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1. INTRODUCTION 

1.1. Ecophysiological significance of xylem  
hydraulic efficiency 

Ecophysiology is a science exploring interactions between environments and the 
functioning of organisms (Leclerc, 2003). Plants are sessile organisms, they can-
not move towards needed resources. Hence, light, water, and nutrient availability, 
and water transport capacity are essentials for their lives (Nardini et al., 2011b; 
Fitter & Hay, 2012). As all living organisms, plants have to cope with inter- and 
intra-specific competition (Goldberg & Barton, 1992; Callaway & Walker, 1997) 
and adapt to continually changing environmental conditions (Jump & Peñuelas, 
2005). Capability to adapt to climate change and environmental heterogeneity 
determines plant populations’ ability to survive and to be successful in compe-
tition (Jump & Peñuelas, 2005; Parmesan, 2006). 

People have been fascinated by the question of how water can get to the top 
of tall trees and vines (Kirkham, 2014). How can water move in trees over long 
distances against gravity? Plants can be treated as hydraulic systems comparable 
with dams and irrigation systems for crops or the blood circulation system of 
animals. They consist of the same basic elements, like a driving force, pipes, 
reservoirs, and regulative systems. Pipes in plants are formed from conduits of 
conducting tissues − vessels and tracheid in the xylem and sieve tubes in the 
phloem. The energy for water transfer from roots to leaves comes from solar 
radiation, fuelling through evaporation the transpirational flux, thus generating 
the driving force (Cruiziat et al., 2002). Water flow through the plant can be 
treated as an Ohm’s law analogy (Tyree & Ewers, 1991), complemented with the 
cohesion-tension theory that has become the most broadly acknowledged expla-
nation of how water can ascend in plants (Meinzer et al., 2001; Kirkham, 2014; 
Konrad et al., 2019). According to the cohesion-tension theory, water moves from 
roots to leaves through the xylem in continuous water columns under tension. 
This is a passive process driven by the solar-energy-induced water potential dif-
ferences between roots and leaves (Hacke & Sperry, 2001; Meinzer et al., 2001; 
Cruiziat et al., 2002; Lucas et al., 2013; Schenk, 2018). Along this way, stem 
hydraulic traits are adjusted to the height above the ground. This vertical variation 
in stem hydraulic traits allows tall trees to operate near their hydraulic limits when 
evaporation is close to a critical limit (Couvreur et al., 2018).  

Numerous environmental factors affect plant hydraulic properties (Cochard 
et al., 2000b, 2007; Brodribb & Holbrook, 2004; Sellin & Kupper, 2007; Õuna-
puu & Sellin, 2013; Nardini et al., 2021). Furthermore, hydraulic traits inter-
mediate how plants interact with their abiotic and biotic environments (Sack 
et al., 2016). The plant vascular system’s main essential functions are the delivery 
of different resources like water, mineral nutrients, sugars, and amino acids to all 
plant organs (Lucas et al., 2013). Therefore, the structure of the water transport 
system places physical limits on plant functioning (Ryan et al., 2006; Brodribb, 
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2009). Water transport efficiency throughout the plant determines gas exchange, 
photosynthetic rate, growth, tree height, and productivity (Tyree & Ewers, 1991; 
Brodribb, 2009; Sack et al., 2016; Landsberg et al., 2017). The water transport 
system has to be efficient enough to keep up photosynthesis, the process that is 
the basis of plant life (Lambers et al., 2008; Brodersen et al., 2019). More than 
90% of the water taken up by a plant is lost in transpiration, while CO2 is being 
taken up through the stomata (Kramer & Boyer, 1995). In exchange for a mole-
cule of CO2, plants lose over 400 H2O molecules (Bouda et al., 2019). Globally, 
62 000 km3 of water flows annually through the water transport pathways inside 
plants. That makes 80–90% of terrestrial evapotranspiration, and thus plants 
directly influence our climate (Jasechko et al., 2013). Plant hydraulics impacts 
plant responses to climate, and species distribution, and ecosystem functioning 
(Sack et al., 2016). At the same time, tree stems cannot be considered simply as 
a pathway for water transport. They also act as storage compartments for water 
and nutrients (Tyree & Ewers, 1991; Meinzer et al., 2001). Water storage capacity 
is also vital for plants because it regulates the ability to support photosynthesis 
and growth despite temporary water shortages (Tyree & Ewers, 1991; Cruiziat et 
al., 2002; Landsberg et al., 2017). Water stored in the stems of large trees may 
deliver up to 20–30% of daily sap flow (Landsberg et al., 2017). That makes plants 
able to colonize many various habitats. 

 
 

1.2. The anatomical structure − a primary factor 
determining the hydraulic conductivity of xylem 

Water moves from the roots to the leaves through xylem conduits down a water 
potential gradient. There are two main types of conduits in the xylem − vessels and 
tracheids, consisting of more or less elongated cells with lignified thick secondary 
walls. Both of them represent dead cells at maturity (Evert, 2006; Schenk, 2018). 
Conduit cell wall rigidity and strength are essential to avoid a collapse in the 
presence of strong tensions (Hacke & Sperry, 2001; Lucas et al., 2013). Their 
diameters vary from 5 μm in conifer needles to >500 μm in the stems of tropical 
lianas. Their length varies even more − it ranges from a couple of millimetres in 
tracheids to several metres in vessels (Kramer & Boyer, 1995; Hacke & Sperry, 
2001; Brodersen et al., 2019). In vines and ring-porous trees, vessels may be more 
than 10 m long (Hacke & Sperry, 2001), while tracheids are up to 5 mm long and 
8–80 μm in diameter (Kramer & Boyer, 1995; Brodersen et al., 2019). Vessels 
with larger diameters tend to be longer than narrow vessels (Jacobsen et al., 
2019). Tracheids are imperforate tracheary elements typical for gymnosperms, 
especially conifers, but also common in many other plant families (Evert, 2006; 
Brodersen et al., 2019). Tracheids are separate cells, while vessels consist of 
many individual cells, the vessel elements, whose end walls are partly or entirely 
dissolved during the late stages of cell maturation (Tyree & Zimmermann, 2013). 
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In addition to the tracheary elements, there are living parenchyma cells in sap-
wood, whose primary function is storage and biomechanical support (Evert, 2006; 
Schenk, 2018). Parenchyma rays are also connection bridges between phloem and 
xylem because they permit the movement of water and solutes laterally between 
phloem and xylem (De Boer & Volkov, 2003; Spicer, 2014). There is a positive 
correlation between vessel diameter and volume of axial parenchyma (Morris 
et al., 2018). 

According to the Hagen-Poiseuille law, liquid flow rate is proportional to the 
fourth power of capillary radius (Tyree & Ewers, 1991; Holbrook & Zwieniecki, 
2011; Tyree & Zimmermann, 2013; Bouda et al., 2019). This means that a small 
increase in vessel diameter causes a substantial increase in its hydraulic conduc-
tivity. Therefore, wide vessels are much more efficient water conductors than 
narrow ones (Cruiziat et al., 2002; Evert, 2006; Tyree & Zimmermann, 2013). 
Extremely wide and long vessels in lianas compensate for the small conducting 
area in their narrow stems (Tyree & Ewers, 1991). Vessels are more effective water 
transporters than tracheids because of their greater dimensions (Sperry et al., 
2006). Theoretical predictions of flow rate based on vessel diameters may not be 
correct. In fact, the contribution of wide vessels to sap flow may be much lower 
because the vessel network is not homogeneous. In a heterogeneous vessel net-
work, transverse pressure gradients arise, which transmit flow from wide to narrow 
vessels (Bouda et al., 2019). Bouda et al. (2019) showed a considerable rise in 
transverse pressure gradients in grapevines and a decrease in the wide vessels’ 
contribution to sap flow by 15% of the total. 

The hydraulic efficiency of the plant water transport system depends on the 
conductivity of both conduit lumina and inter-conduit connections (Nijsse et al., 
2001; Bouda et al., 2019). Separate vessels are interconnected through perforation 
areas where they lack primary and secondary walls (Evert, 2006). Conduit inter-
connection areas are bottlenecks that decrease xylem hydraulic conductivity (De 
Boer & Volkov, 2003; Sperry et al., 2006; Choat & Pittermann, 2009). Therefore, 
measured conductivity is commonly less than the theoretical conductivity 
predicted by the Hagen-Poiseuille law (Tyree & Ewers, 1991; Bouda et al., 2019). 
The nano-porous primary cell walls and pit membranes located in bordered pits 
between conduits are crucial for water movement efficiency. In order to move 
from one conduit to the next, water must pass through those high-resistance pit 
membranes (Hacke & Sperry, 2001; Choat & Pittermann, 2009). Pits allow water 
to pass between functional conduits, but, at the same time, they prevent air from 
leaking into the conduit system (Hacke & Sperry, 2001; De Boer & Volkov, 
2003). Pit membranes are classically seen as microfiber networks with discrete 
holes, since porous structures are covered with pectins (Choat & Pittermann, 2009; 
Lee et al., 2012). Pectins form hydrogel, reacting to solute changes in the sur-
rounding environment and influencing water movement in vessels (Holbrook & 
Zwieniecki, 2011; Lee et al., 2012). The total area of pits, their shape, and pattern 
of lignification vary widely among plant species (De Boer & Volkov, 2003). Most 
of the pits are circular, but only a few of them are of perfectly circular shape (Zhao 
et al., 2019). New modeling work (Li et al., 2020) suggests that obstructions in 
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the flow pathway of pit membranes play a more important role in determining flow 
rate than pore size does.  

Conifers generally exhibit higher resistance to water movement because of 
their short and narrow tracheids, which are less efficient conductors than vessels 
(Kramer & Boyer, 1995; Choat & Pittermann, 2009). Their bordered pits have a 
unique structure − in the middle is a dense thickening called a torus surrounded by 
a thin network-like part, a magro − which determines their hydraulic safety and 
efficiency (Pittermann et al., 2005; Evert, 2006; Choat & Pittermann, 2009; Losso 
et al., 2018). Conifers compensate their narrow tracheids with those torus-magro 
pits because their margo is much more conductive (has less flow resistance) than 
the homogeneous pit membranes in angiosperm vessels (Pittermann et al., 2005; 
Sperry et al., 2006; Choat & Pittermann, 2009).  

 
 
1.3. Water conducting system in changing environment 

Xylem anatomy is affected by various environmental conditions, including climate 
factors (Baas & Wheeler, 2011; Kardošová et al., 2020; Pacheco et al., 2020), 
especially during the active growth phase (Corcuera et al., 2004; Grill et al., 2004; 
de Oliveira et al., 2018). For example, drought decreases the diameter of vessels 
in roots and shoots (Vasellati et al., 2001; Corcuera et al., 2004). Increased air 
humidity decreases vessel density and vessel lumen diameter in trees growing in 
mesic forests at high latitudes (Jasińska et al., 2015; Alber et al., 2019). Plants in 
high-humidity environments tend to have less developed conducting tissues 
(Sellin et al., 2019), although wood anatomy is rather conservative and not much 
influenced by air humidity (Alber et al., 2019). Environmental factors alter the 
partitioning of hydraulic resistance between the vascular and extra-vascular 
compartments in the leaves, influencing in this way the water transport capacity 
of leaves (Sack & Holbrook, 2006; Holbrook & Zwieniecki, 2011).  

Light availability is one of the relevant environmental factors. Spectral distri-
bution of solar radiation affects plant development and physiological processes 
in many different ways (Fitter & Hay, 2012). Plant sensitivity to light quality is 
of great ecological significance, enabling plant acclimation to the spatially hetero-
geneous and temporally changeable radiation field existing in natural plant com-
munities. Blue light advances spring bud burst (Brelsford & Robson, 2018) and 
increases chlorophyll content per leaf area, net photosynthetic rate, and stomatal 
conductance (Hernández & Kubota, 2016); blue and green light also enchance 
hydraulic conductance (Voicu et al., 2008). Irradiance and the plant’s internal 
circadian clock drive leaf hydraulic conductance (KL) on a diurnal scale (Bucci 
et al., 2003; Nardini et al., 2005; Voicu et al., 2008; Johnson et al., 2009, 2011). 
Long-term shade and sun-exposed conditions shape the anatomy and physiology 
of the plant’s vascular system to a large extent (Fitter & Hay, 2012). Hydraulic 
conductance is higher in sun-exposed leaves compared to shade leaves (Sack 
et al., 2003; Sellin & Kupper, 2007; Sellin et al., 2013). This is crucial because 



13 

the sun leaves of tall trees are more exposed to irradiance and face greater water 
and temperature stresses than shade leaves (Fitter & Hay, 2012). 

Temperature generally affects plant metabolism, growth, and development, 
but it also affects leaf hydraulic conductance by modifying the vascular and extra-
vascular compartments (Leclerc, 2003; Fitter & Hay, 2012). Temperature-driven 
effects in hydraulic conductance can be partly explained by viscosity changes of 
xylem sap and partly by cell membrane permeability (Cochard et al., 2000b; Sack 
et al., 2004; Sellin & Kupper, 2007; Holbrook & Zwieniecki, 2011). Thus, water 
viscosity is an essential characteristic to take into account in hydraulic measure-
ments. In addition to temperature, fluid viscosity depends on solute content, but 
xylem sap solute concentrations are so small that they do not influence viscosity 
measurably (Cruiziat et al., 2002). With increasing temperature, water viscosity 
decreases and cell membrane permeability rises, both resulting in higher hydraulic 
conductance (Cochard et al., 2000b; Matzner & Comstock, 2001; Sack et al., 
2004; Sellin & Kupper, 2007). Sellin and Kupper (2007) demonstrated that about 
a third of the temperature effect on KL of little-leaf linden (Tilia cordata Mill.) in 
field conditions was attributable to shifts in the viscosity of water and two-thirds 
to shifts in protoplast permeability (i.e., symplastic conductance). 

The hydraulic system of plants operates under considerable tension, i.e. below 
normal atmospheric pressure. This means that trees live under the constant threat 
of rupture of the water columns and xylem cavitation (Cochard, 2006; Brodersen 
et al., 2019). Continuous water columns in the xylem conduits may break, xylem 
vessels and tracheids may embolize, and water supply to transpiring leaves may 
be disrupted (Sperry & Sullivan, 1992; Cochard, 2006; Brodersen et al., 2019; 
Jacobsen et al., 2019). There is always some degree of native embolism through-
out the year, even in well-watered trees (Tyree & Ewers, 1991; Cruiziat et al., 
2002). It is surprising that even trees growing in temperate ecosystems have 
relatively high levels of embolism (37–94%; Klein et al., 2018). Many studies 
report a trade-off between cavitation safety and transport efficiency in trees 
(Cochard et al., 2004; Hacke et al., 2006; Meinzer et al., 2008; van der Sande 
et al., 2019; Yao et al., 2021), but this does not apply to lianas (van der Sande et 
al., 2019). Cavitation-induced embolism decreases xylem hydraulic conductance, 
brings about stomatal closure, and begins to limit transpiration and photosynthesis 
(Meinzer et al., 2001; Trifilò et al., 2011; Choat et al., 2012; van der Sande et al., 
2019). Cavitation vulnerability is associated with wood anatomy (de Oliveira 
et al., 2018; Mrad et al., 2018), with vessel diameter being among the relevant 
traits (Hacke et al., 2017). Generally, species with long and wide vessels, like 
ring-porous trees, are efficient water transporters, but they are also vulnerable to 
cavitation. Other species with smaller conduits are much more secure against 
hydraulic failure (Hacke et al., 2006). Also within a species, larger vessels tend 
to be more vulnerable to cavitation than narrow ones (Jacobsen et al., 2019).  

Substantial differences exist in vulnerability to cavitation among different 
plant species (Sperry & Sullivan, 1992; Sperry et al., 1994; Cruiziat et al., 2002; 
Meinzer et al., 2008) and between different organs in the same individual (Cruiziat 
et al., 2002; Choat et al., 2005). This pattern is consistent with the hydraulic 
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vulnerability segmentation hypothesis, which states that distal parts of the plant 
should be more vulnerable to embolism than trunks (Choat et al., 2005; Johnson 
et al., 2016). Consequently, during drought, embolism occurs first in distal bran-
ches and leaves, while larger proximal branches and stems will be protected 
(Meinzer et al., 2001). A similar pattern has also been reported during wintertime 
in Picea abies (L.) H. Karst. growing at the alpine timberline (Charrier et al., 2017). 
Losses of conductivity are characterized with vulnerability curves describing the 
relationship between loss of hydraulic conductivity (the percent loss of conduc-
tivity, PLC) and xylem pressure or water potential (Choat et al., 2012; Klein et al., 
2018; Brodersen et al., 2019; Konrad et al., 2019). The most commonly used 
index for embolism resistance is Ψ50, describing the point where 50% loss of 
conductivity occurs (Meinzer et al., 2009; Choat et al., 2012; Brodersen et al., 
2019). 

Plant hydraulic systems are able to adapt to changes in external conditions 
(Landsberg et al., 2017). Trees use different strategies to cope with cavitation: 
closing stomata (Hacke et al., 2006; Nardini et al., 2011b; Trifilò et al., 2011); 
producing new functional xylem from cambium (Hacke & Sperry, 2001; Nardini 
et al., 2011a, 2011b), which is characteristic of ring-porous species, especially 
oaks (Sperry et al., 1994); use of stored water; positive root pressure; and refilling 
embolized xylem conduits (Hacke & Sperry, 2001; Nardini et al., 2011a, 2011b; 
Secchi & Zwieniecki, 2012; Landsberg et al., 2017; Tomasella et al., 2020). 
Xylem refilling is related to various structures, like roots, phloem, parenchyma, 
aquaporins, and xylary chloroplasts (Klein et al., 2018). Living parenchyma cells 
associated with xylem, called vascular associated cells (VACs), are directly 
involved in the refilling process (Pagliarani et al., 2019; Secchi et al., 2021). 
Embolism refilling under tension is a process demanding energy. Therefore it 
needs a suitable supply of carbohydrates to change the pre-existing free-energy 
gradients (Secchi & Zwieniecki, 2012). A significant correlation occurs between 
stem hydraulics and non-structural carbohydrate contents (NSC) in drought and 
frost stress conditions (Trifilò et al., 2017; Tomasella et al., 2020). During drought, 
sugars are accumulated in xylem parenchyma, apoplast, and VACs (Tomasella 
et al., 2020; Secchi et al., 2021). Hydraulic recovery requires the biological 
activity of VACs via chemical priming (Secchi et al., 2021), which involves a 
drop in apoplast pH and the accumulation of sugars (Secchi & Zwieniecki, 2012; 
Pagliarani et al., 2019). Therefore NSC concentration decreases, starch content 
increases, and xylem apoplast pH declines (Salleo et al., 2004; Secchi & 
Zwieniecki, 2016; Trifilò et al., 2017; Pagliarani et al., 2019; Tomasella et al., 
2020). A complex network of coordinated molecular and biochemical signals is 
activated by hydraulic recovery at the interface between xylem and parenchyma 
cells (Pagliarani et al., 2019). 
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1.4. Physico-chemical properties of xylem sap and  
ionic effect  

Long-distance water transport in plants is commonly treated as a passive process 
affected by physical and geometrical features of the xylem conduits, although it 
is admited that the mechanisms based on the cohesion-tension theory may be too 
simplistic (Meinzer et al., 2001; Holbrook & Zwieniecki, 2011). Nowadays, there 
is much evidence that plants are capable of regulating xylem hydraulic conduc-
tivity in a short time scale by adjusting xylem sap ionic content (Zwieniecki et al., 
2001, 2003; Gascó et al., 2006, 2008; Nardini et al., 2007, 2011b; Aasamaa & 
Sõber, 2010; Cochard et al., 2010; Jansen et al., 2011). This phenomenon was 
shown first by Martin H. Zimmermann in 1978 (Zimmermann, 1978). This issue 
has aroused broader interest among researchers in the 21st century. Several studies 
have shown that xylem hydraulic conductivity of stems or branches increases by 
perfusing them with weak salt solutions compared to deionised water (van 
Ieperen et al., 2000; Zwieniecki et al., 2001, 2003; Gascó et al., 2006, 2008; Aasa-
maa & Sõber, 2010; Cochard et al., 2010; Jansen et al., 2011). Other solutions, 
like isoosmotic carbohydrate solutions, do not affect xylem hydraulic conduc-
tivity. This indicates that this phenomenon cannot be explained purely by the 
osmotic effects of the perfusate. Xylem hydraulic conductivity depends on the ionic 
concentration of xylem sap (van Ieperen et al., 2000), and therefore the pheno-
menon is called an ionic effect (Nardini et al., 2011b). In many species, xylem 
hydraulic conductivity increases in response to changes in xylem sap ionic con-
centration, but it is not a universal phenomenon for all species (Trifilò et al., 2008; 
Holbrook & Zwieniecki, 2011; Nardini et al., 2011b).  

In most studies, KCl is used in hydraulic experiments to evaluate the ionic 
effect (Zwieniecki et al., 2001, 2003; Gascó et al., 2006, 2008; Aasamaa & Sõber, 
2010; Cochard et al., 2010; Jansen et al., 2011). K+ is the most important cation 
in plant biomass (Cornut et al., 2021) and it accounts for about 50% of the total 
ion content of the xylem sap (Herdel et al., 2001; Siebrecht et al., 2003). Potas-
sium is among the essential elements needed in various physiological processes 
of plants (Liesche, 2016; Shabala, 2017; Davis et al., 2018; Mirande-Ney et al., 
2020). Some studies have also applied NaCl solution, which has a weaker effect 
than KCl (Gascó et al., 2006, 2008) and Ca2+, which reduces the magnitude of the 
ionic effect (van Ieperen & van Gelder, 2006; van Ieperen, 2007), although this 
is not a universal response (Nardini et al., 2007). Commonly, deionised water has 
been used as a reference solution (Zwieniecki et al., 2001, 2003; Gascó et al., 
2006, 2008; Aasamaa & Sõber, 2010; Cochard et al., 2010), although it has 
certain disadvantages. Deionised water may change the plant’s inherent xylem 
hydraulic conductivity because it is not comparable with the properties of the 
xylem sap in vivo (van Ieperen & van Gelder, 2006; van Ieperen, 2007), which 
always contains various ions in low concentrations (Herdel et al., 2001). The use 
of deionised water as a reference solution may overestimate the ionic effect 
because we underestimate the natural fluidity of xylem sap (van Ieperen, 2007). 
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Several hypotheses have been proposed on how the ionic effect works. One 
hypothesis states that metal cations occurring in the xylem sap influence the 
pectic matrix of the pit membranes. In the presence of cations, the pectic matrix 
in pit membranes will shrink. As a consequence, nanometer-sized pores in the pit 
membrane expand, and xylem hydraulic conductivity increases. At low ionic 
concentrations in the xylem sap, the pectic matrix will swell, which leads to 
narrower pores and a decrease in xylem hydraulic conductivity (Zwieniecki et al., 
2001; Holbrook & Zwieniecki, 2011; Nardini et al., 2011b). This hypothesis is 
supported by Boyce et al. (2004), who found a correlation between lignification 
patterns of water-conducting cells and ion-mediated flow rate in the xylem. The 
distribution of hydrophilic polysaccharides and hydrophobic lignin probably 
affect the hydraulic properties of the xylem (Boyce et al., 2004).  

The sample length (Gascó et al., 2006), degree of vessel grouping and inter-
vessel traits may also influence the ionic effect (Jansen et al., 2011). It has also 
been proposed that the pit membranes behave like a gelled non-porous structure 
(Cochard et al., 2010). The studies with a liquid-phase atomic force microscope 
support that idea: a layer of hydrogel is located on the surface of the membrane 
(Lee et al., 2012). Lee et al. (2012) show that the ionic effect involves changes in 
permeability and thickness of the pit membrane hydrogel. Fully hydrated pit 
membranes under a scanning electron microscope look like a continuous surface 
of soft material covering fibres. Perfusion with 50 mM KCl solution decreased 
overall membrane microfibril pectin hydrogel thickness and increased surface 
roughness significantly (Lee et al., 2012). Some studies show that pectin may not 
be present in the pit membranes of all species (Choat et al., 2008; Doorn et al., 
2011). For example, instead of pectin-hydrogel pit membranes, gymnosperms 
and lycopods have highly porous margos and do not respond to the presence of 
K+ (Holbrook & Zwieniecki, 2011). Therefore, the swelling and shrinking hypo-
thesis is not universal for all woody plants. Some authors suggest that electro-
viscosity of the bordered pit membranes is responsible, at least partially, for this 
phenomenon (Doorn et al., 2011; Nardini et al., 2011b; Santiago et al., 2013). There 
is still much unknown concerning this mechanism in different species that 
requires further research. 

Flushing branches with boiling water or freezing them with liquid nitrogen 
does not affect the ion-mediate increase in water flow (Zwieniecki et al., 2001; 
Gascó et al., 2006). That means living cells do not directly affect changes in xylem 
hydraulic resistivity (Zwieniecki et al., 2001). Xylem hydraulic efficiency depends 
on phloem properties, due to ion circulation between the xylem and phloem 
(Cernusak & Marshall, 2001; Zwieniecki et al., 2004; Domec & Pruyn, 2008; 
López et al., 2015; Konrad et al., 2019). Phloem girdling, removing surface tissues 
around the woody branch or stem (Rademacher et al., 2019), blocks phloem 
transport from the branch and leads to starch and sugar accumulation in leaves 
above the girdle. Simultaneously, one can see the induction of stomatal closure 
and a decrease in photosynthesis through a feedback loop (Cernusak & Marshall, 
2001; Murakami et al., 2008).  
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Potassium availability and drought stress, combined, have a substantial effect 
on the functioning of plants (Oddo et al., 2020). In drought conditions, potassium 
ions in the xylem sap have a primary role in the ion-mediated enhancement of 
hydraulic conductance (Trifilò et al., 2011, 2014; Oddo et al., 2020). The liquid 
in nonfunctional vessels contains an increased level of sugars and ions compared 
to functional vessels in order to create an osmotic gradient (Secchi & Zwieniecki, 
2012). Short-term potassium fertilization increases xylem sap [K+] in well-watered 
Laurus nobilis L. plants, leading to enhanced hydraulic efficiency (Oddo et al., 
2011). At the same time, when potassium is added to previously drought-stressed 
plants, there is no short-term increase in [K+] in the xylem sap, nor in hydraulic 
efficiency (Oddo et al., 2014).  

In addition to ionic contents, variations in pH of the xylem sap may play a role 
in regulating plant hydraulic conductance. Zwieniecki et al. (2001) showed that 
the natural pH range (5.8 to 8.0) of xylem sap does not significantly affect plant 
hydraulics, but low pH increases flow rates remarkably. Change in xylem sap pH 
in drought conditions, when the transpirational flux is reduced, is well documented 
(Bahrun et al., 2002; Sobeih et al., 2004; Secchi & Zwieniecki, 2016). So, 
embolized vessels exhibit lower apoplast pH than hydrated ones (~5.4 and ~6.2 
respectively; Secchi & Zwieniecki, 2012), but this response is not universal 
(Sharp & Davies, 2009). Xylem sap pH is an important characteristic influencing 
sugar transport across cellular membranes (Secchi & Zwieniecki, 2012, 2016). 
Lower xylem apoplast pH in water-stressed plants leads to sugar accumulation in 
the xylem apoplast (Secchi & Zwieniecki, 2016). Xylem sap osmolality is also a 
relevant characteristic having an effect on water transport efficiency, pressure 
gradients, and the turgor pressure of living cells in plants (López-Portillo et al., 
2014).  

 
 

1.5. Aims of the thesis  

This doctoral thesis aims to give new insights into the role of the physico-chemical 
properties of xylem sap in regulating trees’ hydraulic conductance. Most of the 
studies on the ionic effect have been conducted in laboratory conditions (van 
Ieperen et al., 2000; Zwieniecki et al., 2001, 2003; Gascó et al., 2006; van Ieperen 
& van Gelder, 2006) and in the Mediterranean climate (Gascó et al., 2006, 2007; 
Trifilò et al., 2008, 2011; Nardini et al., 2010, 2012). Only a few studies on this 
topic have been performed in northern temperate trees (Aasamaa & Sõber, 2010; 
Sellin et al., 2013). In this thesis, we focus on exploration of trees growing in the 
field. We analyse how environmental conditions, especially light availablility and 
quality, affect the xylem sap and hydraulic properties in temperate broadleaved 
trees growing in field conditions. This thesis provides novel information on the 
ionic effect and trees’ hydraulic properties in northern forests. 

This study analyses the relationship between xylem sap properties and the 
hydraulic conductance of stems in hybrid aspen (Populus tremula L. × P. tremu-
loides Michx.) and silver birch (Betula pendula Roth), both economically 
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important hardwoods in northern Europe. We aimed to explore different aspects 
of these relationships. First, we looked at circadian patterns because there is 
scanty information about the daily dynamics of the hydraulic efficiency of trees. 
Most previous studies are incomplete because they are missing nightly measure-
ments (Bucci et al., 2003; Brodribb & Holbrook, 2004; Lo Gullo et al., 2005; 
Cordeiro et al., 2009; Johnson et al., 2009; Voicu & Zwiazek, 2011; Õunapuu & 
Sellin, 2013; Locke & Ort, 2015). From environmental characteristics we focused 
on irradiance and air temperature, the most influential factors driving circadian 
patterns in plant hydraulic properties. Second, we wondered whether phloem 
girdling, a blocking of phloem transport, affects hydraulic and xylem sap pro-
perties. Third, we tested whether short-term changes in light conditions impact 
stem hydraulic efficiency, i.e., a light-mediated modulation of stem hydraulic 
conductance. We also studied the effect of different light wavelengths on leaf and 
shoot hydraulic efficiency and the distribution of the resistance in shoots.  
 
The objectives of the doctoral thesis are as follows: 

• To simultaneously ascertain circadian patterns of hydraulic conductivity and 
the physico-chemical properties of xylem sap in situ (Paper I). 

• To evaluate the impact of phloem girdling on branch hydraulic conductance 
and the physico-chemical properties of the xylem sap (Paper II). 

• To evaluate the impact of light quality on leaf and shoot hydraulic properties 
(Paper III). 

• To test light-mediated modulation of stem hydraulic conductance (Paper IV). 
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2. MATERIALS AND METHODS 

2.1. Characterization of the experimental area and  
sample trees 

First study site was the Free Air Humidity Manipulation (FAHM) facility, located 
at Rõka village (58°14'N, 27°17'E; 40–48 m ASL), eastern Estonia, where air 
humidity is artificially increased in field conditions. The FAHM system enables 
air relative humidity (RH) to be elevated up to 18% compared to the ambient level, 
and the mean increase in RH across the growing season is up to 7%. The aim of 
the experimental site is to investigate the effect of increased RH on the growth 
and performance of trees in response to the rising atmospheric humidity predicted 
for northern Europe. The facility was established in 2006–2007 on an abandoned 
agricultural field. It is a fenced area of 2.7 ha involving nine experimental plots 
(∅ 14 m) planted with silver birch (Betula pendula Roth) and hybrid aspen (Popu-
lus tremula L. × P. tremuloides Michx.) with a stand density 10 000 trees ha–1, 
surrounded by a buffer zone of hybrid aspens with a stand density 2500 trees ha–1 
(Kupper et al., 2011). The study area belongs to the boreo-nemoral vegetation 
zone in a northern temperate climate. The long-term average annual precipitation 
in the region is 650 mm, and the average temperature is 17.0 °C in July and –
6.7 °C in January. The growing season usually lasts 175−180 days from mid-April 
to October. The soil is a fertile endogenic mollic planosol (WRB) with an A 
horizon thickness of 27 cm. Total nitrogen content is 0.11–0.14%, C/N ratio is 
11.4, and pH is 5.7−6.3.  

Silver birch (Paper IV) saplings growing in the experimental plots and hybrid 
aspens (Papers I and II) growing in the buffer zone served as sample trees. For 
Paper I, the studies were carried out in July and August 2012. We collected 
2×112 branches (i.e., two neighbouring branches per tree simultaneously) from 
7-year-old aspen trees. The branches for every measurement event were cut from 
different trees, 112 trees altogether. The sample trees’ mean height (±S.E.) was 
5.12 ± 0.08 m; the branches were cut from the middle third of the crowns (relative 
height 0.25–0.60). Studies for Paper II were performed in August 2010. We 
sampled ten 5-year-old aspen trees with a mean height of 4.0 ± 0.09 m. From each 
tree two neighbouring branches (mean height above the ground 129 ± 3.6 cm and 
mean length 147 ± 4.4 cm) of equal size were examined. Material for Paper IV 
was collected from July to August 2009. The sample branches of silver birch were 
cut from three heights in the canopy: on average at 53 cm (mean length 91 cm), 
177 cm (mean length 112 cm), and 227 cm (mean length 91 cm) above the ground. 
Altogether, 36 branches (2 treatments × 3 sample plots × 2 trees × 3 canopy posi-
tions/heights) were sampled for hydraulics.  

The second study site was situated in Järvselja Experimental Forest (58°16′N, 
27°16′E, elevation 38–40 m ASL), eastern Estonia, where the stand is composed 
of B. pendula Roth 46%, Picea abies (L.) Karst. 44%, Pinus sylvestris L. 8%, and 



20 

Populus tremula L. 2% of the total basal area. The data on precipitation, tempera-
ture and growing season are given hereinabove. The annual global short-wave 
radiation sum in the region averages 3,518 MJ m–2, and the annual radiation 
budget is 2,552 MJ m–2 (Sellin & Kupper, 2005a, 2005b). The area has a gleyed 
pseudopodsol soil formed on a loamy till and characterized by a large water stor-
age capacity (Niinemets & Kull, 2001). For Papers III and IV, 15–40 cm long 
shoots were sampled from the lower (shade-exposed shoots) and upper thirds 
(sun-exposed shoots) of 25- to 30-year-old silver birches. Mean tree height was 
15.5–19.4 m and diameter at breast height was 10.3–16.2 cm. For Paper III, 
altogether 108 shoots were sampled: 3 trees × 2 canopy positions × 3 light colours 
× 3 exposure times × 2 replications.  

 
 

2.2. Environmental characteristics at the FAHM site 

At the FAHM site, various environmental variables are recorded continuously. In 
our study, we used photosynthetic photon flux density (PPFD) measured using 
LI-190 quantum sensors (Li-Cor Biosciences, Lincoln, NE, USA), air temperature 
(TA), and relative humidity (RH) measured with HMP45A humidity/temperature 
probes (Vaisala, Helsinki, Finland), bulk soil water potential (ΨS) measured with 
EQ2 equitensiometers (Delta-T Devices, Burwell, UK) at depths of 15 and 30 cm. 
The environmental sensors’ readings were stored as average values every 10 min 
with a DL2e data logger (Delta-T Devices). Atmospheric vapour pressure deficit 
(VPD) was calculated as the difference between the saturation vapour pressure 
(i.e., the maximum amount of water vapour that can be held in the air) and the 
actual vapour pressure (Bonan, 2015). Light availability within the canopy of the 
experimental plots was estimated using the hemispherical photographic technique 
(Hale & Edwards, 2002). In Paper IV, photographs (n = 108) were taken at dif-
ferent heights in the canopy with a Coolpix digital camera (Nikon Corp., Tokyo, 
Japan) equipped with a fisheye lens, and the hemispherical images were analysed 
by applying WinSCANOPY, Vers. 2.1A software (Regent Instruments, Ottawa, 
Canada). 
 
 

2.3. Laboratory experiment on light impact 

In the evening, shoots of B. pendula were cut under water and put into beakers, 
the basal ends submerged in water (Papers III and IV). In the laboratory, the 
shoots were put into plastic flasks filled with deionized, filtered (Direct-Q3 UV 
water purification system; Millipore SAS, Molsheim, France), and freshly 
degassed water (T-04-125 ultrasonic-vacuum degasser; Terriss Consolidated 
Industries, Asbury Park, NJ, USA), and rehydrated overnight in a dark room. For 
Paper III, in the morning the shoots were exposed to light of photosynthetic 
photon flux density (PPFD) of 200–250 mmol m–2 s–1 for 1, 3 or 5 h before the 
hydraulics measurements. The PPFD was measured with a LI-190 quantum 
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sensor and the energy flux within the band of photosynthetically active radiation 
with a SKE 510 energy sensor (Skye Instruments, Llandrindod Wells, UK). 
Shoots were exposed before and during the hydraulic measurements to light from 
different sources: blue light from metal halide lamps (Artcolour MH-T Blue, 
400 W; Philips, Eindhoven, the Netherlands) with a spectral emission maximum 
at 450–460 nm; white light from high pressure sodium lamps (Master SON-T 
PIA Agro, 400 W; Philips) with a wide spectral emission band of 550–710 nm 
and with additional peaks in the blue band; red light from the Master SON-T PIA 
Agro lamps used in combination with 026 Bright Red colour filters (Lee Filters, 
Andover, UK), which lacked wavelengths below 600 nm.  

In Paper IV, in the morning the shoots were exposed to light (Master SON-T 
PIA Agro lamps) for 7 h before the conductance measurements. Both shade 
(95 shoots in all) and sun (96 shoots in all) shoots were exposed to four different 
irradiance levels: PPFD was 70, 140, 330 and 610 μmol m–2 s–1. In both studies, 
irradiance was controlled and modified by changing the distance from the lamps. 
Air above the shoots was agitated with a fan to avoid local temperature gradients. 

 
 

2.4. Phloem girdling  

Two neighbouring branches of equal size from aspen trees were sampled for 
gasometric and hydraulic characteristics (Paper II). The phloem was girdled at 
the branch base on one branch, while the second branch was left untreated as a 
control. Two 1-cm strips of bark (cortex and phloem) were removed with a razor 
blade without damaging the xylem: one at the branch basal end, the second 
~15 cm above the first. The girdled regions were instantly covered with silicon 
grease and wrapped tightly in adhesive plastic tape to prevent desiccation. 
Physiological measurements were made immediately before phloem girdling and 
1, 2, and 3 days after the manipulation. The girdled and control branches were 
sampled simultaneously in the midday period (10–14 h). Net photosynthetic rate 
(PN) and stomatal conductance to water vapour (gS) were measured with a LCpro+ 
portable photosynthesis system (ADC BioScientific, Great Amwell, UK) at 
saturating photosynthetic photon flux density of 1196 μmol m–2 s–1, ambient CO2 
concentration of 360 μmol mol–1, water vapour pressure of 1.5 kPa and tempera-
ture of 25 ºC.  
 
 

2.5. Measurement of plant hydraulic properties  
by water perfusion method 

The cut ends of the sample branches were recut under water and immediately 
measured hydraulically at PPFD of 120–150 μmol m–2 s–1 (Master SON-T PIA 
Agro lamps; Paper IV) or in natural environmental conditions in situ (Paper I). 
In the last case, we used a shelter with a transparent polycarbonate roof lacking 
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walls to protect equipment against direct rainfall. Hydraulic conductance of the 
whole branch (Kwb) and their parts − leaf blades (Klb), petioles (KP), bare branch 
(KB) − were determined by the water perfusion method using a high-pressure flow 
meter (HPFM; Dynamax, Houston, TX, USA), and by removing leaf blades and 
petioles in sequence. The HPFM method was applied also in the experiment to 
test light spectral effects (Paper III). The HPFM was applied in a quasi-steady-
state mode, applying the pressure until leaves were infiltrated. That procedure 
removes emboli from the vascular system and fills the empty vessels (Nardini et 
al., 2005). Thus, these readings show plant hydraulic efficiency in a water-satu-
rated state. In Paper I, hydraulic measurements were performed every 3 hours to 
estimate circadian patterns. 
 
The hydraulic conductance of leaf blades (Klb) was calculated as follows: 
 
 Klb = (Kwb

–1 – KB+P
–1)–1 (1) 

 
where KB+P is the hydraulic conductance of a branch together with petioles. The 
hydraulic conductance of petioles (KP) was calculated as: 
 
 KP = (KB+P

–1 – Klb
–1)–1  (2) 

 
Leaf and branch temperatures were recorded using MT2 fast-response tempera-
ture probes (Delta-T Devices) during the hydraulic measurements. In Paper IV, 
after achieving stable readings with HPFM for the leafless branch, the distal 
branch part was cut off. The remaining 15- to 20-cm basal segment of the branch, 
left connected to the pressure coupling, was perfused again to determine the 
specific hydraulic conductivity of branch-wood (kbw), to be calculated as follows: 
 
 kbw = Kseg  l

AX
  (3) 

 
where Kseg is the hydraulic conductance of the branch segment, l is the length of 
the segment, and AX is the cross-sectional area of the xylem. 

 
After completing the hydraulic measurements, all leaves were collected, and the 
total leaf blade area was determined with a LI-3100C optical area meter (Li-Cor 
Biosciences; Papers I and IV) or with an AM300 digital area meter (ADC 
BioScientific, Great Amwell, UK; Paper III). The hydraulic characteristics were 
corrected for dynamic viscosity of water at given temperature.  
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2.6. Evaluating hydraulic conductance  
by evaporative flux method 

In Papers II and IV we estimated hydraulic conductance of shoot (KS) and leaves 
(KL) by the evaporative flux method (Wullschleger et al., 1998; Brodribb & Hol-
brook, 2003; Sellin et al., 2008) under steady-state conditions and calculated it 
according to the Ohm’s law analogy: 
 
 K = ா∆ஏ (4) 
 
where E is the transpiration rate expressed per unit leaf area, and ΔΨ is the water 
potential drop across a particular segment. E was measured at the leaf surface 
with an LI-1600M steady-state diffusion porometer (Li-Cor Biosciences), sam-
pling three to four leaves per shoot. Leaf temperature (TL) was measured with 
fine copper – constantan thermocouples installed in the porometer. Immediately 
after the porometric measurements, the bulk leaf water potential (ΨL) in three 
leaves per shoot was determined by the balancing pressure technique using a 
Scholander-type pressure chamber. The leaves for porometric and pressure 
chamber measurements were chosen randomly, from different parts of the shoot.  

Branch water potential (ΨB) was estimated by applying the method of bagged 
leaves (Nardini et al., 2001; Brodribb & Holbrook, 2003) using two leaves per 
shoot prepared in previous evening. These leaves were enclosed in small minigrip 
bags, sealed with tape and wrapped in aluminum foil, and then placed overnight 
with shoots in a dark room. Water potential of the nontranspiring (bagged) leaves, 
which was presumed to have equilibrated with the xylem water potential of the 
branch, was taken as a proxy of ΨB. After the pressure chamber measurements, 
total area of leaf blades was determined with an AM300 area meter. The hydraulic 
conductance of leafless branch (KB) was calculated as follows: 
 
 KB = (KS

–1 – KL
–1)–1 (5) 

 
The values of hydraulic conductance were scaled by leaf area and standardized 
for the dynamic viscosity of water at a given temperature. 
 
 

2.7. Extraction of xylem sap and determination of  
its physico-chemical properties 

To measure the physico-chemical properties of xylem sap, we cut the sample 
branch from a tree, beforehand removing all leaves from the branch to stop tran-
spiration. The sap was extracted from branch segments at a pressure of 2.0 MPa 
generated by a pressure chamber (Model 1000; PMS Instrument Company, 
Albany, OR, USA) according to Stark et al. (1985). Details of the procedure have 
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been described in Sellin et al. (2011). The sap samples collected in 1.5-ml Eppen-
dorf tubes were immediately measured for potassium ion concentration ([K+]) 
using a C-131 potassium ion meter (Horiba, Kyoto, Japan). Sap electrical con-
ductivity (σsap) and pH were determined using an electric conductometer (Twin 
Cond B-173; Horiba) and pH meter (Twin B-212; Horiba), respectively. We also 
determined the osmolality (Osm) of the xylem sap using a Vapro 5600 vapor 
pressure osmometer (Wescor, Logan, UT, USA). 

In Papers I, III and IV, [K+] was measured simultaneously in pairs of branches 
taken from the same tree and height − one was a branch used for hydraulic mea-
surements, and the other was its closest unperfused neighbour. In Paper II, xylem 
sap phycico-chemical properties were measured in two neighbouring branches 
(phloem girdling treatment and control) on the third day after girdling, subsequent 
to the final gasometric and water potential measurements.  

 
 

2.8. Laboratory experiment to assess  
the effect of [K+] on xylem hydraulic conductivity 

An experiment was conducted from July to August 2018. The experiment was 
carried out on branches of 5-year-old hybrid aspens collected from the FAHM 
experimental plots. The mean tree height (±SE) was 5.57 ± 0.17 m. Branches with 
a mean length of 1.75 ± 0.06 m were collected on average from a height of 
2.12 ± 0.12 m at 9 a.m. After cutting, the branches were immediately taken to 
the field laboratory located at the FAHM site. A specimen with a length of 
14.0 ± 0.1 cm (mean diameter measured under bark 10.5 ± 0.1 mm) was cut from 
the basal part of the branch without leaves and placed into a cavitation chamber 
attached to a Model 600-EXP pressure chamber (PMS Instrument Company). 
Cavitation of the stem segments was induced using an air-injection technique 
applying a pressure of 2.0 MPa for one hour. After that, the specimens were 
sampled hydraulically to determine the initial hydraulic conductance of the 
embolised stem segment (Kin). The hydraulic measurements were conducted 
using a XYL’EM xylem embolism meter (Bronkhorst, Montigny-Les-Cor-
meilles, France) based on a high-resolution liquid mass flowmeter (Cochard 
et al., 2000a). The initial and subsequent stem hydraulic conductances were mea-
sured under low pressure (<5 kPa). Then the specimens were saturated with water 
by applying flushes (10 flushes, duration 1.5 min) under 0.2 MPa with solutions 
differing in [K+]. Based on native [K+], we used three different K+ solutions in 
our experiment – 0% (deionized water), 50% (65 ppm), and 100% (130 ppm) of 
the native concentration. Native [K+] around midday was determined at the 
beginning of the study period. Hydraulic conductance was recorded continuously, 
and, after the last flushing, maximum stem hydraulic conductance (Kmax) was 
recorded. Respective values of specific hydraulic conductivity of xylem (k and 
kmax) were calculated based on the measurements and specimen dimensions 
according to equation (3).  
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The percentage loss of stem hydraulic conductance (PLC) was calculated as: 
 
 PLC = 100  (kmax – k)

kmax
 . (6) 

 
The effect of water saturation level on xylem specific conductivity (k) was 
analysed by using the following asymptotic function: 
  

 k = ksat
'  ∙ c1 ∙ (Fl + q)

ksat
' + c1 ∙ (Fl + q)

  (7) 
 
where ksat

'  is the estimate of maximum conductivity at an infinitely saturated state, 
Fl is the number of flushes, and c1 is the initial slope of the response curve. 
 
 q = c2

c1
, (8) 

 
if it is assumed that the initial slope of the curve is nearly linear. c2 is the value of 
k before flushing (i.e., an estimate of initial conductivity), and is given by the 
intercept on the ordinate. 
 
 

2.9. Data analysis 

Statistical data analysis was carried out using Statistica, Version 7.1 (StatSoft 
Inc., Tulsa, OK). One-way and two-way analyses of variance (ANOVA) and co-
variance analysis (ANCOVA) were performed using the General Linear Models 
module. Type III or Type IV sums of squares were used in the calculation, 
depending on the particular data set. The normality of data and homogeneity of 
variances were checked using the Kolmogorov–Smirnov D-statistic and the Levene 
test, respectively. When necessary, logarithmic or complex transformations were 
applied to the data to meet the assumptions for ANOVA. During the analysis, 
insignificant covariates were removed from the analysis models step by step. Post 
hoc mean comparisons were conducted using the Tukey’s HSD test. Pearson’s 
correlations and linear or nonlinear regressions fitted by the least-squares method 
were used to assess relationships between the studied characteristics and inde-
pendent variables. 
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3. RESULTS AND DISCUSSION 

3.1. Variation in physico-chemical properties of xylem sap  

[K+] of xylem sap varies significantly within the tree canopy, between different 
years and also on the diurnal scale (Table 1). [K+] increased in HPFM-perfused 
and unperfused branches of silver birch from the bottom to the top of the crown 
at the FAHM site (Figure 4 in Paper IV). We saw a similar trend in large trees 
growing in a natural forest stand, where [K+] averaged 16.6 ± 1.6 ppm for shade 
shoots and 24.3 ± 3.0 ppm for sun shoots (Paper III). A similar spatial pattern 
was also found in another study in silver birch (Sellin et al., 2013), where native 
xylem sap potassium ion concentration increased from 81 ± 6.7 ppm at the crown 
base to 111 ± 8.6 ppm in the upper crown (P < 0.001). Similar spatial trends in 
[K+] and sap electrical conductivity (σsap) have been recorded also in laurel plants 
(Laurus nobilis L.; Nardini et al., 2010). In hybrid aspen (Paper I), [K+] varied 
with tree height (HT), and σsap varied with HT and relative branch height (HBrel). 
[K+] and σsap increased with HBrel and decreased with increasing HT, confirming 
the same trend – xylem sap ionic content increases from the bottom to the top. 
Branches sampled from taller trees were located lower on a relative scale. Shoots 
located relatively higher in the canopy exhibited higher [K+] in the xylem sap. 
Our data support the idea that the ionic content of xylem sap is upregulated with 
increasing irradiance (Schurr, 1998; Nardini et al., 2010). Upper-canopy branches 
are more exposed to sun and wind, both enhancing transpiration and leading to 
greater water losses from leaves. An effective water transport system is required 
in order to compensate for increasing water losses, keep stomata open, and avoid 
tissue dehydration. Furthermore, ions in the xylem sap contribute to the process 
limiting embolism development and keeping the hydraulic system working.  
 
Table 1. Mean native potassium ion concentrations of xylem sap in silver birch and 
hybrid aspen in different case studies. 

Species Year Tree location  Paper
Native 

[K+] (ppm) Clarification 

Silver 
birch 

2009 average of H and C 
plots in FAHM site IV 43–170 [K+] in different 

tree heights 

2009 Järvselja forest III 7–73 [K+] in different 
tree heights 

2012 Järvselja forest unpublished 
data 9–100 [K+] in different 

tree heights 

Hybrid 
aspen 

2010 buffer zone in FAHM 
site II 8–41 [K+] in control 

branches 

2011 average of H and C 
plots in FAHM site

unpublished 
data 57–230 [K+] in different 

tree heights 

2012 buffer zone in FAHM 
site I 54–230 [K+] circadian 

range  

2018 average of H and C 
plots in FAHM site

unpublished 
data

130 
(average) [K+] on midday 
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Water perfusion under high pressure (Paper IV) diluted the xylem sap and caused 
[K+] to decline roughly by half (P < 0.001) in silver birch. Interestingly, the 
acropetal increasing trend within the canopy remained after flushing the branches 
for 20 minutes with deionized water, which should fill the xylem conduits with 
deionized water. This suggests that living tissues were probably enriching the 
xylem sap with potassium ions during perfusion with HPFM. Metzner et al. 
(2010) showed that adjacent living tissues regulate vessel content by a lateral 
exchange and potassium ions easily move laterally. We did not find statistically 
significant differences in [K+] between control plots and those with increased air 
humidity (Paper IV). In another study in silver birch (Sellin et al., 2013), also no 
differences in [K+] were established between the control and elevated humidity 
conditions. It is meaningful that both studies were carried out on rainy summers. 
Therefore the efficiency of air humidification treatment remained low, which 
could be the reason why [K+] was comparable among the treatments. Environ-
mental conditions at the FAHM site vary remarkably between different growing 
seasons (Godbold et al., 2014). We saw a high variability in native [K+] of xylem 
sap in hybrid aspen and silver birch between different years and different sites 
(Table 1), although measurements have been made with the same equipment and 
carried out by the same person. Consequently, single case studies on ionic con-
centrations of the xylem sap conducted in a particular year or study site cannot 
sufficiently describe the [K+] dynamics of particular species. 

[K+] and σsap demonstrated pronounced daily courses in hybrid aspen (Figure 1; 
Paper I). [K+] and σsap increased rapidly in the morning after sunrise and reached 
their maxima at noon or after that (12−15 h), then they decreased gradually and 
stayed pretty stable during the night. Similar daily patterns have been described 
for hybrid poplars (Siebrecht et al., 2003) and Mediterranean trees (Trifilò et al., 
2011, 2014), but it is not a universal pattern for all vascular plants. Herdel et al. 
(2001) demonstrated an increase in [K+] of xylem sap in Ricinus communis L. 
plants in the evening or during the dark period at night. In continuous light, 
diurnal variations in nutrient concentrations of the xylem sap disappear, showing 
that they are associated with light availability (Herdel et al., 2001).  

The circadian patterns of [K+] and σsap in aspens depended significantly on soil 
water status and atmospheric conditions (Paper I). The ionic content of xylem 
sap was strongly influenced by photosynthetic photon flux density (PPFD), 
although [K+] and σsap were better associated with atmospheric evaporative 
demand, AED (Table 1 in Paper I). Xylem sap osmolality (Osm) was also highest 
at midday, during the period of highest transpirational water loss, and lowest in 
the late afternoon (18 h). After that it increased gradually during the night (Figure 1). 
Osmolality may be highest also in the morning (Andersen et al., 1995; Sobrado 
& Ewe, 2006) and lowest at midnight (Andersen et al., 1995), as reported for other 
species. Osm depended only on PPFD in hybrid aspens. This indicates that at 
sufficient water supply, daily dynamics of low molecular weight compounds 
(cations, anions, sugars, amino acids, organic acids, etc.) in the xylem sap are also 
primarily driven by light conditions.  
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Figure 1. Daily dynamics of potassium ion concentration ([K+], a), electrical conductivity 
(σsap, b), pH (c) and osmolality (Osm, d) of xylem sap in hybrid aspen. The vertical bars 
indicate ±SE of the means. 
 
The diffusion-supplied nutrients (such as K+) move to the roots primarily via 
diffusion; therefore, they are less affected by transpiration-driven mass flow 
(Tullus et al., 2012). However, potassium uptake depends on water accessibility 
(Ge et al., 2012). Water is held in soil pore space under tension by capillary forces 
(Sperry et al., 2002). If the soil dries, then soil hydraulic conductivity and contact 
between the root surface and soil solution declines (Herdel et al., 2001; Sperry et 
al., 2002). Only a small fraction of total soil K is available to plants (Sardans & 
Peñuelas, 2015; Cornut et al., 2021), and soil drying decreases available K+ 
uptake (Ashley et al., 2006; Sardans & Peñuelas, 2015). For example, [K+] in the 
xylem sap of grapevines was higher in well-watered plants compared to water-
stressed ones (Oddo et al., 2020). Under water deficit, xylem sap [K+] declines in 
Zea mays L. leaves (Bahrun et al., 2002) and in both eucalypt leaves and stems 
(Santos et al., 2021). At the same time, it has been shown that drought stress raises 
branch and shoot xylem sap [K+] in Mediterranian trees (Trifilò et al., 2011, 
2014). [K+] increased with decreasing RH in aspen saplings, illustrating the same 
trend (Table 1 and Figure 5 in Paper I). When VPD is lower, plants lose less 
water and the soil remains moister. In hybrid aspens, [K+] also increased with 
rising soil water potential. Soil water potential measured at a depth of 30 cm 
(ΨS30) and relative air humidity (RH) combined described nearly half (49%) of 
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the total variation in [K+] (Figure 5 in Paper I). Our results suggest that K+ uptake 
is facilitated in moist soil for trees growing in northern temperate forests. 
Reduced VPD increases K absorption and accumulation and also promotes root 
growth in tomato plants (Zhang et al., 2021). In silver birch, low VPD raises the 
number of absorptive root tips (Kupper et al., 2017).  

In Arabidopsis, leaf hydraulic conductance (KL) is regulated by changes in 
xylem sap pH (Grunwald et al., 2021b), but on the circadian scale we did not see 
such a relationship in hybrid aspen. The daily pattern of pH differed qualitatively 
from that of other xylem sap and hydraulic properties, being highest in the 
evening. In the dark, we saw a rapid decline of pH followed by a gradual increase 
in the morning (Figure 1; Paper I). Root xylem sap pH in R. communis demon-
strated a similar circadian pattern: it increased from 6.0 at the end of the dark 
period to 6.6 at the end of the day (Schurr & Schulze, 1995). In Populus deltoides 
L., xylem sap pH of stems and shoots stays relatively constant during the day 
(6.94–7.18; Aubrey et al., 2011), while in congeneric hybrid aspen, we recorded 
substantial diurnal pH variation (average range of 0.6 units). In Quercus 
pyrenaica Willd., xylem sap pH varied from 6.50 and 6.46 in the afternoon and 
morning to 6.10 measured at night (Salomón et al., 2016).  

In hybrid aspen, xylem sap pH increased with declining soil water potential 
(R2 =0.242, P < 0.001). A strong inverse relationship has been shown to exist 
between xylem sap pH and gravimetric soil water content. For example, in tomato 
(Lycopersicon esculentum L.) plants, xylem sap pH increased from pH 5.0 to 8.0 
with soil drying (Wilkinson et al., 1998). Such a pH increase has also been detected 
in other species, but this response is not universal (Sharp & Davies, 2009). Sharp 
and Davies (2009) did not find a significant change in xylem sap pH in response 
to drought in many species. Recent studies show how drought declines apoplast 
pH and leads to sugar accumulation in the xylem (Secchi & Zwieniecki, 2016; 
Pagliarani et al., 2019; Secchi et al., 2021). On a diurnal scale, soil water potential 
is fairly constant and we propose that the increase in pH during the daytime and 
the drop during night-time (Paper I) are most likely associated with embolism 
development and recovery (Sellin et al., 2017b) respectively. Restoration of xylem 
transport capacity needs chemical priming that involves both drop in sap pH and 
accumulation of sugars in nonfunctional vessels. The drop in pH triggers an ion 
efflux from living cells that additionally contributes to apoplastic osmotic con-
centration (Secchi & Zwieniecki, 2012; Secchi et al., 2021). The positive relation-
ship between VPD and the pH of xylem sap in hybrid aspen hints at the coupling 
of pH and plant water loss. 

We established a strong correlation between [K+] and xylem sap electrical con-
ductivity (σsap) of hybrid aspen in Paper I (R2 = 0.748, P < 0.001) and Paper II 
(R2 = 0.907, P < 0.001). Xylem sap always contains different ions and the 
electrical conductivity turns out to be an appropriate characteristic for estimating 
total ionic strength of the xylem sap, as it characterizes the total ion content 
(Siebrecht et al., 2003). The strong correlation between [K+] and σsap indicates that 
potassium ions are prevalent ions and [K+] is suitable for estimating xylem sap 
ionic strength. Our results also corroborate the importance of potassium ions in 
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the regulation of plant water relations. Of course, potassium is a crucial element 
involved in many physiological processes in plants (Cornut et al., 2021).  

 
 

3.2. Environmental effects on hydraulic traits 

Our results suggest that plant hydraulic conductance is enhanced both as a result 
of long-term acclimation to light availability as well as a short-term response to 
incident radiation. Branch hydraulic conductance (KB) of silver birch increased 
considerably with light availability, in the same way as [K+], from bottom to top 
within the tree crowns (Figure 3 in Paper IV). In tall forest trees, sun shoots 
exhibited ~1.3 times higher (P < 0.001) hydraulic capacity than shade shoots 
(Figure 3 in Paper III). A similar trend has also been observed in shoots, leaves, 
and stems of laurel plants (Nardini et al., 2010). An acropetal increase in hydraulic 
efficiency has been revealed also in hybrid aspen (Paper I), where bare branch 
hydraulic conductance (KB) depended on tree and branch height characteristics. 
Branch hydraulic conductance increased with relative branch height in the crown 
(Figure 6 in Paper I). The anatomical study on hybrid aspen branch-wood shows 
a solid dependence of hydraulically relevant vessel traits on canopy position 
(Jasińska et al., 2015). 

Leaf hydraulic conductance increases rapidly when exposed to light because 
light is among the primary environmental factors influencing plant demand for 
water, as well as leaf water transport capacity (Holbrook & Zwieniecki, 2011; 
Fitter & Hay, 2012). Upper branches and leaves have to cope with higher tempera-
tures and are more exposed to irradiance and wind than shaded branches and 
leaves. Therefore they experience higher water demand and need an efficient water 
transport system for normal functioning. The light-induced enhancement of liquid-
phase conductance reflects trees’ response to environmental gradients developing 
in forest canopies. In saplings of silver birch, higher hydraulic efficiency of upper-
crown leaves is associated with larger vascular bundles and higher vein density 
per unit area (Sellin et al., 2019). Growing for years in different environments along 
the vertical canopy profile affects the xylem anatomy of both stems and leaves. 
Shade leaves have a lower need to invest carbon into producing an efficient 
venation network than sun leaves (Woodruff et al., 2008; Noyer et al., 2017; 
Alber et al., 2019; Sellin et al., 2019, 2021).  

We observed light-mediated effects on KB also on a short time scale; current 
PPFD significantly impacted KB (P < 0.001) in 25-year-old silver birch trees 
grown in a natural forest stand. The shade shoots were more sensitive to small 
changes at low irradiance (70 to 140 μmol m–2 s–1) than sun shoots: KB increased 
by 51% in the shade shoots and 26% in the sun shoots when PPFD increased from 
70 to 330 μmol m–2 s–1 (Figure 2 in Paper IV). Similar stimulation of hydraulic 
conductance in response to rising irradiance has been shown in herbaceous plants 
(Nardini et al., 2005) and different tree species (Tyree et al., 2005; Scoffoni et al., 
2008; Voicu et al., 2008; Aasamaa et al., 2012). Developed in different environ-
ments, shade shoots have adapted to respond to small changes in light availability, 
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while sun shoots can react to changes in high irradiance. Also, light-induced 
enhancement of leaf hydraulic conductance (KL) depends on irradiance (Nardini 
et al., 2005; Sellin et al., 2008). Analogically, sun leaves tend to be more sensitive 
to fast changes in high irradiance (900–1000 μmol m–2 s–1) than shade leaves 
(Õunapuu-Pikas & Sellin, 2020). On a short time scale, KL increases due to the 
changes in the extravascular compartment of leaves and this is attributable to the 
activation or expression of plasma membrane aquaporins (Cochard et al., 2007; 
Dayer et al., 2017). However, not in all species has a link between KL and aqua-
porin expression been proved (Voicu et al., 2009; Ben Baaziz et al., 2012).  

In addition to light intensity, also light quality affects hydraulic conductance 
in silver birch (Table 1 in Paper III). Leaf-blade hydraulic conductance (Klb) was 
highest in blue light, followed by white light, and lowest in red light. Under blue 
light, Klb was on average 1.2 times higher than under white and 1.4 times higher 
than under red light (Figure 1 in Paper III), indicating that blue light with an 
emission maximum at 450–460 nm has a greater enhancing effect on leaf hydraulic 
conductance than white or red light. In bur oak (Quercus macrocarpa Michx.), 
KL also increased under blue and green light compared to other wavelengths (Voicu 
et al., 2008). In five temperate deciduous tree species, low-irradiance blue light 
increased shoot hydraulic conductance (KS) to the same extent as a very high 
irradiance of white light and more than a considerably higher irradiance of red 
light (Aasamaa et al., 2012). In the absence of blue spectral band, KL may be up to 
60% lower (Ben Baaziz et al., 2012). Blue light also increases palisade parenchyma 
and leaf total thickness, and enhances leaf photosynthetic quantum efficiency 
(ΦPSII; Zheng & Van Labeke, 2017). Thicker leaves and thicker palisade paren-
chyma result in better light absorption and higher photosynthetic capacity (Hanba 
et al., 2002). Many genes and proteins like auxin- and gibberellin-related genes, 
photosynthesis- and cryptochromes-related genes, and chlorophyll a/b binding 
protein are upregulated under blue light (Ren et al., 2020). Therefore blue light 
has a greater enhancing effect on leaf hydraulic capacity than white or red light. 
KL is controlled through light-induced changes in membrane permeability of 
either mesophyll or bundle-sheath cells (BSC; Tyerman et al., 2002; Voicu et al., 
2008; Grunwald et al., 2021a). It has been proposed that blue light controls leaf 
hydraulic conductance via the BSC blue light PHOT receptors, which activate the 
BSCs AHA2 H+-pump via an autonomous signaling pathway (Grunwald et al., 
2021a).  

In the plant hydraulic pathway, stems do not represent the major source of 
resistance. Much more resistance is located in shoots in the branch termini 
(Brodersen et al., 2019). Most of the shoot resistance in the hydraulic pathway is 
positioned in leaf blades (Figure 2 in Paper III). At least a third of the whole 
resistance to water flow within the plant is attributable to leaf tissues (Sack & 
Holbrook, 2006; Prado & Maurel, 2013). We saw a considerable redistribution of 
the liquid-phase resistance within the sample shoots in response to different light 
wavelengths. The leaf blades’ role in the whole-shoot resistance increased, and 
bare branch resistance decreased from blue, white to red light in sun and shade 
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shoots (Figure 2 in Paper III). Hydraulic resistance in leaf vascular and extra-
vascular compartments is principally of a similar magnitude (Sack & Holbrook, 
2006). We also recorded changes in the distribution of hydraulic resistance on the 
circadian scale (Figure 4 in Paper I). In the morning, leaf blade resistance starts 
to decrease primarily with increasing blue light. The changes in distribution of 
hydraulic resistance with blue, white and red light support the idea that spectrum-
sensitive light receptors are involved in the regulation of aquaporins (AQPs) in 
the bundle sheath and mesophyll cells (Ben Baaziz et al., 2012). AQPs play a 
central role in regulating plant water relations (Prado & Maurel, 2013; Chaumont 
& Tyerman, 2014; Maurel et al., 2015) because 95% of water movement through 
the plant plasma membrane is attributable to AQPs (Maurel et al., 2008). In walnut 
(Juglans regia L.), light-induced KL is related to PIP1 and PIP2 aquaporin gene 
expression, but in beech (Fagus sylvatica L.) and oak (Quercus robur L.), only 
to PIP1 aquaporins (Ben Baaziz et al., 2012). One has to keep in mind that changes 
in the proportion of liquid-phase resistance allocated to leaves and branches ref-
lects an overall hydraulic system adjustment to various environmental conditions, 
including temperature, wind, air humidity, and water availability.  

Most of the studies on circadian patterns of trees’ hydraulic traits have been 
performed in laboratory conditions (Zwieniecki & Holbrook, 1998; Bucci et al., 
2003; Brodribb & Holbrook, 2004; Lo Gullo et al., 2005; Voicu et al., 2008; 
Cordeiro et al., 2009; Johnson et al., 2009; Locke & Ort, 2015). Less studies have 
investigated this topic in natural conditions (Bucci et al., 2003; Brodribb & Hol-
brook, 2004; Johnson et al., 2009, 2011; Yang et al., 2012; Õunapuu & Sellin, 
2013). The hydraulic properties of hybrid aspen exhibited pronounced circadian 
patterns. Whole-branch hydraulic conductance (Kwb; Figure 2), leaf-blade hydraulic 
conductance (Klb), and petiole hydraulic conductance (KP) varied significantly 
throughout the day (for all P ≤ 0.001), but bare branch hydraulic conductance 
(KB) did not (Figure 3 in Paper I). Hydraulic conductance started to rise slightly 
after midnight, and the process accelerated substantially in the morning, after 
sunrise. Kwb, Klb and KP reached their maxima between 9 and 12 h; afterwards, 
they gradually decreased. Plant species exhibit different circadian patterns of 
hydraulic traits (Lo Gullo et al., 2005; Johnson et al., 2009, 2011). Plant total 
hydraulic conductance often increases in the morning and achieves its maximum 
during the warmest hours of the day when evaporative demand is highest, as 
observed in silver birch (Õunapuu & Sellin, 2013), mahogany (Swietenia macro-
phylla King; Cordeiro et al., 2009) and in Mediterranean evergreens trees − 
Ceratonia siliqua L., Olea europaea L. and Laurus nobilis L. (Trifilò et al., 2014).  
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Figure 2. Daily dynamics of hydraulic conductance of whole branch (Kwb) in hybrid 
aspen. The vertical bars indicate ± SE of the means. 
 
Midday increase of KL may be caused by aquaporin expression and/or activation 
(Lo Gullo et al., 2005; Chaumont & Tyerman, 2014). However, KL may also be 
highest after dawn and may then decrease gradually (Lo Gullo et al., 2005; Voicu 
et al., 2008) or display a gradual increase from the morning to the late afternoon 
(Õunapuu & Sellin, 2013). A midday decline in KL and KP has been reported for 
many species (Bucci et al., 2003; Brodribb & Holbrook, 2004; Johnson et al., 
2009; Yang et al., 2012; Locke & Ort, 2015). This pattern is typical for water-
stressed plants (Bucci et al., 2003; Brodribb & Holbrook, 2006; Cordeiro et al., 
2009) and may also occur in temperate species, with the decline of KL being 15–
66% (Johnson et al., 2009). The midday hydraulic decline is caused by decreased 
leaf water status and embolism formation, and it is generally repaired in the after-
noon (Bucci et al., 2003; Brodribb & Holbrook, 2004; Johnson et al., 2009; Locke 
& Ort, 2015), but the recovery can take place also during the night (Yang et al., 
2012; Trifilò et al., 2015).  

The circadian patterns of hydraulic traits in aspen trees depend strongly on 
atmospheric conditions that determine water losses from the foliage. Kwb, Klb, and 
KP were positively correlated with photosynthetic photon flux density (PPFD), 
atmospheric vapour pressure deficit (VPD), air temperature (TA), and negatively 
with relative air humidity (RH; Paper I). Similar relationships between hydraulic 
traits and atmospheric conditions have been shown for silver birch (Õunapuu & 
Sellin, 2013). A positive correlation between KL and PPFD has been reported also 
for other deciduous and evergreen trees (Lo Gullo et al., 2005). KB of aspen trees 
at the FAHM site (Paper I) was affected only by atmospheric evaporative demand 
(AED), but not by irradiance. The leafless branch does not have light-sensing 
systems. However, stems and branches have to provide an adequate water supply 
to the leaves, and their hydraulic capacity is modulated through other means. The 
hydraulic properties of hybrid aspen were primarily affected by air temperature 
(Table 2 in Paper I). In silver birch, TA has the strongest effect, along with RH, 
on KL (Õunapuu & Sellin, 2013). Due to the dual effect, temperature has a con-
siderable influence on plant hydraulics on a daily scale: low temperatures decrease 
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plant hydraulic capacity (Cochard et al., 2000b; Ribeiro et al., 2009), while higher 
temperatures raise it (Matzner & Comstock, 2001; Sellin & Kupper, 2007). 
Indeed, temperature has been shown to be the primary explanatory variable of 
changes in KL (Sellin & Kupper, 2007), but the temperature effects cannot be 
explained by changes in the water viscosity alone (Sack et al., 2004). Protoplast 
permeability has also been shown to be involved in temperature effects on KL 
(Sellin & Kupper, 2007). All studied atmospheric factors (TA, PPFD, RH and VPD) 
drove the hydraulic conductance of hybrid aspen. As these factors are inter-
related, the differences in their significance were small. Our result suggests that 
a combination of different atmospheric characteristics, rather than one prevailing 
factor, shapes the circadian patterns of trees’ hydraulic properties in natural 
environments. 

We did not establish any statistically significant effects of air humidity mani-
pulation on the hydraulic properties of silver birch (Paper IV). Nevertheless, the 
impact of the humidification treatment has been detected on various traits, such 
as tree gas exchange, root characteristics, growth rate, nutrient status, but also on 
some hydraulic and anatomical characteristics (Sellin et al., 2013; Parts et al., 
2013; Tullus et al., 2014; Aasamaa et al., 2014; Lihavainen et al., 2016; Sellin 
et al., 2017b; Oksanen et al., 2019; Sellin et al., 2019; Rosenvald et al., 2021). In 
silver birch, leaf blade hydraulic conductance (Klb; P = 0.023) and petiole con-
ductivity (P = 0.046) decreased in humified plots compared to control plots, which 
results from the declined transpirational flux and lower demand for transport 
capabilities (Sellin et al., 2013, 2019). Reduction in hydraulic efficiency in 
laminae and petioles of these trees is primarily attributable to changes in vessel 
size (Sellin et al., 2019). As for stem xylem, increasing air humidity influences its 
hydraulic efficiency, but not the functional vulnerability, in hybrid aspen (Sellin 
et al., 2017b). Humidification treatment increased wood density and decreased 
leaf area, leading to 34% higher average Huber values in humified plots compared 
to the control (Sellin et al., 2017b). Our previous studies (Sellin et al., 2013, 
2017a, 2019; Tullus et al., 2014) suggest that the impact of elevated air humidity 
on plant hydraulic properties is complex and depends largely on the weather con-
ditions prevailing during the growing period. Rainy summers (like 2009) and 
consequent low humidification efficiency could be the reason why we did not 
find significant treatment effects on hydraulic properties. This finding indicates 
the relatively conservative nature of the wood anatomical structure in silver birch. 
The same has been reported for hybrid aspen. The increasing atmospheric humidity 
predicted for higher latitudes leads to modest changes in the structure and 
functioning of the hybrid aspen xylem (Jasińska et al., 2015). 
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3.3. Relationships between hydraulic and  
xylem sap properties  

We established a fair relationship between KB and [K+] in hydraulically sampled 
branches of silver birch (R2 = 0.917, P = 0.003; Figure 5 in Paper IV and R2 = 
0.281, P < 0.05, Paper III). In hybrid aspen, branch hydraulic properties were 
modulated by the ionic content of the xylem sap: Kwb, Klb, and KP depended on 
σsap and [K+] (Figure 3; Table 3 in Paper I), while the upregulation of branch 
hydraulic conductance in the morning (from 3 to 9 h) was strongly correlated 
(R2= 0.940, P = 0.001) with [K+]. A strong positive relationship between mean 
values of hydraulic conductance of bare branches (KB) and [K+] has also been 
found for silver birch (Sellin et al., 2013). The relationship depicted in Figure 3 
is meaningful as it proves the role of ions (with the prevalence of K+) in the up-
regulation of KL. These significant relationships between the hydraulic properties 
and [K+] of the xylem sap evidence that potassium ions are involved in regulating 
the hydraulic efficiency of both stems and leaves. It has been shown that the ionic 
effect is biggest under low ion concentrations (0–10 mM; van Ieperen and van 
Gelder, 2006; Zwieniecki et al., 2001). Overall, the ionic effect is species-specific 
and varies among different species and environmental conditions (Boyce et al., 
2004; Jansen et al., 2011; Nardini et al., 2011b). 
 

 
Figure 3. Mean electrical conductivity of xylem sap (σsap) versus leaf blade hydraulic 
conductance (Klb) in hybrid aspen; n =16. The data has been divided into two groups 
according to soil water potential at 30 cm depth (empty circles ΨS30 > –0.53 kPa; filled 
circles ΨS30 < –0.53 kPa). 
 
The presence of K+ in the perfused solution increased the hydraulic conductivity 
of branch xylem in aspen saplings by 31–35% compared to deionized water 
(Figure 4, unpublished data). For laurel plants, an increase of xylem hydraulic 
conductivity by ~30%, due to the ionic effect, has been reported (Gascó et al., 2006; 
Nardini et al., 2010). Replacing deionized water with ion solution in experiments 
may increase stem hydraulic conductance up to 58%, but it varies considerably 
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among species (Nardini et al., 2011b; Scoffoni et al., 2017). Nardini et al. (2011b) 
showed that stem hydraulic conductance increased on average by 17.1% among 
35 angiosperm species. The ionic effect on xylem conductivity ranged from 1.9% 
in Quercus ilex to 58% in Tilia platyphyllos. Only five species out of 35 showed a 
conductivity enhancement of less than 5% (Nardini et al., 2011b).  
 

 
Figure 4. The effect of water saturation level on specific conductivity of the xylem (k) in 
hybrid aspen perfused with solutions differing in potassium ion concentration, fit using 
equation (7): R2=0.28, P<0.001 for [K+]=0 ppm; R2=0.41, P<0.001 for [K+]=65 ppm; 
R2=0.47, P<0.001 for [K+]=130 ppm (unpublished data). Before measurements, embolism 
of the stem segments was artificially induced by the air-injection technique, applying a 
pressure of 2.0 MPa for one hour. The dashed lines mark the specific conductivity at 75% 
water saturation. 
 
A strong ionic effect and an efficient long-distance water transport system are vital 
preconditions in changing and spatially heterogeneous environmental conditions 
for hybrid aspen, a fast-growing tree species with near-anisohydric behaviour 
(Aasamaa et al., 2014; Sellin et al., 2017b; Kupper et al., 2018). In addition, at 
the leaf level, adequate water supply under high AED may be aggravated because 
of the lack of definite coordination between leaf hydraulic and stomatal traits 
(Sellin et al., 2021) and the low hydraulic plasticity of aspen leaves (E. Õunapuu-
Pikas, unpubl.). Jansen et al. (2011) demonstrated a positive correlation between 
ionic effect and vessel grouping parameters, especially the portion of vessel walls 
being in contact with neighbouring vessels. Thus, the strong ionic effect in hybrid 
aspen can be explained by high intervessel connectivity: vessel grouping index is 
1.65–1.70 and pitfield fraction is 68–71% (Jasińska et al., 2015). These values lie 
at the upper end of the ranges of both parameters published for a number of woody 
species from different families (Jansen et al., 2011; Nardini et al., 2012). In addi-
tion, the strong ionic effect observed in our experiment may be associated with 
high PLC, since Gascó et al. (2006) demonstrated an exponential increase of ionic 
effect in stems of L. nobilis with increasing PLC, compared with fully hydrated 
stems. Therefore, usually a higher ion-mediated increase in hydraulic efficiency 
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occurs in embolized stems than in fully hydrated stems (Gascó et al., 2006; 
Nardini et al., 2007). The substantial ion-mediated increase in hydraulic con-
ductance suggests that adjusting the ionic content in xylem sap plays an essential 
role in modulating xylem hydraulic properties to meet environment-driven demand 
for foliage water supply. 

The physico-chemical properties of xylem sap and branch hydraulic traits 
demonstrate coordinated circadian rhythms in hybrid aspens growing in their 
natural environment (Paper I). The branch hydraulic properties depend on the 
ionic content of the xylem sap (Figure 3; Table 3 in Paper I), but atmospheric 
variables may mask this effect on a circadian scale (Table 2 in Paper I). Direct 
impact of environmental conditions tends to outweigh the effects of xylem sap 
ionic content because the first is mediated by several other mechanisms (aqua-
porin activation, viscosity effects, stomatal regulation, etc.). Still, we observed a 
significant positive relationship between means of branch xylem sap [K+] and Kwb 
(R2 = 0.333, P = 0.019) and Klb (R2 = 0.370, P = 0.012). An even stronger relation-
ship occurred between σsap and Kwb (R2 = 0.740, P < 0.001) and Klb (R2 = 0.752, 
P < 0.001; Figure 3).  

Initial hydraulic conductivity (kin) of branch segments of hybrid aspen after 
artificial embolism induction was related to maximum specific conductivity (kmax): 
kin of the embolised sample increased with kmax (R2 = 0.177, P = 0.012). kin depen-
ded on neither air humidity treatment nor [K+]. However, the presence of potas-
sium ions enhanced the initial rate of recovery from cavitation, evidenced by the 
initial slopes of the response curves (Figure 4, unpublished data). K+ accelerates 
embolism recovery, as the 50% saturation was achieved 19% faster and the 75% 
saturation 7–15% faster in branch segments perfused with KCl solution, com-
pared to branch segments flushed with deionized water. Moreover, potassium 
ions may promote compensation for embolism-induced loss of conductivity 
through ion-mediated enhancement of radial water transport capacity through still 
functioning conduits (Trifilò et al., 2008, 2011). Higher potassium content in 
xylem sap might reduce the cavitation-induced loss of stem hydraulic conduc-
tivity through the enhancement of residual conductivity (Trifilò et al., 2008, 2011, 
2014). Native [K+] is usually higher during the summer, the warmest hours of a 
day, and in water stress conditions when embolism occurs (Trifilò et al., 2008, 
2011, 2014). In hybrid aspen saplings, native embolism increased from 16–20%, 
measured in the morning, to 36–41% around midday on summer days (Sellin 
et al., 2017b). [K+] follows the same daily course, responding to decreasing RH 
(Paper I). [K+] and osmolality (Osm) increase, along with rising cavitation in 
water stress conditions (Tyree et al., 1999). The relationship between hydraulic 
traits and Osm turned out to be weaker than that with [K+] and σsap (Paper I). 
That indicates that charged particles, rather than total solute content, in the xylem 
sap is responsible for the short-term modulation of xylem hydraulic conductance 
in trees.  
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3.4. Impact of phloem girdling on branch hydraulic 
conductance and physico-chemical properties of xylem sap 

Our experiment on phloem girdling at the branch base resulted in a decline in 
stomatal conductance (gS), net photosynthetic rate (PN), leaf hydraulic efficiency, 
and in an increase of leaf water potential (ΨL) in hybrid aspen (Figures 1, 3 and 4 
in Paper II). KL of girdled branches decreased about 43% over 3 days after the 
girdling (P = 0.006; Figure 5 in Paper II). Domec and Pruyn (2008) indicated 
that a decline in transpiration causes a rapid decrease in KL in response to girdling 
and might be explained by changes in leaf symplastic compartment and cell 
membrane AQP regulation. Changes in transpirational flux induce coordinated 
up/down-regulation of many aquaporin genes in leaves (Levin et al., 2007; 
Kuwagata et al., 2012). Besides, one cannot exclude the potential influence of 
mechanical injury, which may induce the blocking of vessels by pectin-like 
polysaccharides (Tyree & Zimmermann, 2013), lipid substances (Nemec, 1975), 
or water-soluble proteins (Neumann et al., 2010), reducing the hydraulic conduc-
tance. Altogether, a decline in KL may result from changes in transpiration rate 
(E) and/or driving forces (ΔΨ; Figure 5 in Paper II). E declined due to the 
girdling ~39% over three days in our experiment (Table 2). A significant reduc-
tion in E due to phloem girdling has also been reported for coniferous trees like 
the Canary Island pine (Pinus canariensis C.Sm. ex D.C; López et al., 2015) and 
ponderosa pine (Pinus ponderosa Dougl. ex Law.; Domec & Pruyn, 2008). 
Reduced gS and E resulted in higher leaf water potential (ΨL) in girdled branches 
(Figure 4 in Paper II). Similar response − high ΨL due to declined transpiration 
caused by phloem disruption − has also been described in grapevines (Vitis 
vinifera L.; Williams et al., 2000) and ponderosa pine (Domec & Pruyn, 2008). 
At the same time, we did not detect any differences in branch water potential (ΨB) 
between the control and girdled branches. The decline in gS as a result of girdling 
is a common response observed in grapevines (Williams et al., 2000), olives 
(Annabi et al., 2019) and soybean (Glycine max cv. Siverka) plants (Castro et al., 
2019). The decline in gS may be generated by abscisic acid (ABA; Thomas & 
Eamus, 2002; Castro et al., 2019) or carbohydrate accumulation in leaves (Urban 
& Alphonsout, 2007; Domec & Pruyn, 2008). Branch girdling reduces sink 
demand and leads to sugar, starch, and ABA accumulation in leaves (Murakami 
et al., 2008; Rivas et al., 2011; Annabi et al., 2019; Castro et al., 2019). It also 
affects photosynthesis by reducing the quantum yield efficiency of photosystem 
II through feedback loops (Rivas et al., 2007; Urban & Alphonsout, 2007). We 
saw a fair coordination between gas exchange parameters and hydraulic effi-
ciency in girdled branches (R2 = 0.295 – 0.441, P < 0.001).  
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Table 2. Mean values of the physico-chemical properties of xylem sap and basic water 
relations parameters in hybrid aspen branches. [K+] – xylem sap potassium ion concent-
ration; σsap – electrical conductivity; pH – xylem sap acidity; KL – leaf hydraulic conduc-
tance; ΨL – leaf water potential; ΨB – branch xylem water potential; E − transpiration 
rate; gS – stomatal conductance. 

Variable 
Mean

P-value 
Control Girdled

[K+] (mM) 0.44 0.65 0.180 
σsap (mS cm–1) 0.59 0.64 0.557 
pH 6.3 6.5 0.185 
KL (mmol m–2 s–1 MPa–1) 6.64 3.78 0.006 
ΨL (MPa) –1.19 –0.67 0.002 
ΨB (MPa) –0.47 –0.45 0.900 
E (mmol m–2 s–1) 4.66 0.61 <0.001 
gS (mol m–2 s–1) 0.454 0.078 <0.001 

 
The phloem girdling experiment indicated that the decline in KL was not 
associated with xylem sap ionic content in hybrid aspen. It has been reported that 
phloem girdling reduces branch xylem hydraulic conductance and osmotic con-
centration of the xylem sap simultaneously in two Acer species (Zwieniecki et al., 
2004). Girdling induced a decrease of [K+] of the xylem sap also in Diospyros 
kaki stems (Fumuro, 1998). Stem girdling also inhibits refilling of the embolized 
vessels (Salleo et al., 2004), which depends on xylem sap ionic content (Gascó 
et al., 2006; Trifilò et al., 2008, 2011, 2014). Ions are released into the stem xylem 
from living tissues like the phloem (De Boer & Volkov, 2003; Zwieniecki et al., 
2004), through which xylem and phloem functioning are partly coupled (Konrad 
et al., 2019). Zwieniecki et al. (2004) explain that phloem girdling leads to a 
decrease of ion concentration in xylem sap because it disturbs the ion exchange 
between phloem and xylem. Our results did not support this mechanism. The 
decline in KL (Table 2) was not accompanied by changes in [K+], σsap, or pH of 
the xylem sap in hybrid aspen trees. Thus, the phloem girdling at branch base did 
not significantly impact those xylem sap properties in hybrid aspen. A similar 
finding has been reported for laurel plants (Nardini et al., 2010). The girdled 
branch remained connected with the tree, and only a tiny part of the phloem was 
removed. Lateral transport between phloem and xylem could still occur in other 
parts of the tree, and ions could have been transported from other parts to the 
manipulated branch. That can explain why we did not find changes in the xylem 
sap properties between control and girdled branches. As potassium recirculates 
between the xylem and phloem (Holbrook & Zwieniecki, 2011), the xylem sap 
[K+] may be enhanced due to the recirculation (Metzner et al., 2010) and this 
helps to avoid cavitation and cope with embolism (Gascó et al., 2006; Trifilò 
et al., 2011). The mechanism of how girdling affects ion recirculation between 
phloem and xylem, and the hydraulic conductance of plants needs further investi-
gation. 
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4. CONCLUSIONS  

Water transfer from roots to leaves is essential for plants in order to keep up photo-
synthesis, to grow and survive. Water transport capacity in fast-growing broad-
leaved trees like silver birch and hybrid aspen is modulated by xylem sap ionic 
content – increased xylem sap potassium ion concentration ([K+]) promotes trees’ 
hydraulic capacity (Papers I and IV). The significant relationships observed 
between hydraulic conductance and [K+] of the xylem sap indicate involvement 
of potassium ions in the regulation of xylem hydraulic efficiency in response to 
changes in the environment. In addition, potassium ions may compensate for the 
embolism-induced loss of conductivity through ion-mediated enhancement of 
lateral movement of water.  

Both xylem hydraulic properties and the physico-chemical properties of xylem 
sap in trees follow circadian patterns driven by environmental conditions. They 
exhibit coordinated circadian rhythms in hybrid aspens growing in their natural 
environment: a significant increase in the morning, with rising sunlight; their 
maxima are achieved during the warmest hours of the day, when evaporative 
demand is highest, after which hydraulic conductance and xylem sap ionic content 
start to decrease. The enhancement of branch hydraulic conductance in the 
morning and in response to growing evaporative demand is associated with the 
upregulation of potassium ion concentration in the xylem sap. Solid correspon-
dence between leaf-blade hydraulic conductance, [K+], and electrical conduc-
tivity of xylem sap suggests that leaf hydraulic efficiency can also be tuned by 
adjusting sap ionic strength (Paper I). 

Daily dynamics of xylem sap [K+] depends significantly on both soil water 
status and atmospheric conditions. Hydraulic properties of branches and leaves 
are driven by atmospheric evaporative demand (TA, RH and VPD) and irradiance, 
indicating that different environmental characteristics, combined, shape the cir-
cadian patterns of trees’ hydraulic traits in natural habitats. In uncontrolled field 
conditions, highly variable atmospheric factors tend to mask the ionic effect: the 
direct impact of environmental conditions on plant hydraulic efficiency out-
weighs that of xylem sap properties (Paper I). 

Phloem transport disruption by phloem girdling at branch base in hybrid aspen 
reduces transpiration, stomatal conductance, net photosynthetic rate, and leaf 
hydraulic conductance, and increases leaf water potential. At the same time, it 
does not affect xylem sap [K+], electrical conductivity, and pH, indicating that 
lateral transport of ions is not disturbed by the girdling manipulation. The decline 
in leaf hydraulic conductance in response to the manipulation is associated with 
diminished transpirational flux and consequent changes in leaf symplastic 
compartment, rather than with shifts in xylem sap ionic contents (Paper II).  

Branch hydraulic conductance and xylem sap ionic content increase from the 
bottom to the top of the crown. Sun-exposed branches exhibit higher hydraulic 
conductance and xylem sap [K+] than shade shoots, in order to provide adequate 
water supply to the foliage experiencing higher water loss. Moreover, upper-
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canopy leaves commonly exhibit less water saving behaviour, which may be 
beneficial for the fast-growing pioneer species on a daily basis. Shade-acclimated 
shoots, in contrast, are more sensitive to small changes at low radiation levels 
compared to sun shoots. The current study provides experimental evidence for 
light-mediated changes of stem hydraulic conductance in field-grown plants. This 
effect is supported by adjustment of [K+] in xylem sap depending on light avail-
ability (Paper IV). 

Hydraulic conductance is considerably affected by light quality, indepen-
dently of light intensity or total light energy received (Paper III). Blue light has 
a significant enhancing effect on leaf hydraulic conductance (KL) compared to 
white or red light, suggesting that spectrum-sensitive light receptors are involved 
in the regulation of aquaporins in the bundle sheath and mesophyll cells. Spectral 
gradients existing within natural forest stands represent signals for the fine-tuning 
of tree water relations to afford lavish water use in sun foliage and limit the water 
use of shade foliage, sustaining greater hydraulic constraints. Given that natural 
plant canopy depletes blue and red light, KL is probably decreased within the 
canopy both by reduced irradiance and shifts in light spectra. Due to the dif-
ferential sensitivity of KL to the light spectrum, spatial and temporal variation in 
light quality contributes to the (re)distribution of hydraulic resistance within trees 
in response to changing conditions inside forest canopies. 
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SUMMARY IN ESTONIAN 

Ksüleemimahla kaaliumioonide sisalduse ja  
valgustingimuste mõju puude hüdraulilistele omadustele 

Vee transport juurtest lehtedesse on taimede ellujäämiseks ülioluline, kuna mõjutab 
taimede võimet assimileerida süsiniku ja täita teisi elutähtsaid funktsioone. 
Ksüleemi hüdrauliline juhtivus mõjutab transpiratsiooni, lehe veetranspordi-
võimet, õhulõhede juhtivust, fotosünteesi ja puu produktiivsust. Vee kaug-
transporti käivitavaks jõuks on transpiratsioon – vee pidev aurumine lehepinnalt, 
mis kohesiooniteooria kohaselt tõmbab veesammaste kaudu vett mullast lehte-
desse. Peamiselt liigub vesi juurtest lehtedesse mööda trahheedest ja trahheiidi-
sest koosnevat ksüleemi, mille anatoomiast hüdrauliline juhtivus otseselt sõltub. 
Tulenevalt Hagen-Poiseuille’ seadusest juhivad suure diameetriga trahheed pare-
mini vett kui kitsad trahheed ja trahheiidid, kuna kapillaari teoreetiline hüdrauli-
line juhtivus on võrdeline tema raadiuse neljanda astmega. Samas on suured 
trahheed tundlikumad kuivastressile ja kaviteeruvad kergemini. Traditsiooniliste 
arusaamade kohaselt määravad soontaimede ksüleemi hüdraulilise juhtivuse 
üksnes anatoomilise ehituse iseärasused ja juhtkoe veega küllastatuse tase, kuid 
21. sajandi alguses avastati, et lisaks mõjutab hüdraulilist juhtivust ka ksüleemi-
mahla ioonide sisaldus. Seega ei saa ksüleemi veetransporti käsitleda täielikult 
passiivse protsessina. 
 
Doktoritöö käsitleb ksüleemimahla ioonide sisalduse, valgustingimuste mõju ja 
hüdraulika omavahelisi seoseid kiirekasvulistel lehtpuudel. Täpsemalt uurisin: 

• hüdrauliliste ja ksüleemimahla füüsikalis-keemiliste parameetrite ööpäevast 
dünaamikat (I) 

• floeemi sälkamise mõju hüdraulilise juhtivusele ja ksüleemimahla ioonide 
sisaldusele (II) 

• valguse kvaliteedi ja intensiivsuse mõju lehe ja oksa hüdraulilisele juhtivusele 
(III ja IV). 

 
Uuringud tegin Tartu maakonnas looduslikult uuenenud segametsas Järvselja 
Õppe- ja Katsemetskonna maadel ning Kastre vallas Rõkal asuval metsaöko-
süsteemi õhuniiskuse manipuleerimise katsealal (FAHM). Uurimisobjektideks 
olid kiirekasvulised heitlehised puud: hübriidhaab (Populus tremula L. × P. tre-
muloides Michx.) ja arukask (Betula pendula Roth). Hüdrauliliste parameetrite 
mõõtmiseks kasutasin kahte erinevat meetodit − evaporatiivse voo ja kõrgsurve 
meetodit.  

Töös tõestasin ksüleemimahla ioonide sisalduse mõju katsealuste liikide 
hüdraulilisele juhtivusele. Nii hübriidhaaval kui ka arukasel korreleerus ksüleemi-
mahla ioonide sisaldus puidu hüdraulilise juhtivusega. Suurenenud ksüleemi-
mahla K+ sisaldus suurendab hüdraulilist juhtivust, viidates K+ osalusele taimede 
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veevahetuse regulatsioonis. Ioonide kontsentratsioonist sõltuvad ksüleemi 
hüdraulilise juhtivuse muutused on tingitud ksüleemirakkude-vaheliste koobas-
pooride membraanidel asuva pektiinmaatriksi paisumisest ja kokkutõmbumisest, 
kuna pektiini maatriks reageerib ioonide sisaldusele ksüleemimahlas. Selle täpne 
mehhanism on seni veel teadmata. Lisaks kiirendab ksüleemimahla K+ sisaldus 
kavitatsioonist taastumist, kuna kaalium soodustab vee lateraalsuunalist trans-
porti trahheede ja trahheiidide vahel. Ksüleemimahla kõrge ioonide sisaldus võib 
soodustada katkenud veesammaste taastumist ksüleemis ja seeläbi vähendada 
embolismist tingitud veetranspordi vähenemist. 

Puude hüdraulilist juhtivust iseloomustab teatud ööpäevane dünaamika. 
Hübriidhaava ksüleemimahla ioonide sisalduse ja hüdrauliline juhtivuse öö-
päevased rütmid on koordineeritud – hommikul päikesetõusuga mõlemad suure-
nevad, saavutavad maksimumi keskpäeva paiku või natuke pärast seda, kui 
aurumine lehepinnalt ja veenõudlus on kõige suuremad. Seejärel hakkavad mõle-
mad aeglaselt vähenema. Selline ööpäevane dünaamika on iseloomulik paras-
niiskete koosluste puudele, kus vesi ei ole limiteerivaks faktoriks. Kuivastressi 
korral puude keskpäevane hüdraulilise juhtivus väheneb oluliselt, millest taastu-
mine toimub kas pärastlõunal või öösel. Valguse intensiivsus ja atmosfääri-
faktorid mõjutasid oluliselt nii hübriidhaava hüdraulikat kui ka ksüleemimahla 
omadusi, ent atmosfäärifaktorite (fotosünteetiliselt aktiivse kiirgusvoo tihedus, 
õhutemperatuur, suhteline õhuniiskus, atmosfääri veeaururõhu defitsiit) suur 
varieeruvus varjutas hübriidhaava ksüleemimahla ioonide sisalduse mõju hüdrau-
lilisele juhtivusele. Lehelaba, leherootsude ja kogu oksa hüdrauliline juhtivus 
sõltusid oluliselt kõigist mainitud keskkonnafaktoritest, kõige enam õhutempera-
tuurist. Oksa puitunud osa hüdrauliline juhtivus sõltus eelkõige atmosfääri eva-
poratiivsest nõudlusest (AED), kuid mitte valguse intensiivsusest. Ksüleemi-
mahla ioonide sisaldus sõltus aga mulla veesisaldusest (mulla veepotentsiaalist) 
ja atmosfääri nõudlusest. Mulla veesisaldus mõjutab vahetult ioonide omastamise 
efektiivsust mullast. Tulemused kinnitavad, et keskkonnatingimused mõjutavad 
otseselt hübriidhaava hüdraulilist juhtivust ja ksüleemimahla parameetreid, kuid 
tegemist on erinevate faktorite koosmõjuga. Hüdraulilise efektiivsuse kiire regu-
leerimine vastavalt muutuvatele keskkonnatingimustele võimaldab taimedel 
maksimeerida süsiniku omastamist, mis on kiirekasvuliste liikide jaoks oluliseks 
funktsionaalseks tunnuseks.  

Ksüleemimahla ioonide sisaldus ja oksa hüdrauliline juhtivus suurenevad 
koordineeritult liikumisel võra aluselt ladva suunas. Võra ülaosas, valgusele hästi 
eksponeeritud okste K+ sisaldus ja hüdraulilised parameetrid on oluliselt kõrge-
mad kui võra alaosas paiknevate varjuokste vastavad näitajad. Veetranspordi seisu-
kohast on valgusoksad oluliselt efektiivsemad kui varjuoksad, kuna keskkonna-
tingimusest johtuvalt on valgusokstes ja eelkõige lehtedes juhtkoed tugevamini 
arenenud. Hüdrofiilsete transportvalkude − akvaporiinide (AQP) − ekspressioon 
või aktivatsioon rakumembraanidel alandab takistust vee liikumisele lehe 
ekstravaskulaarsel teekonnal. Hüdraulilise juhtivuse ja ksüleemimahla K+ 
sisalduse dünaamika ajaline kattuvus sõltuvalt valguse intensiivsusest viitab, et 
kaaliumioonid reguleerivad tüve hüdraulilist juhtivust, mis reageerib ka valguse 
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intensiivsuse muutustele. Võrreldes valgusvõrsetega on varjuvõrsed valguse 
muutustele tundlikumad väikeste kiirgustasemete korral. Lisaks valguse 
intensiivsusele mõjutab hüdraulilist juhtivust ka valguse kvaliteet – sinine valgus 
stimuleerib lehtede hüdraulilist juhtivust oluliselt rohkem kui valge või punane 
valgus. Kuna lehed moodustavad väga suure osa (>30%) kogu puu hüdraulilisest 
takistusest, muudab erineva lainepikkusega valgus vedela faasi takistuse jaotust 
puudes. Valguse kvaliteet mõjutab hüdraulilist juhtivust läbi valgusretseptorite, 
mis osalevad akvaporiinide ekspressioonis.  

Floeemi sälkamine oksa alusel põhjustab hübriidhaaval transpiratsiooni, õhu-
lõhede juhtivuse, fotosünteesi ja hüdraulilise juhtivuse drastilist langust ning lehe 
veepotentsiaali tõusu. Samas ei mõjutanud floeemitranspordi blokeerimine 
ksüleemimahla füüsikalis-keemilisi omadusi – ei ksüleemimahla K+ sisaldust, 
elektrilist juhtivust ega pH-d, viidates sellele, et ioonide lateraalne transport ning 
nende retsirkulatsioon floeemi ja ksüleemi vahel ei ole hübriidhaaval floeemi 
sälkamisest mõjutatud. Järelikult ei saa ksüleemi hüdraulilise juhtivuse vähene-
mine sälgatud okstes võrreldes intaktsete okstega olla seotud ksüleemimahla 
katioonide sisaldusega, vaid sõltub pigem muutustest lehe sümplastses kompo-
nendis, mis on indutseeritud transpiratsioonivoo aeglustumisest. Täpsed mehha-
nismid, mis käivituvad floeemitranspordi häirumise tagajärjel, vajavad veel täien-
davaid uuringuid. 

Puude veetranspordisüsteemi ehitus ja funktsioneerimine mõjutavad oluliselt 
puude kasvu, konkurentsivõimet ja produktiivsust. Teadmised puude veevahetuse 
toimimisest ja seda mõjutavatest keskkonnateguritest aitavad meil ennustada 
puude kohanemisvõimet tuleviku kliimatingimustega ja mõista ökosüsteemide 
toimimist tervikuna.  
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