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Introduction

This thesis aims to provide a method of estimating the parameters of stable distributions. Stable
distributions, also known as the Lévy-stable, α-stable, sum-stable, or Pareto-stable distributions,
form a sub-class of infinitely divisible distributions that are the only possible limiting distributions
for normalized sums of independent identically distributed random variables. The first appearance
of stable laws was observed within the results of the theory of two classic limit theorems – the law of
large numbers and the central limit theorem. However, the family of stable laws was first described
by Lévy (1925). The intriguing theoretical properties of stable laws have engaged the interest of
many mathematicians and statisticians ever since. All stable laws possess a stability property: the
sum of independent stable random variables is distributed as a stable law. However, the normal law
is the only stable law with finite variance and light tails. All other non-degenerate stable laws have
infinite variance and heavier tails. Univariate stable laws account for location, scale and, in some
appropriate senses, skewness and tail weight parameters. The flexible 4–parameter stable laws can
capture the fuzzy dynamics and large fluctuations that result from stochastic processes occurring
in diverse fields of business, science, and engineering. Starting with a series of publications in
the 1960’s (e.g., Mandelbrot (1960a,b), Good (1961)) stable laws have been extensively used in
various areas of applications. For example, radiophysics (e.g., Nikias and Shao (1995), Cek (2015),
Wang et al. (2017), and Pad et al. (2017)); biostatistics (e.g., Hougaard (1986)); hydrology (e.g.,
Menabde and Sivapalan (2000) and Kohlbecker et al. (2006)); finance (e.g., Leitch and Paulson
(1975), McCulloch (1996), Nolan (2003), Curto et al. (2009), Kring et al. (2009), Xu et al. (2011),
and Kateregga et al. (2017)); and actuarial science (e.g., Goovaerts et al. (2003), Brahimi and Abdelli
(2016), and Luong (2016)). For more on the fields of applications, see, e.g., Uchaikin and Zolotarev
(1999), Nolan (2018a).

One can list few alternatives to stable distributions: Johnson distributions (Johnson et al. (1994));
generalised hyperbolic distributions (Barndorff-Nielsen (1978)), the sinh-arcsinh distributions (Jones
and Pewsey (2009)), skew-elliptical families (e.g., Azzalini and Capitanio (2014)), extreme value
distributions (e.g., Kotz and Nadarajah (2000)), geometric stable distributions (e.g., Kozubowski
(1999)), and tempered stable laws (e.g., Rosiński (2007)). However, when solving problems related
to the limit distributions of normalized sums of independent identically distributed random vari-
ables then stable laws have the most appropriate structure (Uchaikin and Zolotarev, 1999, p. 66).
When compared to most of the aforementioned alternative distributions, stable distributions provide



2 Introduction

heavier tails. In addition, stable distributions are intimately related to the stable Lévy processes, a
significant subclass of Lévy processes.

Motivation and Research Task

A challenging problem in applying stable distributions to practical problems is estimating their pa-
rameters because many stable distributions have infinite moments and, with a few exceptions, the
densities cannot be explicitly expressed in the terms of elementary functions. In spite of these
limitations, various methods of constructing estimators of the parameters of stable laws have been
proposed. Unfortunately, many of these methods have restrictions in the parameter space while
the most popular methods involve algorithmic procedures rather than closed-form estimators. Press
(1972) proposed a procedure that is based on the logarithm of the characteristic function of stable
laws at two different pairs of arbitrary non-zero arguments along the real line, (u1,u2) and (u3,u4),
and estimators are obtained by a so-called version of the method of moments. Unfortunately, Press
(1972) provided no guidance on how to choose these two pairs of arguments. Furthermore, he added
(Press, 1972, Footnote 1, p. 843):

It may be that the same pair of values (u1,u2), which is used to estimate tail index
and scale parameter, will also serve well to estimate location and skewness parameters.
However, this question requires further study.

Those problems have remained unsolved ever since thus making the method not very useful in prac-
tice. Paulson et al. (1975, p. 168) found the version of the method of moments to be ineffective and
very often yielding impossible (in the sense of the parameter space) results. Borak et al. (2005, Sec-
tion 1.4.3) comment that Press (1972) estimates turn out to be of poor quality and do not recommend
the method for more than preliminary estimation.

The aim of this thesis is to provide new insights into the Press (1972) parameter estimation proce-
dure. More precisely, to revise its formulation, to study the statistical inference and, most impor-
tantly, with the aid of substantiative simulations give suggestions on the selection of the arguments.

Contribution of the Thesis

The main results of this thesis are a class of closed-form estimators, called the empirical cumu-
lant function1 (ECuF) based estimators, and a novel sample based solution, called the Argument–
Selection–Rule, to the problem of ECuF estimators depending on two arbitrary different positive

1For clarity, the term cumulant function refers to the logarithm of characteristic function.
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arguments. Another significant contribution of this thesis is providing the asymptotic normality of
the ECuF estimators. In more detail, the results provided in this thesis are as follows,

(i) It is proven that the parameters of general stable laws can be expressed through the real and
imaginary parts of the cumulant function at two arbitrary u1 > 0,u2 > 0, , u1 6= u2.

(ii) The Press (1972) estimation procedure is reformulated to use only two (rather than four) dif-
ferent positive real numbers, called the ECuF estimators.

(iii) Based on the study of the convergence of the real part of the empirical cumulant function a
sample based Argument–Selection–Rule for selecting the arguments u1 > 0,u2 > 0, u1 6= u2,
of ECuF estimators is proposed.

(iv) Via exhaustive Monte–Carlo simulations it is shown that the closed-form ECuF estimators
make an considerable alternative to the well-known algorithmic methods.

(v) Based on the applications it is shown that the ECuF estimators can be successfully used in
practice, and that stable laws can be suggested for modelling non-life insurance claim sizes
distributions.

(vi) The asymptotic normality for the real and imaginary parts of the empirical cumulant function
in general is proven.

(vii) The asymptotic normality for the ECuF estimators (throughout the interior of the parameter
space) is proven.

The thesis is formulated as a monograph based on Krutto (2016) and Krutto (2018). This thesis
also includes results that have not been published. For convenience of those interested in the code
developed for this thesis, files with the raw working code are available at https://github.com/

akrutto/StableECuF.

Thesis Outline

The thesis is organized as follows. Chapter 1 and Chapter 2 are preliminary and lay out the math-
ematical foundations for the following chapters. Short theory of the characteristic and cumulant
functions is given in Chapter 1. An overview of stable laws is given in Chapter 2. In Chapter 3 the
parameters of stable laws are expressed via the real and imaginary parts of their cumulant function.
In Chapter 4 the empirical cumulant function (ECuF) based estimators are formulated and asymp-
totic normality is provided. In Chapter 5 simulations for ECuF estimators at various selections of
arguments are carried out. In Chapter 6 a Argument–Selection–Rule for the selection of u1,u2 is
proposed. In Chapter 7 the effectiveness of ECuF estimators is assessed and comparison to other
estimation methods is provided. In Chapter 8 two applications to non-life insurance claim sizes data
are presented. Six appendices (A–F) are included in the thesis. All citations given in this thesis are
alphabetically listed in the references section.

https://github.com/akrutto/StableECuF
https://github.com/akrutto/StableECuF




Chapter 1

Characteristic and Cumulant
Functions

Let X be a random variable on R with some distribution P = Pθ where θ denotes the vector of pa-
rameters. The distribution function of X , FX (x) = FX (x|θ) = P(X ≤ x), completely describes the
distribution of random variable X (and vice versa). The characteristic function, a kind of Fourier
transform, also contains the complete information about the random variable under consideration.
Characteristic functions are especially useful in the problems of summation of independent random
variables because they transform convolutions (of distribution functions) into products (of charac-
teristic functions).

Characteristic functions are often written in a simpler form via the (natural) logarithm. The logarithm
of characteristic function is called the cumulant generating function (e.g., Lukacs (1970), Knight and
Satchell (1997), Grabchak (2016)), the second characteristic function (e.g., Uchaikin and Zolotarev
(1999)), the log-characteristic function (Meerschaert and Scheffler (2001)) or shortly the cumulant
function (Kollo and von Rosen (2005)). In this thesis the latter is used.

In what follows, let ℜ and ℑ denote the real and imaginary part operators, respectively: given a
complex number z = x+ iy then ℜz = x, ℑz = y, ℜ2z = x2, ℑ2z = y2, and i2 =−1.

1.1 Characteristic Functions

The theory of characteristic functions on real line is amply described1 in Lukacs (1970), Feller (1971,
Chapter XV), Ushakov (1999), Uchaikin and Zolotarev (1999, Chapter 3). The following definition
is based on Feller (1971, p. 499).

1For multivariate extension, see, e.g., Ushakov (1999, Section 1.8), Sato (1999, Section 1.2), Meerschaert and Scheffler
(2001, Section 1.3).
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Definition 1.1. Let X be a real valued random variable with the distribution function FX (x). The

characteristic function is a complex-valued function ϕ : R→ C,

ϕX (u) =
∫
R

exp{iux}dFX (x), u ∈ R (1.1)

with

ℜϕX (u) =
∫
R

cos(ux)dFX (x) (1.2)

and

ℑϕX (u) =
∫
R

sin(ux)dFX (x). (1.3)

For an absolutely continuous X with density fX (x) the characteristic function ϕX (u|θ) is the ordinary

Fourier transform of fX (x),

ϕX (u) =
∫
R

exp{iux} fX (x)dx, u ∈ R. (1.4)

Note that
ϕX (u) = Eexp{iuX}= Ecos(uX)+ iEsin(uX),

where E is the expectation operator. The inverse Fourier transform allows to reconstruct the density
from a known characteristic function (e.g., Ushakov (1999, Theorem 1.2.6, p. 6), Meerschaert and
Scheffler (2001, Theorem 1.3.7, p. 15)).
Theorem 1.1 (The Fourier Inversion Theorem). Suppose a random variable X has an absolutely

integrable (with respect to the Lebesgue measure) characteristic function ϕX (u). Then the corre-

sponding distribution function FX (x) is absolutely continuous, the density fX (x) is bounded and

continuous, and

fX (x) =
1

2π

∫
R

exp{−iux}ϕX (u)du, x ∈ R (1.5)

with respect to the Lebesgue measure on R.

The following properties of characteristic functions immediately follow from their definition (e.g.,
Feller (1971, Section XV.I), Ushakov (1999, Section 1.1), Uchaikin and Zolotarev (1999, Section
3.1)).
Proposition 1.1. Let ϕX (u) be the characteristic function of an absolutely continuous distribution

given by (1.1). Then,

(a) ϕX (0) = 1; ℜϕX (0) = 1,ℑϕX (0) = 0;
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(b) |ϕX (u)| ≤ 1 for all u ∈ R;

(c) |ϕX (u)| → 1 as |u| → 0;

(d) |ϕX (u)| → 0 as |u| → ∞;

(e) ϕX (u) is a uniformly continuous function on R;

(f) ϕX (−u) = ϕ−X (u) = ϕX (u) (the horizontal bar denotes the complex conjugate);

(g) A random variable X is symmetric, X d
= −X, if and only if its characteristics function is real,

ϕX (u) = ℜϕX (u), u ∈ R;

(h) ϕa+bX (u) = exp{iua}ϕX (bu);

(i) If Sn = X1 + · · ·+Xn is the sum of independent random variables then

ϕSn(u) = ϕX1(u) . . .ϕXn(u).

As |ϕ(u)| ≤ 1 then by the mean value theorem |Eϕ(u)| ≤ 1. Furthermore, |Eϕ(u)|2 ≤ 1 (see, Feller
(1971, p. 498)).

A sequence of distribution functions FX1(x),FX2(x), . . ., x ∈R converges in distribution to a distribu-
tion function F(x) if limk→∞ FXk(x) = F(x) for all continuity points x of F(x) (e.g., Ushakov (1999,
p. 4)). Let D→ denote the convergence in distribution (or weak convergence).

The Lèvy continuity theorem (see, e.g., Uchaikin and Zolotarev (1999, Theorem 3.1.2, p.72), Ushakov
(1999, Theorems 1.2.1, 1.2.2, p. 4–5), or Meerschaert and Scheffler (2001, Theorem 1.3.6, p. 15)) is
of special importance regarding the problems of limit distributions.
Theorem 1.2 (The Lèvy Continuity Theorem). Let, for every x∈R, FX1(x),FX2(x), . . . be a sequence

of distribution functions, and, for every u ∈ R, ϕX1(u),ϕX2(u), . . . be the corresponding sequence of

characteristic functions.

(a) The sequence FX1 ,FX2 , . . . converges in distribution to some distribution function F(x) if and

only if the sequence ϕX1(u),ϕX2(u), . . . converges at all points to some function ϕ(u) which is

continuous at zero. In this case, ϕ(u) is the characteristic function2 corresponding to F(x).

(b) The sequence FX1 ,FX2 , . . . converges in distribution to some distribution function F(x) if and

only if the sequence ϕX1(u),ϕX2(u), . . . converges uniformly on each bounded interval to some

function ϕ(u). In this case, ϕ(u) is the characteristic function corresponding to F(x).

2Note that a sequence of characteristic functions may converge at all points to a function which is not a characteristic
function (see, e.g., Ushakov (1999), Example 28 of Appendix A).
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There is one-to-one correspondence between the characteristic and distribution functions (e.g., Ushakov
(1999, Theorem 1.1.2), Meerschaert and Scheffler (2001, Proposition 1.3.5)).
Theorem 1.3 (Uniqueness Theorem). Two distribution functions are identical if and only if their

characteristic functions are identical.

1.2 Cumulant Functions

Cumulant function is defined as the logarithm of characteristic function.
Definition 1.2. For a real valued random variable X on R the cumulant function is a complex-valued

function ψ : R→ C,

ψX (u) = lnϕX (u), u ∈ R, (1.6)

where ϕX (u) is given by (1.1) and ϕX (u) 6= 0.

From elementary complex analysis (e.g., Brown and Churchill (1996), p. 75-76)

ψX (u) = ln |ϕX (u)|+ iargϕX (u), (1.7)

where argϕX (u) is the argument of ϕX (u). Recall that given a complex number z = x + iy, the
argument of z, argz, has an infinite number of possible values, including negative ones, that differ
by integer multiples of 2π . More precisely,

argz = Argz+2kπ k = 0,±1,±2, . . . , (1.8)

where Argz, called the principal value of argz, is a unique value such that ArgϕX (u) ∈ (−π,π]. The
principal value Argz can be evaluated in terms of standard arctan function (see, e.g., Kasana (2005),
p. 14), and in a variety of computer programming languages (e.g., R (R Core Team (2018)), it is
provided under the function name of atan2, i.e., Argz≡ atan2(ℑz,ℜz),

Argz = atan2(ℑz,ℜz) =



arctan(ℑz/ℜz) if ℜz > 0,

arctan(ℑz/ℜz)+π if ℜz < 0 and ℑz≥ 0,

arctan(ℑz/ℜz)−π if ℜz < 0 and ℑz < 0,

+π/2 if ℜz = 0 and ℑz > 0,

−π/2 if ℜz = 0 and ℑz < 0,

undefined if ℜz = 0 and ℑz = 0.

(1.9)
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Hereby, the logarithm of z can be written

lnz = ln |z|+ i(atan2(ℑz,ℜz)+2kπ) k = 0,±1,±2, . . . (1.10)

and the principal value3 of z is the value obtained from (1.10) when k = 0.

In what follows, the cumulant function ψX (u) is assumed its principal value (with the same notation),

ψX (u)≡ ln |ϕX (u)|+ iatan2(ℑϕX (u),ℜϕX (u)), (1.11)

with ϕX (u) given by (1.1) and ϕX (u) 6= 0. The following properties of cumulant functions immedi-
ately follow from their definition and Proposition 1.1.
Proposition 1.2. Let ψX (u)=ψX (u) be a cumulant function of an absolutely continuous distribution

given by (1.11). Then,

(a) ψX (0) = 0;

(b) ℜψX (u)≤ 0 for all u;

(c) |ψX (u)| → ∞ as |u| → ∞;

(d) ψa+bX (u) = {iua}+ψX (bu) for any b 6= 0, a ∈ R;

(e) If Sn = X1 + · · ·+Xn is the sum of independent random variables then

ψSn(u) = ψX1(u)+ · · ·+ψXn(u).

Characteristic function can be expressed through real and imaginary parts of cumulant function,

ϕX (u) = exp{ℜψX (u)}exp{iℑψX (u)},

and then

ℜϕX (u) = exp{ℜψX (u)}cosℑψX (u), (1.12)

ℑϕX (u) = exp{ℜψX (u)}sinℑψX (u). (1.13)

Clearly, ReψX (u) = ln |ϕX (u)| and ℑψX (u) = atan2(ℑϕX (u),ℜϕX (u)).

3In a variety of computer programming languages (e.g., R (R Core Team (2018)), the logarithm of complex numbers is by
default its principal value.
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1.3 Empirical Characteristic Function

For a random sample formed by independent and identically distributed (i.i.d.) random variables on
R the idea of empirical or sample characteristic function was originally initiated by Parzen (1962)
(see, also Press (1972)).
Definition 1.3. Let Y1, . . . ,Yn be i.i.d. random variables on R. The empirical characteristic function

associated with the random sample {Y1, . . . ,Yn}, denoted by ϕn(u) = ϕ{Y1,...,Yn}(u), is a complex

valued function, ϕn : R→ C,

ϕn(u) =
∫
R

exp{iuy}dFn(y) =
1
n

n

∑
j=1

exp{iuYj} u ∈ R, (1.14)

with

ℜϕn(u) =
1
n

n

∑
j=1

cos(uYj), (1.15)

and

ℑϕn(u) =
1
n

n

∑
j=1

sin(uYj), (1.16)

where Fn(x) is the empirical distribution function,

Fn(x) =
1
n

n

∑
i=1

1{Yi≤y}, x ∈ R. (1.17)

Ushakov (1999, Section 3.1, p. 160) explains, that empirical characteristic function is a random
function whose all realizations are characteristic functions of discrete (concentrated at most n points)
distributions. A realization of empirical characteristic function at the counterpart y1, . . . ,yn of the
random sample Y1, . . . ,Yn is denoted by ϕ̂n(u),

ϕ̂n(u) =
1
n

n

∑
j=1

exp{iuy j}. (1.18)

The following properties of empirical characteristic function immediately follow from its definition
(see, e.g., Ushakov (1999, Section 3.1)).
Proposition 1.3. Let ϕn(u) be the empirical characteristic function given by (1.14). Then,

• ϕn(0) = 1;

• |ϕn(u)| ≤ 1;
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• ϕn(−u) = ϕn(u) (the horizontal bar denotes the complex conjugate);

• limsup
|u|→∞

|ϕn(u)|= 1;

• ϕn(u) has derivatives of all orders.

Let Y1, . . . ,Yn be the i.i.d. copies of a random variable X . Then,

Eϕn(u) =
1
n

n

∑
j=1

EeiuY j = Eexp{iuX}= ϕX (u), (1.19)

which implies that empirical characteristic function is an unbiased estimator of the corresponding
characteristic function. Moreover (e.g., Ushakov (1999, p. 161)), for every fixed u1,u2 ∈ R,

Cov(ϕn(u1),ϕn(u2)) = E[(ϕn(u1)−ϕX (u1|))(ϕn(u2)−ϕX (u2))]

=
1
n
[ϕX (u1−u2)−ϕX (u1)ϕX (u2)], (1.20)

and in particular,

E |ϕn(u)−ϕX (u)|2 =
1
n
[1−|ϕX (u)|2],

which implies that the empirical characteristic function ϕn(u) converges in mean square to ϕX (u) at
every fixed point u ∈ R as n→ ∞,

lim
n→∞

E |ϕn(u)−ϕX (u)|2 = 0. (1.21)

For any fixed u ∈ R, ϕn(u) is an average of i.i.d. random variables with Eϕn(u) = ϕ(u) and finite
variance. Therefore it follows by the strong law of large numbers (e.g., DasGupta (2008, Theorem
3.1, p. 35)) that at every fixed u ∈ R the empirical characteristic function ϕn(u) converges almost
surely to ϕX (u),

P
(

lim
n→∞

ϕn(u) = ϕX (u)
)
= 1, (1.22)

and ϕn(u) is almost surely consistent estimator of ϕX (u). The Glivenko-Cantelli theorem implies
that ϕn(u) is almost surely consistent uniformly on each bounded interval of R (e.g., Feuerverger
and Mureika (1977, Theorem 2.1)),

P
(

lim
n→∞

sup
|u|≤U
|ϕn(u)−ϕX (u)|= 0

)
= 1. (1.23)

for any fixed positive U < ∞. For U → ∞ Csörgo and Totik (1983) pointed out that (1.23) is true if
and only if the distribution of X is discrete. When the distribution of X is continuous then empirical
characteristic function is not almost surely consistent uniformly on the whole real line. In fact (e.g.,
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Ushakov (1999), p. 16), for every n,

P
(

limsup
|u|→∞

|ϕn(u)−ϕX (u)|> 0

)
= 1.

Csörgo (1981, Theorem 1) showed that for some sequence {Un} of finite positive numbers such that

lim
n→∞

Un

√
ln lnn

n
= 0

then

P
(

lim
n→∞

sup
|u|≤Un

|ϕn(u)−ϕX (u)|= 0

)
= 1 (1.24)

for any characteristic function ϕX (u). Csörgo and Totik (1983, Theorem 1) showed that for some
sequence {Un} of finite positive numbers converging to infinity such that

lim
n→∞

lnUn

n
= 0

then

P
(

lim
n→∞

sup
|u|≤Un

|ϕn(u)−ϕX (u)|= 0

)
= 1 (1.25)

for any characteristic function ϕX (u). The problem of deriving the rates of uniform convergence for
the empirical characteristic function ϕn(u) is addressed in Csörgo (1985).

For every fixed u1,u2 ∈ R the product–to–sum identities of cosine and sine functions yield (e.g.,
Heathcote (1977), Ushakov (1999, p. 162))

2nCov(ℜϕn(u1),ℜϕn(u2)) = ℜϕX (u1−u2)

+ℜϕX (u1 +u2)−2ℜϕX (u1)ℜϕX (u2), (1.26)

2nCov(ℑϕn(u1),ℑϕn(u2)) = ℜϕX (u1−u2)

−ℜϕX (u1 +u2)−2ℑϕX (u1)ℑϕX (u2), (1.27)

2nCov(ℜϕn(u1),ℑϕn(u2)) = ℑϕX (u1 +u2)

−ℑϕX (u1−u2)−2ℜϕX (u1)ℑϕX (u2). (1.28)

Let

Zn(u) =
√

n(ϕn(u)−ϕX (u)) (1.29)

be a random complex process in u ∈ R. It is easy to see, that EZn(u) = 0, E[Zn(u1)Zn(u2)] =
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ϕX (u1− u2)−ϕX (u1)ϕ(u2) and Zn(u) has a covariance matrix with the structure following from
(1.26) – (1.28). Define Z(u) a zero mean complex normal process satisfying Z(u) = Z(−u) and
having the same covariance structure as Zn(u). By means of multivariate central limit theorem (e.g.,
DasGupta (2008, Theorem 1.17, p. 9)) it follows that for every finite collection of points the process
Zn(u) converges in distribution (weakly) to Z(u) as n→ ∞.
Theorem 1.4. Let Zn(u), Z(u) be as defined above. Then the process Zn(u) converges in distribution

to Z(u) for every finite collection of points, u1,u2, . . . ,uK ∈ R.

The weak convergence in finite interval is studied in, e.g., Kent (1975), Feuerverger and Mureika
(1977, Theorem 3.1), Csörgo (1981, Theorem 2), Marcus (1981, Theorem 1). The efficiency
of empirical characteristic function based parameter estimation procedures is discussed, e.g., in
Feuerverger and McDunnough (1981) and Yu (2004).

1.4 Empirical Cumulant Function

For the logarithm of empirical characteristic function the term empirical cumulant (generating) func-
tion is used (e.g., Knight and Satchell (1997), Krutto (2016)).
Definition 1.4. Let Y1, . . . ,Yn be i.i.d. random variables on R. The empirical cumulant function

associated with the random sample {Y1, . . . ,Yn}, denoted by ψn(u) = ϕ{Y1,...,Yn}(u), is a complex

valued function, ψn : R→ C,

ψn(u) = lnϕn(u) = ln |ϕn(u)|+ iargϕn(u) u ∈ R, (1.30)

where ϕn(u) is given by (1.14).

In what follows, the cumulant function ψn(u) is assumed as its principal value (with the same nota-
tion),

ψn(u)≡ ln |ϕn(u)|+ iArg(ϕn(u)), (1.31)

where

ℜψn(u) = ln |ϕn(u)|= ln
√

ℜ2ϕn(u)+ℑ2ϕn(u) (1.32)

ℑψn(u)≡ Argϕn(u) = atan2(ℑϕn(u),ℜϕn(u)) (1.33)

The realization of empirical cumulant function at the counterpart y1, . . . ,yn of the random sample
Y1, . . . ,Yn is denoted by ψ̂n(u),

ψ̂n(u) = ln
1
n

n

∑
j=1

exp{iuy j}. (1.34)
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Based on (1.19) empirical characteristic function ϕn(u) is an unbiased estimator of ϕX (u). However,
for ψn(u) = lnϕn(u) the relation between Eψn(u) and EψX (u) is not as elementary yielding that
ψn(u) may be a biased estimator of ψX (u). On the asymptotic properties of empirical cumulant
function not much has been published. To the best of our knowledge, the only study is by Knight
and Satchell (1997) in the framework of the generalized nonlinear least square parameter estimation
procedure. In Section 4.2 the asymptotic normality of the real and imaginary parts of the empirical
cumulant function at every fixed u ∈ R is provided.



Chapter 2

Overview of Stable Laws

Stable distributions form a sub-class of infinitely divisible distributions that are the only possible
limiting distributions for normalized sums of independent identically distributed (i.i.d.) random
variables.

On the univariate limit theorems for sums we refer, for example, to Gnedenko and Kolmogorov
(1954), Feller (1971, Chapter VIII), Rao and Swift (2006, Chapter 5) and on the multivariate case to
Meerschaert and Scheffler (2001).

The class of univariate infinitely divisible distributions is treated in detail by Feller (1971, Chapter
VI, Chapter XVII), Steutel and van Harn (2004), and the multivariate case by Meerschaert and
Scheffler (2001, Chapter 3), Sato (1999).

The class of stable laws is amply described in Lukacs (1970, Chapter 5), Gnedenko and Kolmogorov
(1954, Chapter 6), Feller (1971, Chapter VI.1, XVII.5), Zolotarev (1986) (i.e., the translation of
Zolotarev (1983)), Samorodnitsky and Taqqu (1994), Uchaikin and Zolotarev (1999), Meerschaert
and Scheffler (2001, Section 7), Rao and Swift (2006, Section 8.4) and Nolan (2018c).

A comprehensive bibliography on stable distributions, processes and related topics is given by Nolan
(2018a).

2.1 Formulation and Some Properties

The class of stable laws is formulated by Lévy (1925) as an asymptotic statement on the limiting
distribution for sums of random variables.
Theorem 2.1 (Lévy via Uchaikin and Zolotarev (1999), Theorem 1.12.4, p. 33). Assume X1,X2, . . . ,Xn

are i.i.d. random variables on R and denote Sn = X1+ · · ·+Xn. Let for every n≥ 2 there exist bn > 0
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and an ∈ R such that

P
(

Sn−an

bn
≤ x
)

D→ G(x), n→ ∞,

for some function G(x) which is not degenerate. Then G(x) is stable law.

Feller (1971, Definition VI.1.2, p. 172) restates the fact that all stable distributions and no others
occur as limits of sums of i.i.d. random variables: the common distribution of the independent
random variables X1,X2, . . . ,Xn belongs to the domain of attractions of a stable distribution G if
there exist constants bn > 0, an ∈ R such that the distribution of (Sn−an)/bn tends to G. In other
words, a distribution G possesses a domain of attraction if and only if it is stable.

Let d
= denote equality in distribution.

Another formulation of stable laws, also called the definition of stability, is given by Feller (1971,
Definition VI.1.1, p. 170).
Definition 2.1. Let X ,X1, . . . denote independent random variables on R with a common distribution

G, and Sn = X1 + · · ·+Xn, n ≥ 2. The random variable X (or distribution G) is stable if for each n

there exist constants cn > 0, dn ∈ R such that

Sn
d
= cnX +dn, (2.1)

and X is not concentrated1 at one point. The distribution G (or the random variable X) is strictly

stable if

Sn
d
= cnX . (2.2)

The scaling constants are found to be of the form cn = n1/α with 0 < α ≤ 2 (Feller (1971), Theorem
VI.1.1, p. 170) and α is called the characteristic exponent. The special case of α = 2 corresponds
to the normal distribution. Like the normal law, all stable distributions remain stable under linear
transformations.

Another equivalent definition of stable laws (or stability) can be found in Feller (1971, Problem
VI.13.1 p. 215), Samorodnitsky and Taqqu (1994, Definition 1.1.1, p. 2).
Definition 2.2. A random variable X on R is said to have a stable distribution if for any positive

numbers A and B, there is a positive number C and a real number D such that

AX1 +BX2
d
=CX +D, (2.3)

where X1 and X2 are independent copies of X, and X is not concentrated at one point.

1A random variable X concentrated at one point is always stable but this degenerate case is of no interest. In the following
it is assumed that X is non-degenerate.
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For any stable random variable X there is a number α ∈ (0,2] such that (Samorodnitsky and Taqqu
(1994), Theorem 1.1.2, p. 3)

Cα = Aα +Bα . (2.4)

For example, for independent normal random variables X ,X1,X2 ∼ N(µ,σ2) it holds AX1 +BX2 ∼
N((A+B)µ,(A2 +B2)σ2). From the equalities of means D = (A+B−C)µ and of variances C2 =

A2 +B2 it implies that (2.3) and (2.4) hold.

Every stable distribution is a continuous distribution (for proof, see Feller (1971, Problem VI.13.2, p.
215)) and completely described by a closed form characteristic function. The characteristic function
can be derived from the general canonical form of that of the infinitely divisible distributions (see
Section 2.2) or as the limit of normalized sums of i.i.d. variables as the number of variables n→ ∞

(see Section 2.4).

Parameters

A univariate stable distribution is completely described by four real-valued parameters:

• The characteristic exponent α ∈ (0,2], also called the index of stability or tail index, describes
the rate of decay of the tails of stable distribution. The smaller the α , the slower is the de-
cay and the heavier are the tails. The case of α = 2 corresponds to the light-tailed normal
distribution.

• The skewness parameter β ∈ [−1,1] illustrates the degree of asymmetry2 of a stable distri-
bution. For β = 0 the stable random variable is symmetric and for β = ±1 it is maximally
asymmetric.

• The scale parameter γ > 0 and the location parameter δ ∈ R.

The formulation of scale and location parameters may differ due to various representations of stable
laws (see, Section 2.3). For any admissible parameter quadruple, (α,β ,γ,δ ), it holds (e.g., Uchaikin
and Zolotarev (1999, Property 3.7.(2), p. 99), Nolan (2018b, Proposition 1.11, p. 12))

X(α,−β ,γ,−δ )
d
=−X(α,β ,γ,δ ), (2.5)

stating, that all stable laws have the reflection property.

A stable random vector on Rp, p≥ 2 requires a more sophisticated approach: it is described by the
characteristic index α ∈ (0,2], the shift vector δ ∈Rp and some distribution concentrated on the unit
sphere, called the spectral measure (see, e.g., Samorodnitsky and Taqqu (1994, Theorem 2.3.1, p.

2The value of β means little when α → 2 as for α → 2 stable distributions tend to symmetry regardless of the value of β .
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65), Sato (1999, Theorem 14.3(ii), p. 77, Theorem 14.10, p. 84), Meerschaert and Scheffler (2001,
Theorem 7.3.16, p. 272)).

Moments

A feature of stable laws is that not all moments exist. For example, taking the variance from both
sides of (2.1), where cn = n1/α , gives

nVarX = n2/α VarX . (2.6)

For non-degenerate distributions with finite variance the index α in (2.6) must be equal to 2. If
α 6= 2, then (2.6) can be formally satisfied only for Var(X) = ∞. Indeed, all stable distributions with
0 < α < 2 have infinite variance. More general, if α ∈ (1,2) then second and higher order moments
are infinite while if α ∈ (0,1] then the first and higher order moments are infinite (e.g., Meerschaert
and Scheffler (2001, Remark 7.3.21, p. 276), Nolan (2018b)). The fractional lower order moments
(e.g., Nikias and Shao (1995, Theorem 3 p. 22), Nolan (2018c)) and negative order moments (e.g.,
Nikias and Shao (1995, Proposition 2 p. 34)) exist. On logarithmic moments see, e.g., Zolotarev
(1986, Section 3.6.).

Densities

All stable distributions have a continuous infinitely differentiable density function (see, e.g., Zolotarev
(1986, Chapter 2)). However, it is complicated to calculate the densities by the direct application of
the Fourier inversion theorem and in general, there is no closed analytic form for the distribution and
density functions of stable laws. Nevertheless, the densities of stable laws are well studied (see, e.g.,
Zolotarev (1986), Zolotarev (1995), Nolan (1997, 1999), Uchaikin and Zolotarev (1999, Chapter 4),
and references therein). Numerous graphs and tables of densities can be found in Samorodnitsky
and Taqqu (1994), Uchaikin and Zolotarev (1999)), Nolan (2018b). Three members of the family
of stable distributions, the normal, Cauchy and Lévy distributions (and the reflection of the Lévy
distribution), have densities expressed by elementary functions.

2.2 Stable Laws as Infinitely Divisible Distributions

A distribution F is infinitely divisible if for every n there exists a distribution Fn such that F is the
n-fold convolution of Fn (e.g., Feller (1971, Definition VI.3.1, p. 176), Meerschaert and Scheffler
(2001, Definition 3.1.1, p. 37), Sato (1999, Definition 7.1, p. 31)). A characteristic function is
infinitely divisible if and only if, for each positive integer n, a nth root of the characteristic function
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can be chosen in such way that it is the characteristic function of some probability distribution (e.g.,
Feller (1971, p. 554), Sato (1999, p. 31)). Stable distributions are infinitely divisible distributions
and distinguished by the fact that Fn differs from F only by location (shift) parameter: an infinitely
divisible characteristic function ϕ(u), u ∈ R is stable, if, for any a > 0, there are b > 0 and c ∈ R,
such that [ϕ(u)]a = ϕ(bu)exp{icu} (e.g., Sato (1999, Definition 13.1, p. 69)).

The fundamental contributions of infinitely divisible distributions were developed3 by Kolmogorov,
Lévy, and Khintchine in the 1930’s (e.g., Khintchine and Lèvy (1936), Khintchine (1937)). The
representation of the general canonical form of the characteristic function of all infinitely divisible
distributions on Rp can be found in Sato (1999, Theorem 8.1, p. 37). It is pointed out (Sato (1999,
Remark 8.4, p. 38)), that there are many ways of formulating the canonical form of the characteristic
function of an infinitely divisible distribution (see also Feller (1971, p. 564-565), DasGupta (2008,
p. 73-74), Pitman and Pitman (2016)). However, the Lévy–Khintchine form (e.g., Uchaikin and
Zolotarev (1999, Equation (3.5.14), p. 89), DasGupta (2008, Theorem 5.13)) has become a standard.
Theorem 2.2 (Lévy–Khintchine form). The Lévy–Khintchine representation of the characteristic

function of infinitely divisible distribution is of form

ϕ(u) = exp
{

iua−bu2 +
∫
R

(
eiux−1− iux

1+ x2

)
1+ x2

x2 dH(x)
}

(2.7)

where a ∈ R, b≥ 0 are real numbers and H(x) is called the spectral function (measure).

Based on Lévy–Khintchine representation given by (2.7) an explicit form of the characteristic func-
tion of stable laws, given by (2.3), has been derived in Gnedenko and Kolmogorov (1954, Equation
(7.34.1), p. 164)4, Uchaikin and Zolotarev (1999, Theorem 3.5.1, p. 89-92), Sato (1999, Theorem
14.15, p. 86), Meerschaert and Scheffler (2001, Theorem 7.3.16., p. 272).

2.3 Various Representations of Stable Laws

When considering stable laws one should be careful as many different definitions of (the characteris-
tic function of) stable distributions can be found in books and papers. For example, in the parameter
estimation procedures various forms of stable laws have been used: Press (1972), Paulson et al.
(1975) estimated the parameters of stable laws in form (2.12), Koutrouvelis (1980, 1981), Krutto
(2016) in form (2.14), Kogon and Williams (1998) an adaptation of form (2.18) and Krutto (2018)
used stable laws in form (2.19). Nevertheless, all representations of stable laws are uniquely related.

3For an overview on history we refer to Mainardi and Rogosin (2006) with English translation of the Khintchine (1937)
paper.

4In Gnedenko and Kolmogorov (1954, Equation (7.34.1), p. 164) there is a misprint concerning the sign of the parameter
β when α = 1. However, it has been corrected by various authors later.
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Lévy–Khintchine Representations

The explicit form of the characteristic function of univariate stable laws following Lévy–Khintchine
representation of canonic form of characteristic function of infinitely divisible distributions, given
by (2.7), is restated by the following theorem (see, e.g., Uchaikin and Zolotarev (1999, Theorem
3.5.1, p. 89-92), Sato (1999, Theorem 14.15, p. 86)).
Theorem 2.3. [Lévy–Khintchine form] Let X be a stable random variable on R represented in

Lévy–Khintchine form given by (2.7). Then its characteristic function ϕX (u) = ϕX (u|α,β ,γ,δ ) can

equivalently be represented as

ϕX (u) = exp{ℜψX (u)+ iℑψX (u)} (2.8)

where

ℜψX (u) =−γ|u|α , (2.9)

ℑψX (u) =

{
−γ|u|α [β (signu) tan πα

2 ]+δu for α 6= 1
−γ|u|[β 2

π
(signu) ln |u|]+δu for α = 1

(2.10)

with u ∈ R, α ∈ (0,2], β ∈ [−1,1], γ > 0 and δ ∈ R.

In this thesis stable distributions in Lévy–Khintchine representation are denoted by S(α,β ,γ,δ ;KL).
Normal distribution N(µ,σ2) is S(2, ·,σ2/2,µ;KL) while the value of β has no influence (as for
α = 2 it follows tan πα

2 = 0).
Definition 2.3. Let in Theorem 2.3 the scale parameter be fixed as γ = 1 and the location parameter

as δ = 0. The corresponding stable distributions are called standard stable distributions of Lévy–

Khintchine representation and denoted by S(α,β ;KL),

S(α,β ;KL)≡ S(α,β ,γ = 1,δ = 0;KL).

From Theorem 2.3 the characteristic function of a standard stable random variable Z in Lévy–
Khintchine representation, Z ∼ S(α,β ;KL), is of form

ϕZ(u) =

{
exp{−|u|α [1− iβ (signu) tan πα

2 ]} for α 6= 1
exp{−|u|[1+ iβ 2

π
(signu) ln |u|]} for α = 1

(2.11)

with u ∈ R, α ∈ (0,2], β ∈ [−1,1].

A relation between general stable random variable X ∼ S(α,β ,γ,δ ;KL) and standard stable random
variable Z ∼ S(α,β ;KL) is given as follows.
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Proposition 2.1. Let Z ∼ S(α,β ;KL) be a standard stable distribution in Lévy–Khintchine form

with the characteristic function given by (2.11). For γ > 0 and δ ∈ R a random variable

X d
=

{
γ1/α Z +δ for α 6= 1
γ(Z +β

2
π

lnγ)+δ for α = 1
(2.12)

is a general stable random variable in Lévy–Khintchine form, X ∼ S(α,β ,γ,δ ;KL), with character-

istic function given by (2.8).

Proof. Note that sign(γ1/α u) = signu. Based on Proposition 1.1(h), and the characteristic function
of Z = Z(α,β ;KL), given by (2.11), it holds

ϕX (u) =

ϕ
γ1/α Z+δ

(u) for α 6= 1

ϕ
γZ+δ+γβ

2
π

lnλ
(u) for α = 1

=

{
exp{iδu}ϕZ(γ

1/α u) for α 6= 1
exp{i(δ + γβ

2
π

lnλ )u}ϕZ(γu) for α = 1

=

{
exp{−γ|u|α [1− iβ (signu) tan πα

2 ]+ iδu} for α 6= 1
exp{−γ|u|[1+ iβ 2

π
(signu) ln |u|]+ iδu} for α = 1

with u ∈R, α ∈ (0,2], β ∈ [−1,1], γ > 0 and δ ∈R, which is the same as the characteristic function
of X ∼ S(α,β ,γ,δ ;KL) given by (2.8).

A slightly different representation of stable laws has been introduced in Zolotarev (1986, Equation
(A), p. 9), called the form A, and here restated through Z ∼ S(α,β ;KL).
Corollary 2.1. Let Z ∼ S(α,β ;KL) be a standard stable distribution in Lévy–Khintchine form with

characteristic function given by (2.11). Then, for γ > 0 and δ ∈ R a random variable

X d
=

{
γ1/α Z + γδ for α 6= 1
γ(Z +β

2
π

lnγ)+ γδ for α = 1
(2.13)

is a stable random variable in Zolotarev form A.

In (2.12) and (2.13) the parameter γ is not straightforwardly the scale (and in (2.13) the parameter δ is
not straightforwardly the shift) of Z ∼ S(α,β ;KL). Therefore, in literature, e.g., in Samorodnitsky
and Taqqu (1994, Definition 1.1.6, p. 5), Nikias and Shao (1995, Definition 1, p. 13), Kotz and
Nadarajah (2000, p. 55), Meerschaert and Scheffler (2001, Theorem 7.3.16, p. 272), Sato (1999,
Theorem 14.15, p. 86), Embrechts et al. (2013, Theorem 2.2.3, p. 71), a modification is introduced,
called a 1–parametrization in Nolan (2018b, Definition 1.8).
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Corollary 2.2. Let Z ∼ S(α,β ;KL) be a standard stable distribution in Lévy–Khintchine form with

characteristic function given by (2.11). Then, for γ > 0 and δ ∈ R a random variable

X d
=

{
γZ +δ for α 6= 1
γ(Z +β

2
π

lnγ)+δ for α = 1
(2.14)

is a stable random variable in 1–parametrization.

In the following definition the characteristic function of form (2.14), see, e.g., Samorodnitsky and
Taqqu (1994, Definition 1.1.6, p. 5)), is restated in terms of real and imaginary parts of the cumulant
function.
Definition 2.4. Stable random variable given by (2.14) has characteristic function

ϕX (u) = ϕX (u|α,β ,γ,δ )

of the form

ϕX (u) = exp{ℜψX (u)+ iℑψX (u)} (2.15)

where

ℜψX (u) =−γ
α |u|α , (2.16)

ℑψX (u) =

{
−γα |u|α [β (signu) tan πα

2 ]+δu, for α 6= 1
−γ|u|[β 2

π
(signu) ln |u|]+δu, for α = 1

(2.17)

with u ∈ R, α ∈ (0,2], β ∈ [−1,1], γ > 0 , δ ∈ R.

Stable distributions in 1–parametrization, given by (2.14), are denoted by S(α,β ,γ,δ ;1).

Let in equation (2.14), or equivalently in (2.15), the scale parameter be one, γ = 1, and the location
parameter zero, δ = 0. Then the corresponding stable laws are called standard stable laws in 1–

parametrization, denoted by S(α,β ;1),

S(α,β ;1)≡ S(α,β ,γ = 1,δ = 0;1).

For various values of α the graphs of the characteristic function of S(α,β = 1;KL) = S(α,1;1),
given by (2.11), are presented in Figure A.1 of Appendix A, its absolute value, real and imaginary
parts in Figure B.1 of Appendix B, while the corresponding absolute value, real and imaginary parts
of cumulant function in Figure C.1 of Appendix C.
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Other Representations

In addition to the Lévy–Khintchine representation based forms many others have been introduced in
Zolotarev (1986) (see, also Uchaikin and Zolotarev (1999, Section 3.6)) and Nolan (1998b), Nolan
(2018b, Section 1.3).

Zolotarev (1983, p. 21-22) points out that since in (2.13) tanπα/2→ ∞ as α → 1 and β 6= 0 then
in forms (2.12), (2.13) and (2.14) the characteristic functions of stable laws (as functions of param-
eters) are not continuous. This discontinuity is of special importance in the asymptotic parameter
convergence problems in the parameter estimation procedures. A continuous form is proposed by
Zolotarev (1983, Equation (M), p. 22), called form M, and here restated through Z ∼ S(α,β ;KL).
Corollary 2.3. Let Z ∼ S(α,β ;KL) be a standard stable distribution in Lévy–Khintchine form with

characteristic function given by (2.11). Then, for γ > 0 and δ ∈ R a random variable

X d
=

{
γ1/α Z + γδ − γβ tan(πα/2) for α 6= 1
γ(Z +β

2
π

lnγ)+ γδ for α = 1
(2.18)

is a stable random variable in Zolotarev form M.

Pitman and Pitman (2016, Corollary 4.1, p. 269) show that representation (2.18) admits the alterna-
tive canonic measure for infinitely divisible distributions advocated by Feller (1971, Chapter XVII)5.

Nolan (2018b, Definition 1.7) introduces another representation, also continuous in all parameters,
called 0–parametrization.
Corollary 2.4. Let Z ∼ S(α,β ;KL) be a standard stable distribution in Lévy–Khintchine form with

characteristic function given by (2.11). Then, for γ > 0 and δ ∈ R, a random variable

X d
=

{
γZ +δ − γβ tan(πα/2) for α 6= 1
γZ +δ for α = 1

(2.19)

is a stable random variable in Nolan 0–parametrization.

The characteristic function of stable random variable in (2.19) is given by Nolan (2018b, Definition
1.7) and here restated in terms of real and imaginary parts of the cumulant function.
Definition 2.5. Stable random variable given by (2.19) has characteristic function ϕX (u)=ϕX (u|α,β ,γ,δ )

of the form

ϕX (u) = exp{ℜψX (u)+ iℑψX (u)} (2.20)

5Feller (1971, p. 565) says that although the measure used in (2.7) avoids the unboundedness then it at the same time
complicates many arguments unnecessarily, especially when considering stable distributions.
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where

ℜψX (u) =−γ
α |u|α , (2.21)

ℑψX (u) =

{
u[βγ tan πα

2 (|γu|α−1−1)+δ ] for α 6= 1
u[−βγ

2
π

ln(γ|u|)+δ ] for α = 1
(2.22)

with u ∈ R, α ∈ (0,2], β ∈ [−1,1], γ > 0 , δ ∈ R.

Stable distributions in 0–parametrization, given by (2.19), are denoted by S(α,β ,γ,δ ;0).

Let in (2.19) the scale parameter be 1 (γ = 1), and the location parameter 0 (δ = 0). The correspond-
ing stable laws are called standard stable laws in 0–parametrization, denoted by S(α,β ;0),

S(α,β ;0)≡ S(α,β ,γ = 1,δ = 0;0).

Remark 1. Let γ1,δ1 denote the scale and shift parameters of stable distributions in 1–parametrization,

given by (2.14), and γ,δ those of 0–parametrization, given by (2.19). Then γ1 = γ while for α 6= 1
δ1 = δ −βγ tan πα

2 and for α = 1, δ1 = δ − 2
π

βγ lnγ .

Last remark easily follows from the definitions of 1– and 0–parametrization (see also Nolan (2018b,
Equation (1.7), p. 11)).

For α = 2,1.8,1.5,1.2,1.1,1,0.9,0.8,0.5,0.2, the graphs of corresponding characteristic functions
of S(α,1;0), given by (2.20), are presented in Appendix A Figure A.2, the corresponding abso-
lute values, real and imaginary parts in Appendix B Figure B.2, and the absolute values, real and
imaginary parts of corresponding cumulant functions in Appendix C Figure C.2.

2.4 Stable Laws as Limiting Distributions for Sums

For normalized sums of i.i.d. random variables the only possible limiting distributions are stable
distributions. There are several other classes of distributions which involve the term “stable laws”.
The max-stable laws, also called extreme value distributions (e.g., Kotz and Nadarajah (2000)),
arise as the limits of normalized maximum of i.i.d. random variables (e.g., Embrechts et al. (2013,
Section 3.3), Beranger and Padoan (2016), Dey et al. (2016)). Geometric stable distributions arise as
a limiting class in the random summation scheme where the number of summands is a geometrically
distributed random variable (e.g., Kozubowski and Rachev (1999b,a)). An overview of various stable
distributions, called alternative stable laws, is given by Mittnik and Rachev (1991). To distinguish
stable laws from alternative stable distributions the term sum-stable is sometimes used.
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Following Uchaikin and Zolotarev (1999, p. 62) the generalized central limit theorem is reformulated
(the multivariate case can be found in Meerschaert and Scheffler (2001, Section 7.3)).
Theorem 2.4. For i.i.d. random variables X1, . . . ,Xn with the common distribution function FX (x)

satisfying the conditions

1−FX (x)∼ cx−µ , x→ ∞, (2.23)

FX (x)∼ d|x|−µ , x→−∞, (2.24)

with c,d ≥ 0, c+d > 0, and µ > 0, there exist sequences an ∈R and bn > 0 such that for n→∞ the

centred and normalized sum

Zn =
X1 + · · ·+Xn−an

bn

converges in distribution to a standard stable random variable Z in Lévy–Khintchine form, given by

(2.11),

Zn
D→ Z, Z ∼ S(α,β ;LK), as n→ ∞, (2.25)

with parameters

α =

{
µ µ ≤ 2,
2 µ > 2

and β =
c−d
c+d

. (2.26)

The expressions for an, bn and the sketch of the proof of Theorem 2.4 can be found in Uchaikin and
Zolotarev (1999, p. 62–64). By Theorem 1.2 the convergence in (2.25) is equivalently expressed in
the terms of the characteristic functions,

ϕZ(u;α,β ) = lim
n→∞

ϕZn(u).

By replacing the conditions (2.23) and (2.24) with a simple Zipf–Pareto form,

dFX (x) =


αcx−α−1 x > ε

0 −ε < x < ε

αd|x|−α−1 x <−ε,

(2.27)

where 0 < α ≤ 2, and c, d ≥ 0, c+d > 0, ε > 0 are determined from
∫

∞

−∞
dFX (x) = 1, the explicit

form of characteristic function of Z is derived in Uchaikin and Zolotarev (1999, Sections 3.2–3.4, p.
72–85). It follows, that ϕZ(u;α,β ) = limn→∞ ϕZn(u) is of the form of the characteristic function of
the standard stable random variable in Lévy–Khintchine form, given by (2.11).
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2.5 Some Special Cases of Stable Laws

For β = 0 stable laws are symmetric and for β = ±1 maximally skewed, being often called totally
skewed stable laws. Totally right-skewed (β = 1) stable laws with 0 < α < 1 yield one-sided stable
distributions concentrated on the positive semi-axes only (e.g., Uchaikin and Zolotarev (1999, p.
53)) that are often called positive6 stable laws (e.g., Hougaard (2001, p. 503-504), Simon (2014),
Grabchak (2018)). Note that positive stable random variables form a special sub-class of (strictly)
stable laws (see, e.g., Feller (1971, Theorem XIII.7.1, p. 448), Uchaikin and Zolotarev (1999, p.
145-150)).

The scheme of the summation of i.i.d. random variables has been studied by numerous scholars.
Among those results several members of the class of stable laws were explored as two-parameter (lo-
cation and scale) distributions (see, e.g., Feller (1971, p. 173-176)), Uchaikin and Zolotarev (1999, p.
xviii-xix )). In Table 1, some of them are listed (the origins are referred via Uchaikin and Zolotarev
(1999) except Fréchet distribution which is referred via Kotz and Nadarajah (2000)).

TABLE 2.1: Some members of stable laws.

Distribution α β

Normal 2 ·
Cauchy 1 0
Lévy 1/2 1
Lorentz (1906), von Holtsmark (1919)∗ 1/2 1
von Holtsmark (1919)∗ 3/2 0
von Holtsmark (1919)∗ 3/4 0
Fréchet (1927) 2/3 1
Landau (1944) 1 1
Monin (1955)∗ 2/3 0
Lifshits (1956) 5/3 1
∗ – originally obtained for the three-dimensional case

Note, that Frechet distribution is considered as a stable (e.g, Simon (2014)) as well as a max-stable
distribution (e.g., Embrechts et al. (2013, p. 121)). This can be reasoned (see, e.g., Feller (1971,
p. 172, p. 277, p. 465)) by the understanding that for strictly stable (i.e., 0 < α < 1) distributions
the maximum Mn = max{X1, . . . ,Xn} of i.i.d X1, . . . ,Xn gives a primary contribution to the sum
Sn = X1 + · · ·+Xn and FSn ∼ FMn (e.g., Uchaikin and Zolotarev (1999, p. 54, p. 150)).

6Mandelbrot (1960b) refers to positive stable laws as an abbreviation for all stable laws that are maximally skewed in the
positive direction (0 < α < 2, β = 1), and in p. 87 defines a special sub-class for 1 < α < 2, called Pareto-Lévy distributions.
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2.6 Estimation in Stable Laws

The process of parameter estimation of stable distributions is often complicated due to the lack of
availability of the density function in explicit form and due to the fact that not all moments exist. In
spite of these limitations, various methods have been proposed for estimating the parameters. Then
again, many of these methods have restrictions to the parameter space or focus on estimating the
characteristic exponent (tail index) α only.

For the methods restricted to symmetric (β = 0) stable distributions see, e.g., Fama and Roll (1971),
Arad (1980), Ma and Nikias (1995), Nikias and Shao (1995), Tsihrintzis and Nikias (1996), Bodnar
and Gupta (2011), Brouste and Masuda (2018). A comparison of the estimation methods in symmet-
ric stable laws is given by Höpfner and Rüschendorf (1999). For procedures focusing on estimating
the characteristic exponent α see, e.g., DuMouchel (1983), Höpfner (1998), Mittnik and Paolella
(1999), Fan (2006), Yanushkevichiene and Saenko (2017).

For estimating the four parameters of general stable distribution, two broad classes of methods have
been proposed: algorithmic procedures and closed-form estimators. The primary algorithmic pro-
cedures, with no restrictions to the parameter space, include: the quantile based look-up method
by McCulloch (1986); the empirical characteristic function based methods by Koutrouvelis (1980,
1981) and Kogon and Williams (1998); and the (numerical) maximum likelihood estimation methods
(Mittnik et al. (1999), and Nolan (2001)). The primary closed-form estimators, with no restrictions
to the parameter space, include: empirical characteristic function based estimators (Press (1972),
Krutto (2016, 2018)), the logarithmic and fractional lower order moments based and the extreme
value theory based estimators (Kuruoglu (2001)).

More discussion on the methods of estimating the parameters of stable laws can be found in Nolan
(2001), Borak et al. (2005), for example.

Of the aforementioned methods, the maximum likelihood method has high accuracy but high com-
putational complexity. On the other hand, the quantile method is a simple technique that is based
on look-up tables of quantiles, which naturally affects the accuracy of this method. The empiri-
cal characteristic function based estimation is discussed in the next section: shortly, the method by
Koutrouvelis (1980) requires a look-up table and that of Koutrouvelis (1981) numerous iterations;
the procedures in Koutrouvelis (1980, 1981), Kogon and Williams (1998) require pre-estimates of
scale and location parameters. A disadvantage of the closed-form estimators in Kuruoglu (2001) is
the lack of an estimator for the location parameter and, as showed in Kuruoglu (2001), his estimators
did not show as high performance when estimating the tail index and scale parameter compared to
the Kogon and Williams (1998) procedure.

On simulation-based comparison of some of the aforementioned methods, see, for example, Akgiray
and Lamoureux (1989), Kogon and Williams (1998), Kuruoglu (2001), Kateregga et al. (2017),
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Krutto (2018). On simulating stable random variables, see, e.g., Chambers et al. (1976), Weron
(1996), Nolan (1998a) and Devroye and James (2014).

In addition, the Bayesian approach has been discussed in Buckle (1995), Efthymios (2000), Lemke
et al. (2015), Achcar and Lopes (2016), and a special focus on estimating mixtures of stable laws is
given in Salas-Gonzalez et al. (2009), Peng et al. (2013), Teimouri et al. (2018).

2.7 Characteristic Function Based Estimation in Stable Laws

Press (1972) introduced a procedure which is based on the transformation of the logarithm of char-
acteristic function (i.e., cumulant function) at four arbitrary different non-zero arguments uk,k =

1, . . . ,4 along the real line, called a version of the method of moments7. He provided no suggestions
on how to select these four arguments and the method has been considered as not very useful in
practice. To get around the Press (1972) difficulties, several algorithmic modifications relying on a
number of arguments have been proposed.

Paulson et al. (1975) provided a method that minimizes (by a gradient projection algorithm) the
integrated squared error

∫
|ϕ(u)−ϕn(u)|2du along the real line (see, also Heathcote (1977)) by a

Hermitian quadrature at specified points uk, k = 1, . . . ,20. The asymptotic distribution of Paulson
et al. (1975) approach is discussed in Thornton and Paulson (1977).

Koutrouvelis (1980) followed Press (1972) closed-form estimators but reformulated them in a 2-step
regression analysis: first estimating α and γ by regressing ln(− ln(ψn(u)) onto ln(− ln(ψ(u)) and
then β and δ by regressing ℑψn(u) onto ℑψ(u) at the points uk = πk/25 for k = 1,2, . . . ,K with K

having values from K = 10 to K = 134, depending on sample size n and parameter α (with u1 ≈ 0.13
up to uK=134 ≈ 16.84). For implementation one needs to look up the number of points to be used for
the regression from Table 1 in Koutrouvelis (1980).

A procedure proposed by Kogon and Williams (1998) provides a modification of Koutrouvelis
(1980) by an ordinary least squares regression at uk = k/10 for k = 1,2, . . . ,10 Kogon and Williams
(1998) found empirically that using more than K = 10 values from interval [0.1,1] does not remark-
ably improve the estimates of their procedure. Note that Knight and Satchell (1997) provided a
six-step procedure for estimating cumulant function (in general, not of stable distribution) at a set of
q points: how many points and which set of q points should be used remained an open question.

All the aforementioned empirical characteristic function based methods assume standardized data,
i.e., they require pre-estimates for γ , δ . Paulson et al. (1975) proposed an algorithmic procedure for
the scaling parameter, and median (in symmetric case) or minimum-maximum (in asymmetric case)

7Kozubowski (1999) adapted Press (1972) method for geometric stable laws. Similarly to Press (1972) his approach
requires four arbitrary different non-zero arguments uk,k = 1, . . . ,4 along the real line.
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for shift parameter; Koutrouvelis (1980) applied the fractile based method (Fama and Roll (1971))8

for the scale parameter, and truncated mean for shift parameter; Kogon and Williams (1998) used
quantile based estimators (McCulloch (1986))9.

Krutto (2016) revised Press (1972) approach and provided closed-form estimators that require only
two distinct positive real points u1 and u2, called cumulant estimators. Instead of standardizing the
data it was proposed to divide the data elements by the absolute value of their median, called reduced
values’ estimators. In order to provide some guidance on how to choose these two arguments, Krutto
(2016) performed an empirical search over various pairs of positive real arguments. In Krutto (2018)
the asymptotic normality for the estimators was proved and a sample based selection for u1 and u2

was proposed, called Argument–Selection–Rule.

8Fama and Roll (1971) estimators are based on the peculiar fact that for 1 ≤ α ≤ 2 the 0.72 quantile of a standard
symmetric stable distribution is in the interval 0.827±0.003.

9McCulloch (1986) method works best for 0.5≤ α ≤ 2; to estimate the parameters γ and δ the estimates of α and β are
calculated first.





Chapter 3

Parameters of Stable Laws via
Cumulant Function

Note that unlike the case of the characteristic function, the parameters β and δ have no influence
on the real part of the cumulant function of stable laws. This forms the basis of Krutto (2016,
Theorem 1) which states that the parameters α , γ , β , δ of stable laws can be expressed via real and
imaginary part of the corresponding cumulant function at two arbitrary different arguments u1,u2 on
the positive real line.
Theorem 3.1. Let u1 > 0,u2 > 0,u1 6= u2. Let X ∼ S(α,β ,γ,δ ;1) with the real and imaginary parts

of the cumulant function ψX (u) given by (2.16) and (2.17), respectively. Then

α =
ln(−ℜψX (u1))− ln(−ℜψX (u2))

lnu1− lnu2
, (3.1)

γ = exp
{

lnu1 ln(−ℜψX (u2))− lnu2 ln(−ℜψX (u1))

ln(−ℜψX (u1))− ln(−ℜψX (u2))

}
, (3.2)

and in the case of α 6= 1,

β =
u2ℑψX (u1)−u1ℑψX (u2)

γα
(
u2uα

1 −u1uα
2

)
tan πα

2
, (3.3)

δ =
uα

1 ℑψX (u2)−uα
2 ℑψX (u1)

u2uα
1 −u1uα

2
, (3.4)

where α is given by (3.1) and γ by (3.2), and, in the case of α = 1,

β = π
u2ℑ(ψX (u1))−u1ℑψX (u2)

2γu1u2(lnu2− lnu1)
, (3.5)

δ =
u2ℑψX (u1) lnu2−u1ℑψX (u2) lnu1

u1u2(lnu2− lnu1)
, (3.6)

where γ is given by (3.2).
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Proof. Let us choose constants u1,u2 ∈R so that u1 > 0,u2 > 0,u1 6= u2. Assuming that the param-
eters of a stable random variable X ∼ S(α,β ,γ,δ ;1) are fixed, we can write the following system of
equations: 

ψX (u1) =−γα uα
1 + i


(
βγα uα

1 tan πα

2 +δu1
)

for α 6= 1(
− 2

π
βγu1 lnu1 +δu1

)
for α = 1

ψX (u2) =−γα uα
2 + i


(
βγα uα

2 tan πα

2 +δu2
)

for α 6= 1(
− 2

π
βγu2 lnu2 +δu2

)
for α = 1.

(3.7)

Because (3.7) is a system of complex valued functions, it must simultaneously hold for real and
imaginary parts of ψX (u1) and ψX (u2). The real parts of ψX (u1) and ψX (u2) in (3.7) giveℜψX (u1) =−γα uα

1 ,

ℜψX (u2) =−γα uα
2 .

(3.8)

Solving the system (3.8) for α and γ gives (3.1) and (3.2). The imaginary parts of ψX (u1) and ψX (u2)

in (3.7) form two systems. First, in the case of α 6= 1 the imaginary parts in system (3.7) give the
system ℑψX (u1) = βγα uα

1 tan πα

2 +δu1,

ℑψX (u2) = βγα uα
2 tan πα

2 +δu2.
(3.9)

Solving system (3.9) for δ and β gives (3.3) and (3.4), respectively, with α and γ from (3.1) and
(3.2). In the case of α = 1 the imaginary parts in (3.7) give the systemℑψX (u1) =− 2

π
βγu1 lnu1 +δu1,

ℑψX (u2) =− 2
π

βγu2 lnu2 +δu2.
(3.10)

Solving system (3.10) for δ and β gives (3.5) and (3.6), respectively, with γ given by (3.2).

Theorem 3.1 can be extended to any parametrization introduced in Section 2.3. For asymptotic pa-
rameter convergence problems the characteristic functions of stable laws in continuous form, given
by (2.18) and (2.19), are more suitable because the characteristic function is continuous in all pa-
rameters. For stable laws in 0–parametrization, given by (2.19), a modification of Theorem 3.1 is
formulated in Krutto (2018, Theorem 1).
Corollary 3.1. Let X ∼ S(α,β ,γ,δ ;0) be a stable random variable with the real and imaginary

parts of cumulant function ψX (u) given by (2.21) and (2.22), respectively, and let, for every fixed
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real u1 > 0,u2 > 0,u1 6= u2,

b= b(u1,u2,X) =


b1(u1,X)

b2(u2,X)

b3(u1,X)

b4(u2,X)

=


ℜϕX (u1)

ℜϕX (u2)

ℑϕX (u1)

ℑϕX (u2)

 (3.11)

be a 4-dimensional real valued vector. The parameters of stable random variable X ∼ S(α,β ,γ,δ ;0)
can be expressed as α = g1(b), γ = exp{g2(b)}, β = g3(b), δ = g4(b), where

g1(b) =
ln
(
− ln

√
b2

1 +b2
3

)
− ln

(
− ln

√
b2

2 +b2
4

)
lnu1− lnu2

, (3.12)

g2(b) =
lnu1 ln

(
− ln

√
b2

2 +b2
4

)
− lnu2 ln

(
− ln

√
b2

1 +b2
3

)
ln
(
− ln

√
b2

1 +b2
3

)
− ln

(
− ln

√
b2

2 +b2
4

) , (3.13)

if α 6= 1 then

g3(b) =
u2 atan2(b3,b1)−u1 atan2(b4,b2)

exp{g1(b)g2(b)}
(
u2ug1(b)

1 −u1ug1(b)
2

)
tan(πg1(b)/2)

(3.14a)

while if α = 1 then

g3(b) =
π

2
u2 atan2(b3,b1)−u1 atan2(b4,b2)

exp{g2(b)}u1u2(lnu2− lnu1)
, (3.14b)

if α 6= 1 then

g4(b) =
ug1(b)

2 atan2(b3,b1)
[
(exp{g2(b)}u1)

1−g1(b)−1
]

u2ug1(b)
1 −u1ug1(b)

2

−
ug1(b)

1 atan2(b4,b2)
[
(exp{g2(b)}u2)

1−g1(b)−1
]

u2ug1(b)
1 −u1ug1(b)

2

(3.15a)

while if α = 1 then

g4(b) =
u2 atan2(b3,b1)g2(b) lnu2−u1 atan2(b4,b2)g2(b) lnu1

u1u2(lnu2− lnu1)
. (3.15b)

Proof. From (1.31)

ℜψX (u) = ln |ϕX (u)|= ln
√

ℜ2ϕX (u)+ℑ2ϕX (u), (3.16)

ℑψX (u) = atan2(ℑϕX (u),ℜϕX (u)). (3.17)
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Then (3.12) through (3.15b) immediately follow from Theorem 3.1 applied to the real and imagi-
nary parts of the cumulant function of stable laws in 0–parametrization, given by (2.21) and (2.22),
respectively.

Note that from (1.12) and (1.13)

b=


ℜϕX (u1)

ℜϕX (u2)

ℑϕX (u1)

ℑϕX (u2)

=


exp{ℜψX (u1)}cosℑψX (u1)

exp{ℜψX (u2)}cosℑψX (u2)

exp{ℜψX (u1)}sinℑψX (u1)

exp{ℜψX (u2)}sinℑψX (u2)

 .

For the same parametrization the expressions of the parameters in Theorem 3.1 and Corollary 3.1
are equivalent. For 1- and 0–parametrizations there is a difference in the expression of the location
parameter δ .

For the real part of cumulant function of stable laws the following property holds.
Proposition 3.1. Let X ∼ S(α,β ,γ,δ ;k) with k = 1,0. Then ℜψX (0) = 0,

ℜψX (±
1
γ
) =−1,

and ℜψX (u) ∈ [0,−1] for every u ∈ [−1/γ,1/γ].

Proof. Proof immediately follows from the expressions of the real part of cumulant functions of
X ∼ S(α,β ,γ,δ ;k), k = 1,0, given by (2.16) and (2.21),

ℜψX (u) =−γ
α |u|α ,

and then ℜψX (0) = 0, ℜψX (± 1
γ
) =−1 while ℜψX (u) ∈ [0,−1] for any u ∈ [− 1

γ
, 1

γ
].

For the imaginary part of cumulant function of stable laws in Nolan 0–parametrization the following
property holds.
Proposition 3.2. Let X ∼ S(α,β ,γ,δ ;0) with the imaginary part of its cumulant function given by

(2.22). For u = 1/γ it holds

ℑψX (1/γ) = δ/γ

and for u =−1/γ it holds

ℑψX (−1/γ) =−δ/γ.
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FIGURE 3.1: The real (on left) and imaginary (on right) parts of the cumulant
functions of S(α,β = 1,γ,δ = 0;0).

Proof. Immediately follows from (2.22) at u =±1/γ ,

ℑψX (±
1
γ
) =

{
±1/γ[βγ tan πα

2 (|1|α−1−1)+δ ] α 6= 1
±1/γ[−βγ

2
π

ln(1)+δ ] α = 1,
(3.18)

=

{
±δ/γ α 6= 1
±δ/γ α = 1.

(3.19)

For α = 0.2,1.8 and γ = 2,1,0.5 Propositions 3.1 and 3.2 are illustrated by Figure 3.1.





Chapter 4

Empirical Cumulant Function
(ECuF) Based Estimators

The key to the empirical cumulant function (ECuF) based estimators is the substituting principle
(e.g., Knight (1999, Section 4.5, p. 190)): in Theorem 3.1, and Corollary 3.1, the real and imaginary
parts of the cumulant function ψX (u) are replaced by those of the empirical cumulant function ψn(u).
In this chapter the estimators are formulated, their statistical inference is discussed, an empirical
search and sample based rule for the selection of u1,u2 is provided.

4.1 Formulation of ECuF Estimators

The ECuF estimators for the parameters of X ∼ S(α , β , γ,δ ;1) are formulated by Krutto (2016,
Definition 2).
Definition 4.1 (ECuF estimators). Assume Y1,Y2, . . . ,Yn form a sample of i.i.d. random variables

from S(α , β , γ,δ ;1), and u1 > 0,u2 > 0,u1 6= u2. The ECuF estimators

αn = αn(u1,u2,Y1, . . . ,Yn), (4.1)

βn = βn(u1,u2,Y1, . . . ,Yn), (4.2)

γn = γn(u1,u2,Y1, . . . ,Yn), (4.3)

δn = δn(u1,u2,Y1, . . . ,Yn), (4.4)

for the parameters of S(α , β , γ,δ ;1) are defined to satisfy (3.1)–(3.6), where the real and imaginary

parts of cumulant function, given by (2.16) and (2.17), respectively, are replaced by those of the

empirical cumulant function, given by (1.32) and 1.33, respectively.

From Definition 4.1 it follows, that ECuF estimators are found step-by-step: first the tail index α and
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the scale γ are estimated and based on those results the estimates of the asymmetry β and location
δ are obtained.

In general, especially for smaller samples, ECuF estimators may give non-admissible values, that
is, one or more estimates may turn out of the parameter space: α ∈ (0,2], β ∈ [−1,1], γ > 0,
δ ∈ R (see Section 5.2 on estimating tail index α). It can be dealt by truncating the values of
estimators: replace αn with min(max(αn,0.01),2), βn with βn = min(max(βn,−1),1) and γ with
γn = max(0,γn). However, it complicates statistical properties and in this thesis the non-truncated
estimators are studied. In fact, using non-truncated estimators is interesting as it provides insights to
the range and occurrence of invalid values (see Section 5.2 and Table 8.2). However, in simulations
in Chapter 7 and in applications in Section 8 the truncated ECuF estimators are applied.

The ECuF estimators can equivalently be formulated based on Corollary 3.1.
Definition 4.2 (ECuF Estimators). Let Y1,Y2, . . . ,Yn form a sample of i.i.d. random variables from

S(α , β , γ,δ ;1), given by (2.19), and let, for every fixed u1 > 0,u2 > 0,u1 6= u2,

bn = bn(u1,u2,Y1, . . . ,Yn) =


ℜϕn(u1)

ℜϕn(u2)

ℑϕn(u1)

ℑϕn(u2)

 (4.5)

be a 4−dimensional real vector, where ϕn(u) is the empirical characteristic function given by (1.14).

The ECuF estimators of the parameters of S(α , β , γ,δ ;0) are defined to satisfy (3.12)–(3.15b), where

the elements of b, given by (3.11), are replaced with those of bn, given by (4.5),

αn = αn(u1,u2,Y1, . . . ,Yn)≡ g1(bn), (4.6)

γn = γn(u1,u2,Y1, . . . ,Yn)≡ exp{g2(bn)}, (4.7)

βn = βn(u1,u2,Y1, . . . ,Yn)≡ g3(bn), (4.8)

δn = δn(u1,u2,Y1, . . . ,Yn)≡ g4(bn). (4.9)

It has been discussed (see, e.g., Paulson et al. (1975), Koutrouvelis (1980), Koutrouvelis (1981),
Kogon and Williams (1998)) that γ >> 1 influences the empirical characteristic function based esti-
mation in stable laws and because of that the pre–standardizing of data has been suggested. In this
thesis the approach byKrutto (2003, 2016) is followed: sample elements are divided by the absolute
value of the sample median (assuming that it is greater than 1). Let m = q0.5 denote the sample
median, where qp is the k-th percentile, p = k/100.
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Definition 4.3. Let Y1,Y2, . . . ,Yn form a sample of i.i.d random variables from stable law in 1–

parametrization, S(α , β , γ,δ ;1) with the sample median m. For |m|> 1 the reduced values’ estima-

tors αn,βn,γn,δn for the parameters of S(α , β , γ,δ ;1) are

αn = α
′
n, (4.10)

βn = β
′
n, (4.11)

γn = |m|γ ′n, (4.12)

δn =

{
|m|δ ′n for α 6= 1,
|m|δ ′n− 2

π
β ′nγ ′n|m| ln |m| for α = 1.

(4.13)

where α ′n,β
′
n,γ
′
n,δ
′
n are ECuF estimators, given by Definition 4.1, evaluated from the sample reduced

by Y ′i = Yi/|m|, i = 1, . . . ,n.

Similarly, the reduced values’ estimators can be defined for the 0–parametrization.
Definition 4.4. Let Y1,Y2, . . . ,Yn form a sample of i.i.d random variables from S(α , β , γ,δ ;0) with

the sample median m. For |m|> 1 the reduced values’ estimators αn,βn,γn,δn for the parameters of

S(α , β , γ,δ ;0) are

αn = α
′
n, (4.14)

βn = β
′
n, (4.15)

γn = |m|γ ′n, (4.16)

δn = |m|δ ′n (4.17)

where α ′n,β
′
n,γ
′
n,δ
′
n are ECuF estimators, given by Definition 4.2, evaluated from the sample reduced

by Y ′i = Yi/|m|, i = 1, . . . ,n.

The expressions of reduced values’ estimators in Definitions 4.3 and 4.4 immediately follow from
Proposition 1.2(d) of the cumulant function (see also Nolan (2018b, Propositions 1.16 and 1.17)),
i.e., for any m 6= 0,

ψmX (u) = ln
(

E[eimuX ]
)
= ψX (mu).

Remark 2. An improvement of reduced values’ ECuF estimators that would be applicable to the

large shift case would be standardize Y by

Y ′ =
Y −m
IQR

,

where m = q0.5 is the median of Y and IQR = q0.75−q0.25 the interquartile range of Y , and qp is the

k-th percentile, p = k/100.

The realizations of the ECuF estimators at the counterpart y1, . . . ,yn of the random sample Y1, . . . ,Yn

are denoted by α̂n, β̂n, γ̂n, δ̂n, respectively.
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4.2 Asymptotic Normality for the Real and Imaginary Parts of
Empirical Cumulant Function

Before deriving the asymptotic normality of ECuF estimators the asymptotic normality of the real
and imaginary parts of the empirical cumulant function is established.
Theorem 4.1. Let X be a real valued random variable with the cumulant function ψX (u), u ∈ R,

given by (1.11). Let ψn(u), u ∈ R, be the empirical cumulant function, given by (1.31). For every

fixed u ∈ R,

(i) ℜψn(u) is strongly consistent estimator for ℜψX (u) and ℑψn(u) is strongly consistent estima-

tor for ℑψX (u);

(ii) ℜψn(u), ℑψn(u) are asymptotically normal,

√
n
(
ℜψn(u)−ℜψX (u)

) D→ N1
(
0,κℜ(u)

)
, as n→ ∞, (4.18)

√
n
(
ℑψn(u)−ℑψX (u)

) D→ N1
(
0,κℑ(u)

)
, as n→ ∞, (4.19)

with

κℜ(u) =
1

2ℜ2ψX (u)
(1+ exp{ℜψX (2u)}−2exp{2ℜψX (u)}) , (4.20)

κℑ(u) =
1

2ℜ2ψX (u)
(1− exp{ℜψX (2u)}) . (4.21)

Proof. For a real vector x= (x1,x2)
′ 6= 0 define h1(x) = ln

√
x2

1 + x2
2 and h2(x) = atan2(x2,x1). Let

a= (ℜϕX (u),ℑϕX (u))′

with ℜϕX (u),ℑϕX (u) given by (1.2) and (1.3), respectively, and

an = (ℜϕn(u),ℑϕn(u))′

with ℜϕn(u),ℑϕn(u) given by (1.15) and (1.16), respectively. The real and imaginary parts of
cumulant function in (1.11) are the functions of the elements of a,

h1(a) = ℜψX (u), h2(a) = ℑψX (u),

and the real and imaginary parts of the empirical cumulant function in (1.31) are the functions of the
elements of an,

h1(an) = ℜψn(u), h2(an) = ℑψn(u).
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Clearly, h1 is a continuous function. Based on (1.9), the function h2(a) has a discontinuity at
ℜϕX (u) = 0 and ℑϕX (u) = 0, i.e., at |ϕX (u)| = 0. Based on Proposition 1.1(d) the term |ϕX (u)|
tends to 0 as |u| →∞. However, in the assumption it is said that u ∈R is fixed, |u|< ∞, and h2(a) is
continuous on any bounded interval.

(i) Based on relation (1.22), for every fixed u ∈ R

an
a.s.→ a, as n→ ∞. (4.22)

By the continuous mapping theorem (e.g., van der Vaart (1998, Theorem 2.3)),

h j(an)
a.s.→ h j(a), as n→ ∞, (4.23)

and the estimators h j(an) are consistent for h j(a), j = 1,2.

(ii) The quantities ℜϕX n(u j), ℑϕX n(u j), j = 1,2 are sample means of i.i.d. random variables with
Ean = a and with finite variance. Therefore, as stated in Theorem 1.4, for every fixed u ∈ R,

√
n(an−a)

D→ N2(0,Σ(u)), as n→ ∞

where Σ(u)≡Σ= (σkl) is a 2×2 covariance matrix with the structure following from (1.26)–
(1.28),

2σ11 = 1+ℜϕX (2u)−2ℜ
2
ϕX (u) (4.24)

2σ22 = 1−ℜϕX (2u)−2ℑ
2
ϕX (u) (4.25)

2σ12 = 2σ21 = ℑϕX (2u)−2ℜϕX (u)ℑϕX (u), (4.26)

where ϕX (u) = expψX (u). From Kollo and von Rosen (2005, Theorem 3.1.3), or Anderson
(2003, p. 132-133), it immediately follows, that for every fixed u ∈ R,

√
n
(
h1(an)−h1(a)

) D→ N1
(
0,ν ′Σν

)
, as n→ ∞, (4.27)

√
n
(
h2(an)−h2(a)

) D→ N1
(
0,η′Ση

)
, as n→ ∞, (4.28)

with ν and η as matrix derivatives (Kollo and von Rosen (2005, Definition 1.4.1)),

ν =
dh1(x)

dx

∣∣∣∣
x=a

and η =
dh2(x)

dx

∣∣∣∣
x=a

.

It is easy to see that

dh1(x)

dx
=

dln
√

x2
1 + x2

2

dx
=

(
x1

x2
1 + x2

2
,

x2

x2
1 + x2

2

)′
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and

dh2(x)

dx
=

datan2(x2,x1)

dx
=

(
− x2

x2
1 + x2

2
,

x1

x2
1 + x2

2

)′
.

Hereby,

ν =
dh1(x)

dx

∣∣∣∣
x=a

=

(
ℜϕX (u)
|ϕX (u)|2

,
ℑϕX (u)
|ϕX (u)|2

)′
6= 0,

and

η =
dh2(x)

dx

∣∣∣∣
x=a

=

(
− ℑϕX (u)
|ϕX (u)|2

,
ℜϕX (u)
|ϕX (u)|2

)′
6= 0.

Obtaining ν ′Σν is straightforward,

ν ′Σν = (ν1)
2
σ11 +ν1ν2(σ12 +σ21)+(ν2)

2
σ22

=
1

2|ϕX (u)|4
[
ℜ

2
ϕX (u)

(
1+ℜϕX (2u)−2ℜ

2
ϕX (u)

)
+ℑ

2
ϕX (u)

(
1−ℜϕX (2u)−2ℑ

2
ϕX (u)

)
+2ℜϕX (u)ℑϕX (u)

(
ℑϕX (2u)−2ℜϕX (u)ℑϕX (u)

)]
=

1
2|ϕX (u)|4

[
|ϕX (u)|2−2|ϕX (u)|4

+ℜϕX (2u)
(
ℜ

2
ϕX (u)−ℑ

2
ϕX (u)

)
+2ℑϕX (2u)ℜϕX (u)ℑϕX (u)︸ ︷︷ ︸

(∗)

]
,

with ℜϕX (u)+ℑϕX (u) = |ϕX (u)|2. By relations (1.12) and (1.13),

(∗) = ℜϕX (2u)2
(
ℜ

2
ϕX (u)−ℑ

2
ϕX (u)

)
+2ℑϕX (2u)ℜϕX (u)ℑϕX (u)

= exp{ℜψX (2u)}exp{2ℜψX (u)}
[

cos(2u)
(

cos2(u)− sin2(u)
)
+2sin(u)cos(u)sin(2u)

]
= exp{ℜψX (2u)}exp{2ℜψX (u)}. (4.29)

Since |ϕX (u)|= exp{ℜψ(u)}, then

ν ′Σν =
1

2exp{2ℜψ(u)}
(1−2exp{2ℜψ(u)}+ exp{ℜψ(2u)}) ,
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which is the same as (4.20) and κℜ = ν ′Σν. In a similar manner,

η′Ση = (η1)
2
σ11 +η1η2(σ12 +σ21)+(η2)

2
σ22

=
1

2|ϕX (u)|4
[
ℑ

2
ϕX (u)

(
1+ℜϕX (2u)−2ℜ

2
ϕX (u)

)
+ℜ

2
ϕX (u)

(
1−ℜϕX (2u)−2ℑ

2
ϕX (u)

)
−2ℜϕX (u)ℑϕX (u)

(
ℑϕX (2u)−2ℜϕX (u)ℑϕX (u)

)]
=

1
2|ϕX (u)|4

[
|ϕX (u)|2−ℜϕX (2u)

(
ℜ

2
ϕX (u)−ℑ

2
ϕX (u)+2ℑϕX (2u)ℜϕX (u)ℑϕX (u)︸ ︷︷ ︸

(∗)

]
.

Replacing (∗) by (4.29) and |ϕX (u)| by exp{ℜψ(u)} yields

ν ′Σν =
1

2exp{2ℜψ(u)}
(1− exp{ℜψ(2u)}) ,

which is the same as (4.21) and κℑ = η′Ση.

From Proposition 1.1(c), ℜψX (u) = ln |ϕX (u)| → 0 for |u| → 0 and the asymptotic variances given
by (4.20) and (4.21) tend to 0 as |u| → 0. Hereby, the smaller the argument u, and the greater the
sample size n, the better the real and imaginary parts of empirical cumulant function estimate those
of the cumulant function of X . However, as ψn(0) = ψX (0) = 0 then at u = 0 cumulant function
holds no info about the various parameters of the distribution.

the asymptotic covariance matrix of empirical cumulant function in the framework of the least
squares estimation has been discussed in Knight and Satchell (1997).

From Theorem 4.1 the asymptotic normality of real and imaginary parts of empirical cumulant
function of stable distributions immediately follows.
Corollary 4.1. Let X ∼ S(α,β ,γ,δ ;0) be a stable random variable with real and imaginary parts

of its cumulant function given by (2.21) and (2.22), respectively, and ψn be as given by (1.31). Then,

for every fixed u ∈ R,

√
n
(
ℜψn(u)−ℜψX (u)

) D→ N1
(
0,κℜ(u)

)
, as n→ ∞, (4.30)

√
n
(
ℑψn(u)−ℑψX (u)

) D→ N1
(
0,κℑ(u)

)
, as n→ ∞, (4.31)

where

κℜ(u) = exp{2(γu)α}(1+ exp{−(2γu)α)}−2exp{−2(γu)α})/2, (4.32)
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and

κℑ(u) = exp{2(γu)α}(1− exp{−(2γu)α)})/2. (4.33)

By Corollary 4.1 for u→ 0 the asymptotic variances tend to zero, κℜ(u)→ 0 and κℑ(u)→ 0, as
n→ ∞.

4.3 Asymptotic Normality for ECuF Estimators

This section is based on Krutto (2018). The asymptotic normality of ECuF estimators1 for the
parameters of stable laws in 0–parametrization, given by Definition 4.2, is established. Note that the
parameter space of stable laws has a boundary at α = 2 and β = ±1 and the asymptotic normality
does not make sense there. To obtain asymptotic distribution of estimators the standard assumption
is that the true parameter is in the interior of the parameter space (e.g., Andrews (1997)). The
distribution in the boundary case is not considered.
Theorem 4.2. Let b be given by (3.11), bn by (4.5), and functions g j(b), j = 1,2,3,4 represent

parameters of X ∼ S(α,β ,γ,δ ;0) as in Theorem 4.2, with ϕX (u) = ϕX (u|α,β ,γ,δ ). Let g j(bn),

j = 1,2,3,4, be the ECuF estimators given by Definition 4.2. Then,

(i) g j(bn) are strongly consistent estimators of g j(b), j = 1,2,3,4;

(ii) g1(bn) is asymptotically normal for g1(b) ∈ (0,2), g2(bn) is asymptotically normal for g2(b),

g3(bn) is asymptotically normal for g3(b) ∈ (−1,1), and g4(bn) is asymptotically normal for

g4(b),

√
n(g j(bn)−g j(b))

D→ N1(0,υ j(u1,u2)), as n→ ∞ (4.34)

with υ j(u1,u2)≡ ξ′jΛξ j where

Λ = (λi j) (4.35)

1For symmetric stable laws centered around zero (β = δ = 0 and ℑϕX (u) = 0), the asymptotic normality is provided in
Press (1972).
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is the 4×4 covariance matrix having elements

2λ11 = 1+ℜϕ(2u1)−2ℜ
2
ϕ(u1), (4.36)

2λ22 = 1+ℜϕ(2u2)−2ℜ
2
ϕ(u2), (4.37)

2λ33 = 1−ℜϕ(2u1)−2ℑ
2
ϕ(u1), (4.38)

2λ44 = 1−ℜϕ(2u2)−2ℑ
2
ϕ(u2), (4.39)

2λ12 = 2λ21 = ℜϕ(u1−u2)+ℜϕ(u1 +u2)−2ℜϕ(u1)ℜϕ(u2), (4.40)

2λ13 = 2λ31 = ℑϕ(2u1)−2ℜϕ(u1)ℑϕ(u1), (4.41)

2λ14 = 2λ41 = ℑϕ(u1 +u2)−ℑϕ(u1−u2)−2ℜϕ(u1)ℑϕ(u2), (4.42)

2λ23 = 2λ32 = ℑϕ(u1 +u2)−ℑϕ(u2−u1)−2ℜϕ(u2)ℑϕ(u1), (4.43)

2λ24 = 2λ42 = ℑϕ(2u2)−2ℜϕ(u2)ℑϕ(u2), (4.44)

2λ34 = 2λ43 = ℜϕ(u1−u2)−ℜϕ(u1 +u2)−2ℑϕ(u1)ℑϕ(u2); (4.45)

ξ1 has elements

ξ1i =
bi

|ϕ(u1)|2ℜψ(u1) ln(u1/u2)
for i = 1,3, (4.46)

ξ1i =
−bi

|ϕ(u2)|2ℜψ(u2) ln(u1/u2)
for i = 2,4, (4.47)

ξ2 has elements

ξ2i =
1

|ϕ(u1)|2ℜψ(u1)

−bi(lnu2 +g2(b))

ln(ℜψ(u1)/ℜψ(u2))
for i = 1,3 (4.48)

ξ2i =
1

|ϕ(u2)|2ℜψ(u2)

bi(lnu1 +g2(b))

ln(ℜψ(u1)/ℜψ(u2))
for i = 2,4. (4.49)

If α 6= 1 then ξ3 has elements

ξ31 =
g3(b)

|ϕ(u1)|2ℜψ(u1)

(
−b3u2 ln |ϕ(u1)|

C1
− b1C2

ln(u1/u2)
−

b1u2ug1(b)
1

C3

)
, (4.50)

ξ32 =
g3(b)

|ϕ(u2)|2ℜψ(u2)

(
−b4u1 ln |ϕ(u2)|

C1
+

b2C2

ln(u1/u2)
+

b2u1ug1(b)
2

C3

)
, (4.51)

ξ33 =
g3(b)

|ϕ(u1)|2ℜψ(u1)

(
b1u2 ln |ϕ(u1)|

C1
− b3C2

ln(u1/u2)
−

b3u2ug1(b)
1

C3

)
, (4.52)

ξ34 =
g3(b)

|ϕ(u2)|2ℜψ(u2)

(
b2u1 ln |ϕ(u2)|

C1
+

b4C2

ln(u1/u2)
+

b4u1ug1(b)
2

C3

)
, (4.53)
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and ξ4 has elements (with the elements of ξ3 given by (4.50)-(4.53))

ξ41 =
ug1(b)

2

C2
3 |ϕ(u1)|2

(
b1ug1(b)

1 C1−b3

)
+

C1(ξ31/g3(b)+ξ21 +ξ11C2)

C3 exp{g2(b)(g1(b)−1)}
, (4.54)

ξ42 =
ug1(b)

1

C2
3 |ϕ(u2)|2

(
−b2ug1(b)

2 C1 +b4

)
+

C1(ξ32/g3(b)+ξ22 +ξ12C2)

C3 exp{g2(b)(g1(b)−1)}
, (4.55)

ξ43 =
ug1(b)

2

C2
3 |ϕ(u1)|2

(
b3ug1(b)

1 C1 +b1

)
+

C1(ξ33/g3(b)+ξ23 +ξ13C2)

C3 exp{g2(b)(g1(b)−1)}
, (4.56)

ξ44 =
ug1(b)

1

C2
3 |ϕ(u2)|2

(
−b4ug1(b)

2 C1−b2

)
+

C1(ξ34/g3(b)+ξ24 +ξ14C2)

C3 exp{g2(b)(g1(b)−1)}
, (4.57)

where

C1 = u2ℑψ(u1)−u1ℑψ(u2),

C2 = π/2[cot(πg1(b)/2)+ tan(πg1(b)/2)]

C3 = u2 exp{g1(b) lnu1}−u1 exp{g1(b) lnu2}

If α = 1 then ξ3 has elements

ξ31 =
π

2exp{g2(b)}

(
ξ21−

b3

u1|ϕ(u1)|2 ln(u2/u1)

)
, (4.58)

ξ32 =
π

2exp{g2(b)}

(
ξ22 +

b4

u2|ϕ(u2)|2 ln(u2/u1)

)
, (4.59)

ξ33 =
π

2exp{g2(b)}

(
ξ23 +

b1

u1|ϕ(u1)|2 ln(u2/u1)

)
, (4.60)

ξ34 =
π

2exp{g2(b)}

(
ξ24−

b2

u2|ϕ(u2)|2 ln(u2/u1)

)
, (4.61)

and ξ3 has elements (with the elements of ξ3 given by (4.58)-(4.61))

ξ41 =
−b3 lnu2

u1 ln(u2/u1)
+

2
π
(ξ31g2(b)exp{g2(b)}+ξ31g4(b)(g2(b)+1)), (4.62)

ξ42 =
b4 lnu1

u2 ln(u2/u1)
+

2
π
(ξ32g2(b)exp{g2(b)}+ξ32g4(b)(g2(b)+1)), (4.63)

ξ43 =
b1 lnu2

u1 ln(u2/u1)
+

2
π
(ξ33g2(b)exp{g2(b)}+ξ33g4(b)(g2(b)+1)), (4.64)

ξ44 =
−b2 lnu1

u2 ln(u2/u1)
+

2
π
(ξ34g2(b)exp{g2(b)}+ξ34g4(b)(g2(b)+1)). (4.65)

Proof. Based on (1.9), the function atan2, which is involved in g j, j = 3,4, has a discontinuity at
ℜϕX (u) = 0 and ℑϕX (u) = 0, i.e., |ϕX (u)|= 0. Based on Proposition 1.1(d) |ϕX (u)|→ 0 as |u|→∞.
However, in the theorem assumption it is said that u1,u2 ∈R are fixed, u1,u2 < ∞, and it follows that
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under the theorem assumptions atan2 and g j, j = 3,4 may assumed as continuous. In what follows,
functions g j, j = 1,2,3,4 are assumed to be continuous.

(i) Consistency. Based on relation (1.22), for every pair of u1 > 0,u2 > 0, with u1 6= u2,

bn
a.s.→ b, as n→ ∞. (4.66)

By the continuous mapping theorem (e.g., van der Vaart (1998, Theorem 2.3)),

g j(bn)
a.s.→ g j(b), as n→ ∞, (4.67)

and the estimators g j(bn) are consistent for g j(b), j = 1, . . . ,4.

(ii) Asymptotic normality. The quantities ℜϕn(u), ℑϕn(u) are sample means of i.i.d. random vari-
ables with finite variance and Ebn = b. By Theorem 1.4,

√
n(bn−b)

D→ N4(0,Λ), as n→ ∞, (4.68)

where Λ is the 4×4 covariance matrix with elements’ structure following from (1.26)–(1.28)
and yielding (4.36)–(4.45). Applying Kollo and von Rosen (2005, Theorem 3.1.3) or Anderson
(2003, p. 132-133), for j = 1,2,3,4,

√
n(g j(bn)−g j(b))

D→ N1(0,ξ′jΛξ j), as n→ ∞ (4.69)

where

ξ j =
d

dx
g j(x)

∣∣∣∣∣
x=b

6= 0 (4.70)

are matrix derivatives (Kollo and von Rosen (2005, Definition 1.4.1)). The elements of ξ j,
j = 1,2,3,4 in (4.46) - (4.65) easily follow from the matrix derivatives of g j(b), j = 1,2,3,4,
given by (3.12) through (3.15b), and elementary complex analysis (in a similar manner to the
proof of Theorem 4.1).

Due to the complexity of the ECuF estimators it is difficult to determine whether or not they are
biased. For example, from Definition 4.1 and Definition 4.2, αn = αn(u1,u2) = g1(bn), and

Eαn = Eg1(bn) =
1

ln u1
u2

E
{

ln
ln [( 1

n ∑
n
j=1 cosu1Yj)

2 +( 1
n ∑

n
j=1 sinu1Yj)

2]

ln [( 1
n ∑

n
j=1 cosu2Yj)2 +( 1

n ∑
n
j=1 sinu2Yj)2]

}
. (4.71)
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Corollary 4.2. The asymptotic normality for the symmetric stable laws centred around zero is a

special case of Theorem 4.2. In this case β = 0 = δ = 0, ℑϕX = 0 and ϕX = ℜϕX . Therefore

b= (ϕX (u1),ϕX (u2),0,0)′,

and in the covariance matrix Λ = (λkl), given by (4.36)–(4.45), all the terms of ℑϕX (u) = 0 are

omitted. That is, Theorem 4.2 holds with Λ = (λkl) having elements

2λ11 = 1+ℜϕ(2u1)−2ℜ
2
ϕ(u1),

2λ22 = 1+ℜϕ(2u2)−2ℜ
2
ϕ(u2),

2λ33 = 1−ℜϕ(2u1),

2λ44 = 1−ℜϕ(2u2),

2λ12 = 2λ21 = ℜϕ(u1−u2)+ℜϕ(u1 +u2)−2ℜϕ(u1)ℜϕ(u2),

2λ34 = 2λ43 = ℜϕ(u1−u2)−ℜϕ(u1 +u2)

λ13 = λ31 = λ14 = λ41 = λ23 = λ32 = λ24 = λ42 = 0,

and

ξ1 = (ξ11,ξ12,0,0)′

ξ2 = (ξ21,ξ22,0,0)′

ξ j = 0, j = 3,4.



Chapter 5

Monte–Carlo Simulations for ECuF
Estimators

In this chapter the behaviour of ECuF estimators αn = αn(u1,u2), βn = βn(u1,u2), γn = γn(u1,u2)

and δn = δn(u1,u2) at various selections of (u1,u2) is studied. By Definition 4.1 (and equivalently
by Definition 4.2) any pair of arguments u1 > 0,u2 > 0,u1 6= u2 can be used. Recall that Press (1972)
estimators were defined at two pairs of arguments, (u1,u2) and (u3,u4), while there are not many
studies that apply Press (1972) estimators. For example, Fan (2006) proposed a pair of u1 = 0.5
and u2 = 1.5 for estimating the tail index α of standard symmetric stable laws around zero (that
is, the pair (u3,u4) is not necessary). In Section 5.1 the accuracy of ECuF estimators is assessed
through Monte–Carlo simulations at various pairs of u1 > 0,u2 > 0, u1 6= u2 and in addition the
accuracy and the asymptotic variance of αn = αn(u1,u2) at (u1,u2) ∈ (0,1]× (0,1] is studied. All
the computation and graphs are made by R (R Core Team (2018)) while simulations are made by
packages stabledist (Würtz and Mächler (2016)) or STABLE® (Robust Analysis Inc. (2017)).

5.1 Estimating S(α,β ;1) via ECuF Estimators at Selection of
Arguments

In this section ECuF and reduced values’ ECuF estimates for the parameters of S(α,β ,γ,δ ;1), given
by (2.14), are obtained. Without the loss of generality, the standard stable laws with δ = 0 and γ = 1
are studied. By the reflection property, e.g., Uchaikin and Zolotarev (1999, Property (2), p. 99),
Nolan (2018b, Proposition 1.11, p. 12), only non-negative values of β are used, β ∈ [0,1]. The
realizations of ECuF estimators are denoted by α̂n, β̂n, γ̂n, δ̂n, respectively. The quality of estimates
is assessed by the mean squared errors (MSE),

MSE(θ̂n) =
1
K ∑

K
k=1
(
θ − θ̂n(k)

)2
,
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where K is the number of replications, θ is the true parameter and θ̂n(k) is the estimate of the
parameter from the kth sample, k = 1,2, . . . ,K. The realizations of mean squared errors are denoted
by MSE(α̂n), MSE(β̂n), MSE(γ̂n), and MSE(δ̂n).

5.1.1 Estimating S(α,β ;1) via ECuF Estimators at Various (u1,u2)

For the empirical search on the arguments u1 and u2 various arbitrary pairs of of u1 > 0,u2 > 0,
u1 6= u2 are chosen. The pairs are presented in Table 5.1.

TABLE 5.1: A selection of (u1,u2) for ECuF estimators.

(0.03, 0.09)
(0.03, 0.9)
(0.03, 9)
(0.03, 90)
(0.3, 0.09)
(0.3, 0.9)
(0.3, 9)
(0.3, 90)
(3, 0.09)
(3, 0.9)
(3, 9)
(3, 90)

The ECuF estimates and corresponding mean squared errors are obtained at all pairs given by Table
5.1 for K = 200 replicates from S(α,β ;1), with α = 0.5,1.5, each with size n = 105. At every
pair (u1,u2) in Table 5.1 the MSEs of reduced values’ ECuF estimates1 are presented in Appendix
D. It follows, that the pair (u1 = 0.03,u2 = 0.09) has the smallest values of MSEs of the estimates
for parameters of S(1.5,0.1;1) as well as it gives small values of MSEs (less than 0.004 at least)
of estimates for parameters of other considered stable distributions. Based on simulation results in
Appendix D the following remark is given.
Remark 3. Based on Appendix D the pair (u1 = 0.03,u2 = 0.09) is proposed as empirically optimal

for obtaining the ECuF estimators.

5.1.2 Estimating S(α,β ;1) via ECuF Estimators at (0.03,0.09)

To assess the quality of ECuF estimators at u1 = 0.03,u2 = 0.09 more generally the MSEs of the
estimates are obtained for K = 200 replicates from S(α,β ;1) with various values of α , that is,
α 6= 1, α is in the neighbourhood of 1, and α = 1. For all α various values of β were studied. The
simulations were carried out for various sample sizes, n = 102,103,104,105, while in this thesis the

1MSEs of ECuF estimates turned out bigger than those of reduced values’ ECuF estimates. For the sake of space the
MSEs of ECuF estimates are not presented.
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MSEs are presented for 105 only. In conclusion, the MSEs of ECuF estimators remarkably decrease
while sample size increases (see also Section 7.2).

The results for the tail index α 6= 1: In Appendix E the MSEs of ECuF and reduced values’
ECuF (denoted by RVECuF) estimates at u1 = 0.03,u2 = 0.09 of K = 200 replicates from S(α,β ;1)
with α = 0.25, 0.5, 0.75, 1.25, 1.5, 1.75 and β = 0.1,0.25,0.5,0.75,1, each with size n = 105, are
given. Based on simulation results, presented in Appendix E, the MSEs of reduced values’ ECuF
estimates at u1 = 0.03,u2 = 0.09 for the parameters α,β ,γ turned out of the order 10−6 while for
the parameter δ of the order from 10−6 to 10−2. In other words, the pair u1 = 0.03,u2 = 0.09 gives
similar MSEs for all considered stable laws. When comparing the MSEs of the ECuF estimates
with the reduced values’ ECuF estimates, in Appendix E the reduced values’ ECuF estimates have
smaller values of MSEs for stable laws which do not tend to symmetry (with median close to 0).
Indeed, as stated in Definition 4.2, the reduced values’ EcuF estimators should be used only for
samples with median more than 1 (for the current empirical study that requirement was omitted).
Based on simulation results, presented in Appendix E, the MSEs of reduced values’ ECuF estimates
for stable laws with α < 1.75 and β > 0.1 turned out to be smaller than those of the ECuF estimates.
For the cases with α > 1.75 (i.e., stabe distribution is tending to symmetry for any β ) the MSEs of
reduced values’ ECuF estimates turned out bigger than those of the ECuF estimates. Note that for
symmetric cases median is less than 1 and dividing by median yields increasing the scale of data
which, based on Section 6.2, causes the increase of MSEs. Note that in Definition 4.3 it is assumed
that data median is more than 1. In Remark 2 a modification of reduced values’ ECuF estimates was
introduced where the assumption of median less than 1 can be omitted.

The results for the tail index α close to 1: In Table 5.2 the MSEs of ECuF estimates at u1 =

0.03,u2 = 0.09 of K = 200 replicates from S(α,β ;1), each with size n = 105, in the neighbourhood
of α = 1 with β = 0.1,1 are given. For comparison, the MSEs of estimates for β are obtained both
by formulas (3.3) and (3.5), and for δ by formulas (3.4) and (3.6). In the neighbourhood of α = 1,
based on Table 5.2, the ECuF estimates fail (based on MSEs) for the location parameter δ while
the MSEs of estimates for other parameters are quite small. For the asymmetry parameter β , even
when α is very close to 1, the MSEs of estimates by formula (3.3) are not smaller than estimates
by formula (3.5). In addition to the pair (u1 = 0.03,u2 = 0.09) the ECuF estimates were obtained
at all pairs (u1,u2) in Table 5.1: some of the pairs gave smaller MSEs of estimates for the location
parameter δ but muchbigger for the other parameters.

The results for the tail index α = 1: In Table 5.3 the MSEs of ECuF estimates at (u1 = 0.03,u2 =

0.09) of K = 200 replicates from S(1,β ;1) with β = 0.1,0.25,0.5,0.75,1, each with size n = 105,
are given. For comparison, the MSEs of estimates for β are obtained both by formulas (3.3) and
(3.5), and estimates for δ both by formulas (3.4) and (3.6).
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TABLE 5.2: MSEs of ECuF estimates for the parameters of S(α,β ;1).

by (3.3) by (3.5) by (3.4) by (3.6)

α β MSE (α̂n) MSE (β̂n) MSE (β̂n) MSE (γ̂n) MSE (δ̂n) MSE (δ̂n)

0.95 0.1 0.0000 0.0001 0.0003 0.0000 0.0458 1.6567
0.95 1 0.0003 0.0008 0.0688 0.0023 9×101 2×102

0.96 0.1 0.0000 0.0001 0.0002 0.0001 0.1537 2.6231
0.96 1 0.0005 0.0012 0.0496 0.0044 5×104 3×102

0.98 0.1 0.0001 0.0002 0.0003 0.0003 7×101 1×101

0.98 1 0.0009 0.0027 0.0309 0.0135 4×105 1×103

0.99 0.1 0.0002 0.0005 0.0005 0.0007 1×106 4×101

0.99 1 0.0017 0.0045 0.0553 0.0333 2×104 4×103

1.01 0.1 0.0002 0.0004 0.0004 0.0007 2×105 4×101

1.01 1 0.0016 0.0060 0.0383 0.0278 4×106 4×103

1.02 0.1 0.0001 0.0002 0.0002 0.0002 1×103 1×101

1.02 1 0.0009 0.0027 0.0202 0.0108 4×104 9×102

1.04 0.1 0.0001 0.0001 0.0002 0.0001 0.1101 2.4367
1.04 1 0.0006 0.0015 0.0340 0.0046 2×104 2×102

1.05 0.1 0.0000 0.0001 0.0001 0.0000 0.0458 1.5814
1.05 1 0.0005 0.0013 0.0392 0.0032 3×102 1×102

TABLE 5.3: MSEs of ECuF estimates for the parameters of S(α = 1,β ;1).

by (3.1) by (3.3) by (3.5) by (3.2) by (3.4) by (3.6)

β MSE ( α̂n) MSE ( β̂n) MSE ( β̂n) MSE ( γ̂n) MSE ( δ̂n) MSE ( δ̂n)

0.1 0.00018 1×101 0.00021 0.0013 5×101 0.0012
0.25 0.00018 2×101 0.00032 0.0021 3×101 0.0072
0.5 0.00022 2×101 0.00049 0.0034 2×101 0.0043
0.75 0.00021 2×101 0.00051 0.044 1×101 0.0093

1 0.00019 2×101 0.00053 0.0385 5×101 0.0092

In Table 5.3, as expected, the MSEs of the ECuF estimates for β and δ by formula (3.6) are smaller
then those by formula (3.4).

The MSEs of ECuF estimates at u1 = 0.03,u2 = 0.09 of K = 200 replicates from S(α,β ;1) for α ↓ 0,
α ↑ 2 with β = 0.1,0.25,0.5,0.75,1, each with size n = 105, are not presented here while the results
are formulated in following remarks.
Remark 4. In the case of α ↓ 0, stable distributions are very condensed (and scale factor γ has not

much influence on the shape of the distribution and hence may be difficult to estimate). For α < 0.2
the MSEs of the ECuF estimates of α,δ turned out of good quality (order of 10−6 to 10−3) while

those of γ and β have lower quality.

Remark 5. For the case of α ↑ 2 stable distributions get close to the normal distributions (and the

parameter β loses its effect and may be difficult to estimate). For α > 1.8 the MSEs of the ECuF

estimates for α,γ,δ turned out of good quality (order of 10−6 to 10−3) while those of β have lower

quality.
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5.2 Estimating α via ECuF Estimator at (u1,u2) ∈ (0,1]× (0,1].

In this section the ECuF estimator for α of S(α,β ;0) at the pairs of arguments u1 ∈ (0,1] and
u2 ∈ (0,1], with u1 6= u2 and step size 0.01, are studied. The interest is in exploring an empirical
evidence of the existence of a good area for the selection of (u1,u2) ∈ (0,1]× (0,1]. Also, the pairs
at which the non-admissible estimates occur are aimed to explore. Another interest is to empirically
study the possible bias of αn = αn(u1,u2) by comparing the means of absolute errors (MAE) and the
means of the asymptotic standard deviations (MASD) of α̂n = α̂n(u1,u2). More precisely, in Section
5.2.1 the means of α̂n(u1,u2) are obtained on the bases of K = 100 replicates from S(1.5,0.5;0)
and S(0.5,0.5;0), each with various sample sizes such as n = 50, 200, 500, 3000, and for a single
replicate with n = 1000, and in Section the MAEs and MASDs of α̂n(u1,u2) are obtained on the
bases of K = 1000 replicates from S(1.5,0.5;0) and S(0.5,0.5;0), each with a large sample size such
as n = 10000. ECuF estimators are not defined for u1 = u2 and in all illustrative figures the diagonal
of (0,1]× (0,1] has no values of α̂n(u1,u2). Also, due to the properties of cumulant function ECuF
estimates behave symmetrically with respect to the diagonal of (0,1]× (0,1].

5.2.1 Estimating α from Various Size Samples

In this section the means of ECuF estimates α̂n(u1,u2) are obtained on the bases of K = 100 repli-
cates from S(α = 1.5,β = 0.5;0) and S(α = 0.5,β = 0.5;0), each with various sample sizes such
as n = 50, 200, 500, 3000. In Figure 5.1 the means of α̂n on the bases of K = 100 replicates, each
with sample size n = 50, are presented.
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FIGURE 5.1: Means of ECuF estimators α̂n for α = 1.5 (on left) and α = 0.5 (on
right) of K = 100 replicates with n = 50.
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The means of α̂n at (u1,u2) ∈ (0,1]× (0,1] on left and right of Figure 5.1 vary quite a lot from
the actual values α = 1.5 and α = 0.5, respectively. ECuF estimates α̂n, smaller than actual values
α = 1.5 and α = 0.5 relate to the underestimating and the estimates bigger than the actual values to
the overestimating. ECuF estimates outside of the parameter interval α ∈ (0,2] are non-admissible
for α . It could be dealt by truncating the values of estimators, see Chapter 7. However, in this
chapter non-truncated estimates are studied. For α = 1.5 (on left) the means of α̂n have 1.36 as the
minimum, 1.97 as the maximum and 1.5 as the mean and median, and for α = 0.5 (on right) the
means of α̂n have −2.29 as the minimum, 1.90 as the maximum and 0.5 as the mean and median.

The pairs (u1,u2) at which the MAEs of α̂n are less than 1% of the true parameter α = 1.5 and α0.5
are presented on the left and right of Figure 5.2, respectively. Note that

MAE(θn) =
1
K ∑

K
k=1

∣∣θ̂n(k)−θ
∣∣ (5.1)

where K is the number of replications, θ is the true value and θ̂n(k) is the estimate for kth sample,
k = 1,2, . . . ,K.
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FIGURE 5.2: For K = 100 replicates with n = 50 the pairs (u1,u2) at which the
MAEs of α̂n are less than 1% of α = 1.5 (on left) and of α = 0.5 (on right).

The locations of the pairs at which ECuF estimates have MAEs less than 1% of the true parameter
α = 1.5 and α = 0.5, respectively, are different for α = 1.5 and for α = 0.5.

The means of ECuF estimates α̂n(u1,u2) at (u1,u2)∈ (0,1]×(0,1] on the basis of K = 100 replicates
from S(α = 1.5,β = 0.5;0) and S(α = 0.5,β = 0.5;0) with n = 200 and n = 500 are presented in
Figures 5.3 and 5.4, respectively. Comparing Figures 5.3 and 5.4 with Figure 5.1 then for larger
samples the range of means of α̂n(u1,u2) turn out to be smaller. For example, in Figure 5.4 the
means of ECuF estimates for α = 1.5 (on left) have 1.39 as the minimum, 1.72 as the maximum
and 1.5 as the mean and median while ECuF estimates for α = 0.5 (on right) have −0.02 as the
minimum, 1.11 as the maximum and 0.5 as the mean and median, approximately.
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FIGURE 5.3: Means of ECuF estimates of α = 1.5 (on left) and α = 0.5 (on right)
of K = 100 replicates with n = 200.
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FIGURE 5.4: Means of ECuF estimates of α = 1.5 (on left) and α = 0.5 (on right)
of K = 100 replicates with n = 500.
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The means of ECuF estimates α̂n at (u1,u2) ∈ (0,1]× (0,1] on the basis of K = 100 replicates with
n = 3000 are presented in Figure 5.5. As expected, in Figure 5.5 the means of ECuF estimates
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FIGURE 5.5: Means of ECuF estimates for α = 1.5 (on left) and for α = 0.5 (on
right) of K = 100 replicates with n = 3000.

fluctuate less comparing to Figures 5.1 – 5.4. Indeed, in Figure 5.5 the means of ECuF estimates for
α = 1.5 (on left) have 1.46 as the minimum, 1.54 as the maximum and 1.5 as the mean and median
while ECuF estimates for α = 0.5 (on right) have 0.28 as the minimum, 0.83 as the maximum and
0.5 as the mean and median, approximately. The pairs (u1,u2) at which the MAEs of α̂n are less
than 1%of the true parameter α = 1.5 and α0.5 are presented on the left and right of Figure 5.6,
respectively.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

FIGURE 5.6: For K = 100 replicates with n = 3000 the pairs (u1,u2) at which the
MAE’s of α̂n are less than 1% of α = 1.5 (on left) and of α = 0.5 (on right).

As expected, for α = 1.5 there are more pairs (u1,u2) leading to small MAEs than for α = 0.5.
Nevertheless, in Figure 5.6 there are many pairs (u1,u2) ∈ (0,1]× (0,1] at which the MAEs are less
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than 1% both α = 1.5 (on left of Figure 5.6) and α = 0.5 (on right of Figure 5.6).

In closing, ECuF estimates α̂n(u1,u2) for a single (K = 1) replicate from S(α = 1.5,β = 0.5;0) and
S(α = 0.5,β = 0.5;0), both with sample size n = 1000, are obtained. It follows that ECuF estimates
α̂n(u1,u2) at (u1,u2) ∈ (0,1]× (0,1] for α = 1.5 have 1.33 as the minimum, 1.98 as the maximum
and 1.54 as the median and the mean while for α = 0.5 have −3.38 as the minimum, 5.29 as the
maximum, 0.493 as the median and 0.477 the mean, approximately. As it is expected, comparing
to the MAEs of K = 100 replicates the absolute errros of K = 1 have much bigger variation and
the absolute errors less than 1% turn out at considerably less pairs (u1,u2). The pairs (u1,u2) at
which the absolute errors of α̂n are less than 1% are presented in Figure 5.7 with α = 1.5 on left and
α = 0.5 on right.
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FIGURE 5.7: For K = 1 replicates with n = 1000 the pairs of (u1,u2) at which the
MAEs of α̂n for α = 1.5 (on left) and for α = 0.5 (on right) are less than 1%.

In Figure 5.7 the absolute errors less than 1% occur at considerably less pairs (u1,u2) than in Figure
5.2 and in Figure 5.6. Similarly to the results in Figure 5.2 and in Figure 5.6 the distribution (loca-
tion) of the pairs (u1,u2) at which the absolute errors of ECuF estimates are less than 1% of the true
values α = 1.5 (on the left of Figure 5.7) and α = 0.5 (on the right of Figure 5.7) is not similar.

In conclusion, on the basis of the K = 100 and K = 1 replicates from stable laws S(α = 1.5,β =

0.5;0) and S(α = 0.5,β = 0.5;0) there is no evidence of the existence of a consistently good area
for selecting the arguments (u1,u2) in (0,1]× (0,1] for the ECuF estimator αn(u1,u2).

5.2.2 Estimating α from a Large Sample

Due to the complexity of the ECuF estimators it is difficult to determine whether or not they are
biased (see (4.71) for Eαn). The aim of this section is to estimate empirically the bias or unbiased-
ness of the ECuF estimators αn. For that, the means of absolute errors (MAE) and the means of the
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asymptotic standard deviation (MASD) of α̂n(u1,u2) on the bases of K = 1000 replicates from stable
distributions S(α = 1.5,β = 0.5;0) and S(α = 0.5,β = 0.5;0), each with a large sample n = 10000,
are compared. The MAEs are given by (5.1). The asymptotic standard deviation of ECuF estima-
tor αn(u1,u2) = g1(bn) is obtained from its asymptotic variance υ1(u1,u2) = ξ

′
1Λξ1 with ξ1 and Λ

given by Theorem 4.2. Calculations for υ1(u1,u2) are made by R (R Core Team (2018)), that is,
υ1(u1,u2) is not analytically derived.

The results for the tail index α= 1.5. In Table 5.4 the summary of the MAEs and MASDs of
α̂n(u1,u2) at (u1,u2) ∈ (0,1]× (0,1], each MAE and MASD on the bases of K = 1000 replicates
from S(1.5,0.5;0) each with a large sample size n = 10000, is given.

TABLE 5.4: The summary of MAEs and MASDs of α̂n(u1,u2) for α = 1.5.

q0.00 q0.25 q0.50 q0.75 q1.00 mean sd

MAEs -0.0047 0.0005 0.0009 0.0014 0.0218 0.0011 0.0013
MASDs 1.7496 2.1907 2.7112 3.6339 21.9102 3.1554 1.4565
qp–the k-th percentile, p = k/100; sd–standard deviation

By Table 5.5 at least half of the MAEs turned out to be less than 0.0009 and at all pairs (u1,u2) ∈
(0,1]×(0,1] the MAEs were less than 0.0218. The empirical distributions of MAEs and the MASDs
of α̂n(u1,u2) at (u1,u2) ∈ (0,1]× (0,1] are presented on the left and the right of Figure 5.8, respec-
tively .
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FIGURE 5.8: The MAEs (on left) and the MASDs (on right) of α̂n(u1,u2) on the
basis of K = 1000 replicates from S(1.5,0.5;0) with n = 10000.

The biggest values of MAEs occur at pairs where one or two of the arguments are close to 0 while
the biggest values of MASDs occur around the diagonal of (0,1]× (0,1]. Hereby, based on Figure
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5.8 the pairs (u1,u2) at which the MASDs of α̂n have the smallest values seem not to guarantee
the smallest MAEs. A heat-map corresponding to the results in Figure 5.8 is given in Figure 5.9
where the lightest areas indicate the smallest values of MAEs and MASDs while red areas indicate
the biggest values. It is expected that if small asymptotic variance would indicate accurate ECuF
estimates then the patterns on the left and right half of Figure 5.9 would look similar. The MAEs
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FIGURE 5.9: The MAEs (on left) and the MASDs (on right) of α̂n(u1,u2) on the
basis of K = 1000 replicates from S(1.5,0.5;0) with n = 10000.

on the left of Figure 5.9 are biggest at pairs (u1,u2) where at least one of the u1,u2 is less than
0.2, approximately. However, in contradiction, the MASDs on left of Figure 5.9 turn out to be the
smallest at the at pairs (u1,u2) where u1,u2 is less than 0.1, approximately. A less detailed version of
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FIGURE 5.10: The quartiles of MAEs (on left) and the MASDs (on right) of
α̂n(u1,u2) on the basis of K = 1000 replicates from S(1.5,0.5;0) with n = 10000.

Figure 5.9 is provided in Figure 5.10 where the MAEs and MASDs are grouped into their quartiles
(of all of the MAEs and MASDs at (u1,u2)∈ (0,1]×(0,1], each on the bases of K = 1000 replicates
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with size n = 10000) with the lightest areas indicate pairs (u1,u2) at which the MAEs and MASDs
belong into the first quartile while red areas present pairs at which they belong within their fourth
quartile. Many of the pairs of u1 and u2 that minimize the MASDs (i.e., MASDs within the first
quarter) on the right of Figure 5.9 lead to quite poor MAEs while other such pairs lead to rather
good MAEs (on the left of Figure 5.9).

The results for the tail index α= 0.5. In Table 5.5 the summary of the MAEs and MASDs of
α̂n(u1,u2) at (u1,u2) ∈ (0,1]× (0,1], each MAE and MASD on the bases of K = 1000 replicates
from S(0.5,0.5;0) each with a large sample size n = 10000, is given. By Table 5.5 at least half of

TABLE 5.5: The summary of MAEs and MASDs of α̂n(u1,u2) for α = 1.5.

q0.00 q0.25 q0.50 q0.75 q1.00 mean sd

MAEs 0.0000 0.0003 0.0006 0.0016 0.0452 0.0015 0.0028
MASDs 0.8567 1.6699 2.8506 5.6891 83.8996 5.6615 8.6857
qp–the k-th percentile, p = k/100; sd–standard deviation

the MAEs turned out to be less than 0.0006 and they all were less than 0.0452. However, when
comparing with the results for α = 1.5 in Table 5.4 the MAEs as well as the MASDs for α =

0.5 in Table 5.5 have wider range and vary more. The empirical distributions of MAEs and the
MASDs of α̂n(u1,u2) at (u1,u2) ∈ (0,1]× (0,1] are presented on the left and the right of Figure
5.11, respectively. In Figure 5.11 the biggest values of MAEs and MASDs are around the diagonal
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FIGURE 5.11: The MAEs (on left) and the MASDs (on right) of α̂n(u1,u2) on the
basis of K = 1000 replicates from S(0.5,0.5;0) with n = 10000.

of (0,1]×(0,1]. Based on Figure 5.11 the pairs (u1,u2) at which the MASDs of α̂n have the smallest
values seem to lead to the smallest MAEs. A heat-map corresponding to the results in Figure 5.11 is
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given in Figure 5.12 where the lightest areas correspond to the smallest values of MAEs and MASDs
while red areas indicate the biggest values.
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FIGURE 5.12: The MAEs (on left) and the MASDs (on right) of α̂n(u1,u2) on the
basis of K = 1000 replicates from S(0.5,0.5;0) with n = 10000.

The patterns on the left and right in Figure 5.9 look quite similar indicating that small asymptotic
variance indeed yields more accurate ECuF estimates (that is, smaller MAEs). A more robust version
of Figure 5.12 is provided by Figure 5.13 where the MAEs and MASDs are grouped within their
quartiles (oof all of the MAEs and MASDs at (u1,u2)∈ (0,1]×(0,1], each on the bases of K = 1000
replicates with size n= 10000) with the lightest areas indicating the pairs (u1,u2) at which the MAEs
and MASDs belong to the first quartile (MAEs less than 0.0003, MASDs less than 0) while red areas
present pairs at which they belong to their fourth quartile (MAEs more than 0.0452, MASDs more
than 5.689). Many of the pairs of u1,u2 within the first quartile of MASDs (on right of Figure 5.13)
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FIGURE 5.13: The quartiles of MAEs (on left) and the MASDs (on right) of
α̂n(u1,u2) on the basis of K = 1000 replicates from S(0.5,0.5;0) with n = 10000.
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lead to the first quartile of MAEs (on left Figure 5.13) while other such pairs lead to rather poor
MAEs.

On the bases of the MAEs and MASDs of α̂n of K = 1000 replicates from S(α = 1.5,β = 0.5;0)
and S(α = 0.5,β = 0.5;0), each with sample size n = 10000, it may concluded that many of the
pairs of u1,u2 at which MASDs were small lead to small MAEs while other such pairs lead to
rather poor MAEs, even for the large samples such as n = 10000. In practice, for smaller single
smaller size samples the corespondance may turn out at less pairs. Krutto (2018) studied single
replicates from S(α = 1.5,β = 0.5;0) and S(α = 0.5,β = 0.5;0), each with sample size n = 10000,
and found that selecting (u1,u2) of the ECuF estimator αn(u1,u2) on the bases of minimizing the
asymptotic variance of the αn(u1,u2) is not suggested. We illustrate the same buy a single replicate
from S(α = 1.5,β = 0.5;0) with n = 1000. In Figure the

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.1

0.2

0.3

0.4

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

1

2

3

4

5

6

FIGURE 5.14: The MAEs (on left) and the MASDs (on right) of α̂n(u1,u2) on the
basis of a single replicate from S(1.5,0.5;0) with n = 1000.



Chapter 6

Sample Based Selection of the
Arguments of ECuF Estimators

Perhaps the most important aspect about the ECuF estimators αn(u1,u1) = g1(bn), lnγn(u1,u1) =

g2(bn), βn(u1,u1) = g3(bn), and δn(u1,u1) = g4(bn) is the determination of the two real arguments
u1 > 0, u2 > 0, u1 6= u2 at which they are obtained. The aim of this chapter is to provide suggestions
on the selection of the arguments without any modification1 in the estimation procedure. As seen
in Section 5.2, selecting (u1,u2) on the bases of minimizing the asymptotic variance of one or more
of ECuF estimators is not suggested due to the possible biasedness. In this chapter an approach
by Krutto (2018), called the Argument–Selection–Rule, is introduced: u1 > 0, u2 > 0, u1 6= u2 are
suggested to to select on the bases of the real part of empirical cumulant function, ℜψn. In Section
6.1 the convergence of the real part of empirical cumulant function is studied and in Section 6.2
suggestions for the selection of u1 > 0, u2 > 0, u1 6= u2 are given. In what follows, let ∨ and ∧
denote the max and min operators, respectively: given a real numbers a,b, a∨ b = max(a,b) and
a∧b = min(a,b).

6.1 Convergence of the Real Part of Empirical Cumulant Func-
tion

In this section the convergence of the real part of empirical cumulant function on the real line for
stable laws X ∼ S(α,β ,γ,δ ;0) is considered. More precisely, we consider the quantity

|ℜψn(u)−ℜψX (u)|= | ln |ϕn(u)|− ln |ϕX (u)||,

1Modifications to algorithmic minimizing procedure on a number of arguments have been proposed by Koutrouvelis
(1980, 1981), Knight and Satchell (1997), Kogon and Williams (1998), see Section 2.7.
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where ψn(u) is the empirical cumulant function, given by (1.31), ℜψX (u) is the real part of cumulant
function of X , given by (2.21), ϕn(u) is the empirical characteristic function, given by (1.14), and
ϕX (u) is the characteristic function of X ∼ S(α,β ,γ,δ ;0), given by (2.20),

ϕX (u) = exp{ℜψX (u)+ iℑψX (u)}

where

ℜψX (u) =−γ
α |u|α ,

ℑψX (u) =

{
u[βγ tan πα

2 (|γu|α−1−1)+δ ] for α 6= 1
u[−βγ

2
π

ln(γ|u|)+δ ] for α = 1

with u ∈ R, α ∈ (0,2], β ∈ [−1,1], γ > 0 , δ ∈ R. Recall that S(α,β ,γ = 1,δ = 0;0) is denoted by
S(α,β ;0) Continuous mapping theorem (e.g., van der Vaart (1998, Theorem 2.3)) and (1.22) imply
that at every fixed u ∈R the empirical cumulant function ψn(u) converges almost surely to ψX (u) as
n→ ∞. Hereby, at every fixed u ∈ R

ℜψn(u)
a.s.→ ℜψX (u) as n→ ∞.

Following proposition gives for any fixed n the bound for |ℜψn(u)−ℜψX (u)|.
Proposition 6.1. Assume X ∼ S(α,β ,γ,δ ;0). Let 0 < ε < 1 and u ∈ R. If

eγα |u|α
∆n(u)≤

ε

1+ ε
(6.1)

where ∆n(u) = |ϕn(u)−ϕX (u)|, then

|ℜψn(u)−ℜψX (u)| ≤ ε.

Proof. We have |ℜψn(u)−ℜψX (u)|= | ln |ϕn(u)|− ln |ϕX (u)||. By the mean value theorem and the
reverse triangle inequality, for every fixed u ∈ R,

|ℜψn(u)−ℜψX (u)| ≤
∆n(u)

min(|ϕn(u)|, |ϕX (u)|)

where ∆n(u) = |ϕn(u)−ϕX (u)| ≥ 0. Note that if 0 < |ϕn(u)|< |ϕX (u)| then by the reverse triangle
inequality,

|ϕn(u)|= |ϕn(u)+ϕX (u)−ϕX (u)| ≥ |ϕX (u)|− |ϕn(u)−ϕX (u)|= |ϕX (u)|−∆n(u).
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Hereby,

|ℜψn(u)−ℜψX (u)| ≤


∆n(u)
|ϕX (u)|

for 0 < |ϕX (u)|< |ϕn(u)|
∆n(u)

|ϕX (u)|−∆n(u)
for 0 < |ϕn(u)|< |ϕX (u)|

≤ ∆n(u)
|ϕX (u)|−∆n(u)

=
∆n(u)

e−γα |u|α −∆n(u)
(6.2)

Condition

∆n(u)
e−γα |u|α −∆n(u)

≤ ε

is equivalent to the condition (6.1). Hereby, if (6.1) holds, then

|ℜψn(u)−ℜψX (u)|= | ln |ϕn(u)|− ln |ϕX (u)|| ≤ ε.

Note, that condition (6.1) is equivalent to

|u| ≤ 1
γ

(
ln

ε

ε +1
− ln∆n(u)

)1/α

≡ zn(γ,α,ε,∆n(u)). (6.3)

In other words, if (6.3) holds then |ℜψn(u)−ℜψX (u)| ≤ ε .

In Figures 6.1, 6.2, and 6.3 the means of absolute estimation errors ε , (that is, the MAEs, given by
(5.1)) versus u > 0 are plotted for α = 0.2,1,1.8 and γ = 0.5,1,2. More precisely, the MAEs of
K = 200 replicates from S(α,0.5,γ,0;0), each with size n = 1000, are obtained.
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FIGURE 6.1: MAEs of ℜψ̂n(u) of K = 200 replicates from S(α, 1
2 ,

1
2 ,0;0) each

with n = 1000.
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FIGURE 6.2: MAEs of ℜψ̂n(u) of K = 200 replicates from S(α, 1
2 ,1,0;0) each

with n = 1000.

As seen in Figures 6.1, 6.2, and 6.3 for all α = 0.2,1,1.8, and γ = 0.5,1,2, the MAEs notably
increase for u > 1/γ , roughly. Based on Figures 6.1, 6.2 and 6.3 for samples with a size around
n = 1000 the arguments |u| ≤ 1/γ should yield |ℜψn(u)−ℜψX (u)|< ε < 0.1, in average. Note that
by Proposition 3.1 the condition |u| ≤ 1/γ is equivalent to ℜψX (u) ∈ [−1,0].
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FIGURE 6.3: MAEs of ℜψ̂n(u) of K = 200 replicates from S(α, 1
2 ,2,0;0) each

with n = 1000.

Proposition 6.1 indicates that the estimation error (convergence rate) of the real part of empirical
cumulant function is always bigger than the estimation error of empirical characteristic function ∆n.
Indeed, if (6.3) holds then |ℜψn(u)−ℜψX (u)| ≤ ε . However, zn in (6.3) is defined only if

ln
ε

ε +1
≥ ln∆n(u)
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which for 0 < ∆n < 1 holds if and only if

ε ≥ ∆n(u)
1−∆n(u)

and ε ≥ ∆n(u). The following Corollary 6.1 which implies that for any 0 <U < ∞ the convergence
of

sup
|u|≤U

|ℜψn(u)−ℜψX (u)|
a.s.→ 0

is slower then the convergence of
sup
|u|≤U

∆n(u)
a.s.→ 0.

Corollary 6.1. Assume X ∼ S(α,β ,γ,δ ;0) and let 0 <U < ∞. If

e(γU)α

sup
|u|≤U

∆n(u)
a.s.→ 0 as n→ ∞ (6.4)

then

sup
|u|≤U

|ℜψn(u)−ℜψX (u)|
a.s.→ 0 as n→ ∞. (6.5)

Proof. The proof follows from the Proposition 6.1 and equation (1.23).

Note that if n→ ∞ then P(|ℜψn(u)−ℜψX (u)| ≤ ε eventually ) = 1, while for fixed n < ∞ the
quantity |ℜψn(u)−ℜψX (u)| is less than ε > 0 with some probability 1− p.

For various sample sizes the behaviour of ℜψn(u) is illustrated in Figures 6.4, 6.5 and 6.6.
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FIGURE 6.4: The values of ℜψn(u) of single replicates from S(0.2,0.5;0) and the
corresponding values of ℜψX (u).
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In Figures 6.4, 6.5 and 6.6 the values of ℜψn(u) of single replicates from X ∼ S(α,0.5;0) with α =

0.2,1,1.8 and the corresponding values of ℜψX (u) are presented for n= 5×101,5×103,5×105,5×
107. Figures 6.4, 6.5 and 6.6 indicate that for smaller values of n, and smaller values of α , the interval
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FIGURE 6.5: The values of ℜψn(u) of single replicates from S(1,0.5;0) and the
corresponding values of ℜψX (u).

of the arguments u at which the estimation error turns out to be good, say |ℜψn(u)−ℜψX (u)| ≤ 0.5,
is smaller than [0,1/γ], and for bigger values of n, and bigger values of α , the interval is bigger than
[0,1/γ], while in Figures 6.4, 6.5, 6.6 γ = 1). In conclusion, based on Figures 6.1-6.6 the interval
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FIGURE 6.6: The values of ℜψn(u) of single replicates from S(1.8,0.5;0) and the
corresponding values of ℜψX (u).

of u where |ℜψn(u)−ℜψX (u)|< ε , 0 < ε ≤ 0.1, roughly, is quite small, that is, the convergence of
the real part of the empirical cumulant function is quite slow.
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Recall that if for any ε > 0 and 0 < κ < 1

exp{(γu)α}∆n(u)≤
ε

(1+ ε)
= κ,

then by Proposition 6.1
|ℜψn(u)−ℜψX (u)| ≤ ε.

The Proposition 6.2 below sets a bound for

P
(

exp{(γU)α} sup
|u|≤U

∆n(u)> κ

)
.

First note that for X ∼ S(α,β ,γ,δ ;0) there exists L = L(α) > 1 such that (e.g., Nolan (2018b,
Theorem 1.12, p. 14))

P(X ≤ x)≤ Lγ
α c(α)(1−β )|x|−α ,∀x < 0, P(X > x)≤ Lγ

α c(α)(1+β )x−α ,∀x > 0 (6.6)

where

c(α) =
Γ(α)

π
sin

πα

2
≤ 1

2
. (6.7)

For some arbitrarily small υ > 0 let Aυ = A(υ ,F) be such that F(−Aυ) ≤ υ

6 and 1−F(Aυ) ≤ υ

6

where F = FX is the distribution function of X . Hereby,

Aυ = max
{
−F−1

(
υ

6

)
,(1−F)−1

(
υ

6

)}
≤ Kυ

where by (6.6)

Kυ = γ

(
6L
υ

c(α)

)1/α

[(1−β )1/α ∨ (1+β )1/α ]. (6.8)

Proposition 6.2. Assume X ∼ S(α,β ,γ,δ ;0). Let κ > 0, δn > 0 be arbitrarily small. Then for any

0 <U < ∞

P
(

exp{(γU)α} sup
|u|≤U

∆n(u)> κ

)
≤ 2exp

{
−n · δ

2
n

18

}

+2exp

{
−n · (κ exp{−(γU)α}−δn)

2

2(KδnU)2

}
. (6.9)

where Kδn is given by (6.8).
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Proof. Let n < ∞ be fixed. If ‖Fn−F‖ = supx∈R |Fn(x)−F(x)| ≤ δn
6 , where Fn is given by (1.17),

then for any 0 <U < ∞ (see, e.g., Csörgo (1981, p. 136)),

sup
|u|≤U

|ϕn(u)−ϕ(u)| ≤ δn +2UKδn‖Fn−FX‖,

where Kδn is given by (6.8). Then

exp{(γU)α} sup
|u|≤U

|ϕn(u)−ϕ(u)| ≤ exp{(γU)α}
(
δn +2UKδn‖Fn−F‖

)
.

Hereby,{
exp{(γU)α} sup

|u|≤U
∆n(u)> κ

}
⊂

{
‖Fn−F‖> δn

6

}
∪

{
exp{(γU)α}

(
δn +2UKδn‖Fn−F‖

)
> κ

}

and

P

(
exp{(γU)α} sup

u≤U
∆n(u)> κ

)
≤ P

(
‖Fn−FX‖>

δn

6

)
+P

(
‖Fn−FX‖>

κ exp{−(γU)α}−δn

2UKδn

)
.

By the Dvoretzky–Kiefer–Wolfowitz inequality (e.g., van der Vaart (1998, p. 268)), for any ε∗ > 0,

P(‖Fn−F‖> ε
∗)≤ 2exp[−2n(ε∗)2].

Hereby,

P
(

exp{(γU)α} sup
|u|≤U

∆n(u)> κ

)
≤ 2exp

{
−n

δ 2
n

18

}
+2exp

{
−n

(κ exp{−(γU)α}−δn)
2

2(KδnU)2

}
.

The following proposition 6.3 sets a bound for

P
(

sup
|u|≤U
|ℜψn(u)−ℜψX (u)| ≤ ε

)

for any 0 <U < ∞, n and ε > 0.
Proposition 6.3. Assume X ∼ S(α,β ,γ,δ ;0). Let n > 1, 0 <U < ∞ and p ∈ (0,1) be such that

(
72(ln4− ln p)

n

) 1
2
< 1 (6.10)

and

2
(

ln4− ln p
nk(α,γ,β ,U)

)1/s

< 1 (6.11)
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where s = 2(1+ 1
α
) and

k(α,γ,β ,U) =
exp{−2(1+ 1

α
)(γU)α}

2(γU)2
(

6L Γ(α)
π

sin πα

2

)2/α

[(1−β )2/α ∨ (1+β )2/α ]

. (6.12)

Let

ε =

√
72(ln4− ln p)

√
n−
√

72(ln4− ln p)
∨ 2(ln4− ln p))1/s

(nk(α,γ,β ,U))1/s−2(ln(4− ln p)1/s , (6.13)

then

P
(

sup
|u|≤U
|ℜψn(u)−ℜψX (u)| ≤ ε

)
≥ 1− p. (6.14)

Proof. Proposition 6.1 implies that with κ = ε

ε+1

P
(

sup
|u|≤U
|ℜψn(u)−ℜψX (u)| ≤ ε

)
≥P

(
exp{(γU)α} sup

|u|≤U
∆n(u)≤

ε

ε +1

)
,

or equivalently

P
(

sup
|u|≤U
|ℜψn(u)−ℜψX (u)|> ε

)
≤P

(
exp{(γU)α} sup

|u|≤U
∆n(u)>

ε

ε +1
= κ

)
.

In Proposition 6.2 choose δn = κ exp{(γU)α}/2. Then

P
(

exp{(γU)α} sup
u≤U

∆n(u)> κ

)
≤ 4exp

{
−n

κ2

72

}
∨4exp

{(
κ

2

)2(1+ 1
α
)
k(α,γ,β ,U)

}
.

Let p ∈ (0,1) be fixed. Observe,

κ ≥
(

72(ln4− ln p)
n

) 1
2
, ⇔ 4exp

{
−n

κ2

72

}
≤ p

and

κ ≥ 2
(

ln4− ln p
nk(α,γ,β ,U)

) 1
2(1+ 1

α )
, ⇔ 4exp

{
−n
(

κ

2

)2(1+ 1
α
)
k(α,γ,β ,U)

}
≤ p.

Also observe that

κ =
ε

1+ ε
≥
(

72(ln4− ln p)
n

) 1
2
, ⇔ ε

√
72(ln4− ln p)

√
n−
√

72(ln4− ln p)
,
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and

κ =
ε

1+ ε
≥ 2

(
ln4− ln p

nk(α,γ,β ,U)

) 1
s

, ⇔ ε ≥ 2(ln4− ln p)1/s

(nk(α,γ,β ,U))1/s−2(ln4− ln p)1/s .

Therefore, as ε satisfies (6.13), we have

P
(

sup
|u|≤U
|ℜψn(u)−ℜψX (u)|> ε

)
≤ p,

or, equivalently

P
(

sup
|u|≤U
|ℜψn(u)−ℜψX (u)| ≤ ε

)
≥ 1− p.

In what follows we fix p ∈ (0,1), ε > 0, n, α ∈ (0,2], γ > 0 and β ∈ [−1,1], and aim to find the
0 < U < ∞ such that (6.14) in Proposition 6.3 holds. By (6.10) and (6.13) the sample size must be
so big that

ε

ε +1
≥
(

72(ln4− ln p)
n

) 1
2
. (6.15)

Then Proposition 6.3 holds for all 0 <U < ∞ such that

ε

ε +1
≥ 2

(
ln4− ln p

nk(α,γ,β ,U)

)1/s

, (6.16)

where k(α,γ,β ,U) is given by (6.12). In the following Corollary 6.2 we aim to find the biggest
possible U , that is is the upper bound of the solutions U to (6.16), denoted by U ′=U ′(ε, p,n,α,γ,β ).
Corollary 6.2. Assume X ∼ S(α,β ,γ,δ ;0). Fix ε > 0, p ∈ (0,1), α ∈ (0,2], γ > 0 and let n be such

that (6.10) and (6.15) hold. Let U ′ be such that

ε

ε +1
= 2

(
ln4− ln p

nk(α,γ,β ,U ′)

)1/s

, (6.17)

where k(α,γ,β ,U) is given by (6.12). Then for all U <U ′

P
(

sup
|u|≤U
|ℜψn(u)−ℜψX (u)| ≤ ε

)
≥ 1− p, (6.18)

Proof. If (6.15) holds then

ε ≥
√

72(ln4− ln p)
√

n−
√

72(ln4− ln p)
.
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If U ′ is such that (6.17) holds then

ε =
2(ln4− ln p)1/s

(nk(α,γ,β ,U))1/s−2(ln4− ln p)1/s

holds. Hereby the assumption (6.13) in Proposition 6.3 holds and for all U <U ′

P
(

sup
|u|≤U
|ℜψn(u)−ℜψX (u)| ≤ ε

)
≥ 1− p.

For β ∈ (0,1] (6.17) gives

exp{−2(1+ 1
α
)(γU ′)α}

2 [(γU ′)α ]2/α
=

ln(4/p)
n

(2(ε +1)
ε

)2(1+ 1
α
)
(

6L(1+β )
Γ(α)

π
sin

πα

2

)2/α

, (6.19)

and for β ∈ [−1,0) (6.17) gives

exp{−2(1+ 1
α
)(γU ′)α}

2 [(γU ′)α ]2/α
=

ln(4/p)
n

(2(ε +1)
ε

)2(1+ 1
α
)
(

6L(1−β )
Γ(α)

π
sin

πα

2

)2/α

, (6.20)

and for β = 0 (6.17) gives

exp{−2(1+ 1
α
)(γU ′)α}

2 [(γU ′)α ]2/α
=

ln(4/p)
n

(2(ε +1)
ε

)2(1+ 1
α
)
(

6L
Γ(α)

π
sin

πα

2

)2/α

, (6.21)

where L = L(α) is given by (6.6). Note that for all β the solution U to equations (6.19)-(6.21) is
expressed through the quantity −(γU)α = ℜψX (u).

We illustrate Proposition 6.3 for the case β = 0, that is, solve the equation (6.21) for U ′. Fix p = 0.2
and ε = 0.5. Then by (6.10) and (6.13) it must be choosen n ≥ 250. By Nolan (2018b, Theorem
1.12, p. 14), for S(α,β ,γ,δ ;0),

lim
x→∞

P(X > x)
γα c(α)(1+β )x−α

= 1, and lim
x→−∞

P(X ≤−x)
γα c(α)(1−β )x−α

= 1,

where c(a) is given by (6.7). Hereby, following (6.6) and (6.8), for our illustrative example we take
L = 2 in (6.21). For α = 0.1,0.2, . . . ,2 consider the cases γ = 1 and γ = 10. The numerical solutions
U ′ to (6.21) are obtained by a search function combining the so-called gold section procedure with
the parabolic interpolation (e.g., Forsythe et al. (1977)), available by function uniroot in R-package
stats4 (R Core Team (2018)), and presented in Figure 6.7. In Figure 6.7 the solution U ′ to (6.21),
that is, the upper bound for the solutions U to (6.16), increase as the values of α and n increase.
However, for γ = 10 the scale of U ′ notably decrease for all α and n implying that the upper bound
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FIGURE 6.7: Solution to (6.21) plotted U ′ versus α for γ = 1 (on left) and for
γ = 10 (on right) with ε = 0.5, p = 0.2,L = 2.

U ′ to (6.16) depends on the scale γ of the underlying stable distribution. Hereby, for fixed ε , p it
seems complicated to set a general rule for U ′ > 0 for all values of α,γ,n. Krutto (2018) pointed
out that the quantity ℜψX (U) = −(γU)α should be considered instead. In Figure 6.8 the values of
−(γU ′)α are presented. Note that 0 <U ≤U ′ < ∞ is equivalent to −(γU)α ≥−(γU ′)α . In Figure

−
0.

6
−

0.
5

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

Tail index (α)

−
(γ

U
')α

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

−
0.

6
−

0.
5

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

Tail index (α)

−
(γ

U
')α

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

n=2.5x102 n=103 n=5x103 n=104 n=105

FIGURE 6.8: Solutions U ′ to (6.21) plotted for −(γU ′)α with γ = 1 (on left) and
for γ = 10 (on right) with ε = 0.5,p = 0.2, L = 2.

6.8, for small values of n the quantity−(γU ′)α is almost constant among the values of α = 0.1, . . . ,2,
and the quantity −(γU ′)α decreases when n (and α) increase. Also, as seen on the right of Figure
6.8 and (6.21), the change in γ > 0 has no influence for the quantity −(γU ′)α . The results in Figure
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6.8 imply there is a fixed level r > 0 such that

U ≤U ′ = ℜψ̂
−1
n (−r)

would satisfy (6.16) for any α,γ,n. Indeed, by Figure 6.8 if n ≥ 105 then all |u| < U < U ′ with
−(γU ′)α = −0.1 lead to ε ≤ 0.5 with probability 1− p ≥ 0.8 for any α and γ . Similar verity is
visible in Figures 6.4, 6.5, 6.6: for each considered n and α the estimation error ε ≤ 0.5, roughly, in
the interval such that

ℜψ̂n(u) ∈ [−0.5,0],

at least, or equivalently such that
|u| ≤ℜψ̂

−1
n (−0.5).

Figure 6.8 and Figures 6.4, 6.5 and 6.6 suggest choosing |u| <U <U ′ on the bases of ℜψ
−1
X (−r),

where r > 0 is fixed, that is,
U ′ = argminu>0(ℜψX (u)+ r).

Comparing to the empirical result in Figures 6.4, 6.5, 6.6 the results in Figure 6.8, that is, the
solutions U ′ to (6.21), lead to more conservative estimate for r. By Figures 6.4, 6.5 for samples
n≥ 50 it is suggested r ≤ 0.5 while by Figure 6.8 for samples with n≥ 105 it is suggested r ≤ 0.1.

6.2 Sample Based Selection of the Arguments of ECuF Estima-
tors

ECuF estimators for the parameters of S(α,β ,γ,δ ;0) are obtained step-by-step: the estimators for
α and γ are expressed through the real part of the empirical cumulant function ℜψn(u) at the pair
(u1,u2) and the estimators for β and δ are expressed through ℜψn(u) and ℑψn(u) at the same pair
(u1,u2), where u1 > 0, u2 > 0, u1 6= u2. Hereby, the interest is in estimating some lower bound
0 < u < ∞ and upper bound 0 < u < u < ∞ such that u < u1 < u, u < u2 < u, u1 6= u2 that would
accurately estimate the real part of cumulant function of stable laws, and then also ECuF estimates.
Corollary 6.2 gives for fixed ε > 0, p ∈ (0,1), α ∈ (0,2], γ > 0, n the upper bound U ′ > 0 such
that P

(
sup|u|≤U |ℜψn(u)−ℜψX (u)| ≤ ε

)
≥ 1− p for every 0 < U < U ′, while the corresponding

lower bound is zero. However, ECuF estimators are defined for non-zero values only, u1 > 0, u2 > 0,
u1 6= u2, and moreover, as ψn(0) = ψX (0) = 0 then at u = 0 cumulant function holds no info about
the parameters of the distribution. The lower and upper bounds for the arguments of ECuF estimators
are estimated on the basis of αn = αn(u1,u2),

αn =
ln(−ℜψn(u1))− ln(−ℜψn(u2))

lnu1− lnu2
=

ln(−ℜψn(u2))− ln(−ℜψn(u1))

lnu2− lnu1
. (6.22)
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Proposition 6.4. For every 0 < u < ∞ it holds

sup
|u|≤u
|ℜψn(u)−ℜψX (u)|

a.s.→ 0 as n→ ∞,

and then for every 0 < u < u

sup
u≤|u|≤u

| ln(−ℜψn(u))− ln(−ℜψX (u))|
a.s.→ 0 as n→ ∞.

Proof.

sup
u≤|u|≤u

| ln(−ℜψn(u))− ln(−ℜψX (u))|= sup
u≤|u|≤u

ln
ℜψn(u))
ℜψX (u))

= ln sup
u≤|u|≤u

ℜψn(u))
ℜψX (u))

a.s.→ 0,

as n→ ∞. Note that as ℜψX (0)) = 0 then in the proof the lower bound u > 0 is required.

Similarly to the proof of Proposition 6.1, for every fixed u ∈ R,

| ln(−ℜψn(u))− ln(−ℜψX (u))| ≤
∆′n(u)

−ℜψX (u)−∆′n(u)
=

∆′n(u)
(γ|u|)α −∆′n(u)

,

where ∆′n = |ℜψn(u)−ℜψX (u)|. Hereby, if for ν > 0

∆′n(u)
γα |u|α −∆′n(u)

≤ ν ⇔ (γ|u|)−α
∆
′
n(u)≤

ν

ν +1
< 1 (6.23)

then
| ln(−ℜψn(u))− ln(−ℜψX (u))| ≤ ν .

Now, if (6.23) holds then (γ|u|)α > ∆′n(u) and then for every 0 < u < ∞,

sup
u≤|u|
| ln(−ℜψn(u))− ln(−ℜψX (u))| ≤ sup

u≤|u|

∆′n(u)
(γ|u|)α −∆′n(u)

≤
supu≤|u|∆

′
n(u)

(γu)α − supu≤|u|∆
′
n(u)

≤ ν

Hereby,

P
(

sup
u≤|u|≤u

| ln(−ℜψn(u))− ln(−ℜψX (u))| ≤ ν

)
≥P

(
sup

u≤|u|≤u
∆
′
n(u)≤ (γu)α ν

ν +1

)
.

Let R = R(u) =−ℜψX (u) = (γ|u|)α . Let 0 < r < r < 1 denote the values such that u = R−1(r) and
u = R−1(r). From now on consider a function ε ′ = ε ′(r, p,n) such that

P
(

sup
|u|≤u
|ℜψn(u)−ℜψX (u)| ≤ ε

′

)
= P

(
sup

|u|≤R−1(r)
∆
′
n(u)≤ ε

′

)
≥ 1− p. (6.24)
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Proposition 6.5. Let r > 0 be such that ε ′ = ε ′(r, p,n)< r. Then for any r > 0 such that ε ′ < r < r

it holds

P
(
|αn(u,u)−α| ≤ 2

ε ′/(r− ε ′)

lnu− lnu

)
≥ 1− p (6.25)

where αn is given by (6.22) and α ∈ (0,2].

Proof. By (6.23) and 6.24

P
(

sup
u≤|u|≤u

| ln(−ℜψn(u))− ln(−ℜψX (u))| ≤
ε ′/(γu)α

1− ε ′/(γu)α

)
≥P

(
sup

u≤|u|≤u
∆
′
n(u)≤ (γu)α ν

ν +1

)
≥P

(
sup

|u|≤R−1(r)
∆
′
n(u)≤ ε

′

)
≥ 1− p.

Note that

ε ′/(γu)α

1− ε ′/(γu)α
=

ε ′

r− ε ′
.

Therefore

P
(

sup
u≤|u|≤u

| ln(−ℜψn(u))− ln(−ℜψX (u))| ≤
ε ′

r− ε ′

)
≥ 1− p.

Hence, with probability 1− p we have

| ln(−ℜψn(u))−α(γ− lnu)| ≤ ε ′

r− ε ′
,

| ln(−ℜψn(u))−α(γ− lnu)| ≤ ε ′

r− ε ′
,

and therefore

| ln(−ℜψn(u))− ln(−ℜψn(u))−α(lnu− lnu)| ≤ 2
ε ′

r− ε ′
.

Hereby,

P
(∣∣∣∣ ln(−ℜψn(u))− ln(−ℜψn(u))

lnu− lnu
−α

∣∣∣∣≤ 2 ε ′
r−ε ′

lnu− lnu

)
= P

(
|αn(u,u)−α| ≤ 2

ε ′/(r− ε ′)

lnu− lnu

)
≥ 1− p
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Note that
lnu− lnu =

1
α
(lnr− lnr)

and then

2 ε ′
r−ε ′

lnu− lnu
=

2α
ε ′

r−ε ′

lnr− lnr
≤

4 ε ′
r−ε ′

lnr|− lnr
.

Therefore,

P
(
|αn−α| ≤ 4

ε ′/(r− ε ′)

lnr− lnr

)
≥P

(
|αn−α| ≤ 2

ε ′/(r− ε ′)

lnu− lnu

)
≥ 1− p.

By Proposition 6.5, the arguments (u1,u2) of ECuf estimators are suggested such that 0 < u≤ u1 <

u2 ≤ u < ∞ where

u≥ argminu>0(ℜψX (u)+ r) (6.26)

and

u≤ argminu>0(ℜψX (u)+ r) (6.27)

with 0 < r < r < 1 being fixed. However, fixing 0 < r < r < 1 is complicated. Proposition 6.3 gave a
quite conservative estimate for 0< r < 1: by Figure 6.8 it is suggested that if n≥ 105 then r≤ 0.1. On
the other hand, on the bases of empirical results in Figures 6.4, 6.5, 6.5 it is suggested that if n≥ 50
then r ≤ 0.5. By (6.25) the estimation error is as smaller as bigger is u2/u1, that is, r and r should
not be too close. In Section 5.2 the tail index α was estimated via (6.22) at (u1,u2) ∈ (0,1]× (0,1].
In addition, the influence of the change in u1 for fixed u2 = 1 is assessed through the estimation
error of α̂n. More precisely, for fixed sample size, n = 1000, the quantity MAE(α̂n) is studied for
K = 200 replicates from S(α,β = 0.5;0) with α = 0.2,1,1.8 at u1 ∈ (0,100] and u2 = 1. Results
are presented in Figure 6.9. In Figure 6.9, as expected by (6.22), the MAEs are big in the area where
u1 is close to u2. The ECuF estimates for α = 1.8 are smallest at u1 around 0.03, for α = 1 at u1

around 0.01 and for α = 0.2 at u1 around 0.

In conclusion, the arguments u1,u2 should be chosen such that u1 ≥ u is not too small, that is, r is
not too close too 0, and u2 ≤ u is not too big, that is, r is not too close too big, and by (6.25) u1,u2

should not be too close, that is, r1 and r2 should not be too close. Hereby, on the basis of Section 5.2,
Corollary 6.2, Proposition 6.5, and Figures 6.1-6.9, a following sample based selection is proposed
by the substituting principle (e.g., Knight (1999, Section 4.5, p. 190)).
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FIGURE 6.9: MAEs of α̂n(u1,u2) at u1 ∈ (0,100] and u2 = 1.

Argument–Selection–Rule 1. For a general stable law the ECuF-estimators in Definitions 4.2 are

obtained at u1 > 0 and u2 > 0 satisfying

u≥ argminu>0(ℜψ̂n(u)+0.1) (6.28)

and

u≤ argminu>0(ℜψ̂n(u)+0.5) (6.29)

where ℜψ̂n(u) is the realization of ℜψn(u), given by (1.32).

Implying Argument–Selection–Rule requires solving noisy equations (6.28) and (6.29). For solving
(6.28) and (6.29) with respect to u various numerical methods can be used. For example, a look-
up procedure with the mid-range rule or some simple one-dimensional search function (see, e.g.,
Brent (1973)). For illustration, an example of the selection procedure by the Argument–Selection–
Rule 1 is presented. For that, single replicates with n = 1000 from X ∼ S(α,β = 0.5;0) where

u
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FIGURE 6.10: Argument–Selection–Rule 1 for a sample from S(α,0.5;0).
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α = 0.2,1.0,1.8 are simulated. In Figure 6.10 the graphs of corresponding ℜψX (u) (dashed blue
lines) and graphs of ℜψ̂n(u) of the simulated samples (solid black lines) at u > 0 are presented.
In Figure 6.10, the solid red lines show the levels where ℜψ(u) = −0.1 and ℜψ(u) = −0.5. The
corresponding u1 and u2 where obtained through the look-up procedure (R (R Core Team (2018))
function which.min or which.max) and the mid-range rule. Based on Argument–Selection–Rule
1, the ECuF estimators for the parameters of X ∼ S(α,β = 0.5;0) for α = 0.2 are suggested to
evaluate at u1 = 0.6× 10−5 and u2 = 0.03; for α = 1 are suggested to evaluate at u1 = 0.11 and
u2 = 0.48; and for α = 1.8 are suggested to evaluate at u1 = 0.29 and u2 = 0.68. The graphs of the

u
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FIGURE 6.11: The Argument–Selection–Rule 1 for a sample from S(α,0.5;0).

real and imaginary parts of cumulant functions and the selected u1,u2 and the corresponding values
of ℑψ̂n(u1) and u2 from ℑψ̂n(u2) are illustrated by Figure 6.11.
Remark 6. Höpfner and Rüschendorf (1999, p. 157) proposed a selection of u1 and u2 for Press

(1972) estimators in symmetric stable law centered around zero (β = δ = 0) where the arguments

u3,u4 are not used. Their selection is based on the real part of empirical characteristic function.

Note that for symmetric stable laws around zero ϕX (u) = ℜϕX (u) = exp{ℜψX (u)}. For the Press

(1972) estimators for α and γα they stated the following rule: u1 is based on the 0.3-quantile and

u2 on the 0.7-quantile of the empirical characteristic function. In terms of the real part of empirical

cumulant function it can be written ℜψ̂n(u1) =−0.36 and ℜψ̂n(u2) =−1.2.



Chapter 7

Monte–Carlo Simulations for ECuF
Estimators with the
Argument–Selection–Rule

In this section, Monte–Carlo simulations for assessing the quality of ECuF estimators at u1,u2 se-
lected by Argument–Selection-Rule 1 are carried out. Without loss of generality, standard stable laws
are studied, δ = 0 and γ = 1, and by reflection property (e.g., Uchaikin and Zolotarev (1999, Property
(2), p. 99), Nolan (2018b, Proposition 1.11, p. 12)) only non-negative values of β are used, β ∈ [0,1].
In simulation study K = 100 replicates S(α,β ;0) are generated. The ECuF estimates α̂n = g1(b̂n),
ln γ̂n = g2(b̂n), β̂n = g3(b̂n), and δ̂n = g4(b̂n) are obtained from (3.12) through (3.15b) at b̂n. When
|α̂n−1|< 0.01, then it is set α̂n = 1. For α̂n = 1 the estimates of β and δ are calculated by (3.14b)
and (3.15b), respectively, and for α̂n 6= 1 by (3.14a) and (3.15a), respectively. The arguments u1 and
u2 are obtained from (6.28) and (6.29) by a search function combining the so-called gold section pro-
cedure with the parabolic interpolation (e.g., Forsythe et al. (1977)), available by function uniroot

in R-package stats4 (R Core Team (2018)). Note that in ECuF estimation procedure the values
ℜψn(u1) and ℜψn(u2) are used, i.e., they are not replaced by −0.1 and −0.5. In results the admis-
sible parameter values are used: the values of β̂n are replaced with β̂n = min(max(β̂n,0),1) and the
values of α̂n are replaced with α̂n = min(max(α̂n,0.001),2). Overview of estimation methods for
the parameters of stable laws is given in Sections 2.6 and 2.7. For comparison purposes, the ECuF
estimates are compared with the estimates by the following algorithmic methods: the maximum like-
lihood (ML) based estimators by Nolan (2001), the empirical characteristic function (EChF) based
estimators by Kogon and Williams (1998), and the quantile based (QB) estimators by McCulloch
(1986). The closed-form logarithmic moments (Log), fractional lower order moments (FLOM) and
extreme value theory (EVT) methods by Kuruoglu (2001) were not considered because they do not
provide estimators for the location parameter δ and, as mentioned in Kuruoglu (2001), though well-
performing (in the sense of the estimation error) in general, did not outperform the EChF methods
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in estimating parameters α and γ . All statistical computing (including for ECuF estimators) and
graphics are done by open-source free-software R (R Core Team (2018)) while simulations and the
estimates of ML, EChF and QB methods are made by its package STABLE® (Robust Analysis Inc.
(2017)). Similarly to Kogon and Williams (1998) and Kuruoglu (2001) all results are reported in the
terms of the root mean-square error (RMSE) of the parameter estimates,

RMSE(θ̂n) =

√
1
K ∑

K
k=1
(
θ − θ̂n(k)

)2 (7.1)

where K = 100 is the number of replications, θ is the true parameter value and θ̂n(k) is the estimate
of the parameter from the kth sample, k = 1,2, . . . ,K.

7.1 Estimating S(α,β ;0) from Samples with n= 5000 and n= 50

From S(α,β = 0.5;0) with α = 0.2,0.3,0.5,0.8,1,1.2,1.5,1.8,2 the K = 100 replicates with size
n = 5000 are simulated. The RMSE of α̂n, β̂n, γ̂n, δ̂n versus the values of tail index α for the ECuF,
ML, EChF, QB (solid red line, dashed, dotted and dash-dot lines, respectively) estimates are shown
in Figure 7.1.

The results for the tail index α: According to RMSEs of α , as shown in Figure 7.1 (upper left),
the ECuF and EChF methods remarkably outperform other estimators at the lower values of α while
the ECuF method performs slightly better than the EChF method. For 0.5 ≤ α ≤ 1.8, the methods
give similar results except for the ML method, which performs better. For α > 1.8, the ECuF, EChF,
and ML methods perform in a similar manner while they all outperform the QB method.

The results for the asymmetry index β : According to RMSEs of β , as shown in Figure 7.1 (upper
right), the ECuF and ML methods notably outperform the other estimators at the lower values of α

while for 0.5 ≤ α ≤ 1.5 the ML and QB methods perform better than ECuF and EChF methods.
For 1.5≤ α ≤ 2 the ECuF, EChF and ML methods outperform the QB method (the fact that RMSE
(β̂n)→ ∞ as α → 2 is not relevant in practice as β means little when α → 2). In estimating the tail
index α and asymmetry index β our ECuF method performs most steadily over the whole space of
the values of parameter α .

The results for the scale parameter γ and the shift parameter δ : According to RMSEs of γ̂n,
as shown in Figure 7.1 (lower left), the ECuF method outperforms other methods at the lower values
of α . For 0.5≤ α ≤ 1.2, all methods perform similarly. Based on RMSEs of the shift parameter δ ,
as shown in in Figure 7.1 (lower right), the proposed ECuF method does not outperform others.
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FIGURE 7.1: For n = 5000 the performance of empirical cumulant function
(ECuF), empirical characteristic function (EChF), maximum likelihood (ML) and
quantile based (QB) estimators for α (upper left), β (upper right), γ (lower left) and

δ (lower right) plotted as RMSE versus tail index α .
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The results for all parameters from the samples with n = 50: To see, if any of these methods
work well when the sample size is small for K = 100 replicates from S(α,0.5;0), α = 0.5,1,1.5,
each with n = 50, are simulated. For the ECuF, ML, EChF, QB (solid red line, dashed, dotted and
dash-dot lines, respectively) estimates the RMSEs of α̂n, β̂n, γ̂n, δ̂n versus the tail index α are shown
in Figure 7.2.

R
M

S
E

(α̂
)

0.5 1 1.5

0

0.1

0.2

0.3

0.4

R
M

S
E

(β̂
)

0.5 1 1.5

0

0.5

1

1.5

R
M

S
E

(γ̂
)

0.5 1 1.5

0

0.5

1

1.5

R
M

S
E

(δ̂
)

0.5 1 1.5

0

0.5

1

1.5

ECuF EChF ML QB

FIGURE 7.2: For n = 50 the performance of empirical cumulant function (ECuF),
empirical characteristic function (EChF), maximum likelihood (ML) and quantile
based (QB) estimators for α (upper left), β (upper right), γ (lower left) and δ (lower

right) plotted as RMSE versus tail index α .

Comparing the results in Figure 7.2 (i.e., n = 50) with the results at α = 0.5,1,1.5 in Figure 7.1 (i.e.,
n = 5000), the values of RMSEs of ECuF estimators for all parameters are remarkably bigger, as it is
natural to expect according to theoretical results in Chapter 6. However, sample size influences the
RMSEs of all methods while among the studied estimation methods the RMSEs of MLE estimates
turned out smallest for all parameters. In the next Section 7.2 results on more sample sizes versus
the RMSEs of estimates are presented.
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Comparing the computational speed: The extension time of ECuF estimators compared to other
methods is illustrated by the total user’s CPU time, measured by the R (R Core Team (2018)) function
proc.time. For comparing the CPU time the sample size n = 1000 is fixed, and K = 20 replicates
from S(α,β ;0) with α = 0.2,1,1.8 and β = 0,0.5,1 are estimated. Corresponding user’s CPU time
in seconds is given in Table 7.1.

TABLE 7.1: Comparison of user’s CPU time.

ECuF estimates
β α = 0.2 α = 1 α = 1.8

0.0 0.006708204 0.008366600 0.007745967
0.5 0.008366600 0.005477226 0.006324555
1.0 0.008944272 0.005000000 0.008062258

ML estimates
β α = 0.2 α = 1 α = 1.8

0 0.1082359 0.03646917 0.04842520
0.5 0.1305565 0.03794733 0.05196152
1 0.2952372 0.05554278 0.06024948

EChF estimates
β α = 0.2 α = 1 α = 1.8

0 0.005 0.002236068 0.006324555
0.5 0.000 0.002236068 0.003162278
1 0.000 0.002236068 0.004472136

QB estimates
β α = 0.2 α = 1 α = 1.8

0 0.000000000 0.000000000 0
0.5 0.003162278 0.004472136 0
1 0.000000000 0.000000000 0

7.2 Estimating S(α,β ;0) from Samples with Various Sizes

Simulations for K = 100 replicates from S(α,β ;0), α = 0.3,1,1.8, β = 0,1, each with sample sizes
n= 200, 500, 1000, 3000, 5000 are carried out. The RMSEs of α̂n, β̂n, γ̂n, δ̂n of the ECuF, ML, EChF,
QB (solid red line, dashed, dotted and dash-dot lines, respectively) estimates versus the sample size
are presented in Appendix F , Figures F.1-F.4. Figure F.1 shows results for α , Figure F.2 for β ,
Figure F.3 for γ , and Figure F.4 for δ . Not surprisingly, the effectiveness of all methods discussed
depends on the sample size (the greater the sample size the better the performance). However, the
results in Appendix F show that the ECuF method performs best at the lower values of α and in
comparison to other methods, it is more robust to changes in the value of β .





Chapter 8

Applications

Two examples of modelling via stable laws are considered. In Section 8.1 stable laws are fitted
on Estonian property and causality (PC) insurance claim sizes, presented in Krutto (2016), and in
Section 8.2 on Danish fire insurance claim sizes. In Section 8.1 ECuF and reduced values’ ECuF
estimates are evaluated at all pairs (u1,u2) given by Table 5.1. In Section 8.2 the ECuF estimators
are obtained by the Argument–Selection–Rule 1. All statistical computing, evaluation of ECuF
estimates and graphics are done by the open-source free-software R (R Core Team (2018)).

8.1 Case study I: Estonian PC Insurance Data

A dataset1 of Estonian property and causality (PC) insurance, containing fire, natural forces and
other property insurance claim sizes in euros (EUR) by legal persons in a calendar year, is studied.
There are a total of n = 2802 observations. The k-th 100-quantile, denoted by qp, p = k/100, mean
and standard deviation (sd) of claim sizes are given in Table 8.1 and the histogram in Figure 8.1.
Based on Table 8.1 and histogram in Figure 8.1 the data of claim sizes are heavy tailed and right-

TABLE 8.1: Summary of Estonian PC insurance claim sizes (EUR).

q0.00 q0.25 q0.50 q0.75 q0.99 q1.00 mean sd

15.3 358.0 955.0 6703.0 102206.1 1166000.0 2781.0 42011.15

skewed. When fitting a stable law it would be expected to get the estimate for β close to 1 and the
estimate for α not too close to 2 (i.e., normal law) or 0 (because the interquartile range of data is
quite large and values of claim sizes are not that condensed).

1Data were communicated by Meelis Käärik, (meelis.kaarik@ut.ee).

mailto:meelis.kaarik@ut.ee
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The claim sizes distribution is modelled via S(α,β ,γ,δ ;1) by ECuF and reduced values’ ECuF
estimates at all pairs (u1,u2) given by Table 5.1. In the process of estimation a simple non-parametric
bootstrap with replacement is applied.

ECuF estimates ECuF estimators for the parameters of S(α,β ,γ,δ ;1) are given by Definition 4.1.
In Table 8.2 the means of ECuF estimates for K = 200 bootstrap replicates are presented. Claim size
data has a interquartile range of 1165642 and standard deviation of 42011.1. The ECuF estimates
in Table 8.2 illustrate that scale statistic with such large scaling influence the accuracy of ECuF
estimates. Indeed, at most of the pairs of u1,u2, the estimates for scale γ turned out to be infinite,
implying that ECuF estimates may produce meaningless results, as also mentioned in Paulson et al.
(1975) about the Press (1972) estimates. In addition, the means of estimates for β are not close to 1
(as expected), and those of α are close to 0 (as not expected).

TABLE 8.2: Means of ECuF estimates (at u1,u2 from Table 5.1) for the parameters
of S(α,β ,γ,δ ;1) on Estonian PC insurance claim sizes.

u1 u2 Mean (α̂n) Mean (β̂n) Mean (γ̂n) Mean (δ̂n)

0.03 0.09 0.13 1.62 9×1077 –3.77
0.03 0.9 0.01 6.70 Inf 1.53
0.03 9 0.03 2.98 Inf –0.10
0.03 90 0.02 –0.76 Inf –0.02

0.3 0.09 0.04 –0.42 Inf 3.05
0.3 0.9 –0.17 –1.22 Inf 1.93
0.3 9 –0.01 –1.46 Inf –0.17
0.3 90 –0.01 0.79 Inf –0.02

3 0.09 0.01 –2.35 Inf 0.12
3 0.9 0.14 2.18 3×10125 –0.87
3 9 –0.04 0.36 5×10184 –0.29
3 90 –0.03 0.59 Inf –0.02

Inf–infinity

As the median of claim sizes data is greater than 1, q0.50 = 955.0, then the reduced values’ ECuF
estimators, given by Definition 4.3, are suggested.

Reduced values’ ECuF estimates In Table 8.2 the means of reduced values’ ECuF estimates2 and
the coefficient of variation (cv), which is the ratio of the standard deviation to the mean (see, e.g.,
Everitt (1998)), are presented.

It follows that the reduced values’ ECuF estimators yield much better estimates. Compared to Table
8.2, the means of reduced values’ ECuF estimates in Table 8.3 are more meaningful and less varying.
It confirms that reduced values’ ECuF estimators are useful for the cases where data median (in
absolute value) is more than 1. Table 8.3 is sorted increasingly by cv(α̂n). The mean of reduced

2Based on Definition 4.3 the estimates in Table 8.3 are presented for the original (not-reduced) claim sizes.
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TABLE 8.3: Reduced values’ ECuF estimates for the parameters of S(α,β ,γ,δ ;1)
on Estonian PC insurance claim sizes.

Mean cv Mean cv Mean cv Mean cv
u1 u2 (α̂n) (α̂n) (β̂n) (β̂n) (γ̂n) (γ̂n) (δ̂n) (δ̂n)

0.03 9 0.71 0.030 1.19 0.059 382.46 0.073 –432.25 0.206
3 0.09 0.72 0.030 1.12 0.042 444.48 0.045 –574.15 0.209
0.3 9 0.67 0.032 1.17 0.046 410.33 0.059 –335.48 0.181
0.03 0.9 0.77 0.039 1.05 0.057 568.07 0.057 –1113.55 0.328
0.03 90 0.56 0.039 1.78 0.079 119.88 0.192 –103.29 0.181
0.3 0.9 0.80 0.048 1.06 0.055 578.91 0.059 –1460.33 0.342
0.3 90 0.48 0.058 1.87 0.085 181.45 0.175 –85.05 0.183
3 0.9 0.60 0.064 1.18 0.061 475.25 0.046 –283.09 0.345
0.3 0.09 0.75 0.069 1.00 0.072 523.66 0.145 –819.13 0.793
0.03 0.09 0.78 0.099 1.09 0.101 581.48 0.304 –1989.91 1.272
3 9 0.60 0.107 0.94 0.133 484.41 0.092 –139.00 0.608
3 90 0.33 0.151 2.00 0.157 690.79 0.194 –60.62 0.204
cv–coefficient of variation

values’ ECuF estimates at u1 = 3, u2 = 0.09 has the smallest value of cv(α̂n) and cv(β̂n). Hereby,
stable distribution S(α = 0.72,β = 1,γ = 444,δ =−574;1) is proposed as a model for Estonian PC
insurance claim sizes.

For comparison the maximum likelihood (ML) based estimators by Nolan (2001), the empirical char-
acteristic function (EChF) based estimators by Kogon and Williams (1998), and the quantile based
(QB) estimators by McCulloch (1986) are obtained3 by a free-software STABLE® (Nolan (2005)).
Results are presented in Table 8.4.

TABLE 8.4: Modelling Estonian PC insurance claim sizes via S(α,β ,γ,δ ;1).

Estimation Method Fitted Stable Law

Reduced values’ ECuF S(α = 0.72,β = 1,γ = 444,δ =−574;1)
Characteristic function based S(α = 0.78,β = 1,γ = 581,δ =−1117;1)
Maximum likelihood based S(α = 0.60,β = 1,γ = 606,δ =−189;1)
Quantile based S(α = 0.82,β = 1,γ = 1213,δ =−3258;1)

The estimates for the parameters of the stable laws S(α,β ,γ,δ ;1) in Table 8.4 are quite similar: all
estimation methods propose a maximally skewed stable distribution (β = 1) with a negative location
parameter (δ < 0) and index of stability less than 1 (but not close to 0).

To illustrate the matches of the fitted stable laws the corresponding (numerical) density functions
(by R-package stabledist Würtz and Mächler (2016)) are presented in Figure 8.1 (for the full
data) and Figure 8.2 (for the tail area). According to Figures 8.1 and 8.2, the reduced values’ ECuF
estimates seem to give the best match for the Estonian PC insurance claim size data.

3An overview of the estimation methods of the parameters of stable laws is given in Sections 2.6 and 2.7.
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FIGURE 8.1: Histogram of Estonian PC insurance claim sizes and the densities of
the fitted stable laws (given by Table 8.4).
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FIGURE 8.2: Histogram of the tail values of Estonian PC insurance claim sizes and
the densities of the fitted stable laws (given by Table 8.4).
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8.2 Case study II: Danish Fire Insurance Data

A dataset of Danish fire insurance claim sizes (losses), available in R-package SMPracticals (Davi-
son (2015)), is studied. Claim sizes are given in millions of Danish krone (DKK) and are not adjusted
for inflation over time. For exploratory analysis see Embrechts et al. (2013, Example 6.2.9). The
dataset corresponds to the period 1980-1990, inclusive, and there are a total of n = 2493 observa-
tions. The k-th 100-quantile, denoted by qp, p = k/100, mean and standard deviation of claim sizes
are given by Table 8.5 and the histogram in Figure 8.3.

TABLE 8.5: Summary of Danish fire insurance losses (in millions DKK).

q0.00 q0.25 q0.50 q0.75 q0.99 q1.00 mean sd

0.31 1.16 1.63 2.65 24.61 263.25 3.06 7.98

Based on Table 8.5 and histogram in Figure 8.3 the distribution of Danish fire insurance claim sizes
is heavy-tailed and right-skewed. When fitting stable laws it would be expected the estimates for
β be close to 1, and the estimates for α not too close to 2 (i.e., normal law) or 0 (because the
interquartile range of data is quite large and values of claim sizes are not that condensed).

claims sizes (millions DKK)

0 50 100 150 200 250
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00

0.
10

0.
20
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30

57.4 65.7 144.7 152.4 263.3

FIGURE 8.3: Danish fire insurance data.

Applying Argument–Selection–Rule 1 on Danish fire insurance claim sizes the values of u1,u2 for
ECuF estimators are selected as

u1 = 0.186,

u2 = 1.036.

Note that if the selection would have been done on the original values in millions (DKK) then
u1 = 1.86×10−7 and u2 = 1.036×10−6.
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For comparison4, the maximum likelihood (ML) based (Nolan (2001)), the empirical characteristic
function (EChF) based (Kogon and Williams (1998)), and the quantile based (QB) estimates (Mc-
Culloch (1986)) are found by STABLE® Robust Analysis Inc. (2017).

The goodness-of-fit within different estimates is assessed5 by log-likelihood function (e.g., Knight
(1999)) based criteria. Given y is the realization ofY , the log-likelihood function is denoted by l(θ),
and for stable laws the numerically estimated by the joint density function f ∗(y|θ) =∏

n
j=1 f ∗(y j|θ),

l(θ) = ln f ∗(y|θ) =
n

∑
j=1

ln f ∗(y j|θ) (8.1)

where f ∗(y j|θ) is the numerically estimated density of a stable distribution, depending on θ =

(α,β ,γ,δ )′. Table 8.6 is ordered increasingly by the values of negative log-likelihood (NLL) func-
tion, which is defined as NLL =−l(θ). In addition, the risk at tail is assessed by the 99th percentile,
q0.99. Results are presented in Table 8.6.

TABLE 8.6: Modelling of Danish fire insurance claim sizes via stable law
S(α,β ,γ,δ ;0).

Method Fitted Stable Law NLL q0.99

ML S(α = 0.88,β = 0.99,γ = 0.37,δ = 1.32;0) 3855.5 46.6
ECuF S(α = 0.93,β = 1,γ = 0.45,δ = 1.32;0) 3940.3 43.9
EChF S(α = 0.95,β = 1,γ = 0.46,δ = 1.31;0) 3969.4 40.5
QB S(α = 1.01,β = 1,γ = 0.74,δ = 1.63;0) 4202.4 49.7

In Table 8.6, the ECuF estimates with the Argument–Selection–Rule 1 give lower value of NLL than
those of the EChF and QE estimates illustrating that ECuF estimators compare favourably with other
estimation methods for stable laws.

In Table 8.7 the comparison6 of the approximation of stable laws (and its special cases Cauchy and
Lévy distributions) with other distribution models7 proposed for Danish fire insurance claim sizes
(see, e.g., Bakar et al. (2015)), Miljkovic and Grün (2016)), is presented. In Table 8.7, in addition to
NLL, the Akaike Information Criterion (AIC), given by AIC=−2l(θ)+2p, where p is the number
of parameters of distribution, is provided. Except for stable, Cauchy and Levy distributions, the
numerical results given by Table 8.7 can be found in Bakar et al. (2015) and Miljkovic and Grün
(2016). However, in this thesis the values of NLL, AIC in Table 8.7 are recalculated (by R–function
mle for maximum likelihood method in R-package stats4 (R Core Team (2018))) based on the

4The overview of estimation methods for the parameters of stable laws is given in Sections 2.6 and 2.7.
5There are various (characteristic function based) goodness-of-fit tests available, see, e.g, Ushakov (1999, Section 3.10),

Matsui and Takemura (2008), Meintanis (2016). However, in modelling Danish loss data the common goodness-of-fit criteria
are based on log-likelihood (see, e.g., Bakar et al. (2015), Miljkovic and Grün (2016)), and for comparison purpose the same
are used in this thesis.

6To the best of our knowledge, there are no publications that fit stable laws on the Danish fire insurance losses data.
7For composite models proposed for the Danish fire insurance losses data see, e.g., Bakar et al. (2015), for mixture models,

e.g., Miljkovic and Grün (2016), and for a combination of both, see, e.g., Reynkens et al. (2017).
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TABLE 8.7: Some distributions fitted on Danish fire insurance claim sizes.

Model NLL AIC q0.99

Burr 3835.1 7676.2 31.0
Stable 3855.5 7719.1 46.6
Inv. Burr 3966.8 7941.8 14.0
Gen. Pareto 4102.3 8210.6 13.0
Loglogistic 4280.6 8565.2 10.0
Log-Normal 4433.9 8871.8 10.8
Cauchy 4563.5 9131.0 17.1
Inv. Pareto 4647.2 9299.4 161.7
Levy 5039.8 10083.5 7647.5
Pareto 5051.9 10109.8 17.1
Gamma 5243.0 10490.1 12.6
Weibull 5270.5 10544.9 14.8

closed form densities (available in various R-packages, e.g., actuar (Dutang et al. (2008)) and
rmutil (Swihart and Lindsey (2018)). Table 8.7 is ordered by the values of AIC. It follows that
only Burr distribution has lower values of NLL and AIC than stable distribution, and comparing to
other proposed models (distributions) stable laws give better fit on Danish fire insurance claim sizes.
However, compared to Burr distribution, the proposed stable law gives a much higher value for the
risk at tail, that means, it is a more conservative model for the risk of extreme losses.





Conclusions

The aim of this thesis was to address the problem of estimating the parameters of general stable
laws. This was done by providing new insights to the method of closed-form estimators used by
Press (1972). The main results of this thesis are as follows.

(i) It is proven that the parameters of general stable laws can be expressed through the real and
imaginary parts of the cumulant function at two arbitrary different arguments u1,u2 on the
positive real line.

(ii) The Press (1972) estimation procedure is reformulated to use only two (rather than four) argu-
ments, called the ECuF estimators.

(iii) The asymptotic normality for the real and imaginary parts of the empirical cumulant function
of arbitrary distribution is proven.

(iv) The asymptotic normality for the ECuF estimators (throughout the interior of the parameter
space) is proven.

(v) A sample based Argument–Selection–Rule for choosing the arguments u1,u2 of ECuF estima-
tors is proposed.

In conclusion, via exhaustive Monte–Carlo simulations and two applications it is shown that under
the proposed Argument–Selection–Rule the performance of the proposed ECuF estimators may be
considered effective in general and they make an attractive alternative to the algorithmic methods
for estimating the parameters of stable laws. This results contradict (reject) the established view in
literature (e.g., (Paulson et al., 1975, p. 168), (Borak et al., 2005, Section 1.4.3)). More precisely,
the ECuF estimators applied with the Argument–Selection–Rule compare favourably with the com-
monly used quantile (QB), empirical characteristic function (EChF), and maximum likelihood (ML)
based estimation methods for stable laws. In estimating the tail index, α , the closed-form ECuF
estimators outperform other methods in the case when α < 0.5, while at the higher values of α

the closed-form ECuF estimators perform similarly to the algorithmic methods. In estimating the
skewness parameter β , scale parameter γ , and location parameter δ the ECuF method outperforms
algorithmic methods in some cases but not always. The main argument in favour of the ECuF es-
timators (with the Argument–Selection–Rule) is their computational simplicity; there is no need
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for data standardization, no restrictions have to be put to the parameter space, and they perform
steadily across the values of the tail index α and skewness index β . For practitioners concerned
about data with the heaviest tails, i.e.,where α < 0.5, the closed-form ECuF estimators make an at-
tractive alternative to the algorithmic methods. Based on the applications, the ECuF estimators can
be successfully used in practice, and stable laws can be suggested for modelling non-life insurance
claim sizes distributions.

An area of further research is developing the optimal implementation of the Argument–Selection–
Rule. Another unresolved question is determining the bias of ECuF estimators and the possible
selection of u1,u2 based on minimizing the asymptotic variance.



Appendix A

Characteristic Functions of Stable
Laws

Figure A.1. The graphs of the characteristics function of S(α,1;1) (with characteristic function
given by (2.11)) for α = 2,1.8,1.5,1.2,1.1,1,0.9,0.8,0.5,0.2 .
Figure A.2. The graphs of the characteristics function of S(α,1;0) (with characteristic function
given by (2.20)) for α = 2,1.8,1.5,1.2,1.1,1,0.9,0.8,0.5,0.2 .
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FIGURE A.1: Characteristic functions of S(α,1;1).
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FIGURE A.2: Characteristic functions of S(α,1;0).





Appendix B

Absolute Value, Real and Imaginary
Parts of Characteristic Functions

Figure B.1. The graphs of absolute value, real and imaginary parts of the characteristic functions
of standard stable distributions S(α,β = 1;1) (with characteristic function given by (2.11)) for α =
2,1.8,1.5,1.2,1.1,1,0.9,0.8,0.5,0.2 .
Figure B.1. The graphs of absolute value, real and imaginary parts of the characteristic functions
of standard stable distributions S(α,β = 1;0) (with characteristic function given by (2.20)) for α =
2,1.8,1.5,1.2,1.1,1,0.9,0.8,0.5,0.2.
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FIGURE B.1: The absolute value (solid line), the real part (dashed line) and imagi-
nary part (dotted line) of the characteristic function of S(α,1;1).
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FIGURE B.2: The absolute value (solid line), the real part (dashed line) and imagi-
nary part (dotted line) of the characteristic function of S(α,1;0).





Appendix C

Absolute Value, Real and Imaginary
Parts of Cumulant Functions

Figure C.1. The graphs of absolute value, real and imaginary parts of the cumulant functions of
standard stable distributions S(α,β = 1;1) (with the real part given by (2.9) and imaginary part by
(2.10)) for α = 2,1.8,1.5,1.2,1.1,1,0.9,0.8,0.5,0.2.
Figure C.2. The graphs of the absolute, real and imaginary parts of the cumulant functions of
standard stable distributions S(α,β = 1;0) (with the real part of cumulant function given by (2.21)
and imaginary part by (2.22)) for α = 2,1.8,1.5,1.2,1.1,1,0.9,0.8,0.5,0.2.
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FIGURE C.1: The absolute value (solid line), the real part (dashed line) and imagi-
nary part (dotted line) of the cumulant function of S(α,1;1).
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FIGURE C.2: The absolute value (solid line), the real part (dashed line) and imagi-
nary part (dotted line) of the cumulant function of S(α,1;0).
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Appendix D

Reduced values’ ECuF Estimates at
Selection of (u1,u2)

Table D.1. The MSEs of ECuF estimates for K = 200 replicates, each with size of n = 105, from
S(α,β ;1) with α = 0.5 and β = 0 at all pairs of u1,u2 in Table 5.1.

Table D.2. The MSEs of ECuF estimates for K = 200 replicates, each with size of n = 105, from
S(α,β ;1) with α = 0.5 and β = 1 at all pairs of u1,u2 in Table 5.1.

Table D.3. The MSEs of ECuF estimates for K = 200 replicates, each with size of n = 105, from
S(α,β ;1) with α = 1.5 and β = 0 at all pairs of u1,u2 in Table 5.1.

Table D.4. The MSEs of ECuF estimates for K = 200 replicates, each with size of n = 105, from
S(α,β ;1) with α = 1.5 and β = 1 at all pairs of u1,u2 in Table 5.1.
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TABLE D.1: The MSEs of ECuF estimates for K = 200 replicates from the stable
law S(α = 0.5,β = 0,γ = 1,δ = 0;1) each with size n = 105.

(u1 u2) MSE (α̂n) MSE (β̂n) MSE (γ̂n) MSE (δ̂n)

0.03 0.0 0.0000 0.0002 0.0001 0.0003
0.03 0.9 0.0000 0.0001 0.0002 0.0000
0.03 9 0.0059 0.0012 0.0425 0.0006
0.03 90 0.0392 0.0091 0.3183 0.0000
0.3 0.09 0.0000 0.0002 0.0001 0.0001
0.3 0.9 0.0002 0.0007 0.0011 0.0002
0.3 9 0.0163 0.0086 0.2077 0.0006
0.3 90 0.0755 0.0311 7.7057 0.0000
3 0.09 0.0007 0.0005 0.0002 0.0008
3 0.9 0.0045 0.0231 0.1267 0.0030
3 9 0.1520 4×101 Inf 0.0014
3 90 0.2151 3×101 Inf 0.0000
Inf–infinity

TABLE D.2: The MSEs of ECuF estimates for K = 200 replicates from the stable
law S(α = 0.5,β = 0,γ = 1,δ = 0;1) each with size n = 105.

(u1 u2) MSE (α̂n) MSE (β̂n) MSE (γ̂n) MSE (δ̂n)

0.03 0.0 0.0000 0.0002 0.0001 0.0003
0.03 0.9 0.0000 0.0001 0.0002 0.0000
0.03 9 0.0059 0.0012 0.0425 0.0006
0.03 90 0.0392 0.0091 0.3183 0.0000
0.3 0.09 0.0000 0.0002 0.0001 0.0001
0.3 0.9 0.0002 0.0007 0.0011 0.0002
0.3 9 0.0163 0.0086 0.2077 0.0006
0.3 90 0.0755 0.0311 7.7057 0.0000
3 0.09 0.0007 0.0005 0.0002 0.0008
3 0.9 0.0045 0.0231 0.1267 0.0030
3 9 0.1520 4×101 Inf 0.0014
3 90 0.2151 3×101 Inf 0.0000
Inf–infinity
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TABLE D.3: The MSEs of ECuF estimates for K = 200 replicates from the stable
law S(α = 0.5,β = 0,γ = 1,δ = 0;1) each with size n = 105.

(u1 u2) MSE (α̂n) MSE (β̂n) MSE (γ̂n) MSE (δ̂n)

0.03 0.0 0.0000 0.0002 0.0001 0.0003
0.03 0.9 0.0000 0.0001 0.0002 0.0000
0.03 9 0.0059 0.0012 0.0425 0.0006
0.03 90 0.0392 0.0091 0.3183 0.0000
0.3 0.09 0.0000 0.0002 0.0001 0.0001
0.3 0.9 0.0002 0.0007 0.0011 0.0002
0.3 9 0.0163 0.0086 0.2077 0.0006
0.3 90 0.0755 0.0311 7.7057 0.0000
3 0.09 0.0007 0.0005 0.0002 0.0008
3 0.9 0.0045 0.0231 0.1267 0.0030
3 9 0.1520 4×101 Inf 0.0014
3 90 0.2151 3×101 Inf 0.0000
Inf–infinity

TABLE D.4: The MSEs of ECuF estimates for K = 200 replicates from the stable
law S(α = 0.5,β = 0,γ = 1,δ = 0;1) each with size n = 105.

(u1 u2) MSE (α̂n) MSE (β̂n) MSE (γ̂n) MSE (δ̂n)

0.03 0.0 0.0000 0.0002 0.0001 0.0003
0.03 0.9 0.0000 0.0001 0.0002 0.0000
0.03 9 0.0059 0.0012 0.0425 0.0006
0.03 90 0.0392 0.0091 0.3183 0.0000
0.3 0.09 0.0000 0.0002 0.0001 0.0001
0.3 0.9 0.0002 0.0007 0.0011 0.0002
0.3 9 0.0163 0.0086 0.2077 0.0006
0.3 90 0.0755 0.0311 7.7057 0.0000
3 0.09 0.0007 0.0005 0.0002 0.0008
3 0.9 0.0045 0.0231 0.1267 0.0030
3 9 0.1520 4×101 Inf 0.0014
3 90 0.2151 3×101 Inf 0.0000
Inf–infinity
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Appendix E

Reduced Values’ ECuF Estimates at
(0.03,0.09)

Table E.1. The MSEs of ECuF estimates (ECuF) and reduced values’ ECuF (RVECuF) estimates at
u1 = 0.03,u2 = 0.09 for K = 200 replicates from S(α,β;1) with sample size n = 105.
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TABLE E.1: The MSEs of ECuF estimates (ECuF) and reduced values’ ECuF
(RVECuF) estimates at u1 = 0.03,u2 = 0.09.

α β Method MSE (α̂n) MSE (β̂n) MSE (γ̂n) MSE (δ̂n)

0.25 0.1 RVECuF 5.7×10−6 6.9×10−5 1.5×10−4 1.7×10−6

0.25 0.1 ECuF 3.8×10−5 6.3×10−4 5.5×10−3 5.5×10−3

0.25 0.25 RVECuF 4.1×10−6 4.9×10−5 6.6×10−5 1.4×10−5

0.25 0.25 ECuF 3.5×10−5 4.6×10−4 4.6×10−3 4.6×10−3

0.25 0.5 RVECuF 4.3×10−6 5.2×10−5 3.8×10−4 1.7×10−4

0.25 0.5 ECuF 3.9×10−5 6.1×10−4 5.8×10−3 5.8×10−3

0.25 0.75 RVECuF 3.4×10−6 5.9×10−5 5.8×10−4 8.9×10−4

0.25 0.75 ECuF 3.6×10−5 6.1×10−4 5.4×10−3 5.4×10−3

0.25 1 RVECuF 4.2×10−6 1.0×10−4 1.1×10−3 4.3×10−3

0.25 1 ECuF 4.3×10−5 7.1×10−4 6.3×10−3 6.3×10−3

0.5 0.1 RVECuF 4.1×10−6 1.8×10−5 1.5×10−5 3.0×10−5

0.5 0.1 ECuF 4.6×10−5 3.2×10−4 4.3×10−3 4.3×10−3

0.5 0.25 RVECuF 3.7×10−6 2.5×10−5 5.5×10−5 1.2×10−4

0.5 0.25 ECuF 6.7×10−5 2.4×10−4 3.6×10−3 3.6×10−3

0.5 0.5 RVECuF 5.5×10−6 2.4×10−5 1.5×10−4 3.2×10−4

0.5 0.5 ECuF 5.8×10−5 2.6×10−4 4.4×10−3 4.4×10−3

0.5 0.75 RVECuF 7.4×10−6 3.6×10−5 2.9×10−4 1.1×10−3

0.5 0.75 ECuF 5.5×10−5 2.8×10−4 6.1×10−3 6.1×10−3

0.5 1 RVECuF 8.5×10−6 3.9×10−5 4.5×10−4 2.5×10−3

0.5 1 ECuF 5.5×10−5 3.0×10−4 8.4×10−3 8.4×10−3

0.75 0.1 RVECuF 4.5×10−6 1.6×10−5 2.0×10−5 1.9×10−4

0.75 0.1 ECuF 9.9×10−5 3.1×10−4 7.3×10−3 7.3×10−3

0.75 0.25 RVECuF 8.3×10−6 2.5×10−5 8.8×10−5 6.7×10−4

0.75 0.25 ECuF 1.2×10−4 3.1×10−4 9.6×10−3 9.6×10−3

0.75 0.5 RVECuF 1.2×10−5 3.9×10−5 2.0×10−4 2.5×10−3

0.75 0.5 ECuF 9.9×10−5 2.5×10−4 1.7×10−2 1.7×10−2

0.75 0.75 RVECuF 2.0×10−5 4.0×10−5 4.2×10−4 8.3×10−3

0.75 0.75 ECuF 9.5×10−5 2.3×10−4 2.8×10−2 2.8×10−2

RVECuF - reduced values’ ECuF
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TABLE E.1: Cont.

α β Method MSE (α̂n) MSE (β̂n) MSE (γ̂n) MSE (δ̂n)

0.75 1 RVECuF 2.1×10−5 5.4×10−5 5.3×10−4 1.6×10−2

0.75 1 ECuF 9.4×10−5 2.3×10−4 4.3×10−2 4.3×10−2

1.25 0.1 RVECuF 5.8×10−6 1.5×10−5 5.7×10−6 5.7×10−5

1.25 0.1 ECuF 3.2×10−4 8.5×10−4 1.4×10−3 1.4×10−3

1.25 0.25 RVECuF 1.8×10−5 3.9×10−5 4.3×10−5 1.3×10−4

1.25 0.25 ECuF 4.1×10−4 1.0×10−3 2.7×10−3 2.7×10−3

1.25 0.5 RVECuF 3.8×10−5 7.8×10−5 1.5×10−4 4.0×10−4

1.25 0.5 ECuF 4.3×10−4 7.7×10−4 4.8×10−3 4.8×10−3

1.25 0.75 RVECuF 5.6×10−5 1.4×10−4 3.0×10−4 8.9×10−4

1.25 0.75 ECuF 4.0×10−4 7.2×10−4 7.9×10−3 7.9×10−3

1.25 1 RVECuF 8.8×10−5 1.3×10−4 5.5×10−4 1.9×10−3

1.25 1 ECuF 3.8×10−4 6.0×10−4 1.2×10−2 1.2×10−2

1.5 0.1 RVECuF 3.8×10−6 1.8×10−5 1.2×10−6 1.2×10−5

1.5 0.1 ECuF 5.9×10−4 1.9×10−3 2.2×10−4 2.2×10−4

1.5 0.25 RVECuF 5.0×10−6 2.2×10−5 2.9×10−6 1.2×10−5

1.5 0.25 ECuF 6.0×10−4 2.0×10−3 2.4×10−4 2.4×10−4

1.5 0.5 RVECuF 1.6×10−5 4.7×10−5 1.7×10−5 1.8×10−5

1.5 0.5 ECuF 6.2×10−4 1.9×10−3 2.6×10−4 2.6×10−4

1.5 0.75 RVECuF 2.4×10−5 7.4×10−5 4.0×10−5 2.3×10−5

1.5 0.75 ECuF 5.6×10−4 1.9×10−3 3.3×10−4 3.3×10−4

1.5 1 RVECuF 3.4×10−5 9.8×10−5 6.9×10−5 3.2×10−5

1.5 1 ECuF 5.9×10−4 1.7×10−3 3.9×10−4 3.9×10−4

1.75 0.1 RVECuF 8.3×10−4 4.7×10−3 4.6×10−5 4.6×10−5

1.75 0.1 ECuF 4.5×10−2 4.6×10−1 1.2×10−3 4.2×10−1

1.75 0.25 RVECuF 4.0×10−6 6.3×10−5 1.2×10−6 6.3×10−6

1.75 0.25 ECuF 8.0×10−4 6.1×10−3 7.1×10−5 7.1×10−5

1.75 0.5 RVECuF 3.0×10−6 3.1×10−5 1.0×10−6 4.2×10−6

1.75 0.5 ECuF 7.8×10−4 7.1×10−3 6.5×10−5 6.5×10−5

1.75 0.75 RVECuF 5.7×10−6 4.4×10−5 2.0×10−6 4.6×10−6

1.75 0.75 ECuF 7.6×10−4 7.4×10−3 5.8×10−5 5.8×10−5

1.75 1 RVECuF 8.1×10−6 9.1×10−5 3.4×10−6 5.2×10−6

1.75 1 ECuF 9.7×10−4 9.4×10−3 7.3×10−5 7.3×10−5

RVECuF - reduced values’ ECuF





Appendix F

Estimating S(α,β ;0) from Samples
with Various Sizes

Figure F.1. The results for the tail index (characteristic exponent) α: The performance of empirical
cumulant function (ECuF), empirical characteristic function (EChF), maximum likelihood (ML) and
quantile based (QB) estimates for the parameter α for the K = 100 replicates from S(α,β ,γ = 1,δ =
0;0) plotted as RMSE vs. sample size n = 200, 500, 1000, 3000, 5000.

Figure F.2. The results for the asymmetry parameter β : The performance of empirical cumulant
function (ECuF), empirical characteristic function (EChF), maximum likelihood (ML) and quantile
based (QB) estimates β for the K = 100 replicates from S(α,β ,γ = 1,δ = 0;0) plotted as RMSE
vs. sample size n = 200, 500, 1000, 3000, 5000.

Figure F.3. The results for the scale parameter γ: The performance of empirical cumulant function
(ECuF), empirical characteristic function (EChF), maximum likelihood (ML) and quantile based
(QB) estimates for the parameter γ for the K = 100 replicates from S(α,β ,γ = 1,δ = 0;0) plotted
as RMSE vs. sample size n = 200, 500, 1000, 3000, 5000.

Figure F.4. The results for the shift parameter δ : The performance of empirical cumulant function
(ECuF), empirical characteristic function (EChF), maximum likelihood (ML) and quantile based
(QB) estimates for the parameter γ for the K = 100 replicates from S(α,β ,γ = 1,δ = 0;0) plotted
as RMSE vs. sample size n = 200, 500, 1000, 3000, 5000.
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FIGURE F.1: Results for the tail index α plotted as RMSE vs. sample size n.
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FIGURE F.2: Results for the asymmetry index β plotted as RMSE vs. sample size
n.
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FIGURE F.3: Results for the scale parameter γ plotted as RMSE vs. sample size n.
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FIGURE F.4: Results for the shift parameter δ plotted as RMSE vs. sample size n.
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Sisukokkuvõte

Stabiilsete jaotuste parameetrite hindamine empiirilise kumulant-
funktsiooni kaudu

Stabiilsed jaotused on lai tõenäosusjaotuste klass, millel on palju matemaatiliselt huvitavaid oma-
dusi. Klassi eristas Lévy (1925) oma uurimuses sõltumatute sama jaotusega juhuslike suuruste sum-
ma piirjaotustest. Ühemõõtmelised stabiilsed jaotused moodustavad 4-parameetrilise jaotuste klassi,
mis kaasab erineva sümmeetria ja sabaraskusega jaotuseid ning mille erijuhtudeks on normaal-, Le-
vy ja Cauchy jaotus. Viimastel aastakümnetel on stabiilsetest jaotustest esitatud mitmeid uurimusi,
kuid jaotuse parameetrite hindamine (andmete põhjal) on senini väljakutset pakkuv. Tavapärased
hindamismeetodid ei sobi stabiilsete jaotuste korral, kuna tihedusfunktsioonil puudub analüütiline
kuju ja momendid on üldjuhul määramatud. Välja on pakutud mitmeid algoritmilisi protseduure,
kuid need on arvutuslikult üsna keerulised ning vastavad rakendused ei ole statistikapakettides (tark-
varas) tihtipeale kättesaadavad. See omakorda takistab stabiilsete jaotuste laialdasemat kasutamist.
Samas on stabiilsed jaotused hinnatud asjakohasteks mudeliteks erinevatele protsessidele mitmetes
eluvaldkondades, näiteks klimatoloogias, füüsikas ning kindlustus- ja finantssektoris, kuna võimal-
davad kirjeldada nii sümmeetrilisi kui ebasümmeetrilisi protsesse kui ka arvesse võtta protsessides
esineva varieeruvuse dünaamika ja ekstreemsed kõikumised.

Doktoritöö aluseks on Press (1972) meetod, mis põhineb stabiilsete jaotuste parameetrite avalda-
misel karakteristliku funktsiooni logaritmi ehk kumulantfunktsiooni kaudu. Meetodi idee on ar-
vutuslikult lihtne ja hinnangud on esitatavad analüütiliste avaldistena, kuid sõltuvad neljast vabalt
valitavast reaalarvust (kui funktsioonid empiirilise kumulantfunktsiooni reaal- ja imaginaarosast).
Erinev argumentide valik mõjutab tulemusi märgatavalt ja võib anda ka sobimatuid tulemusi (pa-
rameetrite ruumi mõistes). Argumentide valikuks seni lahendusi pakutud ei ole ning seetõttu ei ole
ka see hindamismeetod rakendustes kasutust leidnud. Doktoritöös esitatakse kõnealusest meetodist
parendatud versioon - tõestatakse, et meetodi rakendamiseks piisab kahest vabalt valitud reaalarvust,
ning antakse soovitusi argumentide valikuks meetodi rakendamisel. Täpsemalt,

• esitatakse uus versioon Press (1972) meetodist: tõestatakse, et meetod on rakendatav kahe
vabalt valitud reaalarvu u1 > 0,u2 > 0,u1 6= u2 korral;
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• iseloomustatakse hinnangute mõjusust ja nihet; tõestatakse, et hinnangud on asümpootilise
normaaljaotusega;

• tõestatakse empiirilise kumulantfunktsiooni reaal- ja imaginaarosa asümptootiline normaal-
jaotus;

• viiakse läbi Monte–Carlo simulatsioonidel põhinev empiiriline uurimus argumentide u1,u2

valikuks;

• pakutakse välja valimil (andmetel) põhinev argumentide u1,u2 valikumeetod;

• viiakse läbi mahukad Monte–Carlo simulatsioonid hindamaks meetodi efektiivsust ja võrrel-
dakse tulemusi teiste meetoditega (stabiilsete jaotuste parameetrite hindamiseks);

• rakendatakse väljatöötatud ECuF hindamismeetodit kahele kahjukindlustuse andmestikul ja
võrreldakse tulemusi teiste meetoditega.

Doktoritöös väljapakutud ECuF meetod stabiilsete jaotuste parameetrite hindamiseks on arvutusli-
kult lihtne, mõjus ja saadavd hinnagud asümpootilise normaaljaotusega. Meetod ei oma piiranguid
parameetrite ruumis; ei vaja andmete standardiseerimist, annab samaväärseid või paremaid tulemusi
võrreldes keerukamate algoritmiliste protseduuridega. Kokkuvõttes saab öelda, et doktoritöös antud
soovitusi järgides on meetod praktikas kasutatav. Seega saab seni kirjanduses esitatud vastupidised
(e.g., Paulson et al. (1975), Borak et al. (2005)) arvamused ümber lükata.
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