
LFG without C-structures

Özlem Çetinoğlu1, Jennifer Foster1, Joakim Nivre2,
Deirdre Hogan1, Aoife Cahill3, Josef van Genabith1

1Dublin City University, School of Computing
2Uppsala University, Department of Linguistics and Philology

3University of Stuttgart, IMS
E-mail: 1{ocetinoglu,jfoster,dhogan,josef}@computing.dcu.ie

2joakim.nivre@lingfil.uu.se 3aoife.cahill@ims.uni-stuttgart.de

Abstract

We explore the use of two dependency parsers, Malt and MST, in a Lex-
ical Functional Grammar parsing pipeline. We compare this to the tradi-
tional LFG parsing pipeline which uses constituency parsers. We train the
dependency parsers not on classical LFG f-structures but rather on modified
dependency-tree versions of these in which all words in the input sentence
are represented and multiple heads are removed. For the purposes of compar-
ison, we also modify the existing CFG-based LFG parsing pipeline so that
these "LFG-inspired" dependency trees are produced. We find that the dif-
ferences in parsing accuracy over the various parsing architectures is small.

1 Introduction

Phrase structure parsing has come a long way in the last decade. Techniques such as
iterative chart pruning (Charniak et al., 2006) and cell-closing (Roark and Holling-
shead, 2008) have been used to speed up parsing, and discriminative reranking
(Charniak and Johnson, 2005) and latent variable grammar induction (Matsuzaki
et al., 2005; Petrov et al., 2006) have pushed Parseval f-scores on the standard
Wall Street Journal test set over the 90% mark. In the same time period, de-
pendency parsing has also flourished (Yamada and Matsumoto, 2003; Nivre and
Nilsson, 2005; McDonald et al., 2005; Nivre et al., 2007). Dependency trees are
often viewed as a more intuitive and less anglocentric way of representing syn-
tactic phenomena, and a multilingual dependency parsing system such as Malt
allows such structures to be produced in linear or at worst quadratic time (Nivre
et al., 2006; Nivre, 2009). In the context of these two types of linguistic repre-
sentation, Lexical-Functional Grammar (LFG) (Bresnan, 2001) is an interesting
linguistic theory since it has a foot in both camps, encoding constituent structure

43

(c-structure) using context-free constituency trees and grammatical dependencies
between the main words in a sentence using directed acyclic graphs (f-structures).

In recent years there have been two main approaches within the LFG com-
munity to parsing text into LFG c-structures and f-structures: one in which hand-
crafted LFG grammars are used in conjunction with unification-based parsing (Ka-
plan et al., 2004; Maxwell and Kaplan, 1996) and another (Cahill et al., 2004,
2008) which uses treebank-based resources and an LFG f-structure Annotation Al-
gorithm (AA) which decorates nodes in treebank or parser-output CFG trees with
LFG functional equations which are then passed to a constraint solver to produce f-
structures. The advantages of the treebank-based approach to LFG-parsing include
substantially reduced grammar development time, high-quality, wide-coverage and
robust output, and the fact that the approach can be applied to languages for which
no hand-crafted wide-coverage LFG grammar is available but for which a CFG
treebank exists. LFG parsing pipelines (both those based on hand-crafted and tree-
bank resources) are CFG-based: a constituency parser produces trees and these
trees carry functional annotations from which a constraint solver can produce an
f-structure. Strong advances in dependency parsing in terms of both speed and ac-
curacy, and the fact that, for some languages (e.g., Turkish (Oflazer et al., 2003)),
only a dependency bank is available, raise interesting research questions: is it pos-
sible to directly parse strings into LFG f-structures, obviating the CFG-parsing
step in traditional LFG parsing architectures?1 Do current dependency parsing
technologies require changes in the f-structure level of representation? What are
the accuracy results for direct dependency-parsing-based LFG models as com-
pared to CFG-based pipelines?

We attempt to answer these questions by experimenting with Malt and MST in
treebank-based LFG parsing and comparing the results we obtain to those obtained
using the Brown and Berkeley parsers. In the direct dependency LFG parsing
pipeline, the dependency parsers are trained on LFG-inspired dependency trees,
obtained by modifying the f-structures produced by the AA from the original PTB
trees. In the CFG-based LFG parsing pipeline, constituency parsers are trained on
PTB trees and the AA is applied to the parser output, yielding f-structures. For
evaluation, these are then converted to dependency trees using the same procedure
which was used to produce the training material for the dependency parsers. We
document and discuss the implications of all design decisions which were applied
in order to convert the AA output so that it can be used with Malt and MST.

The paper is organised as follows: in Section 2, we describe LFG in more detail
and we show how the AA is applied to the output of constituency parsers to obtain
LFG f-structures; Section 3 details the changes that were made to the AA-based
LFG f-structure DAGs so that they could be used with parsers which directly pro-
duce dependency trees; the parsing experiments are described in Section 4; related
work is discussed in Section 5; finally, Section 6 summarises the main points of the
paper and suggests pointers for future work.

1Guo et al. (2008) explore a similar question for LFG-based generation.

44

2 LFG and Treebank-based LFG Acquisition

Lexical-Functional Grammar (Bresnan, 2001) is a constraint-based theory of gram-
mar with minimally two levels of representation: c(onstituent)- structure and f(unc-
tional)-structure. C-structure (CFG trees) captures language specific surface con-
figurations such as word order and the hierachical grouping of words into phrases,
while f-structure represents more abstract, language independent grammatical re-
lations (essentially bilexical labelled dependencies with some morphological and
semantic information, approximating to basic predicate-argument structures) in the
form of attribute-value structures or directed acyclic graphs (DAGs). F-structures
are defined in terms of equations annotated to nodes in c-structure (grammar rules).

Treebank-based LFG acquisition was originally developed for English (Cahill
et al., 2004, 2008) and is based on an f-structure annotation algorithm pipeline.
The pipeline has four main components: a constituency parser creates PTB style
trees. The function labeller FunTag (Chrupała et al., 2007) enriches the parser
output trees with the PTB function labels. This component is optional. The core
annotation algorithm annotates trees with f-structure equations, which are read off
the tree and passed on to a constraint solver producing a proto f-structure for the
given sentence. Finally, the long-distance dependency component resolves non-
local dependencies using automatically acquired subcategorisation frames and fi-
nite approximations of functional-uncertainty equations (Cahill et al., 2004).

3 LFG-Inspired Dependencies

The LFG AA takes PTB style trees and generates LFG f-structures. In order to
use the output of the AA to train the dependency parser, we convert the LFG f-
structure DAGs to dependency trees in the CoNLL format. LFG f-structures are
recursive attribute-value structures close to but not exactly the same as the bilexical
dependencies assumed in CoNLL format: LFG f-structures are somewhat more
abstract and, unlike for CoNLL-style dependencies, not every token in a string
is represented as a node (i.e. as the value of a PRED attribute) in the f-structure
(e.g. auxiliary sequences in languages with analytic tense are represented in terms
of abstract tense/aspect features). Words are represented as lemmas rather than
surface forms and properties of strings (tense, mood, statement-type, person etc.)
are encoded in terms of features. Non-local dependencies are represented in terms
of coindexation (reentracies in the graph) and dependencies can be multi-headed.

In order to use the output of the AA to directly train Malt and MST, we convert
the LFG f-structures to dependency trees by carrying out the following modifica-
tions:i) representing each token in the f-structure ii) removing dependencies that
result in multiple heads iii) avoiding multiple roots.

Representing each token in the f-structure: in LFG some words map to atomic-
valued features in the f-structures, rather than semantic forms. Moreover, punctua-

45




PRED ‘try’

SUBJ




PRED ‘other’

NTYPE


NSEM

[
COMMON count

]

NSYN common




CASE nom, NUM pl, PERS 3




1

XCOMP




PRED ‘spruce’

SUBJ
[
1
]

OBJ




PRED ‘program’

NTYPE


NSEM

[
COMMON count

]

NSYN common




ADJUNCT








PRED ‘frequent-flier’
ATYPE attributive
DEGREE positive








CASE obl, NUM pl, PERS 3




PASSIVE -, VTYPE main, PART up




TNS-ASP

[
TENSE pres, PERF +
PROG -, MOOD indicative

]

PASSIVE -, VTYPE MAIN, CLAUSE-TYPE NOM







PRED ‘have’

SUBJ
[

PRED ‘Others’
]

1

XCOMP




PRED ‘tried’

SUBJ
[
1
]

XCOMP




PRED ‘spruce’

SUBJ
[
1
]

OBJ




PRED ‘programs’

ADJUNCT

{[
PRED ‘frequent-flier’

]}



TOINFINITIVE
[

SURFACEFORM ‘to’
]

PARTICLEHEAD
[

SURFACEFORM ‘up’
]







PUNCTUATION
[

SURFACEFORM ‘.’
]




Figure 1: LFG f-structure for Others have tried to spruce up frequent-flier pro-
grams. in the original form (left) and as bilexical dependencies (right)

tion is not explicitly represented. In the CoNLL format, every token of a sentence
and its dependency relation has to be explicitly stated. In order to obtain a bilexical
dependency for every token in the input, we modify the AA to turn f-structures
into full bilexical dependencies, making sure that every token in the sentence is ex-
plicitly represented as a PRED (or SURFACEFORM)-valued node. for the sentence
Others have tried to spruce up frequent-flier programs. The original AA produces
the f-structure on the left in Figure 1. The auxiliary have is not explicitly repre-
sented in the f-structure but contributes to the values of the TENSE, PERF and MOOD

features. Similarly, the particle up does not have a PRED but is represented as a fea-
ture of the verb spruce. The modified f-structure for the same sentence is given on
the right. The converted f-structure has an explicit representation for the auxiliary
have, the verbal particle up, the infinitival marker to as well as for the punctuation
marker. Atomic-valued features like CASE, NUM are removed. The PRED features
now represent the surface form of the tokens rather than word lemmas.

Removing dependencies that result in multiple heads: For many non-local
dependencies such as wh-elements in relative clauses, topicalisation, and sub-
ject/object control, LFG (and the LFG AA) assigns multiple heads to a word. In
the example on the right in Figure 1 others is the subject of both have, tried and
spruce up. Multiple heads are not supported in the dependency tree representations
used by, for example, Malt.

In order to avoid multiple heads we follow two simple strategies. If the multi-
headed construction involves a discourse function (TOPIC, TOPICREL, FOCUS), we
remove this dependency, but (crucially) keep the dependency to the local head to
capture the non-local dependency. Otherwise we keep the dependency relation
with the head at the outermost level of the f-structure and remove the other depen-

46




PRED ‘have’

SUBJ
[

PRED ‘Others’
]

XCOMP




PRED ‘tried’

XCOMP




PRED ‘spruce’

OBJ




PRED ‘programs’

ADJUNCT

{[
PRED ‘frequent-flier’

]}



TOINFINITIVE
[

SURFACEFORM ‘to’
]

PARTICLEHEAD
[

SURFACEFORM ‘up’
]







PUNCTUATION
[

SURFACEFORM ‘.’
]




Figure 2: F-structure as bilexical dependencies with multiple heads removed

Figure 3: Dependency representation of the example sentence

dencies, as e.g. for cases of control. Our intention is to keep more informative
dependencies and ones that cause less non-projectivity.

The f-structure on the right in Figure 1 contains a multi-headed dependency
of the latter type. We keep the relation between others and have, and remove the
other dependencies. The resulting simplified f-structure is given in Figure 2. The
corresponding dependency representation for this f-structure is given in Figure 3.

Avoiding multiple roots: In the current version of the LFG-converted training
data, there are tokens without heads, arising from inadequacies in the LFG AA
or the f-structure-to-dependency-tree conversion procedure (detailed above). This
leads to f-structure fragments and corresponding multiple roots in the dependency
trees for a particular string. We automatically make heads of such fragments de-
pendent on a dummy root node ROOT with a dummy label dep.

In the LFG-inspired dependency conversion, we exclude PTB trees with FRAG-
(ment) constituents from the training data, as the LFG AA is not designed to deal
with such structures. For the phrases marked as X (unknown, uncertain, or un-
bracketable) in the PTB, we use the dummy dependency relation dep. In some
cases, the AA produces f-structures for only a small fragment of the tree and there
are no explicit dependency relations for the remaining words in the sentence. Since
we cannot obtain dependency relations for all tokens, we omit these sentences. At
this stage, the number of trees/f-structures in Sections 02-21 of the PTB correctly
converted to dependency trees is 39,163, i.e. 99.51% of the standard training set.
The work on the LFG dependency conversion is ongoing with the objective to

47

Multi-head Single-head
sentences 39132 39163
dependency types 25 25
multi-headed dependencies 7% 0%
non-projective dependencies 4.16% 0.15%
non-projective sentences 63.76% 2.52%
head left of modifier 51% 53%

Table 1: WSJ sections 02-21 conversion statistics for LFG bilexical f-structures
with multi-headed and single-headed dependencies

adjunct adjunct poss possesive
app apposition ∗possmarker possesive marker ’s
comp complement ∗prepositionhead used for so that, so as to, as if,...

these are MWEs in LFG
coord coordination item ∗punctuation punctuation
∗dep dependency (dummy) quant quantifier
det determiner relmod relative modifier
focus focus subj subject
obj object ∗toinfinitive to infinitive
obj2 2nd object (obj-th in LFG) ∗top top (root of a dependency tree)
obl oblique object topic topic
∗obl2 2nd oblique object topicrel relative topic
obl-ag oblique agent xcomp open complement
∗particlehead head of a particle

Table 2: LFG-inspired conversion tagset

eventually cover the whole training set.
The training set has different characteristics when multi-headed dependencies

are allowed and when multi-heads are removed to obtain single-headed dependen-
cies. The differences can be observed in Table 1. The percentage of multi-headed
dependencies is 7% and when they are removed, the non-projective dependencies
decrease to 0.15% from 4.16%. This has a drastic effect on the number of sen-
tences with at least one non-projective dependency, which drops down to 2.52%
from 63.76%. The LFG-inspired conversion tagset consists of 25 dependencies.
Table 2 lists those dependencies with their descriptions. The tagset is based on
core LFG grammatical functions present in the original LFG DAGs. The labels
marked with an asterisks indicate the additional dependencies that are not origi-
nally present in the LFG theory. The additional labels are used when the more
abstract f-structure DAGs are modified to represent more surfacy bilexical depen-
dencies in dependency trees that cover all tokens in the input strings.

4 Parsing Experiments

In this section, we describe our LFG parsing experiments. The four parsers we use
are described in Section 4.1, the experimental procedure is detailed in Section 4.2
and the results are presented in Section 4.3.

48

4.1 Parsers

Berkeley: The Berkeley parser (Petrov et al., 2006) is a generative constituency
parser which parses using an unlexicalised yet fine-grained smoothed PCFG. This
PCFG is obtained in an iterative process of splitting the treebank non-terminals
into subcategories, estimating the parameters of the resulting grammar using Ex-
pectation Maximisation and merging the less useful category splits. For efficient
parsing, multi-stage coarse-to-fine pruning using the intermediate grammars ob-
tained during training is carried out (Petrov and Klein, 2007). We train a grammar
using 6 split-merge cycles and we run the parser in accurate mode, meaning that
the pruning thresholds are tuned for accuracy at the expense of speed.

Brown: The Brown parser (Charniak, 2000) is a generative constituency parser
which uses a head-lexicalised smoothed PCFG which is conditioned on the parse
history and which combines five probability models fine-tuned for English. In
our experiments, we use both this parser and the reranking version in which the
n-best list returned by the generative parser is re-ordered using a discriminative
reranker trained on features which are unavailable to the original parser (Charniak
and Johnson, 2005). We employ these parsers in their out-of-the-box settings.

MaltParser: MaltParser is a flexible multi-lingual dependency parsing system
(Nivre et al., 2006). During training a classifier is induced to predict a parsing ac-
tion at a particular parsing configuration using information from the parse history
and the remaining input string. During parsing, the classifier is used to drive the de-
terministic construction of a dependency tree. MaltParser can be used with several
parsing algorithms including variants of shift-reduce parsing. We use the stacklazy
algorithm, which employs a swap operation so that non-projective structures can
be handled (Nivre, 2009). Following Attardi and Ciaramita (2007) we train a linear
classifier where the feature interactions are modelled explicitly.

MSTParser: While MaltParser learns to predict parsing actions, MST (Mc-
Donald et al., 2005), learns to predict entire dependency trees. The parser finds
the maximum spanning tree in a multi-digraph using one of several algorithms
described in McDonald (2006). For our experiments, we use the second-order
approximate non-projective parsing model introduced in McDonald and Pereira
(2006), which parameterizes dependency trees by pairs of adjacent sibling arcs and
uses hill-climbing to find the highest scoring (possibly non-projective) tree, starting
from the highest-scoring projective tree derived by dynamic programming (Eisner,
1996). MSTParser can be run in one or two stages. In the two-stage model, an un-
labelled tree is predicted and the labeling of dependency arcs is carried out during
the second stage. We employ the one-stage parser which directly predicts labels.

4.2 Procedure

In the LFG constituency parsing pipeline, i) The constituency parsers are trained
in the usual way on the PTB (function tags and traces are excluded from the training
trees). ii) Input sentences are parsed with the parsers. iii) The parse trees are

49

passed through the FunTag labeller (Chrupala et al., 2007) which assigns Penn-
II treebank function tags to raw CFG parser output trees. We also carry out the
experiment with this step omitted. iv) The LFG AA is applied to the constituency
trees producing LFG f-structures. v) Parser output f-structures are converted to
dependency trees. vi) The output is evaluated against the LFG-style dependency
trees for WSJ Sections 00 and 23.

In the LFG dependency parsing pipeline, i) The AA is applied to the PTB
training data producing f-structures. ii) The f-structures are converted into depen-
dency trees. iii) The dependency parsers are trained on the LFG-inspired depen-
dency trees. iv) Input sentences are parsed with the dependency parsers. v) The
output is evaluated against the LFG-style dependency trees for Sections 00 and 23.

Our training data consists of Sections 02-21 of the WSJ section of the PTB. We
use Section 00 as our development set to tune the MaltParser feature model and to
perform error analysis, and present final results on Section 23. We experiment with
the use of gold POS tags, POS tags obtained using a POS tagger (Giménez and
Màrquez, 2004) and, for Brown and Berkeley, POS tags produced by the parsers
themselves.2 We use the CoNLL evaluation metrics of labelled attachment score
(LAS) and unlabelled attachment score (UAS).3

4.3 Results

Evaluation results on Section 00 and on Section 23 are given in Table 3. We
observe that using FunTag leads to a 3% increase for constituency parsers. The
Brown+Reranker+FT architecture has the highest scores, outperforming even the
gold-POS-tagged systems. Constituency parsers with FunTag rank higher than
dependency parsers, but differences between the systems are small. The trends
for Section 00 carry over to Section 23. The main difference is that the two de-
pendency parsers, Malt and MST, suffer a greater drop in accuracy when using
predicted rather than gold POS tags.

4.4 Discussion

We examine Section 00 accuracy scores broken down by dependency type for all
parsing systems by picking the best non-gold-POS-tagged architecture for each
parser. All four systems have over 95% scores for subjects and objects. The per-
formance on adjuncts is almost the same (∼ 88%) in all systems. MST outperforms
all other systems in identifying thematic objects (obj2), followed by Malt. Con-
stituency parsers suffer on obj2 with scores lower than 50%. Coordination f-score
for constituency parsers is 85% while dependency parsers perform slightly worse
with a 80% f-score. The accuracy of all parsers drop down to the 70%-80% range

2Note that the Brown parsers always perform their own POS tagging.
3For replicability, we provide all experimental settings at http://www.nclt.dcu.ie/gramlab/

experiments.html

50

Section 00 Section 23
POS Parser LAS UAS LAS UAS

Gold

Berkeley 87.38 91.71 87.63 91.48
Berkeley+FT 90.51 92.10 90.81 92.27
Malt 89.02 90.64 89.01 90.59
MST 89.79 91.68 89.97 91.73

OwnTag

Berkeley 86.82 91.38 87.12 91.19
Berkeley+FT 89.97 91.8 90.29 91.95
Brown 86.30 90.93 86.56 90.81
Brown+FT 89.54 91.3 89.75 91.48
Brown+Reranker 87.55 92.24 87.72 92.04
Brown+Reranker+FT 90.811 92.593 91.13∗ 92.81∗

Predicted

Berkeley 86.97 91.42 86.51 90.60
Berkeley+FT 90.112 91.834 89.61∗ 91.33∗

Malt 88.66∗ 90.41∗ 87.57∗ 89.47∗

MST 89.43∗ 91.47∗ 88.51∗ 90.59∗

Table 3: Accuracy scores on Sections 00 and 23 for the LFG-inspired conversion
(p-value (1)&(2)=0.004; p-value (3)&(4)=0.002; For all other comparisons marked with *, p-value � 0.001)

for relative modifiers. The dummy dep relation is rarely used by the LFG-inspired
conversion and only identified by Brown+Reranker+FT albeit with very low scores.

The breakdown shows that thematic objects, relative clauses and coordination
are harder to recover regardless of the parsing system. Since the dep relation does
not represent a specific linguistic phenomenon, it is not possible to identify it either
for constituency parsers or dependency parsers. The small difference between the
constituency and dependency parsing results is promising for applications that can
sacrifice some accuracy for speed4. Another important issue is the granularity
of the information represented. The LFG-inspired dependencies omit almost half
of the features of the original LFG f-structures during the conversion. Some of
those features, such as morphological information can easily be incorporated into
CoNLL trees when needed. But information lost on functional relations such as
non-local dependencies are potentially harder to recover from dependency trees. In
future work, we will explore an approach that allows us to recover such functions
after parsing.

5 Related Work

Early research on LFG without full-fledged c-structures is presented in (Frank,
2003) and (Schneider, 2005). Both project f-structures (or f-structure like depen-
dencies) from chunks rather than full CFG trees.

Recent research which attempts to combine ideas from LFG and data-driven
dependency parsing is described in Schluter and van Genabith (2009) as well as
Øvrelid et al. (2009). Schluter and van Genabith (2009) are concerned with French
parsing: they convert LFG f-structures into pseudo-projective dependencies and

4The Berkeley parser (run in accurate mode) takes 10m25s to parse Section 23 compared to
3m17s for MaltParser on the same machine.

51

train both MSTParser and MaltParser on these. They conclude that the use of
a dependency parser is a reasonable alternative to a c-structure parser in an LFG
parsing pipeline. The approach of Øvrelid et al. (2009) is quite different: in contrast
to our approach they do not produce LFG-inspired dependency trees but adapt the
feature set used by MaltParser’s parser-action classifier so that it includes features
obtained from the hand-crafted ParGram English and German LFGs to improve
parser output in the format of CoNLL-style dependency trees.

6 Concluding Remarks

LFG f-structures are close to but not the same as the bilexical dependencies used
in dependency parsers and we have shown how f-structures can be systematically
converted into bilexical dependencies for use in direct parsing into f-structure, ob-
viating the c-structure component in classical LFG parsing. This makes theoreti-
cally motivated abstract LFG dependency representations available to the depen-
dency parsing community and fast dependency parsing technology available to the
LFG community. This does not come without a price however. A number of prag-
matic decisions needed to be made in order to allow existing dependency parsers
to be trained, and these decisions include deciding what information can be lost
in moving from graphs to trees. How important the lost information is to down-
stream applications remains an open question. We plan to investigate this, to com-
pare our LFG-inspired dependency scheme to other dependency schemes such as
the Stanford dependencies (de Marneffe and Manning, 2008), the Pennconverter
dependencies (Johansson and Nugues, 2007) and Tésniére-inspired dependencies
(Sangati and Mazza, 2009), and to experiment with dependency parsers which can
handle multiple-headed constructions (Sagae and Tsujii, 2008).

Acknowledgements

This research is partly supported by the Science Foundation Ireland (Grant 07/CE/
I1142) as part of the Centre for Next Generation Localisation (www.cngl.ie) at
Dublin City University, School of Computing.

References

Attardi, Giuseppi and Massimiliano Ciaramita (2007). Tree Revision Learning for
Dependency Parsing. In Proceedings of HLT-NAACL-07. Rochester, NY.

Bresnan, Joan (2001). Lexical-Functional Syntax. Oxford: Blackwell Publishers.

Cahill, Aoife, Michael Burke, Ruth O’Donovan, Stefan Riezler, Josef van Genabith
and Andy Way (2008). Wide-Coverage Deep Statistical Parsing using Automatic
Dependency Structure Annotation. Computational Linguistics 34(1).

52

Cahill, Aoife, Michael Burke, Ruth O’Donovan, Josef van Genabith and Andy
Way (2004). Long-Distance Dependency Resolution in Automatically Acquired
Wide-Coverage PCFG-Based LFG Approximations. In Proceedings of ACL-04.

Charniak, Eugene (2000). A Maximum-Entropy-Inspired Parser. In Proceedings
of NAACL-00. Seattle.

Charniak, Eugene and Mark Johnson (2005). Course-to-fine n-best-parsing and
MaxEnt discriminative reranking. In Proceedings of ACL-05. Ann Arbor.

Charniak, Eugene, Mark Johnson et al. (2006). Multilevel Coarse-to-fine PCFG
Parsing. In Proceedings of HLT-NAACL-06. New York.

Chrupała, Grzegorz, Nicolas Stroppa, Josef van Genabith and Georgiana Dinu
(2007). Better training for function labeling. In RANLP 2007. Bulgaria.

de Marneffe, Marie-Catherine and Christopher D. Manning (2008). The Stanford
typed dependencies representation. In Proceedings of the COLING Workshop
on Cross-Framework and Cross-Domain Parser Evaluation. Manchester.

Eisner, Jason (1996). Three new probabilistic models for dependency parsing: An
exploration. In Proceedings of COLING-96. Denmark.

Frank, Anette (2003). Projecting F-structures from Chunks. In Proceedings of
LFG-03. Albany, NY.

Giménez, Jesús and Lluís Màrquez (2004). SVMTool: A general POS tagger gen-
erator based on Support Vector Machines. In Proceedings of LREC-04. Lisbon.

Guo, Yuqing, Haifeng Wang and Josef van Genabith (2008). Accurate and robust
LFG-based generation for Chinese. In Proceedings of INLG-08. Salt Fork.

Johansson, Richard and Pierre Nugues (2007). Extended Constituent-to-
Dependency Conversion for English. In Proceedings of NODALIDA-07.

Kaplan, Ron, Stefan Riezler, Tracy King, John Maxwell, Alexander Vasserman and
Richard Crouch (2004). Speed and Accuracy in Shallow and Deep Stochastic
Parsing. In Proceedings HLT-NAACL-04. Boston, MA.

Matsuzaki, Takuya, Yusuke Miyao and Jun’ichi Tsujii (2005). Probabilistic CFG
with latent annotations. In Proceedings of ACL-05. Ann Arbor.

Maxwell, John and Ron Kaplan (1996). An Efficient Parser for LFG. In Proceed-
ings of LFG-96. Grenoble.

McDonald, Ryan (2006). Discriminative Learning and Spanning Tree Algorithms
for Dependency Parsing. Ph.D. thesis, University of Pennsylvania.

McDonald, Ryan, Koby Crammer and Fernando Pereira (2005). Online Large-
Margin Training of Dependency Parsers. In Proceedings of ACL-05. Ann Arbor.

53

McDonald, Ryan and Fernando Pereira (2006). Online Learning of Approximate
Dependency Parsing Algorithms. In Proceedings of EACL-06.

Nivre, Joakim (2009). Non-Projective Dependency Parsing in Expected Linear
Time. In Proceedings of ACL-AFNLP-09. Singapore.

Nivre, Joakim, Johan Hall, Sandra Kübler, Ryan Mac Donald, Jens Nilsson, Se-
bastian Riedel and Deniz Yuret (2007). The CoNLL 2007 Shared Task on De-
pendency Parsing. In Proceedings of EMNLP-CoNLL-07. Prague.

Nivre, Joakim, Johan Hall and Jens Nilsson (2006). MaltParser: A Data-Driven
Parser-Generator for Dependency Parsing. In Proceedings LREC-06.

Nivre, Joakim and Jens Nilsson (2005). Pseudo-Projective Dependency Parsing.
In Proceedings of ACL-05. Ann Arbor.

Oflazer, Kemal, Bilge Say, Zeynep Hakkani-Tür and Gökhan Tür (2003). Building
a Turkish treebank. In Treebanks: Building and Using Parsed Corpora, Kluwer.

Øvrelid, Lilja, Jonas Kuhn and Kathrin Spreyer (2009). Improving data-driven
dependency parsing using large-scale LFG grammars. In Proceedings of ACL-
AFNLP-09. Singapore.

Petrov, Slav, Leon Barrett, Romain Thibaux and Dan Klein (2006). Learning Ac-
curate, Compact and Interpretable Tree Annotation. In Proceedings of ACL-06.

Petrov, Slav and Dan Klein (2007). Improved Inference for Unlexicalized Parsing.
In Proceedings of HLT-NAACL-07. Rochester, NY.

Roark, Brian and Kristy Hollingshead (2008). Classifying chart cells for quadratic
complexity context-free inference. In Proceedings of COLING-08. Manchester.

Sagae, Kenji and Jun’ichi Tsujii (2008). Shift-Reduce Dependency DAG Parsing.
In Proceedings of COLING-08. Manchester.

Sangati, Federico and Chiara Mazza (2009). An English Dependency Treebank á
la Tesniére. In Proceedings of TLT8. Milan.

Schluter, Natalie and Josef van Genabith (2009). Dependency Parsing Resources
for French: Converting Acquired Lexical Functional Grammar F-Structure An-
notations and Parsing F-Structures Directly. In Proceedings of NODALIDA
2009. Odense.

Schneider, Gerold (2005). A Broad-Coverage, Representationally Minimal LFG
Parser: Chunks and F-structures are Sufficient. In Proceedings of LFG-05.
Bergen, Norway.

Yamada, Hiroyasu and Yuji Matsumoto (2003). Statistical Dependency Analysis
with Support Vector Machines. In Proceedings of IWPT-03. France.

54

