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Chapter 1

Introduction

1.1 Background

Wojtaszczyk [W, page 285] writes: “The factorization theorems . . . assert
that the operator is actually better that it seems to be. This is useful in
both ways; we get stronger information once we prove something weaker or
conversely we show that “very” bad behaviour once we show a “moderately”
bad one.”

Let X and Y be Banach spaces over the same, either real or complex,
field K. We denote by L(X,Y ) the Banach space of all continuous linear
operators from X to Y , and by F(X,Y ), F(X,Y ), K(X,Y ), and W(X,Y )
its subspaces of finite rank, approximable, compact, and weakly compact
operators. If A is F , F , K, W, or L, then Aw∗(X∗, Y ) denotes the subspace
of A(X∗, Y ) consisting of those operators which are weak*-weak continuous.

In 1971, Johnson [J] proved that, for any fixed p, every approximable
operator factors through Cp.

In 1973, basing on Johnson’s theorem, Figiel [F, Proposition 3.1] proved
that every compact operator factors through some closed subspace of Cp.

Theorem 1.1.1 (Figiel-Johnson). Let 1 ≤ p ≤ ∞. Let X and Y be
Banach spaces. If S ∈ K(X,Y ), then there exist a closed subspace W of Cp

and operators u ∈ K(X,W ) and v ∈ K(W,Y ) such that S = v ◦ u.

Randtke (see [R, Corollary 7]), Terzioǧlu (see [Te, page 252]), and Dazord
(see [Da, Proposition 5.12]) proved the following factorization results for
compact operators between special spaces.

Theorem 1.1.2 (Randtke). Let X be an L1-space and let Y be a
Banach space. If S ∈ K(X,Y ), then there exists operators u ∈ K(X, `1) and
A ∈ K(`1, Y ) such that S = A ◦ u.
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Theorem 1.1.3 (Terzioǧlu-Dazord). Let X be an L∞-space and let Y
be a Banach space. If S ∈ K(X,Y ), then there exists operators u ∈ K(X, c0)
and A ∈ K(c0, Y )) such that S = A ◦ u.

More than ten years later, in 1987, Graves and Ruess (see [GR2, Theorem
2.1]) extended Theorems 1.1.2 and 1.1.3 from single compact operators to
compact subsets of compact operators as follows.

Theorem 1.1.4 (Graves-Ruess). Let X be an L1-space (respectively,
an L∞-space) and let Y be a Banach space. Let C be a relatively compact
subset of K(X,Y ). Then there exist an operator u ∈ K(X, `1) (respectively,
u ∈ K(X, c0)) and a relatively compact subset {AS : S ∈ C} of K(`1, Y )
(respectively, of K(c0, Y )) such that S = AS ◦ u for all S ∈ C.

The uniform factorization of compact operators in a general setting was
studied by Aron, Lindström, Ruess, and Ryan. In 1999, the following result
was obtained (see [ALRR, Theorem 1]) where ZFJ denotes a universal factor-
ization space of Figiel [F] and Johnson [J] (for instance, ZFJ = (

∑
W⊂Cp

W )p

where W runs through the closed subspaces of Cp for any fixed p; see Section
4.1).

Theorem 1.1.5 (Aron-Lindström-Ruess-Ryan). Let X and Y be
Banach spaces and let C be a relatively compact subset of Kw∗(X∗, Y ). Then
there exist operators u ∈ Kw∗(X∗, ZFJ) and v ∈ K(ZFJ , Y ), and a relatively
compact subset {AS : S ∈ C} of K(ZFJ , ZFJ) such that S = v ◦AS ◦u for all
S ∈ C.

Since, in the setting of Theorem 1.1.4, every single compact operator
factors compactly through `1 (see Theorem 1.1.2) or, respectively, through
c0 (see Theorem 1.1.3), Theorem 1.1.5 easily implies Theorem 1.1.4 (this
was observed in [ALRR, Corollary 4]).

Theorem 1.1.4 and Theorem 1.1.5, together with their proofs in [GR2]
and [ALRR], do not give much information about mapping properties of the
correspondence S → AS , S ∈ C. For instance, one does not even have any
estimate for diam{AS : S ∈ C}.

1.2 Thesis

The main purpose of this thesis is to get quantitative strengthenings
of Theorems 1.1.5 and 1.1.4. This will be done in Chapter 4 of the thesis
(see Theorems 4.2.1 and 4.4.3). For this end, in Chapter 3, we shall apply
a general unified approach, different from [GR2] and [ALRR], and, in our
opinion, much easier, to obtain uniform factorization results for compact
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subsets of compact operators as well as of weakly compact operators. Our
idea (see Lemmas 3.1.1 and 3.1.2 and Theorems 3.2.1, 3.2.2, and 3.2.3 in
Chapter 3) consists in constructing a mapping S → AS from a compact
subset C of weakly compact operators that preserves compact operators, as
well as finite rank operators. This mapping is Hölder continuous, being also
bijective and having a 1-Lipschitz continuous inverse, and diam{AS : S ∈
C} = diam C whenever 0 ∈ C.

Our construction in Chapter 3 will be based on the isometric version
of the famous Davis-Figiel-Johnson-Pe lczyński factorization lemma [DFJP]
due to Lima, Nygaard, and Oja [LNO] that is presented in Chapter 2 (see
Lemma 2.2.1). For comparison, let us remark that the technical proof in
[GR2] relies on Ruess’s characterization [Ru] of relatively compact sets in
Kw∗(X∗, Y ), and uses Saphar’s tensor products machinery [S]. The pa-
per [ALRR] presents two different methods of proof: one being essentially
based on Grothendieck’s characterization [G] of relatively compact sets in
the projective tensor product of Banach spaces, the other – on the Banach-
Dieudonné theorem.

In Chapter 5, we prove a uniform factorization result that describes the
factorization of compact sets of compact and weakly compact operators act-
ing from X to X∗ via Hölder continuous homeomorphisms having Lipschitz
continuous inverses. In Chapter 6, results of Chapters 4 and 5 are applied
to polynomials. We prove a factorization result (similar to the result in
Chapter 5) for compact sets of 2-homogeneous polynomials and quantitative
strengthenings of results on polynomials that are weakly uniformly continu-
ous on the unit ball of a Banach space due to Aron, Lindström, Ruess, and
Ryan, and to Toma.

Chapters 3 and 4 develop results from [MO1], Chapter 5 is based on
[MO2], and main results of Chapter 6 are from [M1] and [MO2].

1.3 Notation

Our notation is rather standard (see, e.g., [LT]).
A Banach space X will always be regarded as a subspace of its bidual

X∗∗ under the canonical embedding. The closed unit ball of X is denoted
by BX . The closure of a set A ⊂ X is denoted by A. The linear span of A
is denoted by span A and the closed convex hull by convA. The circled hull
of A is denoted by circA.

Let us recall that T ∈ L(X∗, Y ) is weak*-weak continuous if and only if
ran T ∗, the range of T ∗, is contained in X. Recall also that Lw∗(X∗, Y ) =
Ww∗(X∗, Y ) (if T ∈ L(X∗, Y ) is weak*-weak continuous, then T (BX∗) is
weakly compact because BX∗ is compact in the weak* topology).
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Let X and Y be isomorphic Banach spaces. Recall that the Banach-
Mazur distance dBM(X,Y ) between spaces X and Y is defined as

dBM(X,Y ) := inf{‖T‖‖T−1‖ : T is an isomorphism from X onto Y }.

The Lp,λ- and Lp-spaces were introduced by Lindenstrauss and Pe lczyńs-
ki [LP] in 1968. Let 1 ≤ p ≤ ∞, 1 ≤ λ < ∞. A Banach space X is said to
be an Lp,λ-space if for every finite-dimensional subspace E of X there is a
finite-dimensional subspace F of X containing E and such that

dBM(F, `mp ) ≤ λ,

where m = dim F , the dimension of F . A Banach space X is said to be
an Lp-space if it is an Lp,λ-space for some λ. For the basic properties of
Lp,λ-spaces and Lp-spaces, the reader is referred to [LP] and [LR] or [JL,
pages 57–60].

We use the symbol `∞ for the Banach space of null sequences, usually
denoted by c0.

Now we recall the definition of the infinite direct sum of Banach spaces
in the sense of `p for 1 ≤ p ≤ ∞ (see, e.g., [Day, pages 35–36] or [W, page
43]).

Let (Xα)α∈A be a family of Banach spaces. Let 1 ≤ p <∞. We denote
by

(
∑
α

Xα)p

the Banach space of all functions f : A → ∪α∈AXα such that f(α) ∈ Xα

whenever α ∈ A, for which the norm

‖f‖p = (
∑
α

‖f(α)‖p)1/p <∞.

We denote by
(
∑
α

Xα)∞

the Banach space of all functions f : A → ∪α∈AXα such that f(α) ∈ Xα

whenever α ∈ A, for which the norm

‖f‖∞ = sup
α
‖f(α)‖ <∞,

and for every ε > 0 the set

{α ∈ A : ‖f(α)‖ > ε}
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is finite. The space (
∑

αXα)p will be called the direct sum of Banach spaces
(Xα) in the sense of `p (where `∞ denotes the space c0).

Recall that (
∑

αXα)p is reflexive whenever 1 < p < ∞ and the spaces
Xα are all reflexive (see, e.g., [Day, page 36]).

The basic notions and theorems of the theory of Banach spaces and
locally convex spaces, that we shall use, can be found, for instance, in [D2],
[HHZ1], [HHZ2], [LT], and [SW].
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Chapter 2

Isometric version of the
Davis-Figiel-Johnson-
Pe lczyński
factorization

All the main results of this thesis are based on, and some of them are for-
mulated in terms of, the famous Davis-Figiel-Johnson-Pe lczyński factoriza-
tion construction and lemma (see [DFJP, pages 313–314]) from 1974. More
precisely, we shall not rely on the classical Davis-Figiel-Johnson-Pe lczyński
factorization, but we shall rely on its isometric version obtained by Lima,
Nygaard, and Oja [LNO] in 2000.

Because of the seminal importance of the Lima-Nygaard-Oja isometric
version of the Davis-Figiel-Johnson-Pe lczyński factorization for the results
in our thesis, in this chapter, we shall give a rather detailed treatment of it,
basing on [LNO, pages 328-329] and [DFJP, pages 313-314].

Let us notice that monographical treatments of the Davis-Figiel-John-
son-Pe lczyński factorization construction are contained, for instance, in [D1,
pages 160-162], [D2, page 228], [DU, pages 250-251], [HHZ2, pages 227-228],
and [W, pages 51-52]. In particular, the proofs of the reflexivity of the
factorization space given, for instance, in [D2] and [W] are different from
the original one in [DFJP] (see Remark 2.2.2 below).
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2.1 Quantitative version of the Davis-Figiel-John-
son-Pe lczyński factorization construction

Let a > 1. Let X be a Banach space and let K be a closed absolutely
convex subset of BX , the closed unit ball of X. For each n ∈ N, put

Bn = a
n
2K + a−

n
2BX .

Remark 2.1.1. In the classical Davis-Figiel-Johnson-Pe lczyński con-
struction, a = 4, that is,

Bn = 2nK + 2−nBX ,

and K is a bounded absolutely convex subset of X.

Proposition 2.1.2. The set Bn is absolutely convex and absorbing.

The proof of Proposition 2.1.2 is a straightforward easy verification.
Recall that if A is an absorbing subset of a vector space X, then the

non-negative real function pA on X, defined by

pA(x) = inf{λ > 0 : x ∈ λA}, x ∈ X,

is called the Minkowski functional of A.
Let us denote the Minkowski functional of the set Bn by ‖ · ‖n and the

norm of the Banach space X by ‖ · ‖.

Proposition 2.1.3. The Minkowski functional ‖ · ‖n is a norm and it
is equivalent to the norm ‖ · ‖.

The proof of Proposition 2.1.3 uses that

Bn ⊂ a
n
2BX + a−

n
2BX ⊂ a

n
2BX + a

n
2BX = 2a

n
2BX ,

BX = {0}+ a
n
2 a−

n
2BX ⊂ a

n
2 a

n
2K + a

n
2 a−

n
2BX = a

n
2Bn,

and the following well-known fact.

Lemma 2.1.4. Every bounded absolutely convex absorbing subset A of a
normed space X defines a norm on X; this norm is the Minkowski functional
pA of the set A.

Put

‖x‖K =
( ∞∑

n=1

‖x‖2
n

)1/2

and define XK = {x ∈ X : ‖x‖K <∞}.
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Proposition 2.1.5. XK is a linear subspace of the Banach space X and
(XK , ‖ · ‖K) is a normed space.

Proposition 2.1.5 can be easily proved relying on Proposition 2.1.3 and
using the triangle inequality in the sequence space `2.

The function f described in the next result was introduced in [LNO, page
328] as important ingredient of the isometric factorization construction.

Proposition 2.1.6. Function f : (1,∞) → (0,∞),

f(a) =
( ∞∑

n=1

an

(an + 1)2
) 1

2
, a ∈ (1,∞),

is continuous, strictly decreasing, lima→1+ f(a) = ∞, and lima→∞ f(a) = 0.

Proof. Let a ∈ (1,∞). Then

∞∑
n=1

an

(an + 1)2
=

∞∑
n=1

an

a2n + 2an + 1
≤

∞∑
n=1

an

a2n
=

∞∑
n=1

1
an

<∞,

hence the series defining the function f converges. Therefore f : (1,∞) →
(0,∞).

Let a1, a2 ∈ (1,∞) be such that a1 < a2. For every n ∈ N,

an
1

(an
1 + 1)2

>
an

2

(an
2 + 1)2

. (1)

Indeed, the inequality (1) holds if and only if

(an
2 + 1)2

an
2

>
(an

1 + 1)2

an
1

,

i.e.,

an
2 +

1
an

2

> an
1 +

1
an

1

,

i.e.,

an
2 − an

1 >
1
an

1

− 1
an

2

,

i.e.,

an
2 − an

1 >
an

2 − an
1

an
1a

n
2

,

which holds because an
1a

n
2 > 1 and an

2 − an
1 > 0. Hence the function f is

strictly decreasing.
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Let us fix a ∈ (1,∞) and let a0 ∈ (1, a). Then a ∈ (a0,∞). Let us show
that f is continuous in (a0,∞). Since for every n ∈ N,

an

(an + 1)2
≤ 1
an

≤ 1
an

0

, a ∈ (a0,∞),

and
∞∑

n=1

1
an

0

<∞,

the series, defining f , converges uniformly in (a0,∞). Consequently the
function f is continuous in (a0,∞) and therefore also in a.

Using then that

0 ≤ f(a) =
( ∞∑

n=1

an

(an + 1)2
) 1

2 ≤
( ∞∑

n=1

1
an

) 1
2

and
∞∑

n=1

1
an

=
1

a− 1
→ 0

whenever a→∞, we have f(a) →a→∞ 0.
Let a ∈ (1,∞) and notice that∫ ∞

1

at

(at + 1)2
dt ≤ (f(a))2.

Denoting at = x, we have∫ ∞

1

at

(at + 1)2
dt =

∫ ∞

a

1
(x+ 1)2 ln a

dx =
1

ln a

∫ ∞

a

1
(x+ 1)2

dx

=
1

(1 + a) ln a
→∞

whenever a→ 1+. Therefore f(a) →a→1+ ∞.

Corollary 2.1.7. There exists exactly one number a ∈ (1,∞) such that
f(a) = 1 or, equivalently,

∞∑
n=1

an

(an + 1)2
= 1.

Proof. By Proposition 2.1.6 there exist a0 > 1 and b0 > a0 such that
f(a0) ≥ 1 and f(b0) ≤ 1, respectively. By the Bolzano-Cauchy theorem,
the function f attains each value in [f(b0), f(a0)]. Hence there exists a ∈
[a0, b0] ⊂ (1,∞) such that f(a) = 1.

17



Remark 2.1.8. By [LNO] a “good” estimate of a in Corollary 2.1.7 is
exp(4/9). Hence

1
4

+
1

ln a
≈ 5

2
.

2.2 Isometric version of the Davis-Figiel-Johnson-
Pe lczyński factorization lemma

Let a be the unique solution of the equation
∞∑

n=1

an

(an + 1)2
= 1, a > 1

(see Corollary 2.1.7).

Lemma 2.2.1 (Davis-Figiel-Johnson-Pe lczyński-Lima-Nygaard-
Oja). Let X be a Banach space and let K be a closed absolutely convex sub-
set of BX , the closed unit ball of X. Let XK be the normed space described
in Section 2.1, let BXK

be the closed unit ball of XK , and let JK : XK → X
denote the identity embedding. Then the following holds.

(i) XK = (XK , ‖ · ‖K) is a Banach space and ‖JK‖ ≤ 1.
(ii) K ⊂ BXK

⊂ BX .
(iii) If x ∈ K, then ‖x‖2

K ≤ (1/4 + 1/ln a)‖x‖.
(iv) The X-norm and XK-norm topologies coincide on K.
(v) J∗∗K is injective.
(vi) JK is a compact operator if and only if K is a compact subset of X;

in this case XK is separable.
(vii) XK is reflexive if and only if K is a weakly compact subset of X.

Proof. (i) Let Xn = (X, ‖ · ‖n). By Proposition 2.1.3 the norm ‖ · ‖n is
equivalent to the norm ‖ · ‖ of the space X and therefore Xn is a Banach
space. Recall that (see Section 1.3 or [W, page 43])( ∑

n

Xn

)
2

= {(x1, x2, ...) : xn ∈ Xn,
∞∑

n=1

‖xn‖2
n <∞}

is a Banach space with

‖(xn)‖ =
( ∞∑

n=1

‖xn‖2
n

) 1
2
.

Let us define a mapping ϕ : XK → (
∑

nXn)2 by

ϕx = (x, x, ...), x ∈ XK .

18



Since for every x ∈ XK

‖x‖2
K =

∞∑
n=1

‖x‖2
n <∞,

we have ϕx ∈ (
∑

nXn)2 and

‖ϕx‖ =
( ∞∑

n=1

‖x‖2
n

) 1
2 = ‖x‖K .

Since ϕ is also linear, we get that ϕ is a linear isometry from the normed
space XK into the Banach space (

∑
nXn)2.

We know that ϕ(XK) is a subspace of the space (
∑

nXn)2. Consider a
sequence (xn, xn, ...), xn ∈ XK . Let us assume that

(xn, xn, ...) →n (a1, a2, ...) ∈
( ∑

n

Xn

)
2
.

Then,
xn →n a1,

xn →n a2,

... .

Hence a1 = a2 = ... =: x and x ∈ XK , i.e.,
∑∞

n=1 ‖x‖2
n < ∞, because

(x, x, ...) ∈ (
∑

nXn)2. Consequently ϕ(XK) is a closed subspace of
(
∑

nXn)2. Now, ϕ(XK) is a Banach space. Since XK is isometrically iso-
morphic to the Banach space ϕ(XK), we have that XK is a Banach space.

Let JK : XK → X be the identity embedding. Let us prove that

‖JKx‖ ≤ ‖x‖K , x ∈ XK ,

i.e.,
‖x‖K ≥ ‖x‖, x ∈ XK .

Using that K ⊂ BX , BX is convex, and

a
n
2

a
n
2 + a−

n
2

+
a−

n
2

a
n
2 + a−

n
2

= 1,

we have for every n ∈ N

a
n
2

an + 1
Bn =

1
a

n
2 + a−

n
2

(a
n
2K + a−

n
2BX) ⊂ BX .
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Hence

‖x‖n ≥
a

n
2

an + 1
pBX

(x) =
a

n
2

an + 1
‖x‖

and

‖x‖K =
( ∞∑

n=1

‖x‖2
n

) 1
2 ≥

( ∞∑
n=1

( a
n
2

an + 1

)2
‖x‖2

) 1
2

=
( ∞∑

n=1

an

(an + 1)2
) 1

2 ‖x‖ = ‖x‖.

(ii) Let x ∈ K. Since x ∈ BX , we have

x ∈ 1
a

n
2 + a−

n
2

Bn

and

‖x‖n ≤
1

a
n
2 + a−

n
2

=
a

n
2

an + 1
for every n ∈ N. Hence

‖x‖K =
( ∞∑

n=1

‖x‖2
n

) 1
2 ≤

( ∞∑
n=1

( a
n
2

an + 1

)2) 1
2 = 1.

Consequently K ⊂ BXK
. The inclusion BXK

⊂ BX is clear from (i).
(iii) We include the proof from [LNO, page 335]. Let x ∈ K, x 6= 0.

Then we have
an/2x+ a−n/2 x

‖x‖
∈ Bn,

so that

‖x‖2
K ≤

∞∑
n=1

1
(an/2 + a−n/2‖x‖−1)2

= ‖x‖
∞∑

n=1

an‖x‖
(an‖x‖+ 1)2

.

Let h(t) = at‖x‖/(at‖x‖+ 1)2, 1 ≤ t <∞. The graph of h has a bell-shaped
form and maxh(t) = 1/4. Let k ∈ N be such that

h(1) ≤ h(2) ≤ · · · ≤ h(k − 1) ≤ h(k) ≥ h(k + 1) ≥ · · · .

Then

‖x‖2
K

‖x‖
≤

∞∑
n=1

h(n) ≤ h(k) +
∫ ∞

1
h(t) dt

≤ 1
4

+
1

ln a

∫ ∞

1+a‖x‖

du

u2

=
1
4

+
1

ln a

(
1

1 + a‖x‖

)
≤ 1

4
+

1
ln a

.
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(iv) Let x, y ∈ K. Then (x− y)/2 ∈ K. By (i) and (iii),

‖x− y‖2 = ‖JK(x− y)‖2 ≤ ‖x− y‖2
K ≤

(1
2

+
2

ln a

)
‖x− y‖.

This proves (iv).
(v) For proving that J∗∗K : X∗∗

K → X∗∗ is injective, we shall use the
fact that the operator ϕ∗∗ is injective, where ϕ is the linear isometric oper-
ator defined in (i) of the proof. (Actually ϕ∗∗ is also isometric, since ϕ is
isometric, but we only need the injectivity of ϕ∗∗.)

Recall that
ϕ∗ :

(( ∑
n

Xn

)
2

)∗
→ X∗

K

and
ϕ∗∗ : X∗∗

K →
(( ∑

n

Xn

)
2

)∗∗
.

Similarly to the proof of `∗2 = `2 and `∗∗2 = `2, one can prove (and this is a
well-known fact; see, e.g., [W, page 44]) that(( ∑

n

Xn

)
2

)∗
=

( ∑
n

X∗
n

)
2

and (( ∑
n

Xn

)
2

)∗∗
=

( ∑
n

X∗∗
n

)
2
.

Let jn : XK → Xn be the natural embedding for every n ∈ N. With
this notation, ϕ : XK → (

∑
nXn)2 is defined by

ϕx = (j1x, j2x, ...), x ∈ XK .

Using the definition of a dual operator, it is immediate that for every
z∗ = (x∗n) ∈ ((

∑
nXn)2)∗ = (

∑
nX

∗
n)2 and for every x ∈ XK

(ϕ∗z∗)(x) =
∞∑

n=1

(j∗nx
∗
n)(x).
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Now, the series
∑∞

n=1 j
∗
nx

∗
n converges in X∗

K . Indeed, for q ∈ N, we have

‖
p+q∑
n=p

j∗nx
∗
n‖ = sup

‖x‖K≤1

∣∣∣( p+q∑
n=p

j∗nx
∗
n

)
(x)

∣∣∣ ≤ sup
‖x‖K≤1

p+q∑
n=p

|x∗n(jnx)|

≤ sup
‖x‖K≤1

p+q∑
n=p

‖x∗n‖‖jnx‖ ≤ sup
‖x‖K≤1

( p+q∑
n=p

‖jnx‖2
) 1

2
( p+q∑

n=p

‖x∗n‖2
) 1

2

≤ sup
‖x‖K≤1

( ∞∑
n=1

‖x‖2
n

) 1
2
( p+q∑

n=p

‖x∗n‖2
) 1

2

= sup
‖x‖K≤1

‖x‖K

( p+q∑
n=p

‖x∗n‖2
) 1

2 =
( p+q∑

n=p

‖x∗n‖2
) 1

2 →p 0,

because (x∗n) ∈ (
∑

nX
∗
n)2.

Thus for every z∗ = (x∗n) ∈ ((
∑

nXn)2)∗,

ϕ∗z∗ =
∞∑

n=1

j∗nx
∗
n

in X∗
K . This implies that

ϕ∗∗x∗∗ = (j∗∗1 x∗∗, j∗∗2 x∗∗, ...), x∗∗ ∈ X∗∗
K .

It is clear that JK = Injn, n ∈ N, where In : Xn → X is the identity
embedding. By Proposition 2.1.3, In : Xn → X is an isomorphism. Thus
I∗∗n is injective.

Now, the injectivity of J∗∗K : X∗∗
K → X∗∗ follows from the equalities

J∗∗K = I∗∗n j∗∗n , n ∈ N;

ϕ∗∗x∗∗ = (j∗∗1 x∗∗, j∗∗2 x∗∗, ...), x∗∗ ∈ X∗∗
K ;

and from the injectivity of I∗∗n , j∗∗n , and ϕ∗∗.
(vi) The compactness of JK means that BXK

is relatively compact in X.
If BXK

is relatively compact, then K is compact, because K ⊂ BXK
(see

(ii)). On the other hand, since ‖ · ‖n is the Minkowski functional of the set
a

n
2K + a−

n
2BX , we have

{x ∈ X : ‖x‖n < 1} ⊂ a
n
2K + a−

n
2BX , n ∈ N.

Since ‖x‖n 6= 0 for all n ∈ N whenever ‖x‖ 6= 0, this clearly implies that

BXK
= {x ∈ X :

∞∑
n=1

‖x‖2
n ≤ 1} ⊂ a

n
2K + a−

n
2BX , n ∈ N.
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Consequently, for each ε > 0, choosing n big enough, a
n
2K is an ε-net for

BXK
. Hence, if K is compact, then BXK

is relatively compact.
By (v), J∗K(X∗) is norm dense in X∗

K . If JK is a compact operator, then
also J∗K is. But compact operators have separable ranges. Hence, X∗

K is
separable, implying the separability of XK .

(vii) Let XK be reflexive. Then BXK
is weakly compact in XK . By (i)

JK : XK → X is continuous and consequently JK : (XK , σ(XK , X
∗
K)) →

(X,σ(X,X∗)) is continuous. Thereby BXK
is weakly compact in X. Then,

by (ii), the weak closure of K is compact in the weak topology. Since the
norm and weak closures of a convex set coincide, K is weakly compact in
X.

Now we shall prove that XK is reflexive whenever K is weakly compact
in X.

We begin with the general observation that always

(J∗∗K )−1(X) = XK .

Indeed, since J∗∗K |XK
= JK , we have

(J∗∗K )−1(X) = {x∗∗ ∈ X∗∗
K : J∗∗K (x∗∗) ∈ X}

⊃ {x ∈ XK : JKx ∈ X} = XK .

Let x∗∗ ∈ X∗∗
K be such that J∗∗K x∗∗ ∈ X. Let us denote x = J∗∗K x∗∗. Then

using the notation of the proof of (v), we have x = I∗∗n (j∗∗n x∗∗) for every
n ∈ N. Therefore for every n ∈ N

j∗∗n x∗∗ = (I∗∗n )−1x = (I−1
n )∗∗x = I−1

n x = x.

Recall that

(j∗∗1 x∗∗, j∗∗2 x∗∗, ...) = ϕ∗∗x∗∗ ∈
( ∑

n

X∗∗
n

)
2
.

Hence
∞∑

n=1

‖j∗∗n x∗∗‖2
n <∞,

i.e.,
∞∑

n=1

‖x‖2
n <∞,

i.e., x ∈ XK . Consequently

x = JKx = J∗∗K x.

23



On the other hand, x = J∗∗K x∗∗. Since J∗∗K is injective by (v), we have
x∗∗ = x. Hence x∗∗ ∈ XK . This proves that

(J∗∗K )−1(X) ⊂ XK .

We also need the following general observation that

J∗∗K (BX∗∗
K

) ⊂ BXK

σ(X∗∗, X∗)

in X∗∗. Indeed, by Goldstine’s theorem

BX∗∗
K

= BXK

σ(X∗∗
K , X∗

K)
.

Using the fact that J∗∗K : (X∗∗
K , σ(X∗∗

K , X∗
K)) → (X∗∗, σ(X∗∗, X∗)) is contin-

uous and J∗∗K (BXK
) = BXK

, we get

J∗∗K (BX∗∗
K

) = J∗∗K (BXK

σ(X∗∗
K , X∗

K)) ⊂ J∗∗K (BXK
)
σ(X∗∗, X∗)

= BXK

σ(X∗∗, X∗)
.

Let K be weakly compact in X. Since K ⊂ X, the σ(X,X∗)- and
σ(X∗∗, X∗)-topologies coincide on K. The set K is σ(X,X∗)-compact and
also σ(X∗∗, X∗)-compact.

Recall that (see the proof of (vi))

BXK
⊂ a

n
2K + a−

n
2BX ,

for every n ∈ N. Since BX ⊂ BX∗∗ , we have

BXK
⊂ a

n
2K + a−

n
2BX∗∗ .

We know that K is σ(X∗∗, X∗)-compact and therefore a
n
2K also is. By

Alaoglu’s theorem a−
n
2BX∗∗ is σ(X∗∗, X∗)-compact. Hence a

n
2K+a−

n
2BX∗∗

is σ(X∗∗, X∗)-compact and therefore σ(X∗∗, X∗)-closed. Consequently

BXK

σ(X∗∗, X∗) ⊂ a
n
2K + a−

n
2BX∗∗

for every n ∈ N. Using that a
n
2K ⊂ X, we have

J∗∗K (BX∗∗
K

) ⊂ BXK

σ(X∗∗, X∗) ⊂ X + a−
n
2BX∗∗

for every n ∈ N. Hence

J∗∗K (BX∗∗
K

) ⊂
∞⋂

n=1

(X + a−
n
2BX∗∗) = X = X

24



in X∗∗. Consequently
J∗∗K (X∗∗

K ) ⊂ X

and
X∗∗

K ⊂ (J∗∗K )−1(X).

Using that (J∗∗K )−1(X) = XK , we have

X∗∗
K ⊂ (J∗∗K )−1(X) = XK ⊂ X∗∗

K .

Hence XK is reflexive.

Remark 2.2.2. Probably the shortest proof of the reflexivity of XK is
given in [D2, page 228]. It relies on Grothendieck’s lemma (see, e.g., [D2,
page 227]) to show that BXK

is weakly compact in X, and uses the fact that
on BXK

the weak topologies from X and XK coincide. Probably the most
elementary proof is contained in [W, page 52]. It shows that the subspace
ϕ(XK) of (

∑
nXn)2 is reflexive relying on the fact that

BX∗∗
n

= a
n
2K + a−

n
2BX∗∗ .

2.3 Isometric version of the Davis-Figiel-Johnson-
Pe lczyński factorization theorem

In 1973, Figiel [F] wrote: “It is not known whether every compact op-
erator can be factorized through a reflexive space.” Recall that the Figiel-
Johnson theorem (see Theorem 1.1.1) gives the factorization of a compact
operator through a reflexive space. Factorization of weakly compact oper-
ators through reflexive spaces was proved by Davis, Figiel, Johnson, and
Pe lczyński [DFJP] in 1974. Recall that if S = u◦v then ‖S‖ ≤ ‖u‖‖v‖. The
Davis-Figiel-Johnson-Pe lczyński factorization theorem enables to choose op-
erators v and u such that ‖u‖‖v‖ ≤ 4‖S‖ (see, e.g., [W, page 51]). In 1980,
Pietsch [P, 2.4.3] essentially established the following isometric version of the
Davis-Figiel-Johnson-Pe lczyński factorization theorem. We shall present its
proof, due to Lima, Nygaard, and Oja [LNO], which is based on the isomet-
ric version of the Davis-Figiel-Johnson-Pe lczyński factorization (see Lemma
2.2.1).

Theorem 2.3.1. Let X 6= {0} and Y be Banach spaces. For every
weakly compact operator S : Y → X there exist a reflexive Banach space Z
and weakly compact operators v : Y → Z and u : Z → X such that S = u◦v,
‖v‖ = ‖S‖, and ‖u‖ = 1.
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Proof. Let S ∈ W(Y,X). We clearly may assume that S 6= 0. Let

K =
1
‖S‖

S(BY ).

Then K ⊂ BX is closed, absolutely convex, and weakly compact in X.
Let us denote the space XK in Lemma 2.2.1 by Z. Recall that, by (i)

and (vii) of Lemma 2.2.1, Z is a reflexive Banach space.
Define operator v : Y → Z by vy = Sy, y ∈ Y . Then v is a linear

operator. Let u denote the identity embedding JK in Lemma 2.2.1. Then
u ∈ L(Z,X) and ‖u‖ ≤ 1. Moreover, clearly, S = u ◦ v.

Since K ⊂ BZ , we have

S(BY ) ⊂ ‖S‖BZ

and therefore

‖v‖ = sup
y∈BY

‖vy‖ = sup
y∈BY

‖Sy‖ = sup
z∈S(BY )

‖z‖ ≤ sup
z∈‖S‖BZ

‖z‖

= sup
z∈BZ

‖S‖‖z‖ = ‖S‖ sup
z∈BZ

‖z‖ = ‖S‖.

Hence v ∈ L(Y, Z) and

‖S‖ = ‖u ◦ v‖ ≤ ‖u‖‖v‖ ≤ 1‖S‖ = ‖S‖.

Therefore
‖S‖ = ‖u‖‖v‖.

Recall that ‖S‖ 6= 0, hence ‖u‖ 6= 0, and

1
‖u‖

‖S‖ = ‖v‖ ≤ ‖S‖.

Consequently ‖u‖ = 1 and ‖v‖ = ‖S‖.
Note that v(BY ) and BZ are relatively weakly compact in Z (because Z

is reflexive). Hence u(BZ) is relatively weakly compact in X. Thus v and u
are weakly compact operators.
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Chapter 3

Uniform factorization for
compact sets of weakly
compact operators

Main results of this chapter are published in [MO1].

3.1 Main factorization lemmas for compact sub-
sets of weakly compact operators

To get the main results of this thesis, in particular, the quantitative
strengthenings of the Graves-Ruess theorem (Theorem 1.1.4) and the Aron-
Lindström-Ruess-Ryan theorem (Theorem 1.1.5), we shall rely on Lemmas
3.1.1 and 3.1.2 below. In these Lemmas we construct a mapping S →
AS from a compact subset C of weakly compact operators that preserves
compact operators, as well as finite rank operators. This mapping is Hölder
continuous, being also bijective and having a 1-Lipschitz continuous inverse,
and diam{AS : S ∈ C} = diam C whenever 0 ∈ C. Our construction will be
based on Lemma 2.2.1, which is the isometric version of the Davis-Figiel-
Johnson-Pe lczyński factorization lemma [DFJP] due to Lima, Nygaard, and
Oja [LNO].

From Chapter 2, let us recall that a > 1 is a unique solution of the
equation

∞∑
n=1

an

(an + 1)2
= 1.

If Y is a Banach space and K is a weakly compact absolutely convex subset
of BY , then YK is the factorization space described in Section 2.1. Recall
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that YK is a linear subspace of Y and JK : YK → Y denotes the identity
embedding.

Lemma 3.1.1. Let X and Y be Banach spaces. Let C be a compact
subset of Lw∗(X∗, Y ). Then there exist a weakly compact absolutely convex
subset K of BY , which is compact whenever C is contained in Kw∗(X∗, Y ),
and a linear mapping Φ : span C → Lw∗(X∗, YK) such that S = JK ◦ Φ(S),
for all S ∈ span C, and ‖JK‖ = 1. Moreover, if S ∈ span C, then

(i) S has finite rank if and only if Φ(S) has finite rank,
(ii) S is compact if and only if Φ(S) is compact.

The mapping Φ restricted to C ∪ {0} is a homeomorphism satisfying

‖S − T‖ ≤ ‖Φ(S)− Φ(T )‖

≤ min
{

d,d1/2
(1

4
+

1
ln a

)1/2
‖S − T‖1/2

}
, S, T ∈ C ∪ {0},

where
d = diam C ∪ {0}.

In particular, if −S ∈ C for some S ∈ C, then

‖Φ(S)‖ ≤ min
{ d

2
,

(d
2

)1/2(1
4

+
1

ln a

)1/2
‖S‖1/2

}
.

Proof. Let

K = conv
{1

d
(S − T )x∗ : S, T ∈ C ∪ {0}, x∗ ∈ BX∗

}
.

Then K is contained in BY , K is closed and absolutely convex, hence weakly
closed.

For proving that K is weakly compact, let us fix an arbitrary ε > 0. We
shall find a weakly compact subset Kε of Y such that K ⊂ Kε + εBY . Then
the weak compactness of K will be immediate from Grothendieck’s lemma
(see, e.g., [D2, page 227]). Let {U1, ..., Un} be an ε-net in the compact subset{1

d
(S − T ) : S, T ∈ C ∪ {0}

}
of Lw∗(X∗, Y ). Denoting by Kε the closed convex hull of the weakly compact
set U1(BX∗) ∪ ... ∪ Un(BX∗), which is weakly compact by a classical result
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of Krein and Šmulian, it is straightforward to verify that K ⊂ Kε + εBY as
desired.

If C is contained in Kw∗(X∗, Y ), then Kε is compact (by a theorem of
Mazur), implying that also K is compact.

Let the Banach space YK and the identity embedding JK : YK → Y with
‖JK‖ ≤ 1 be given as in Lemma 2.2.1. Since K ⊂ BYK

,

‖JK‖ = sup
z∈BYK

‖z‖ ≥ sup
z∈K

‖z‖ ≥ 1
d

sup
S,T∈C∪{0}

‖S − T‖ = 1.

Hence ‖JK‖ = 1.
Let S ∈ span C. Then

ran S ⊂ span {Sx∗ : S ∈ C, x∗ ∈ X∗}
⊂ span {(S − T )x∗ : S, T ∈ C ∪ {0}, x∗ ∈ BX∗}
⊂ span K ⊂ span BYK

= YK .

This permits us to define Φ(S) : X∗ → YK by

Φ(S)x∗ = Sx∗, x∗ ∈ X∗.

Since Φ(S) is algebraically the same operator as S, we see that Φ(S) is
linear, and S = JK ◦ Φ(S).

Let S, T ∈ C ∪ {0}. Then d−1(S − T )x∗ ∈ K ⊂ BYK
for all x∗ ∈ BX∗ .

Hence

‖Φ(S − T )‖ = sup
x∗∈BX∗

‖(S − T )x∗‖K ≤ d, S, T ∈ C ∪ {0}. (2)

This implies, in particular, that ‖Φ(S)‖ < ∞ for all S ∈ span C. Every
Φ(S), S ∈ span C, is also weak*-weak continuous because, J∗K(Y ∗) being
norm dense in Y ∗K (since J∗∗K is injective by Lemma 2.2.1), we have

(Φ(S))∗(Y ∗K) = (Φ(S))∗(J∗K(Y ∗)) ⊂ ((Φ(S))∗ ◦ J∗K)(Y ∗)

= S∗(Y ∗) ⊂ X = X.

Consequently, Φ is a linear mapping from span C to Lw∗(X∗, YK).
Since S ∈ span C and Φ(S) are algebraically the same operators, (i)

clearly holds. Condition (ii) holds by Lemma 2.2.1, (iv), (and by the linearity
of Φ) because d−1S(BX∗) ⊂ K for all S ∈ C.

Finally, let S, T ∈ C ∪ {0}. Then, by (2),

‖S − T‖ ≤ ‖JK‖‖Φ(S − T )‖ = ‖Φ(S)− Φ(T )‖ ≤ d.
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Since d−1(S − T )x∗ ∈ K for all x∗ ∈ BX∗ , using 2.2.1, (iii), we also have

‖Φ(S)− Φ(T )‖ = sup
x∗∈BX∗

‖(S − T )x∗‖K

≤ d1/2(1/4 + 1/ln a)1/2 sup
x∗∈BX∗

‖(S − T )x∗‖1/2

= d1/2(1/4 + 1/ln a)1/2‖S − T‖1/2.

If, in particular, S,−S ∈ C, then the desired estimate for the norm of
Φ(S) = (Φ(S)− Φ(−S))/2 immediately follows from the above.

Lemma 3.1.2. Let X and Y be Banach spaces. Let C be a compact
subset of Lw∗(X∗, Y ). Then there exist a reflexive Banach space Z, a norm
one operator J ∈ Lw∗(X∗, Z), and a linear mapping Φ : span C → L(Z, Y )
satisfying conditions (i) and (ii) of Lemma 3.1.1 such that S = Φ(S) ◦J, for
all S ∈ span C. Moreover, Z = X∗

K and J = J∗K for some weakly compact
absolutely convex subset K of BX , and if C is contained in Kw∗(X∗, Y ), then
Z is separable and J ∈ Kw∗(X∗, Z). The mapping Φ restricted to C ∪ {0} is
a homeomorphism satisfying the conclusions of Lemma 3.1.1.

Proof. Applying Lemma 3.1.1 to the compact subset C∗ = {S∗ : S ∈ C}
of Lw∗(Y ∗, X), we can find a weakly compact absolutely convex subset K
of BX , which is compact whenever C is contained in Kw∗(X∗, Y ) (since S∗

is compact if and only if S is). We can also find a linear mapping

Ψ : span C∗ → Lw∗(Y ∗, XK)

satisfying the conclusions of Lemma 3.1.1 such that S∗ = JK ◦ Ψ(S∗), for
all S ∈ span C, and we know that ‖JK‖ = 1.

Let Z = X∗
K and J = J∗K . Then Z is reflexive by Lemma 2.2.1, (vii),

‖J‖ = 1, and J ∈ Lw∗(X∗, Z) since ran J∗∗K ⊂ X because Z is reflexive. The
reflexive space Z is separable and the operator J is compact whenever C is
contained in Kw∗(X∗, Y ) (see Lemma 2.2.1, (vi)).

Let us define Φ : span C → L(Z, Y ) by

Φ(S) = (Ψ(S∗))∗, S ∈ span C.

The properties of Ψ clearly imply that Φ is a linear mapping satisfying
conditions (i) and (ii) of Lemma 3.1.1. If S ∈ span C, then S∗∗ = S (because
S∗ ∈ Lw∗(Y ∗, X)) and therefore S = (JK ◦ Ψ(S∗))∗ = Φ(S) ◦ J . Since
‖S − T‖ = ‖S∗ − T ∗‖ and ‖Φ(S) − Φ(T )‖ = ‖Ψ(S∗) − Ψ(T ∗)‖, for S, T ∈
span C, the mapping Φ restricted to C∪{0} obviously satisfies the conclusions
of Lemma 3.1.1.
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Remark 3.1.3. Observe that diam Φ(C∪{0}) = diam C∪{0} in Lemmas
3.1.1 and 3.1.2.

3.2 Quantitative versions of the uniform factoriza-
tion for compact sets of weakly compact oper-
ators

For Banach spaces X and Y , let us consider the following infinite direct
sum in the sense of `2 (see Section 1.3):

Z(X,Y ) =
( ∑

K

X∗
K

)
2
⊕2

( ∑
L

YL

)
2

where K and L run through the weakly compact absolutely convex subsets
of BX and BY , respectively. The space Z(X,Y ) is reflexive (see Lemma
2.2.1, (vii)). In Theorems 3.2.1–3.2.3 below, Z(X,Y ) will serve as a universal
factorization space for all compact sets of the space Lw∗(X∗, Y ).

Theorem 3.2.1. Let X and Y be Banach spaces. For every com-
pact subset C of Lw∗(X∗, Y ), there exist a linear mapping Φ : span C →
Lw∗

(
X∗, Z(X,Y )

)
which preserves finite rank and compact operators and a

norm one operator v ∈ L
(
Z(X,Y ), Y

)
such that S = v ◦ Φ(S), for all S ∈

span C. The mapping Φ restricted to C ∪{0} is a homeomorphism satisfying
the conclusions of Lemma 3.1.1. Moreover, if C is contained in Kw∗(X∗, Y ),
then v ∈ K

(
Z(X,Y ), Y

)
.

Proof. Let L and ϕ be, respectively, the weakly compact absolutely con-
vex subset of BY and the linear mapping from span C to Lw∗(X∗, YL) given
by Lemma 3.1.1. Let IL : YL → Z(X,Y ) denote the natural norm one em-
bedding and PL : Z(X,Y ) → YL the natural norm one projection.

Let us define mapping Φ by Φ(S) = IL ◦ϕ(S), S ∈ span C, and mapping
v by v = JL ◦ PL. Every Φ(S), S ∈ span C, is weak*-weak continuous
because, J∗L(Y ∗) being norm dense in Y ∗L (since J∗∗L is injective by Lemma
2.2.1), we have

(Φ(S))∗(Z∗(X,Y )) = (IL ◦ ϕ(S))∗(Z∗(X,Y )) ⊂ (ϕ(S))∗(Y ∗L )

= (ϕ(S))∗(J∗L(Y ∗)) ⊂ (ϕ(S)∗ ◦ J∗L)(Y ∗)

= S∗(Y ∗) ⊂ X = X.

Consequently, Φ is a linear mapping from span C to Lw∗(X∗, Z(X,Y )) and
Φ preserves the finite rank and compact operators because ϕ does. Note
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that v is a linear mapping and ‖v‖ ≤ ‖JL‖‖PL‖ ≤ 1. On the other hand,
1 = ‖JL‖ = ‖JL ◦ PL ◦ IL‖ = ‖v ◦ IL‖ ≤ ‖v‖, and we have ‖v‖ = 1.

Now, S = JL ◦ϕ(S) = JL ◦PL ◦ IL ◦ϕ(S) = v ◦Φ(S), for all S ∈ span C.
Finally, let S, T ∈ C ∪ {0}. Then, ϕ is a homeomorphism satisfying

‖ϕ(S)− ϕ(T )‖ ≤ min
{

d,d1/2
(1

4
+

1
ln a

)1/2
‖S − T‖1/2

}
,

where d = diam C ∪ {0}. Since

‖Φ(S)− Φ(T )‖ = ‖IL(ϕ(S)− ϕ(T ))‖ ≤ ‖ϕ(S)− ϕ(T )‖

and

‖S − T‖ = ‖v ◦ Φ(S − T )‖ ≤ ‖Φ(S)− Φ(T )‖,

we get
‖S − T‖ ≤ ‖Φ(S)− Φ(T )‖

≤ min
{

d,d1/2
(1

4
+

1
ln a

)1/2
‖S − T‖1/2

}
.

For the “moreover” part, recall that L is compact whenever C is con-
tained in Kw∗(X∗, Y ) (see Lemma 3.1.1) and use Lemma 2.2.1, (vi), to see
that JL is compact.

Theorem 3.2.2. Let X and Y be Banach spaces. For every compact
subset C of Lw∗(X∗, Y ), there exist a norm one operator u ∈ Lw∗

(
X∗, Z(X,Y )

)
and a linear mapping Φ : span C → L

(
Z(X,Y ), Y

)
which preserves finite

rank and compact operators such that S = Φ(S) ◦ u, for all S ∈ span C.
The mapping Φ restricted to C∪{0} is a homeomorphism satisfying the con-
clusions of Lemma 3.1.1. Moreover, if C is contained in Kw∗(X∗, Y ), then
u ∈ Kw∗

(
X∗, Z(X,Y )

)
.

Proof. Let K and ϕ be, respectively, the weakly compact absolutely
convex subset of BX and the linear mapping from span C to L(X∗

K , Y )
given by Lemma 3.1.2. Let IK : X∗

K → Z(X,Y ) denote the natural norm one
embedding and PK : Z(X,Y ) → X∗

K the natural norm one projection. Let
us define mapping Φ by Φ(S) = ϕ(S) ◦ PK , S ∈ span C, and mapping
u by u = IK ◦ J∗K . Then Φ(S) is a linear mapping from Z(X,Y ) to Y
and Φ : span C → L

(
Z(X,Y ), Y

)
preserves the finite rank and compact

operators because ϕ does. The mapping u : X∗ → Z(X,Y ) is linear and
‖u‖ = ‖IK ◦ J∗K‖ ≤ 1. On the other hand, 1 = ‖J∗K‖ = ‖PK ◦ IK ◦ J∗K‖ =
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‖PK ◦ u‖ ≤ ‖u‖, and we have ‖u‖ = 1. The mapping u is weak*-weak
continuous because, using that XK is reflexive (see Lemma 2.2.1, (vii)),

u∗(Z∗(X,Y )) = (IK ◦ J∗K)∗(Z∗(X,Y )) = (J∗∗K ◦ I∗K)(Z∗(X,Y ))

⊂ J∗∗K (X∗∗
K ) = JK(XK) ⊂ X.

Now, S = ϕ(S)◦J∗K = ϕ(S)◦PK ◦IK ◦J∗K = Φ(S)◦u, for all S ∈ span C.
Finally, let S, T ∈ C ∪ {0}. Then ϕ is a homeomorphism satisfying

‖ϕ(S)− ϕ(T )‖ ≤ min
{

d,d1/2
(1

4
+

1
ln a

)1/2
‖S − T‖1/2

}
,

where d = diam C ∪ {0}. Since

‖Φ(S)− Φ(T )‖ = ‖(ϕ(S)− ϕ(T ))PK‖ ≤ ‖ϕ(S)− ϕ(T )‖

and

‖S − T‖ = ‖Φ(S − T ) ◦ u‖ ≤ ‖Φ(S)− Φ(T )‖,

we get
‖S − T‖ ≤ ‖Φ(S)− Φ(T )‖

≤ min
{

d,d1/2
(1

4
+

1
ln a

)1/2
‖S − T‖1/2

}
.

For the “moreover” part, recall that J∗K is compact whenever C is con-
tained in Kw∗(X∗, Y ) (see Lemma 3.1.2).

Theorem 3.2.3. Let X and Y be Banach spaces. For every compact
subset C of Lw∗(X∗, Y ), there exist norm one operators u ∈ Lw∗

(
X∗, Z(X,Y )

)
and v ∈ L

(
Z(X,Y ), Y

)
, and a linear mapping Φ : span C → L

(
Z(X,Y ), Z(X,Y )

)
which preserves finite rank and compact operators such that S = v◦Φ(S)◦u,
for all S ∈ span C. The mapping Φ restricted to C∪{0} is a homeomorphism
satisfying

‖S − T‖ ≤ ‖Φ(S)− Φ(T )‖

≤ min
{

d,d3/4
(1

4
+

1
ln a

)3/4
‖S − T‖1/4

}
, S, T ∈ C ∪ {0},

where
d = diam C ∪ {0}.
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In particular, if −S ∈ C for some S ∈ C, then

‖Φ(S)‖ ≤ min
{d

2
,
(d

2

)3/4(1
4

+
1

ln a

)3/4
‖S‖1/4

}
.

Moreover, if C is contained in Kw∗(X∗, Y ), then u ∈ Kw∗
(
X∗, Z(X,Y )

)
and

v ∈ K
(
Z(X,Y ), Y

)
.

Proof. Let K ⊂ BX , J = J∗K ∈ Lw∗(X∗, X∗
K), and ϕ : span C →

L(X∗
K , Y ) be, respectively, the weakly compact absolutely convex subset,

the norm one operator, and the linear mapping given by Lemma 3.1.2.
Since ϕ(C) is a compact subset of L(X∗

K , Y ) = Lw∗(X∗
K , Y ) (recall

that X∗
K is reflexive), we can apply Lemma 3.1.1. Let L ⊂ BY and ψ :

span ϕ(C) → Lw∗(X∗
K , YL) be, respectively, the weakly compact subset and

the linear mapping given by Lemma 3.1.1.
Let IK : X∗

K → Z(X,Y ) and IL : YL → Z(X,Y ) denote the natural norm
one embeddings, and let PK : Z(X,Y ) → X∗

K and PL : Z(X,Y ) → YL denote
the natural norm one projections.

Let us define the mappings u = IK ◦ J , Φ(S) = IL ◦ ψ(ϕ(S)) ◦ PK , S ∈
span C, and v = JL ◦ PL. Then u ∈ Lw∗(X∗, Z(X,Y )) and ‖u‖ = 1 by
the proof of Theorem 3.2.2, and v ∈ L(Z(X,Y ), Y ), ‖v‖ = 1 by the proof
of Theorem 3.2.1. The mapping Φ(S) is a linear mapping from Z(X,Y ) to
Z(X,Y ). The linear mapping Φ : span C → L

(
Z(X,Y ), Z(X,Y )

)
preserves the

finite rank and compact operators because ϕ and ψ do. Moreover, for all
S ∈ span C,

S = ϕ(S) ◦ J = JL ◦ ψ(ϕ(S)) ◦ J
= JL ◦ PL ◦ IL ◦ ψ(ϕ(S)) ◦ PK ◦ IK ◦ J
= v ◦ Φ(S) ◦ u.

Finally, let S, T ∈ C ∪ {0}. Then, ϕ is a homeomorphism satisfying

‖ϕ(S)− ϕ(T )‖ ≤ min
{

d,d1/2
(1

4
+

1
ln a

)1/2
‖S − T‖1/2

}
,

where d = diam C ∪ {0}, and ψ is a homeomorphism satisfying

‖ψ(ϕ(S))− ψ(ϕ(T ))‖ ≤ min
{

d,d1/2
(1

4
+

1
ln a

)1/2
‖ϕ(S)− ϕ(T )‖1/2

}
,

because diam ϕ(C ∪ {0}) = d. Since

‖S − T‖ = ‖v ◦ Φ(S − T ) ◦ u‖ ≤ ‖Φ(S)− Φ(T )‖
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and

‖Φ(S)− Φ(T )‖ = ‖IL ◦ ψ(ϕ(S)− ϕ(T )) ◦ PK‖ ≤ ‖ψ(ϕ(S))− ψ(ϕ(T ))‖,

we get
‖S − T‖ ≤ ‖Φ(S)− Φ(T )‖

≤ min
{

d,d3/4
(1

4
+

1
ln a

)3/4
‖S − T‖1/4

}
.

We can easily prove the “moreover” part by using that J ∈ Kw∗(X∗, X∗
K)

whenever C ⊂ Kw∗(X∗, Y ) (see Lemma 3.1.2) and that, in this case, ϕ(C)
is a compact subset of Kw∗(X∗

K , Y ), implying (by Lemma 3.1.1 and Lemma
2.2.1, (vi)) the compactness of the operator JL.

Remark 3.2.4. Observe that diam Φ(C ∪ {0}) = diam C ∪ {0} in The-
orems 3.2.1–3.2.3.

Remark 3.2.5. Theorem 3.2.3 represents a quantitative strengthening
of the following result by Aron, Lindström, Ruess, and Ryan (see [ALRR,
Proposition 2]): for Banach spaces X and Y , there exists a reflexive Ba-
nach space Z = Z(X,Y ) such that, for every relatively compact subset C of
Lw∗(X∗, Y ), there exist operators u ∈ Lw∗(X∗, Z) and v ∈ L(Z, Y ), and a
relatively compact subset {AS : S ∈ C} of L(Z,Z) such that S = v ◦ AS ◦ u
for all S ∈ C. Note that our definition of Z(X,Y ) is much simpler than that
of Z(X,Y ), but similar.

3.3 Applications to weakly compact and compact
operators

Since W(X,Y ) and Lw∗(X∗∗, Y ) = Ww∗(X∗∗, Y ), and also K(X,Y ) and
Kw∗(X∗∗, Y ), are canonically isometrically isomorphic under the mapping
S → S∗∗, Theorems 3.2.1–3.2.3 yield immediate applications to factoring
compact subsets of W(X,Y ) and K(X,Y ) (recall that L(X,Z) = W(X,Z)
and L(Z, Y ) = W(Z, Y ) whenever Z is reflexive). We state the correspond-
ing applications.

Corollary 3.3.1. Let X and Y be Banach spaces, and let Z = Z(X∗,Y ).
For every compact subset C of W(X,Y ), there exist a linear mapping Φ :
span C → W(X,Z) which preserves finite rank and compact operators and a
norm one operator v ∈ W(Z, Y ) such that S = v ◦Φ(S), for all S ∈ span C.
The mapping Φ restricted to C ∪ {0} is a homeomorphism satisfying the
conclusions of Lemma 3.1.1. Moreover, if C is contained in K(X,Y ), then
v ∈ K(Z, Y ).
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Corollary 3.3.2. Let X and Y be Banach spaces, and let Z = Z(X∗,Y ).
For every compact subset C of W(X,Y ), there exist a norm one operator
u ∈ W(X,Z) and a linear mapping Φ : span C → W(Z, Y ) which preserves
finite rank and compact operators such that S = Φ(S)◦u, for all S ∈ span C.
The mapping Φ restricted to C ∪ {0} is a homeomorphism satisfying the
conclusions of Lemma 3.1.1. Moreover, if C is contained in K(X,Y ), then
u ∈ K(X,Z).

Corollary 3.3.3. Let X and Y be Banach spaces, and let Z = Z(X∗,Y ).
For every compact subset C of W(X,Y ), there exist norm one operators
u ∈ W(X,Z) and v ∈ W(Z, Y ), and a linear mapping Φ : span C → W(Z,Z)
which preserves finite rank and compact operators such that S = v◦Φ(S)◦u,
for all S ∈ span C. The mapping Φ restricted to C∪{0} is a homeomorphism
satisfying the conclusions of Theorem 3.2.3. Moreover, if C is contained in
K(X,Y ), then u ∈ K(X,Z) and v ∈ K(Z, Y ).
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Chapter 4

Quantitative versions of the
uniform factorization for
compact sets of compact
operators

Main results of this chapter (see Sections 4.2–4.6) are published in [MO1].

4.1 Universal factorization spaces Cp and ZFJ

We recall the definition of the universal factorization spaces Cp, 1 ≤ p ≤
∞, which were introduced by Johnson [J].

It is well known (for a detailed proof, see [Si, pages 422–426]) that there
exists a sequence (Gn) = (Gn)∞n=1 of finite-dimensional Banach spaces such
that for every finite-dimensional Banach space X and every ε > 0 there is
n ∈ N such that

dBM(X,Gn) < 1 + ε

(one says that (Gn) is dense in the collection of all finite-dimensional Ba-
nach spaces). Moreover, the sequence (Gn) can be chosen such that every
Gm, m ∈ N, occurs in (Gn) an infinity of times, meaning that for every
m ∈ N, the set

{n : dBM(Gm, Gn) = 1}

is infinite.
Let 1 ≤ p ≤ ∞. The space Cp is defined as the infinite direct sum in the
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sense of `p of the spaces Gn, that is

Cp =
( ∞∑

n=1

Gn

)
p
.

(Recall that `∞ denotes the space c0.)
Johnson [J] proved that, for any fixed p, every approximable operator

factors through Cp. More precisely, by the proof of [J, Theorem 1], the
following holds.

Theorem 4.1.1 (Johnson). Let 1 ≤ p ≤ ∞. Let X and Y be Banach
spaces. If S ∈ F(X,Y ) is a norm one operator, then there exist operators
u ∈ F(X,Cp) and v ∈ F(Cp, Y ) such that S = v ◦ u. Moreover, for every
ε > 0, the operators u and v can be chosen such that ‖u‖ = 1 and 1 ≤ ‖v‖ ≤
1 + ε.

Basing on Johnson’s theorem, Figiel [F, Proposition 3.1] proved that
every compact operator factors through some closed subspace of Cp. More
precisely, by the proofs of [J, Theorem 1] and [F, Proposition 3.1], the
following holds.

Theorem 4.1.2 (Figiel-Johnson). Let 1 ≤ p ≤ ∞. Let X and Y be
Banach spaces. If S ∈ K(X,Y ) is a norm one operator, then there exist a
closed subspace W of Cp and operators u ∈ K(X,W ) and v ∈ K(W,Y ) such
that S = v ◦ u. Moreover, for every ε > 0, the operators u and v can be
chosen such that ‖u‖ = 1 and 1 ≤ ‖v‖ ≤ 1 + ε.

Aron, Lindström, Ruess, and Ryan [ALRR] observed that in the Figiel-
Johnson theorem, W may be replaced by a factorization space which is a
universal for all X,Y, and S ∈ K(X,Y ). Let us call this space the Figiel-
Johnson universal factorization space and denote it by ZFJ . The space ZFJ

can be defined, for instance, as

ZFJ =
( ∑

W⊂Cp

W
)

p

where W runs through the closed subspaces of Cp for any fixed p, 1 ≤ p ≤ ∞.

4.2 Factorization through ZFJ

We shall combine Theorem 3.2.3 with the well-known factorization meth-
ods by Johnson [J] and Figiel [F] to get the following quantitative strength-
ening of the Aron-Lindström-Ruess-Ryan theorem (see Theorem 1.1.5).
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Theorem 4.2.1. Let X and Y be Banach spaces and let C be a compact
subset of Kw∗(X∗, Y ). Then, for every ε > 0, there exist operators u ∈
Kw∗(X∗, ZFJ) and v ∈ K(ZFJ , Y ) with 1 ≤ ‖u‖, ‖v‖ ≤ 1 + ε, and a linear
mapping Φ : span C → K(ZFJ , ZFJ) such that S = v ◦ Φ(S) ◦ u, for all
S ∈ span C. The mapping Φ restricted to C ∪ {0} is a homeomorphism
satisfying the conclusions of Theorem 3.2.3.

The proof of Theorem 4.2.1 uses the following results.

Lemma 4.2.2 (Johnson). Let 1 ≤ p ≤ ∞. Let X and Y be Banach
spaces. The subspace of Fw∗(X∗, Y ) consisting of operators T which admit
a factorization T = β ◦ α for some operators α ∈ Fw∗(X∗, Cp) and β ∈
F(Cp, Y ), is a Banach space under the norm

‖T‖Cp = inf{‖β‖‖α‖ : T = β ◦ α, α ∈ Fw∗(X∗, Cp), β ∈ F(Cp, Y )}.

Proof. It is almost identical to the proof of [J, Proposition 1].

Lemma 4.2.3 (Figiel-Johnson). Let 1 ≤ p ≤ ∞. Let X and Y be
Banach spaces. If S ∈ Kw∗(X∗, Y ) is a norm one operator, then there exist
a closed subspace W of Cp and operators u ∈ Kw∗(X∗,W ) and v ∈ K(W,Y )
such that S = v ◦ u. Moreover, for every ε > 0, the operators u and v can
be chosen such that ‖v‖ = 1 and 1 ≤ ‖u‖ ≤ 1 + ε.

Proof. It relies on Lemma 4.2.2 and is almost identical to the proof of
Theorem 4.1.2 (see the proofs of [J, Theorem 1] and [F, Proposition 3.1]).

Proof of Theorem 4.2.1. Let A ∈ Kw∗
(
X∗, Z(X,Y )

)
, B ∈ K

(
Z(X,Y ), Y

)
, and

ϕ : span C → K
(
Z(X,Y ), Z(X,Y )

)
be the norm one operators and the linear

mapping given by Theorem 3.2.3.
By Theorem 4.1.2 there exist a closed subspace W of Cp and operators

C ∈ K(Z(X,Y ),W ) and D ∈ K(W,Y ) such that ‖C‖ = 1, 1 ≤ ‖D‖ ≤ 1 + ε,
and B = D◦C. Let IW : W → ZFJ denote the natural norm one embedding,
and let PW : ZFJ → W denote the natural norm one projection. Let us
define the mappings V = IW ◦C and v = D◦PW . Then V ∈ K

(
Z(X,Y ), ZFJ

)
and v ∈ K

(
ZFJ , Y

)
, ‖V ‖ = ‖C‖ = 1, 1 ≤ ‖D‖ = ‖D ◦ PW ◦ IW ‖ ≤ ‖v‖ ≤

1 + ε, and B = v ◦ V since D ◦ C = D ◦ PW ◦ IW ◦ C.
Arguing similarly, by Lemma 4.2.3 we can obtain forA ∈ Kw∗

(
X∗, Z(X,Y )

)
with ‖A‖ = 1, two operators u ∈ Kw∗(X∗, ZFJ) and U ∈ K

(
ZFJ , Z(X,Y )

)
such that 1 ≤ ‖u‖ ≤ 1 + ε, ‖U‖ = 1, and A = U ◦ u.

Since, for all S ∈ span C,

S = B ◦ ϕ(S) ◦A = v ◦ V ◦ ϕ(S) ◦ U ◦ u,

the mapping Φ defined by Φ(S) = V ◦ϕ(S) ◦U, S ∈ span C, has the desired
properties.
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In the same vein like the space Z(X,Y ) was “replaced” by ZFJ in Theorem
3.2.3 to obtain Theorem 4.2.1, one can “replace” Z(X,Y ) by ZFJ also in
Theorems 3.2.1 and 3.2.2 (or, equivalently, one may base on Lemmas 3.1.1
and 3.1.2 instead of Theorems 3.2.1 and 3.2.2). The corresponding results
are following.

Theorem 4.2.4. Let X and Y be Banach spaces and let C be a compact
subset of Kw∗(X∗, Y ). Then, for every ε > 0, there exist operator v ∈
K(ZFJ , Y ) with 1 ≤ ‖v‖ ≤ 1 + ε, and a linear mapping Φ : span C →
K(X∗, ZFJ) such that S = v ◦ Φ(S), for all S ∈ span C. The mapping
Φ restricted to C ∪ {0} is a homeomorphism satisfying the conclusions of
Lemma 3.1.1.

Theorem 4.2.5. Let X and Y be Banach spaces and let C be a compact
subset of Kw∗(X∗, Y ). Then, for every ε > 0, there exist operator u ∈
Kw∗(X∗, ZFJ) with 1 ≤ ‖u‖ ≤ 1 + ε, and a linear mapping Φ : span C →
K(ZFJ , Y ) such that S = Φ(S) ◦ u, for all S ∈ span C. The mapping Φ
restricted to C∪{0} is a homeomorphism satisfying the conclusions of Lemma
3.1.1.

Since K(X,Y ) and Kw∗(X∗∗, Y ) are canonically isometrically isomorphic
under the mapping S → S∗∗, Theorems 4.2.1, 4.2.4, and 4.2.5 yield imme-
diate applications to factoring compact subsets of K(X,Y ). We state the
corresponding applications.

Corollary 4.2.6. Let X and Y be Banach spaces and let C be a com-
pact subset of K(X,Y ). Then, for every ε > 0, there exist operators u ∈
K(X,ZFJ) and v ∈ K(ZFJ , Y ) with 1 ≤ ‖u‖, ‖v‖ ≤ 1 + ε, and a linear
mapping Φ : span C → K(ZFJ , ZFJ) such that S = v ◦ Φ(S) ◦ u, for all
S ∈ span C. The mapping Φ restricted to C ∪ {0} is a homeomorphism
satisfying the conclusions of Theorem 3.2.3.

Corollary 4.2.7. Let X and Y be Banach spaces and let C be a compact
subset of K(X,Y ). Then, for every ε > 0, there exist operator v ∈ K(ZFJ , Y )
with 1 ≤ ‖v‖ ≤ 1 + ε, and a linear mapping Φ : span C → K(X,ZFJ) such
that S = v ◦ Φ(S), for all S ∈ span C. The mapping Φ restricted to C ∪ {0}
is a homeomorphism satisfying the conclusions of Lemma 3.1.1.

Corollary 4.2.8. Let X and Y be Banach spaces and let C be a compact
subset of K(X,Y ). Then, for every ε > 0, there exist operator u ∈ K(X,ZFJ)
with 1 ≤ ‖u‖ ≤ 1 + ε, and a linear mapping Φ : span C → K(ZFJ , Y ) such
that S = Φ(S) ◦ u, for all S ∈ span C. The mapping Φ restricted to C ∪ {0}
is a homeomorphism satisfying the conclusions of Lemma 3.1.1.
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4.3 Factorization through Cp

Let us now point out an important case when Z(X,Y ) may be “replaced”
by any Cp, 1 ≤ p ≤ ∞. We present the results that rely on Theorems 3.2.1,
3.2.2, and 3.2.3.

Recall that a Banach space X has the approximation property if, for
every compact set K ⊂ X and every ε > 0, there exists a finite rank operator
S ∈ F(X) such that ‖Sx− x‖ < ε , for all x ∈ K.

Recall also the next well-known result due to Grothendieck [G, Chapter
I, page 165]; for a recent proof, see [OPe, Section 3].

Theorem 4.3.1 (Grothendieck). Let X and Y be Banach spaces.
Then the following assertions are equivalent.
(i) X has the approximation property.
(ii) For every Banach space Y , one has K(Y,X) = F(Y,X).
(iii) For every Banach space Y , one has Kw∗(X∗, Y ) = Fw∗(X∗, Y ).
(iv) For every Banach space Y , one has Kw∗(Y ∗, X) = Fw∗(Y ∗, X).

Theorem 4.3.2. Let X and Y be Banach spaces such that Y has the
approximation property and let 1 ≤ p ≤ ∞. Let C be a compact subset
of Kw∗(X∗, Y ). Then, for every ε > 0, there exist a linear mapping Φ :
span C → Kw∗(X∗, Cp) and an operator v ∈ K(Cp, Y ) with 1 ≤ ‖v‖ ≤ 1 + ε
such that S = v ◦ Φ(S), for all S ∈ span C. The mapping Φ restricted to
C ∪ {0} is a homeomorphism satisfying the conclusions of Lemma 3.1.1.

Proof. Let ϕ : span C → Kw∗
(
X∗, Z(X,Y )

)
and B ∈ K

(
Z(X,Y ), Y

)
be

the linear mapping and the norm one operator given by Theorem 3.2.1.
Since Y has the approximation property, we have by Theorem 4.3.1 that
K

(
Z(X,Y ), Y

)
= F

(
Z(X,Y ), Y

)
. Therefore, by Theorem 4.1.1, operator B

admits a factorization B = v ◦ V with V ∈ K
(
Z(X,Y ), Cp

)
, ‖V ‖ = 1, and

v ∈ K(Cp, Y ), 1 ≤ ‖v‖ ≤ 1 + ε. The mapping Φ defined by Φ(S) =
V ◦ ϕ(S), S ∈ span C, has the needed properties.

For the next two theorems, we shall also need the following result.

Lemma 4.3.3 (Johnson). Let 1 ≤ p ≤ ∞. Let X and Y be Banach
spaces. If S ∈ Fw∗(X∗, Y ) is a norm one operator, then there exist operators
u ∈ Fw∗(X∗, Cp) and v ∈ F(Cp, Y ) such that S = v ◦ u. Moreover, for
every ε > 0, the operators u and v can be chosen such that ‖v‖ = 1 and
1 ≤ ‖u‖ ≤ 1 + ε.

Proof. It relies on Lemma 4.2.2 and is almost identical to the proof of
[J, Theorem 1].
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Theorem 4.3.4. Let X and Y be Banach spaces such that X has the
approximation property and let 1 ≤ p ≤ ∞. Let C be a compact subset of
Kw∗(X∗, Y ). Then, for every ε > 0, there exist an operator u ∈ Kw∗(X∗, Cp)
with 1 ≤ ‖u‖ ≤ 1 + ε and a linear mapping Φ : span C → K(Cp, Y ) such
that S = Φ(S) ◦ u, for all S ∈ span C. The mapping Φ restricted to C ∪ {0}
is a homeomorphism satisfying the conclusions of Lemma 3.1.1.

Proof. Let A ∈ Kw∗
(
X∗, Z(X,Y )

)
and ψ : span C → K

(
Z(X,Y ), Y

)
be

the norm one operator and the linear mapping given by Theorem 3.2.2.
Since X has the approximation property, we have by Theorem 4.3.1 that
Kw∗(X∗, Z(X,Y )) = Fw∗(X∗, Z(X,Y )). Therefore by Lemma 4.3.3 A admits
a factorization A = U ◦ u with u ∈ Kw∗(X∗, Cp), 1 ≤ ‖u‖ ≤ 1 + ε, and
U ∈ K(Cp, Z(X,Y )) with ‖U‖ = 1. The mapping Φ defined by Φ(S) =
ψ(S) ◦ U, S ∈ span C, has the needed properties.

Theorem 4.3.5. Let X and Y be Banach spaces having the approxima-
tion property and let 1 ≤ p ≤ ∞. Let C be a compact subset of Kw∗(X∗, Y ).
Then, for every ε > 0, there exist operators u ∈ Kw∗(X∗, Cp) and v ∈
K(Cp, Y ) with 1 ≤ ‖u‖, ‖v‖ ≤ 1 + ε, and a linear mapping Φ : span C →
K(Cp, Cp) such that S = v ◦ Φ(S) ◦ u, for all S ∈ span C. The mapping
Φ restricted to C ∪ {0} is a homeomorphism satisfying the conclusions of
Theorem 3.2.3.

Proof. Let A ∈ Kw∗
(
X∗, Z(X,Y )

)
, B ∈ K

(
Z(X,Y ), Y

)
, and ϕ : span C →

K
(
Z(X,Y ), Z(X,Y )

)
be the norm one operators and the linear mapping given

by Theorem 3.2.3. Let A = U ◦ u and B = v ◦ V be the factorizations
obtained in the proofs of Theorems 4.3.4 and 4.3.2. Then the mappings u
and v above and the mapping Φ defined by Φ(S) = V ◦ϕ(S)◦U , S ∈ span C,
have the desired properties.

Since K(X,Y ) and Kw∗(X∗∗, Y ) are canonically isometrically isomorphic
under the mapping S → S∗∗, Theorems 4.3.2, 4.3.4, and 4.3.5 yield imme-
diate applications to factoring compact subsets of K(X,Y ). We state the
corresponding applications.

Corollary 4.3.6. Let X and Y be Banach spaces such that Y has the
approximation property and let 1 ≤ p ≤ ∞. Let C be a compact subset of
K(X,Y ). Then, for every ε > 0, there exist a linear mapping Φ : span C →
K(X,Cp) and an operator v ∈ K(Cp, Y ) with 1 ≤ ‖v‖ ≤ 1 + ε such that
S = v ◦ Φ(S), for all S ∈ span C. The mapping Φ restricted to C ∪ {0} is a
homeomorphism satisfying the conclusions of Lemma 3.1.1.

Corollary 4.3.7. Let X and Y be Banach spaces such that X∗ has the
approximation property and let 1 ≤ p ≤ ∞. Let C be a compact subset of
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K(X,Y ). Then, for every ε > 0, there exist an operator u ∈ K(X,Cp) with
1 ≤ ‖u‖ ≤ 1 + ε and a linear mapping Φ : span C → K(Cp, Y ) such that
S = Φ(S) ◦ u, for all S ∈ span C. The mapping Φ restricted to C ∪ {0} is a
homeomorphism satisfying the conclusions of Lemma 3.1.1.

Corollary 4.3.8. Let X and Y be Banach spaces such that X∗ and
Y have the approximation property and let 1 ≤ p ≤ ∞. Let C be a com-
pact subset of K(X,Y ). Then, for every ε > 0, there exist operators u ∈
K(X,Cp) and v ∈ K(Cp, Y ) with 1 ≤ ‖u‖, ‖v‖ ≤ 1+ε, and a linear mapping
Φ : span C → K(Cp, Cp) such that S = v ◦ Φ(S) ◦ u, for all S ∈ span C.
The mapping Φ restricted to C ∪ {0} is a homeomorphism satisfying the
conclusions of Theorem 3.2.3.

4.4 Factorization through `p

If we use, in the proof of Theorem 4.3.2 (recall that the Lp-spaces have
the approximation property), the factorization argument [J, Theorem 2] by
Johnson instead of Theorem 4.1.1, then we immediately get the following
quantitative strengthening of the symmetric version of Theorem 1.1.4 of
Graves and Ruess for all Lp-spaces, 1 ≤ p ≤ ∞. Recall that `∞ denotes the
space c0.

Theorem 4.4.1. Let X be a Banach space and let Y be an Lp,λ-space
(1 ≤ p ≤ ∞, 1 ≤ λ <∞). If C is a compact subset of Kw∗(X∗, Y ), then, for
every ε > 0, there exist a linear mapping Φ : span C → Kw∗(X∗, `p) and an
operator v ∈ K(`p, Y ) with 1 ≤ ‖v‖ ≤ λ + ε such that S = v ◦ Φ(S), for all
S ∈ span C, and the mapping Φ restricted to C ∪ {0} is a homeomorphism
satisfying the conclusions of Lemma 3.1.1.

Since K(X,Y ) and Kw∗(X∗∗, Y ) are canonically isometrically isomorphic
under the mapping S → S∗∗, Theorem 4.4.1 yields the following immediate
application to factoring compact subsets of K(X,Y ).

Corollary 4.4.2. Let X be a Banach space and let Y be an Lp,λ-space
(1 ≤ p ≤ ∞, 1 ≤ λ < ∞). If C is a compact subset of K(X,Y ), then, for
every ε > 0, there exist a linear mapping Φ : span C → K(X, `p) and an
operator v ∈ K(`p, Y ) with 1 ≤ ‖v‖ ≤ λ + ε such that S = v ◦ Φ(S), for all
S ∈ span C, and the mapping Φ restricted to C ∪ {0} is a homeomorphism
satisfying the conclusions of Lemma 3.1.1.

We conclude with a quantitative strengthening of the Graves-Ruess the-
orem (see Theorem 1.1.4) for all Lp-spaces, 1 ≤ p ≤ ∞, which is a symmetric
version of Theorem 4.4.1. Let us recall that X is an Lp-space if and only if
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X∗ is an Lq-space where 1/q + 1/p = 1 with q = ∞ if p = 1 and q = 1 if
p = ∞.

Theorem 4.4.3. Let 1 ≤ p ≤ ∞ and 1 ≤ λ <∞. Let X be an Lp-space
such that X∗ is an Lq,λ-space (where 1/q+ 1/p = 1 with q = ∞ if p = 1 and
q = 1 if p = ∞) and let Y be a Banach space. If C is a compact subset of
K(X,Y ), then, for every ε > 0, there exist a linear mapping Φ : span C →
K(`p, Y ) and an operator u ∈ K(X, `p) with 1 ≤ ‖u‖ ≤ λ + ε such that
S = Φ(S) ◦ u, for all S ∈ span C, and the mapping Φ restricted to C ∪ {0}
is a homeomorphism satisfying the conclusions of Lemma 3.1.1.

Proof. Suppose first that 1 ≤ p < ∞. Observe that C∗ = {S∗ : S ∈ C}
is a compact subset of Kw∗(Y ∗, X∗) (recall that ran S∗∗ ⊂ Y whenever
S ∈ K(X,Y )) and apply Theorem 4.4.1. Let ε > 0 and let ϕ : span C∗ →
Kw∗(Y ∗, `q) and v ∈ K(`q, X∗) be given by Theorem 4.4.1. Then `∗q = `p
and (ϕ(S∗))∗ ∈ K(`p, Y ) if S ∈ span C. Define Φ : span C → K(`p, Y )
by Φ(S) = (ϕ(S∗))∗, S ∈ span C, and u ∈ K(X, `p) by u = v∗|X . These
mappings have the desired properties. In particular, if S ∈ span C, then

Φ(S) ◦ u = ((ϕ(S∗))∗ ◦ v∗)|X = (v ◦ ϕ(S∗))∗|X = S∗∗|X = S.

Suppose now that p = ∞. Let Z be the reflexive space, U ∈ K(X,Z)
the norm one operator, and ϕ : span C → K(Z, Y ) the linear mapping given
by Corollary 3.3.2. Observe that U ∈ F(X,Z) because X∗, being an L1-
space, has the approximation property. In fact, K(X,Z) = Kw∗(X∗∗, Z) =
Fw∗(X∗∗, Z) = F(X,Z) by the canonical identifications and Theorem 4.3.1.

Let ε > 0. Consider any T ∈ F(X,Z). Then T ∗ ∈ F(Z∗, X∗) and,
similarly to the proof of [J, Theorem 2], we can choose a finite-dimensional
subspace E of X∗ with ran T ∗ ⊂ E, a positive integer n, and an isomorphism
L from E onto `n1 such that, e.g., ‖L‖ = 1 and 1 ≤ ‖L−1‖ < λ + ε/2.
Denoting by V : Z∗ → E the astriction of T ∗ and by j : E → X∗ the
identity embedding, we have V ∗ ∈ F(E∗, Z) and T = V ∗ ◦ j∗|X . Hence,
T admits a factorization T = β ◦ α for some operators α ∈ F(X, `n∞) and
β ∈ F(`n∞, Z) with ‖α‖ ≤ λ+ ε/2 and ‖β‖ ≤ ‖T‖. Since c0 is isometrically
isomorphic to the infinite direct sum (

∑
n `

n
∞)∞ in the sense of c0, we have,

for the norm ‖ · ‖c0 introduced in [J, Proposition 1],

‖T‖c0 = inf{‖β‖‖α‖ : T = β ◦ α, α ∈ F(X, c0), β ∈ F(c0, Z)}
≤ (λ+ ε/2)‖T‖.

Consequently, ‖ · ‖c0 is equivalent to the operator norm on F(X,Z) and,
since F(X,Z) is dense in F(X,Z), it follows from [J, Proposition 1] that,
in particular, U admits a factorization U = v ◦ u with u ∈ F(X, c0), v ∈
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F(c0, Z), and ‖U‖ = 1 ≤ ‖v‖‖u‖ ≤ (λ + ε)‖U‖ = λ + ε. We may clearly
assume that 1 ≤ ‖u‖ ≤ λ+ ε and ‖v‖ = 1. Since, for all S ∈ span C,

S = ϕ(S) ◦ U = ϕ(S) ◦ v ◦ u,

the mapping Φ defined by Φ(S) = ϕ(S) ◦ v, S ∈ span C, has the desired
properties.

4.5 Compact subsets of injective tensor products
of Banach spaces

In this section, we point out applications of Theorems 4.3.2 and 4.4.1
to representing compact subsets of the injective tensor product X⊗̌Y of
Banach spaces X and Y (see Corollaries 4.5.1 and 4.5.2).

Let X ⊗ Y denote the algebraic tensor product of Banach spaces X and
Y . Recall that any element u =

∑m
n=1 xn⊗yn of the algebraic tensor product

X ⊗ Y can be algebraically identified with the finite-rank operator

m∑
n=1

xn ⊗ yn : y∗ →
m∑

n=1

y∗(yn)xn

from Y ∗ to X. Thus X ⊗ Y may always be viewed as a linear subspace of
F(Y ∗, X). In fact, X ⊗ Y = Fw∗(Y ∗, X).

The injective tensor product X⊗̌Y of Banach spaces X and Y is the
completion of the algebraic tensor product X ⊗ Y in the injective tensor
norm ‖ · ‖ε (or ε-norm) defined as

‖
m∑

n=1

xn ⊗ yn‖ε = sup
{
|

m∑
n=1

x∗(xn)y∗(yn)| : x∗ ∈ BX∗ , y ∈ BY ∗

}
.

Clearly, the operator norm on X ⊗ Y = Fw∗(Y ∗, X) coincides with the
injective tensor norm. Therefore the injective tensor product X⊗̌Y may
be identified with the Banach space Fw∗(Y ∗, X) of weak*-weak continuous
approximable operators.

The name “injective” stems from the fact that injective tensor products
respect the subspace structure: if Z ⊂ X and W ⊂ Y are closed subspaces,
then Z⊗̌W can be canonically identified with a closed subspace of X⊗̌Y .

The basic references for the tensor products of Banach spaces are [DU]
and [Ryan].

Corollary 4.5.1. Let 1 ≤ p ≤ ∞ and let X and Y be Banach spaces
such that X has the approximation property. Let C be a compact subset of
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X⊗̌Y . Then, for every ε > 0, there exist a linear mapping Φ from span C
to Cp⊗̌Y and an operator A ∈ K(Cp, X) with 1 ≤ ‖A‖ ≤ 1 + ε such that
u = (A⊗ Id)(Φu), for all u ∈ span C. The mapping Φ restricted to C ∪ {0}
is a homeomorphism satisfying the conclusions of Lemma 3.1.1.

Proof. Recall that Fw∗(Y ∗, X) = Kw∗(Y ∗, X) whenever X or Y has the
approximation property (see Theorem 4.3.1). Consequently, in this case
X⊗̌Y can be canonically identified with Kw∗(Y ∗, X). Recall now that the
spaces Cp have the approximation property, and apply Theorem 4.3.2.

To verify the equality u = (A ⊗ Id)(Φu), we rely on the following easy
fact. If v ∈ Cp⊗̌Y is canonically identified with v̂ ∈ Kw∗(Y ∗, Cp), then (A⊗
Id)v ∈ X⊗̌Y is canonically identified with the operator A◦ v̂ ∈ Kw∗(Y ∗, X).
Indeed, it clearly suffices to show the claim for v = z ⊗ y with z ∈ Cp and
y ∈ Y (because the linear span of these tensors is dense in Cp⊗̌Y ). Consider
any y∗ ∈ Y ∗. Then

((A⊗ Id)v)(y∗) = (Az ⊗ y)(y∗) = y∗(y)Az

and
(A ◦ v̂)(y∗) = A(y∗(y)z) = y∗(y)Az

as needed.
Finally, let u ∈ span C. Then Φu ∈ Cp⊗̌Y , and (A⊗ Id)(Φu) is canoni-

cally identified with the operator A◦(Φ̂u) = û ∈ Kw∗(Y ∗, X) as desired.

Corollary 4.5.2. Let 1 ≤ p ≤ ∞, let X be an Lp,λ-space, and let Y
be a Banach space. Let C be a compact subset of X⊗̌Y . Then, for every
ε > 0, there exist a linear mapping Φ from span C to `p⊗̌Y and an operator
A ∈ K(`p, X) with 1 ≤ ‖A‖ ≤ λ + ε such that u = (A ⊗ Id)(Φu), for all
u ∈ span C. The mapping Φ restricted to C ∪ {0} is a homeomorphism
satisfying the conclusions of Lemma 3.1.1.

Proof. The proof is similar to the proof of Corollary 4.5.1. It applies
Theorem 4.4.1 instead of Theorem 4.3.2 and uses the fact that the Lp-
spaces and the spaces `p have the approximation property. It also uses the
easy fact that if v ∈ lp⊗̌Y is canonically identified with v̂ ∈ Kw∗(Y ∗, `p),
then (A ⊗ Id)v ∈ X⊗̌Y is canonically identified with the operator A ◦ v̂ ∈
Kw∗(Y ∗, X).

Let us consider the particular case of Corollaries 4.5.1 and 4.5.2 when
Y = C(K), the Banach space of continuous functions on a compact Haus-
dorff space K. It is well known that X⊗̌C(K) can be identified with
C(K;X), the Banach space of continuous X-valued functions on K. This
canonical identification is given by the linear isometry from X ⊗ C(K)
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(equipped with the injective tensor norm) into C(K;X) which is defined
by

m∑
n=1

xn ⊗ fn →
m∑

n=1

fn(t)xn, t ∈ K.

Therefore Corollaries 4.5.1 and 4.5.2 yield immediately the following repre-
sentation of C ⊂ C(K;X) through the subset Φ(C) of C(K;Cp) (respectively,
of C(K; `p)).

Corollary 4.5.3. Let 1 ≤ p ≤ ∞ and let X be a Banach space having
the approximation property. Let K be a compact Hausdorff space. If C is
a compact subset of C(K;X), then for every ε > 0, there exist a linear
mapping Φ from span C to C(K;Cp) and an operator A ∈ K(Cp, X) with
1 ≤ ‖A‖ ≤ 1 + ε such that f = A ◦ (Φf), for all f ∈ span C. The mapping
Φ restricted to C ∪ {0} is a homeomorphism satisfying the conclusions of
Lemma 3.1.1.

Corollary 4.5.4. Let 1 ≤ p ≤ ∞ and let X be an Lp,λ-space. Let K be
a compact Hausdorff space. If C is a compact subset of C(K;X), then for
every ε > 0, there exist a linear mapping Φ from span C to C(K; `p) and an
operator A ∈ K(`p, X) with 1 ≤ ‖A‖ ≤ 1 + ε such that f = A ◦ (Φf), for
all f ∈ span C. The mapping Φ restricted to C ∪ {0} is a homeomorphism
satisfying the conclusions of Lemma 3.1.1.

Corollaries 4.5.1 and 4.5.2 may also be applied to identifications of X⊗̌Y
as spaces ofX-valued measures (e.g., when Y = L1(µ) or Y = ba(B), B being
a Boolean algebra; see [DU, pages 223–224] and [GR1]) to deduce results
similar to Corollaries 4.5.3 and 4.5.4.
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Chapter 5

Uniform factorization for
compact sets of operators
acting from a Banach space
to its dual space

Results of this chapter are published in [MO2].

5.1 Introduction and the main result

Main results of this chapter relies on Lemma 2.2.1 which is the isomet-
ric version of the Davis-Figiel-Johnson-Pe lczyński factorization construction
[DFJP] due to Lima, Nygaard, and Oja [LNO].

Recall that a is the unique solution of the equation

∞∑
n=1

an

(an + 1)2
= 1, a > 1,

andK is a closed absolutely convex subset ofBX , the closed unit ball of a Ba-
nach space X. For each n ∈ N, put Bn = an/2K+a−n/2BX . The Minkowski
functional of Bn gives an equivalent norm ‖·‖n on X (see Proposition 2.1.3).
Set

‖x‖K =
( ∞∑

n=1

‖x‖2
n

)1/2
,

define XK = {x ∈ X : ‖x‖K < ∞}, and let JK : XK → X denote the
identity embedding. Then XK = (XK , ‖·‖K) is a Banach space and ‖JK‖ ≤
1 by Lemma 2.2.1 (i). Moreover XK is reflexive if and only if K is weakly
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compact (see Lemma 2.2.1 (vii)), and JK is compact if and only if K is
compact; in this case XK is separable (see Lemma 2.2.1 (vi)).

For a Banach space X, let us consider the following infinite direct sums
in the sense of `2:

WX =
( ∑

K

(X∗)∗K
)

2
and ZX =

( ∑
L

(X∗)∗L
)

2
,

where K and L run, respectively, through the weakly compact and compact
absolutely convex subsets of BX∗ . The spaces WX and ZX are reflexive.
In Theorem 5.1.1 below, which is the main result of this chapter, they will,
respectively, serve as universal factorization spaces for all compact sets of
the spaces W(X,X∗) and K(X,X∗).

Theorem 5.1.1. Let X be a Banach space. Let W = WX and Z =
ZX . Then, for every compact subset C of W(X,X∗), there exist norm one
operators u, v ∈ W(X,W ), and a linear mapping Φ : span C → W(W,W ∗)
which preserves finite rank and compact operators such that S = v∗◦Φ(S)◦u,
for all S ∈ span C. The mapping Φ restricted to C∪{0} is a homeomorphism
satisfying

‖S − T‖ ≤ ‖Φ(S)− Φ(T )‖

≤ min
{

d,d3/4
(1

4
+

1
ln a

)3/4
‖S − T‖1/4

}
, S, T ∈ C ∪ {0},

where
d = diam C ∪ {0}.

In particular, if −S ∈ C for some S ∈ C, then

‖Φ(S)‖ ≤ min
{d

2
,
(d

2

)3/4(1
4

+
1

ln a

)3/4
‖S‖1/4

}
.

Moreover, if C is contained in K(X,X∗), then W is everywhere replaced by
Z, and u and v are compact operators.

Remark 5.1.2. Observe that diam Φ(C ∪ {0}) = diam C ∪ {0} in The-
orem 5.1.1.

5.2 Proof of the main result

The proof of Theorem 5.1.1 uses Lemmas 5.2.1 and 5.2.2 below. These
lemmas are, respectively, immediate consequences of Lemmas 3.1.1 and 3.1.2
because W(X,Y ) and K(X,Y ) are canonically isometrically isomorphic (un-
der the mapping S → S∗∗) with the spaces of the weak*-weak continuous
operators Ww∗(X∗∗, Y ) and Kw∗(X∗∗, Y ), respectively.
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Lemma 5.2.1. Let X and Y be Banach spaces. Let C be a compact
subset of W(Y,X∗). Then there exist a weakly compact absolutely convex
subset K of BX∗, which is compact whenever C is contained in K(Y,X∗),
and a linear mapping Φ : span C → W(Y, (X∗)K) such that S = JK ◦Φ(S),
for all S ∈ span C, and ‖JK‖ = 1. Moreover, if S ∈ span C, then

(i) S has finite rank if and only if Φ(S) has finite rank,
(ii) S is compact if and only if Φ(S) is compact.

The mapping Φ restricted to C ∪ {0} is a homeomorphism satisfying

‖S − T‖ ≤ ‖Φ(S)− Φ(T )‖

≤ min
{

d,d1/2
(1

4
+

1
ln a

)1/2
‖S − T‖1/2

}
, S, T ∈ C ∪ {0},

where
d = diam C ∪ {0};

in particular, if −S ∈ C for some S ∈ C, then

‖Φ(S)‖ ≤ min
{ d

2
,

(d
2

)1/2(1
4

+
1

ln a

)1/2
‖S‖1/2

}
.

Lemma 5.2.2. Let X be a Banach space. Let C be a compact subset
of W(X,X∗). Then there exist a weakly compact absolutely convex subset
K of BX∗ , a norm one operator J ∈ W(X, (X∗)∗K), and a linear mapping
Φ : span C → W((X∗)∗K , X

∗) satisfying conditions (i) and (ii) of Lemma
5.2.1 such that S = Φ(S)◦J, for all S ∈ span C. Moreover, if C is contained
in K(X,X∗), then K is compact and J ∈ K(X, (X∗)∗K). The mapping Φ re-
stricted to C ∪{0} is a homeomorphism satisfying the conclusions of Lemma
5.2.1.

Proof of Theorem 5.1.1. Let K ⊂ BX∗ , J ∈ W(X, (X∗)∗K), and

ϕ : span C → W((X∗)∗K , X
∗),

respectively, be the weakly compact absolutely convex subset, the norm one
operator, and the linear mapping given by Lemma 5.2.2.

Since ϕ(C) is a compact subset of W((X∗)∗K , X
∗), we can apply Lemma

5.2.1. Let L ⊂ BX∗ and

ψ : span ϕ(C) →W((X∗)∗K , (X
∗)L),
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respectively, be the weakly compact subset and the linear mapping given by
Lemma 5.2.1.

Let IK : (X∗)∗K →W and IL : (X∗)∗L →W denote the natural norm one
embeddings, and let PK : W → (X∗)∗K and PL : W → (X∗)∗L denote the
natural norm one projections. It is straightforward to verify (observing that
diam ϕ(C∪{0}) = d) that the mappings u = IK ◦J , Φ, v = IL ◦J∗L|X , and Φ
defined by Φ(S) = P ∗L ◦ ψ(ϕ(S)) ◦ PK , S ∈ span C, have desired properties.
In particular, for all S ∈ span C,

S = ϕ(S) ◦ J = JL ◦ ψ(ϕ(S)) ◦ J
= JL ◦ (PL ◦ IL)∗ ◦ ψ(ϕ(S)) ◦ PK ◦ IK ◦ J
= JL ◦ I∗L ◦ P ∗L ◦ ψ(ϕ(S)) ◦ PK ◦ u
= v∗ ◦ Φ(S) ◦ u,

and therefore

‖S − T‖ ≤ ‖Φ(S)− Φ(T )‖, S, T ∈ C ∪ {0}.

The “moreover” part uses that ϕ and ψ preserve compact operators.
It also uses that K is a compact set and J ∈ K(X, (X∗)∗K) whenever C ⊂
K(X,X∗) (see Lemma 5.2.2) and that, in this case, ϕ(C) is a compact subset
of K((X∗)∗K , X

∗), implying (see Lemma 5.2.1) the compactness of the set L
and of the operator JL.

Let us point out the following immediate consequence of Theorem 5.1.1.

Corollary 5.2.3. Let X be a Banach space and let Z = ZX . Then,
for every compact subset C of K(X,X∗), there exist norm one operators
u, v ∈ K(X,Z) and a linear mapping Φ : span C → K(Z,Z∗) such that
S = v∗ ◦ Φ(S) ◦ u, for all S ∈ span C. The mapping Φ restricted to C ∪ {0}
is a homeomorphism satisfying

‖S − T‖ ≤ ‖Φ(S)− Φ(T )‖

≤ min
{

d,d3/4
(1

4
+

1
ln a

)3/4
‖S − T‖1/4

}
, S, T ∈ C ∪ {0},

where
d = diam C ∪ {0}.

In particular, if −S ∈ C for some S ∈ C, then

‖Φ(S)‖ ≤ min
{d

2
,
(d

2

)3/4(1
4

+
1

ln a

)3/4
‖S‖1/4

}
.
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Chapter 6

On polynomials that are
weakly uniformly continuous
on the unit ball of a Banach
space

Main results of this chapter (see Sections 6.2–6.4) are published in [M1] and
[MO2].

6.1 Preliminaries and notation

This introductary section is based on the monograph [Di] by Dineen and
the article [AP] by Aron and Prolla. Let n ∈ N. Let L(nX) denote the
Banach space of all continuous n-linear forms on X, with the norm given by

‖A‖ = sup{|A(x1, . . . , xn)| : x1, . . . , xn ∈ BX}.

An n-linear form A ∈ L(nX) is said to be symmetric if

A(x1, . . . , xn) = A(xπ(1), . . . , xπ(n))

for any x1, . . . , xn ∈ X and any permutation π of the first n natural numbers.
Let Ls(nX) denote the subspace of L(nX) consisting of the symmetric n-
linear forms.

Denote by s : L(nX) → Ls(nX) the symmetrization operator, defined
by

s(A)(x1, . . . , xn) =
1
n!

∑
π

A(xπ(1), . . . , xπ(n))
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where π runs over all permutations of the first n natural numbers. It can
be easily verified that s is a linear norm one projection from L(nX) onto
Ls(nX).

A continuous mapping P : X → K is called an n-homogeneous poly-
nomial if there exists A ∈ L(nX) such that P (x) = A(x, . . . , x) for every
x ∈ X. Let P(nX) denote the Banach space of continuous n-homogeneous
polynomials on X, with the norm given by

‖P‖ = sup{|P (x)| : x ∈ BX}.

Proposition 6.1.1. For each P ∈ P(nX) there is a unique AP ∈
Ls(nX) satisfying

P (x) = AP (x, . . . , x)

for each x ∈ X.

Recall that P ∈ P(nX) is weakly uniformly continuous on the closed unit
ball BX of X if for each ε > 0 there are x∗1, . . . , x

∗
n ∈ X∗ and δ > 0 such

that if x, y ∈ BX , |x∗i (x− y)| < δ for i = 1, . . . , n, then |P (x)− P (y)| < ε.
Let Pwu(nX) denote the subspace of P(nX) consisting of the polynomials

that are weakly uniformly continuous on BX . The corresponding subspace
of Ls(nX) is denoted by Ls

wu(nX). In [AP, Proposition 2.4] the following
result is proved.

Proposition 6.1.2. The subspace Pwu(nX) of P(nX), with the norm
induced from P(nX), is a Banach space.

For each P ∈ P(nX) there is a linear operator TP : X → Ls(n−1X)
defined by

(TPx1)(x2, . . . , xn) = AP (x1, x2, . . . , xn), x1, . . . , xn ∈ X.

Proposition 6.1.3. The correspondence AP → TP is linear and ‖TP ‖ =
‖AP ‖.

According to [AP] the following holds.

Proposition 6.1.4. Let P ∈ P(nX). Then P ∈ Pwu(nX) if and
only if TP ∈ K(X,Ls(n−1X)). Moreover, if P ∈ Pwu(nX), then TP ∈
K(X,Ls

wu(n−1X)).

The relation between homogeneous polynomials and symmetric n-linear
forms is described by the following polarization formula (see [Di, Theorem
1.5]) and its application (see [Di, Corollary 1.6 and Theorem 1.7]).
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Proposition 6.1.5 (polarization formula). Let P ∈ Pwu(nX) and
x1, . . . , xn ∈ X. Then

AP (x1, . . . , xn) =
1

2nn!

∑
εi=±1
1≤i≤n

ε1 . . . εnP (
n∑

j=1

εjxj).

Proposition 6.1.6. The correspondence P → AP is an isomorphism
between P(nX) and Ls(nX) satisfying

‖P‖ ≤ ‖AP ‖ ≤
nn

n!
‖P‖, P ∈ P(nX).

6.2 Uniform factorization for compact sets of 2-
homogeneous polynomials

Main result of this section is published in [MO2].
In this section we shall be interested in the case n = 2 of P(nX), i.e.,

we shall be interested in 2-homogeneous polynomials. In this case, clearly,
Ls

wu(1X) = Ls(1X) = X∗ and therefore K(X,Ls
wu(1X)) = K(X,Ls(1X)) =

K(X,X∗). Basing on Section 6.1, this enables us to apply Corollary 5.2.3
to get the following uniform factorization result for compact sets of 2-
homogeneous polynomials. Recall that

s(A)(x1, x2) =
1
2

(
A(x1, x2) +A(x2, x1)

)
, x1, x2 ∈ X, A ∈ L(2X).

Recall also that the space ZX was defined in Section 5.1.

Theorem 6.2.1. Let X be a Banach space and let Z = ZX .Then, for
every compact subset C of Pwu(2X), there exist norm one operators u, v ∈
K(X,Z), and linear mappings Ψ : span C → Pwu(2Z) and ψ : span C →
L(2Z) such that, for all P ∈ span C,

P (x) = ψ(P )(ux, vx), x ∈ X,

and
s(ψ(P )) = AΨ(P ).

The mappings Ψ and ψ restricted to C ∪ {0} satisfy

max
{
‖P −Q‖, ‖Ψ(P )−Ψ(Q)‖

}
≤ ‖ψ(P )− ψ(Q)‖

≤ 2 min
{

d,d3/4
(1

4
+

1
ln a

)3/4
‖P −Q‖1/4

}
, P,Q ∈ C ∪ {0},
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where
d = diam C ∪ {0}.

In particular, if −P ∈ C for some P ∈ C, then

‖Ψ(P )‖ ≤ ‖ψ(P )‖ ≤ min
{

d, 21/4d3/4
(1

4
+

1
ln a

)3/4
‖P‖1/4

}
.

Proof. Let C be a compact subset of Pwu(2X). Then

K := {TP : P ∈ C} ⊂ K(X,X∗).

The set K is compact because the correspondence P → AP → TP is contin-
uous. Notice that

diam K ∪ {0} ≤ 2d

because ‖TP − TQ‖ = ‖AP −AQ‖ ≤ 2‖P −Q‖ for all P,Q ∈ P(2X).
Applying Corollary 5.2.3 to the compact subset K ⊂ K(X,X∗), there

are norm one operators u, v ∈ K(X,Z) and a linear mapping Φ : span K →
K(Z,Z∗) such that TP = v∗ ◦Φ(TP ) ◦u, for all TP ∈ span K. Now, Φ(TP ) ∈
K(Z,Z∗), but Φ(TP ) need not be of the form TQ for some Q ∈ P(2Z). Let
us therefore consider the mapping σ ∈ L(K(Z,Z∗),Ls(2Z)) defined by

σ(S)(z1, z2) =
1
2

(
(Sz1)(z2) + (Sz2)(z1)

)
, S ∈ K(Z,Z∗), z1, z2 ∈ Z.

Observe that, in fact, σ(S) ∈ Ls
wu(2Z) for all S ∈ K(Z,Z∗). Indeed, let

S ∈ K(Z,Z∗). Then σ(S) = AQ for some Q ∈ P(2Z). Since

(σ(S))(z1, z2) =
1
2

(
(Sz1)(z2) + (S∗z1)(z2)

)
, z1, z2 ∈ Z,

we have TQ = (S+S∗)/2. Hence TQ ∈ K(Z,Z∗) and therefore Q ∈ Pwu(2Z)
meaning that σ(S) ∈ Ls

wu(2Z).
This permits us to define a linear mapping Ψ : span C → Pwu(2Z) by

Ψ(P )(z) = σ(Φ(TP ))(z, z), z ∈ Z, P ∈ span C,

meaning that
AΨ(P ) = σ(Φ(TP )), P ∈ span C.

We also define a linear mapping ψ : span C → L(2Z) by

ψ(P )(z1, z2) = (Φ(TP )z1)(z2), z1, z2 ∈ Z, P ∈ span C.
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Let now P ∈ span C. We have for all x ∈ X

P (x) = (TPx)(x) = (v∗Φ(TP )ux)(x) = ψ(P )(ux, vx)

and we have for all z1, z2 ∈ Z

s(ψ(P ))(z1, z2) =
1
2

(
ψ(P )(z1, z2) + ψ(P )(z2, z1)

)
= σ(Φ(TP ))(z1, z2) = AΨ(P )(z1, z2).

Let us finally consider the mappings Ψ and ψ restricted to C ∪ {0}.
For all P,Q ∈ span C, we have, since ‖u‖ = ‖v‖ = 1,

‖P −Q‖ = sup
‖x‖≤1

‖(P −Q)(x)‖ = sup
‖x‖≤1

|(ψ(P )− ψ(Q))(ux, vx)|

≤ ‖ψ(P )− ψ(Q)‖.

We also have

‖Ψ(P )−Ψ(Q)‖ ≤ ‖AΨ(P ) −AΨ(Q)‖ = ‖s(ψ(P )− ψ(Q))‖
≤ ‖ψ(P )− ψ(Q)‖.

For all P,Q ∈ C ∪ {0}, using the definition of ψ and Corollary 5.2.3, we
have

‖ψ(P )− ψ(Q)‖ = ‖Φ(TP )− Φ(TQ)‖

≤ min
{

2d, 23/4d3/4
(1

4
+

1
ln a

)3/4
‖TP − TQ‖1/4

}
.

Since
‖TP − TQ‖ = ‖AP −AQ‖ ≤ 2‖P −Q‖,

we have

‖ψ(P )− ψ(Q)‖ ≤ min
{

2d, 23/4d3/4
(1

4
+

1
ln a

)3/4
21/4‖P −Q‖1/4

}
= 2 min

{
d,d3/4

(1
4

+
1

ln a

)3/4
‖P −Q‖1/4

}
as needed.

If, in particular, P,−P ∈ C, then the desired estimate for the norm of
ψ(P ) = (ψ(P )− ψ(−P ))/2 immediately follows from the above.
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6.3 Quantitative strengthening of a result of Aron,
Lindström, Ruess, and Ryan concerning poly-
nomials

Results of this section are published in [M1].
In 1999, Aron, Lindström, Ruess, and Ryan (see [ALRR, Proposition 5])

proved the following result.

Theorem 6.3.1 (Aron-Lindström-Ruess-Ryan). Let X be a Ba-
nach space and let n = 2, 3, . . . . Let Cn be a relatively compact subset of
the space K(X,Ls

wu(n−1X)). Then there is a compact subset C of X∗ such
that for all S ∈ Cn and all x ∈ X

|(Sx)(x, ..., x)| ≤ sup
x∗∈ C

|x∗(x)|n.

Remark 6.3.2. Notice, that by Propositions 6.1.4, 6.1.2, and 6.1.6, the
set Cn can be canonically identified with a relatively compact subset of
Pwu(nX).

Theorem 6.3.1 together with its proof in [ALRR] gives no information
about the size of the set C corresponding to the size of Cn.

In this section we shall prove the following quantitative strengthening of
Theorem 6.3.1. We denote |C| = sup{‖x‖ : x ∈ C}, where C is a bounded
set in a Banach space.

Theorem 6.3.3. Let X be a Banach space and let n = 2, 3, . . . . Let Cn

be a relatively compact subset of the space K(X,Ls
wu(n−1X)). Then there is

a compact circled subset C of X∗ with |C| = max{|Cn|, 1} such that for all
S ∈ Cn and all x ∈ X

|(Sx)(x, . . . , x)| ≤ sup
x∗∈ C

|x∗(x)|n.

The proof of Theorem 6.3.3 will be based on a factorization result that
easily follows from Corollary 3.3.1.

Lemma 6.3.4. Let X and Y be Banach spaces. For every relatively
compact subset C of K(X,Y ), there exist a reflexive Banach space Z, a linear
mapping Φ : span C → K(X,Z), and a norm one operator v ∈ K(Z, Y ) such
that S = v ◦ Φ(S) for all S ∈ span C. The mapping Φ restricted to C is a
homeomorphism and satisfies

‖S‖ ≤ ‖Φ(S)‖ ≤ min{|C|, |C|1/2
(1

4
+

1
ln a

)1/2
‖S‖1/2},

S ∈ C.
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Proof. Since circ C is a compact subset of K
(
X,Y

)
, by Corollary 3.3.1,

there exist a reflexive Banach space Z, a linear mapping Φ : span C →
K

(
X,Z

)
, and a norm one operator v ∈ K

(
Z, Y

)
such that S = v ◦ Φ(S),

for all S ∈ span C. Moreover, the mapping Φ restricted to circ C is a
homeomorphism satisfying

‖S‖ ≤ ‖Φ(S)‖ ≤ min
{ d

2
,

(d
2

)1/2(1
4

+
1

ln a

)1/2
‖S‖1/2

}
,

S ∈ circ C, where d = diam circ C.
Since for all S ∈ C

‖S‖ =
1
2
‖2S‖ =

1
2
‖S − (−S)‖ ≤ d

2
,

we get |C| ≤ d/2. On the other hand, for all S, T ∈ circ C, we have S = λS0

and T = µT0 for some S0, T0 ∈ C and for some λ, µ ∈ K with |λ|, |µ| ≤ 1.
Hence

‖S − T‖ ≤ ‖S‖+ ‖T‖ = ‖λS0‖+ ‖µT0‖
= |λ|‖S0‖+ |µ|‖T0‖ ≤ ‖S0‖+ ‖T0‖ ≤ |C|+ |C|,

S, T ∈ C. Therefore d/2 ≤ |C|. Consequently, d/2 = |C|, and we are
done.

The proof of Theorem 6.3.3 follows the idea of the proof in [ALRR,
Proposition 5].

Proof of Theorem 6.3.3. We proceed by induction on n = 2, 3, . . . . Let C2

be a relatively compact subset of the space K(X,Ls
wu(1X)) = K(X,X∗). By

Lemma 6.3.4 there are a Banach space Z, a linear mapping Φ : span C2 →
K(X,Z), and a norm one operator v ∈ K(Z,X∗) such that S = v ◦Φ(S) for
all S ∈ span C2. Then for all S ∈ C2 and for all x ∈ X,

|(Sx)(x)| = |v(Φ(S)x)(x)| = |(v∗x)(Φ(S)x)|,

hence
|(Sx)(x)| ≤ ‖v∗x‖‖Φ(S)x‖.

Put
CΦ = {(Φ(S))∗(z∗) : S ∈ C2, z∗ ∈ BZ∗} ⊂ X∗.

Then CΦ is circled. For proving that it is also compact, let us fix an arbitrary
ε > 0. Let {Φ(S1), . . . ,Φ(Sn)}, Sk ∈ C2, be an ε-net in the relatively
compact set {Φ(S) : S ∈ C2}. Since Φ(Sk) is a compact operator, (Φ(Sk))∗ is
also a compact operator and therefore (Φ(Sk))∗(BZ∗) is a relatively compact
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set. Since
⋃n

k=1(Φ(Sk))∗(BZ∗) is clearly a relatively compact ε-net in the
set {(Φ(S))∗(z∗) : S ∈ C2, z

∗ ∈ BZ∗}, this set is relatively compact. Hence,
CΦ is a compact set.

Moreover, we get

‖Φ(S)x‖ = sup
z∗∈BZ∗

|z∗(Φ(S)x)| = sup
z∗∈BZ∗

|((Φ(S))∗(z∗))(x)|

≤ sup
x∗∈CΦ

|x∗(x)|

for all S ∈ C2 and for all x ∈ X.
Denoting

Cv = v(BZ) ⊂ X∗,

we have that Cv is circled and compact, and

‖v∗x‖ = sup
z∈BZ

|(v∗x)(z)| = sup
z∈BZ

|(vz)(x)| ≤ sup
x∗∈Cv

|x∗(x)|

for all x ∈ X.
Finally, let C = CΦ ∪ Cv. Then C is circled and compact, and

|(Sx)(x)| ≤ ‖v∗x‖‖Φ(S)x‖ ≤ sup
x∗∈Cv

|x∗(x)| sup
x∗∈CΦ

|x∗(x)|

≤ sup
x∗∈C

|x∗(x)|2

for all S ∈ C2 and all x ∈ X.
By the definition of |C|,

|C| = sup
x∗∈C

‖x∗‖ = sup
x∗∈CΦ∪Cv

‖x∗‖ = max { sup
x∗∈CΦ

‖x∗‖, sup
x∗∈Cv

‖x∗‖}

= max{|CΦ|, |Cv|}.

Let us first estimate

|CΦ| = sup
x∗∈CΦ

‖x∗‖ = sup
S∈C2

z∗∈BZ∗

‖(Φ(S))∗(z∗)‖

= sup
S∈C2

‖(Φ(S))∗‖ = sup
S∈C2

‖Φ(S)‖.

Using the conclusion of Lemma 6.3.4, we have for all S ∈ C2,

‖S‖ ≤ ‖Φ(S)‖ ≤ sup
S∈C2

‖Φ(S)‖ = |CΦ|

and
‖Φ(S)‖ ≤ |C2|.
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Hence
|C2| ≤ |CΦ| ≤ |C2|,

meaning that |CΦ| = |C2|. Let us now compute

|Cv| = sup
x∗∈Cv

‖x∗‖ = sup
z∈BZ

‖vz‖ = ‖v‖ = 1.

Consequently,

|C| = max {|CΦ|, |Cv|} = max {|C2|, 1}.

Assume that the result is true for n − 1, where n ∈ {3, 4, . . .}. Let Cn

be a relatively compact subset of the space K(X,Ls
wu(n−1X)). By Lemma

6.3.4 there are a reflexive Banach space Z, a linear mapping Φ : span Cn →
K(X,Z), and a norm one operator v ∈ K(Z,Ls

wu(n−1X)) such that S =
v ◦ Φ(S) for all S ∈ span Cn. Then for all S ∈ Cn and for all x ∈ X,
considering (x, . . . , x) ∈ (Ls

wu(n−1X))∗ (note that if A ∈ Ls
wu(n−1X), then

〈(x, . . . , x), A〉 = A(x, . . . , x)),

|(Sx)(x, . . . , x)| = |v(Φ(S)x)(x, . . . , x)| = |(v∗(x, . . . , x))(Φ(S)x)|,

hence
|(Sx)(x, . . . , x)| ≤ ‖v∗(x, . . . , x)‖‖Φ(S)x‖.

Put, as above,

CΦ = {(Φ(S))∗(z∗) : S ∈ Cn, z∗ ∈ BZ∗} ⊂ X∗.

Then CΦ is circled and compact, and we get

‖Φ(S)x‖ = sup
z∗∈BZ∗

|z∗(Φ(S)x)| = sup
z∗∈BZ∗

|((Φ(S))∗(z∗))(x)| ≤ sup
x∗∈CΦ

|x∗(x)|

for all S ∈ Cn and for all x ∈ X. Recall that v(BZ) is a relatively compact
subset of Ls

wu(n−1X). Hence

Cn−1 := {TP : P ∈ Pwu(n−1X), AP ∈ v(BZ)} ⊂ L(X,Ls(n−2X))

is also relatively compact. According to Proposition 6.1.4,

Cn−1 ⊂ K(X,Ls(n−2X)).

Therefore, by the induction hypothesis, there is a circled and compact subset
Cv ⊂ X∗ with |Cv| = max{|Cn−1|, 1} such that

|(TPx)(x, . . . , x)| ≤ sup
x∗∈ Cv

|x∗(x)|n−1
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for all P ∈ Pwu(n−1X) with AP ∈ v(BZ). Since v(BZ) ⊂ Ls
wu(n−1X), for

all z ∈ BZ there is P ∈ Pwu(n−1X) such that vz = AP . By definition,
AP (x, x, . . . , x) = (TPx)(x, . . . , x), x ∈ X. Hence, for all z ∈ BZ and all
x ∈ X,

|(vz)(x, . . . , x)| = |AP (x, x, . . . , x)| = |(TPx)(x, . . . , x)| ≤ sup
x∗∈ Cv

|x∗(x)|n−1.

Therefore

‖v∗(x, . . . , x)‖ = sup
z∈BZ

|(v∗(x, . . . , x))(z)|

= sup
z∈BZ

|(vz)(x, . . . , x)| ≤ sup
x∗∈Cv

|x∗(x)|n−1.

Finally, let C = CΦ ∪ Cv. Then C is circled and compact, and

|(Sx)(x, . . . , x)| ≤ ‖v∗(x, . . . , x)‖‖Φ(S)x‖
≤ sup

x∗∈Cv

|x∗(x)|n−1 sup
x∗∈CΦ

|x∗(x)| ≤ sup
x∗∈C

|x∗(x)|n

for all S ∈ Cn and all x ∈ X.
To complete the proof, let us show that |C| = max {|Cn|, 1}. Similarly

to the case n = 2, we have

|C| = sup
x∗∈C

‖x∗‖ = sup
x∗∈CΦ∪Cv

‖x∗‖ = max { sup
x∗∈CΦ

‖x∗‖, sup
x∗∈Cv

‖x∗‖}

= max{|CΦ|, |Cv|}

and

|CΦ| = sup
x∗∈CΦ

‖x∗‖ = sup
S∈Cn

z∗∈BZ∗

‖(Φ(S))∗(z∗)‖

= sup
S∈Cn

‖(Φ(S))∗‖ = sup
S∈Cn

‖Φ(S)‖.

Using the conclusion of Lemma 6.3.4, we have for all S ∈ Cn,

‖S‖ ≤ ‖Φ(S)‖ ≤ |CΦ|

and
‖Φ(S)‖ ≤ |Cn|.

Hence
|Cn| ≤ |CΦ| ≤ |Cn|,

meaning that |CΦ| = |Cn|. Let us show that |Cv| = 1. Recall that |Cv| =
max{|Cn−1|, 1}. Since

|Cn−1| = sup
TP∈Cn−1

‖TP ‖ = sup
AP∈v(BZ)

‖AP ‖ ≤ sup
z∈BZ

‖vz‖ = ‖v‖ = 1,

we clearly have |Cv| = 1.
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6.4 Quantitative version of the Toma theorem

The result of this section is published in [M1].
The next characterization theorem is proved by Toma [T] (an alternative

proof is given in [ALRR]).

Theorem 6.4.1 (Toma). Let X be a Banach space, let n = 2, 3, . . .,
and let P ∈ P(nX). The polynomial P ∈ Pwu(nX) if and only if there is a
compact subset C of X∗ such that for all x ∈ X

|P (x)| ≤ sup
x∗∈ C

|x∗(x)|n.

The following is a quantitative version of Theorem 6.4.1.

Corollary 6.4.2. Let X be a Banach space, let n = 2, 3, . . ., and let
P ∈ P(nX). The following are equivalent:
(a) P ∈ Pwu(nX),
(b) there is a compact subset C of X∗ such that for all x ∈ X

|P (x)| ≤ sup
x∗∈ C

|x∗(x)|n,

(c) there is a compact circled subset C of X∗ with

max{‖P‖, 1} ≤ |C| ≤ max{n
n

n!
‖P‖, 1}

such that for all x ∈ X

|P (x)| ≤ sup
x∗∈ C

|x∗(x)|n.

Proof. (a) ⇒ (c). Let P ∈ Pwu(nX), then {TP } ⊂ K(X,Ls
wu(n−1X)).

Applying Theorem 6.3.3 to Cn = {TP }, we get that there is a compact
circled subset C of X∗ with |C| = max{‖Tp‖, 1} such that for all x ∈ X

|P (x)| = |AP (x, x, . . . , x)| = |(TPx)(x, . . . , x)| ≤ sup
x∗∈ C

|x∗(x)|n.

Applying Propositions 6.1.6 and 6.1.3, we have

‖P‖ ≤ ‖TP ‖ ≤
nn

n!
‖P‖.

Hence
max{‖P‖, 1} ≤ |C| ≤ max{n

n

n!
‖P‖, 1}.

(c) ⇒ (b). This is obvious.
(b) ⇒ (a). This is immediate from Theorem 6.4.1.
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Banachi operaatorruumide
kompaktsete alamhulkade
ühtlane faktorisatsioon

Olgu X ja Y Banachi ruumid. Kõikide ruumist X ruumi Y tegutsevate
pidevate lineaarsete operaatorite Banachi ruumi tähistamiseks kasutame
sümbolit L(X,Y ) ning sümbolitega F(X,Y ), F(X,Y ), K(X,Y ) ja W(X,Y )
tähistame alamruume, mis on vastavalt lõplikumõõtmeliste, aproksimeerita-
vate, kompaktsete ja nõrgalt kompaktsete operaatorite ruumid. Kui A on
F , F , K, W või L, siis Aw∗(X∗, Y ) tähistab ruumi A(X∗, Y ) *nõrk-nõrkade
operaatorite alamruumi.

Olgu antud operaator S ∈ L(X,Y ). Kui Banachi ruumi Z ning operaa-
torite u ∈ L(X,Z) ja v ∈ L(Z, Y ) korral S = v◦u, siis öeldakse, et operaator
S faktoriseerub läbi ruumi Z.

Alates Grothendiecki ja Pietschi töödest, vastavalt 1950-ndatel aasta-
tel ja 1960-ndate aastate lõpus, on operaatorite faktoriseerimist läbi klas-
sikaliste ruumide Z või ruumidest X ja Y lihtsamate ruumide Z uurinud
paljud matemaatikud (vt. näiteks monograafiat [DJT] aastast 1995).

Aastal 1971 tõestas Johnson [J], et iga aproksimeeritav operaator fak-
toriseerub läbi ruumi Cp, 1 ≤ p ≤ ∞.

Tuginedes Johnsoni teoreemile, tõestas Figiel [F] aastal 1973, et iga kom-
paktne operaator faktoriseerub läbi ruumi Cp kinnise alamruumi.

Teoreem (Figiel-Johnson). Olgu 1 ≤ p ≤ ∞. Olgu X ja Y Banachi
ruumid. Kui S ∈ K(X,Y ), siis leidub ruumi Cp kinnine alamruum W ning
operaatorid u ∈ K(X,W ) ja v ∈ K(W,Y ) nii, et S = v ◦ u.

Kompaktsete operaatorite faktoriseeruvuse läbi klassikaliste jadaruumi-
de `1 ja c0 tõestasid Randtke [R, järeldus 7], Terzioǧlu [Te, lk 252] ja Dazord
[Da, lause 5.12].

Teoreem (Randtke). Olgu X L1-ruum ja Y Banachi ruum. Kui S ∈
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K(X,Y ), siis leiduvad operaatorid u ∈ K(X, `1) ja A ∈ K(`1, Y ) nii, et
S = A ◦ u.

Teoreem (Terzioǧlu-Dazord). Olgu X L∞-ruum ja Y Banachi ruum.
Kui S ∈ K(X,Y ), siis leiduvad operaatorid u ∈ K(X, c0) ja A ∈ K(c0, Y ))
nii, et S = A ◦ u.

Randtke ja Terzioǧlu-Dazord’i teoreemid annavad ühe kompaktse ope-
raatori faktorisatsiooni läbi ruumide `1 ja c0. Enam kui kümme aastat
hiljem, aastal 1987 tõestasid Graves ja Ruess [GR2, teoreem 2.1] järgneva
kompaktsete operaatorite kompaktsete alamhulkade faktorisatsiooniteoree-
mi läbi ruumide `1 ja c0.

Teoreem (Graves-Ruess). Olgu X L1-ruum (vastavalt L∞-ruum) ja Y
Banachi ruum. Olgu C suhteliselt kompaktne alamhulk ruumis K(X,Y ). Siis
leidub operaator u ∈ K(X, `1) (vastavalt u ∈ K(X, c0)) ja suhteliselt kom-
paktne alamhulk {AS : S ∈ C} ruumis K(`1, Y ) (vastavalt ruumis K(c0, Y ))
nii, et S = AS ◦ u iga S ∈ C korral.

Kompaktsete operaatorite ühtlase faktoriseerumise üldisemal juhul an-
nab järgmine Aron-Lindström-Ruess-Ryani teoreem (vt. [ALRR, teoreem
1]) aastast 1999, kus ZFJ tähistab Figiel-Johnsoni universaalset faktorisat-
siooniruumi (näiteks ZFJ = (

∑
W⊂Cp

W )p, kus lõpmatu otsesumma on
võetud üle ruumi Cp kõikide kinniste alamruumide W ).

Teoreem (Aron-Lindström-Ruess-Ryan). Olgu X ja Y Banachi ruu-
mid ja olgu C suhteliselt kompaktne alamhulk ruumis Kw∗(X∗, Y ). Siis lei-
duvad operaatorid u ∈ Kw∗(X∗, ZFJ) ja v ∈ K(ZFJ , Y ) ning suhteliselt kom-
paktne alamhulk {AS : S ∈ C} ruumis K(ZFJ , ZFJ) nii, et S = v ◦AS ◦u iga
S ∈ C korral.

Artiklis [ALRR, järeldus 4]) on näidatud, et Aron-Lindström-Ruess-
Ryani teoreemist järeldub Graves-Ruessi teoreem.

Aron-Lindström-Ruess-Ryani ning Graves-Ruessi teoreemid koos tões-
tustega ei anna mingit informatsiooni hulkade vastavust kirjeldavate kuju-
tuste omaduste kohta. Nimetagem mõned antud kontekstis kerkivad loomu-
likud küsimused. Kas need kujutused on homöomorfismid? Millised on
nende pidevusomadused? Kuidas on omavahel seotud vastavate hulkade
diameetrid?

Käesoleva doktoritöö põhitulemusena on tõestatud Graves-Ruessi ning
Aron-Lindström-Ruess-Ryani teoreemide kvantitatiivsed versioonid, mis kir-
jeldavad operaatorite suhteliselt kompaktsete hulkade faktorisatsiooni Höl-
deri mõttes pidevate homöomorfismide kaudu, mille pöördkujutused on Lipsc-
hitzi mõttes pidevad, ning on leitud tõhusaid hinnanguid vastavuses ole-
vate hulkade diameetrite kohta. Väitekirja neljandas peatükis on esitatud
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eelpool nimetatud teoreemide kvantitatiivsed versioonid (teoreemid 4.2.1 ja
4.4.3). Tõestamisel on tuginetud kolmandas peatükis saadud kompaktsete
ja nõrgalt kompaktsete operaatorite kompaktsete alamhulkade ühtlasele fak-
torisatsioonile. Tõestuse idee (lemmad 3.1.1 ja 3.1.2 ning teoreemid 3.2.1,
3.2.2 ja 3.2.3) seisneb niisuguse kujutuse S → AS , kus S ∈ C ja C on
nõrgalt kompaktsete operaatorite kompaktne alamhulk, konstrueerimises,
mis säilitab kompaktsed ja lõplikumõõtmelised operaatorid, on Hölderi mõt-
tes pidev ning mille pöördkujutus on Lipschitzi mõttes pidev. Seejuures
diam{AS : S ∈ C} = diam C niipea, kui 0 ∈ C.

Kolmandas peatükis esitatud konstruktsioon tugineb kuulsa Davis-Figiel-
Johnson-Pe lczyński faktorisatsioonilemma [DFJP] Lima, Nygaardi ja Oja
[LNO] isomeetrilisele versioonile, mis on esitatud teises peatükis (vt lemma
2.2.1). Võrdluseks märgime, et Graves-Ruessi teoreemi tõestus artiklis [GR2]
on vägagi tehniline, tugineb Ruessi artiklis [Ru] tuletatud hulkade suhtelise
kompaktsuse kriteeriumitele ruumis Kw∗(X∗, Y ) ning kasutab Saphari ten-
sorkorrutiste aparatuuri [S]. Artikkel [ALRR] annab Aron-Lindström-Ruess-
Ryani teoreemile kaks erinevat tõestust, milledest üks toetub suurel määral
Grothendiecki memuaaris [G] antud suhteliselt kompaktsete hulkade iseloo-
mustusele Banachi ruumide projektiivses tensorkorrutises ning teine Banach-
Dieudonné teoreemile.

Viiendas peatükis on tõestatud ühtlase faktorisatsiooni teoreem, mis kir-
jeldab ruumist X kaasruumi X∗ tegutsevate kompaktsete ja nõrgalt kom-
paktsete operaatorite kompaktsete hulkade faktorisatsiooni Hölderi mõttes
pidevate homöomorfismide, mille pöördkujutus on Lipschitzi mõttes pidev,
kaudu. Kuuendas peatükis on peatükkides 4 ja 5 saadud tulemusi ra-
kendatud polünoomidele. On tõestatud faktorisatsiooniteoreem 2-homo-
geensete polünoomide kompaktsete hulkade jaoks ja Aron-Lindström-Ruess-
Ryani ning Toma teoreemide kvantitatiivsed versioonid Banachi ruumi ühik-
keral nõrgalt ühtlaselt pidevate polünoomide jaoks.

Kolmandas ja neljandas peatükis esitatud tulemused on artiklist [MO1],
viies peatükk tugineb artiklile [MO2] ja kuuenda peatüki peamised tule-
mused on artiklitest [M1] ja [MO2].
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