At the critical tilting F = Fc, the force acting on
the particle in the region [k, L] is zero.

For the double-periodic potentials we assume that 0 < k1 < k2 < k < L, where k1

corresponds to the additional minimum and k2 to the additional maximum. The
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Figure 3: The general shapes of the e�ective potentials for tilting forces F = 0

(above) and for the critical tilt F = 1 (below). Solid line: piecewise linear double-
periodic potential for k1 = 0.35, k2 = 0.5, k = 0.6, A1 = 0.2, A2 = 0.7. Dashed line:
simple sawtooth potential for asymmetry parameter k = 0.6.

potentials with one and two maxima per period are considered to be comparable
for the same values of the parameter k, and the corresponding right-hand potential
barrier we thus name the primary barrier. In the case of the double-periodic poten-
tials we also assume that 0 ≤ A1 < A2 ≤ A and ∆A = A2 − A1 < A, whereas we
are interested in having an additional trap with a smaller potential barrier than the
primary barrier (see Fig. 3). The tilting force corresponding to the disappearance
of the additional minima is: Fce = ∆A/∆k , where ∆k = k2 − k1.

For the sake of serenity we recast the problem into a dimensionless form 1. With
1Note that all the quantities plotted in the �gures are dimensionless.
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no loss of generality we take the period L = 1 and replace the relevant quantities
with the corresponding dimensionless ones: T̃ = kBTA−1 , F̃ = F/Fc, D̃ = DηA−1,

D̃0 = D0ηA−1 so that D̃0 = T̃ and 〈˜̇x〉 = ηA−1 〈ẋ〉. We also choose A = 1 and for
brevity, in what follows we will omit the tilde signs above the symbols. Hence,

Fce =
∆A (1− k)

∆k
, Fc = 1 . (4.8)

Considering the case of double-periodic potential, we refer to the critical tilt, as the
value max(Fce, Fc).

The dimensionless potentials, depicted in Fig. 3, are de�ned as follows (n = 1, 2, . . .

is the number of the period):
(I) Simple sawtooth potential:

Van(x) = a0n − ax , (n− 1) ≤ x ≤ k + (n− 1) ,

Vbn(x) = −b0n + bx , k + (n− 1) ≤ x ≤ n , (4.9)

where

a0n = 1 +
(n− 1)

k
, a =

1− (1− F )k

(1− k)k
,

b0n = −1 +
n

1− k
, b =

1− F

1− k
. (4.10)

(II) Double-periodic potential:

Van(x) = a0n − ax , (n− 1) ≤ x ≤ k1 + (n− 1) ,

Vbn(x) = −b0n + bx , k1 + (n− 1) ≤ x ≤ k2 + (n− 1) ,

Vcn(x) = c0n − cx , k2 + (n− 1) ≤ x ≤ k + (n− 1) ,

Vdn(x) = −d0n + dx , k + (n− 1) ≤ x ≤ n , (4.11)

28



where

a0n = A1 +
1− A1

k1

[k1 + (n− 1)] , a =
1− A1

k1

+
F

1− k
,

b0n = −A1 +
∆A

∆k
[k1 + (n− 1)] , b =

∆A

∆k
− F

1− k
,

c0n =
A2

k − k2

[k + (n− 1)] , c =
A2

k − k2

+
F

1− k
,

d0n =
1

1− k
[k + (n− 1)] , d =

1− F

1− k
. (4.12)
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4.3 Di�usion and coherence in tilted sawtooth potentials
with one minimum per period

4.3.1 Analytic computations

In the dimensionless units the expressions for the di�usion coe�cient, current, and
Péclet factor have the following form:

D = TY Z−3 , (4.13)

〈ẋ〉 = ϕ0Z
−1 , (4.14)

Pe = ϕ0Z
2(TY )−1 , (4.15)

where

ϕ0 = 1− exp

(
− F

T (1− k)

)
, (4.16)

Z =

k∫

0

dx H−a(x) +

1∫

k

dxH−b(x) , (4.17)

Y =

k∫

0

dxH+a(x) H2
−a(x) +

1∫

k

dxH+b(x) H2
−b(x) . (4.18)

Equations (4.17) and (4.18) contain the functions H±a and H±b where the subscripts
a and b associate, correspondingly, with the limits of integration from 0 to k and
from k to 1. Having de�ned for brevity the generalized potential v(x) = V (x)/T ,
we have

H±a(x) =
e
−F (1±1)
2T (1−k)

D0

e±va1(x)
{ k∫

x

dy e∓va1(y)+

1∫

k

dy e∓vb1(y)+

x+1∫

1

dy e∓va2(y)
}
,

H±b(x) =
e
−F (1±1)
2T (1−k)

D0

e±vb1(x)
{ 1∫

x

dy e∓vb1(y)+

k+1∫

1

dy e∓va2(y)+

x+1∫

k+1

dy e∓vb2(y)
}

. (4.19)
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Performing integration in Eqs. (4.19), we obtain

H±a(x) =
ϕ0

a
+ g ϕa exp

(
a [∓2x− k(1∓ 1)]

2T

)
,

H±b(x) = −ϕ0

b
+ g ϕb exp

(
b [±2(x− 1) + (1− k)(1± 1)]

2T

)
, (4.20)

with the notations

g =
1

a
+

1

b
, (4.21)

ϕa = exp
(

1− F

T

)
− 1 ,

ϕb = 1− exp

(
−1− (1− F )k

T (1− k)

)
. (4.22)

Substituting the functions H±a,b(x) from Eqs. (4.20) into (4.17) and (4.18), we have
after integration

Z =

(
k

a
− 1− k

b

)
ϕ0 + Tg2ϕa ϕb , (4.23)

Y =

(
k

a3
− 1− k

b3

)
ϕ3

0 + 3T
(

1

a3
+

1

b3

)
g ϕ2

0 ϕa ϕb

+
1

2
Tg2ϕ0

[
1

a2
ϕ2

a ϕ̃b − 1

b2
ϕ2

b ϕ̃a

]

+2g2ϕ0

[
k

a
ϕ2

a(1− ϕb)− 1− k

b
ϕ2

b(1 + ϕa)

]

+Tg3
[
1

a
ϕ3

a ϕb(1− ϕb) +
1

b
ϕ3

b ϕa(1 + ϕa)
]
,

(4.24)

where

ϕ̃a = exp

(
2(1− F )

T

)
− 1 ,

ϕ̃b = 1− exp

(
−2[1− (1− F )k]

T (1− k)

)
. (4.25)
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By that we have derived the exact algebraic expressions for the current 〈ẋ〉, the
di�usion coe�cient D, and the Péclet factor Pe.

4.3.2 Asymptotic limits and particular cases

In this Section we will examine the asymptotic limits and essential particular cases
on the basis of the analytical formulas derived.

(I) In the absence of tilt (F = 0), Eqs. (4.16) and (4.22) reduce to

ϕ0 = 0 , ϕa = e1/T − 1 , ϕb = 1− e−1/T , (4.26)

and from Eqs. (4.13), (4.23), and (4.24) one obtains

D =
1

2T [cosh(1/T )− 1]
. (4.27)

This expression is as a special case of the general formula of the di�usion coe�cient
for arbitrary unbiased periodic potential [52] (see Eq. (3.30)). It is to be noticed
that for F = 0 the coe�cient of di�usion becomes independent of the asymmetry
parameter k.

(II) In the high temperature limit, one can take into account only the �rst order
terms in the expansions of the exponents in Eqs. (4.16) and (4.22). Then

ϕ0 ≈ F

T (1− k)
, ϕa ≈ 1− F

T
, ϕb ≈ 1− (1− F )k

T (1− k)
, (4.28)

and

H±a,b = T−1 , Z = T−1 , Y = T−3. (4.29)

The di�usion coe�cient, current, and Péclet factor now become

D = T , (4.30)
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〈ẋ〉 =
F

1− k
, (4.31)

Pe =
F

T (1− k)
. (4.32)

(III) Under the conditions F À 1 and F/T À 1, it is valid that

ϕ0 ≈ −ϕa ≈ ϕb ≈ 1 , a ≈ −b ≈ F

1− k
, (4.33)

and

H±a,b =
1− k

F
, Z =

1− k

F
, Y =

(
1− k

F

)3

. (4.34)

As a result, the expressions for D, 〈ẋ〉, and Pe coincide with Eqs. (4.31)-(4.32). Thus,
at high temperatures and at large values of tilting force, the transport properties of
Brownian particles are the same.

(IV) If F < 1 and (1− F )/T À 1, we have the following asymptotic limits:

ϕb ≈ ϕ̃b ≈ 1 , ϕa ≈ e(1−F )/T À 1 , ϕ̃a ≈ e2(1−F )/T = ϕ2
a . (4.35)

Then Eqs. (4.17) and (4.18) with (4.20) yield

Z = Tg2e(1−F )/T , (4.36)

Y =
T

2
g3 e2(1−F )/T [(a−1 − b−1) ϕ0 + 2(a−1e−F/(1−k)T + b−1)] , (4.37)

and

D =
2− ϕ0

2Tg2 e(1−F )/T
, (4.38)

〈ẋ〉 =
ϕ0

Tg2 e(1−F )/T
, (4.39)
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Pe =
2ϕ0

2− ϕ0

= 2 tanh
F

2T (1− k)
, (4.40)

(cf.also Ref. [14]). If, additionally, the condition F/T (1 − k) À 1 is ful�lled, it is
valid that e−F/T (1−k) ≈ 0 and ϕ0 ≈ 1. Consequently, in the present case we have
2D = 〈ẋ〉 and Pe = 2. This indicates that an extremely exact stabilization of the
level of coherence of Brownian transport occurs in this region of parameters.

(V) At the critical tilt (F = 1), it is valid that

H±a(x) =
ϕ0

a
+

1− k

T
exp

(
a [∓2x− k(1∓ 1)]

2T

)
,

H±b(x) =
ϕ0

a
+

1− k

T
exp

(
−ak

T

)
+

ϕ0 [±2(x− 1) + (1− k)(1± 1)]

2T
, (4.41)

whereas in the low-temperature limit Eqs. (4.13)-(4.18) and (4.41) yield

D =
2T

3(1− k)2
, (4.42)

〈ẋ〉 =
2T

(1− k)2
, (4.43)

Pe = 3 . (4.44)

We observe that, for F = 1 the Péclet factor is constant and depends neither on the
temperature nor on the asymmetry parameter.

4.3.3 Non-monotonic behavior of di�usion

We studied the behavior of the di�usion coe�cient, current and Péclet factor for
certain values and limits of temperature and tilting force. We now discuss the
general dependencies of the transport characteristics on the system parameters.

The expression of the di�usion coe�cient as a function of tilting force F and tem-
perature T is given by Eqs. (4.13), (4.23), and (4.24). The di�usion coe�cient as a
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function of F reveals a qualitatively similar behavior to that found in Refs. [15], ex-
hibiting a resonant-like maximum if the temperature is su�ciently low. This e�ect
is strongly in�uenced by the shape of the periodic potential, as illustrated in Fig. 4.
For positive bias (F > 0), the increase of the value of k favors the ampli�cation of
di�usion compared to free thermal di�usion.

The behavior of the di�usion coe�cient as a function of temperature is similar to
that observed in Ref. [14] (see also Ref. [16, 17]): There exists a maximum of D(T ),
which is followed by a minimum (see Fig. 5). The existence of the suppression in
D(T ) is attributed to the competition between two time scales: Noise driven escape
over potential barrier from the minima along the bias, and the second time scale
being the relaxation into the next potential well from the barrier top [14]. The
second time scale is weakly dependent on noise intensity and has a small variance
as opposed to the �rst one. When the second time scale dominates over the �rst
one, it is expected to result in suppression of di�usion coe�cient as a function of
temperature (see Ref. [14]). The in�uence of the potential shape on the di�usion
coe�cient D(T ) is analogous to the one on D(F ): The peak of D(T ) becomes rapidly
narrower and higher if k approaches unity.

The analytical properties of the di�usion coe�cient as a function of tilting force
and temperature at the �xed value of the asymmetry coe�cient are summarized by
the contour-plot of the surface D(F, T ) in Fig. 6. The surface D(F, T ) exhibits two
stationary points, a maximum and a saddle point, whose coordinates are given in
the �gure caption. The plot re�ects the characteristic features of the non-monotonic
behavior of di�usion:

(I) One can observe in Fig. 6 that the function D(T )|F=const has a maximum and
a minimum if FA < F < FB. However, there exists a limiting value kE ≈ 0.8285,
inferable from Fig. 5. For k < kE the maximum and the saddle point of the surface
D(T, F ) disappear, while D(T )|F=const is a monotonic function of temperature, the
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Figure 6: Contour-plot of di�usion coe�cient D = D(F, T ) for k = 0.95. To the
maximum and saddle points of D correspond, respectively, the values FM ≈ 0.9144,

TM ≈ 0.0364, DM ≈ 1.3086 and FS ≈ 0.388, TS ≈ 0.363, DS ≈ 0.588.
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Figure 7: The phase-diagram in the (k, F )-plane representing the regions corre-
sponding to the di�erent analytical properties of the di�usion coe�cient as a func-
tion of temperature: the dependence D(T ) is nonmonotonic in the region I, whereas
it is monotonic in the region II.
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latter property being independent of bias. There also exists a limiting tilting force
FC ≈ 1.1292. If F > FC , the dependence D(T )|F=const is monotonic for arbitrary
k. The situation is summarized in Fig. 7, where one sees that the (k, F )-space is
divided into two domains where the analytical properties of the di�usion coe�cient
as a function of temperature are qualitatively di�erent.

(II) Contrary to the dependence D(T ) |F=const, the function D(F ) |T=const has a
maximum for all values of asymmetry parameter.

As one can see in Figs. 5 and 6 the suppression of di�usion as a function of tem-
perature is the larger the closer are the asymmetry coe�cient k and tilting force
F to unity. The e�ect is maximal, if both of these conditions are ful�lled. The
latter fact supports the notion that the counterintuitive phenomenon that increas-
ing noises decreases di�usion relies on the large ratio of relaxation to escape time.
However, we remark that the nonmonotonic behavior of D(T ) persists in the case
of piecewise linear potential also for tilts slightly above the critical value when there
is no potential minima.

One can also observe in Fig. 6 that for the potentials with k > kE the maximal
value of D(F ) as a function of temperature passes through a minimum, i.e., the
ampli�cation of di�usion by bias at lower noise intensity can be larger than at
higher temperature.

4.3.4 Probabilistic treatment

We now discuss the ampli�cation of di�usion by bias in terms of probability distri-
bution (3.26). Figure 8 represents (in terms of the dimensionless parameters) the
probability distributions characteristic of various di�usion levels depending on the
tilting force. Figure 8-a illustrates the situation, where particles are mainly localized
around the minima of the potential and transport is strongly suppressed. Di�usion

38



Figure 8: Probability density P (x) for the temperature T = 0.01 and asymmetry
parameter k = 0.5: (a) F = 0.8; (b) F = 1.1; (c) F = 3.
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is essentially weaker in comparison with free di�usion: D/T ∼ 10−6. The prob-
ability distribution shown in Fig. 8-b corresponds to the case where the di�usion
is approximately maximal (D/T = 3.5) for the chosen values of temperature and
asymmetry coe�cient. In this case the regions with a large probability are sepa-
rated by the domains where the probability is much smaller, however, large enough
to allow the entrance of a su�cient number of particles into these domains. As a
result, a channel of hopping-like transport is formed, leading to the enhancement of
di�usion with respect to free di�usion. The further increase of the tilting force F

makes the probability distribution still more homogeneous, as seen in Fig. 8-c, and
the di�usion approaches the free di�usion limit (D/T = 1.3 for the values of the
parameters used in Fig. 8-c).

Consequently, the ampli�ed di�usion in the tilted periodic potential is characterized
by the speci�c inhomogeneous probability distribution with spatially alternating
domains of high and low probability. The occurrence of a maximum in the of
dependence D(T ) can be understood in a similar way.

4.3.5 Non-monotonic behavior of coherence: Optimization of transport

In Fig. 9 the curves of the Péclet factor vs temperature for various values of k and
F are depicted. The function Pe(T ) passes through a maximum (curves 1-5) for
F < Fc, which is also present slightly above the critical tilt (curve 6). With a
further increase of F , the maximum of Pe(T ) disappears.

As seen in Fig. 9, the optimal level of Brownian transport, determined by the max-
imal value of the Péclet number, is sensitive to the shape of periodic potential: at
F < Fc the optimal level of transport rises with an increase in k. At the same time,
the larger values of k make a minimum of D(T ), which follows a maximum of D(T )

at a higher value of temperature, deeper (the e�ect can be anticipated in Fig. 5).
Figure 10 shows that the enhancement of the coherence of Brownian motion in a
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Figure 10: Di�usion coe�cient, current, and Péclet factor vs temperature for k =

0.95, F = 0.95: (1) 30×D; (2) 2× 〈ẋ〉; (3) Pe.
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certain region of temperature is associated with the suppression of di�usion by the
same factor (collate also Figs. 9 and 5).

4.3.6 Correlation between the enhancement of di�usion and stabiliza-
tion of coherence

With regard to the simultaneous enhancement of di�usion and current, caused by
the force F , with respect to an untilted system, the relation between D and 〈ẋ〉 is
of interest. One can expect that such a relationship re�ects some intrinsic features
of the mutual in�uence between di�usion and current driven by the tilt merely at
lower temperatures, when the initial suppression of both components of Brownian
transport by periodic potential is stronger.

The comparative plot of D and Pe vs F is presented in Figs. 11 and 12. One can
see that the function Pe(F ) has a point of in�ection which turns into a wide plateau
at lower temperatures. For values of F , from zero up to the end of the plateau, the
behavior of Pe(F ) is described with great accuracy by Eq. (4.40). As the temperature
grows, the plateau gradually reduces until disappears and the Péclet factor becomes
monotonically increasing.

We emphasize that the domain where Pe = 2 coincides with the domain where
the increase of di�usion coe�cient as a consequence of the tilting is most rapid.
Consequently, in the region of parameters, where the substantial acceleration of
di�usion (and also current) occurs, the directed transport and di�usion are very
exactly synchronized. Note that the stabilization of the coherence level at the value
of the Péclet factor Pe = 2 is a characteristic feature of Poissonian process [1] such
as the Poisson enzymes in kinesin kinetics [62, 64, 65]. The location of the end of
this region at larger values of F is quite insensitive to the shape of the periodic
potential, as seen in Fig. 12, and is located approximately at critical tilt Fc.
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Figure 11: Comparison between the Péclet factor Pe and di�usion coe�cient D as
a function of tilting force F for various temperatures at �xed k = 0.5. Solid lines:
5 × Pe, dashed lines: log10[D(F )/D(0)]. Curves 1: T = 0.01, curves 2: T = 0.03,
curves 3: T = 0.09.
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Figure 12: Comparison between the Péclet factor Pe and di�usion coe�cient D as
a function of tilting force F for k = 0.1 (dashed lines) and k = 0.9 (solid lines) at
�xed T = 0.01. Curves 1: log10[D(F )/D(0)], curves 2: 5× Pe.

43



It is remarkable that, as a result of the interplay of periodic potential, bias and
white noise, there exists an exact correlation between the acceleration of di�usion,
induced by the tilting force, and the stabilization of the coherence level of Brown-
ian motion. It seems that this phenomenon is quite universal and manifests itself
for an arbitrary periodic potential in situations where initially strongly suppressed
transport is enhanced by bias, which generates signi�cant ampli�cation of di�usion
in comparison with free di�usion.

4.3.7 Conclusion

Acceleration of di�usion turns out to be very sensitive to the shape of the piece-
wise linear potential. It is shown that large values of the asymmetry parameter k

favor the ampli�cation of di�usion by means of biased potential and temperature in
comparison with free thermal di�usion. This can be understood as a result of the
formation of probability distribution with spatially alternating regions of speci�cally
balanced high and low probability. The necessary and su�cient conditions for the
non-monotonic behavior of the di�usion coe�cient as a function of temperature are
established. We also have shown a possibility to attain a counterintuitive situation,
where at lower noise intensities the maximal of the di�usion coe�cient D(F ) can
be larger than at higher noise intensities.

We have shown that the shape of the potential has a great in�uence also on the
coherence level in a certain region of temperature. However, at low temperatures
and for the subcritical tilt, the coherence of Brownian transport is demonstrated to
have the value Pe = 2 practically independent of the potential shape. The domain,
where the Péclet factor exhibits the plateau, coincides with the domain where the
enhancement of di�usion coe�cient is maximal. Consequently, in the region of pa-
rameters where substantial acceleration of di�usion occurs, the current and di�usion
are exactly synchronized.
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4.4 Di�usion and coherence in tilted piecewise linear
double-periodic potentials

4.4.1 Analytic computations

The analytical results for the di�usion coe�cient, current and Péclet factor are
obtained in a way similar to the calculations for the simple sawtooth potential. In
the case of double-periodic potential, in Eqs. (4.13)-(4.15) the quantities Z and Y

now have the form

Z =

k1∫

0

dx H−a(x) +

k2∫

k1

dxH−b(x) +

k∫

k2

dx H−c(x) +

1∫

k

dxH−d(x) , (4.45)

Y =

k1∫

0

dxH+a(x) H2
−a(x) +

k2∫

k1

dxH+b(x) H2
−b(x)

+

k∫

k2

dxH+c(x) H2
−c(x) +

1∫

k

dxH+d(x) H2
−d(x) . (4.46)

Here

H±a(x) =
e
−F (1±1)
2T (1−k)

D0

e±va1(x)
{ k1∫

x

dy e∓va1(y) +

k2∫

k1

dy e∓vb1(y)

+

k∫

k2

dy e∓vc1(y) +

1∫

k

dy e∓vd1(y) +

x+1∫

1

dy e∓va2(y)
}

,

H±b(x) =
e
−F (1±1)
2T (1−k)

D0

e±vb1(x)
{ k2∫

x

dy e∓vb1(y) +

k∫

k2

dy e∓vc1(y)

+

1∫

k

dy e∓vd1(y) +

k1+1∫

1

dy e∓va2(y) +

x+1∫

k1+1

dy e∓vb2(y)
}

,

H±c(x) =
e
−F (1±1)
2T (1−k)

D0

e±vc1(x)
{ k∫

x

dy e∓vc1(y) +

1∫

k

dy e∓vd1(y)
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+

k1+1∫

1

dy e∓va2(y) +

k2+1∫

k1+1

dy e∓vb2(y) +

x+1∫

k2+1

dy e∓vc2(y)
}

,

H±d(x) =
e
−F (1±1)
2T (1−k)

D0

e±vd1(x)
{ 1∫

x

dy e∓vd1(y) +

k1+1∫

1

dy e∓va2(y)

+

k2+1∫

k1+1

dy e∓vb2(y) +

k+1∫

k2+1

dy e∓vc2(y) +

x+1∫

k+1

dy e∓vd2(y)
}

. (4.47)

The explicit algebraic expressions for Z and Y are revealed in Appendix A.

4.4.2 Di�usion

We �rst emphasize that the general character of the transport process is, compared
to the corresponding simple sawtooth case, determined by the value of Fce, and
thus for a �xed k by the di�erences ∆A and ∆k. The values of single parameters
k1, k2, A1, A2 are of no importance, while the di�erences ∆A and ∆k are crucial,
even if the values of Fce, determined by them, are the same.

A double-periodic potential gives a possibility to favor or suppress the maximal
value of the di�usion coe�cient D(F ), compared to the case of the simple sawtooth
potential. The situation is illustrated in Fig. 13. In the case Fce < Fc the maximal
value of D(F ) is decreased due to the additional potential minima. The decrease
is, at �xed k and ∆A, the largest if Fce = Fc. For Fce > Fc di�usion starts to
increase. If Fce is larger than the value of the tilting force, which corresponds to the
maximum of D(F ) in the case of the simple sawtooth potential, then the maximal
value of di�usion increases due to the extra trap.

Henceforth our main interest will be focused on the potentials with Fce > Fc, which
provide new phenomena with respect to the case of simple periodic potentials. The
case Fce < Fc does not di�er, if F → Fc, much from the case of the simple sawtooth
potential. However, we remark that in biological systems the potentials, for which
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Figure 13: The enhancement and suppression of the di�usion coe�cient, compared
to the simple sawtooth potential, due to the additional trap. T = 0.01; k = 0.6,
∆A = 0.45. In the decreasing order of the maximal values of D(F ): (1) Fce = 1.5;
(2) simple sawtooth potential; (3) Fce = 0.5; (4) Fce = Fc = 1.

Fce < Fc, often play a role [66].

In Fig. 14 we have plotted the di�usion coe�cient vs tilting force at di�erent values
of temperature, for a potential for which Fce > Fc

2. This �gure highlights a
counterintuitive phenomenon: at lower noise intensities, the maximal value of the
di�usion coe�cient D(F ) can be bigger than at higher noise intensities (compare
curves 2, 3 and 4 with each other, or 1 with 4, or 2 with 5). At low and high values
of temperature the situation is back to usual (compare curves 1 with 2, and 4 with
5). As one can see in Fig. 6 the analogous situation is observable for the simple
sawtooth potential in the case k > kE. However, the additional potential maximum
per period with Fce > Fc allows one to obtain the e�ect also for the potentials with
asymmetry parameter k < kE. The general behavior of the di�usion coe�cient

2If not marked otherwise in the �gure capture, we henceforth calculate all the graphics for the
same values of potential parameters: k1 = 0.4, k2 = 0.5, k = 0.6, A1 = 0.55, A2 = 1; Fce = 1.8.

47



(3) T=0.03

(1) T=0.005

(2) T=0.01

(4) T=0.06

(5) T=0.1

0

0.04

0.08

0.12

0.16

0.2

D

0 1 2 3F

Figure 14: Di�usion coe�cient D(F ) for di�erent values of temperature. Potential
parameters: k1 = 0.4, k2 = 0.5, k = 0.6, A1 = 0.55, A2 = 1; Fce = 1.8.

D(T, F ) is the same as one can see in Fig. 6, for the potential with one minimum
per period.

Figure 15 represents the dependence D(F ) in the case of the same potential as used in
Fig. 14, but in a logarithmic scale. In this plot one can distinguish two acceleration
rates for the di�usion. The two rates are the more di�erent, the lower the noise
intensity, and associate with the two Poissonian processes (the latter fact will be
discussed in more detail in next Subsection). Thereby the Poissonian process in the
�rst region coincides with the one which takes place in the corresponding simple
sawtooth potential. The picture for the current is similar.

The presence of two potential barriers may lead one to think that there can be two
maxima of the di�usion coe�cient vs tilting force, but in practice such a situation
is di�cult to attain. Nevertheless, for a certain type of potential shape it is possible
to obtain a situation, for which the di�usion coe�cient D(F ) possesses two maxima
and passes a considerable minimum under the critical tilt 3 (see Fig. 16). The

3Actually there exists also another minimum in the region of small tilting values. Such a
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Figure 15: Di�usion coe�cient log10[D(F )] for di�erent noise intensities. Solid lines:
The potential parameters are the same as in Fig. 3; (1) T = 0.005; (2) T = 0.01;
(3) T = 0.03. Dashed lines: Di�usion coe�cients for the sawtooth potential with
asymmetry parameter k = 0.6 at the same temperatures.
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Figure 16: The existence of two maxima for di�usion coe�cient vs tilting force for
di�erent noise intensities: (1): T = 0.0095; (2): T = 0.01; (3): T = 0.0105. The
potential parameters are: k1 = 0.79, k2 = 0.8, k = 0.81, A1 = 0.888, A2 = 1.
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minimum of D(F ) is the deepest in the temperature region where the ampli�cation
of di�usion is minimal and the maxima of D(F ) are equal. At higher and lower
temperatures one of the maxima starts to dominate and the other one to decrease.
To obtain two maxima in the dependence of D(F ) a small but sharp additional
potential barrier is needed, which is followed by a steep fall. However, the situation
is extremely sensitive to the potential parameters and to the noise intensity.

4.4.3 Coherence of motion

In the case of simple sawtooth potential we showed that at low temperatures and for
subcritical tilt the coherence level stabilizes at the value of Péclet number Pe(F ) = 2.
The situation corresponds to the case when particles are mainly localized around
the potential minima and transport can be described with great accuracy by the
Poissonian hopping process.

Considering the double-periodic potentials, the average distribution of Brownian
particles can change at low temperatures drastically for di�erent values of the sub-
critical tilting force. For the potentials with Fce > 1 there exists a threshold value
of the tilting force,

F0 =
(1−∆A)(1− k)

1− k −∆k
, (4.48)

at which the main potential barrier becomes smaller than the additional barrier. If
F < F0, particles are mainly localized near the primary traps, whereas if F > F0,
near the extra traps. As a result the acceleration of di�usion vs tilting force is
realized through two di�erent Poissonian processes: The �rst one takes place if
F < F0, while the second one if F > F0. As seen in Fig. 17, the two regions of the
suppression of di�usion by a weak external force is obtainable as well for the simple sawtooth
potential with k > 0.5. However, the discussion of this e�ect is not included into the present
thesis.
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Figure 17: Comparison between di�usion coe�cient and Péclet number as a function
of the tilting force. Dashed line: log10[D(F )/D(0)]; Solid line: 5×Pe. Temperature
T = 0.01.

acceleration of di�usion in Fig. 15 correspond to these di�erent Poisson processes.
In the region of crossover between the two regimes of the enhancement of di�usion,
the Péclet number passes through a sharp maximum (a minimum in randomness
parameter) with the characteristic value Pe = 4 (r = 1/2).

The observed enhancement of coherence � decrease of randomness � appears in
the region, where the acceleration regime of di�usion and current changes, whereas
the increase of di�usion slows down compared to the increase of current (see Fig. 18).
In this case the average populations of the primary traps and the extra traps are
close to each other and the possibility of the localization of Brownian particles near
the minima of both types is considerable, leading to the relative suppression of
di�usion. In Fig. 18 one can also see that the tilting force F0 lies approximately in
the beginning of the domain of crossover (F0 = 0.733).

For the existence of the extremum in the coherence of Brownian motion vs tilt, the
condition Fce > 1 must be satis�ed. The tilting force F0 has a physical meaning
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Figure 18: The appearance of the minimum in the randomness parameter r(F ) in the
region of the crossover. The curves represent the randomness parameter, di�usion
coe�cient and current vs tilting force at T = 0.01: (1) 10× (r− 3); (2) ln(2D); (3)
ln(〈ẋ〉); the dashed line corresponds to the coherence level r = 1.

only if the latter inequality is ful�lled, having the value in the range 0 < F0 < 1.
This circumstance follows 4 from Eq. (4.48) together with Eq. (4.8) for Fce which
lead to the relation

(1− F0) =
∆k

1− k −∆k
(Fce − 1) . (4.49)

If Fce < 1, the Péclet number Pe(F ) does not have a maximum 5. On the other
hand, if F0 < 1 is su�ciently close to unity, the peak of coherence merges into the
region where the motion can no longer be described as the Poissonian process and
Pe(F ) increases monotonically. In particular, such a case is actual for the potentials
for which the di�usion coe�cient D(F ) possesses two maxima.

4Note that for Fce > 1 the condition ∆k < 1 − k must be always ful�lled as one can see from
Eq. (4.8).

5The inequality Fce < 1 is valid always if ∆k > 1− k (see Eq. (4.8)) and then one can see from
Eq. (4.48) that F0 < 0. However, condition Fce < 1 can be satis�ed also for ∆k < 1 − k which
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Figure 19: Randomness parameter r vs tilt F for di�erent noise intensities: (1)
T = 0.01; (2) T = 0.03; (3) T = 0.06.

With the rise of temperature the peak of the coherence disappears. We have illus-
trated the situation in Fig. 19 for the randomness parameter. At higher temperature
the posterior part of the plateau of randomness parameter diminishes and the min-
imum broadens, and �nally the randomness decreases and the coherence increases
monotonically.

For the simple sawtooth potential we demonstrated the possibility to obtain the
existence of a maximum in the Péclet number vs temperature (cf. Ref. [14]), in con-
nection with the minimum in the di�usion coe�cient, for increasing noise intensity.
In Ref. [16] it is pointed out that for a homogeneous system the Péclet number can
show a maximum, although neither the di�usion coe�cient nor the average current
density shows an extremum. The present model allows us to observe for di�erent
tilts both the phenomena as one can see in Fig. 20 (the situation is actually valid also
for the simple sawtooth potential, however, in Fig. 9 it is intricate to understand).
Furthermore, as one can see in Fig. 21, in the region of static external force, where

yield on the basis of Eq. (4.49) F0 > 1.
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Figure 20: Di�usion coe�cient D and ln(Pe) vs temperature for di�erent tilts: (1)
F = 0.7; (2) F = 0.8; (3) F = 1.1; (4) F = 1.75.
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Figure 21: The existence of two maxima in Pe vs T .
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Pe(F ) exhibits a maximum (minimum in the randomness factor), the Péclet number
vs temperature has two maxima, and is extremely sensitive to the noise intensity.

4.4.4 Conclusion

The overdamped Brownian motion in tilted double-periodic piecewise linear poten-
tials, signi�cant in biology and condensed matter physics, has been studied. It
proves that, due to an additional potential barrier, for certain parameter values,
many new e�ects occur in the transport processes of Brownian particles, in partic-
ular if Fce > Fc.

The general dependence of the di�usion coe�cient vs tilting force obeys as a rule
the typical behavior found for simple sawtooth potential. However, in the present
case, the acceleration of di�usion is characterized by two regions, related to the two
potential barriers and corresponding di�erent Poissonian processes. In the domain
of crossover between these two regimes the level of coherence of transport passes
through a sharp maximum. Furthermore, for a certain type of potentials, the e�ec-
tive di�usion coe�cient D(F ) can have two maxima.
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5 Summary

In the present thesis we have carried out a comprehensive investigation of the over-
damped Brownian motion in tilted periodic potentials with one and two minima
per period in the presence of white thermal noise. We have done this by using
piecewise linear potentials, which can be considered as a �rst approximation of the
shape of arbitrary potentials. We have derived the explicit algebraic expressions
for the di�usion coe�cient, particle current, and Péclet number, and analyzed their
dependencies on temperature, tilting force, and the shape of the potentials.

We have demonstrated that piecewise linear potentials provide the e�ects charac-
teristic of the tilted periodic potentials. Furthermore, merely varying the potential
shape allows one to obtain also all the phenomena attained in systems with spatially
periodic temperature and nonhomogenous dissipation. At the same time the trans-
port properties of particles in the potentials with two minima per period has been
shown to exhibit in certain parameter regions also new and qualitatively di�erent
features.

It has been shown that the acceleration of di�usion is very sensitive to the shape of
the potential. Large values of the asymmetry parameter k in the direction of bias
F favor the ampli�cation of di�usion by means of tilted potential and temperature
in comparison with free thermal di�usion. In the case of double-periodic potentials
the acceleration of di�usion is characterized by two regions with di�erent acceler-
ation rates, while for certain values of potential parameters, the e�ective di�usion
coe�cient D(F ) can have two maxima. The necessary and su�cient conditions for
the non-monotonic behavior of the di�usion coe�cient as a function of temperature
have been established in the case of simple sawtooth potential.

We have shown that the potential shape has a great in�uence also on the coherence
level in a certain region of temperature. However, at low temperatures and sub-
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critical tilts the coherence of Brownian transport has been demonstrated to have
the value Pe = 2, practically independent of the potential shape, and characteristic
of Poissonian process. The domain, where the Péclet factor exhibits the plateau,
coincides with the domain where the enhancement of di�usion coe�cient is max-
imal. Consequently, in the region of parameters where substantial acceleration of
di�usion occurs, current and di�usion are exactly synchronized. In the case of
double-periodic potentials the acceleration of di�usion is related to two di�erent
Poissonian processes, while in the region of crossover at low temperature a drastic
rise of the coherence level takes place. For the values of tilting force, characteristic
of the enhancement of the coherence, the Péclet number vs noise intensity possesses
two maxima.

In conclusion, we have demonstrated that transport processes are extremely sensitive
to the value of noise intensity and force. Furthermore, we have shown that also
the shape of the periodic potential has a signi�cant in�uence in determining the
character of stochastic transport.
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Appendix

A Analytical results for double-periodic potential

The analytical results for the di�usion coe�cient, current and Péclet factor are given
by Eqs. (4.13)-(4.15). Performing the integrations in Eqs. (4.47) one obtains after
cumbersome calculations the algebraic expressions for the quantities Z and Y , given
by Eqs. (4.45) and (4.46), in the case of double-periodic potential:

Z = ϕ0

(
k1 gab − k2 gbc + k gcd − 1

d

)
+

T

a
S1(1− λ1)

+
T

b
S2(1− λ2)− T

c
S3(1− λ3) +

T

d
S4(1− λ4) , (A.50)

Y = ϕ3
0

[
k1

(
1

a3
+

1

b3

)
− k2

(
1

b3
+

1

c3

)
+ k

(
1

c3
+

1

d3

)
− 1

d3

]

+Tϕ2
0

[
(1− λ1)

a3
(2S1 + S ′1) +

(1− λ2)

b3
(2S2 + λ−1

2 S ′2)

−(1− λ3)

c3
(2S3 + S ′3) +

(1− λ4)

d3
(2S4 + λ−1

4 S ′4)

]

+T
{

(1− λ1)

a
S2

1 [λ1 S ′1 +
ϕ0

2a
(1 + λ1)] +

1− λ2

b
S2

2 [S ′2 −
ϕ0

2b
(1 + λ2)]

−(1− λ3)

c
S2

3 [λ3S
′
3 +

ϕ0

2c
(1 + λ3)] +

(1− λ4)

d
S2

4 [S ′4 −
ϕ0

2d
(1 + λ4)]

}

+2ϕ0

[
k1

a
λ1 S1 S ′1 −

∆k

b
S2 S ′2 +

k − k1

c
λ3 S3 S ′3 −

1− k

d
S4 S ′4

]
. (A.51)

Here

gab =
1

a
+

1

b
, gbc =

1

b
+

1

c
, gcd =

1

c
+

1

d
, gad =

1

a
+

1

d
; (A.52)

λ1 = exp

[
− Fk1

T (1− k)
− 1− A1

T

]
, λ2 = exp

[
F∆k

T (1− k)
− ∆A

T

]
,
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λ3 = exp

[
F (k − k2)

T (1− k)
+

A2

T

]
, λ4 = exp

(
−1− F

T

)
,

λ5 = exp

[
F (k − k1)

T (1− k)
+

A1

T

]
, λ6 = exp

[
F (1− k1)

T (1− k)
− 1− A1

T

]
,

λ7 = exp

[
F (1− k2)

T (1− k)
− 1− A2

T

]
; (A.53)

S1 = −gab +
gbc

λ2

− gcd

λ5

+
gad

λ6

,

S ′1 =
gab

λ6

− gbc

λ7

+
gcd

λ4

− gad ,

S2 = −gab (1− ϕ0) +
gbc

λ2

− gcd

λ5

+
gad

λ6

,

S ′2 = gab − gbc λ2 (1− ϕ0) + gcd λ5 (1− ϕ0)− gad λ6 (1− ϕ0) ,

S3 = −gabλ2(1− ϕ0) + gbc(1− ϕ0)− gcd

λ3

+
gad

λ7

,

S ′3 =
gab

λ5

− gbc

λ3

+ gcd (1− ϕ0)− gad λ4 (1− ϕ0) ,

S4 = −gab λ5 (1− ϕ0) + gbc λ3 (1− ϕ0)− gcd (1− ϕ0) +
gad

λ4

,

S ′4 =
gab

λ5

− gbc

λ3

+ gcd − gad λ4 (1− ϕ0) . (A.54)
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