
NEALT PROCEEDINGS SERIES

VOL. 14

Proceedings of the NODALIDA 2011 workshop

Constraint Grammar Applications

May 11, 2011
Riga, Latvia

Editors
Eckhard Bick, Kristin Hagen, Kaili Müürisep, Trond Trosterud

NORTHERN EUROPEAN ASSOCIATION FOR LANGUAGE
TECHNOLOGY

Proceedings of the NODALIDA 2011 workshop in
Constraint Grammar Applications

NEALT Proceedings Series, Vol. 14

© 2011 The editors and contributors.

ISSN 1736-6305

Published by
Northern European Association for Language
Technology (NEALT)
http://omilia.uio.no/nealt

Electronically published at
Tartu University Library (Estonia)
http://dspace.utlib.ee/dspace/handle/10062/19231

Volume Editors
Eckhard Bick, Kristin Hagen, Kaili Müürisep, Trond Trosterud

Series Editor-in-Chief
Mare Koit

Series Editorial Board
Lars Ahrenberg
Koenraad De Smedt
Kristiina Jokinen
Joakim Nivre
Patrizia Paggio
Vytautas Rudžionis

Contents

Constraint Grammar Applications
Eckhard Bick iv

Programme Committee v

Workshop Programme vi

Next to nothing – a cheap South Saami disambiguator
Lene Antonsen and Trond Trosterud 1

WikiTrans: The English Wikipedia in Esperanto
Eckhard Bick 8

Using constraint grammar in the Bangor Autoglosser to disambiguate
multilingual spoken text
Kevin Donnelly and Margaret Deuchar 17

OBT+Stat: Evaluation of a combined CG and statistical tagger
Janne Bondi Johannessen, Kristin Hagen, André Lynum, Anders Nøklestad 26

A Finite State Constraint Grammar Parser
Janne Peltonen 35

FinnTreeBank: Creating a research resource and service for language
researchers with Constraint Grammar
Atro Voutilainen 41

An Efficient Constraint Grammar Parser based on Inward Determin-
istic Automata
Anssi Yli-Jyrä 50

An Experiment of Use and Reuse of Verb Valency in Morphosyntactic
Disambiguation and Machine Translation for Euskara and North Sámi
Linda Wiechetek and Jose Mari Arriola 61

Author Index 70

iii

Constraint Grammar Applications

Eckhard Bick
University of Southern Denmark

This paper collection presents the contributions
to the 2011 NoDaLiDa Constraint Grammar work-
shop.

The NoDaLiDa CG workshop has now seen 3
editions, and become the main physical forum for
the exchange of ideas and results in the field of
Constraint Grammar at the research level. As or-
ganizers we were pleased to note a growing num-
ber of participants and a consistently high qual-
ity of contributions. The last years have seen ex-
tensions of CG usage along several lines, both to
the formalism as such, and in terms of areas of
application. Thus, the CG3 formal language now
allows the emulation of very diverse grammatical
approaches, covering besides the traditional topo-
logical and dependency frameworks also the use
of probabilistic, generative and unification tech-
niques. Most strikingly, however, is the potential
CG has shown in the applicational arena, where
it is now successfully used across a wide range
of languagetechnological issues, such as machine
translation, grammar checking, dialogue systems
and lexicography. Finally, CG continues to be
used for the production of linguistic research and
teaching resources, such as annotated corpora in
general, and treebanks in particular.

The papers in this collection provide an in-
sider’s view on some of these developments. An-
notation topics cover both treebanks (Voutilainen)
and spoken data (Donnelly & Deuchar), and MT
features prominently in the applicational area,
touching both on methodology such as valency
portability (Arriola & Wiechetek) and grand-scale
projects such as Wikipedia translation (Bick).
Within the field of CG theory, hybrid solutions
(Johannessen et al.) and compiler optimization
through FST methods (Peltonen) are explored.
Parsing efficiency is also the central theme in Yli-
Jyrä’s paper presenting a full CG compiler imple-
mentation with an inward deterministic method.

Finally, it should be noted that CG’s rule-based

approach continues to allow researchers to tackle
also smaller languages, where the quality or in-
deed feasibility of machine-learning suffers from
the lack of existing training resources. Thus,
Basque (Arriola & Wiechetek), Sami (Antonsen &
Trosterud) and Esperanto (Bick) are represented in
this collection of workshop papers.

On behalf of the organizing team,
Eckhard Bick

The papers

Lene Antonsen and Trond Trosterud: Next to noth-
ing – a cheap South Saami disambiguator

Eckhard Bick: WikiTrans: The English
Wikipedia in Esperanto

Kevin Donnelly and Margaret Deuchar: Using
constraint grammar in the Bangor Autoglosser to
disambiguate multilingual spoken text

Janne Bondi Johannessen, Kristin Hagen,
Andrè Lynum, Anders Nøklestad: OBT+Stat:
Evaluation of a combined CG and statistical tag-
ger

Janne Peltonen: A Finite State Constraint
Grammar Parser

Atro Voutilainen: FinnTreeBank: Creating a
research resource and service for language re-
searchers with Constraint Grammar

Anssi Yli-Jyrä: An Efficient Constraint Gram-
mar Parser based on Inward Deterministic Au-
tomata

Linda Wiechetek and Jose Mari Arriola: An
Experiment of Use and Reuse of Verb Valency
in Morphosyntactic Disambiguation and Machine
Translation for Euskara and North Sámi

iv

PROGRAMME COMMITTEE

• Eckhard Bick, Syddansk universitet

• Kristin Hagen, Universitetet i Oslo

• Kaili Müürisep, Tartu Ülikool

• Trond Trosterud, Universitetet i Tromsø

v

WORKSHOP PROGRAMME

Wednesday, May 11, Riga

09.00 - 09.10
Trond Trosterud: Opening statements

09.10 - 09.40
Jose Mari Arriola and Linda Wiechetek: An experiment of Use and Reuse of Verb
Valency in Morphosyntactic Disambiguation and Machine Translation for Basque
and North Sámi

09.40 - 10.10
Eckhard Bick: The English Wikipedia in Esperanto

10.10 - 10.30
Coffee break

10.30 - 11.00
Lene Antonsen and Trond Trosterud: Next to nothing – a cheap South Sami
disambiguator

11.00 - 11.30
Kevin Donnelly and Margaret Deuchar: Using constraint grammar in the Bangor
Autoglosser to disambiguate multilingual spoken text

11.30 - 12.00
Jackson Ssekiryango: Towards a Luganda Constraint Grammar

12.00 - 13.00
Lunch break

13.00 - 13.30
Anssi Yli-Jyrä: An Efficient Constraint Grammar Parser based on Inward
Deterministic Automata

13.30 - 14.00
Atro Voutilainen, Tanja Purtonen, Kristiina Muhonen and Mikaela Kumlander:
FinnTreeBank: Creating a research resource and service for language researchers
with Constraint Grammar

14.00 - 14.30
Janne Peltonen: Finite state constraint grammar parser

14.30 - 15.00
Janne Bondi Johannessen, Kristin Hagen, Andrè Lynum and Anders Nøklestad:
OBT+Stat: Evaluation of a combined CG and statistical tagger

15.00 - 15.30
Coffee break

15.30 - 16.30
Tino Didriksen: Latest news

vi

Next to nothing – a cheap South Saami disambiguator

Lene Antonsen
University of Tromsø

Norway
lene.antonsen

@uit.no

Trond Trosterud
University of Tromsø

Norway
trond.trosterud

@uit.no

Abstract

The goal of this article was to show that
even a small constraint grammar may
achieve results good enough to be used as
a lemmatiser. The result shows that a rule
set of 115 CG rules is efficient enough to
give a lemmatisation accuracy (lemma +
POS identification) of 1.056 for open POS.

1 Introduction

Lemmatising is important for a whole range of
language technology applications. Morphology-
rich languages get better word alignment, and both
dictionary and terminology work need lemmatisa-
tion in order to be able to search for words in texts
in reliable ways.

Constraint grammars are widely recognised for
achieving deep syntactic analyses very close to the
gold standard, but at the expense of requiring care-
fully crafted rule sets of several thousand rules
(Karlsson et. al, 1995). The goal of this article is
to investigate whether a small rule set may achieve
a more restricted task, namely POS and lemma
disambiguation.

1.1 Lemmatising

Deciding whether two word forms belong to the
same lemma or not might be problematic. In or-
der to do that, we first define the parts of speech of
the language by morphosyntactic means. Which
lexeme a given word form belongs to, will then
follow from the overall POS structure. For us,
lemmatising thus means finding the correct lex-
eme for each word form. Our research shows that
even a small constraint grammar may achieve re-
sults good enough to be used as a lemmatiser.

Homonymy in the Uralic languages is more
often than not confined to paradigm-internal
homonymy. Two homonym word forms usually
express different grammatical words of the same

lexeme, and not homonym word forms of differ-
ent lexemes. This means that even a partial dis-
ambiguation may be helpful for lemmatising, even
though it fails in resolving all the grammatical am-
biguities.

2 Relevant features of South Saami
grammar

South Saami is, like the other Saami languages, a
Uralic language. Typologically, it has a medium-
size morphology, with 8 cases, 2 numbers for
nouns, and 9 person-number values, 2 moods and
2 tenses for verbs, in addition to several infinite
verbforms and a productive derivational morphol-
ogy. The relatively agglutinative morphology is
combined with a rather complex morphophonol-
ogy (Sammallahti, 1998).

The most important morphophonological pro-
cess is an Umlaut system consisting of 7 differ-
ent vowel series and 6 different morphophono-
logically defined contexts. Other processes in-
clude diphthong simplification processes and suf-
fix alternations depending upon the underlying
foot structure.

Compared to the other Saami languages, South
Saami has relatively little morphological ambigu-
ity. On average, each reading receives 1.6 analy-
ses, as compared to 2.6 analyses for North Saami.

3 Derivations

In the Saami languages there is much derivation,
for all the open word classes. In our transducer
lexicon (at http://giellatekno.uit.no),
many of the derivations are lexicalized. Since
more work has been done for North Saami than
for the other languages, there are more lexical-
isations in the North Saami lexicon than in the
Lule and South Saami ones. In the output from
the morphological analyser, there are dynamic
analyses, in addition to the possibly lexicalized

1

one, as shown in Figure 1.

bájkálattjat (Lule Saami) (‘locally’)
bájkke N Der1 Der/lasj A Der2 Der/at Adv

báikkálaččat (North Saami) (‘locally’)
báiki N Der1 Der/laš A Der2 Der/at Adv
báikkálaš A Der2 Der/at Adv
báikkálaččat Adv

Figure 1: The morphological analysis of derived
words may differ for the sme and smj analysers.

When extracting term pairs from parallel cor-
pora, the challenge is to extract the lemmas in
one language against the non-lexicalised lemma +
derivation affix series in the other.

The algorithm is as follows:

1. Choose the lexicalized reading if there is one

2. If there is no lexicalised reading, choose the
derived one with the fewest number of deriva-
tional affixes.

The Lule Saami word bájkálattjat means ‘lo-
cally’, and is derived from the adjective meaning
‘local’ which is derived from the noun meaning
‘place’. In this case, word alignment between Lule
Saami and North Saami gives the following align-
ment: bájkke ‘place’ = báikkálaččat ‘locally’.

A better solution is to glue the derivation tags
to the lemma, so the word alignment process will
align bájkke N Der1 Der/lasj A Der2 Der/at Adv
to báikkálaččat Adv. Figure ??, Matt. 9.8., gives
an example of lemmatised text with derivation
tags.

original text:
Muhto olbmot ballagohte go oidne dán, ja
sii máidno Ipmila gii lea addán olbmuide
dakkár fámu.

lemmatised text:
muhto olmmoš ballat+V+Tv+Der3+Der/goahti
go oaidnit dát , ja son máidnut Ipmil
gii leat addit olmmoš dakkár fápmu .

’But people began to be afraid when they saw it, and
they prised God which had given the people such a power.’

Figure 2: The lemmatised text contains derivation
tags.

4 South Saami as part of a larger Saami
analyser

The Saami languages have different morphologi-
cal and morphophonological processes, and there-

fore separate morphological transducers are built
for each language.

The output of the morphological analysers is
then disambiguated in separate modules for each
language. Due to different homonymy patterns
of the languages, different rules apply. North
Saami needs many rules in order to resolve the
homonymy between accusative and genitive case.
In Lule Saami, this type of homonymy is restricted
to the personal pronouns, and in South Saami it
does not exist at all.

The mapping of syntactic tags to conjunctions,
subjunctions and finite and non-finite verbs is done
at an early stage in the North and Lule Saami dis-
ambiguation files because these tags are used for
sentence boundary detection, which is crucial for
disambiguation of e.g. case forms.

However, the mapping of most of the syntactic
tags is done in a common module shared by all
three Saami languages, as shown in Table 1. The
annotation is based on 49 syntactic tags.1. Due
to the relatively free word order in Saami, a fairly
large number of tags is needed.

The rules in the syntactic analyser refer to mor-
phological tags and sets of lemmas (e.g. the TIME

set contains lemmas that denote time adverbials),
which are language specific. The disambiguator
adds language tags (<sme>, <smj>, <sma> for
North, Lule and South Saami, respectively) to all
morphological analyses. When a lemma is identi-
fied as belonging to a certain language, language-
specific rules and language-specific exceptions are
triggered. E.g., in South Saami, the copula is of-
ten omitted in existential and habitive sentences,
which means there is no finite verb in the sentence.
In North Saami, a sentence without a finite verb
is analysed as a fragment or an elliptic sentence,
which is not appropriate for South Saami. Further-
more, the habitive function is expressed by differ-
ent cases in North Saami (locative), Lule Saami
(inessive) and South Saami (genitive). Neverthe-
less, @HAB-tag is assigned to all of them. The in-
tegration of the different disambiguation rule sets
is presented in (Antonssen et al, 2010).

The mapping of dependency tags is done in a
Constraint Grammar module common to all the
Saami languages, and the rule set is compiled with
the Visl CG3 compiler ((visl, 2008)) On the depen-
dency level, syntactic tags for verbs are substituted

1http://giellatekno.uit.no/doc/lang/
sme/docu-sme-syntaxtags.html

2

by other tags (according to clause-type) in order
to make it easier to annotate dependency across
clauses.2

4.1 Disambiguation

In order to test the disambiguator, we took a
South Saami corpus of 142.500 words (55% Bible
texts and 45% administrative texts). Our South
Saami morphological analyser accepts substan-
dard lemma and inflection forms. For frequent
typographical errors we have a correction proce-
dure. Despite of this, 12.395 words, or 8,7% of
the corpus, were not recognized by our morpho-
logical analyser. The unknown words are partly
due to the immature status of our morphologi-
cal analyser, and partly due to the high degree of
errors and non-normative forms in South Saami
texts. The texts in the corpus were written at a
time when there was no spellchecker available for
South Saami. The written norm is new and unsta-
ble, and rules for writing loanwords are not estab-
lished. The texts also contain upper cased head-
lines, which the analyser is not able to analyse,
and there are proper nouns and some Norwegian
words, which are not recognized by the analyser.

We made two versions of the corpus, one where
the unknown words were removed, and one where
all the sentences containing at least one unknown
word were removed. Unknown words are uninter-
esting for disambiguation, with no analysis they
trivially have no ambiguous cohorts either. Sen-
tences with unknown words are also problematic,
since the unknown words may influence upon the
analysis of the remaining sentence. In order to
look at disambiguation of sentences without un-
analysed words, we removed all sentences with
unknown words. In our test corpus, we have a
missing rate of 8.7% words, and by removing all
the affected sentences we lose 64% of the corpus.
We are therefore also interested in looking at to
what extent the unknown words influence the lem-
matising.

The results may be seen in Table 2. The ta-
ble shows the results for the whole corpus (left
column), for the whole corpus analysed with a
guesser (central column) and the subcorpus with
fully analysed sentences (right column). For each
corpus is shown the degree of homonymy (analy-
ses per 1000 words) before and after disambigua-

2http://giellatekno.uit.no/doc/lang/
common/docu-deptags.html

tion. We then show the result for lemma + PoS
(lemmatising), first for all PoS, and then for a re-
duced PoS set, containing just 4 PoS’s (N, V, A,
other).

The results improve as we reduce the level of
precision, from full analysis, PoS only, to a re-
duced 4-membered PoS set. For many lemmati-
sation purposes, distinguishing between different
closed classes is not that interesting, and the rele-
vant level of disambiguation is thus 1.056-1.058.

Surprisingly enough, the results for disam-
biguating the whole corpus is slightly better than
the results for disambiguation of the corpus con-
taining fully analysed sentences only. The reason
for this is probably that a very large part of the re-
maining corpus is the Bible, which contains very
few words unknown to the analyser, but which has
a syntax more demanding for the disambiguator.
The administrative texts contain many unknown
words, but they are characterized by a more mono-
tone syntax.

We have also tried to improve the result for the
specific gold corpus with a word guesser for the
unknown words. The word guesser is made with
CG, and gives POS and morphosyntactic analysis
of the word in question, based upon the word coda.
The mid column in Table 2 shows the results of
an analysis of the full corpus, where the analysis
phase is proceeded by the word guesser. This in-
formation is then given as part of the input to the
disambiguator. After the disambiguation phase the
guessed readings were conflated to one. As can be
seen from the table, the guesser component did not
give rise to improved results, on the contrary, we
see a slight decrease, as compared to the analysis
without a guesser.

The main reason for that is this the disam-
biguator is still in an initial state, where the bulk
of the rules are targeted at specific lemma pairs.
When input from the morphological guesser is in-
troduced, the picture is completely altered. Now,
homonymy across PoS classes is the rule, and not
the exception. The disambiguation rules are not
written to handle this situation, and the guesser
does not improve the results.

Another weakness of the guesser is that it at
present gives suggestions on the basis of coda
shape only. In a future version, we will add con-
ditional tests to the guesser, and give suggestions
based upon syntactic context as well.

3

Analysers Languages
lexicon and North Saami Lule Saami South Saami
morphology analyser analyser analyser
disambigu- North Saami Lule Saami

ation disambiguation disambiguation –
syntatic common Saami analyser

functions
dependency common Saami analyser

Table 1: The common Saami analyser infrastructure. The disambiguation of South Saami is the missing
link.

Table 2: Homonymy in South Saami

Whole corpus Whole corpus Fully analysed
8,7% unkn wrds with guesser sentences only

Number of words 218.574 218.574 83.530
Analyses per thousand words

Analyses with homonymy 1.633 1.633 1.792
Present disambiguation 1.112 1.192 1.248
Lemma + PoS disambuguation 1.061 1.141 1.063
Lemma + PoS disambuguation without
distinguishing closed PoS 1.056 1.136 1.058

4.2 Precision and recall

For evaluating the accuracy of the disambiguator,
we have used two gold standard corpora.

The general gold corpus is a small balanced cor-
pus containing 100 sentences (30 sentences from
the Bible, 30 sentences from fictive texts and
40 sentences from newspapers, altogether 1301
words).

The specific gold corpus is closer to the kind of
texts, which the disambiguator is meant for. It is
an unknown corpus containing 2329 words, 6,7%
of them are unknown for our fst. The corpus con-
tains parts from two texts which could be interest-
ing for extracting terminology – one is the Con-
vention on the Rights of the Child, and the other
one is from a school curriculum about reindeer
herding. The results of the analyses are presented
in Table 3.

Looking at the results, the disambiguator has
a very good recall, as good as 0.98 for full dis-
ambiguation and 0.99 for POW disambiguation.
As it stands, the program is thus very careful, to
the degree that it almost does not remove cor-
rect readings. For full morphosyntactic disam-
biguation , the precision is lower, 0.87 and 0.88,
these are poor results in a CG context. Partly, this

is the results of some syntactic idiosyncrasies in
our special test corpus. But above all it reflects
the immature status of the disambiguator. With
only 115 disambiguation rules, compared to the
2-3000 rules usually found in standard CG gram-
mars, 0.87 is a good starting point.

For the task at hand, lemmatisation and POS
marking, the precision results are much better,
0.93 and 0.94, respectively. Despite the low num-
ber of rules, they are efficient enough to carry out
POS disambiguation. The remaining degree of
homonymy reported for lemma + POS in Table 2
(1.06) thus comes with a precision and recall of
0.94 and 0.99, respectively.

We tried to improve the disambiguation of the
known words, by getting more context for the CG-
rules in the disambiguator with help of a word
guesser. The testing shows however that giving
word guesser analysis to the unknown words, does
not improve the disambiguation for the known
words.

4.3 Discussion

A full fledged constraint grammar typically
contains several thousand rules. The South Saami
disambiguator is still in an embryonic state,
and contains only 115 rules. With this small

4

Table 3: Precision and recall
Special gold corpus General gold corpus

Number of words 2329 1301
Unknown words 6,7% 0

Prec Rec Prec Rec
Lemma + full disambiguation 0.876 0.980 0.884 0.968
Lemma + PoS disambuguation 0.939 0.990 0.938 0.981
Lemma + open PoS disambuguation 0.945 0.992 0.994 0.987
Lemma + full disambiguation w/guess 0.877 0.978 - -
Lemma + PoS disambuguation w/guess 0.940 0.988 - -
Lemma + open PoS disambuguation w/guess 0.947 0.991 - -

rule set, we are still able to disambiguate text
down to 1.100 lemma + PoS readings per 1000
word forms. The rules were written with full
grammatical disambiguation in mind, and a rule
set geared towards lemmatisation only could
have been made even smaller. Figure 3 shows
the cumulative effect of the CG rules. The 20
most efficient rules account for almost 80% of the
disambiguation.

Figure 3: Rule coverage (x = number of rules, y =
coverage)

The 10 most efficient CG rules are listed below.
For each rule, only the action (select or remove
readings) and scope (POS, grammatical feature or
lemma), is given. In addition, each rule contains
conditional tests for the action in question. For
the sake of brevity, these conditions are not given
here.

1. IFF: ConNeg if Neg to the left
2. SELECT: Inf is V to the left selects Inf
3. SELECT: A Attr if NP-internal N to the right
4. REMOVE: Imprt if not domain-initial
5. IFF: goh is Pcle if in Wackernagel position
6. SELECT: Po, not Pr, if Gen to the left

7. REMOVE: Prefer lexicalised verb to derived
8. REMOVE: ij is Periphrastic Neg Prt only if

2nd part of it is present
9. REMOVE: Prefer lexicalised passive to de-

rived
10. REMOVE: Prefer Pers to Dem if no NP-

internal N/A/Num to the right

As shown above, the most efficient rules are
rules for distinguishing closed PoS. This disam-
biguation is useful for the rules made for disam-
biguating open PoS with different lemmas.

Looking now at lexical disambiguation, the 10
most efficient rules for distinguishing between
lemmas in open PoS are listed below. The actual
word form is given in Italic.

1. SELECT: Jupmele – Prefer N Prop to N
2. REMOVE: Dan – Prefer Pron Pers to Prop
3. REMOVE: tjı̈rrh – Prefer Po to V
4. REMOVE: Prefer almetje N to elmie N
5. REMOVE: Prefer almetje N to alma N
6. REMOVE: Prefer gı̈ele N to gı̈eledh V
7. REMOVE: Prefer Adv to A
8. IFF: Interj or other PoS
9. REMOVE: tjı̈rrh – Prefer Po to N

10. SELECT: Prefer V not N

Most of these rules are made specifically for the
most frequent lemma pairs having homonym in-
flectional forms. One improvement strategy might
be to make these rules more general and lemma-
independent, thereby targeting other lemma-pairs
as well.

After disambiguation, there remain 5632 am-
biguous word forms, 27.5% of them have the same
PoS, and 32.0% of them have the same lemma, as
shown in Table 4.

5

Table 4: Remaining homonymies

Number of analyses Percentage
Homonomy with same PoS 1551 27.5%
Homonomy with same lemma 1797 32.0%
Total 5632 100%

The remaining homonymies are mainly of the
following types:

1. The same lemma, but different PoS, eg.
juktie N (’carcass’) vs. juktie CS (’so that’).

2. Different lemmas and different PoS, eg. vihte
N (’wit’) vs. vihth Adv (’again’).

3. Different lemmas, same PoS and inflection
eg. båetedh V (’to come’) vs. böötedh V (’to
mend, to pay a fine’). These are the really
hard ones to disambiguate.

4. Different lemma, same PoS, but inflection is
different (one of them may be derived from
the other), eg. utniedidh V (’to held’) vs.
utnedh V (’to have, to use’).

5. The same lemma has one reading as Proper
noun and one as common noun – Saemie N
(’Saami’) vs. saemie N (’saami’).

6. There are two orthographic variants of the
same lemma, which should have been sub-
sumed under the same lemma, eg. ussjiedidh
V vs. ussjedidh V (’think’).

7. Derivation vs. lexicalisation, eg. like for
ryöjnesjæjja N vs. ryöjnesjidh+V+TV+Der1
+Der/NomAg+N (’shepherd’).

The three first types are true instances of
homonymy, many of them can only be resolved by
lemma specific rules. The fourth type may or may
not be resolved, dependent upon the task at hand.
The fifth type is found in some very frequent lem-
mata. In many instances, this distinction is irrele-
vant and should be ignored, in other instances one
might want to disambiguate them. The last two
types are irrelevant for any semantic purposes.

Figure 4 shows the cumulative homonymy for
word forms not assigned to a single lemma. Some
word forms are very frequent, and writing word
specific disambiguation rules for, say, the 50 most
common words will already reduce the remaining

homonymy with one third.

Figure 4: Cumulative homonymy (x = word forms,
y = homonymy)

5 Conclusion

The paper has shown that even a tiny set of 115
disambiguation rules is able to achieve quite good
results for lemmatising and POS tagging, with a
disambiguation rate down at 1.06. In order to dis-
ambiguate the full grammatical analysis, a more
thorough disambiguation is needed, here the re-
sults are about 1.12 even if the corpus contains
unknown words. A word guesser doesn’t improve
the results particularly.

The results also show that the constraint gram-
mar formalism is robust against badly analysed
morphological input. As a matter of fact, it scores
slightly better on a corpus with an 8.7% error rate,
than on a perfect corpus. Even though the differ-
ence is probably due to systematic differences in
the corpora themselves, it at least shows that con-
straint grammar is a robust framework for syntac-
tic analysis, capable of dealing with noisy data.

• A small-size CG (115 rules) gives an accu-
racy of 1.118 - 1.058 readings/word.

• 1/6 of the rule set removes 80% of the
homonymy.

6

• The CG is robust enough to give good disam-
biguation even with an fst coverage of only
91.3%.

• Adding the results from a morphological
guesser did not improve the disambiguation
results. More work is needed in order to
make use of guesser input.

• The disambiguator’s recall is very good,
98.0%. Precision is lower, 87.6-88.6%, and
the main focus for improving the South
Saami disambiguator will be to improve pre-
cision.

• The rule set is a good starting point for a full-
fledged disambiguator.

The general conclusion is that even a small-size
constraint grammar is able to provide results good
enough for POS tagging, lemmatisation, and sev-
eral other purposes. In order to get a syntactic
analysis at the level achieved by other constraint
grammars, more work is needed.

References
Lene Antonsen, Trond Trosterud and Linda

Wiechetek. 2010. Reusing Grammatical Re-
sources for New Languages Proceedings of
the LREC. Association for Computational
Linguistics, 2782–2789, http://www.lrec-
conf.org/proceedings/lrec2010/pdf/254 Paper.pdf

Fred Karlsson, Atro Voutilainen, Juha Heikkilä and
Arto Anttila. 1995. Constraint grammar: a
language-independent system for parsing unre-
stricted text. Mouton de Gruyter.

Pekka Sammallahti. 1998. The Saami Languages: an
Introduction. Davvi Girji, Kárášjohka.

VISL-group. 2008. Constraint Grammar.
http://beta.visl.sdu.dk/constraint grammar.html
Institute of Language and Communication (ISK),
University of Southern Denmark

7

WikiTrans: The English Wikipedia in Esperanto

Eckhard Bick
GrammarSoft ApS & University of Southern Denmark

eckhard.bick@mail.dk

Abstract:
WikiTrans is a translation project and web portal for
translated Wikipedias. Using the GrammarSoft's rule-
based GramTrans technology, we created a high-quality
English-Esperanto machine translation system, and used
it to translate the entire English Wikipedia (ca. 3.000.000
articles), at a speed of 17.000 articles a day. The
translated articles are searchable both locally
(www.wikitrans.net) and in the original Esperanto
Wikipedia, where we maintain a revision interface for
users who wish to turn our translated articles into new
”originals”. In this paper, we explain the framework and
challenges of the project, and show how translation rules
can exploit grammatical information provided by a
Constraint Grammar parser.

1 Motivation

In practice, Wikipedia is now the world's main
encyclopedic information source, both in terms of
size and user base, and although
the quality of individual articles
may vary, a system of mutual
author control, sourcing
enforcement and dispute or
excellence markers help users to
judge the quality and
trustworthiness of a given
article. However, in spite of
being egalitarian and
democratic from an authoring
point of view, Wikipedia is far
from balanced language-wise.
Thus, its English information
content is considerably larger
than that of other languages and
completely dwarfs that of minor
languages (Fig. 1). The
difference is visible not only in
the amount of head words covered, but also in the
depth and research level of the individual article. In
a sense, language barriers are preventing Wikipedia
from achieving its primary goal - to make the
knowledge of the world accessible to all its citizens..

The Esperanto Wikipedia, although impressive in
relative terms, compared to the size of its user base,

and as large as e.g. the Danish one, has only
140.000 articles, while the English Wikipedia with
its 3.4 million articles (or 2.345.000.000 words) is
roughly 24 times as big. In addition, there is a
difference in article size1, with an average of 3.600
letters (~ 600 words) for English and German, and a
little over 1500 letters (~ 250 words) in Esperanto,
translating into an even bigger factor of difference,
57, when focusing on content volume. In other
words, more than 98% of the English language
information is not accessible in Esperanto (or
Danish). One could argue that the Esperanto articles
concentrate on the important and frequently sought-
after topics, but it is not least in this kind of major
articles that the difference in depth is most palpable,
compounded by correspondingly fewer internal
links (indirect depth shortage).

Fig. 1: Chronological language statistics for Wikipedia

Even at the price of some cultural biasing, one
obvious solution for this problem is the translation
of the English Wikipedia into Esperanto, thus
permitting Esperanto readers from different

1 http://stats.wikimedia.org/EN/TablesArticlesBytesPerArticle.
htm

8

countries to access the English ”über-Wikipedia”,
and possibly those in other major languages (as
defined by size of articles, culture or number of
speakers). Manually, at a translation speed of 500
words an hour, such an English-Esperanto
translation would cost 4.690.000 man hours. In
Denmark, this is equivalent to 3.000 man years, or -
at 0.25 EUR/word - ~ 600 million EUR. An
unimaginably large sum, beyond any hope of public,
let alone private or commercial funding. And even if
a one-time funding could be found, it would not be
possible to maintain translations in sync with
originals, resulting in a rigid system difficult to
update.

2 Our solution

The only logical solution to this dilemma, in our
view, is the use of machine translation (MT) to save
man power, possibly in combination with voluntary
linguistic post-revision, for instance concerning
major topics, or simply motivated by user interest,
professional or private. MT is capable of solving
both the quantity and the updating issues, because it
allows easy and regular addition of new articles or
the management of changes in existing articles. A
possible problem for an MT solution is the fact that
Wikipedia articles are by no means simple texts, that
the lexicon covered is gigantic in its encyclopedic
nature, and that any serious user community would
demand a fluent and accessible translation without
too many errors or untranslated source-language
inserts. For the majority of languages there simply is
no MT system of sufficient quality, and Esperanto,
in particular, is virtually absent from the inventory
of the usual commercial MT providers, be it Google,
Systran or others.

Technically, MT falls into two technological camps -
on the one hand rule based, symbolic systems, on
the other statistical machine-learning systems, both
having advantages and disadvantages. The
traditional solution is the rule-based one, in line
with the analytical-structural tradition of general
linguistics. The method is, however, very labor-
intensive, and too dependent on specialized
linguistic skills to be of interest to commercial
companies, if the language in question is small in
market-economic terms. Statistical MT (SMT) does
not need linguists and authors, but only their data,
and with a bilingual text collection (a parallel
corpus) and preferably as linguistically annotated
text data, it is possible to cheaply train a translation
model for a new language or domain. In this
approach, the problem is that quality is proportional
to the amount and quality of training data, and that
good SMT therefore needs huge human-translated,
i.e. parallel, corpora. Google, for instance, has this

in the form of people's bilingual web pages, but not
in sufficient quantities for small languages.

GramTrans (Bick 2007-1) is a relatively new
approach to MT. Though rule based, the system
saves some of the work by exploiting the robustness
and depth of existing Constraint Grammar (CG)
analyzers (Karlsson 1990). Mature CG parsers offer
both better coverage and higher accuracy than most
systems, so that GramTrans can build on the
linguistic information already available in syntactic-
semantic CG analyses of a given sentence (Fig. 2).
For instance, the translation module can exploit
dependency links between words, as well as their
function tags (e.g. 'subject', 'predicative') and
semantic classes (e.g. 'tool', 'vehicle', 'food'), in
order to craft conditions for the selection of one or
other translation alternative in the case of
ambiguous constructions, polysemous words, or
usage-governed synonym conventions. While CG
rules remove, select, add or change linguistic tags
(PoS, inflexion, function ...), translations rules
simply add yet another layer to this process,
targeting translation equivalents and movement
operations rather than tags. In operational terms,
GramTrans' MT rules are very close to CG proper,
since both types of rules work by checking a list of
context conditions (e.g. neighboring or dependency
related words and their functions or semantic types,
valency fillers etc.).

Traditional Constraint Grammar is designed to work
on raw, running text, with linguistic analysis and
corpus annotation in mind. While most systems do
handle sentence separation, tokenization and
abbreviations fairly well, and some are robust
enough to manage simple corpus markup, they will
not automatically handle full xml, documents or the
like. In an applicational context, not least when
working on heavily layouted text such as Wikipedia,
with images, tables, footnotes, links and macros,
wrapper solutions are therefore necessary. In order
to separate layouting information from grammatical
information, we implemented a system where all
such information is turned into so-called style tags.
This solution permits the wrapper program to
reconstitute the exact text attributes and layouting
after the CG and translation steps, while at the same
time allowing CG rules to make active
disambiguation use of such non-linguistic
information, for instance in order to recognize titles
or links as linguistic units deserving separate
syntactic treatment.

3 The WikiTrans project

GramTrans is the motor in the MT technology used
by the Danish company GrammarSoft, which offers,

9

in cooperation with the Norwegian company
Kaldera, translations between the Scandinavian
languages, and between these and English.
GrammarSoft has a close cooperation with the
University of Southern Denmark, and a
correspondingly strong focus on research, so it was
possible to launch WikiTrans, a project without any

obvious commercial potential, with the explicit goal
of making major language Wikipedias accessible to
minor languages, with the English-Esperanto
language pair as a proof of concept. Apart from the
author, also GrammarSoft's programmer, Tino
Didriksen, has been involved in the project.

Fig. 2: Flow chart of the WikiTrans modules

The WikiTrans-project was conceived in 2009, and
has gone through the following phases:

• preparation phase: 2009 - February 2010:
linguistic and lexicographic work

• 1st translation phase (Feb/Mar 2010):
100.000 most frequently read articles

• 2nd translation phase (Mar-
Jun 2010): 500.000 longest
articles, plus articles with
one-word titles (i.e. items
more likely to be nouns
than names)

• 3rd translation phase (Jun-
Dec 2010): the main bulk,
ultimately covering all 3
million articles

• use phase: updating, re-
translations, human revision

Fig. 3: Project phases of WikiTrans

4 The search interface of WikiTrans

An important reason for translating the whole

Wikipedia, rather than simply translate the
individual article once a user asks for it, is the
possibility to systematically access and search all
information. Live translation, though technically
possible, would mean either searching in English or
translating the search term into English, then

choosing between the (English) articles before
translating one of them live. Such a service would in
reality only serve near-bilingual users preferring to

10

read in Esperanto rather than English. To really
search in another language, the to-be-searched text
has to exist in that language, especially considering
that many search terms may not even be title words
themselves, but still occur several times within the
text body of different articles. On the technical side,
pretranslated articles allow faster loading, and
smoother internal link navigation, and allow a
separation, and therefore optimization, of translation
infrastructure and server search load.

For WikiTrans, we use the open-source search
program Lucene, which allows multiple search
terms at the same time, and contains an algorithm to
order hits according to probability and relevance,
based on term frequency and co-occurrence in
individual articles. Lucene marks this with a
probability index between 0 and 1, to which we
have added a few further criteria: For instance, a
article will be moved to the top of the list if the
search term appears as part of the title, or - in the
case of a multi-word search expression - if the
words appear next to each other, overriding in-
article frequency counts. The user is presented with
a list of max. 20 hits, providing both title and a short

snippet (Fig. 4) to allow quick, but informed
selection clicks. The chosen article or articles will
be presented with exactly the same layout as the
original, with the same pictures, table structure etc.,
but entirely in Esperanto.

From a technical, programmer's point of view, a
very challenging aspect of the search interface was
the enormous amount of data - more than 20 GB of
text (100 GB with grammatical tags). In order to
effectively search a data space of this order, special
database optimizations are necessary, and even
using cash memory is problematic because at some
point searching the growing cash memory becomes
less effective than searching the database itself.
Unlike a corpus linguist, who is prepared to wait for
minutes for the results of a statistical or concordance
search, the patience-horizon of the average
Wikpedia user is only a few seconds, preferably less
than one second. After that, many people may even
repress the search button, forcing the server to
search for the same information twice, and possibly
contributing to server overload.

Fig. 4: From search term to WikiTrans article

11

In order to allow alphabetic searches, or get an
overview over the range of articles, we have also
made it possible to simply thumb through the article
list from A to Z, using a letter tree ordering system,
where the user moves from first to second to third
letter and so on, until finally choosing from a one-
screen subsection of article names.

5 Links and Bibliography

An important aspect of an electronical encyclopedia,
and one of its major advantages over a paper-based
one, are internal links. It is such links that combine
the readability and fluency of an overview article
with the much greater depth of a major background
article. Simple back-and-forth clicking will allow
everybody to read the article at exactly their
individual knowledge level, using or not using
internal links to define scientific terms, visualize
personal names or explore the thematic context of a
given assertion.

Technically, internal links posed several problems:
First, during the translation run, there was no
guarantee that the linked article had already been
translated, so we had to add the (interim) option of
live translation, and make sure that sufficient server
capacity was available. Second, because the system
is handling translations in a semi-intelligent,
context-dependent way, the same word chain may
receive different translations in different places,
with the risk of the translated (in-context) link not
matching the (out-of-context) translation of the
linked title. We solved this problem by conserving
the original English term (or a digital hash
representation of it) in the <a href> mark itself,
invisible to the user. After the translation and
database creation phases, we then in a third step
(taking almost a week) matched link translations to
title translations.

External links and references are technically more
simple, but often full of names, abbreviations and
numerical expressions making translation difficult.
After first trying to translate as much as possible, we
now apply a more cautious policy, not translating a
large part of the names, and discussing the option of
not translating book and film titles either. Because it
is difficult for an automatic system to be reasonably
sure what is a work of art, personal name, publisher
name or town name, the simplest solution would be
not to touch Wikipedia bibliography sections at all,
not least considering that the external sources linked
will themselves not be in Esperanto, and in a certain
sense often serve the function of authenticity proof
more than that of background reading.

6 Integration with the monolingual
Esperanto Wikipedia

The feedback reactions WikiTrans has received from
the Esperanto community, were generally very
positive, though many seemed to focus on the
publicity aspect more than on the information
content aspect. It is difficult for a lay person to
appreciate the difficulty of the task, or to compare
results with those for other minor languages in
Google's translator, Babelfish or the like, and -
understandably - the most common critical comment
was therefor that translation quality was not good
enough, and that the project might ”dilute” the
quality of the existing Esperanto Wikipedia. And of
course, though good enough for fluent reading, our
automatic translations are by no means error-free,
nor is a translated article a new original.

Still, this argument can be refuted by pointing out
that even without an MT system, it has always been
the case that minor-language Wikipedia authors
have heavily borrowed from articles in other, major
languages by means of translation. In fact, the open-
source framework of Wikipedia encourages and
supports this flow of text from one language to
another. Is it not then better to perform this work
more efficiently and rapidly with the help of an
automated system? What is needed, is simply
marking what's what, and where the user is in a
browser clicking chain at any given point in time.
Our own proposal is a traffic light colour marking -
a red corner mark for a ”virgin” MT-derived
WikiTrans article, green for a fully revised article
and yellow for a superficially revised article.
”Green” articles could then be moved into the ”true”
Wikipedia (while retaining the marker), and red or
yellow articles would be searchable both through
the WikiTrans portal and - in the case of search
failures, or to increase accessible information - in
the monolingual Esperanto Wikipedia itself. Fig. 5
shows our scheme for integrating translated and
original Wikipedias.

In consultation with Wikipedia administrators, we
addressed the practical aspects of this integration
between July 2010 and February 2011. The current
state of affairs is a solution where user-side
javascript programs interact with the GramTrans
software at its own server. The user-side software
was developed by Marek Blahus (E@I), while Tino
Didriksen (GrammarSoft) implemented the
necessary GramTrans interface, handling the slightly
idiosyncratic internal Wikipedia-syntax, and
creating a graphical revision interface. At the time
of writing it is already possible for individual
registered Wikipedia users to activate the revision-

12

and-integration module, and parallel WikiTrans
searches have been activated for the general public,
using WikiTrans as a fall-back solution for search
failures.

Fig. 5: Integration with the original Wikipedia

7 Linguistic aspects of the translation
interface

From a classification point of view, GramTrans is
neither a surface MT system nor an interlingua
system (Fig. 6). It avoids, of course, the problems of
simple word-for-word translations, but does not risk
abstraction all the way up to an interlingua level.
The ”costs”, in terms of robustness losses, for a full
symbolic interlingua are very high, and it is possible
to achieve the same with a somewhat ”flatter”
transfer from source to target language - simply
because most language pairs have more in common,
structurally and semantically, than there are
differences. This is true also for the English-
Esperanto language pair - even more so, because
Esperanto with its constructional flexibility is an
ideal target language, allowing to mold translations
to grammatical patterns found in many different
languages without the results sounding unnatural.

As pointed out above, GramTrans relies on
comprehensive and robust analysis of the source
language, in this case provided by the EngGram
parser (http://visl.sdu.dk/visl2/
constraint_grammar.html). EngGram is a CG system
with more than 6000 rules, a 200.000 word core
lexicon, and a dependency style syntactic analysis
(Bick 2005). In experiments reported in (Bick
2009), EngGram was evaluated on Wikipedia texts
with F-scores of 98.2 and 93.4 for PoS/morphology

and syntactic functions, respectively. GramTrans
exploits the categories and word links from the
EngGram source language analysis in order to
create lexical transfer rules designed to resolve
semantic ambiguities and choose the correct

translation equivalent among
several options. The third step,
generation, profits heavily from
the morphosyntactic flexibility
of Esperanto, and from the fact
that the generation of an
Esperanto morpheme (ending
or affix) is almost equivalent to
just specifying the desired
linguistic category (tense,
number, part of speech etc.).
The task is made almost
embarrassingly simple by the
almost perfect regularity and
modularity of the language.
The only complication in
generation is therefor syntax, or
rather word order, because in
spite of an officially free word

order, Esperanto does of course have fairly strong
usage conventions with regard to constituent order,
and ignoring them - even if not agrammatical as
such - would impair fluent reading.

Fig. 6:The translation triangle

7.1. Lexical transfer

The simplest way to exploit Constraint Grammar
tags for lexical transfer is one-dimensional in the
sense that only local tags (i.e. of the word itself) are
used as sense discriminators. This method simply
exploits part of speech (1-2) or inflexion (3-4):

1. type_N (noun) :tipo, :speco
2. type_V (verb) :tajpi
3. force_NS (singular) :forto

13

4. force_NP (plural) :armeo, :trupo

In a two-dimensional approach, transfer choices are
based on contextual CG information instead, either
directly, or indirectly in the form of local tags with
relational meaning, such as function tags (5),
semantic roles or valency instantiation (e.g. <¤vr>
for reflexive verbs where a reflexive pronoun has
been found in the context.

5. rather_ADV ... S=(@ADVL) :prefere;
S=(@>A) :sufiĉe;

Even lexeme-bound traits such as morphological
features or semantic class can sometimes be
harvested from context, as when nominal agreement
features are propagated from head noun to
(underspecified) determiner or attribute. An example
from the generation task is the fact that Esperanto
adjectives have number, while English ones don't,
and we use CG propagation rules to add the correct
number feature to adjectives. And in the lexical
transfer module the ±human is frequently exploited
as a translation discriminator, and can be
contextually propagated by projecting the feature
onto nouns that function as subjects of cognitive or
communication verbs, even if the noun itself is
sense ambiguous or semantically unmarked due to
incomplete lexical information.

6. too_ADV ... S=(@ADVL) :ankaŭ;
S=(@>A) P2?=(INFM)_por :tro;
D=(@>A) :tro

Example (6) contains both indirect relational tags
(function tags for S=self) and direct relational tags
(function tags for D=dependent), as well as
positional conditions (P2=second word to the right).
All in all, our transfer rules use the following
relations:

Dependency: S=self, D=daughter, M=mother,
B=brother, GD=granddaughter, GM=grandmother
Position: right P1, P2 ... Pn, left P-1, P-2 ... P-n

The targeted distinctions do not necessarily reflect
conventional dictionary or encyclopedic
distinctions. Among other things, metaphors or
genre-variation may well be isomorphic in the two
languages, making an explicit distinction irrelevant.
In more general terms, one can say that one of the
biggest secrets of MT (and an important reason for
not going all the way to the top of the translation
triangle) is the importance of distinguishing rather
than defining. In other words, it is sufficient to have
enough context and semantic knowledge in the
system to select one or other translation equivalent,

but the final understanding will only occur in the
mind of the target language reader, who has more
world knowledge and other background context than
any computer could possibly have - so there is no
need for the system to explicit everything at an
abstract, super-linguistic level. A large part of the
semantics is simply transported unaltered from
source to target language, without real
disambiguation having taken place. For instance, the
metaphorical use of containers as units works
similar in all languages (2 glasses of beer - 2 glasoj
da biero). On the other hand, it may sometimes be
necessary to separate (mainly target language)
usage-differences (synonyms, frequency
considerations), on top of possible sense
distinctions. This problem is less pertinent in
Esperanto than in other languages, but it does exist.

Together, the various disambiguation techniques
permit quite complex lexicographical work, the
most important aspect being the possibility to link
verbal information with tags attached to the
complements of a given verb (Bick 2007-2). The
example below shows how contextual transfer
discriminators are able to translate the English verb
'apply' into 9 different verbs in Esperanto. Contexts
are tried in successive order, and if no later context
conditions apply, the first translation is chosen as the
default. It is therefor important to make sure that
this translation is robust and maximally ambiguous
rather than just the most frequent translation for the
word in question.

apply_V :uzi;
D=("for")_pri :peti
D=(<H> @SUBJ) D=("to"'PRP)_por :kandidatiĝi
D=(@ACC) D=("to" PRP)_al :apliki
D!=(@ACC) D=("to" PRP)_por :validi
D=(<(conv|sem)> @SUBJ) D!=(@ACC) :validi
D=(<(cm.*|rem)> @ACC) :surŝmiri
D=("dressing" @ACC)_pansaĵo :surmeti
<¤vr> D=("to" PRP)_pri :koncentriĝi
D=("match")_alumeto :malestingi

[@SUBJ=subject, @ACC=accusative object,
PRP=preposition, <H>=human, <conv>=convention,
rule, <sem>=semantical, <cm>=concrete mass word,
<rem> remedy, substance, <¤vr>=reflexive]

7.2 Multi-word expressions,
translations memory and names

In some cases, it doesn't make sense to translate a
word chunk analytically-sequentially - the meaning
of the whole is not transparent from the meanings of
its parts. GramTrans handles these cases as ”words”
with internal spaces. The concept covers complex

14

nouns (recovery_position - savpozicio), a very
common category in English, but also prepositional
or adverbial phrases with summary translations
(in_violation_of - malobee_al, every_inch_as -
tute_same, all_year_round - tutjare), or simply
fixed expressions such as see_also - vidu_ankaŭ.
Multi-word expressions are not only relevant to the
translation module, but also play a role during
morphosyntactic analysis, where the concept of
complex function words, in particular prepositions
and conjunctions, simplifies the assignment of
syntactic functions and relations: each_other
(unu_la_alian), instead_of (anstataŭ), other_than
(krom).

A similar simplification can be gained from
translations memory (TM) lists, common in many
MT systems, and useful to cover special words that
are always translated in the same way, i.e that are
contextually unaffected and that can be inserted into
a translation without any need for transfer rules.
One field of TM application are terminology lists,
which our systems can turn on or off depending on
the to-be-translated domain. But it is also possible to
use TM to remedy systematic errors, that can be
fixed with a once-and-for-all intervention. In the
revision interface we programmed for WikiTrans
articles, the system thus remembers all human-made
corrections. Besides providing an overview of
errors and MT feed back, the change log can be fed
into a translation memory, or even used to suggest to
the reviewer drop-down translation alternatives for
frequently mis-translated expressions.

Independently of the name-recognition (NER)
qualities of the EngGram parser, names are hard to
translate, and being a very productive category, they
have an exceptionally bad lexicon coverage. It isn't
eve n possible to trust upper case initials, since
uppercasing may occur for other reasons, such as
sentence-initially, after a colon, or simply as a
means of emphasis. Therefore, it is not possible to
100% sure whether a word is a name or an unknown
or compound word from another PoS class. From a
purely MT perspective, the question is whether to
translate a name, retain the original form or
transliterate it with target language phonetics. Here,
it is important to distinguish between two main
scenarios:

(a) institutions and events, to be translated part for
part

European Union - Eŭropa Unio,
Olympics - Olimpikoj,
World War II - Dua Mondmilito

(b) personal names and product names, to be left
untranslated

George Bush - **Georgo Arbusto

For WikiTrans we also have a compromise solution,
where the original is retained, but accompanied by a
translation in parentheses, for instance in the case of
book, music or film titles that are clearly marked as
such in Wikipedia's html structures.

8 Generation and Structural transfer

The last step in the translation chain is
morphological and syntactic-structural generation.
Again, we exploit CG information inherited by the
translation module from the EngGram parser.
Basically structural transfer is achieved with the
help of movement rules that can change the order of
constituents (as defined by the set of all dependency
daughters of a target word), using CG tag
conditions, and optionally adding or replacing
grammatical traits or word forms. One of the
structural problems we had to solve was turning
genitives into (moved) preposition phrases (Michel's
father - la patro de Michael). In some cases, no
direct translation exists, and only structural
rephrasing can approximate the intended meaning,
or it may be necessary to add or remove
constructions necessary only in one of the
languages, such as English don't negation, English
do questions or Esperanto ĉu-questions (yes-no-
questions).

As suggested above, the second generative task,
morphological generation, is very simple in
Esperanto, but in cases where Esperanto is
grammatically more explicit than English, context
may be needed to add the desired feature. Apart
from plural agreement on noun dependents, this is
the case for the accusative marker -n, which in
Esperanto attaches to all nominal word classes and
had to be recovered from indirect clues such as CG
function tags. Also, the two languages differ in their
use of participles (e.g. English have-tense), and
sometimes there are clashes between semantic and
surface number (wages [pl] - salajro [sg], stools
[pl] - feko [sg]).

9 Conclusions and Perspectives

The language technology project WikiTrans
(www.wikitrans.net), succeeded in little more than a
year to create an English-Esperanto MT system of
sufficient quality to automatically translate
Wikipedia texts, and finished in December 2010 the
translation of the about 3.000.000 articles in the
English Wikipedia, at a speed of ~17.0000 articles a
day. The system offers not only target language
searches inside translated articles, but also allows
integration into Wikipedia proper, through a post-

15

editing interface.

The perspective for 2011 is the creation of a
framework for automatical retranslation and
updating. For this purpose the project is setting up a
linux cluster consisting of 8 four-core computers to
handle fast and parallel MT. The hardware has been
sponsored by ESF (Esperanto Studies Foundation),
and is hosted at the University of Southern
Denmark. Depending on the degree in which the
community accepts and uses our post-editing
interface, we plan regular treatment of error
statistics and corrections suggestions.

A remaining linguistic challenge is terminology:
Despite the fact that the WikiTrans dictionary with
its 168.000 entries is already the largest English-
Esperanto dictionary ever produced, many
specialized terms continue to be translated using
heuristic methods, e.g. analytical or partial
translations, transliterations, Latinisms etc. As a
minimal goal, these automatic suggestions should be
validated by hand (either by the author, or through a
community web portal). Also, existing
terminological dictionaries should, if copyright
allows, be integrated - which is not as easy as it
might seem. First, entries that are assumed to be
translations, may in reality be explanations,
definitions or terms at a slightly different level in the
other language, while what is needed is terms that
can directly replace a target language term in the
same context, with the same inflexion etc. Second,
ambiguity may arise between a specialized term and
the same word's meaning in everyday language. If
such ambiguities are not spotted and handled with
transfer discrimination rules, they will result in a
deterioration of the system, with rare translations
supplanting common ones. Ideally, new terms
should be subjected to a discussion in Esperanto
professional and scientific communities, stimulating
terminological work proper rather as opposed to
mere lexicography, but given the size of the
language community, for many domains this is not a
likely outcome.

Long term, WikiTrans is to cover further language
pairs, the 2011 focus being on English-Danish.
From a quantitative point of view, this task is similar
to Esperanto, both in terms of article number, article
size and size of the bilingual MT lexicon, and we

therefor expect a certain synergy, for instance in the
identification and translation of ”unknown” English
complex nouns, and in the harvesting and
classification of name expressions. Another logical
step would be the addition of another source
language for the same target language - Esperanto,
which would allow the user to fill in ”cultural
information gaps” - a possible problem immanent to
any monolingual Wikipedia. A second source
language would also make it possible to compare
same-topic articles in areas where information may
be biased (e.g. politics, history, religion).
GramTrans itself already has a working Danish-
Esperanto system, and it would be technically
feasible to add translations from further languages
using open source systems such as Apertium
(http://www.apertium.org/), if and when such a
system reaches a sufficient quality level.

Bibliography

Bick, Eckhard. 2005. ”Turning Constraint Grammar
Data into Running Dependency Treebanks”. In:
Civit, Montserrat & Kübler, Sandra & Martí,
Ma. Antònia (ed.), Proceedings of TLT 2005 (4th
Workshop on Treebanks and Linguistic Theory,
Barcelona, 2005), pp.19-27

Bick, Eckhard. 2007-1. ”Dan2eng: Wide-Coverage
Danish-English Machine Translation”. In: Bente
Maegaard (ed.), Proceedings of Machine
Translation Summit XI, 10-14. Sept. 2007,
Copenhagen, Denmark. pp. 37-43

Bick, Eckhard. 2007-2. ”Fra syntaks til semantik:
Polysemiresolution igennem
Dependensstrukturer i dansk-engelsk
maskinoversættelse”. In: Henrik Jørgensen &
Peter Widell (eds.), Det bedre argument,
Festschrift til Ole Togeby på 60-årsdagen pp.35-
52

Bick, Eckhard. 2009. ”Introducing Probabilistic
Information in Constraint Grammar Parsing”. In:
Proceedings of Corpus Linguistics 2009,
Liverpool, UK. Electronically published at:
ucrel.lancs.ac.uk/publications/cl2009/

Karlsson, Fred. 1990. Constraint Grammar as a
Framework for Parsing Running Text. In:
Karlgren, Hans (ed.), COLING-90 Helsinki:
Proceedings of the 13th International
Conference on Computational Linguistics, Vol.
3, pp.168-173

16

Using constraint grammar in the Bangor Autoglosser
to disambiguate multilingual spoken text

Kevin Donnelly and Margaret Deuchar
ESRC Centre for Research on Bilingualism in Theory and Practice

Prifysgol Bangor University, Wales, UK
{k.donnelly|m.deuchar}@bangor.ac.uk

Abstract

We present a novel use of constraint gram-
mar (CG) in automatic glossing software
to disambiguate surface forms in con-
nected multilingual speech. The result-
ing autoglosser output shows 97-99% ac-
curacy over all three languages. We dis-
cuss the CG rules that help deliver this,
noting the differences between those ap-
plying to Welsh and Spanish, and those ap-
plying to English.

1 Introduction

Bangor University’s ESRC Centre for Research on
Bilingualism,1 established in Jnauary 2007, has
assembled some 130 bilingual conversations in
three corpora: Siarad2 (Welsh-English), Patago-
nia (Welsh-Spanish), Miami (Spanish-English).

The conversations total some 80 hours and
750,000 words, and are all available under the
GNU GPL.3 Each recording is provided with a
detailed transcription in the widely-used CLAN
format4 (MacWhinney, 2000), along with a free
translation in English, and an interlinear gloss giv-
ing lexemes and part-of-speech (POS) tags for
each word, so that researchers without first-hand
knowledge of the languages concerned can more
easily parse the utterances.

Part of a typical transcription is shown in Fig-
ure 1, in which (using CLAN terminology) three
“tiers” can be discerned: the speech tier, the gloss
tier, and the translation tier.

The speech tier (the words actually uttered) is
marked by an initial ID to distinguish the speaker

1http://bilingualism.bangor.ac.uk
2Siarad means “speak” in Welsh.
3http://www.gnu.org/licenses/gpl.html
4http://childes.psy.cmu.edu/clan. Note that using CLAN

to record bilingual speech is an extension of its original focus
on recording language development in children.

Chats Hours Words Date

Welsh-English 69 40 456k 2009
Welsh-Spanish 32 20 183k 2011

Spanish-English 31 20 126k 2011

132 80 765k

Table 1 – The three ESRC Centre corpora.

(e.g. *SER), followed by the transcribed speech
(with each word tagged for language5 – unmarked
for Welsh, @s:eng for English, @s:cym&eng for
indeterminate6), and two numbers giving the start
and end times of the utterance in the audiofile.

The gloss tier is marked by an initial %gls, fol-
lowed by a series of lexeme+POS-tag strings.

The translation tier is marked by an initial
%eng, and gives a free translation of the speech
tier (the speaker’s utterance) into English.

The corpora are valuable in examining how
language is actually used: for instance, the dif-
ferences between spoken language and formal
written language, sociolinguistic variation (what
forms of language are used where and by whom),
the balance between languages in bilingual usage,
and how one language handles lexical items from
the other.7

Manual glossing of the Siarad (Welsh-English)
proved to be tedious and time-consuming, so in or-
der to save valuable specialist time it was decided
to explore automating the glossing of the Miami
(Spanish-English) and Patagonia (Welsh-Spanish)
corpora.

Although the CLAN project provides a tag-

5The autoglosser handles 4 marking systems, which re-
flect changes in transcription practice in the ESRC Centre
over the past 5 years, and developments in CLAN itself.

6Words which are used in both languages, and which
therefore cannot be assigned unambiguously to one of them.

7For instance, Jon Stammers (Stammers, 2010) has used
the Siarad corpus to show that Welsh loan-verbs such as tex-
tio (to text) behave more like ordinary Welsh verbs the more
frequent they are.

17

*SER: dw i (y)n hopeless@s:eng efo tynnu llun . 72848_73881
%gls: be.1S.PRES PRON.1S PRT hopeless with take.NONFIN picture
%eng: I’m hopeless at drawing
*SER: dw i (y)n tynnu llun i [/] i (y)r plant <i plant> [//] <i (y)r> [//] # i er@s:cym&eng &h Helen@s:cym&eng a Su-
sanna@s:cym&eng a +/. 73881_79477
%gls: be.1S.PRES PRON.1S PRT take.NONFIN picture for for DET children for children for DET for IM Helen and Su-
sanna and
%eng: I draw a picture for ... for the children, for, er, Helen and Susanna and ...

Figure 1 – Excerpt from the file deuchar1 in the Siarad corpus (Welsh-English).

ging system (MOR),8 this only caters for 11 lan-
guages, each with more than 5m speakers. Vo-
cabulary is distributed over a number of files, and
MOR requires a separate pass over the file to tag
each language. Post-tagging disambiguation (us-
ing the POST program) is only available for 4 lan-
guages. Software such as Toolbox9 offers interlin-
ear glossing capability, but is aimed more at lin-
guistic field researchers, and is less applicable to
fully-described languages; moreover, it does not
seem to be scriptable, which was essential in order
to deal with the volume of data in the corpora.

There appears to be no tagger available at all
for Welsh, reflecting the dearth of linguistic tools
available to many minority languages (Antonsen
et al., 2010).

With no existing software meeting the purpose,
a two-week test project in April 2010 looked at the
viability of simply writing out entries from Span-
ish and Welsh dictionaries (see Section 2 below)
for each word in the transcription. The results of
the tests were encouraging, and the only remain-
ing issue was how to dismbiguate between the re-
turned entries. For this we turned to constraint
grammar (Karlsson et al., 1995), and the remain-
der of this paper reports on how this is used in
the autoglossing software developed over the past
year.10

2 The dictionaries

A key element of any tagging or glossing system
is the use of a dictionary to allow lookup of the
word in the chosen language.

The Spanish dictionary used in the Autoglosser
is based on the one used in Apertium,11 a free
(GPL) platform for developing rule-based ma-
chine translation systems. The Welsh dictionary is

8http://childes.psy.cmu.edu/morgrams
9http://www.sil.org/computing/toolbox

10The Bangor Autoglosser software, licensed under the
GPL, is available from http://siarad.org.uk/autoglosser.php

11http://apertium.org

based on Eurfa,12 developed by the first author a
few years ago, and still the largest free (GPL) dic-
tionary for Welsh. The English dictionary is based
on Kevin Atkinson’s Moby list.13

The use of material with a free or public domain
license allows existing lexical resources to be eas-
ily adapted and extended for the Autoglosser with-
out having to worry about licensing terms. This is
an especially important consideration for minority
languages like Welsh,(Streiter et al., 2006) where
resources may be limited.

Each dictionary takes the form of one Post-
greSQL database table, storing full words (not
morphemes). All of the original dictionaries have
undergone some refactoring to simplify and stan-
dardise their layout, and to correct errors and
omissions.14

The dictionary table can be easily edited in
place, or it can be exported to a CSV file, making
it accessible via a spreadsheet for those who are
unfamiliar with databases. The dictionary is there-
fore easy to update, since the format is a familiar
glossary-style list of words. This makes expand-
ing or editing the dictionary more accessible for
people without extensive computer skills, which is
again important for minority languages – no eso-
teric rules on word-division apply, nor are the con-
tents distributed over several files.

In theory at least, this should simplify the addi-
tion of further languages in the future. If a sim-
ple wordlist is available, it is possible to plug it
into the autoglosser, and get some useful non-
disambiguated output immediately; this output
can then be progressively refined by the addition
of CG rules,15 and refactoring of the dictionary

12http://eurfa.org.uk
13http://wordlist.sourceforge.net
14The English dictionary is particularly prone to include

non-existent “words” such as fam, fath, gaster, etc, and fur-
ther cleaning is still required.

15Constraint grammar has been described as “the only
grammar-based parser framework” (http://giellatekno.uit.no/
cg/11/index.html), and it is indeed very easy for linguists to
work with.

18

lookup to allow a reduction in the size of the dic-
tionaries.

Some entries from the Welsh dictionary are in
Table 2. The enlemma column gives the English
lexeme for the word, and the pos column gives the
part-of-speech (POS).

surface lemma enlemma pos gender number tense
bara bara bread n m sg

cathod cath cat n f pl
mynd mynd go v infin
aeth mynd go v 3s past

hapus hapus happy adj
rhywsut rhywsut somehow adv

heb heb without prep

Table 2 – Entries from the Welsh dictionary.

A similar set of entries from the Spanish dictio-
nary is in Table 3 – it can be seen that the same
columns are used in both dictionaries.

surface lemma enlemma pos gender number tense
perro perro dog n m sg

canciones canción song n f pl
empezar empezar start v infin
empieza empezar start v 23s pres
empieza empezar start v 2s imper

rojo rojo red adj m sg
rojas rojo red adj f pl
por por for prep

Table 3 – Entries from the Spanish dictionary.

Both Spanish and Welsh are inflected lan-
guages, where the surface forms give clues about
the word’s POS. English, however, is an ana-
lytic language where the POS of the many ho-
mophonous words is defined by their role in the
sentence. The format for the English dictionary,
some entries for which are in Table 4, reflects this
by having the POS reflect all of these possibilities,
with the correct POS being selected during disam-
biguation.

surface lemma pos number tense
walk walk sv infin
break break sv infin
broke break av past

broken break av pastpart
car car n sg

quick adj
by by prep

which which rel

Table 4 – Entries from the English dictionary.

For example, walk can be a noun (a short walk),
an imperative verb (walk the line!), an infinitive
verb (to walk a mile) and a present tense verb (they
walk everywhere). Thus walk has the POS sv,
meaning that it can be either a singular noun or
a verb. The main benefit of this approach is that it
minimises the number of entries which the dictio-
nary has to include (in this case, one entry instead

of four), and therefore makes maintenance of the
dictionary easier.

3 The autoglossing process

Each line of the transcribed conversation file is
read into an utterances table containing the follow-
ing fields:

• utterance_id
• filename
• speaker
• surface (the utterance)
• startpoint
• endpoint
• duration
• manual gloss (if present)
• English translation (if present)
• comments (if present)
• precode16 (if present)

Any non-lexical markers in the utterance are
discarded, and it is then split into words, which are
stored in a words table with the following fields:

• word_id
• utterance_id
• location of the word in the utterance
• surface (the word)
• automatic gloss (to hold the later output)
• manual gloss (if present)
• language id
• speaker
• filename

Each entry in the words table is looked up
against the dictionary table for the appropriate lan-
guage, using the language assigned to the word by
the transcriber.17

The lookup includes some basic segmentation
of the word. This helps to minimise the number
of dictionary entries and make maintenance of the
dictionary easier.

For Welsh, the lookup detects mutation18 and
adds corresponding tags:

thad�tad (father) + am (aspirate mutation)
gael�cael (get) + sm (soft mutation)

16This marks entire utterances in the least-frequent lan-
guage of the conversation.

17In the absence of this, it would in principle be possible
to use a brute-force lookup on each dictionary in turn.

18Mutation – morphophonemic alteration of initial conso-
nants, which also marks syntactic relations at the clause level
– is an important characteristic of the Celtic languages. A
Welsh example is: mae o’n marw (he is dying), but mae o’n
farw (he is dead), where the change m→f signifies that the
mutated word is an adjective and not a verb. These mutations
have to be removed in order to get to the underlying lexeme.

19

For Spanish, tags are added when clitic pro-
nouns attached to verbforms are detected:

ponerle�poner (put) + le[pron.mf.3s]
déjanos�déja (leave) + nos[pron.mf.1p]

For English, tags are added for things like:
(a) elisions:

gonna�go # to.prep
we’re�we # be.v.pres

(b) genitives or verb elisions:
father’s�father # gb

(c) plural nouns or 3s present tense verbs:
breaks�break # pv

(d) adjectives or past tense verbs:
constructed�construct # av

(e) adjectives, singular nouns or present participle
verbs:

thinking�think # asv
(f) adverbs:

quickly�quick # adv
All matching entries in the dictionary are then

written out to a file in the format required by the
constraint grammar parser.19

"<ddim>"
"dim" 96,1 [cy] n m sg :nothing: + sm
"dim" 96,1 [cy] adv :not: + sm

"<yn>"
"yn" 96,2 [cy] stat :stative:
"yn" 96,2 [cy] prep :in:
"gan" 96,2 [cy] prep :with: + sm

"<gynnar>"
"cynnar" 96,3 [cy] adj :early: + sm

"<iawn>"
"iawn" 96,4 [cy] adv :OK:
"iawn" 96,4 [cy] adv :very:

Figure 2 – A phrase, after lookup and before
disambiguation, meaning “not very early”, from the file
patagonia1 in the Patagonia corpus (Welsh-Spanish).

"<it’s>"
"it" 545,1 [en] pron.sub 3s :it: # gb

"<coming>"
"come" 545,2 [en] sv infin :come: # asv

"<out>"
"out" 545,3 [en] adv :out:

"<on>"
"on" 545,4 [en] prep :on:

"<D_V_D>"
"D_V_D" 545,5 [en] name

"<then>"
"then" 545,6 [en] adv :then:

Figure 3 – A phrase, after lookup and before
disambiguation, from the file herring7 in the Miami

corpus (Spanish-English).

19We use the visl-cg3 parser developed by Eckhard Bick
and Tino Didriksen - http://beta.visl.sdu.dk/cg3.html

Figures 2 and 3 show the output after lookup
of a monolingual phrase in Welsh and English re-
spectively.

The constraint grammar parser applies the rules
in the grammar file to discard invalid entries and
convert tags where appropriate, and creates an-
other file containing only valid, disambiguated en-
tries. The two phrases given above are shown after
disambiguation in Figures 4 and 5.

"<ddim>"
"dim" 96,1 [cy] adv :not: + sm

"<yn>"
"yn" 96,2 [cy] stat :stative:

"<gynnar>"
"cynnar" 96,3 [cy] adj :early: + sm

"<iawn>"
"iawn" 96,4 [cy] adv :very:

Figure 4 – The Welsh phrase from Figure 2 after
disambiguation.

"<it’s>"
"it" 545,1 [en] pron.sub 3s :it: # be.v.3s.pres

"<coming>"
"come" 545,2 [en] v prespart :come: #

"<out>"
"out" 545,3 [en] adv :out:

"<on>"
"on" 545,4 [en] prep :on:

"<D_V_D>"
"D_V_D" 545,5 [en] name

"<then>"
"then" 545,6 [en] adv :then:

Figure 5 – The English phrase from Figure 3 after
disambiguation.

This file is then read into the database, and
the glosses (in the form of a lexeme+POS-tag
string, following the Leipzig schema (Comrie et
al., 2008) so far as possible) are extracted and
stored in the words table against each word of the
original transcription. At this point, the words ta-
ble looks like Figure 6, where the words in a Span-
ish utterance meaning “And if some lorry goes in
there, for example, to leave off furniture or what-
ever.” have all been glossed appropriately.

Finally, a text with an interlinear gloss, as in
Figure 7, is created by writing out the utterances
again, along with the concatenated glosses. Com-
paring to Figure 1, an additional %aut tier has
been added for each utterance, in parallel with the
pre-existing %gls tier provided by manual gloss-
ing.

The Autoglosser produces glossed text at a rate
of 900-1100 words per minute (depending on

20

*SER: dw i (y)n hopeless@s:eng efo tynnu llun . %snd:"deuchar1"_72848_73881
%aut: be.V.1S.PRES.SPOKEN I.PRON.1S stative.STAT hopeless.ADJ with.PREP take.V.INFIN picture.N.M.SG
%gls: be.1S.PRES PRON.1S PRT hopeless with take.NONFIN picture
%eng: I’m hopeless at drawing
*SER: dw i (y)n tynnu llun i [/] i (y)r plant <i plant> [//] <i (y)r> [//] # i er@s:cym&eng &h Helen@s:cym&eng a Su-
sanna@s:cym&eng a +/ . %snd:"deuchar1"_73881_79477
%aut: be.V.1S.PRES.SPOKEN I.PRON.1S stative.STAT take.V.INFIN picture.N.M.SG to.PREP to.PREP the.DET.DEF chil-
dren.N.M.PL to.PREP children.N.M.PL to.PREP the.DET.DEF to.PREP er.IM name and.CONJ name and.CONJ
%gls: be.1S.PRES PRON.1S PRT take.NONFIN picture for for DET children for children for DET for IM Helen and Su-
sanna and
%eng: I draw a picture for...for the children, for, er Helen and Susanna and...

Figure 7 – Autoglossed excerpt from the file deuchar1 in the Siarad corpus (Welsh-English) – compare Figure 1.

Figure 6 – An utterance from the words table for the
file sastre1 in the Miami corpus (Spanish-English)

whether the original transcription file already con-
tains a manual gloss tier). The transcription of a
half-hour conversation can therefore be glossed in
around 6 minutes.20

The grammar file currently contains about 500
rules for Welsh, about 200 for English, and around
170 for Spanish. These figures reflect the fact that
most work so far has been done on Welsh.

Preliminary results (see Table 5) suggest that
the Autoglosser’s accuracy is 97-99%, depending
on the language.21 We are confident that the accu-
racy rate can be further improved.

4 Using constraint grammar

We discuss here two issues:

• The addition of tags in the lookup output to
specify language, and the handling of these
in the grammar so as to allow one-pass dis-
ambiguation of multilingual text.

• The different approaches taken in the gram-
mar to handle the differing nature of the lan-
guages (already reflected to some extent in
the dictionary entries).

20The entire Siarad corpus of around 40 hours duration
(456,000 words) was glossed in 8h27m.

21A recent comparison (Donnelly et al., 2011) suggests
that accuracy is within 2% of manual glossing for Welsh, and
comparable to CLAN’s own MOR tagger for Spanish.

4.1 Language-specific rules

Multilingual discourse is far more common than
has been assumed in classical linguistics, and it is
only over the last 20 years that this important area
has been given proper attention. The Autoglosser
is the first attempt to apply constraint grammar to
multilingual text, and in fact only two things need
to be done: (1) include the language tag in the out-
put from each word’s lookup; (2) put all the rules
(grouped according to language for ease of refer-
ence) into the same grammar file.

In Figure 8, the phrase oscillates between Welsh
and Spanish, and this is reflected in the inclusion
of the tags [cy] and [es] in the readings.

"<mewn>"
"mewn" 128,4 [cy] prep :in:

"<motor>"
"motor" 128,5 [es] n m sg :motor:

"<newydd>"
"newydd" 128,6 [cy] adj :new:

"<internacional>"
"internacional" 128,7 [es] adj mf sg :international:

Figure 8 – A bilingual phrase (“in a new international
car”) from the file patagonia2 in the Patagonia corpus

(Welsh-Spanish).

In the following noun phrases, the last word
(dro, man, viaje) can be both a noun and a verb.

Welsh: yr ail dro (the second time)
English: the third man
Spanish: el primer viaje (the first journey)

A rule such as:
select (n) if (-1 (ord));

will choose the noun (n) reading if the first word
to the left (-1) is an ordinal (ord), meaning that
the verb readings for dro, man and viaje will be
deleted.

The language tag can be used to constrain the
application of the constraint grammar rules to the

21

Corpus Files Words Accuracy MCL Coverage

Welsh-Spanish Patagonia patagonia1, 2, 3, 6 15,677 99% W (92%) 100%
Welsh-English Siarad stammers4, deuchar1 10,411 98% W (81%) 96%

Spanish-English Miami zeledon5 4,202 97% S (59%) 97%

Table 5 – Autoglossing accuracy and coverage for sample files from the three ESRC Centre corpora. In the MCL (most
common language) column, W=Welsh and S=Spanish. Coverage is 100% for the Patagonia files because all unknown

words were added to the dictionaries before autoglossing.

relevant language.22 Thus, if the above rule is
amended to read:

select ([es] n) if (-1 ([es] ord));
it will only apply to the Spanish phrase, and not to
the Welsh or English ones, meaning that the verb
reading will still be available in those languages.

It is also possible to make the rules apply across
language boundaries by selectively removing lan-
guage constraints.

In Figure 9, the Spanish otro can be either an
adjective before a noun, or a pronoun. If the se-
lection rule leaves the noun unspecified as to lan-
guage:

select ([es] adj) if (-1 (ord));
the adjective reading will be selected before any
noun (not just Spanish nouns), as in Figure 10.

"<es>"
"ser" 500,1 [es] v 23s pres :be:

"<otro>"
"otro" 500,2 [es] adj m sg :other:
"otro" 500,2 [es] pron m sg :other:

"<zip>"
"zip" 500,3 [en] n sg :zip:

"<code>"
"code" 500,4 [en] n sg :code:

Figure 9 – A bilingual phrase (“it’s a different
zipcode”) from the file sastre1 in the Miami corpus

(Spanish-English).

"<es>"
"ser" 500,1 [es] v 23s pres :be:

"<otro>"
"otro" 500,2 [es] adj m sg :other:

"<zip>"
"zip" 500,3 [en] n sg :zip:

"<code>"
"code" 500,4 [en] n sg :code:

Figure 10 – The bilingual phrase from Figure 9 after
disambiguation.

In Figure 11, camping can be an adjective (the
22In practice, there is only a small number of cases where

full constraint of the rules is essential (because only a cou-
ple of dozen words in each language overlap orthographi-
cally), but it is prudent at this stage to err on the side of over-
specification.

camping ground), a singular noun (camping is
fun), or (as here) a verb. In vamos camping, the
asv tag can be converted to the desired present par-
ticiple verb tag by referring to the meaning of the
preceding verb, so that the rule applies to both En-
glish (go camping) and Spanish (vamos camping):

substitute (sv infin asv) (v prespart) ([en] sv
infin asv) (-1 (:go:));

as in Figure 12.

"<cada>"
"cada" 79,5 [es] adj mf sg :every:

"<vez>"
"vez" 79,6 [es] n f sg :time:

"<que>"
"que" 79,7 [es] conj :than:
"que" 79,7 [es] conj :that:

"<nos>"
"yo" 79,8 [es] pron.obl mf 1p :us:

"<vamos>"
"ir" 79,9 [es] v 1p pres :go:

"<camping>"
"camp" 79,10 [en] sv infin :camp: # asv

Figure 11 – A bilingual phrase (“every time that we go
camping”) from the file sastre1 in the Miami corpus

(Spanish-English).

4.2 Tidying readings

The re-use of lexical resources can lead to a con-
flict – for many purposes, a comprehensive dic-
tionary giving as many entries as possible for a
particular word is desirable, but these multiple en-
tries are not required for an application like the
autoglosser, where one lemma will usually be suf-
ficient for tagging purposes.

In cases where the entries are archaic or infre-
quent words, we use CG select rules to remove
them from consideration. The Welsh words huno
(sleep) and pallu (refuse) are low-frequency, so
the following rules are applied:

remove ("huno" [cy] :sleep:);
remove ("pallu" v :refuse:);
In other cases, where a single word has different

meanings we use CG select rules to prioritise one
of the meanings. The Welsh dictionary gives two

22

"<cada>"
"cada" 79,5 [es] adj mf sg :every:

"<vez>"
"vez" 79,6 [es] n f sg :time:

"<que>"
"que" 79,7 [es] pron.rel :that:

"<nos>"
"yo" 79,8 [es] pron.obl mf 1p :us:

"<vamos>"
"ir" 79,9 [es] v 1p pres :go:

"<camping>"
"camp" 79,10 [en] v prespart :camp: #

Figure 12 – The bilingual phrase from Figure 11 after
disambiguation.

meanings for cyfeiriad (direction and address) –
the following rule ensures that the address mean-
ing is ignored:

select ("cyfeiriad" [cy] :direction:);
The lookup process can generate readings

which are invalid, and these need to be removed.
The cohort of readings for the Welsh word nos
(night) will include an incorrect one interpreting it
as a nasally-mutated form of the imperative (dos)
of the verb mynd (go), which is linguistically im-
possible. This sort of entry can be removed with a
rule like:

remove ([cy] "mynd" v 2s imper nm);
A similar issue arises when indeterminate

words are being looked up. It will be recalled
that indeterminate words are those which appear
in dictionaries of both languages, so it is impossi-
ble to state unequivocally which language they be-
long to.23 Since the practice in the transcriptions
is to use English spelling for indeterminate words,
lookup for these words uses the English dictionary.
The interaction with Welsh mutation can lead to
invalid readings, such as the interpretation of the
hesitation marker um as a soft-mutated form of
the word gum, which is extremely unlikely. This
can be removed with a rule like:

remove ([in] "gum" n sg sm);

4.3 Nature of rules

Spanish and Welsh are inflected languages,24

while English is an analytic language with few in-
flections (mainly in “strong” verbs). This is re-
flected in the nature of the rules that have proved

23This is meant synchronically rather than diachronically,
in terms of current usage in both languages – historically, the
word may be considered a loanword.

24Though it should be noted that in Welsh, particularly
spoken Welsh, inflected verbforms are now widely replaced
by periphrastic forms.

most efficient in the autoglosser.
For Spanish and Welsh, surface forms are fairly

well-defined by their shape – empieza, for in-
stance, can only be the second/third person sin-
gular present or the second person singular imper-
ative of empezar (to begin). The lookup fetches
these entries from the dictionary,25 and so the rules
consist mainly of select rules (with a few removes
and substitutes).

For English, on the other hand, the surface form
gives us few clues about the part-of-speech a word
belongs to, which is largely defined by its role in
the sentence – break can be a singular noun, or
a verb infinitive, or the non-third person singular
present tense. Instead of giving break three en-
tries in the English dictionary, we have chosen, as
noted in Section 2, to assign it one entry, with a
tag (sv) which reflects this diversity of role.

The result is that the the vast majority of rules
for English are substitutes, converting one set of
tags into another. For example, the surface word
miniature can be either an adjective or a singular
noun, so it is tagged as in the dictionary. Rules
such as the following then handle its correct tag-
ging based on context:

substitute (as) (adj) ([en] as) (1 ([en] n) or
([en] pron));

This says that an English as tag should be con-
verted to an adjective tag when the word is fol-
lowed by a noun or pronoun (e.g. a miniature
rabbit, miniature ones).

Similar refinement rules can be applied to other
parts-of-speech such as pronouns:

substitute (pron.sub) (pron.obj) ([en]
pron.sub) (-1 ([en] v infin));

which will correctly tag it in and open it as an
object pronoun, or verbs:

substitute (av past) (v past) ([en] av past) (-1
([en] pron.sub)) (not -1 (have.v.pres)) (not -2
("have"));

Here, bought, which can either be an adjective
(bought goods) or a past verb, has the latter se-
lected provided it is not preceded by enclitic or
self-standing instances of the auxiliary verb have.
This correctly tags we bought, but passes over
you’ve bought, or we have bought. These lat-
ter examples can be handled by an additional rule
converting the tag to a past participle:

25The possibility of de-conjugating inflected verbs on-the-
fly is attractive, but may be too complex to attempt at this
stage.

23

substitute (av past) (v pastpart) ([en] av past)
(-1 (have.v.pres) or ("have") or ("be"));

which will also correctly tag it was bought.
It can be said that in general these substitute

rules are more dependent on rule order than select
or remove rules, since the output of a substitution
earlier in the stack needs to be taken into account
by a rule later in the stack.

4.4 Rule scope
Our current view is that remove and select-if-not
rules are particularly problematic unless they are
carefully constrained. A select rule is exclusive
in what it applies to, and it might be considered
possible to frame a select-if-not rule to be equally
exclusive. By its nature, however, the set of neg-
atives is larger than the set of positives, so it is
easy to miss something obvious, particularly when
dealing with rules that can apply across languages.

An example of this was the results of combining
a set of grammar rules for Welsh with a previously
working set of rules for Spanish - the result was
304 regressions in the Spanish output. This was
traced to a Welsh rule selecting an imperative if
the particle ni did not appear in first position in
the sentence:

select (imper) if (not @1 ("ni"));
Since ni did not appear in this context in Spanish,
all instances where an imperative reading was pos-
sible were selected, giving the regressions. In this
case, the rule can easily be amended by adding a
[cy] tag, but the point is that the impact of this type
of rule can be subtle.

5 Spin-off benefits

The Autoglosser was primarily intended to pro-
vide reasonably accurate glosses automatically,
thus saving researcher time, but it has also had
a number of spin-off benefits which contribute to
easier handling of the corpora.

Perhaps the most useful is the ability to use the
file contents in the database tables to print out
a typeset copy of the transcription in LATEX, us-
ing John Frampton’s ExPex package.26 Figure 13
shows the results of this process on the file excerpt
previously shown in Figure 1. This greatly facili-
tates checking for errors in the glossing.

Being able to access the file contents via
database queries adds another tool for correcting
typos. Selecting all unglossed words in the words

26http://www.math.neu.edu/ling/tex/

Figure 13 – The text in Figure 1 typeset to show
alignment of the surface words and their POS-tags.

table gives a list of words which are either un-
known because they are not in the dictionaries,
or could not be found in the dictionaries because
they were mis-spelt (i.e. typos). It is interesting to
note that even after two rounds of detailed manual
proofreading such typos account for about 0.5% of
the words in a file on average, and this technique
provides a method of eliminating them.

Autoglossing enforces consistency across the
corpus (so that, for instance, Welsh ychydig does
not appear in some places as a bit, and in other
places as a little), and makes it much easier to
change or enrich tags globally. This sort of con-
sistency facilitates data-mining, in that queries can
be correspondingly simpler.

6 Further work

Although the current configuration of CG rules is
working well, we hope to explore further refine-
ment of the grammar. This would include not only
conflating similar rules within a language, but also
seeking to use the grammar to mark clause rela-
tionships. The latter would be of value in the fur-
ther linguistic analysis of the influence of clause
structure on language switching in bilingual dis-
course.

Acknowledgments

The support of the Arts and Humanities Research
Council (AHRC), the Economic and Social Re-
search Council (ESRC), the Higher Education
Funding Council for Wales and the Welsh As-
sembly Government is gratefully acknowledged.
The work presented in this paper was part of the
programme of the ESRC Centre for Research on
Bilingualism in Theory and Practice at Bangor
University.

24

References
Lene Antonsen, Trond Trosterud, and Linda

Wiechetek. 2010. Reusing grammatical re-
sources for new languages. In Proceedings of the
Seventh Conference on International Language
Resources and Evaluation (LREC-10). European
Language Resources Association.

Bernard Comrie, Martin Haspelmath, and Balthasar
Bickel. 2008. Leipzig glossing rules: Conventions
for interlinear morpheme-by-morpheme glosses.
http://eva.mpg.de/lingua/resources/glossing-
rules.php.

Kevin Donnelly, Sarah Cooper, and Margaret Deuchar.
2011. Glossing chat files using the Bangor Auto-
glosser. Paper presented at ISB8, Oslo, May 2011.

Fred Karlsson, Atro Voutilainen, Juha Heikkilä, and
Arto Anttila. 1995. Constraint grammar: a
language-independent system for parsing unre-
stricted text. Mouton de Gruyter.

Brian MacWhinney. 2000. The CHILDES Project:
Tools for Analyzing Talk. Lawrence Erlbaum As-
sociates.

Jonathan Stammers. 2010. The Integration of English-
origin Verbs into Welsh: A Contribution to the De-
bate over Distinguishing between Code-switching
and Lexical Borrowing. Verlag Dr. Műller.

Oliver Streiter, Kevin P. Scannell, and M Stuflesser.
2006. Implementing NLP projects for non-central
languages: instructions for funding bodies, strate-
gies for developers. Machine Translation, 20(4).

25

OBT+Stat: Evaluation of a combined CG
and statistical tagger

Janne Bondi Johannessen, Kristin
Hagen and Anders Nøklestad

Text Lab, ILN,
University of Oslo, Norway
{jannebj, kristiha,

noklestad} @iln.uio.no

André Lynum
Text Lab, ILN, University of Oslo and
IDI, Norwegian University of Science

and Technology – NTNU, Norway
andrely@idi.ntnu.no

Abstract

We have created a statistical POS tagger from
existing development corpora and use it as a
postprocessor to fully disambiguate the de-
tailed morphological and lexical output of a
Constraint Grammar tagger. In this article we
discuss some of the challenges in unifying
these two data-driven and knowledge-based
approaches along with the possibilities and
challenges that present themselves when using
data-driven techniques to disambiguate candi-
dates from a rule-based system. We then pre-
sent an empirical evaluation that shows how
the statistical disambiguation component im-
proves the performance of the rule-based tag-
ger. Our analysis of the results shows the po-
tential for correcting the remaining errors and
how the two tagger components interact in the
disambiguation task.

1 Introduction

Compared to statistical methods, rule-based sys-
tems for natural language processing (NLP) often
have a detailed focus on lingustic analysis, and
naturally this is reflected in the output from such
systems. The constraints and reasoning embed-
ded in the system are often evident in the detail
of the system output and ambiguities it leaves
unresolved. The Oslo Bergen Tagger (OBT),
originally developed at the University of Oslo
and University of Bergen1, is such a system,

1 The Oslo-Bergen Tagger was originally developed by the
Tagger Project at the University of Oslo in 1996 and written
in a rule-based Constraint Grammar (CG1) framework with
an interpreter from Lingsoft AB. An electronic lexicon (now
available as Norsk ordbank) and a preprocessor were also
part of the development performed by this project. In 2000
the commercial rule interpreter and the original preproces-
sor were replaced by components written in Allegro Com-
mon Lisp, developed in Bergen at Aksis (now Uni Digital).
At this point the tagger was named The Oslo-Bergen Tagger

where linguistic detail has motivated both the
particular form of the output and the decision not
to fully disambiguate all readings for each token.
The precision of the grammar rules and the rich-
ness of the underlying lexicon have been both a
great resource and a challenge in the later stages
of development of the OBT.

1.1 The original OBT output

The OBT is a rule-based tagger based on the
Constraint Grammar (CG) formalism (Karlsson
et al. 1995), which from the beginning has fo-
cused on linguistically precise descriptions. This
focus is reflected in the more than 358 morpho-
logical tags (with a further 2000 or so for full
morphosyntactic analysis) used by the system.
Originally the primary users of the tagger were
linguists, who are often studying subtle or mar-
ginal phenomena, and the recall of the system
was considered particularly important; such users
want to find all possibly relevant items in a cor-
pus. The CG rules in essence disambiguate be-
tween the set of possible readings for a token and
have been carefully constructed so that they do
not compromise these overall goals of detail and
comprehensiveness. As such it was in very few
cases seen as acceptable to fuse different tags
into portmanteau tags. One illustrative example
is the rather large class of nouns that can be
treated as either masculine or feminine. We con-
sidered it important to be able to identify these as
feminine in the few contexts where they are defi-
nitely feminine even if that meant the conse-
quence was gender ambiguity in other contexts.

(OBT). In 2008 the OBT was ported to the VISLCG3
framework in order to use the more recent CG3 formalism
developed at The University of Southern Denmark in
Odense. Uni Digital made a new stand-alone preprocessor
based on Norsk ordbank, and The Text Laboratory con-
verted the linguistic rules to the CG3 format.

26

A concrete example that illustrates this and also
shows how the OBT works, is the sentence given
in (1)4.

(1) Ei jente drakk. (‘A girl drank.’)

This sentence is initially rendered by the OBT
as in (2), listing all possible readings by lexical
analysis. All readings have been supplied by a
preprocessor using a rich lexicon, including
those that are ambiguous. Note the two possible
genders for jente ‘girl’.

(2)
“<ei/a>”
 “ei” adv
 “ei” pron pers sg hum
 “eie” verb imp
 “en” det quant fem sing <Correct!>
”<jente/girl>”
 “jente” noun fem com sg indef <Correct!>
 “jente” noun masc com sg indef
”<drakk/drank>”
 “drikke” verb past tense <Correct!>

The Constraint Grammar module (Hagen et al.
2000) uses the VISL CG3 rule interpreter to re-
move all ambiguity that is detectable from the
grammatical context, in (2) taking advantage of
the preceding feminine determiner. In this exam-
ple, only those readings marked here with <Cor-
rect!> are left, as shown in (3).

(3)
“<ei/a>”
 “en” det quant fem sg <Correct!>
”<jente/girl>”
 “jente” noun fem com sg indef <Correct!>
”<drakk/drank>”
 “drikke” verb past tense <Correct!>

The gender ambiguity for jente appears in the
sentence Det er bra å være jente. (‘It is good to
be (a) girl.’), rendered by the OBT as in (4).

(4)
“<det/it>”
 “det” pron pers 3 sg neut <Correct!>
”<er/is>”
 “være” verb present <Correct!>
”<bra/good>”
 “bra” adj pos neut indef sg <Correct!>
”<å/to>”
 “å” inf marker <Correct!>
”<være/be>”
 “være” verb inf <Correct!>
”<jente/girl>”
 “jente” noun fem com sg indef <Correct!>
 “jente” noun masc com sg indef <Correct!>

We see that jente ‘girl’ became unambiguous
in (3), given agreement rules that refer to the
feminine determiner, while (4) remains ambigu-

4 Tag abbreviations have been translated from Norwegian to
English in all examples.

ous since there is nothing in the context to de-
termine the gender of the word. This result was
considered acceptable at the time when the OBT
was developed, since it would mean that the in-
terested linguist could search a corpus for all in-
stances of feminine nouns, and find ambiguous
examples in addition to those where the gender
had been fully determined. There are many am-
biguities similar to this. Another example is
found in the large group of neuter singular in-
definite and neuter plural indefinite nouns, which
can be disambiguated in some contexts but not
all. Also in this case the remaining ambiguity is
left in the result on purpose.

OBT only concentrates on grammatical ambi-
guity and does not look at ambiguity between
lemmas. The result is that OBT leaves lemma
ambiguities like fare ‘danger’ or far ‘father’ for
the ambiguous word form faren.

The ambiguity of the OBT is not only of the
type we have just described, it also includes a
number of unfortunate ambiguities where the CG
rules in the OBT do not have enough coverage.
In Section 6, we discuss the different kinds of
ambiguities more thoroughly.

1.2 Towards unambiguous output in
OBT+Stat

While leaving ambiguity in the output can be
reasonable from a linguistic standpoint, using the
ambiguous output of the tagger as input for other
research or engineering purposes constitutes a
problem. These often require the output to con-
tain a single reading for each token. Most nota-
bly concerning the OBT, the construction of
large-scale Norwegian corpora such as Norsk
aviskorpus5 and NoWaC (Guevara 2010) re-
quires a high quality, fully disambiguating tag-
ger. Such requirements motivated us to look into
how we could make the OBT suitable for this
use.

Since continued rule writing activity gave di-
minishing returns and resources were limited, the
need for a statistical module to complement the
OBT increased. This motivated the implementa-
tion of OBT+Stat, a statistical module that re-
moves all remaining ambiguity from the OBT
output, both the grammatical ambiguities and the
lemma ambiguities originally left on purpose –
and the unfortunate ambiguities.

In this article, we discuss the changes made to
the OBT in order to create an effective system,

5 http://avis.uib.no/

27

OBT+Stat, for fully disambiguated output that
still maintains linguistic detail and comprehen-
siveness.

2 Related work

The combination of CG rule sets with statistical
methods was attempted even during earlier work
with CG, notably in the combination of the early
Xerox XT statistical tagger with the EngCG rules
(Tapanainen et al. 1994). This work was reported
as showing some promise but does not appear to
have been followed up.

Later work described in Hajič et al. (2001) and
Spoustová et al. (2007) combines a CG tagger
for Czech with statistical models in a sophisti-
cated manner, including decoding that was con-
strained by the CG tagger output. Their work
goes further than the work presented in this arti-
cle, but since the Czech CG rule set focuses
heavily on full recall at the expense of precision,
our work is different in scope. Our results are
interesting to other CG based systems that aim
for high precision at the cost of some recall.

3 OBT+Stat

Since the OBT reaches a high f-score6 (97.2), it
is desirable to keep all complete disambiguations
made by the OBT and only add the statistical
disambiguation module as a post-processing step
in those cases where the OBT leaves some ambi-
guity. We chose to run a statistical tagger inde-
pendently of the OBT in a manner that will be
described later in this section, and to combine the
results instead of attempting more sophisticated
modeling based on selecting candidates directly.
This results in a simple pipeline where the statis-
tical model is independent of changes in the CG
rule set or the lexical preprocessor.

Since there are only a limited number of anno-
tated corpora available for the development of
Norwegian NLP tools, we decided to use the
corpora already collected and annotated during
the development of the OBT. This consists of
122 523 words in 8178 sentences in a hand-
annotated development corpus and a correspond-
ing corpus reserved for evaluation with 32 677
words and 2213 sentences. These corpora con-
tained a number of tokens where several readings
were marked as correct. Those parts of the cor-
pora had to be annotated again in a fully disam-

6 We use a standard balanced f-score, which is defined as
2 * precision * recall / (precision + recall).

biguated manner7 - either by combining several
tags into one or by keeping the original set of
tags and making specific decisions about which
reading is considered the correct one. Since
combining tags for all readings would erase lin-
guistic detail, and adding such combined tags for
the ambiguous tokens would only add consider-
able complexity to the already large tag set, we
chose instead to establish a set of annotation
guidelines for the ambiguous cases.

These guidelines by necessity have to reflect
some arbitrary decisions. For example, for words
like jente ‘girl’, which we recall from Section 1
can be either masculine or feminine, we always
choose the feminine tag in ambiguous contexts.
In other cases, like words that are ambiguous
between singular and plural, we let the human
annotator take into account factors like semantic
interpretation, knowledge of mass and count dis-
tinctions etc. to decide which reading to choose.
We discuss the consequences of these guidelines
further in Section 5.

As noted, the statistical disambiguation mod-
ule works by running a statistical tagger inde-
pendently of the CG-based disambiguation rules.
The two results are then unified when the CG
rule set leaves more than one reading for a token.
If the reading produced by the statistical tagger
agrees with one of the readings left by the CG
tagger, that reading is selected. If the two taggers
do not agree, we attempt to disambiguate using
the lemma if possible (as explained at the end of
this section), or, failing that, select an arbitrary
reading. As we will see in Section 4, the statisti-
cal tagger we use covers nearly 80% of the am-
biguous readings, with the lemma disambigua-
tion covering most of the remaining ones, leav-
ing only 0.63% to arbitrary selection.

Hidden Markov Model (HMM) based taggers
are well known and widely covered in the litera-
ture (see e.g. Brants 2000). The HMM model
conditions its sequence labelling decisions on the
previous one or two labels and the current token
to emit. HMM models also include mature and
empirically founded models for unknown words
when used with most European languages. In our
experience, the available HMM taggers, while
currently outperformed by more sophisticated
models, still provide robust and competitive re-
sults on real world data. We have chosen to use
the HMM tagger HunPos (Halácsy 2007), which
gave good performance on the disambiguation

7 All these corpora were annotated by Arne Martinus Lind-
stad.

28

task in addition to being robust and open soft-
ware with very fast training and decoding per-
formance.

One may ask if the simplistic manner in which
we use the statistical tagger is the right way to
model the statistical disambiguation process, but
it is our intuition that with the scarce resources
available more advanced and specialized models,
such as constrained decoding or direct discrimi-
native modeling on the disambiguation task it-
self, may not necessarily yield consistent im-
provements. The off-the-shelf HMM models of-
fer robust handling of unknown words and well-
understood hidden sequence labeling which we
regard as more cost-effective in terms of effort
and results than a model specifically designed for
the task.

Our lemma disambiguation scheme is also
simple. It uses the recently created NoWaC cor-
pus of Norwegian documents published on the
internet. Our idea is that most lemmas will ap-
pear as words in a large corpus since Norwegian
lemmas correspond to uninflected words forms.
Motivated by this we use a word frequency list
derived from NoWaC and select the lemma with
the highest frequency in the corpus. This part of
the statistical disambiguator considers the output
of the CG tagger rather than being run inde-
pendendently like the POS tagger. We will dis-
cuss the lemma disambiguation further in Section
6.2.

4 Comparison with the OBT

Comparing the earlier published evaluation re-
sults for the OBT with the fully disambiguated
results presents some difficulties since the tasks
are different in some aspects and are usually
evaluated differently in the relevant literature.
The OBT tagger, like other CG based taggers,
has previously focused on removing readings
that it knows to be incorrect according to the lin-
guistic knowledge embedded in the rules, while
leaving the remaining readings in the result. As
we have shown in earlier sections, several correct
or incorrect tags may be left after disambigua-
tion, and both the precision and recall are re-
ported in evaluations, combined into a standard
balanced f-score. CG taggers often make a trade-
off between precision and recall where aggres-
sively eliminating readings will increase preci-
sion after leaving fewer incorrect readings while
reducing recall by unintentionally removing cor-
rect readings. Keeping lost recall to a minimum
had a high priority during the development of the

OBT since it was deemed important that relevant
linguistic examples should not be lost when
searching a corpus. The OBT for Norwegian
Bokmål8 achieved a standard f-score of 97.2,
with a recall of 99.0% and a precision of 95.4%,
a highly competitive result, but including some
ambiguities as we explained in Section 1.

In contrast, when we perform fully disambigu-
ated tagging, the notion of several correct read-
ings disappears, and precision and recall become
identical. Results from this kind of tagging are
therefore usually reported as a single token wise
accuracy score. This accuracy score is not di-
rectly comparable to the older precision score
since the evaluation corpus is now fully disam-
biguated and several readings that were previ-
ously considered correct are now considered in-
correct. One could view the fully disambiguated
evaluation as having 100% recall, but the f-score
is not a linear function and we can only speculate
on the precision of the OBT tagger if rules were
developed to raise the recall to this level.

Still we maintain that the two scores can be
compared within reason. We will mainly com-
pare the earlier precision score with the accuracy
of the new results, considering a slightly lower
accuracy for the fully disambiguated result to be
at the same level as the older results, and compa-
rable or higher accuracy as an improved result.

5 Evaluation

The training and test corpora for the OBT are
drawn from a variety of text types: newspapers
(with headlines, by-lines etc.), journal articles,
magazines, government reports, and fiction.
Combined with the focus on detailed linguistic
representation this makes both the underlying
data and the resulting analysis more diverse than
what is usually the case (much language technol-
ogy development has been done on for example
the homogenous Wall Street Journal corpus).
Having presented this reservation, we will first
show some statistics measuring the amount of
ambiguity in the corpus before presenting the
results proper.

After the CG-driven disambiguation on the
fully disambiguated test corpus described in Sec-
tion 3, the amount of ambiguities is as summa-
rized in Table 1. The still ambiguous tokens now
constitute 8.6% of the test corpus, and as seen
from the table and the previous discussion, they

8 The tagger for the Norwegian language variety Nynorsk is
not discussed in this paper.

29

result mainly from an inability to choose be-
tween two readings.

 Total readings/
tokens Ratio

Ambiguity over all
words 35639 / 32677 1.09

Ambiguity over am-
biguous words only 5778 /2816 2.05

Table 1 Amount of ambiguity left by the OBT in the
evaluation corpus.

The overall accuracy of the OBT+Stat tagger
is measured at 96.56%. We consider this to be a
good result considering the fact that we have re-
moved all remaining ambiguity while at the same
time kept a large, detailed tag set and disambigu-
ated lemmas with identical tags.

Breaking down the results further, we see
from Table 2 that the POS/morphological
disambiguation accuracy is slightly higher than
the overall accuracy, which includes disambigua-
tion of identical tags with different lemmas in
addition to the pure POS/morphological disam-
biguation.

 Correct readings /
tokens Ratio

Overall accuracy 31552 / 32677 96.56%

Tagging accuracy 31614 / 32677 96.74%

Lemmatization accu-
racy 32131 / 32677 98.33%

Table 2 Accuracy scores measuring the performance
of the fully disambiguating tagger. Scores are shown
for tagging and lemmatization separately and com-
bined.

As shown in Table 3, the overlap between the
statistical tagger and the OBT for the tokens left
ambiguous by the OBT is quite good: nearly
80% of the cases in question. For these words the
accuracy of the statistical tagger is 81.70%.
Since these are the most difficult tagging deci-
sions left over by the OBT we find this perform-
ance of the statistical tagger to be quite good.
Errors include some tokens out of coverage
where OBT has mistakenly eliminated the cor-
rect reading, making it impossible for the
OBT+Stat system to make the right decision. The
corresponding statistics for the lemma disam-
biguation are harder to analyze since this model
is only used in very specific circumstances, but

the coverage and precision indicate that the
lemma model is effective and has some impact
on the overall result.

 Ratio

Statistical tagger coverage 79.39% (2273/2863)

Statistical tagger accuracy 81.70% (1857/2273)

Lemma model coverage 54.23% (551/1016)

Lemma model accuracy 86.71%
Table 3 The coverage and accuracy of the statistical
disambiguation module on the ambiguous tokens for
the statistical tagger and lemma disambiguator respec-
tively.

In addition to evaluating the OBT tagger as it
is currently in use we also constructed a CG rule
set where we removed rules that had been written
in order to remove spurious ambiguity by means
of heuristics. The premise is that the ambiguities
covered by those rules should now be covered by
the statistical module. The results of removing
these rules are shown in Table 4.

 correct readings

/ tokens
Ratio

Overall accu-
racy

31332/32677 95.88%

Tagging accu-
racy

31459/32677 96.27%

Lemmatization
accuracy

32187/32677 98.50%

Table 4 Accuracy scores for the fully disambiguating
tagger with a modified CG rule set where heuristically
disambiguating rules are removed.

The overall accuracy using this rule set is
slightly lower, 0.68% in absolute and about 20%
in relative terms. The change in tagging accuracy
is about the same, while the lemma accuracy is a
bit higher. This shows that the statistical model
does not necessarily handle some of the ambigui-
ties covered by the heuristic rules as well as the
rules themselves do. Including the heuristic rules
is still beneficial when using the statistical dis-
ambiguator.

We also evaluated the statistical module with a
CG rule set that attempts to fix some of the dis-
ambiguation decisions that have now been anno-
tated in a consistent manner in the training and
development corpora based on the new annota-
tion guidelines. Those rules should hopefully
consistently determine some ambiguities which
the statistical disambiguation module may not
resolve in consistent manner. The rules mostly

30

concern ambiguous masculine/feminine nouns,
which are disambiguated as feminine in contexts
that lack gender agreement (as illustrated in ex-
ample (2) in the introduction). The results are
shown in Table 5.

 Correct read-

ings / tokens
Ratio

Overall accu-
racy

31668/32677 96.52%

Tagging accu-
racy

31668/32677 96.91%

Lemmatization
accuracy

32181/32677 98.48%

Table 5 Accuracy scores for the fully disambiguating
tagger with a modified CG rule set that attempts to fix
disambiguities now resolved in the annotation guide-
lines.

The results using these rules are roughly the
same as the results for the main CG rule set, in-
dicating that the CG rules and statistical module
perform the disambiguation of those cases about
equally effectively.

6 Discussion of the results

In this section we will look at some successful
and some unsuccessful results, both with respect
to grammatical tags and with respect to lemma
disambiguation.

6.1 Grammatical disambiguation

We will have a look at the contribution of the
statistical module in isolation. We first examine
some successful examples.

(5)
Offentlige etater har ansvar for…
Public institutions have responsibility for…

Resolved ambiguity:
”<ansvar/responsibility>”
 “ansvar” noun neut com sg indef
 <Correct!> <SELECTED>
 “ansvar” noun neut com pl indef

In (5), the OBT had left the word ansvar ‘re-
sponsibility’ ambiguous between singular and
plural (recall the discussion in Section 1). This
particular kind of ambiguity accounts for 615 of
the remaining ambiguities before statistical dis-
ambiguation, or 21.8%. The statistical module
has correctly identified this word as singular, and
over all such ambiguities, 418, or 68.0%, are dis-
ambiguated correctly by the statistical module.

In example (6) there are actually two ambigui-
ties, both between parts of speech, which have
been resolved: one between adverb and preposi-

tion reading, and one between verb and noun.
The adverb/preposition ambiguity is fairly mar-
ginal with only two occurrences in the test cor-
pus, both disambiguated correctly and identical
to the one shown in the example. The noun/verb
ambiguity is of a more interesting type with 58
(2.1%) occurrences in the corpus. It is often
fairly complex with over half of the occurrences
having three or more readings to disambiguate
and six occurrences having five or more read-
ings. Still, the accuracy of the statistical module
for this kind of ambiguity is good, 82.8% (48
correctly resolved occurrences).

(6)
... at for mange typer informasjon vil de
elektroniske mediene etter hvert bli enerå-
dende.
... that for many types (of) information the
electronic media will slowly become dominant.

Resolved ambiguity I:
”<for>”
 “for” adv
 “for” prep <Correct!> <SELECTED>

Resolved ambiguity II:
”<typer>”
 “type” noun masc com pl indef <Correct!>
 <SELECTED>
 “type” verb present

We now turn to the less successful choices
made by the statistical module. In the first quar-
ter of the test corpus, OBT+Stat makes a total of
105 errors. The distribution of those errors with
respect to grammatical categories is summarized
in Table 6.

Singular or plural in neuter nouns (i) 41
Other singular or plural errors (ii) 5
Gender agreement (iii) 15
Nouns ending in -s, genitive or not genitive (iv) 4
Adjective gender (m,f,sg,pl) chosen instead of
adj neut/adv (v)

13

Lack of imperative (vi) 3
Other errors (vii) 24
Table 6 Counts of disambiguation errors caused by
the statistical module.

Not surprisingly, the largest group of errors by
far is due to the difficulty of assigning singular
or plural readings to neuter nouns that have the
same form in both indefinite singular and plural.
As discussed in Section 3, the decisions for the
training and test corpus were left to the human
annotator, based on linguistic knowledge. The
patterns may not in all cases be clear enough for
the statistical module to make correct decisions.
One may ask whether keeping this distinction as

31

separate tags apart is a good choice, or whether
they should have been collapsed.

It turns out that when classifying errors by
grammatical type, they usually have very little in
common within the classified category. We will
now show a few selected examples, beginning
with type (i) in (7):

(7)
Generelt om informasjon og særtrekk ved of-
fentlig informasjon
Generally about information and characteris-
tics in public information

Wrongly resolved ambiguity:
”<særtrekk/characteristic>”
 “særtrekk” noun neut com sg indef
 <SELECTED> <ERROR>
 “særtrekk” noun neut com pl indef
<Correct!>

In this example we see that the word særtrekk
‘characteristic’ has been tagged as a singular
noun, while the test corpus assigns it a plural
interpretation. There is very little in the gram-
matical surroundings that would give a hint as to
the correct interpretation. The most likely (but
incorrect) clue would have been the fact that this
word is a conjunct in a coordination phrase, and
that the first conjunct is a singular noun. How-
ever, in the present case, the first conjunct is a
mass noun, while the second conjunct is a count
noun, and it is only when this is taken into ac-
count that the right plural tag can be applied. The
mass/count distinction is not marked in the tags.
A larger training corpus could possibly allow
OBT+Stat to disambiguate this case properly.

Our example (8) is of type (ii), but still one
that deals with singular and plural.

(8)
Selv om utvalget kanskje særlig viser noen av
Hjemme-PCs favoritter
Even if the selection perhaps especially show
some of Hjemme-PC’s favourites

Wrongly resolved ambiguity:
”<noen/some>”
 “noen” pron pers 3 sg masc fem
 <SELECTED> <ERROR>
 “noen” pron pers 3 pl <Correct!>

In (8), the error is in the assignment for num-
ber for the word noen ‘some/any’. Like with the
wrongly annotated word in (7), it is not in an
agreement context, which is most likely the rea-
son that the OBT did not disambiguate it. The
interpretation of noen as singular is actually only
possible when it is used as a negative polarity
item, which is obviously not the case here. How-
ever, since there are a variety of constructions
that license negative polarity items in Norwegian

(Lindstad 1999), the CG tagger was not able to
make the correct choice.

A third type shown in example (9), type (vi),
illustrates the problem of having short headlines
in the test corpus.

(9)
Fly
Fly

Wrongly resolved ambiguity:
“<fly>”
”fly” noun neut com sg indef
 <SELECTED> <ERROR>
”fly” noun neut com pl indef
”fly” verb imp <Correct!>

Even for a human annotator it may be difficult
to interpret what the headline is actually meant to
be; imperative or noun. Imperatives happen to be
few in written texts, and as a result, a statistical
module will almost invariably fail in this task.

At the end of this section we would like to
point out that while it could have been conceiv-
able that the statistical module made many of its
errors due to already faulty output from the OBT
(i.e., with the correct tag missing), a quick count
shows this not to be the case. Out of our 749 er-
rors made by the statistical module, a modest 74
are due to errors made by the OBT tagger.

6.2 Lemma disambiguation

The OBT was never developed with the intention
of doing lemma disambiguation. Often ambigu-
ous lemmas have different grammatical charac-
teristics and they would effectively be disam-
biguated anyway, but this is not always the case.
There were 515 ambiguous lexical lemmas, out
of which 395 (76.70%), were correctly resolved.
Looking at the 28 errors in the first quarter of the
test corpus we will first give some examples of
successfully resolved lemmas, and then some
less fortunate ones.

(10)
I alle deler av den offentlige forvaltningen
In all parts of the public administration

Resolved lemma ambiguity:
”<deler>”
 “del/part” noun masc com pl indef
 <Correct!> <SELECTED>
 “dele/border” noun neut com pl indef

In (10), the ambiguity is between the lemmas
del ‘part’ and dele ‘border’, and it is only the
first one that is correct, correctly disambiguated
by OBT+Stat. Given that the correct word has a
much higher frequency than the other, we would
expect that the tagger chose correctly.

32

(11)
En positiv utvikling i statlig informasjons-
virksomhet de siste årene
A positive development in state information
practice the last years

Resolved lemma ambiguity:
”<årene>”
 “år/paddling ore” noun fem com pl def
 “år/paddling ore” noun masc com pl def
 “år/year” noun neut com pl def
 <Correct!> <SELECTED>
 “åre/paddling ore, vein” noun fem com pl
 def
 “åre/paddling ore, vein” noun masc com pl
 def

In (11), with all the lemmas to choose be-

tween, it is satisfying that OBT+Stat made the
right choice. Given that the right word is the
most general one, and hence occurs in a wide
variety of texts, this is the most frequent word
form found in NoWaC and subsequently chosen
by the tagger.

However, the texts in the test corpus do not
always deal with the most general topics. Hence
our first illustration of an error shows the same
word form, but now with a different lemma as
the correct one. Consider (12).

(12)
Fysikeren ville f.eks. studere sammenhenger
mellom blodtrykk, størrelse av årene og blod-
tilførsel.
The physicist wanted e.g. (to) study connec-
tions between blood pressure, size of the
veins and blood supply.

Wrongly resolved lemma:
”<årene>”
”år/paddling ore” noun fem com pl def
”år/paddling ore” noun masc com pl def
”år/year” noun neut com pl def
 <SELECTED> <ERROR>
”åre/paddling ore, vein” noun fem com pl def
 <Correct!>
”åre/paddling ore, vein” noun masc com pl def

The text is about a medical topic, and here the

less general lemma meaning ‘vein’ is the correct
one, which the statistical module did not find.
We have looked at the test corpus, and the word
form årene occurs six times, five of them in the
‘year’ meaning. Sometimes, however, the fre-
quency does not seem to be so equally distrib-
uted in NoWaC and the test corpus. Consider
(13).

(13)
Faren min var mye ute og reiste
My father was much out and travelled
(=travelled a lot)

Wrongly resolved:
”<faren>”
 “far” noun masc com sg def <Correct!>

 “fare” noun masc com sg def
 <SELECTED> <ERROR>

The statistical module should disambiguate
between the lemma meaning ‘father’ (“far”) and
that meaning ‘danger’ (“fare”). One would guess
that in both corpora the word meaning ‘danger’
would be more frequent, and in fact in (13) the
statistical module has picked ‘danger’ due to an
evidently higher frequency of the word form fare
than of far in NoWaC. For this example the
NoWaC and OBT corpus disagree in the distri-
bution of the semantics of this word form. In
fact, out of four occurrences of the word form
faren in the test corpus, three had the meaning
‘father’ and only one the meaning ‘danger’.

Our conclusion with respect to the lemma
module is that it seems to work quite well, since
most lemmas have large differences in frequency
as word forms, and the differences seem to cor-
respond fairly well between NoWaC and the test
corpus. Furthermore, the hypothesis that unin-
flected word form frequencies in a large corpus
can be used as an indication of lemma frequenci-
es seems to bear out in practice. It is still possible
that some rule-based approach would improve
our lemma disambiguation. For example, the
word form meaning ‘father’ very often occurs
together with a possessive pronoun, and this kind
of knowledge could have been put into the sys-
tem.

7 Conclusion

We have improved an originally rule-based tag-
ger, the OBT, with a statistical HMM tagger. The
latter has been applied on the still ambiguous
output of the OBT. The resulting OBT+Stat sys-
tem performs well and has two added advantages
compared with the original tagger in that it gives
unambiguous output and it performs lemma dis-
ambiguation.

References
Alfred. V. Aho and Jeffrey D. Ullman. 1972. The

Theory of Parsing, Translation and Compiling,
volume 1. Prentice-Hall, Englewood Cliffs, NJ.

American Psychological Association. 1983. Publica-
tions Manual. American Psychological Associa-
tion, Washington, DC.

Association for Computing Machinery. 1983. Com-
puting Reviews, 24(11):503-512.

Ashok K. Chandra, Dexter C. Kozen, and Larry J.
Stockmeyer. 1981. Alternation. Journal of the As-

33

sociation for Computing Machinery, 28(1):114-
133.

Brants, T. 2000. TnT: a statistical part-of-speech tag-
ger. In Proceedings of the Sixth Conference on
Applied Natural Language Processing. Seattle,
Washington.

Emiliano Guevara. 2010. NoWaC: a large web-based
corpus for Norwegian. In Proceedings of the
NAACL HLT 2010 Sixth Web as Corpus Work-
shop. Los Angeles.

Giesbrecht, Eugenie and Stefan Evert. 2009. Is Part-
of-Speech Tagging a Solved Task? An Evaluation
of POS Taggers for the German Web as Corpus. In
Proceedings of the Fifth Web as Corpus Workshop
(WAC5). San Sebastian, Spain.

Hagen, Kristin, Janne Bondi Johannessen and Anders
Nøklestad. 2000. A Constraint-based Tagger for
Norwegian. In 17th Scandinavian Conference of
Linguistics, [Odense Working Papers in Language
and Communication 19], Carl-Erik Lindberg and
Steffen Nordahl Lund (eds), pp. 31-48. University
of Southern Denmark, Odense.

Jan Hajicˇ, Pavel Krbec, Pavel Kveˇtonˇ, Karel Oliva
and Vladim ́ır Petkevicˇ. 2001. Serial Combination
of Rules and Statistics: A Case Study in Czech
Tagging. In Proceedings of the 39th Annual Meet-
ing of the Association for Computational Linguis-
tics. CNRS – Institut de Recherche en Informatique
de Toulouse and Universite ́ des Sciences Sociales,
pp. 260–267. Toulouse.

Péter Halácsy, András Kornai, Csaba Oravecz. 2007.
HunPos - an open source trigram tagger. In Pro-
ceedings of the 45th Annual Meeting of the Asso-
ciation for Computational Linguistics. Companion
Volume Proceedings of the Demo and Poster Ses-
sions. Association for Computational Linguistics,
Prague, Czech Republic.

Johannessen, Janne Bondi and Kristin Hagen. 2003.
Parsing Nordic Languages (PaNoLa) norsk vers-
jon. In Nordisk Sprogteknologi 2002, pp. 89-95.
Museum Tusculanums Forlag, University of Oslo.

Karlsson, Fred, Atro Voutilainen, Juho Heikkilä and
Arto Anttila. 1995. Constraint Grammar, A lan-
guage independent system for parsing unrestricted
text. Mouton de Gruyter. Berlin; New York.

Lindstad, Arne Martinus. 1999. Issues in the Syntax
of Negation and Polarity in Norwegian. A Mini-
malist Analysis. Cand.philol thesis, University of
Oslo.

Spoustová, D., J. Hajič, J. Votrubec, P. Krbec and P.
Květoň. 2007. The best of two worlds: cooperation
of statistical and rule-based taggers for Czech. In
Proceedings of the Workshop on Balto-Slavonic
Natural Language Processing: Information Extrac-

tion and Enabling Technologies. Prague, Czech
Republic.

Tapanainen, P. and A. Voutilainen. 1994. Tagging
accurately: don't guess if you know. In Proceedings
of the Fourth Conference on Applied Natural Lan-
guage Processing. Stuttgart, Germany.

VISL CG3: http://beta.visl.sdu.dk/cg3.html

34

A Finite State Constraint Grammar Parser

Janne Peltonen
University of Helsinki

Helsinki, Finland
janne.peltonen@helsinki.fi

Abstract

It has long been held that finite state (FST)
methods should be the method of choice
in implementing a CG parser (e.g. Karls-
son (1990)), since FST methods are very
well understood mathematically and typ-
ically quite efficient. However, more or
less all implementations to date have been
using other methods. I set out to bridge
the gap between the FST world and the
CG world1. I created a representation
for ambiguous, morphologically analysed
sentences that might be general enough to
be used in other projects as well. I was
able to create a compilation procedure for
most types of CG-2 rules into an FST for-
mat, and successfully apply the compiled
rules to my sentence representation. I im-
plemented the grammar file parsing and
rewrite rule generation using Python 3,
and used Måns Huldén’s (2009) Foma for
the actual FST operations. I also evaluated
the implementation in terms of time and
space requirements.

1 Previous Work

My research is far from being the first attempt
to combine the worlds of Constraint Grammars
and finite state methods. For example, the Finite
State Intersection Grammars (FSIG) developed by
Koskenniemi (1990) are a decidedly CG-like fi-
nite state approach to disambiguation and surface
syntactic parsing — so much so that FSIG has
been suggested to be renamed Parallel CG and tra-
ditional CG, Sequential CG (Voutilainen, 1994).
In FSIG, constraints act on complete sentences
and prune complete readings on a sentence level,

1The results presented herein are also published in my
master’s thesis in Finnish in June, 2011.

whereas traditional CG prunes readings from indi-
vidual cohorts (word forms).

Gross defines local grammars loosely as a class
of grammars that reduce ambiguity by local con-
straints (Gross, 1997). Mohri (2005) shows an al-
gorithm to disambiguate an ambiguous sentence
automaton using only local constraints. This, too,
can be considered as a CG-like FST approach to
disambiguation.

Graña et al. (2003) show a method to compile
constraint-based textual rules directly to FSTs.
However, their rule format differs somewhat from
the previously used formats. My goal was to be
backwards compatible with Tapanainen’s CG-2
(Tapanainen, 1996), since there are lots of gram-
mars written using that formalism. I didn’t use
the open source VISL CG-3 formalism since its
differences from CG-2 are minor — and the for-
malism is currently in a state of rapid evolution.
Additionally, the Swahili grammar sample I was
allowed to use in my work was written in CG-2.

2 Ambiguity Representation

One obvious problem to solve was the represen-
tation of sentences as finite state automata. There
must be a representation for local ambiguity ei-
ther (i) as word ”lattice” containing paths that rep-
resent combinations of local readings; (ii) as a
pearl chain shaped compressed word lattice where
the dependencies across word boundaries are not
maintained, but every combination have a separate
path; or as (iii) as a single path automaton contain-
ing a string that lists all the local ambiguity classes
(aka cohorts) on the single line.

The reasons for choosing the last methods —
single path sentence automata — are, in no partic-
ular order, as follows:

• Avoiding the possibility of exponential
search times.

35

• Apparent straightforwardness of composing
a single path automaton to the rule automata.

• Possibility to refer to sibling readings, that is,
readings in the same cohort.

• Usability of the representation even if the im-
plementation of rules differs radically from
the currently adopted one.

The actual form I chose is as follows:

• Cohorts are separated by the symbol ¤:
¤ cohort ¤ cohort ¤ ... ¤

cohort ¤

• Readings are separated by the symbol §:
§ reading § reading § ... §
reading §

• There is a cohort separator at the beginning
and end of the sentence, as well as a reading
separator before the first reading and after the
last one

• The word form is between the cohort separa-
tor and the first reading:
¤ "<word-form>" § reading §
...

• The base form is the first tag in the reading:
... § "base-form" TAG1 TAG2
...

• The word form is repeated as the last tag in
each reading:
... § "base-form" TAG1 TAG2
... "<word-form>" §

Figure 2 shows the sentence automaton for two
word forms (cohorts) in an ambiguous sentence.
In the traditional vertical form, the sentence would
appear as in example 1.

(1) ...
"<sm1>"

"pm11" P111
"pm12" P121 P122

"<sm2>
"pm21" P211
"pm22" P221

...

3 Rule Representation

A natural form to use for the CG disambigua-
tion rules themselves was Lauri Karttunen’s Re-
place rule syntax (Karttunen, 1995) — there was
an existing, open implementation available, and
the rule formalism appeared strong and simple
enough. The only problem with replace rules were
CG-2’s (Tapanainen, 1996) linked rules: theoret-
ically, a linked rule’s left context might span to
the right side of the rule target, and there is no
easy or easily generalisable way to represent a left
context that might leak to the right side of the
rule centre in Karttunen’s formalism. I chose to
treat linked rules as a special case treated later. In
the test grammar I have available there were only
four linked rules, so that limitation appeared to be
within reason.

I wanted the application strategy of the rules to
mirror what I understood of current CG-2 parsers
as closely as possible. That is, at the rule level,
I wanted the rules to appear to proceed from left
to right — the left context of a given rule had to
have the appearance of the rule being already ap-
plied there whereas the right context should be un-
charted territory (Tapanainen, 1996). So the ob-
vious variant of Karttunen’s rules was the right-
oriented (//) one — left context from the lower,
or output, tape; right context from the upper, or
input, tape.

The choice of right-oriented replace rules cre-
ated interesting complications in the replace rules,
especially when combined with the robustness
clause ’the last reading of a cohort shall not be
removed’. To elaborate: if a left context is to ap-
ply, the readings that contain the left context must
not be marked as erased — or, in the case of a
negated left context, they must all be marked as
erased. But if all the readings in the cohort are
marked as erased, then the last reading of the co-
hort should be treated as non-erased after all, be-
cause there has to be at least one reading left in
each cohort. To be consistent with the left-to-right
application strategy, that should be the rightmost
one.

A simple first approach for rule 2 would be as
in example 3. Here, a REMOVEREADING tag is
added next to the target tag if there is a context
tag CTAG in the previous cohort. .¤. means all
strings that contain at most one cohort separator.

(2) REMOVE (TTAG) IF (-1 (CTAG));

36

§

§

§

§

§

§

¤

¤

"<wf1>" "bf11"
P111

"<wf1>"

"bf12" P121
P122

"<wf1>"

"<wf2>" "bf21"
P211

"<wf2>"

"bf22"
P221

"<wf2>"

¤ ...

...

Figure 1: A Single Path Sentence Automaton

(3) TTAG -> TTAG REMOVEREADING ||
CTAG .¤. _ ;

However, rule 3 doesn’t reflect the internal rule
application strategy outlined. To achieve that, a
more complicated approach is needed. The end
result is represented as rule 4.

(4) TTAG -> TTAG REMOVEREADING //
.#. ... [
¤ ..
§ .nRR CTAG .nRR §
.. |

¤ .
[§ . REMOVEREADING .]*
§ . CTAG . §

] ¤. _ ;

The left context of rule 4 is composed as fol-
lows:

• .#. ... anchors the context to the begin-
ning of the sentence. This is needed when
combining context constraints and wouldn’t
be strictly necessary in this rule, with only
one constraint.

• Two possibilities for the context cohort fol-
low:

1. The cohort contains a reading
with the context tag CTAG and
no REMOVEREADING tags (.nRR
matches everything in a reading except
a REMOVEREADING symbol); or

2. all the previous readings in the cohort
are marked as removed, so we don’t care
if the last reading is marked as removed
— if it contains a CTAG, it matches.

• ¤. means one immediate cohort separator
and anything inside a cohort after that.

On higher level, that is, the levels of rule sets
and grammar files, I chose to mimic the rule ap-
plication order of Pasi Tapanainen’s CG-2 imple-
mentation (Tapanainen, 1996). First, a working set
of rules is generated from the first constraint sec-
tion in the grammar file, in the order they appear
in the grammar file2. Then, for the sentence being
processed, each rule is applied in isolation, and a
new sentence automaton is created from the result
of rule application — if there was a change; other-
wise, the original sentence automaton is used with
the next rule. When all the rules in the working set
have been applied once, the whole process is re-
peated, until the working set of rules can no longer
change the sentence automaton. At this point, the
rules from the next constraint section in the gram-
mar file are appended to the end of the working
set, and the process is repeated until there are no
more constraint sections left.

Changing the application order of rules would
be relatively easy, since the rule application order

2This is actually different from Tapanainen’s implemen-
tation which gives no guarantees about the application order
of rules inside a constraint section; in Tapanainen’s imple-
mentation, only the application order of constraint sections is
defined to match the order of the sections in the grammar file.

37

is mostly defined in Python. On the other hand,
running multiple rules in parallel for one sentence
— in essence, trying to disambiguate each cohort
in a sentence with all rules before advancing to the
next cohort — is not easily achievable with my ap-
proach. It could be doable, in theory, by combin-
ing the context constraints of all the rules to create
one huge replace rule. However, very complex re-
place rules appear to be slow to handle.

4 Implementation

The CG rule parser/re-writer was written in
Python 33, using the PLY (Python Lex-Yacc)
parser generator4. Måns Huldén’s Foma, as a sub-
process of the Python script, is used to compile
the replace rules into transducers. The conversion
between the traditional CG sentence format and
the new sentence format is done in pure Python.
Foma, as a sub-process of the Python script that
controls the high level application order of rules,
is also used to apply the rules to sentences.

To create the compilation process from CG
rules to rewrite rules, I went through the differ-
ent disambiguation rule types in Pasi Tapanainen’s
CG-2 version of the CG formalism and came up
with a rewrite rule equivalent for each of them. In
the current implementation, the rewrite rule gener-
ation phase isn’t as elegant as it could be: the rule
generator goes through all different combinations
of CG-2 rule features and creates a rule for each
combination separately, even if some of the fea-
tures could be treated as modifiers of the original
rule. For example, I suspect that I could imple-
ment rule negation as a simple textual transforma-
tion of the positive version of the same rule.

Using Foma with Python proved to be quite
simple: the sub-process modules in Python’s stan-
dard library provided me with sufficient means to
create a sub-process for Foma and communicate
with it. Currently, I only have a simple implemen-
tation that reads lines from the Foma sub-process
until a certain known line is reached, but I’ve been
experimenting with a separate thread for commu-
nication, to avoid accidental lockups. So far, the
results have been encouraging and simple to im-
plement.

The implementation, in its current form, is not
really distributable. I plan to create a distributable

3http://www.python.org/download/
releases/3.0/

4http://www.dabeaz.com/ply/

package and make it available on-line soon. In the
meantime, I can provide the interested with the
current version and instructions on how to make
it function.

5 Test Grammar And Sentence Data

Professor emeritus Arvi Hurskainen allowed me
to use a sample of his SwaCG Swahili language
grammar to test and develop my own disambigua-
tor (Hurskainen, 2004). The sample contains
397 rules of which 380 are select rules and 17 are
remove rules; the approach used in this grammar
was more to describe sufficient contexts for cer-
tain morphological choices than to describe when
some readings should be discarded.

Four select rules contained a linked contextual
test. My current implementation ignores rules
with linked tests, so the results were, in effect, ob-
tained with a grammar of 393 rules of which 376
are select rules and 17 remove rules.

The morphologically analysed test sentences
were also provided by professor Hurskainen. They
are a set of 684 sentences, hand-crafted to test dif-
ferent aspects of the Swahili grammar. The sen-
tences are categorised as follows:

• constructions with inflecting adjectives
(287 sentences);

• constructions with uninflecting adjectives
(133 sentences);

• demonstrative before noun, inflecting adjec-
tives (183 sentences); and

• demonstrative before noun, uninflecting ad-
jectives 81 sentences.

The ambiguous morphological analysis con-
tains 5191 word forms and 11 455 readings, with
punctuation included. With punctuation excluded,
there are 3139 word forms and 9 403 readings.

6 Results

Rules are applied one at a time, so the rules don’t
have to worry about other rules interfering with
their execution. This also applies when creat-
ing compositions of rules: conceptually, the upper
tape of each new rule is the lower tape of the pre-
vious rule composed with previous rules and the
sentence automaton, so the effect is the same as
with applying the new rule to a new version of the
sentence automaton.

38

6.1 Space Complexity
Memory requirements didn’t appear to grow espe-
cially fast when composing more and more rules
to the composition that begins with the sentence
automaton. On the other hand, when trying to
compose as few as two big rules into a composi-
tion rule without the sentence automaton, I could
easily run out of memory on my workstation. For
example, composing two rule transducers of sizes
2.7 KB and 21.2 KB — with two simple special
transducers that actually erase the readings that are
marked as erased, and clean up superfluous erase
markers, between the rules — generates a trans-
ducer of size 341.8 KB. Composing rules of sizes
21.2 KB and 121.1 KB result in a transducer of
size 4.5 MB, and trying to compose two rules of
size 26.4 MB results in Foma finally running out
of memory on my workstation, after having allo-
cated more than 1.2 GB. 26.4 MB rules are rare,
but at this growth rate, 26.4 MB rule compositions
wouldn’t be.

The sizes of the compressed transducer files, in
Foma binary representation, vary between 852 B
and 2.6 MB — there correspond to uncompressed
transducers of sizes 668 B and 26.4 MB. The bi-
nary representation of the compiled grammar, with
379 compressed binary rules, takes 8.0 MB.

6.2 Time Complexity
Compilation of the test grammar of 393 rules took
at most 90 s (plus 25 s for the packing and unpack-
ing of the binary transducers). VISL CG-3’s CG-
2 compatibility mode is 1 500 times faster. On the
other hand, the time was minutes, not hours, so it’s
almost usable.

Disambiguating the test set of 684 sentences
created almost the same results as disambiguating
with VISL CG-3. All the differences could be ex-
plained by the fact that VISL CG-3, as opposed to
Tapanainen’s CG-2 parser and my program, does
not take the order of tags into account neither in
combined tags nor in same position tests with cate-
nation. Moreover, VISL CG-2 collapses multiple
instances of same tag in a catenation into one (Tino
Didriksen, personal discussion). This result is en-
couraging.

Less encouraging is the result that disambiguat-
ing the complete test set took 64 min 12 s. Again,
VISL CG-3 was 1 500 times faster. The reason
for the apparent slowness of my approach is not
completely clear. An obvious first guess would be

overhead in inter-process communication or prob-
lems with the speed of the finite state tools used.
As it turned out, there were a couple of issues.
However, the results given in this chapter are ob-
tained after having resolved most of the technical
issues.

6.3 Attempts to Increase Speed
It appears that adding a new rule to a composition
of the sentence automaton and other rules takes
more or less the same time than composing the
first rule to the sentence automaton, or perhaps
slightly more. So it is possible to reduce the run
time of the program by using longer rule composi-
tions on each iteration, since the overhead of read-
ing and writing data between processes decreases
(since the number of iterations decreases). How-
ever, there appears to be a cutoff point of some-
thing like 20 rules per composition after which the
decrease in overhead can no longer compete with
the increase in composition time — at least with
my test grammar and data.

One complication in communicating with
Foma was that libreadline5 calls sometimes took
a really long time to complete — but without li-
breadline, I couldn’t get the inter-process com-
munication to work. A one line patch to Foma,
to flush its standard output after the completion of
a command, solved that problem, and the time to
read a longish sentence representation into a Foma
variable dropped from more than 200 ms with li-
breadline to approximately 40 ms without it.

There were a couple of memory leak issues
within Foma that Måns Huldén was kind to fix
more or less immediately. Also, he provided me
with optimised versions of his replace rule trans-
lation formulae that sped up the grammar compi-
lation considerably.

6.4 Analysis
The slow results given in section 6.2 are obtained
after the modifications made in the last section.
Thus it appears that at least currently, the tight-
est bottlenecks are elsewhere than in inter-process
communication or tool errors.

According to the analysis I performed using the
Python cProfile library6, most of the time was
actually spent composing the sentence and rule
transducers together. This would indicate that

5http://www.gnu.org/software/readline/
6http://docs.python.org/release/3.1.3/

library/profile.html

39

my program creates so complex replace rules that
Foma can no longer handle them efficiently. As
the most complex rule transducers have tens of
thousands of states and nearly two million arcs,
that is hardly surprising — the worst case has
32 219 states and 1 732 204 arcs. I have yet to
find out why some rules are so complex and what,
if anything, could be done to avoid such complex-
ity.

7 Conclusion

In this paper, I have shown that it is possible to cre-
ate a finite state CG implementation that is mostly
compatible with CG-2. I was also able to create a
useful finite state representation for the ambiguous
sentences, to which the rules could be readily ap-
plied. Lauri Karttunen’s replace rules proved to be
a usable basis for representing CG rules. My im-
plementation is not complete, and currently only
disambiguates a grammar containing at most the
rule types in my test grammar — to test the disam-
biguator with other grammars, the remaining rule
types should be catered for.

However, even if I have provided a proof of con-
cept implementation of a CG disambiguator, my
program is too slow for any practical purposes.
Additional research is called for. The program
might be sped up a bit by replacing inter-process
communication with direct library calls, once the
required Python library bindings are in place. It
might also be possible to simplify the generated
replace rules. If these approaches fail, other fi-
nite state methods than replace rules should be
considered. As indicated in personal discussion,
at least Anssi Yli-Jyrä and Måns Huldén are cur-
rently planning such approaches.

References
Jorge Graña, Gloria Andrade, and Jesús Vilares. 2003.

Compilation of constraint-based contextual rules for
part-of-speech tagging into finite state transducers.
In Jean-Marc Champarnaud and Denis Maurel, ed-
itors, Implementation and Application of Automata,
volume 2608 of Lecture Notes in Computer Science,
pages 128–137. Springer Berlin / Heidelberg.

Maurice Gross. 1997. The construction of local gram-
mars. In Emmanuel Roche and Yves Schabes, ed-
itors, Finite-state language processing, pages 329–
354. MIT, Cambridge (MA), USA.

Mans Hulden. 2009. Foma: a finite-state compiler and
library. In Proceedings of the Demonstrations Ses-

sion at EACL 2009, pages 29–32, Athens, Greece,
April. Association for Computational Linguistics.

Arvi Hurskainen. 2004. Optimizing disambiguation in
swahili. In Proceedings of Coling 2004, pages 254–
260, Geneva, Switzerland, Aug 23–Aug 27. COL-
ING.

Fred Karlsson. 1990. Constraint grammar as a frame-
work for parsing unrestricted test. In COLING-90:
papers presented to the 13th International Confer-
ence on Computational Linguistics: on the occasion
of the 25th anniversary of COLING and the 350th
anniversary of Helsinki University, pages 168–173,
Helsinki. International Conference on Computa-
tional Linguistics.

Lauri Karttunen. 1995. The replace operator. In Pro-
ceedings of the 33rd annual meeting on Association
for Computational Linguistics, pages 16–23, Mor-
ristown, NJ, USA. Association for Computational
Linguistics.

Kimmo Koskenniemi. 1990. Finite-state parsing and
disambiguation. In COLING-90: papers presented
to the 13th International Conference on Computa-
tional Linguistics: on the occasion of the 25th an-
niversary of COLING and the 350th anniversary of
Helsinki University, pages 229–232, Helsinki. Inter-
national Conference on Computational Linguistics.

Mehryar Mohri. 2005. Local grammar algorithms.
In Lauri Carlson, Antti Arppe, Mickael Suomi-
nen, Krister Lindén, Jussi Piitulainen, Martti Vainio,
Hanna Westerlund, Anssi Yli-Jyrä, Juho Tupakka,
and Markus Koljonen, editors, Inquiries into Words,
Constraints and Contexts. Festschrift for Kimmo
Koskenniemi on his 60th Birthday, CSLI Studies in
Computational Linguistics, pages 84–94. CSLI Pub-
lications, Stanford, CA, USA.

Pasi Tapanainen. 1996. The constraint grammar
parser CG-2. University of Helsinki, Department
of General Linguistics, Helsinki.

Atro Voutilainen. 1994. Designing a Parsing Gram-
mar. University of Helsinki, Department of General
Linguistics, Helsinki.

40

FinnTreeBank: Creating a research resource and service for language
researchers with Constraint Grammar

Atro Voutilainen
Department of Modern Languages

University of Helsinki
atro.voutilainen@helsinki.fi

Abstract

This paper described ongoing work to de-
velop a large open-source treebank and re-
lated Finnish language resources for the
R&D community, especially corpus lin-
guistic researchers. Initially, we look at
user needs and requirements that these set
for corpus annotation. We propose the lin-
guistic Constraint Grammar as a frame-
work to answer the requirements. The sec-
ond half of the paper describes ongoing
work in the FinnTreeBank project to an-
swer these objectives.

1 Needs of corpus linguists

Language researchers need empirical data to help
them formulate and test hypotheses e.g. about nat-
ural language grammar and meaning. Morpholog-
ically annotated (or POS-annotated) text corpora
have been available to researchers for many years,
and currently such tagged corpora for many lan-
guages are accessible. Some of these corpora are
very large, even billions of words (e.g. German
COSMAS II). Though automatic tagging tends to
misanalyse a few words in a hundred, automat-
ically tagged corpora are generally of sufficient
quality and quantity for researchers to enable ba-
sically word oriented queries and corpus searches
in a local context (e.g. "Key Word In Context").

However, corpus linguists are often interested
in phenomena that involve more than local char-
acter strings: lexically or semantically motivated
units in linguistic context (e.g. as part of a syn-
tactic structure). Extraction of such, often non-
local, linguistic patterns is difficult with string-
based corpus searches: queries on POS-tagged
corpora to recover clause or sentence level syntac-
tic constructions result in too low accuracy (com-
bination of precision and recall), and the amount
of manual postprocessing needed to make the data

usable for further analysis is too high to make such
searches productive.

1.1 Requirements for syntactic annotation

A corpus with an additional layer of syntac-
tic annotation (e.g. phrase structure or depen-
dency structure) is needed to enable successful
queries for clause or sentence level syntactic con-
structs. To enable successful extraction of desired
lexico-syntactic patterns (multiword units with(in)
the desired syntactic structure), the syntactically
parsed corpora need to have a high correctness
rate: most sentences in the parsed corpus (‘tree-
bank’) should have a correct lexical and syntactic
analysis.

Further, to enable extraction of patterns contain-
ing mid- or low-frequency lexical units in suffi-
ciently high volume for meaningful quantitative
analysis, the parsed corpus also should be very
large, probably of a size comparable to the largest
POS-tagged corpora now available to researchers.

1.2 Limitations with current treebanks

Syntactically parsed corpora, generally referred
to as treebanks, are now available for a grow-
ing number of languages (cf. Wikipedia entry for
"Treebank"), with phrase structure annotations, or,
increasingly, with dependency syntactic annota-
tion (to enable analysis of unbounded, or long-
distance, dependencies). Most syntactically anno-
tated corpora are very limited in size – typically
with thousands, or at most tens of thousands, of
sentences (cf. e.g. (Mikulova et al., 2006), (Kro-
mann, 2003) and (Haverinen et al., 2009)).

Assuming corpus linguists are interested in phe-
nomena that involve lexical and syntactic informa-
tion (involving corpus searches with lexical and
syntactic search keys or patterns), a corpus with,
say, a 50,000 sentences or a million words, will
likely provide far too few ‘hits’ for such complex
queries to enable quantitatively meaningful stud-

41

ies. To enable a coverage comparable to local-
context lexically oriented searches on POS-tagged
corpora, syntactically annotated corpora should be
even larger than comparable POS-tagged corpora.

1.3 Limitations with complete sutomatic
parsing

Automatic syntactic annotation could be proposed
as the obvious solution for providing very large
syntactically annotated corpora for researchers.
However, automatic syntactic corpus annotation is
generally avoided in treebanking efforts, probably
because the error rate of automatic syntactic anal-
ysis is prohibitively high: even the best statistical
dependency parsers (such as Charniak, 2000) as-
sign a correct dependency relation and function to
slightly over 90% of tokens (words and punctu-
ation marks). If every tenth word is misanalysed,
most text sentences get an incorrect syntactic anal-
ysis.

Instead, syntactic corpus annotation is done
manually (with some level of supporting automa-
tion). At a recent treebank course (organised by
CLARA in Prague, December 2010), some of the
presenting treebank projects reported manual an-
notation times at 5-20 minutes per sentence, and
there were reports of nearly decade-long treebank-
ing efforts resulting in treebanks of some tens of
thousands of sentences.

In the current language technology commu-
nity, automatic syntactic modelling and analysis
are usually carried out with data-driven language
models that are based on statistics generated from
manually annotated treebanks. Statistical models
based on scant or inconsistent data frequently mis-
predict; even at the lower levels of linguistic analy-
sis with larger quantities of available training data,
POS taggers with statistical language models mis-
predict the category of several words in a hundred
(which means that close to or more than half of all
sentences are tagged incorrectly). The best statis-
tical dependency parsers reach labelled attachment
scores of slightly above 90% at word level in opti-
mal circumstances (training text genre is the same
as that of evaluation corpus); for many other lan-
guages, the labelled attachment scores reported are
substantially lower. With accuracy scores of this
magnitude at word level only, incorrectly parsed
sentences are likely to constitute the vast majority
of all parsed sentences. In short, current statisti-
cal models of syntax are probably too inaccurate

to provide a complete solution to high-quality au-
tomatic treebanking.

To sum, large-scale treebanking efforts seem to
be in a deadlock: manual treebanking is too work-
intensive (and possibly also too inconsistent) to
enable creation of sufficiently large treebanks to
support statistically significant corpus linguistic
research; statistical parsing efforts so far have
failed to provide sufficiently high parsing accu-
racy to enable automatic creation of high quality
research data for corpus linguists.

2 Constraint Grammar as a solution

Constraint Grammar is a reductionistic linguistic
paradigm for tagging and surface-syntactic pars-
ing (Karlsson & al, 1995) that has the following
properties to make it an attractive environment for
treebanking purposes.

• Large-scale work on tagging and parsing has
been done in this framework on several lan-
guages since late 1980s (cf. Wikipedia entry
on Constraint Grammar)

• The most advanced publicly available imple-
mentation of the compiler-interpreter (VISL
cg3) supports a wide range of functionality,
from lexical analysis to disambiguation to de-
pendency syntax

• A grammarian makes and modifies language
models (lexicons, parsing grammars), with
very competitive accuracy (measured e.g. as
precision-recall tradeoff) and modifiability

• CG tagging and parsing can yield full or par-
tial analysis, which enables a necessary con-
trol on precision-recall tradeoff for different
purposes such as treebanking

As an example case, we consider an early evalu-
ation and comparison on word-class tagging in En-
glish (Samuelsson and Voutilainen 1997). In this
report, EngCG-2, the second major version of the
English Constraint Grammar for word-class dis-
ambiguation, was compared with a state-of-the-art
statistical ngram tagger (Hidden Markov Model),
to answer certain open questions about the origi-
nal ENGCG by the research community of the late
1990s.

For the experiments, an common tag set and
corpora were documented and used, with options
for full and partial disambiguation. In EngCG-2,

42

the disambiguation grammar was organised into
five increasingly heuristic subgrammars to enable
trading recall for precision.

Regarding precision-recall tradeoff of the two
taggers in the experiment (cf. Table 1 in the
Samuelsson and Voutilainen article), the main ob-
servations are:

• With almost fully disambiguated outputs, the
ngram tagger discarded a correct analysis 9
times more often than EngCG-2.

• When more ambiguity was permitted in the
taggers’ analyses, the ngram tagger discarded
a correct analysis 28 times more often than
EngCG-2.

The possibility to make almost safe predictions
in a linguistics-based parsing environment, to con-
trol the precision-recall tradeoff, and to achieve a
very competitive precision-recall tradeoff is shown
in this comparison.

Though we are unaware of similar comparisons
at the level of dependency syntax (assignment of
dependency functions and dependency relations to
words), similar control on the tradeoff between
accuracy and partiality of dependency syntactic
analysis can be exerted in CG: the rule formalism
and development methods when making depen-
dency grammars are highly similar to those used
at the (lower) levels of morphological disambigua-
tion and shallow syntactic function assignment.

2.1 Possible solutions for Constraint
Grammar based treebanking

Given the CG properties described above, in par-
ticular the possibility for partial analysis and for
linguistically controlled superior precision-recall
tradeoff, several strategies for CG-based treebank-
ing are outlined next.

As a common core to them all is the need to
specify the necessary minimal recall needed for
the application and to create a language model
(lexicon and grammars) to meet this required min-
imal recall (by permitting some level of ambigu-
ity or partial dependency analysis in analyser out-
put). In the content of treebanking, this could
mean something like the following:

• morphology: recall of well over 99%.

• syntactic function tagging: recall of 98% or
more.

• correctness of syntactic dependency assign-
ment: over 98% of assigned dependency re-
lations should be corrrect.

The amount of unresolved ambiguity or of
unattached words resulting from the minimum re-
call/correctness requirements depends on several
factors, e.g. granularity of the grammatical dis-
tinctions that the parser operates with; charac-
teristics of the corpora to be analysed; develop-
ment time available for the grammarian; devel-
opment/testing methods and resources available;
competence/experience of the constraint gram-
marian. As an educated guess: 20-30% of input
sentences might get a complete unambiguous de-
pendency analysis, which means that about three
quarters of the sentences retain some ambiguity or
receive a partial dependency analysis.

In any case, an important desirable property of
this initial effort is that there is no need to revisit
the analytic decisions made by the resulting partial
CG parser. The main challenge is what to do with
the remaining (morphological and functional) am-
biguity and words not attached in the dependency
structure. Three solutions are next outlined.

2.1.1 Extraction from a partially parsed
treebank

To support search of lexico-syntactic structures
from text, the simplest solution is to apply the
search key only to dependency trees (representing
full sentences or sentence parts). As the analyses
provided by the parser are as reliable as specified,
the extracted patterns will be of sufficient quality
for (minor) postprocessing and quantitative anal-
ysis. It is also likely that many search patterns
will apply to subsentential constructions (that do
not need a complete sentence analysis); this means
that a much larger part than the above-estimated
20-30% of sentences will be useful for corpus lin-
guistic searches.

A limitation of this approach is that the corpus
accessible for linguistic searches will be skewed,
as sentence parts outside the coverage of the
parser’s language model will not be used.

2.1.2 Resolving remaining ambiguity with a
hybrid parser

Data-driven statistical parsers are usually trained
on hand-annotated treebanks of limited size (thou-
sands or tens of thousands of sentences), and
their accuracies (e.g. Labelled Attachment Scores,

43

LAS), probably fall below the minimum accuracy
requirements needed to support linguistic corpus
searches (as argued above).

The availability of very large volumes of train-
ing data with partial but very dependable morpho-
logical and dependency syntactic analyses makes
it possible to experiment with training statisti-
cal parsing capability to complement (or possibly
even replace) partial CG-based parsing, in order
to provide a more complete (but still sufficiently
accurate) syntactic analysis for text corpora. For
instance, it may be the case that lexical informa-
tion can be used to better advantage in statistical
modelling of syntax if the amount of learning data
is large (e.g. tens of millions of sentences).

2.1.3 Interactive rule-based dependency
parsing

Fully manual syntactic analysis is highly work-
intensive. For instance, to provide a dependency
analysis and a dependency function to each word
in a 20-word sentence, 40 decisions need to be
made. This kind of syntactic analysis can easily
take several minutes per sentence from a human
annotator.

With a high-recall partial dependency parser,
probably well over 90% of the analysis decisions
are made before there is a need for additional in-
formation to support parsing. Given a suitable
interface for a human to provide e.g. a part-of-
speech disambiguation decision or a dependency
analysis to an unattached word in the case of a
partially parsed sentence, the language model of
the CG parser is usually able to carry on the high-
quality syntactic analysis of the sentence, pos-
sibly to completion, without further input from
the linguist. The reason for this is that the addi-
tional analysis provided by the linguist makes the
sentence (context) less ambiguous, as a result of
which a contextual constraint rule (or a sequence
of them) is able to apply, by discarding illegitimate
alternative analyses or by adding new dependency
relations to the sentence.

The speedup to manual treebanking might be
10-50 fold, which enables cost-effective annota-
tion of much larger treebanks than those available
today, but treebanking tens or hundreds of millions
of sentences is probably not a practical option even
with this semiautomatic method.

3 Ongoing work in FIN-CLARIN

Next we present ongoing work as part of the FIN-
CLARIN project (2010-2012) on the creation of
a large-scale resource and service for researchers
into the Finnish language, focusing on one of its
five subprojects, FinnTreeBank. We outline a
dependency-syntactic representation for Finnish,
and present the first version of the dependency
syntactic FinnTreeBank and its use as a "gram-
mar definition corpus" to guide development, test-
ing and evaluation of Constraint Grammar based
language models for high-accuracy annotation of
large publicly-available Finnish-language corpora,
which will be used as empirical data to support lin-
guistic research on Finnish at a large scale.

3.1 Project environment

Our work is done with support from the European
CLARIN and METANET consortia, with the fol-
lowing overall aims:

• help researchers discover relevant empirical
data and resources more easily with a web
service where search is supported e.g. with
metadata and persistent identity markers.

• help researchers license and use found re-
sources more easily e.g. with transparent and
easy-to-use licensing/access terms and poli-
cies.

• help researchers share their own data to sup-
port other researchers and to support valida-
tion of reported empirical experiments e.g.
by means of easy-to-use procedures for data
licensing and persistent storage service.

• help researchers use and share existing work
by promoting open source.

• help researchers use different resources e.g.
by promoting common standards and user-
friendly interfaces to data.

At our department, there are several subpro-
jects in the larger META-CLARIN project on dif-
ferent language resources and finite state meth-
ods and libraries: Helsinki Finite State Transducer
HFST; OMorfi Finnish Open Source Morphology;
Finnish WordNet; Finnish Wordbank; FinnTree-
Bank.

44

3.2 FinnTreeBank goals and milestones

In addition to th eordinaty academic goal of pro-
ducing published research with research collab-
orators, FinnTreeBank has two main goals as a
‘producer’: (i) to provide large high-quality tree-
banks of Finnish to the research community; (ii)
to provide language models of Finnish as open
source for use with open-source software, to help
researchers analyse additional texts and to help
them modify the language models and/or software
for an analysis more suitable for their research
question.

Recent and near-term FinnTreeBank milestones
include the following:

• Evaluation and selection of language re-
sources, technologies and tools for use in
FinnTreeBank developments.

• Initial specification of linguistic representa-
tion for initial use in treebanking Finnish,
with focus on dependency syntax.

• Manual application of dependency syntactic
representation on an initial corpus of 19,000
example utterances from a large descriptive
grammar of Finnish (including further spec-
ification and documentation of the linguistic
representation).

• Subcontracting a 3rd party provider to pro-
vide a parsing engine (black box) and au-
tomatically parsed treebank (EuroParl, JRC-
Aquis) for the web service.

• Development of open-source lexicons, pars-
ing grammars and other resources to support
high-quality dependency parsing of Finnish
by the research community.

• Delivery of new versions of FinnTreeBank
with new corpora and higher quality of lin-
guistic analysis.

3.3 Specifying a grammatical representation
with a grammar definition corpus

In order to create a high-quality parser and tree-
bank, we need documentation and examples on the
linguistic representation and its use in text anal-
ysis. In order to approximate also less frequent
structures used in a large corpus of text in a com-
prehensive and systematic way, we need a maxi-
mally exhaustive and systematic set of sentences

to be analysed and documented e.g. as a guide-
line for creating a Parsebank. We propose to use
a comprehensive descriptive grammar (typically
more than a thousand closely-printed book pages)
as a source of example sentences to reach a high
and systematic coverage of the syntactic structures
in the language. A hand-annotated, cross-checked
and documented collection of such a systematic
set of sentences – in short, a Grammar Defini-
tion Corpus – is a workable initial approximation
and guideline for annotating or parsing natural lan-
guage on a large scale. The initial definitional sen-
tence corpus can be extended with new data when
‘leaks’ in the grammar/corpus coverage become
evident e.g. on the basis of double-blind annota-
tions (Voutilainen and Purtonen 2011).

A result of this effort is a Grammar defini-
tion corpus of Finnish, consisting of about 19,000
example utterances extracted from a comprehen-
sive Finnish grammar (Hakulinen at al, 2004), and
manually annotated according to a linguistic rep-
resentation consisting of a morphological descrip-
tion and a dependency grammar with a basic de-
pendency function palette.

We expect use of the Grammar Definition Cor-
pus to have the following benefits:

• A well-documented Grammar Definition
Corpus is useful as a guideline for human an-
notators, to support consistent and linguisti-
cally motivated analysis.

• A Grammar Definition Corpus also is useful
for one who writes and tests parsing gram-
mars (e.g. in the CG framework): it helps
systematic modelling of target constructions,
and it also helps document the scope of the
language model (what constructs are covered,
and what constructions are left outside the
scope of the language model).

• Evaluation and testing of language models,
corporan and analysers can be done more ob-
jectively if the linguistic representation has
been specified in a comprehensive and sys-
tematic way.

• When annotating new texts e.g. manually,
there is a lower chance to come across un-
expected linguistic constructions (given the
high coverage of the Grammar Definition
Corpus), hence less need to redesign or com-
promise.

45

• Encountering constructions not covered by
the Grammar Definition Corpus is useful data
also for writing a more comprehensive de-
scriptive grammar (compared with the orig-
inal descriptive grammar from which the ex-
ample utterances were extracted).

To our knowledge, this effort if the first one
based on a comprehensive, well-documented set
of sentences. The closest earlier approximation
to a Grammar definition corpus we know of is
an English corpus, tagged and documented in the
early 1990’s according to a dependency-oriented
representation, and consisting of about 2,000 sen-
tences taken from a comprehensive grammar of
English (Quirk et al, 1985). However, the Quirk
et al grammar contains much more than the 2,000
sentences (i.e. partial coverage in the corpus),
and the annotated corpus itself has not been pub-
lished, though this early effort is briefly described
in (Voutilainen, 1997).

3.4 Dependency representation

Our dependency syntactic representation follows
common practice in many ways. For instance, the
head of the sentence is the main predicate verb of
the main clause, and the main predicate has a num-
ber of dependents (clauses or more basic elements
such as noun phrases) with a nominal or an ad-
verbial function. More simple elements, such as
nominal or adverbial phrases, have their internal
dependency structure, where a (usually semantic)
head has a number of attributes or other modifiers.

The dependency function palette is fairly as-
cetic at this stage. The dependency functions for
nominals include Subject, Object, Predicative and
Vocative; adverbials get the Adverbial function;
modifiers get one of two functions, depending on
their position relative to the head: premodifying
constructions are given an Attributive function tag;
postmodifying constructions are given a Modifier
function tag. In addition, the function palette in-
cludes Auxiliary for auxiliary verbs, Phrasal to
cover phrasal verbs, Conjunct for coordination
analysis, and Idiom for multiword idioms.

The present surface-syntactic function palette
can be extended into a more fine-grained descrip-
tion at a later stage; for instance, the Adverbial
function can be divided into functions such as Lo-
cation, Time, Manner, Recipient and Cause. Such
a semantic classification is best done in tandem

with a more fine-grained lexical description (en-
tity classification, etc).

Sometimes, the question arises whether to relate
elements to each other on syntactic or on semantic
criteria. As an example from English, consider the
sentence ”I bought three litres of milk”. On syn-
tactic criteria, the head of the object for the verb
”bought” is ”litres”, but semantically one would
prefer ”milk”. Our dependency representation re-
lates elements to each other based on semantic
rather than inflectional criteria. Hence our analy-
sis (much as with Prague Tectogrammar and Tree-
Bank) gives a dependent role to categories such
as conjunctions, prepositions, postpositions, auxil-
iaries, determiners, attributes and formal elements
(formal subject, formal object, etc.). Sometimes
this practice creates a conflict with the accustomed
notion that there is a certain correspondence be-
tween Finnish cases and syntactic functions (e.g.
the genitive or partitive case for the object func-
tion): for instance a premodifying quantifier may
have the genitive case (for objects), while the se-
mantic object’s case may follow from the valency
structure of the quantifier. – This feature, like
many others, needs to be taken into account in the
design of a corpus linguist’s search/extraction in-
terface.

3.5 Sample analyses

In this section, some example sentences from the
grammar definition corpus are shown in visual
form to illustrate the dependency representation
outlined above.

3.5.1 Clausal premodifiers

In Finnish, nominals can have clausal modifiers on
both sides (premodifying and postmodifying posi-
tions). For instance, premodifying participles can
have verbal arguments of their own. For instance,
the participle "muistuttavia" acts as a premodifier
of the noun "kissannaukujaisia" but has also an ob-
ject, "glissandoja", as its dependent.

glissandoja
attr

muistuttavia
obj

kissannaukujaisia

kissannaukujaisia
[cat-meowings.PartitivePlural] muistuttavia

46

[resembling.Pcp] glissandoja
[glissandos.Plural]

We have also described a restricted class of
nouns like this. For instance, agentive nouns like
"kalastajat" (fishers) can have objects like "siian"
(whitefish) in a premodifying position:

vihaavat
subj obj

kalastajat
obj

takertujaa
attr

advl

Siian
conjunct

limaista verkkoon

muikun
phrm

ja

Siian [whitefish.GenSg] ja [and] muikun
[vendace.GenSg] kalastajat [fisher.NomPl]

vihaavat [hate.VPres] limaista [slimy.PartSg]
verkkoon [net.IllatSg] takertujaa

[clinger.PartSg].

3.5.2 Phrase markers

Formal ”se” (’it’) is described as a phrase marker
for the subject clause "mitä hän sanoi" (what s/he
said); likewise the postposition "kannalta" (regard-
ing) is described as a phrase marker of the noun
"tuloksen" (result):

oli
subj scomp

lausui
phrm

obj

subj
ratkaiseva

mod

Se hän tuloksen
phrm

mitä kannalta

Se [it.NomSg] mitä [what.PartSg] hän
(s/he.NomSg) lausui [said] oli [was] tuloksen

[result.GenSg] kannalta
[regarding.Postposition] ratkaiseva

[decisive.NomSg].

3.5.3 Coordination

The conjunction "ja" (and) is described as a phrase
marker of the following conjunct "paikallaan
seisoksintaa" (steady standing), which in turn is
described as coordinated dependent of the preced-
ing conjunct "väkinäistä rupattelua" (forced chat-
ting):

piisaa
subj

rupattelua
attr conjunct

väkinäistä seisoksintaa
attr

phrm

ja paikallaan

väkinäistä [forced.PartSg] rupattelua
[chatting.PastSg] ja [and] paikallaan

[steady.AdessSg] seisoksintaa
[standing.PartSg] piisaa [suffices].

Here is an example with multiple coordinations.
The attributes "vain" (only) and "lähes vain" (al-
most only) are coordinated with "tai" (or); the
participles "lukemansa" (read) and "näkemänsä"
(seen) are coordinated also with "tai":

tekee
subj

advl
obj

advl

Hän useimmiten valintansa lukemansa
advl

conjunct
phrm

lehdistä
attr

näkemänsä
phrm advl

perusteella

vain
conjunct

tai televisiosta

vain
phrm

attr

tai lähes

Hän [s/he] tekee [makes] useimmiten [usually]
valintansa [choice.GenPl] vain [only] tai [or]

lähes [almost] vain [only] lehdistä
[newspaper.ElatPl] lukemansa [read.PcpPoss]

tai [or] televisiosta [television.ElatSg]
näkemänsä [see.PcpPoss] perusteella

[on-the-basis-of.Postposition].

3.5.4 Ellipsis

Two clauses are coordinated: S-V-C with S-C
(verb missing). The subject of the elliptical clause
("huoneen saanti") is described as a conjunct of
the subject of the first clause ("palvelualttius"),
and the predicative complement ("vaikeata") is de-
scribed as a conjunct of the predicative comple-
ment of the first clause ("tyyydyttävä"):

47

on
subj scomp

Palvelualttius
conjunct

tyydyttävä
conjunct

saanti
phrm

obj
vaikeata

mutta huoneen

Palvelualttius [service-readiness.NomSg] on
[is] tyydyttävä [satisfactory.NomSg], mutta

[but] huoneen [room.GenSg] saanti
[getting.NomSg] vaikeata [difficult.NomSg].

4 Ongoing developments

In this final section, we describe some ongoing or
near-term developments to meet the objectives of
the FinnTreeBank project during the next year and
a half.

4.1 Harmonisation of morphology with
syntax

The initial dependency syntactic annotation (func-
tion and relation assignment by linguists) was
mainly done independently of morphological anal-
ysis. One motivation for this is savings in labour: a
morphological description designed before a syn-
tactic description usually needs to be revised when
the detailed decisions on how to model syntax are
made (which means that also morphological an-
notations require substantial revisions). In our so-
lution, the morphological description can be de-
signed "at one go" to agree with the documented
syntactic representation. A further advantage of
our solution is that resolution of morphological
ambiguities can be done with the help of available
higher-level (syntactic) analysis.

In practise, the morphological and lexical anal-
ysis will be based on the Omorfi open-source lexi-
cal and morphological language model (partly de-
rived from publicly available word lists by the
Finnish Research Centre of Domestic Languages)
and finite-state (HFST) analysis tools. Along with
this semiautomatic synchronisation/tagging effort,
also consistency checks and corrections to syntac-
tic annotation can be made to improve the quality
of the grammar definition corpus treebank.

The morphologically synchronised treebank
will be delivered in CONLL-X form with exten-
sive documentation to enable e.g. development of
statistical language models for parsing.

4.2 Dependency treebank and parser engine
by third-party provider

Another ongoing development is done by a third-
party provider (Lingsoft and its collaborators, the
Turku BioNLP Group at University of Turku) who
is building a statistical language model for depen-
dency parsing on the basis of the initial gram-
mar definition corpus with the dependency syn-
tactic annotation. On the basis of the contract,
the provider will deliver automatically parsed lan-
guage resources (EuroParl corpus and JRC-Aquis,
totalling tens of millions of words of Finnish) for
distribution via the FIN-CLARIN service.

The provider will also provide a licence to the
executable parser engine to enable annotation of
additional corpora for FIN-CLARIN users.

4.3 Development of open-source language
models for dependency parsing

Alongside the above developments, the FinnTree-
Bank project develops open-source language mod-
els using open-source tools and development en-
vironments (e.g. HFST morphology and syntax,
VISL cg3) for dependency parsing of Finnish.
The FIN-CLARIN users will benefit from the
open-source development as it enables them to
adapt and apply the language models and resulting
parsers to better answer their research questions
and to better support development of e.g. Artifi-
cial Intellignce solution prototypes. The results of
this development can also be used for providing
an alternative annotations to existing and new cor-
pora (treebanking).

Also development of commercial or open-
sector web services and other solutions should
benefit from availability of open-source language
technological tools and resources.

4.4 Experiments on treebanking methods

When initial versions of the language models ma-
ture, it will be possible to start experimenting with
alternative treebanking methods outlined above in
section 2.1. This research will likely be carried
out in collaboration with other research teams to-
wards (and hopefully after) the end of the ongoing
project. The results of the experiments will pro-
vide guidance on treebanking efforts in the longer
term in Finland, and hopefully in other projects as
well.

48

Acknowledgments

The ongoing project has been funded via
CLARIN, FIN-CLARIN, FIN-CLARIN-
CONTENT and META-NORD by EU, University
of Helsinki and the Academy of Finland. I wish
to thank Mikaela Klami, Tanja Purtonen, Satu
Leisko-Järvinen, Kristiina Muhonen, Tommi
Pirinen and Sam Hardwick, as well as other HFST
team members, for their support of this project.

References

Eckhard Bick. 2000. The parsing system Palavras.
Aarhus: Aarhus University Press.

Christer Samuelsson and Atro Voutilainen. 1997.
Comparing a linguistic and a stochastic tagger.
Proc. EACL-ACL’97.

Pasi Tapanainen and Timo Järvinen. 1997. A non-
projective dependency parser.Proceedings of the
5th Conference on Applied Natural Language Pro-
cessing. Washington, D.C.

Auli Hakulinen, Maria Vilkuna, Riitta Korhonen, Vesa
Koivisto, Tarja Riitta Heinonen and Irja Alho. 2004.
Iso suomen kielioppi[Large Finnish Grammar].
Helsinki: Suomalaisen Kirjallisuuden Seura. Online
version: http://scripta.kotus.fi/visk URN:ISBN:978-
952-5446-35-7.

Katri Haverinen, Filip Ginter, Veronika Laippala, Tapio
Viljanen, Tapio Salakoski. 2009. Dependency An-
notation of Wikipedia: First Steps towards a Finnish
Treebank.Proceedings of The Eighth International
Workshop on Treebanks and Linguistic Theories
(TLT8).

Matthias Kromann. 2003. The Danish Dependency
Treebank and the underlying linguistic theory.Proc.
of the TLT 2003.

Krister Lindén, Miikka Silfverberg and Tommi Pirinen.
2009. HFST Tools for Morphology – An Efficient
Open-Source Package for Construction of Morpho-
logical Analyzers.Proceedings of the Workshop on
Systems and Frameworks for Computational Mor-
phology 2009, Zürich, Switzerland.

Marie Mikulova, Alevtina Bemova, Jan Hajic, Eva
Hajicova, Jiri Havelka, Veronika Kolarova, Lucie
Kucova, Marketa Lopatkova, Petr Pajas, Jarmila
Panevova, Magda Razimova, Petr Sgall, Jan
Stepanek, Zdenka Uresova, Katerina Vesela, and
Zdenek Zabokrtsky. 2006. Annotation on the
Tectogrammatical Level in the Prague Dependency
Treebank. Annotation Manual. Technical Report 30,
UFAL MFF UK, Prague, Czech Rep.

Joakim Nivre, Jens Nilsson and Johan Hall. 2006. Tal-
banken05: A Swedish Treebank with Phrase Struc-
ture and Dependency Annotation.Proceedings of

the fifth international conference on Language Re-
sources and Evaluation (LREC2006).

Ville Oksanen, Krister Lindén and Hanna Westerlund.
2010. Laundry Symbols and License Management:
Practical Considerations for the Distribution of LRs
based on experiences from CLARIN.Proceedings
of the seventh international conference on Language
Resources and Evaluation (LREC2010).

Ted Pedersen. 2008. Last Words: Empiricism Is Not a
Matter of Faith.Computational Linguistics, Volume
34, Number 3, September 2008.

Randolph Quirk, S. Greenbaum, G. Leech, and J.
Svartvik. 1995. A comprehensive grammar of the
English language. London: Longman.

Atro Voutilainen, Krister Lindén and Tanja Purtonen
(forthcoming). 2011. Designing a Dependency
Representation and Grammar Definition Corpus for
Finnish. Proc. CILC 2011 - III Congreso Interna-
cional de Lingüística de Corpus.

Atro Voutilainen. 1997. Designing a (Finite State)
Parsing Grammar. Roche and Schabes, Eds,Finite
State Language Processing. The MIT Press.

49

An Efficient Constraint Grammar Parser
based on

Inward Deterministic Automata

Anssi Yli-Jyrä
The Department of Modern Languages, PO Box 24, 00014 University of Helsinki, Finland

anssi.yli-jyra@helsinki.fi

Abstract

The paper reconceptualizes Constraint
Grammar as a framework where the rules
refine the compact representations of lo-
cal ambiguity while the rule conditions are
matched against a string of feature vec-
tors that summarize the compact repre-
sentations. Both views to the ambiguity
are processed with pure finite-state oper-
ations. The compact representations are
mapped to feature vectors with the aid of a
rational power series. This magical inter-
connection is not less pure than a prevalent
interpretation that requires that the read-
ing set provided by a lexical transducer
is magically linearized to a marked con-
catenation of readings given to pure trans-
ducers. The current approach has several
practical benefits, including the inward de-
terministic way to compute, represent and
maintain all the applications of the rules in
the sentence.

1 Introduction

Constraint Grammar (CG) (Karlsson et al., 1995)
is a text parsing method with benefits over statis-
tical methods: a low memory footprint, run-time
speed, linguistic detail, data bootstrapping, incre-
mental development, and applicability to linguist’s
needs. Despite its wide use, the common under-
standing about its algorithms is still shallow. The
current work attempts to reduce this gap.

1.1 The Background

The dawn of CG was marked by a number of
related developments. Some resource sensitive
parsers (Marcus, 1980; Krauwer and des Tombe,
1981; Church, 1988; Blank, 1989) had started
to simplify over the parsers based on augmented
transition networks (Woods, 1970). The Taggit

program (Greene and Rubin, 1971; according to
Tapanainen 1999) was an early context-dependent
tagger. Some generative grammars were related
to automata and local constraints both in syntax
(Peters and Ritchie, 1969; Joshi and Levy, 1982),
and in phonology (Johnson, 1972; Koskenniemi,
1983). Their constraints were similar to local
grammars that describe word chain characteristics
(Gross, 1968; Maurel, 1989; Mohri, 1994). The
systems of hard constraints gave rise to consis-
tency enforcing methods (Huffman, 1971; Barton,
Jr., 1986; Maruyama, 1990).

The CG framework (Karlsson et al., 1995)
applies disjunctively ordered rules iteratively to
implement a system of soft constraints. Some
CG parsers have been described (Karlsson, 1990;
Tapanainen, 1996; Graña et al., 2003; Didriksen,
2010; Peltonen, 2011; Hulden, 2011).

The several later parsing methods bear similar-
ities to CG. These include Finite-State Intersec-
tion Grammar (FSIG) (Koskenniemi et al., 1992),
cascade parsing and chunking (Joshi and Hopely,
1996; Abney, 1991; Grefenstette, 1999), replace
rule sequences (Karttunen, 1997; Aı̈t-Mokhtar and
Chanod, 1997), lenient composition (Karttunen,
1998), voting constraints (Oflazer and Tür, 1997),
error-driven parsing (Brill, 1992; Lager, 2001), bi-
machines (Roche, 1994; Skut et al., 2004; Peikov,
2006), iterated finite transducers (Roche, 1997b;
Bordihn et al., 2006), restarting automata and con-
textual grammars (Plátek et al., 2003; Jurdziński et
al., 2005), and logic programming (Lindberg and
Eineborg, 1998; Lager and Nivre, 2001).

Throughout the paper, the discussion is made
more concrete by experiments on a version of the
Finnish Constraint Grammar (FINCG), a freely
available rule set developed originally for Finnish
by Fred Karlsson in Helsinki. The preliminary
experiments merely suggest the rough degrees of
cardinality in various aspects of processing com-
plexity.

50

1.2 The Contributions

The current independent work of the author (Yli-
Jyrä, 2010) aims at reconceptualizing CG parsing
in the framework of finite automata. It describes
an efficient parsing procedure where the local am-
biguity is summarized with feature vectors. More-
over, a nearly complete CG rule compiler and a
partially implemented parser are briefly reported.

The presented approach is in strict contrast to
some prior parsers where the local ambiguity do-
mains are represented, tested and reduced by ma-
nipulating a linear representation of the set of
readings. The linear representation gives rise to
CG parsing as transducer sequences (proposed
by Lauri Karttunen; see Voutilainen 1994:39,
Koskenniemi 1997, Peltonen 2011, Hulden 2011),
but is likely to become a bottleneck if syntactic
functions and argument structures are provided in
the input. In contrast, the current proposal elim-
inates the distinct syntactic disambiguation rules
and compacts the representation of local ambigu-
ity domains.

The current work uses pure finite-state automata
that are described, at a high level, using ratio-
nal sets and series. On the other hand, the paper
involves schematic string matching and bidirec-
tional memoization when intersecting automata.
These low-level techniques are efficient but differ
from standard sequential processing models.

The paper transfers some techniques from the
author’s prior research on FSIG parsing to the CG
framework: (1) Indexing the transition labels of
a template automaton will compress the imple-
mentation of reading subsets (Yli-Jyrä, 1995). (2)
The split languages of the form L ⊆ Σ∗∆Σ∗

(Σ,∆ disjoint alphabets) will represent context
conditions (Yli-Jyrä, 2011a). (3) The position-
wise flag diacritics (Yli-Jyrä, 2011b) will post-
pone the computation of negation in negative con-
texts. (4) On-the-fly inward determinization (Yli-
Jyrä, 2010; Yli-Jyrä, 2011a) will facilitate the iter-
ated computation of product automata. (5) Prefer-
ence relations (Yli-Jyrä, 2007) will enable the or-
dering of rules and their potential applications. (6)
The infiltration operation (Sakarovitch, 2009) —
a natural implementation of simple multitape au-
tomata (Yli-Jyrä, 2005) — will elegantly compile
the rule conditions. (7) The string schemas (Yli-
Jyrä, 1995; Yli-Jyrä, 2005; Yli-Jyrä, 2011b) will
reduce the length of paths in automata. It is ex-
pected that the started CG implementation effort

will produce ideas that will reciprocally enrich the
FSIG framework.

2 The Primary Representation

The Tokens The natural language sentence – the
input of the parser – is preprocessed for parsing by
segmenting it into orthographic words aka tokens
t1, ..., tn. Thus, we obtain e.g. the orthographic
words "<It>", "<rains>", "<.>" from the sen-
tence “It rains.” for the lexical look-up. The re-
sulting segmentation must be unique.

The lexicon is a regular relation that relates the
orthographic words with strings consisting of lex-
emes, morphological labels, syntactic labels and
semantic labels – we will call all these symbols
naively just tags and their strings readings.

For every token ti (1 ≤ i ≤ n), the lexicon
provides a set of token-analysis pairs (ti, ai,j) that
are linearized to a set of strings tiai,j as in (1) — in
general, such linearization is not a regular relation,
and it would be purer to drop the orthographical
word in the analysis. Nevertheless, the set is not
converted to a linear string in the current work.
{

"<muuta>" "muu" Q PRON PTV SG
"<muuta>" "muuttaa" V IMPV ACT SG2
"<muuta>" "muuttaa" V PRES/IMPV ACT NEG

}
(1)

The Cohort Automata The purpose of the CG
parser is to reduce excessive readings through re-
movals and selections. By a metaphor, the group
of readings for each token is called a cohort and
the readings manipulated by the operations are
called targets.

The current parser contains a custom input func-
tion for cohorts. This produces deterministic
acyclic finite automata c1, ..., cn, called cohort au-
tomata (Figure 1), and minimizes them. The co-
hort automata constitute the primary representa-
tion of the cohorts.

s0 s1"<voi>"
s2"voida"

s10
"voi"

s3V

s4
PRES PAST

s6PRES/IMPV

s8
IMPV

s5ACT

s13

SG3

s7ACT NEG

s9ACT SG2

s11N

INTJ
s12NOM

SG

Figure 1: A cohort automaton.

The operators of the CG rules (Tapanainen,
1996) define how cohort automata change if the
rules are applied to them. Each operator is a regu-
lar relation. To avoid non-termination (Didriksen,
2010), we exclude all rule operators that replace
readings, shorten the readings (e.g. by removing
@-tags), and introduce readings. This leaves such

51

operators that refine the cohort strictly monotoni-
cally: readings are removed with the REMOVE and
SELECT operators and new (irreversible) distinc-
tions are introduced with the ADD operator.

The Template Automaton A common experi-
ence is that the interface between the grammar and
the morphological component gets easily broken if
one component is changed. It is thus desirable that
CG grammars are augmented with a specification
that describes the possible readings by a template
automaton, a simple positional model (a linear fi-
nite automaton) for the tags.

The grammar distinguishes only a finite number
of different kinds of tags. In this sense, the tags
(the tag types) form a finite set, T . The interface of
FINCG needs some 1230 tags, slightly more than
are actually used by the rules.

A template automaton for the FINCG is given
by a regular expression (2). The special symbol
0 is interpreted as the empty string. This gives
an automaton with 1272 transitions (removing the
symbol 0 results in 3853 transitions).

("<>"|"<ajan>"|...) 0 ("<(.*)ja>"r|...)∗ 0

(""|"aamu"|...) 0 (DV-JA|...)∗ 0 (0|DEM|...)
(A|V|...) (0|PRES|...) (0|ACT|...) (0|SG1|...)
(0|CMP|...) (0|ALL|...) (0|SG|...) (0|P-3|...)

(ko|han|...)∗0 (0|@ADVL|@SUBJ|...). (2)

The Dynamic Aspects The expression (2) uses
two meta-symbols: "<>" matches any orthograph-
ical strings such as "<foo>", and "" matches any
lexemes. The tags such as "<(.*)ja>"r are in-
serted by the input function to the reading strings
when the regular expression in it matches the or-
thographical string such as "<opettaja>"r.

When the parser is used, the conformance of
the readings against the model (2) is checked on
the fly. The reported anomalies in the lexicon can
then be fixed in order to optimize the interoper-
ability between the lexicon and the grammar. In
addition, the tags in all readings are indexed with
the corresponding source states in the template au-
tomaton. The tag DEM, for example, thus becomes
DEM7. There are tags that can correspond to sev-
eral states — especially if the template automaton
is without the symbol 0.

[[(NOM OR (N SG))]]

subsumes������
���

���
���

�

subsumes �����
����

����
���

[[NOM]]

subsumes

�����
���

���
���

��
[[(N SG)]]

subsumes

������
����

����
��

[[(NOM (N SG))]]

Figure 2: An excerpt of the Boolean lattice.

3 Testing the Cohorts

3.1 The Features of Readings

The CG-2 rules refer to the abstract features of
complete readings through tags, combined tags,
lists, and sets (Tapanainen, 1996) — let us call
them set definitions. Each set definition α has
the denotation [[α]] that is a subset of the read-
ings recognized by the template automaton. Two
definitions are equivalent if their denotations co-
incide. The special expression (*) subsumes the
whole universe while expression (N SG) subsumes
all Singular Noun readings.

In the VISL CG-3 (Didriksen, 2010) system and
the current system, the order of tags does not mat-
ter i.e. [[(N SG)]] = [[(SG N)]]. The denotationally
equivalent set definitions form, thus, a Boolean
lattice (Figure 2) with denotational union (OR), de-
notational intersection (), and denotational com-
plement (\) operations. The implementation of
these operations benefits from the restrictions im-
posed by the template automaton.

The denotation S ⊆ T∗ of every set defini-
tion, i.e. a feature f , gives rise to a weighted
finite automaton (Sakarovitch, 2009) that recog-
nizes its characteristic series χf : T ∗ → N defined
by χf (x)=1 for all x ∈ S and χf (x)=0 other-
wise. We will call this automaton a feature au-
tomaton. A simple expression, (V), compiles into
an automaton with more than 1100 (logical) transi-
tions. To test a feature f against a reading r ∈ T∗,
we simply compute χf (r) with the automaton.

When extended to the set of all features F in the
grammar, the feature automaton recognizes a se-
ries T ∗ → NF whose coefficients are integer vec-
tors. The easiest implementation of this would be
the union of |F | feature automata. The size of this
automaton is a severe problem. In the FINCG rule
set, the set of tags (T) and the set of features (F)
have roughly the same cardinality (respectively:
1133, 1216). Thus, more than a million (logical)
transitions are traversed to check all the readings
and features in the worst case (consider a cohort

52

automaton that equals the template automaton). A
minimal deterministic automaton is not likely to
be any better solution as the deterministic union
of all feature automata requires, in the worst case,
O(2 |F |) different final states.

To reduce the complexity of the deterministic
union of feature automata, the parser uses a con-
traction technique (Yli-Jyrä, 1995; Yli-Jyrä, 1997;
Roche, 1997a) that hides transitions that are ir-
relevant to feature recognition. The resulting de-
terministic automaton will match indexed subse-
quences in the readings. Given that N and GEN

are labels that occur respectively in states 8 and
13 of the template automaton, the set definition (N
\GEN) corresponds to a 3-state automaton that rec-
ognizes the subsequences

N8(013|ABE13|ABL13|ACC13|ADE13|ALL13|CMT13|
ELA13|ESS13|ILL13|INE13|INS13|LAT13|LOC13|

MAN13|NOM13|PTV13|TRA13). (3)

3.2 The Features of Cohorts

In general, the cohorts may mix both readings
that satisfy a given feature and readings that do
not satisfy it. Therefore, the features become 3-
valued at the cohort level: they can be positive
(+), negative (-) or ambivalent (?). Testing the
cohorts corresponds to computing the function:
2T

∗ → {+, -, ?}F , where the domain 2T
∗

contains
all the possible cohorts and the range {+, -, ?}F
contains all combinations of the features.

For each cohort, the truth-value of a particular
feature f is determined by counting the number
of true readings in the domain of χ when it is re-
stricted to the set of readings S in the cohort au-
tomaton: the feature automaton is first restricted
with the cohort and then the sum of the success-
ful paths is computed e.g. by replacing all the
inputs with the empty string. Thus, we compute∑

x∈S χf (x).
In order to get the correct counts, the feature au-

tomata must be path unambiguous i.e. they assign,
at the most, one successful path to each tag se-
quence. Ensuring an unambiguous automaton for
set definitions like (C OR "että") requires special
attention, because the features C and "etẗa" are
non-exclusive and are separately true in the read-
ing ("<että>" "että" SUB C).

Finally, the integer vectors NF are mapped to
the vectors of (3-valued) truth values, {+, -, ?}F .
If the count of a feature equals the cardinality of
the cohort, the feature is positive +. Otherwise, it

is negative - if the cardinality is zero or ambivalent
? in other cases.

Simple Conditions A typical CG rule specifies
three things: an operation that tells how a cohort
will change if the rule is applied to it, the context
specification that tells where the rule can be ap-
plied, and a target that complements the operation
and the context specification. The context specifi-
cation is a conjunction of simple, possibly linked,
context conditions (Tapanainen, 1996).

A simple context condition in CG rules is, for-
mally, a 6-tuplet 〈origin, polarity, position, mode,
set definition, barrier condition〉 where

• the origin refers to the target cohort (nothing)
or to the hit of the previous positive condition
(LINK)

• the polarity is either negative (NOT), positive
(nothing), or ambivalent (MIX)

• the position is either an absolute po-
sition (@1, @2, ...), a relative position
(..., -2, -1, 0, 1, 2, ...) with 0 as the
origin, or an unbounded set of rela-
tive positions outwards from the origin
(..., *-2, *-1, *0, *1, *2, ...)

• the mode is careful (C) or normal (nothing)

• the barrier condition is either none (nothing)
or a set α (BARRIER α).

A condition such as 〈LINK, not, 0, C, N,
BARRIER CLB〉 is written simply as (LINK NOT 0C

N BARRIER CLB). The reader is referred to CG
manuals for a complete description of context con-
ditions (Karlsson et al., 1995; Tapanainen, 1996).

The combination of polarity and mode tells
how the cohort’s feature-values are converted back
to Boolean truth-values needed in the grammars.
This is illustrated in (4).

0C f

���
��

��
��

��
0 f

∨
�� ���

��
��

��
��

MIX 0 f

��

NOT 0C f

�����
���

���
��

∨
��

NOT 0 f

�����
���

���
��

Cohort f+

��

f?

�����
��
���

��

∨
��		

			
			

			
	 f-

��
Reading f+ f- (4)

The core CG grammar rules — those whose op-
erator is SELECT and REMOVE — specify a set def-
inition called a target. A target (NOM) is, in fact,
shorthand for condition (MIX 0 NOM). The condi-
tion matches cohorts where some readings contain
the NOM tag and some do not.

53

4 The Secondary Representation

We will now see how the conjunction of the con-
textual conditions is represented in the parser.

4.1 Marking the Potential Applications

The Feature-Value Alphabet Internally, the set
definitions are mapped to feature numbers that
form the feature alphabet F . The numbers of
equivalent set definitions coincide. For example,
the current parser assigns the feature numbers 31

and 39 to set definitions (PTV)31 and ("yhtään"

ADV)39, respectively. We write 31.PTV when we
emphasize the feature number (the key) rather than
the set definition (the legend).

The core FINCG rules mention 1216 distinct
features (F) and 1813 feature-value pairs such as
(5.NOM,+) and (11.SG,?).

The secondary representation for the co-
horts consists of the feature-value pairs
(P=F×{+, -, ?}) and cohort boundaries (•).
The pairs in P are written simply as 5.NOM+ and
11.SG?. The whole sentence is represented by the
•-marked concatenation of the cohort-wise lists
c′1, ..., c

′
n of |F | numerically ordered feature-value

pairs.

w = c′1•c′2•...•c′n. (5)

The Rule Marker Alphabet In order to talk
about rules and where they apply, we define a sym-
bol alphabet for the rules. First, the rules are num-
bered. The rule compiler assigns numbers 343 and
865 to the rules

SELECT("yhtään"ADV)39
IF(NOT *1 (PTV)31); (343)

SELECT(N SG)821
IF(1* (V SG3)820 BARRIER (CLB)3)
(NEGATE *-1(N NOM)715BARRIER(CLB)3). (865)

For every rule, there are two rule markers that
are used to indicate the satisfied context condi-
tions of the rules. The markers form the set R =
{@1.r@, @2.r@ | r is a rule in the grammar }. As to
FINCG, there are about 1380 SELECT/REMOVE rules
and 22 (1,6%) of them use both kinds of markers.

The marker @1.865@ will be used to indicate
the cohorts whose contexts satisfy the licensing
context conditions of the rule 865. The marker
@2.865@ will be used to indicate the cohorts
that satisfy a prohibiting context condition. The
prohibiting context conditions are stronger and

will prevent the application of the rule even if
the licensing context condition is true (Yli-Jyrä,
2011b).

The CG-3 syntax for rule conditions separates
the cohort-internal negation (NOT) from the global
negation (NEGATE) (Didriksen, 2010). The first
refers to negative features and the second starts
a prohibiting condition according to the CG rule
syntax. For example, the rule 343 selects the Ad-
verb (39.ADV) reading if the next word has no Par-
titive (31.PTV) readings. In contrast, the rule 865
selects the Nominative Singular (821.(NOM SG))
reading if the cohort is followed by potential (i.e.
positive or ambivalent) 3rd Person Singular Verb
(820.(V SG3)) within the same clause (BARRIER

(3.CLB)) unless (NEGATE) the cohort is followed
by potential Nominative Noun (715.(N NOM)) co-
hort within the same clause.

Split Languages The string w provides a matrix
structure against which the licensed and prohibited
applications of CG rules are indicated: for each
cohort where the rule r is licensed, we produce a
copy of w and insert the marker @1.r@ into the end
of the cohort’s feature-value list in this copy. The
marker @2.r@ is inserted in a similar way to other
copies that indicate prohibited contexts.

Let Σ = P ∪ {•}. A language of the shape
L ⊆ Σ∗RΣ∗ is called a split language1. To fa-
cilitate the formal account of the marking, de-
fine a mapping h : Σ∗RΣ∗ → Σ∗ by h =
{(vxy, vy) | v, y ∈ Σ∗, x ∈ R}. The inverse of the
image of w is h−1(w), the language of the possi-
ble ways to insert a rule marker into the string w.
This language is recognized by an automaton that
is very similar to the linear automaton recognizing
the string w. The automaton has O(n|F |) states
and O(n|F ||R|) transitions.

The union of the licensing and prohibiting con-
texts of each rule r forms a split regular language
Cr ⊆ Σ∗RrΣ

∗ where Rr = {@1.r@, @2.r@}. For
the rule, the marked copies of the string w are ob-
tained as the intersection Wr = Cr∩h−1(w). The
potential applications of all rules are obtained as
the union W =

⋃
r∈RCr ∩ h−1(w).

4.2 Controlling the Application Order

The prohibited applications are subtracted from
the licensed ones by computing W′ = {v@1.r@y |
v@1.r@y ∈ W,v@2.r@y /∈ W}. Such preference
restrictions can be implemented with a matching

1The term was proposed to me by J. Sakarovitch.

54

method due to Dale Gerdemann and Gertjan van
Noord (see Yli-Jyrä, 2007, 2011b). The same
method implements application order modes.

The current system is flexible enough to support
any standard application mode. Normally, the ap-
plication of an earlier rule in the grammar is pre-
ferred over the later rules. On the other hand, it is
psycholinguistically motivated to process the sen-
tence from left to right. By emphasizing the left-
most position, for example, we get the following
restriction of W ′:

W ′′ = {v@1.r@y ∈ W ′ |
¬∃u@1.r@z ∈ W ′ s.t. vy = uz, |u| < |v|
¬∃v@1.q@y ∈ W ′ s.t. q < r}. (6)

The obtained set W ′′ contains (at the most) one
marked copy w′ of the sentence w. The marker
in this copy indicates which rule is applicable to
which cohort.

When given an m-state deterministic automaton
representing the set W , we can compute W′ and
W ′′ in O(m) time. It should be noted that the sub-
sets of {vxy | vy = w, x ∈ R}, where w is the
sentence and R is the rule marker alphabet, are al-
ways regular languages and their recognizers are
minimizable in linear time.

5 The Context Automata

For each rule r ∈ R, the intersection Cr ∩h−1(w)
is computed through the well-known product con-
struction (see Sakarovitch, 2009).

The constructed product may have a large num-
ber of states: Let the context language Cr be given
by an O(m)-state deterministic finite automaton.
The minimal automaton recognizing the language
h−1(w) has O(n|F |) states. The product of these
automata has, thus, O(nm|F |) states. When this
is repeated for all r ∈ |R| rules, the total state
complexity is O(nm|R||F |).

The product is potentially constructed several
times. A pathologically ambiguous cohort can
be refined separately by |R| rules if the targets
of the rules have disjoint denotations. There-
fore, the computation of the intersection is iterated
O(n|R|) times in the worst case. This means that
the total time complexity of the context testing is
O(n2m|R|2|F |) in the worst case.

We need optimizations that reduce the effects of
(1) the context states, (2) the iterations, (3) the fea-
tures, and (4) the parallel rules. The following will
sketch some important optimization strategies.

5.1 Reducing the Effect of Context States

The Baseline The deterministic automaton rec-
ognizing the context language Cr is deterministic
up to point where an R-transition is followed. Af-
ter this point, the product automaton contains, in
the worst case, O(m) parallel paths (Figure 3(i)).

O(|w|)︷ ︸︸ ︷

O
(m

)





→@→→→→→
↘@→→→→
↘@→→→

↘@→→
↘@→

→@↖
↘@↖

↘@↖
↘@↖

↘@↖

↘@↖
↘@↖

(i) (ii) (iii)

Figure 3: The benefits of inward processing.

Inward Processing It is desirable to find a
method that computes the product or it restriction
W ′′ in time that does not depend on the state com-
plexity of the context languages. Three solutions
that fulfill this condition are available:

1. The function returning W ′′ for each w is a has
a deterministic realization using determinis-
tic bimachines (Skut et al., 2004; Roche,
1994; Peikov, 2006; Hulden, 2011).

2. The context language Cr is recognized by an
inward deterministic automaton (IDA) (Yli-
Jyrä, 2011a). The approach allows for greater
flexibility in the application ordering.

3. An IDA can be factorized to possibly smaller
left- and right-sequential transducers (Roche,
1997a). Nondeterministic bimachines could
be used too (Santean and Yu, 2006).

An IDA is a nondeterministic automaton that
recognizes a split language L ⊆ Σ∗RΣ∗ and is
deterministic for all prefixes in Σ∗ and codeter-
ministic for all suffixes in Σ∗. When intersected
with the linear automaton representing the lan-
guage h−1(w), the restricted product approaches
the R-transitions deterministically from both sides
(Figure 3(ii)). As a result, each of O(n) positions
in w corresponds, at the most, to two states in
the restricted product (Figure 4). With one IDA
per rule, the total time complexity is bounded by
O(n2|R|2|F |).
State Explosion It would be nice to construct a
combined IDA that recognizes the split language
∪r∈RCr. This would reduce the total computation
time to O(n2|R||F |) if we assumed that parallel

55

@1.35@ @1.35@

N+ • V+ • N+

N+ • V+ • N+

Figure 4: An inward deterministic product.

marker transitions are inserted into the result in
O(1) time. However, the whole grammar cannot
be combined to an IDA in general. Firstly, there
are simple context conditions that require a very
large number of IDA states. Secondly, the size of
a combined IDA would be O(m|R|) if each rule-
specific IDA had m states at the most.

5.2 Reducing the Effect of Iterations

Dynamic Programming The product automa-
ton is not constant, but reflects the changes in
the sentence w when rules are applied. With in-
ward deterministic contexts, the product is eas-
ier to keep up to date. Namely, the previously
computed product automaton can be refreshed lo-
cally around the changed cohort (Figure 3(iii)).2

If the distance between the successive refinements
is O(1) according to the amortized analysis over
the total of O(n|R|) refinements, the local refresh-
ing of the product improves the time complexity to
(n|R|2|F |).

On-the-fly Inward Determinization When
computing the intersection Cr ∩ h−1(w) with
a nondeterministic recognizer for Cr, the result
can be determinized easily on-the-fly due to the
special structure of the language h−1(w). The
result is still virtually deterministic from both
sides, allowing for the efficient refreshing of
the product after a cohort is refined and local
changes in w occur. Under the assumption of
O(1) distance between the refinements, the worst
case time complexity is now O(nm|R|2|F |).

5.3 Reducing the Effect of Features

The Path Length Problem A problem with all
intersection methods is that they process full-
length paths. The feature values in each cohort
are read one-by-one, resulting in many states and
transitions. Because the length of the string w is
O(n|F |), the path length is a practically signifi-
cant problem.

2The dynamics of the optimal refreshing of the product
has been studied by the author in a PSC submission (2010).

Contracted Contexts To address the path
length problem, the rule compiler of the parser
contracts the strings in a context language C into
the patterns in a contracted context language C ′

that retains just the necessary details. In the pat-
terns, the cohort boundaries are retained, while
the feature-value symbols in F are retained only
where the rule condition refers to them. For exam-
ple, the condition (-5 C) corresponds to the regu-
lar language •∗C•••••@1.r@•∗.

The intersection of the patterns is com-
puted against the image g(h−1(w)) where g ⊆
(Σ∪R)∗ × (Σ∪R)∗ is a regular relation de-
fined by g(ε)=ε, g(•)=•, g(r)=r, g(f)={f, ε},
g(xy)=g(x)g(y), for r∈R, p∈P , x, y∈(Σ∪R)∗.

The language C′ is a valid contraction of the
context language C if

C ∩h−1(w) = g−1(C ′∩ g(h−1(w)))∩ h−1(w). (7)

For CG rules, the valid contractions of context lan-
guages can be constructed easily because they do
not need to express negations through the absence
of features.

Compressed Sentence Automaton The lan-
guage g(h−1(w))) does not give rise to particu-
larly useful representations of the sentence. In-
stead, a good representation for the substrings of
w is obtained by an n-state sentence automaton
where each state contains the loops for the feature-
value symbols and are connected with the cohort
boundary symbols (Figure 5). Under the intersec-
tion C′∩ g(h−1(w))), this is a lossless compres-
sion because C′ still respects the order in P .

0 1 2 3 4 5 6
• • • • • •

F1 ∪ R F2 ∪ R F3 ∪ R F4 ∪ R F5 ∪ R F6 ∪ R F7 ∪ R

Figure 5: A compressed sentence automaton.

5.4 Reducing the Effect of Rules

The contracted context languages have, rulewise,
quite small minimal deterministic recognizers. For
example, the rules 343 and 865 give rise to the rec-
ognizers in Figure 6.

There are 1377 rules. The sum of the sizes of
the recognizers is 10529 states and 16707 arcs.
This means, on average, 7.6 states and 12.1 transi-
tions per rule.

A grammar automaton recognizes the union of
all contracted context languages. For FINCG,

56

0

•

1389."yhtään"ADV? 2@1.343@ 3• 4
31.PTV-

•

0

•
1

715.(NNom)+
715.(NNom)?

6
821.NSg?

2
•

3

3.CLB-
3.CLB?

4821.NSg?

715.(NNom)?
715.(NNom)-

5

@2.865@ •

7@1.865@
8•

820.(VSg3)?
820.(VSg3)+

9

3.CLB-
3.CLB?

820.(VSg3)?
820.(VSg3)-

Figure 6: Two contracted context automata.

the obtained minimal deterministic grammar au-
tomaton has only 5277 states and 13445 transi-
tions. This saves some space because of the shared
states. On average, each rule corresponds to 3.8
states and 9.8 transitions.

A striking thing in this automaton is that 98%
of the states have 1 - 7 transitions and three states
have 887 - 919 transitions. This suggests that, in
the product construction, the computation of the
product can be optimized by taking advantage of
the size asymmetry inside the product states and
the probability of the transitions. If |F | is fixed,
the product is computed in O(ne) time where e is
the number of states in the grammar automaton.

The total complexity of iterated context testing
is bounded by O(n2|R|e). It is conjectured, how-
ever, that the average time complexity of a proper
implementation is close to O(ne log |R|) because
(i) the amortized O(1) proximity and refreshing
can eliminate the effect of O(n) iterations and (ii)
an average cohort is refined by partitioning it into
two halves (log |R| rather than |R|).

5.5 Compilation of Contracted Contexts

The Infiltration In formal language theory
(Sakarovitch, 2009), the infiltration of words
u, v ∈ Γ∗, denoted with u ↑ v, is defined as the set
of words w s.t. subwords u and v cover w com-
pletely. More formally, u ↑ v consists of strings
x1...xn ∈ Γ∗ for which

I = {i1, ..., in}, i1<i2<...<in, u = xi1 ...xin ,

J = {j1, ..., jn}, j1<j2<...<jn, v = xj1 ...xjn ,

I ∪ J = {1, ..., n}.

The set {ABC, ABBC, ABCB, BABC, BACB, BCAB} ⊆
Γ∗, for example, is given as AB ↑ BC.
The operation extends additively to lan-
guages U, V ⊆ Γ∗ by the definition
U ↑ V = {w ∈ u ↑ v |u ∈ U, v ∈ V }.
The infiltration operation is implemented by a
state pair construction over automata.

The Synchronization The CG compiler com-
bines conjunctive conditions through the synchro-
nized infiltration operation U ↑S,< V where
U, V ⊆ Σ∗. The infiltration is restricted in two
ways: First, we define a set of synchronization
symbols S that include the cohort boundary sym-
bol (•), and require that {i | xi ∈ S} ⊆ I ∩ J
holds for this set. Second, we require that the ad-
jacent letters xi, xi+1 are in a strictly increasing
order (<) if neither is the cohort boundary symbol
(•). Feature symbols SG+, SG− and SG?, for ex-
ample, are incomparable letters of Σ, which means
that they cannot be adjacent with each other.

The Anchors The relative conditions are an-
chored to the target cohort by a rule marker.
Therefore, rule markers @1.r@, @2.r@ ∈ R are
called anchors. The linked conditions use other
anchors whose shape is @LINK.n@ (n = 1, 2, ...).
Under the synchronized infiltration, the set of syn-
chronization symbols includes the anchors shared
by both U and V . The internal anchors are sup-
pressed after they have been used as synchroniza-
tion symbols. The application of synchronized in-
filtration to linked conditions is illustrated in Fig-
ure 7.

6 The Implementation

The current rule compiler has been created by
adapting the skeleton of the Foma tool (Hulden,
2009) to the purposes. The extensions include the
infiltration operation, the symbol tables and other
essential compiler logic. The compiler is inte-
grated into the parser, whose data structures and
algorithms were written from the scratch in order
to optimize the computations on cohort automata.
Some parts of the system are still under construc-
tion. Therefore, experiments on complete parsing
are not yet available.

The contracted grammar automaton of 1380
rules is constructed in 20 seconds by the rule com-
piler. In the parser, about 110 000 cohort automata
were read, minimized and mapped to the inte-
ger vectors of 1216 features in 1 second (2.2-Ghz
Core-2-Duo laptop).

7 Evaluation

The presented parser design has many advantages
that concern the space and time requirements and
possible extensions. On the other hand, having
two finite-state representations of the sentence is

57

↘ ↙
↘ ↙

↘ ↙

Figure 7: The contracted context for [SELECT (V) ((*1C X) (LINK 1C Y) (LINK 1C Z))]0 is computed
with synchronized infiltration and by removing the intermediate link anchors.

clearly a conceptual complication, requiring a spe-
cial parsing algorithm that ties the representations
to each other.

Space Advantages The automaton representa-
tion of the grammar is close to the original gram-
mar size, fitting easily into cache memories. The
product of the grammar automaton and the sen-
tence is small and easy to compute.

Speed Advantages The current design is a step
towards high-speed CG parsing. This is argued by
the following points: (i) The low space complexity
sets better lower bounds for the time complexity.
(ii) The iterations take advantage of the prior con-
textual tests. (iii) The cohort automata compress
ambiguity. (iv) The contractions optimize the con-
structions. (v) The rules share various common
parts, which makes the parallel testing of contexts
faster. (vi) The combined contextual tests are com-
piled for each rule.

Possible Extensions The current design in-
creases the flexibility of the CG rules: (i) The ap-
plication mode can be altered easily. (ii) Coor-
dinated disambiguation rules can be implemented
for syntagmatic patterns. (iii) The context con-
ditions can be arranged to levels of exceptions
(@1.r@, @2.r@, @3.r@,...). (iv) The rule formalism
can be extended. (v) The borderline between mor-
phological and syntactic rules can be removed by
lexicalizing the intermediate mapping.

8 Conclusions

The paper has described a nonconventional CG
parser architecture using finite-state methods. In
the approach, the list representation of the read-
ings is replaced with a cohort automaton and fea-
ture vectors. The readings and contexts are tested
with contracted patterns. Iterated testing is opti-
mized with inward processing. The presented ar-

chitecture and its prototype are expected to lead to
an efficient and flexible parser and enrich the re-
lated research.

Acknowledgments

The work has been supported by the grant
#128536 “Open and Language Independent
Automata-Based Resource Production Methods
for Common Language Research Infrastructure”
of the Academy of Finland. I am also indebted
to A. Voutilainen, F. Karlsson, K. Koskenniemi,
K. Lindén, and T. Trosterud for long-time inter-
est, PSC 2010 reviewers for suggestions, CG 2011
participants for helpful responses in Riga, and for
M. Hulden for discussions in Blois.

References

Steven Abney. 1991. Parsing by chunks. In Robert
Berwick, Steven Abney, and Carol Tenny, editors,
Principle-Based Parsing. Kluwer Academic Pub-
lishers.

Salah Aı̈t-Mokhtar and Jean-Pierre Chanod. 1997. In-
cremental finite-state parsing. In Proc. 5th ANLP,
the Conference on Applied Natural Language Pro-
cessing, pages 72–79, Washington, DC.

G. Edward Barton, Jr. 1986. Constraint propagation
in Kimmo systems. In Proc. 24th ACL, pages 42–
52, New York, NY, July 10-13. The Association for
Computational Linguistics (ACL), Stroudsburg, PA.

Glenn David Blank. 1989. A finite and real-time pro-
cessor for natural language. Communications of the
ACM, 32(10):1174–1189, October.

Henning Bordihn, Henning Fernau, Markus Holzer,
Vincenzo Manca, and Carlos Martı́n-Vide. 2006. It-
erated sequential transducers as language generating
devices. Theoretical Computer Science, 369:67–81.

Eric Brill. 1992. A simple rule-based part of speech
tagger. In Proc. 3rd ANLP, Trento, Italy

58

Kenneth Ward Church. 1988. A stochastic parts pro-
gram and noun phrase parser for unrestricted text. In
Proc. 2nd ANLP, pages 136–143, Austin, TX.

Tino Didriksen. 2010. Constraint Grammar Manual:
3rd version of the CG formalism variant. Grammar-
Soft Aps, Denmark.

Jorge Graña, Gloria Andrade, and Jesús Vilares. 2003.
Compilation of constraint-based contextual rules for
part-of-speech tagging into finite state transducers.
In Proc. 7th CIAA, the Conference on Implementa-
tion and Application of Automata, pages 128–137,
Springer-Verlag, Berlin, Germany.

Gregory Grefenstette. 1999. Light parsing as finite
state filtering. In András Kornai, editor, Extended
finite state models of language, pages 86–94. Cam-
bridge University Press, New York, NY.

Maurice Gross. 1968. Grammaire transformationnelle
du francais, volume 1, Syntaxe du verbe. Larousse,
Paris, France.

David A. Huffman. 1971. Impossible Objects as Non-
sense Sentences. Machine Intelligence, 6:295–323.

Mans Hulden. 2009. Foma: a finite-state compiler and
library. In Proc. Demonstrations Session at the 12th
EACL, pages 29–32, Athens, Greece. ACL, Strouds-
burg, PA.

Mans Hulden. 2011. Constraint grammar parsing with
left and right sequential finite transducers. To appear
in Proc. 9th FSMNLP, Blois, France. ACL, Strouds-
burg, PA.

C. Douglas Johnson. 1972. Formal Aspects of Phono-
logical Description. Number 3 in Monographs on
linguistic analysis. Mouton, The Hague.

Aravind K. Joshi and Phil Hopely. 1996. A parser
from antiquity. Natural Language Engineering,
2(2):291–294.

Aravind K. Joshi and Leon S. Levy. 1982. Phrase
structure trees bear more fruit than you would have
thought. American Journal of Computational Lin-
guistics, 8(1):1–11.

Tomasz Jurdziński, Friedrich Otto, František Mráz,
and Martin Plátek. 2005. Deterministic two-way
restarting automata and Marcus contextual gram-
mars. Fundamenta Informaticae, 64(1–4):217–228.

Fred Karlsson, Atro Voutilainen, Juha Heikkiä, and
Arto Anttila, editors. 1995. Constraint Grammar:
a Language-Independent System for Parsing Unre-
stricted Text, volume 4 of Natural Language Pro-
cessing. Mouton de Gruyter, Berlin and New York.

Fred Karlsson. 1990. Constraint Grammar as a frame-
work for parsing unrestricted text. In H. Karlgren,
editor, Proc. 13th COLING, volume 3, pages 168–
173, Helsinki, Finland. International Committee on
Computational Linguistics (ICCL).

Lauri Karttunen. 1997. The replace operator. In Em-
manuel Roche and Yves Schabes, editors, Finite-
State Language Processing, chapter 4, pages 117–
147. A Bradford Book, the MIT Press, Cambridge,
MA, USA.

Lauri Karttunen. 1998. The proper treatment of op-
timality in computational phonology. In Proc. 2nd
FSMNLP, pages 1-12, Bilkent University, Ankara,
Turkey.

Kimmo Koskenniemi, Pasi Tapanainen, and Atro
Voutilainen. 1992. Compiling and using finite-state
syntactic rules. In Proc. 14th COLING, volume I,
pages 156–162, Nantes, France. International Com-
mittee on Computational Linguistics (ICCL).

Kimmo Koskenniemi. 1983. Two-level morphol-
ogy: a general computational model for word-form
recognition and production. Ph.D. thesis, num-
ber 11 in Publications of the Department of General
Linguistics, University of Helsinki. Yliopistopaino,
Helsinki, Finland.

Kimmo Koskenniemi. 1997. Representations and
finite-state components in natural language. In Em-
manuel Roche and Yves Schabes, editors, Finite-
state language processing, chapter 3, pages 99–116.
A Bradford Book, The MIT Press, Cambridge, MA.

Steven Krauwer and Louis des Tombe. 1981. Trans-
ducers and grammars as theories of language. The-
oretical Linguistics, 8:173–202.

Torbjörn Lager and Joakim Nivre. 2001. Part of
speech tagging from a logical point of view. In P. de
Groote, G. Morrill, and C. Retoré, editors, Logical
Aspects of Computational Linguistics, volume 2099
of Lecture Notes in Artificial Intelligence (LNAI),
pages 212–227. Springer-Verlag, Berlin, Germany.

Torbjörn Lager. 2001. Transformation-based learn-
ing of rules for constraint grammar tagging. Pre-
sented at the 13th Nordic Conference in Computa-
tional Linguistics, NODALIDA, Uppsala, Sweden,
May 21-22.

Nikolaj Lindberg and Martin Eineborg. 1998. Learn-
ing constraint grammar-style disambiguation rules
using inductive logic programming. In Proc. 36th
ACL / 17th COLING, Montréal, Quebec, Canada,
August 10-14, volume 2, pages 775–779. ACL,
Stroudsburg, PA.

Mitchell P. Marcus. 1980. A Theory of Syntactic
Recognition for Natural Language. The Series in
Artificial Intelligence. The MIT Press, Cambridge,
MA.

Hiroshi Maruyama. 1990. Structural disambiguation
with constraint propagation. In Proc. 28th ACL,
pages 31–38, Pittsburgh, PA. ACL, Stroudsburg, PA.

Denis Maurel. 1989. Reconaissance de sé quences de
mots par automates. Adverbes de date. Ph.D. thesis,
Université Paris 7, Paris, France.

59

Mehryar Mohri. 1994. Syntactic analysis by local
grammars automata: an efficient algorithm. In D. K.
Kiefer, G. Kiss, and J. Pajzs, editors, Proc. Interna-
tional Conference on Computational Lexicography
(COMPLEX 94), pages 179–191, Budapest, Hun-
gary.

Kemal Oflazer and Gökhan Tür. 1997. Morphological
disambiguation by voting constraints. In Proc. 35th
ACL / 8th EACL, pages 222–229, Madrid, Spain.
ACL, Stroudsburg, PA.

Ivan Petrov Peikov. 2006. Direct construction of a
bimachine for context-sensitive rewrite rule. Mas-
ter’s thesis, Sofia University St. Kliment Ohridski,
Faculty of Mathematics and Computer Science, De-
partment of Mathematical Logic and Applications,
Sofia.

Janne Peltonen. 2011. Rajoitekielioppien toteutuk-
sesta äärellistilaisin menetelmin. Master’s thesis,
University of Helsinki, Department of Modern Lan-
guages, Helsinki.

Paul Stanley Peters and Robert W. Ritchie. 1969.
Context sensitive immediate constituent analysis —
context-free languages revisited. In Proc. ACM
Symposium on Theory of Computing, pages 1–8,
Marina del Rey, California, May 5–7.

Martin Plátek, Markéta Lopatková, and Karel Oliva.
2003. Restarting automata: motivations and
applications. In M. Holzer, editor, Workshop
Petrinetze und 13. Theorietag Automaten und For-
male Sprachen, pages 90–96, Institut für Informatik,
Technische Universität München, München, Ger-
many.

Emmanuel Roche. 1994. Two parsing algorithms
by means of finite state transducers. In Proc. 20th
COLING, volume 1, pages 431–435, Kyoto, Japan.
International Committee on Computational Linguis-
tics (ICCL).

Emmanuel Roche. 1997a. Compact factorization
of finite-state transducers and finite-state automata.
Nordic Journal of Computing, 4(2):187–216.

Emmanuel Roche. 1997b. Parsing with finite-
state transducers. In Emmanuel Roche and Yves
Schabes, editors, Finite-state language processing,
chapter 8, pages 241–281. A Bradford Book, the
MIT Press, Cambridge, MA.

Jacques Sakarovitch. 2009. Elements of Automata
Theory. Cambridge University Press, Cambridge,
NY.

Nicolae Santean and Sheng Yu. 2006. On weakly
ambiguous finite transducers. In O.H. Ibarra and
Z. Dang, editors, DLT 2006, volume 4036 of LNCS,
pages 156–167. Springer-Verlag, Berlin, Germany.

Wojciech Skut, Stefan Ulrich, and Kathrine Hammer-
vold. 2004. A bimachine compiler for ranked
tagging rules. In Proc. 20th COLING, Geneva,

Switzerland. International Committee on Computa-
tional Linguistics (ICCL).

Pasi Tapanainen. 1996. The Constraint Grammar
Parser CG-2. Number 27 in Publications of the
Department of General Linguistics, University of
Helsinki. Yliopistopaino, Helsinki, Finland.

Pasi Tapanainen. 1999. Parsing in two frame-
works: finite-state and functional dependency gram-
mar. Ph.D. thesis. Department of General Linguis-
tics, University of Helsinki, Finland.

Atro Voutilainen. 1994. Three studies of grammar-
based surface parsing of unrestricted English text.
Ph.D. thesis, number 24 in Publications of the
Department of General Linguistics, University of
Helsinki. Yliopistopaino, Helsinki, Finland.

William A. Woods. 1970. Transition network gram-
mars for natural language analysis. Communica-
tions of the ACM, 13(10):71–87. Association for
Computing Machinery (ACM).

Anssi Yli-Jyrä. 1995. Schematic finite-state intersec-
tion parsing. In Kimmo Koskenniemi, editor, Short
Papers Presented at the 10th Nordic Conference of
Computational Linguistics (NODALIDA-95), pages
95–103, Helsinki, Finland, 29–30 May.

Anssi Yli-Jyrä. 1997. Menetelmiä äärellisiin
automaatteihin perustuvan lauseenjäsennyksen
tehostamiseksi. Master’s thesis, Department
of General Linguistics, University of Helsinki,
Helsinki, Finland.

Anssi Yli-Jyrä. 2005. Contributions to the Theory of
Finite-State Based Grammars. Ph.D. thesis, num-
ber 38 in Publications of the Department of General
Linguistics, University of Helsinki. Yliopistopaino,
Helsinki, Finland.

Anssi Yli-Jyrä. 2007. Transducers from parallel
replacement rules and modes with generalized le-
nient composition. In Thomas Hanneforth and Kay-
Michael Würzner, editors, Finite-State Methods and
Natural Language Processing, 6th FSMNLP, Re-
vised Papers, pages 197–212, Potsdam University
Press, Potsdam, Germany.

Anssi Yli-Jyrä. 2010. Efficient context-sensitive
rewriting with inward deterministic transducers. A
submitted manuscript.

Anssi Yli-Jyrä. 2011a. Compiling simple context re-
strictions with nondeterministic automata. To ap-
pear in Proc. 9th FSMNLP, Blois, France. ACL,
Stroudsburg, PA.

Anssi Yli-Jyrä. 2011b. Explorations on positionwise
flag diacritics in finite-state morphology. In Bo-
lette Sandford Pedersen, Gunta Nešpore, and Inguna
Skadin, editors, NODALIDA 2011 Conference Pro-
ceedings, pages 262–269, Riga, Latvia.

60

An Experiment of Use and Reuse of Verb Valency in
Morphosyntactic Disambiguation and Machine Translation for

Euskara and North Sámi

Linda Wiechetek
Giellatekno / Romssa universitehta

linda.wiechetek@uit.no

Jose Mari Arriola
IXA / Euskal Herriko Unibertsitatea

josemaria.arriola@ehu.es

1 Introduction

There are a number of well known resources deal-
ing with verb valency including PropBank (Palmer
et al., 2005), VerbNet (Kipper et al., 2006) and
VALLEX (Hajič et al., 2003). These include the-
matic roles, morpho-syntactic specifcations and se-
lection preferences. A comparatively wide defi-
nition of valency including subcategorization in-
formation on all mentioned linguistic levels is ap-
plied here. However, these resources have not often
been used in rule-based NLP tasks such as machine
translation or disambiguation. Bick (2000) uses
syntactic verb valency tags specifying e.g. tran-
sitivity and selection preferences for various NLP
tasks. The use of verb valency is on a high level
of grammatical analysis and requires other elabo-
rated linguistic resources. Bick (2000) uses tags
specifying transitivity preferences such as "prefer-
ably transitive, but potentially intransitive" but
also selection preferences, e.g. specifying a hu-
man accusative. Agirre et al. (2009) successfully
apply valency information, i.e. case subcatego-
rization information, to the Spanish->Euskara MT
system Matxin in order to improve NP/PP trans-
lation. They present different kinds of tests enrich-
ing their machine translation system with different
techniques. In all cases, the combinations of tech-
niques that include valency information produce
the best results especially in recall and F-score.

This paper describes an experiment for the ap-
plication of verb valency in Euskara and North
Sámi rule-based NLP applications, i.e. morpho-
syntactic disambiguation and machine translation.
10 frequent verbs each are annotated to improve
the analysis, and later the effects on the applica-
tion is evaluated.

The main objective of the experiment is improv-
ing linguistic resources for North Sámi and Eu-
skara taking advantage of pre-existing existing re-
sources in one language and transfering them to
the other language. Other works (Antonsen et al.,
2010) have shown that the reuse of grammatical
resources between both related and unrelated en-
dangered languages is possible and provides useful
results, especially on a high level of linguistic anal-
ysis. In Antonsen et al. (2010) especially the reuse
of the dependency grammar is described.

A number of problems that syntax alone cannot

handle can be resolved by semantically richer in-
formation included in verb valency. Verb valency
annotation is applied on a high level of linguistic
analysis and is therefore useful for reuse even for
unrelated languages.

2 The experiment
The test cases used in this experiment regard
morpho-syntactic disambiguation and machine
translation and improve the analysis / translation
by making use of valency information.

In many cases, pure syntactic information is
not sufficient for the morpho-syntactic disambigua-
tion of nouns, and richer linguistic information is
needed. The same counts for machine translation,
where morpho-syntactic generation of nouns and
polysemy resolution can require high-level linguis-
tic analysis.

The languages in question are lesser-used lan-
guages, with 15,000 to 25,000 North Sámi speak-
ers and 775,000 Euskara speakers. North Sámi
and Euskara are unrelated languages. Euskara is
a language isolate, while North Sámi belongs to
the Finno-Ugric language family. One major sim-
ilarity is their morphological complexity: Euskara
is an agglutinative language and North Sámi has
both agglutinative and inflective features. They
also both have a medium to large sized system
of affixed case markers/postpositions. North Sámi
has 7 cases (nominative, genitive, accusative, loca-
tive, illative, comitative, essive), while Euskara
has 17 affixed cases/postpositions (ergative, abso-
lutive, possessive genitive, local genitive, dative,
allative, ablative, inessive, destinative, partitive,
prolative, instrumental, sociative, motivative, di-
rectional and terminative) 1. In North Sámi, two
of the main ambiguities are genitive-accusative and
comitative-locative with a significant impact on the
F-Score of the analysis.

In Euskara, the homonymy of absolutive plural
and ergative singular cause approximately 40% of
the ambiguity left after morpho-syntactic disam-
biguation.

1The definition of the terms case/postposition is
disputed. In the current terminology only ergative,
absolutive and dative are considered cases, while the
others are considered affixed postpositions.

61

(1) Nekez lortu nuen zure ezpainak ikustea.
Hardly achieve do-I-it.past your lip-
erg.sg/abs.pl see-vnoun.abs.sg
‘I hardly managed to see your lips.’

In example (1), the ergative singular/absolutive
plural ambiguity can be seen in the word ezpainak
‘lips’. The form can potentially be a subject, ob-
ject or predicate in absolutive case and a subject in
ergative case. In this sentence the object reading
holds, therefore absolutive case should be selected.
The ergative interpretation can be discarded based
on valency requirements of the nominalized verb
ikustea ‘seeing’. The ambiguity is not resolved in
the current version of the Euskara analyzer, but
can be resolved by similar methods as in North
Sámi.

2.1 Technical and linguistic background

The Euskara and Sámi sentence analysis NLP
tools built at the University of the Basque coun-
try and the University of Tromsø have a sim-
ilar structure. They contain finite-state trans-
ducers for the morphological analysis compiled
with the Xerox compilers twolc and lexc (Beesley
and Karttunen, 2003). They can alternatively be
compiled with the open-source compilers HFST
(Lindén et al., 2009) (North Sámi) and foma (Ale-
gria et al., 2010) (Euskara). For syntactic analysis
and morpho-syntactic disambiguation, Constraint
Grammar parsers are being used (Karlsson, 2006).

One main difference between the systems is that
while for North Sámi, morphological and syntactic
modules are strictly separated, for Euskara most
of the syntactic tags are annotated in the same
module that adds morphological information to the
lemmata. The thought behind that was that mor-
phology and syntax are closely related and in a
number of cases the syntactic function can be un-
ambiguously mapped to the morphological repre-
sentation.2 In North Sámi mapping the tags at the
same time would lead to imense overgeneration, as
there is a huge amount of homonymy. The syntac-
tic mapping and disambiguation is organized a bit
differently / takes different philosophies as their
basis. North Sámi has a large mapping section
where by means of context specifications, secure
syntactic tags are mapped and disambiguated at
an early phase. In Euskara, most of the syntax
is first introduced with all ambiguity regardless of
the context, and later select and remove rules take
care of disambiguation. Another difference is that
Euskara has several seperate modules that treat
different syntactic tasks, in North Sámi, one gram-
mar handles all of the syntactic tag mapping ex-
cept for explicit dependencies. Some of the mod-
ules that are used for Euskara, mainly the chunking
module, which is introduced to handle dependen-

2The ergative plural suffix -ek is always a subject
@SUBJ.

cies, do not exist for North Sámi. In North Sámi,
recognizing chunks (such as relative clauses etc.)
is done implicitly by selecting barriers for phrases
and making classes of clause-boundary identifiers.

North Sámi machine translation uses the open-
source rule-based machine translation platform
Apertium3 (Forcada et al., 2009). There are
existing prototypes for North Sámi Lule Sámi
(sme-smj), South Sámi (sme-sma), Finnish (sme-
fin), Norwegian (sme-nob) and Euskara (eus-
sme). Apertium works with shallow transfer and
uses finite-state transducers, hidden Markov mod-
els (HMM), Constraint Grammar and finite-state
based chunking.

Most of the ambiguity for North Sámi can be
resolved by means of sets for verb valency, seman-
tic prototype sets for nouns and linguistic rules
that make use of those (Trosterud and Wiechetek,
2007). There are approximately 60 sets that cat-
egorize the verbs according to the syntactic cases
they subcategorize for and approximately 160 sets
of nouns according to their semantic properties.
CG morpho-syntactic rules apply this information
and rule out either one of the cases (Trosterud and
Wiechetek, 2007).

A set specifying the syntactic subcategorization
is for example LOCV containing verbs like bal-
lat ‘fear’ and jearrat ‘ask’. It is used in a rule
asking for an argument in locative case. A set
specifying the semantic subcategorization on the
other hand is PLACE-V containing verbs such
as čuožžut ‘stand’ and orrut ‘live’. It is used in
a rule typically selecting locative instead of comi-
tative case if the argument is a noun denoting a
place.

For Euskara, a few general semantic features
derived from the machine translation system
MATXIN (Mayor et al., 2011) such as ANI-
MATE, HUMAN, TIME, MATERIAL, VE-
HICLE and LANGUAGES are used. North
Sámi on the other hand has also more specific
sets, such as EDUCATION containing words
like skuvla ‘school’ giellagursa ‘language class’ and
PLACE containing words like jeaggi ‘swamp’, lu-
ossabáiki ‘salmon fishing place’ and gávpot ‘city’.

For complex NLP tasks, often a systematized
way of storing valency information is desirable.
Subcategorization information of verbs (and other
PoS as well) is more complex than simple semantic
categorization of nouns as it includes morpholog-
ical, syntactic and semantic information, which is
related not only to the verb itself but to a number
of arguments that are potentially related to the
verbs. Multiple dimensions need to be considered
when working with valency.

Sets to encode subcategorization information
for verbs encode the information in a fairly one-
dimensional way. The main disadvantage of the
codification of valency information in sets is that

3http://www.apertium.org
62

Figure 1: Comparison of the chains for Euskara and North Sámi; the shaded areas mark the places where valency
annotation is included

interchunk

morph.
analyser

constraint
grammar

lexical
transfer

morph.
generator

SL
text

TL
text

deformatter

reformatter

chunker interchunk postchunk

structural transfer
lexical

selection

Figure 2: The chain of modules in Apertium

63

<verb lm="hil">
<frame id="1">

<ex>Miren hil da.</ex>
<glosses>

<gloss lang="eng">Miren has died.</gloss>
<gloss lang="sme">Miren lea jápmán.</gloss>

</glosses>
<theme>

<case>abs</case>
<syn>subj</syn>
<sem>animate</sem>

</theme>
</frame>
...

Figure 3: Verb valency information

the information cannot always be accessed as a
whole. In some cases the lemmata in the sets are
polysemous, and only one of the meanings is rel-
evant in a certain context. For example, a rule
applying the previously named set of place-verbs
PLACE-V hits for the Sámi verb orrut ‘1. stay,
live 2. seem, where it should only hit when the
first sense ‘stay, live’ is used. If a full valency
specification of the verb is available, this problem
can be avoided e.g. in tasks as MT as the word
senses can be distinguished together with their va-
lencies. Therefore a multi-dimensional representa-
tion of valency information is desired.

For Euskara on the other hand, an elaborated
database of 100 verbs originally developed for
the Euskara PropBank Aldezabal et al. (2010) al-
ready exists. It contains rich valency information,
i.e. semantic frames including semantic roles and
morpho-syntactic information. Here the valency
aspect is approached very much from the linguis-
tic side and not so much based on NLP problems
(e.g. ambiguity, lexical selection etc.). The chal-
lenge of applying the database to NLP tasks lies in
the adaptions that are necessary in order to resolve
NLP specific problems. As Bick (2000) claims, his
categories are made to distinguish meaning, not to
define it.

2.2 Annotation of frames
In the experiment, (Aldezabal et al., 2010) verb
valency information is converted into valency tags
for both Euskara and North Sámi that can be used
for disambiguation and machine translation. Code
3 illustrates the way the information is encoded in
the database that is meant to be used at a later
stage of development.

Each verb can have several frames of argument
constellations. The Euskara verb hil ‘die; kill’ for
example has two frames, one for the sense die and
the other for the sense kill. In the first sense it has
only one argument, in the second it has two.
1 hil V Thcase_Abs Thsyn_Subj Thsem_Ani
2 hil V Agcase_Erg Agsyn_Subj Pacase_Abs

Pasyn_Obj Pasem_Ani

Arguments are ordered by semantic roles (e.g.
agent, theme, topic, patient, location) because

they are more unique4 than syntactic arguments
(it is very common to have several adverbials in
one sentence). The semantic role level is further-
more perceived as being more abstract and there-
fore more language-independent, which makes it
suitable for reuse for other languages. Arguments
have 3 possible attributes: case (or postposition)
such as (nominative, accusative, ergative), syntac-
tic function (subject, object, adverbial), and se-
lection restrictions (human, concrete, place). In
the case of the verb hil ‘die; kill’, the first argu-
ment, characterized by the semantic role theme,
has the three attributes Thcase_Abs (absolutive
case) Thsyn_Subj (syntactic function subject)
Thsem_Ani (selection restriction animate).

For each verb in Euskara, each frame had to be
matched to a verb in North Sámi. In many cases,
a lemma in Euskara could not be directly trans-
lated to a Sámi verb, the valency frames had to
be taken into account to find the correct equiv-
alent(s). When the equivalent in Sámi had been
found, the frames were copied to Sámi, and in a
second step adaptions were made. While roles in
principle stayed the same, cases and to a smaller
degree also syntactic functions had to be changed.

For test purposes, we found that the easiest way
to annotate valency information was by means of
Constraint Grammar rules.

The rules adding the valency tags to the verb
lortu ‘achieve, get’ have the following format:
ADD (Agcase_Erg Agsyn_Subj Thcase_Abs

Thsyn_Obj) TARGET (ADI) IF (0 LORTU);

This format is sufficient for the annotation of a
small amount of verbs for testing purposes. For
a large-scale annotation of verbs we would like
to include the tags automatically from the verb
database in figure 3.

2.3 Disambiguation

Verb valency information is used for syntactic dis-
ambiguation. In Euskara, both morphological and
syntactic ambiguity exist, i.e. one word recives
multiple analyses. Morphological ambiguity in Eu-
skara includes e.g. categorial ambiguity e.g. typi-
cally noun/verb ambiguity. For agglutinative lan-
guages there are additional sources of ambiguity
(number, case, etc.). One of the most pervasive
ambiguities is the one related to the suffix –ak, it
can codify absolutive plural or ergative singular.
Additionally the suffix -a causes significant ambi-
guity.

Syntactic ambiguity is added on top of morpho-
logical ambiguity. Disambiguation of subject or
object functions is needed to detect agreement er-
rors. Concerning the previously mentioned suffix
–ak the following ambiguity is given: absolutive
case can be subject, object or predicative, ergative
case on the other hand can only be a subject.

4Constellations with e.g. two themes are possible
but not that frequent.

64

This suffix can be attached mainly to nouns and
also finite verbs (e.g. etorri den-ak ’the one who
has come’) or non-finite verbs (e.g. etortze-ak
’the coming’), which are converted into subordi-
nate clauses. Here, the ambiguity appears in much
more complex contests: finite or non-finite verbs
with subject, object or predicative function. The
same ambiguity is caused by the suffix –a.

In order to improve morpho-syntactic disam-
biguation, valency information is used to reduce
absolutive/ergative ambiguity and syntactic ambi-
guity. Both morpho-syntactic and syntactic ambi-
guity are closely related. For that reason, during
the first step absolutive or ergative case is selected,
and in the second step the correct syntactic tag is
chosen. This is done in a second constraint gram-
mar module. This module contains disambiguation
rules that make use of the valency. In the case of
lortu ‘achieve, get’ in example (1), the ambiguity
between the predicative and the object reading of
ezpainak ‘lips’ is resolved by means of the valency
of ikusi ‘to see’ and the object reading is selected
by means of the following rule.
SELECT (@OBJ) IF (0 ABS LINK 0 (@OBJ))

(NOT 0 ERG)(*1 Thcase_Abs BARRIER
ADI/ADL/ADT LINK 0 Thsyn_Obj);

The other ambiguity in the sentence consists
in the readings of the the non-finite verbal noun
ikustea ‘seeing’, which can be a subject, an object
or a predicate. In order to select the object read-
ing the rule checks if there is a verb, here lortu
‘to achieve’ to its left, that has an object in its
valency.
SELECT (@-NON-FINITE-VERB_CLAUSE_OBJ)

IF (O NON-FINITE-VERB)
(*-1 Thsyn_Obj BARRIER ADI/ADL/ADT);

Even though semantic roles are not explicitly an-
notated to the verbs’ arguments in running text,
the CG-rules make use of semantic role informa-
tion as in Thsyn_Obj ’the theme has the syntac-
tic function object’. In order to annotate semantic
roles, Bick and Valverde (2009) uses morphologi-
cal information (PoS, case etc.), syntactic informa-
tion (subj etc) and semantic information. In ad-
dition, barriers that identify beginning and end of
a phrase, are necessary to define the dependency
between verbs and their arguments, especially to
find long-distance dependencies in case there are
relative (subordinate) phrases etc. In general, it
can be said that by means of two elements of the
"triple" valency, semantic roles and dependencies,
the third one can be identified.

Therefore, it makes sense to refer to semantic
roles of the arguments of the verbs, even at this
stage of the analysis. Furthermore, semantic roles
are currently being annotated in the corpus of Eu-
skara, and will be available in the near future.

2.4 Machine Translation
In the case of machine translation, the use of
valency is meaningful for two subtasks. In the

first case, a default argument realization is cor-
rected to the one that suits the valency require-
ments/restrictions in the target language. Socia-
tive case in Euskara usually corresponds to comi-
tative case in Sámi (cf. Table 1).

Euskara North Sámi
ergative nominative
absolutive accusative,

(nominative, essive)
genitive genitive
inessive locative
ablative locative
dative illative
allative illative
benefactive illative
instrumental comitative
sociative comitative

Table 1: Default correspondences between a number
of relevant cases in Euskara and North Sámi

In some cases, the verb valency in the target
language deviates from the default case correspon-
dence as in example (2-a), where the case of the
experiencer is illative as assigned by a substitution
rule.

(2) a. Zergatik
Why

haserretzen
get.angry

zara
do.you

nirekin?
I.soc.sg

‘Why do you get angry with me’

b. Manin
Why

don
you

suhtat
get.angry

munnje?
I.ill.sg

‘Why do you get angry with me’

The following substitution rules assign valency
within a separate Apertium valency module to the
verbs in Euskara and North Sámi.

SUBSTITUTE (V) (V Caucase_Erg Caucase_Soc
Causyn_Subj Expcase_Abs Expsyn_Obj
Expsem_Hum) ("haserre");

SUBSTITUTE (V) (V Caucase_Nom Causyn_Subj
Causem_Hum Expcase_Ill Expcase_ala
Expsyn_Advl Expsem_Hum) ("suhttat");

Another substitute rule in a constraint grammar
valency module replaces the Euskara valency frame
for haserre by the North Sámi valency frame and a
transfer rule matches the correct case to the Sámi
noun based on the case attributes in the valency
frame.

As a default, a transfer rule as shown in 5 se-
lects a the most frequent corresponding case, e.g.
comitative, for a particular case, here sociative, in
Euskara.

The following rule picks a valency-based case, if
a verb valency tag asks for it. It sets case to +Acc
if Thcase is Thcase_Acc.

65

SUBSTITUTE (%Val Cacase_Erg Cacase_Soc
Casyn_Subj Excase_Abs Exsyn_Obj Exsem_Hum)
(%Val Cacase_Ill Cacase_ala Casyn_Advl
Casem_Hum Excase_Nom Exsyn_Subj Exsem_Hum)
("haserre");

Figure 4: Substitution rule in the valency module

<choose>
<when>

<test><equal><clip pos="1"
side="sl" part="case"/>
<lit-tag v="Soc"/></equal></test>

<let><clip pos="1" side="tl" part="case"/>
<lit-tag v="Com"/></let>

</when>
</choose>

Figure 5: Transfer of default cases

In the other case, i.e. lexical selection, depend-
ing on the valency frame of the verb, a specific
lexeme is chosen in the target language. The reg-
ular case when translating from one language to
the other, i.e. from Euskara to North Sámi, is that
there is more than one possible translation depend-
ing on the context, i.e. in most cases the valency
frame of the verb. The verb hil ‘die, kill’ translates
into jápmit ‘die’ with only the theme role realized.
With an animate patient object, it translates into
goddit ‘kill’.

The lexical selection module helps to pick the
correct equivalent. The lexicon specifies the possi-
ble lexical variants by means of numbers.

hil jápmit (die)
hil:1 goddit (kill)

A lexical selection rule picks the non-default
reading goddit ‘kill’ if it finds an animate abso-
lutive item to the left of it.

SUBSTITUTE ("hil") ("hil:1") ("hil")
(0 (Pacase_Abs Pasyn_Obj Pasem_Ani)
LINK *§PA LINK 0 ANIMATE BARRIER FAUX
OR S-BOUNDARY2);

3 Evaluation

3.1 Translation of frames

100 Euskara verbs were translated into 187 North
Sámi verbs on a frame-to-frame basis, i.e. a poly-
semy of at least 1,87 meanings per Euskara verb as
can be seen in table 2. Careful lexicography work

<choose>
<when>

<test><equal><var n="Thcase"/>
<lit-tag v="Thcase_Acc"/>
</equal></test>

<let><clip pos="1" side="tl" part="case"/>
<lit-tag v="Acc"/></let>

</when>
</choose>

Figure 6: Transfer: valency-based case selection

would of course increase the number of possibili-
ties. Of the 187 translations some doubles were
found, e.g. mannat ‘go’ (6x), boahtit ‘come’ (5x),
leat ‘be’ (3x), borrat ‘eat’ (4x), šaddat ‘become’
(3x). The 100 verbs have 219 listed frames, 184 of
those correspond to frames of North Sámi verbs, 35
do not. The correspondence is based on semantic
roles, not on syntactic correspondence or on case
correspondence.

Of the 35 that do not correspond, there are dif-
ferent types: some of the verbs lexicalize differ-
ent parts of the argument structure. While in Eu-
skara, barkatu ‘forgive’ and afaldu ‘have dinner’
consist of only one lexical unit, in North Sámi part
of the verb is realized as an argument addit ánda-
gassii ‘forgive’ and borrat eahketbiepmu ‘have din-
ner’ and therefore changes the argument structure
quantitatively. Verbs that do not correspond, both
quantitatively and qualitatively are motion verbs
such as atera ‘go out’, etorri ‘come’,igo ‘ascend,
rise’, iritsi ‘arrive’, pasatu ‘go by’, sartu ‘enter’
eraman ‘bring’. While in Euskara, typically both
source and destination are defined, in North Sámi
only either one belongs to the argument scheme.

Euskara N. Sámi
verbs 100 187
frames 219 -
- corresponding 184
- not corresponding 35

Table 2: Valency-based polysemy and correspondence
between verb frames

Typically, a change in valency also corresponds
to another translation equivalent. In some cases,
all frames of one verb in the source language are
translated with one verb in the target language, as
is the case for the verb elkartu ‘meet’, which trans-
lates into deaivvadit. In other cases polysemy is
not related to a distinction in frames. The verb jo
in its sense ‘hit’ for example translates into časkit
if the agent is a human. If the agent is a e.g. a
horse, it translates into nordadit. Here semantic
selection restrictions are necessary for a lexical se-
lection. But in general, semantic role based valency
seems to be very useful for a basic sense distinction
and lexical selection in machine translation.

3.2 Disambiguation

10 of the most frequent verbs for disambiguation
in Euskara were tested and evaluated. The test
corpus contains 177 verbs, the verbs evaluated in
the experiment represent 5,6% of the verbs of the
sample.

The valency frames of 10 verbs were annotated
by means of 48 mapping rules. The grammar con-
tains 47 disambiguation rules that resolve absolu-
tive / ergative, absolutive sg./ absolutive indefi-
nite, object, subject and predicative ambiguity for
Euskara. The rules can refer to valency tags rather

66

than the verb lemma and therefore apply to any
verb with the characterisitics that appear in the
context specification of the rule. The testcorpus is
running text and includes sentences without the
verbs that have been annotated. This leads to
low coverage on the one hand, but takes into ac-
count the general impact of the annotation with re-
spect to the frequency of the selected verbs on the
other hand. The precision and recall for the rules
involved in the disambiguation of the absolutive-
ergative syncretism case are 72% and 72% respec-
tively. While the overall analysis improves by 5.5
%, the figures for the ambiguity resolution aimed
at are higher. As can be seen in table 3, abs.pl.
- erg.sg. ambiguity resolution improves by 18 %,
and abs.sg. - abs. indef. ambiguity by 24 %.

precision 72 %
recall 72 %
disambiguation of
. . . abs.pl. - erg.sg. 18 %
. . . abs.sg. - abs. indef. 24 %
. . . abs./erg. - abs. sg./indef. 46.4 %
improvement for
. . . overall analysis 26.9 %
. . . abs./erg. - abs. sg./indef. 46.4 %

Table 3: Evaluation of morpho-syntactic disambigua-
tion for Euskara

In 13 of 83 cases, the subcategorization infor-
mation for the verbs is missing completely, in the
remaining 19 cases the existing rules do not man-
age to disambiguate correctly. Wrong applications
of rules are mainly due to the occurrence of sev-
eral verbs with different valencies in one sentence
and scope mistakes of the rules and low coverage
of semantically annotated nouns.

In 13 of those 19 erroneously applied rules, the
rule disambiguates based on the valency informa-
tion of an unrelated verb, in the 6 remaining cases
the semantic information of the nouns is missing.
In order to improve the results generalising and ex-
tending the subcategorization information to more
verbs, refining the disambiguation rules based on
verb subcategorization and finally improving the
semantic noun sets to meet the lexical selection re-
strictions of the verbs will be necessary.

3.3 Machine Translation

Valency information has been used for two distinc-
tive tasks in machine translation, syntactic trans-
fer (e.g. picking the correct morpho-syntactic re-
alization of the arguments) and lexical selection
(picking the correct lexical equivalent in the target
language). Since the basic free resources that are
necessary for a complete analysis are not available,
they cannot be included in the open-source Aper-
tium machine translation system and only the lex-
ical selection rules have been evaluated. 10 verbs
have been annotated and 29 rules refering to va-

lency information have been made for lexical se-
lection. Test sentences to evaluate the lexical se-
lection rules are taken from a newspaper corpus of
Euskara. This evaluation will be aimed at improv-
ing the existing hand-written rules. As such it will
be qualitative not quantitative. A full quantitative
evaluation is not possible as the non-availability of
existing grammatical resources prevents automatic
analysis. The evaluation is focussed on explain-
ing why in some cases where the rules do not ap-
ply. Usually this is not because it is impossible
to formulate a rule for a given context, but rather
that a linguist is not able to forsee all possible con-
texts without real-life sentences and extensive cor-
pus analysis.

The lexical selection rules are built in the fol-
lowing manner: They refer to a possible right and
a possible left context with a semantic role often
linked to a case or syntactic function. The context
is restrained by a barrier taking into consideration
possible markers of borders of clauses such as other
finite verbs, punctuation and subordinators. It is
obvious that these rules could easily be too simple
and that their constraints may have to be mod-
ified. With a dependency annotation of the the
relations in the sentence between the arguments
and the verb would be explicit and barriers would
not be necessary.

Rules for lexical selection that refer to quanti-
tative valency differences (differentiating between
translation equivalents by means of the number of
arguments) as in the case of hil ‘die; kill’ seems to
be pretty straightforward. The only difference is
that one has only a theme, while the other has an
agent and patient. In case of a missing agent, the
jápmit `die’ reading could be selected. The diffi-
culty is that in Euskara the agent does not have
to be explicit. Both subject, object and indirect
object can be dropped. The auxiliary on the other
hand is explicit about the number of grammatical
arguments, if the agent is missing another form of
the auxiliary is being used. But the auxiliary can
be missing too, either when it has the form of a
nominalization as in hiltzea ‘(the) dying/killing’ or
when preceeding a postposition as in 29 lagun hil
ondoren ‘after 29 people had died’ or ‘after they
had killed 29 people’.

When the decisive differences for lexical selection
are qualitative rather than quantiative, e.g. for
asmatu ‘guess, invent, think’ which can be trans-
lated as árvidit ‘guess’ or fuomášit ‘invent, come
up with, think’ subject/object drop can become a
problem. If it is translated as árvidit ‘guess’ it has
a theme role while fuomášit ‘invent, come up with,
think’ can have a product role. Furthermore it
needs to be taken into account that semantic roles
can also be carried by clauses such as itua bete
betean asmatzen zutenak ‘the ones that guessed the
aim exactly’, where the auxiliary zutenak ‘the ones
that did’ carries the semantic role. It makes there-
fore more sense if rules refer to syntactic functions

67

rather than morphological cases as carrier of se-
mantic roles.

With regard to barriers, it is important to take
into account how far the dependencies of a verb
span. In some cases the valency spans far (3), in
others they do not (4).

(3) - . . . zer-nolako harrera egin-go zion as-
matzera jarri zen
what-how welcome make-fut do-
past.subj.3.sg.obj.3.sg.iobj.3.sg think
bring be-past.subj.3.sg
she/he started thinking what kind of
welcome he/she would make her

Here a whole clause zer-nolako harrera egingo
zion is the argument of the nominalized verb as-
matu, and another finite verb zion ‘she/he did to
her/him’ is its argument instead of being a barrier.

In the following case on the other hand, the sub-
clause marker ‘-ela’ tells that the arguments of as-
matu cannot be outside the subclause and the fol-
lowing auxiliary and main verb are barriers to the
span of potential arguments.

(4) Ez duzu-la asmatu esan-go dizute, baina
badaezpada galdetu egiten du aurretik.
Not do-subj.2.sg.obj.3.sg.-
subclause guess tell-Fut do-
subj.3.pl.obj.3.sg.iobj.2.sg., but just in
case he/she ask him/her beforehand
They will tell you that you have not
guessed it, but just in case he/she ask
him/her beforehand

Rules can therefore be improved by taking
into consideration possible differences in restrict-
ing contexts when nominalizations are being used
or auxiliaries are missing. Without a dependency
annotation of the text, barriers need to be carefully
chosen and take into account possible subclauses
and clausal arguments of (nominalized) verbs, and
they need to distinguish between the two contexts.

4 Conclusion and future work
The experiment has shown that high-level gram-
mar resources encoding deep linguistic analysis
such as verb valency information can be reused
even for unrelated languages (such as Euskara and
North Sámi) and do not need to be built from
scratch. Even though language specific adaptions
with regard to syntax and morphology need to be
made, semantic role specifications can mostly be
transferred without changes. Verb valency infor-
mation is necessary for both linguistically based
disambiguation and machine translation tasks.

North Sámi constraint grammar disambiguation
rules that make reference to valency information
and semantic sets served as a model for devel-
oping Euskara disambiguation rules. Grammar

rules based on valency frames provide an efficient
way to reduce syntactic ambiguity as they man-
age to select the correct syntactic function in cases
where the syntactic context itself remains ambigu-
ous, but the argument specifications of the verb re-
solve this ambiguity. In machine translation on the
other hand, syntactic transfer involving valency-
dependent case realizations of the verb’s argument
can be accomplished by means of linguistic rules
that have access to valency information. Addition-
ally, we have seen that polysemy is frequently re-
lated to a distinction in valency, which is why va-
lency information has a key function in picking out
the correct argument realization and selecting the
correct lexical variant in the target language.

Developing parallel resources for two distinctive
and unrelated resources does not only benefit NLP,
we gain insights in contrastive grammar of under-
studied languages in general, and the work can
serve as a model for the devolopment of linguis-
tic resources for other languages.

Future plans involve extending both the re-
sources and linguistic rules for disambiguation and
machine translation. We want to annotate more
verbs with valency specifications, which existing
general rules apply to, and evaluate the results and
improvements. Automatic dependency annotation
and semantic role labelling are currently under de-
velopment and will not only serve the development
of grammar rules including valencies, but also ben-
efit from it. Inducing valencies automatically and
thereby extending valency resources is another fu-
ture task.

5 Acknowledgements
The research of this project has been supported by
the Department of Education, Universities and Re-
search of the Basque Government (IT344-10) and
University (UPV/EHU) (GIU09/19), Giellatekno
(Sámi language technology) at the University in
Tromsø and the NILS mobility project (Universi-
dad Complutense de Madrid). We would also like
to thank Francis Tyers for his helpful critical re-
marks and corrections.

References
Agirre, E., A. Atutxa, G. Labaka, M. Lersundi,
A. Mayor and K. Sarasola (2009), Use of rich
linguistic information to translate prepositions
and grammar cases to basque, in L.Màrquez and
H.Somers, eds, ‘BEST PAPER AWARD of the
XIII Conference of the European Association for
Machine Translation EAMT 2009’, Barcelona,
pp. 58–65.

Aldezabal, Izaskun, María Jesús Aranzabe,
Arantza Díaz de Illarraza, Ainara Estarrona and
Larraitz Uria (2010), ‘Euspropbank: Integrating
semantic information in the basque dependency
treebank’, Computational Linguistics and Intel-
ligent Text Processing pp. 60–73.

68

Alegria, I., I. Etxeberria, M. Hulden and M. Mar-
itxalar (2010), ‘Porting basque morphological
grammars to foma, an open-source tool’, Finite-
State Methods and Natural Language Processing
Lecture Notes in Computer Science 6062, 105–
113.

Antonsen, Lene, Linda Wiechetek and Trond
Trosterud (2010), Reusing grammatical re-
sources for new languages, in ‘Proceedings of
the International conference on Language Re-
sources and Evaluation LREC 2010’, The Asso-
ciation for Computational Linguistics, Strouds-
burg, pp. 2782–2789.

Beesley, Kenneth R. and Lauri Karttunen (2003),
Finite State Morphology, CSLI publications in
Computational Linguistics, USA.

Bick, E. (2000), The Parsing System ’Palavras’:
Automatic Grammatical Analysis of Portuguese
in a Constraint Grammar Framework, Aarhus
University Press, Aarhus.

Bick, Eckhard and Pilar Valverde (2009), Auto-
matic semantic role annotation for spanish, in
‘Proceedings of NODALIDA 2009’, Vol. 4 of
NEALT Proceedings Series, Tartu University Li-
brary, Tartu, pp. 215–218.

Forcada, Mikel L., Francis M. Tyers and Gema
Ramírez-Sánchez (2009), The free/open-source
machine translation platform Apertium: Five
years on, in F. T.J.A. Pérez-Ortiz, F. Sánchez-
Martínez, ed., ‘Proceedings of theFirst Inter-
national Workshop on Free/Open-Source Rule-
Based Machine Translation FreeRBMT’09’,
pp. 3–10.

Hajič, Jan, Jarmila Panevová, Zdeňka Urešová,
Alevtina Bémová and Petr Pajas (2003), Pdt-
vallex: Creating a large-coverage valency lexi-
con for treebank annotation, in ‘In: Proceed-
ings of The Second Workshop on Treebanks
and Linguistic Theories’, Vaxjo University Press,
pp. 57–68.

Karlsson, Fred (2006), Constraint Grammar - A
Language-Independent System for Parsing Un-
restricted Text, Mouton de Gruyter, Berlin.

Kipper, Karin, Anna Korhonen, Neville Ryant and
Martha Palmer (2006), Extending verbnet with
novel classes, in ‘Proceedings of the 5th Inter-
national Conference on Language Resources and
Evaluation, Genoa, Italy’.

Lindén, K., M. Silfverberg and T. Pirinen (2009),
Hfst tools for morphology—an efficient open-
source pacakge for construction of morphological
analyzers, in ‘Proceedings of Workshop on Sys-
tems and Frameworks for Computational Mor-
phology’, Zürich, Switzerland.

Mayor, Aingeru, Iñaki Alegria, Arantza Díaz
de Ilarraza, Gorka Labaka, Mikel Lersundi
and Kepa Sarasola (2011), ‘Matxin, an open-
source rule-based machine translation system for

basque’, Machine Translation Journal (to ap-
pear) .

Palmer, Martha, Paul Kingsbury and Daniel
Gildea (2005), ‘The proposition bank: An anno-
tated corpus of semantic roles’, Computational
Linguistics 31.

Trosterud, T. and L. Wiechetek (2007), ‘Disam-
biguering av homonymi i Nord- og Lulesamisk’,
Suomalais-Ugrilaisen Seuran Toimituksia = Mé-
moires de la Société Finno-Ougrienne. Sámit,
sánit, sátnehámit. Riepmočála Pekka Sammal-
lahtii miessemánu 21. beaivve 2007 253, 375–
395.

69

Author Index

Antonsen, L., 1

Bick, E., i, iv, 8

Deuchar, M., 17
Donnelly, K., 17

Hagen, K., i, 26

Johannessen, J. B., 26
Jose, M. A., 61

Lynum, A., 26

Müürisep, K., i

Nøklestad, A., 26

Peltonen, J., 35

Trosterud, T., i, 1

Voutilainen, A., 41

Wiechetek, L., 61

Yli-Jyrä, A., 50

70

