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Master’s thesis

Reyna María Pérez Tiscareño

Abstract. Loss reserving is a fundamental concept of actuarial mathematics. A traditionally
used method is the chain ladder method. While it is a simple and robust method and works
well in many cases, it also has its limitations. The chain ladder method is applied to ag-
gregated data triangle, in a way similar to constructing histograms. Thus, a natural way to
improve the approach is to use kernel density estimation instead. This leads to an extension
called the continuous chain ladder (CCL) method. In CCL, the main choices a researcher has
to make is the choice of the kernel function and the choice of bandwidth, which introduces a
suitable level of smoothing. The first choice is usually made for practical or theoretical rea-
sons and it usually has a minor impact on the performance of the estimator. However, the
choice of bandwidth can significantly affect the performance of the kernel estimator. There
are several possible methods suggested in the literature to choose the bandwidth. To find
the optimal bandwidth, the cross-validation procedure is used. A common method for find
the optimal bandwidth is the cross-validation. As it is a very time-consuming procedure,
some rules of thumb that allow to skip the cross-validation step, can significantly increase
the performance of CCL. In this thesis, the main goal is to find the patterns how different
input scenarios affect the optimal bandwidths of the CCL model.
CERCS research specialisation: P160 Statistics, operation research, programming, actuar-
ial mathematics
Keywords: Chain ladder method, Claim reserving, Continuous Chain ladder, Kernel smooth-
ing.

Kahjureservide hindamine kasutades tuumafunktsioone
Magistritöö

Reyna María Pérez Tiscareño

Lühikokkuvõte. Reservide hindamine on üks kindlustusmatemaatika põhiülesandeid. La-
ialdaselt kasutatatud klassikaline ahel-redel meetod on lihtne ja robustne, kuid tal on omad
piirangud. Arvestades, kuidas ahel-redel meetodit summeeritud arengukolmnurgale rak-
endatakse, võib seda käsitleda kui teatavat histrogrammi-tüüpi lähendamiseülesannet. Loogi-
line järgmine samm on histogrammipõhisel lähenemisel kasutada tiheduse hindamist tu-
umafunktsioonide abil. Sedasi jõuame pideva ahel-redel meetodini. Tiheduse hindamise
juures on olulised küsimused tuuma valik ja aknalaiuse määramine. Seejuures tuuma enda
mõju on reeglina väike võrreldes aknalaiuse mõjuga. Optimaalse aknalaiuse määramiseks
kasutatakse enamasti ristvalideerimist. Teadaolevalt on see väga ressursimahukas mee-
tod, mistõttu teatud rusikareeglite leidmine, mis võimaldaksid ristvalideerimise sammu va-
hele jätta, tõstaks oluliselt pideva ahel-redel meetodi rakendamise kiirust. Käesoleva töö
põhieesmärk ongi leida mustreid, kuidas erinevad tingimused mõjutavad pideva ahel-redel
mudeli optimaalset aknalaiust.
CERCS teaduseriala: P160 Statistika, operatsioonanalüüs, programmeerimine, finants- ja
kindlustusmatemaatika.
Märksõnad: ahel-redel meetod, kahjureservide hindamine, pidev ahel-redel, tuumaga si-
lumine.
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Introduction

For insurance companies it is very important to estimate accurately loss
reserves, they need to be able to fulfill their contractual obligations to pol-
icyholders. Traditionally actuaries have worked in this estimation with the
Chain Ladder Method (CLM), in general this method works well in many
cases but it has to be adjusted manually in many other cases. A key feature
of the majority of claims reserving methods used in practice, including the
CLM, is that they assume that the data have been aggregated. This gives that
the models are easier to handle but it can add some weakness for that reason
several researchers have tried to work with detailed micro-level information.

As the chain ladder method is a most widely used loss reserving model
among practitioners, then it is not a surprise that the CLM has been extended
and combined with other methods.

In this thesis we will apply a method that uses data recorded in continu-
ous time but based on the CLM philosophy, for that reason it is called "Con-
tinuous Chain Ladder method". This method was introduced in [3], where
the authors show that the classical CLM can be regarded as a structured his-
togram on a triangle. The original CLM groups the data and develops a mul-
tiplicative histogram model but the continuous chain ladder method does
not group the data, so it can treated as having a density on the triangle.

So, the histogram type of estimator can be improved in the same way
that mathematical statisticians normally would improve histogram estima-
tors: by introducing smoothing. To introduce such smoothing, in this thesis,
we will consider the kernel density estimator.

The kernel estimation of probability density functions depends on the
kernel K and the bandwidth h. The kernel determines the shape of the
weighting function and the bandwidth determines the "width" of the weight-
ing function and hence the smoothing. Kernel density estimators are sensi-
tive to the choice of bandwidth, but the choice of a kernel function does not
usually affect the results considerably. Thus, in this thesis we investigate how
the selection of bandwidths is affected by different combinations of input pa-
rameters.

In this thesis we will work only with simulations of incurred but not re-
ported claims. First, the data is simulated on monthly basis. We will generate
the complete rectangle and estimate the reserve (it could be considered as the
reserve calculated using the real future data). Then we consider only the up-
per triangle and using the continuous chain ladder method and the kernel
density estimator, we predict the lower triangle. Next, we calculate the re-
serve estimate. Finally we compare values of both, estimated reserve and
actual reserve.
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The thesis is structured as follows: to understand the methods that we
will use, the Chapter 1 introduces to the reader the reserving problem and
the classical chain ladder method. In Chapter 2 we explain the kernel density
estimation ideas. Chapter 3 clarifies the ideas of the continuous chain ladder
method which is a quite recent method. In Chapter 4, the simulation study
is carried out and the choice of the best bandwiths in all fixed combinations
of input parameters is done. Finally, Chapter 5 gives the conclusion of the
simulation study developed in Chapter 4.
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Chapter 1

The reserving problem and the
classical chain ladder method

1.1 Claims reserving

An insurance company needs to have a reserve, this is an amount set aside
to meet company’s principal insurance liabilities. Reserves have several pur-
poses, for example, they enable the company to meet and administer its con-
tractual obligations to policyholders, also they can be used in order to set
future premium rates.

After the claim event has occurred (accident date T1, must be within the
insurance contract period), the policyholder will report the incident to the
insurance company (reporting date T2, T2 > T1). In due course the insurer
will make any payments required. There may be several payments made un-
der a single claim. When the insurer considers that there will not be more
payments for this claim, the claim file is closed (claims closing date T3,
T3 > T2).

Let t be the today’s time point. We will say that when T1 6 t < T2, the
claim is incurred but not yet reported to the insurer (IBNR claim) and we will
say that the claim is reported but not settled, when T2 6 t < T3 (RBNS claim),
when T3 6 t, we say that the claim is settled and no further development is
expected.

To know how much to put aside in a reserve, it is needed to estimate the
size and the frequency of the future claims but also something that could be
taken in account is that: non-life insurance claims cannot be settled immedi-
ately. There could be a reporting delay (days, weeks, months or even years)
or/and settlement delay. So, it makes harder for an insurance company to
try to estimate the exact figure for total claims each year with as much confi-
dence and accuracy as possible.
These claim reserves should meet the following requirements:

1) They should be sufficiently high, so that all liabilities can be fulfilled.

2) They should not be too high such that shareholders get an appropiate
dividend.
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3) They should be best-estimate such that they can be used for the pricing
of future insurance contracts.

The regulator should supervise and review these requirements regularly
(to protect policyholders and/or insured).

Accurate loss reserves are essential for insurance companies to meet and
administer their contractual obligations to policyholders. The reserves are
related to claims at different stages in the settlement process, in this work we
will deal with reserves required for IBNR claims.

There are several ways fot presenting claims data. Here, the claims will
be presented as a triangle (run-off triangles), which is the most common used
method. The claim development pattern is defined by the choice for the ori-
gin period which can be given by important dates of the claims’ life cycle:

• underwriting;

• claim occurrence;

• reporting claim;

and by the development period, which can be

• claim occurrence;

• reporting claim;

• claim settlement (year of final payment).

Depending on the choice of origin period and development period, the
run-off triangles can describe the development of different stages of different
reserves.

If the development period is the reporting claim period, then the corre-
sponding run-off triangle describes development in IBNR reserve, but if the
development period is the claim settlement period, then the corresponding
run-off triangle describes development in RBNS reserve.

Usually, the information is provided in an aggregated way where, in the-
ory, any aggregation periods could be considered, such as quarters, months,
years etc. As we explained before, depending on the data being considered,
each cell in the triangle could contain the number of reported or paid claims
or aggregated payments (see Table 1.1).

In this thesis we will consider months, the origin period will be the claim
occurrence and the development period the number of months that passed
from the claim occurrence until the reporting claim moment.

The basic chain ladder method is a method for projecting run-off trian-
gles, this traditional method is the most widely used loss reserving model.
We will talk about it in the next section.

Run-off triangles are important in the practical work of actuaries who
want to forecast future claim numbers and amounts.
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1.2 Chain Ladder Method

The so called reserve estimating outstanding liabilities is the single most
important number in a non-life insurance balance sheet. In order to introduce
the basic chain ladder method, we will use the following notation:

• accident years are denoted by i ∈ {1, . . . , I};

• development years are denoted by j ∈ {0, . . . , J} with final settlement
delay J . We will consider that J = I − 1;

• incremental claims are denoted by Xi,j ;

• cumulative claims are denoted by

Ci,j =

j∑
l=0

Xi,l;

• ultimate (nominal) claims are denoted by Ci,J (last column).

TABLE 1.1: Run-off triangle

Accident year i/
Development year j 0 1 2 . . . j . . . J

1
2
...

i
...

I-1
I

• upper triangle DI = {Ci,j : i+ j 6 I}; (observations in the past).

• lower triangle Dc
I = {Ci,j : i+ j > I}; (observations to be predicted).

• diagonals k = i+ j are the accounting years with k = 1, . . . , I + J .

Now, we are ready to explain the idea of the chain ladder method. As-
sume that for all the development years j = 0, . . . , J − 1 there exist fj > 0
such that

Ci,j+1 ≈ fjCi,j for all accident years i = 1, . . . , I.
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The factor fj is called chain ladder method (CLM) factor (it is also known by
age-to-age factor, link ratio). So, individual link ratios are given by

Ci,j+1/Ci,j ≈ fj.

We would like to determine the CLM factors fj for all j = 0, . . . , J − 1. We
set

f̂CL
j =

∑I−j−1
i=1 Ci,j+1∑I−j−1
i=1 Ci,j

for the CLM factor estimator f̂CL
j of fj , given observations Dl. Now, we will

predict the lower triangle i+ j > I by

ĈCL
i,j = Ci,I−i

j−1∏
l=I−i

f̂CL
l ,

where Ci,I−i is the last observed diagonal. Finally, CLM claims reserves for
accident years i = I − J + 1, . . . , I are defined by

R̂CL
i = ĈCL

i,j − Ci,I−i.

The classical CLM can be seen as a histogram on a triangle. This method
groups the data and develops a multiplicative histogram model. This idea
will be more thoroughly explained later.

The histogram separates the data into distinct non-overlapping bins and
constructs bars (hypercubes) with heights defined as the proportion (or num-
ber) of observations falling into each bin. This proportion gives an estimate
of the probability density function in the mid point of the bin.

We will briefly describe the idea of the histogram associated to a two-
dimensional scenario (this was introduced in [3]). Let Z1, Z2, · · · , Zn be an
i.i.d. (independent and identically distributed) random sample for a popula-
tion Z = (X, Y )t, having bivariate continuous density f . The support of f (in
the CLM, the support is a triangle) is divided into n squares with length of
the sides Λ = a1,2 − a1,1 = a2,2 − a2,1, Ai,j = (a1,i, a1,i+1]× (a2,j, a2,j+1].

Thus, the histogram estimator at any point z0 = (x0, y0)t in the support of
f is defined by

f̂(z0) = ν(z0)/nΛ2, (1.2.1)

where ν(z0) is the number of sample data falling in the square which contains
z0.

Since the chain ladder method approach can be seen as a histogram type
of estimator, then we can improve that estimator by introducing smoothing.
In the next chapter we will talk about the kernel estimator which is a way to
improve histogram estimator. We will also describe a kernel density estima-
tor for the histogram introduced above (see Chapter 2, 2.2.2).
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Chapter 2

Kernel Density Estimation

2.1 Density estimation and histograms

In this section we will talk about some methods for estimating the proba-
bility density function (pdf) from a sample.

The probability distribution of a continuous-valued random variable X is
described in terms of its pdf, f(x). An objective of many investigations is to
estimate f(x) from a sample of observations x1, · · · , xn. We will assume that
the observations can be regarded as independent realization of X .

One method to get f(x) is the histogram. This method reminds a density
function divided into classes, it does not approximate a density function but
it can be rescaled to make it to be an estimate of the density. The histogram
is the basis of kernel density estimation.

2.1.1 Some approaches to the estimation of the pdf

The idea of the parametric approach for estimating f(x) is to assume that f(x) is
a member of some parametric family of distribution, for example, N(µ, σ2),
and then to estimate the parameters of the assumed distribution using the
data. This approach has advantages if the distributional assumption is cor-
rect or if at least it is not seriously wrong.

The main disadvantage of the parametric approach is lack of flexibility.
Each parametric family of distributions imposes restrictions on the shapes
that f(x) can have.

The idea of the non-parametric approach is to avoid restrictive assumptions
about the form of f(x) and to estimate this directly from the data.

A well-known non-parametric estimator of the pdf is the histogram. It
has the advantage of simplicity but is also has disadvantages, such as lack
of continuity. Moreover, in terms of various mathematical measures of ac-
curacy, there exist alternative non-parametric estimators that are superior to
histograms.

The sensitivity of the histogram to the placement of the bin edges is a
problem not shared by other density estimators such as the kernel density
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estimator which will be introduced in this chapter. The bin edge problem is
one of the histogram’s main disadvantages.

One method to get f(x) by giving the sample is described next. Find the
sample minimum and maximum, then to divide the interval between them
into subintervals (right-closed and left-open) with equal length (but could be
considered also with different lengths) and count for each interval how many
sample values are in the interval. We represent these frequencies by bars.

To understand the idea better, we consider the following example, where
the data set was taken from the predetermined data in R "Motor Trend Car
Road Tests". This data was extracted from the 1974 Motor Trend US maga-
zine and comprises fuel consumption and 10 aspects of automobile design
and performance for 32 automobiles (1973–74 models). From this data we
consider the cars weight (1000 lbs), this is mtcars$wt,

2.620 2.875 2.320 3.215 3.440 3.460 3.570 3.190 3.150 3.440 3.440 4.070

3.730 3.780 5.250 5.424 5.345 2.200 1.615 1.835 2.465 3.520 3.435 3.840

3.845 1.935 2.140 1.513 3.170 2.770 3.570 2.780.

Histogram of mtcars

Cars weight

F
re
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cy

0 1 2 3 4 5 6

0
2

4
6

8

FIGURE 2.1: Histogram

In the Figure 2.1 we see the histogram for the example considering subin-
tervals with equal length.

If the sample size and the number of intervals are enough large then
this graph (histogram) reminds us a density function which is divided into
classes. We observe that such graph does not approximate a density function
because the area under the graph is not equal to one but we can rescale the
histogram to make it to estimate the density (see Figure 2.2).
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Histogram of mtcars
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FIGURE 2.2: Density estimate

Let x1, x2, . . . , xn be empirical distribution sample points with probabili-
ties

p(x1) = p(x2) = . . . = p(xn) =
1

n
.

In order to transform ("spread out") the probabilities by histogram, we fix
a subinterval with length w such that it contains k sample points. Then we
spread the probability k

n
over this subinterval. Thus, the density estimate for

that subinterval is k
nw

and does not depend on how the sample points are
located in the subinterval. This "spreading out" is the basis of kernel density
estimation.

We notice that it is not interesting to draw a histogram with a single obser-
vation per class. Therefore, it may be useful to draw a histogram where the
subintervals have different length. Namely, we divide the interval between
sample minimum and sample maximum in k subintervals with lenghts
w1, . . . , wk, respectively. Let p1, . . . , pk be the probabilities over the subinter-
vals. Then the graph of bars with respective heights p1

w1
, . . . , pk

wk
gives us an

estimate for the density (the area under the graph is one).

Following, we summarize the ideas discussed before to get the estimator
of f(x). To have a histogram, one needs to select a left bound, or starting
point, x1, and the bin width, b, usually called the binwidth. The bins are given
by [x1 + (i− 1)b, x1 + ib) , i = 1, 2, . . . , n. The estimator for f(x) is given by

f̂(x) =
1

n

Number of observations in the bin where x is contained
b

.
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More generally, one can also use bins of different widths, in which case

f̂(x) =
1

n

Number of observations in the bin where x is contained
Width of bin that contains x

.

Two choices have to be made when constructing a histogram; the bin-
widths and the positioning of the bin edges. These choices can have a sub-
stantial effect on the shape and other properties of f̂(x).

The binwidth b is usually called a smoothing parameter, since it controls
the amount of "smoothing" being applied to the data. We will see that for
kernel estimators, the scale of the kernel plays a role analogous to that of the
binwidth.

2.2 Weight functions

By definition of pdf, f(x), of a random variable, X , we have that

P (x− b < X < x+ b) =

∫ x+b

x−b
f(t)dt ≈ 2bf(x).

Hence,

f(x) ≈ 1

2b
P (x− b < X < x+ b).

So, if we estimate the probability by a relative frequency in the sample,
then

f̂(x) =
1

2b

number of observations in (x− b, x+ b)

n

and f̂(x) can be written also as follows:

f̂(x) =
1

n

n∑
i=1

w(x− xi, b), (2.2.1)

where x1, x2 . . . xn are the observed values and

w(t, b) =


1
2b

for |t| < b,

0 otherwise.

To give a better idea about 2.2.1, we can imagine that the center of the
base of a rectangle (with height 1

2b
and width 2b) is placed over each observed

point on the x-axis.
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The estimate of the pdf at a given point is 1
n

times the sum of the heights
of all the rectangles that cover the point.

The Figure 2.3 shows f̂(x) for rectangular "weighting function", for dif-
ferent values of b.
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FIGURE 2.3: Rectangular kernel
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Instead of using rectangles in 2.2.1, we can use other weighting functions,
for example triangles:

w(t, b) =


1
b

(1− |t|/b) for |t| < h,

0 otherwise.

The Figure 2.4 shows f̂(x) for triangular "weighting function" for different
values of b.
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FIGURE 2.4: Triangular kernel
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Another alternative weighting function is the Gaussian:

w(t, b) =
1√
2πb

e−t
2/2b2 , −∞ < t <∞.

The Figure 2.5 shows f̂(x) for Gaussian "weighting function" for different
values of b.
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FIGURE 2.5: Gaussian kernel

We observe that the fluctuation in f̂(x) decreases with increasing of b.

The weighting functions, w(t, b), defined before, have the form

w(t, b) =
1

b
K

(
t

b

)
,

where K is a function of a single variable called the kernel.

We observe that the kernel is the weighting function with b = 1 and it
determines the shape of the weighting function. The parameter b is called
the bandwidth or smoothing constant.
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As examples of kernel functions, we have the rectangular, triangular and
Gaussian kernels. Defined when b = 1, in the definitions of rectangular,
triangular and Gaussian weighting functions, respectively.

A kernel density estimate is defined by

f̂(x) =
1

b

n∑
j=1

p(xj)K

(
x− xj
b

)
,

where K(x) is a kernel function. We can see that kernel estimation of pdfs
depends of the kernel, K, and the bandwidth, b. The kernel determines the
shape of the weighting function and the bandwidth determines the "width"
of the weighting function and hence the smoothing. The properties of f̂(x)
are determined by K and b, this is the reason why several researchers study
how to select K and b in order to optimize the properties of f̂(x). Kernel
density estimators are sensitive to the choice of bandwidth, but the choice of
a kernel function does not usually affect the results considerably.

For the histogram described in Chapter 1 (see Chapter 1, 1.2.1), the kernel
estimator for any estimation point z0 = (x0, y0) in the support, is defined as

f̂h(z0) = n−1

n∑
i=1

Kh(z0 − Zi), (2.2.2)

where Kh(·) is a two-dimensional kernel and h = (h1, h2) ∈ R2
+ is a band-

with parameter, where h1 controls the origin direction and h2 controls the
development direction. In this work we will consider

Kh(x, y) = Kh1(x)Kh2(y),

whereKh1(x) = h−1
1 K(x/h1), Kh2(y) = h−1

2 K(x/h1) andK is an one-dimensional
kernel function.

2.3 Properties of kernel estimators

There are different ways to quantify the accuracy of a density estimator.
In this work we will focus on the mean squared error (MSE) and its two
components (bias and standard error (or variance)).

MSE(f̂(x)) = E(f̂(x)− f(x))2 = (f(x)− f(x))2 + E(f̂(x)− Ef̂(x))2

= Bias2(f̂(x)) + V ar(f̂(x)).
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A measure of the global accuracy of f̂(x) is the mean integrated squared
error (MISE)

MISE(f̂) = E

∫ ∞
−∞

(f̂(x)− f(x))2dx.

Considering a kernel density estimate f̂(x) with bandwidth h, it is shown
(see [4]) that

Bias(f̂(x)) ≈ h2

2
k2f

′′(x),

where k2 :=
∫∞
−∞ z

2K(z)dz and

V ar(f̂(z)) ≈ 1

nh
f(x)

∫ ∞
−∞

K2(z)dz.

Now

MSE(f̂(x)) = Bias2(f̂(x)) + V ar(f̂(x)) ≈ 1

4
h4k2

2f
′′(x)2 +

1

nh
f(x)j2, (2.3.1)

where j2 :=
∫∞
−∞K

2(z)dz. Integrating 2.3.1, we get that

MISE(f̂(x)) ≈ 1

4
h4k2

2β(f) +
1

nh
j2, (2.3.2)

where β(f) :=
∫∞
−∞ f

′′(x)2dx.

We observe that MISE(f̂) changes as a function of the bandwidth h. The
optimal value of h, which minimizes MISE(f̂), is:

hopt =

(
γ(K)

nβ(f)

) 1
5

, (2.3.3)

where, γ(K) := j2k
−2
2 . Substituting h by hopt in 2.3.2, we get that

MISEopt(f̂) =
5

4

(
β(f)j4

2k
2
2

n4

) 1
5

. (2.3.4)

The MISE(f̂) can also be minimized with respect to the kernel used. In
[6] it is shown that the Epanechnikov kernel is the most efficient kernel in
this respect. The Epanechnikov kernel is defined as the function

K(u) =


3
4

(1− u2) for |u| 6 1,

0 otherwise.

By this result and 2.3.4, we can examine the impact of the kernel choice on
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MISEopt(f̂). The efficiency of a kernel K, relative to the optimal Epanech-
nikov kernel, which will be denoted by KEP , is defined as the quotient

(
MISEopt(f̂) using KEP

MISEopt(f̂) using K

) 5
4

.

2.3.1 Selection of the bandwidth

The selection of the bandwidth of the kernel estimator is a subject of con-
siderable research. There are several methods to do it. We will enounce some
of them:

• Subjective selection: one can experiment by using different bandwidths
and simply select one that "looks right" for the type of data under in-
vestigation.

• Selection with reference to some given distribution: one selects the
bandwidth that would be optimal for a particular pdf.

• Cross-validation: by definition,

MISE(f̂) =

∫
(f̂(x)− f(x))2dx

=

∫
f̂(x)2dx− 2

∫
f̂(x)f(x)dx+

∫
f(x)2dx.

The third term does not depend on the sample or on the bandwith. An
approximately unbiased estimator of the first two terms is given by

ˆMCV (f̂) =
1

n

n∑
i=1

∫
f̂i(x)2dx− 2

n

n∑
i=1

f̂−i(xi),

where f̂−i(x) is the estimated density at the argument x using the orig-
inal sample apart from observation xi. The ˆMCV (f̂) is computed for
different values of h and estimates the optimal value, hopt, using the h
which minimizes ˆMCV (f̂).

• "Plug-in" estimator: the idea is to estimate the bandwith h from 2.3.3 by
applying a separate smoothing technique to estimate f ′′(x) and hence
β(f).
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Chapter 3

The continuous chain ladder
method

The majority of claims reserving methods used in practice, including the
CLM, assume that the data has been aggregated. This aggregation is often
done by year, but it could be done by quarter or month. We note that this
aggregation implies some pre-smoothing of the data.

The continuous chain ladder method (CCL) was defined in [3] and uses
data recorded in continuous time. The philosophy underlying the CLM, it
can be viewed as a continuous version of the CLM. We showed in the Chapter
1 that the CLM groups the data and we can give a multiplicative histogram
model. This idea will be simplified following the same approach without
grouping the data. When the data is not grouped, it can be treated as having
a density on the triangle. This multivariate density can be estimated using
local linear smoothing methods and it can be approximated on the triangle
by a multiplicative density.

The continuous chain-ladder is the first chain-ladder extension up to our
knowledge that does not assume the data aggregation and the use of contin-
uous time. As it was mentioned, this model assumes that the data is recorded
in continuous time but in practice this kind of data collection can not be as-
sumed from an insurance company. The lowest level of data aggregation
that could be considered, is daily data. In [2] is investigated how big is the
gain of a micro-level approach and how much do the different levels of data
aggregation influence the reserve estimates.

3.1 Continuos chain ladder method

We will introduce the general ideas of the continuous chain ladder method
(CCL). In the CLM, the data is given in a triangle and with some aggregation,
in CCL the data is considered continuous and without aggregation. So the
data is given as a two dimensional space, but it still forms a triangle. More-
over, the data can be treated as having a density on the triangle, namely, we
consider a random sample of n i.i.d. (independent and identically distributed
random variables) observations {(Xi, Yi) | i = 1, . . . ,m; j = 0, . . . ,m−1} from
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a population (X, Y ) having a density f with support on a subset

L = {(x, y) | 0 6 x, 0 6 y, x+ y 6 T}

of the square S = {(x, y) | 0 6 x, y 6 T}, where x is the underwriting (or
accident) time and y is the claims development time within the time frame
[0, T ], T > 0. Then the aggregated incurred counts triangle can be repre-
sented by

{Ci,j | (i, j) ∈ ∇},

where ∇ = {(i, j) | i = 1, · · · ,m, j = 1, · · · ,m − i} we assume that the busi-
ness has been observed during m time periods and Ci,j is the total number of
claims of insurance incurred in period i, which are reported in period i+j−1.

The CCL method is developed for individual (or continuous) claims data
but it can be still used to aggregated data.

By [3], reserving can be seen as a density estimation problem where the
claims triangle defines the boundary region. There have been proposed sev-
eral solutions to this problem. In this work we will use the Nielsen’s local
linear estimator, which is obtained at each point (x0, y0) ∈ L by solving the
minimization problem:

Θ̂=arg min
Θ

lim
b→0

∫
L
{f̃h(z)−Θ0−Θ1,1(x−x0)−Θ1,2(y−y0)}2Kh1(x−x0)Kh2(y−y0)dz,

(3.1.1)
where Θ = (Θ0,Θ1,1,Θ1,2), Θ̂ = (Θ̂0, Θ̂1,1, Θ̂1,2) and

f̃h(z) = n−1

n∑
i=1

Kh1(Xi − x0)Kh2(Yi − y0)

is the standard kernel estimator at the point z = (x, y) ∈ L, with bandwidth
parameters h = (h1, h2) ∈ R2

+ (see Chapter 2, 2.2.2) and n =
∑

(i,j)∈∇Cij . The
local linear density of f(x, y) is given by

f̂(x, y;h) = Θ̂0, where h = (h1, h2) ∈ R2
+.

In [2], it is used, for practical situations, the rewritten version of the local
linear estimator 3.1.1, using the regression formulation for aggregated data.
Let zij = (xi, xj) be the coordinates of the data point Ci,j ( the total number of
claims of insurance incurred in period i, which are reported in period i+j−1),
zij are points in the run-off grid and we assume that Ci,j is the middle point
of the corresponding area of a data cell in the triangle that contains the data.
For density estimation in a discrete framework we have to extend the run-off
grid to estimation grid with the points where the density will be estimated.
The estimation grid ∇grid is defined by its points as follows: the coordinates
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of density estimation points are denoted by dkl = (dk, dl) such that

∇grid = {(dk, dl) | dk = Λ(k − 1

2
), dl = Λ(l − 1

2
), k = 1, · · · , 2m, l = 1, · · · , 2m},

where Λ is the bin length. The points in the estimation grid dkl ∈ ∇grid can be
set as tightly as preferred but, as in [2], it will be considered that Λ = 1

2
(see

[2] for details and example with m = 4).

The local linear estimator for the density f (with a support in a triangle)
for any given point dkl = (xk, yl) ∈ ∇grid is given by solving the minimization
problem:

Θ̂ = argmin
Θ

∑
(i,j)∈∇

{Ci,j−Θ0−Θ1,1(xi−xk)−Θ1,2(yj−yl)}2Kh1(xi−xk)Kh2(yj−yl).

(3.1.2)
Here, the solution Θ̂0 gives an estimator for r(dkl) (the regression function).
Then, the density f(dkl) is estimated by

f̃(dkl) =
r̂(dkl)

nΛ2
, dkl ∈ ∇grid.

For detailed explanation see [3].

As we explained in the chapter 2, the choice of the kernel function is not
as important as the choice of the value for the bandwidth. The choice of a
kernel function does not usually affect the results considerably. The CCL
model assumes a multiplicative structure, hence, multiplicative kernels are
considered. As it was already said, we will consider the Epanechnikov ker-
nel, which is often the default kernel function in most of the statistical soft-
ware (see [2] to see popular kernels in multiplicative form and the efficiency
of them relative to the Epanechnikov kernel). For the bandwidth selection
problem there exist several methods that try to solve it (see section 2.3.1 in
Chapter 2). The main goal of this thesis is to analyze the effect of different
bandwidths to the models and to find some rules of thumb about the choice
of bandwidth under different assumptions about claim frequency, noise and
other model parameters.
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Chapter 4

Simulation study

We are carrying out a simulation study in this thesis, using the software
R. Our interest is to model IBNR claims (monthly claims) and we consider in
each simulation the parameters, claim frequency, average of a claim size and
noise.

We simulated the complete rectangle of numbers of montly claims ar-
rivals. In this simulation study we used Poisson distribution to generate
the number of claims arrivals and the parameters gencoef to determine the
speed of claims development, where the value of parameter is between 0
and 1: high value indicates the claims to develop slow in the run-off triangle;
low value of the given parameter indicates a fast development. We added
noise to the generated claims using sigma parameter (if sigma=0, no noise
is added), n is the number of periods (months) considered, initClaimX de-
notes the initial value for the average number of claims per period (month).
The number of claims in cell Ci,j are generated as

Nj +Xsigma,

where Nj ∼ Po(initClaimX ∗ (gencoef)n−1) and Xsigma ∼ N(0, sigma).
Next step is to calculate the reserve estimate. First, we simulate the full

distribution of IBNR claims claims over n calendar periods. The advantage of
using simulated data is that we can simulate data "to ultimate", and set aside
the (otherwise unknown) losses at ultimate as a standard against which we
can compare our model’s predictions. Then, we use only the upper triangle
to conduct the estimation with the CCL method. Lastly, when we have ob-
tained the reserve estimates with the CCL method, we compare them with
actual reserve estimates. The performance of the models is evaluated by com-
paring the reserve estimation errors using the mean absolute percentage er-
ror

MAPE(R̂) = E

(
|R− R̂|
R

)
,
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where R denotes the outstanding liability estimated by a reserve estimate R̂
at a given valuation date, this is

R =
n∑

i=2

n−1∑
j=n−i+1

Ci,j and R̂ =
n∑

i=2

n−1∑
j=n−i+1

Ĉi,j,

where Ĉi,j denotes the actual values and Ci,j the estimated values. The goal
of this simulation study is to find out how the different simulation parame-
ters along with the selected bandwidths affect the estimation precision. The
parameters that are considered are the following: m (the number of simula-
tions considered), n (number of periods (months)), gencoef (determines the
speed of claim’s development), sigma (to adjust the noise). In this study we
consider gencoef ∈ {0.95, 0.9, 0.8}, initClaimX ∈ {50, 100, 400} and sigma ∈
{0, 10, 100}. We consider only simulations with n ∈ {24, 48} andm = 100 due
to the computational reasons.

By previous experiences of other researchers using cross-validation we
know that the optimal bandwidth (h1, h2) in the CCL usually satisfied that
h1 > h2. As cross-validation is time consuming, in this thesis we did not use
cross-validation at all, we considered the simulations of all possible combi-
nations of the parameters using some bandwidths (the choice of these band-
width values was done randomly) (h1 = 10, h2 = 5), (h1 = 7, h2 = 3.7),
(h1 = 2, h2 = 1) and (h1 = 1.2, h2 = 0.7) and compared the results trying
to find the effect of the parameters for the best bandwith among this specific
choice of banwidths. From now on, when we use the expression "optimal
bandwith" in this chapter, we are meaning the best bandwith among these
specific banwidths.

The results obtained for n = 24 are given in Table 4.1 and for n = 48 in
Table 4.2. The values in green are the smallest obtained MAPE values among
the 4 sets of bandwidths. It indicates the best choice among the considered
bandwidths in the simulation study. While referring to the parameters, we
used the following notation:

gencoef ;n; initClaimX; sigma.

For example, for 0.8; 24; 50; 0, the optimal bandwidth value for the simulated
trials is (h1 = 1.2, h2 = 0.7). The value in red shows the highest MAPE value
among the 4 fixed sets of bandwidths.
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We saw that choosing big values for n is time consuming, we could
expect that if we spent 15 minutes for generating 100 datasets with n = 24,
then for simulating the same amount of data with the same parameters with
n = 48 could be twice the time. But in reality it was not like this, it took for a
computer sometimes between 5 and 8 hours with n = 48.

We observed that the majority of the optimal selections of the bandwidth
for n = 48 are closer to the "reality" than for n = 24, it is the optimal band-
width found with the other fixed parameters that has a MAPE smaller when
n = 48, but the difference is not too big. An exception is found for the param-
eters 0.8; 100; 10. Also, it is observed that for the parameter values 0.8; 50; 0,
0.8; 100; 0, 0.8; 400; 0, 0.8; 400; 10, 0.9; 50; 0, 0.9; 50; 100, 0.9; 400; 0, 0.95; 100; 100
the change of n did not change the choice of the optimal bandwidth, and
from this 8 parameter combinations 5 of them had as optimal bandwidth
(h1 = 1.2, h2 = 0.7).

If we observed the data considering that the value of initClaimX changes
and the other parameters are fixed, we obtained that in all the simulations,
MAPE value of the optimal bandwidth with initClaimX = 50 is bigger than
the corresponding for initClaimX = 100 and the last is bigger than the
corresponding for initClaimX = 400. Analogous behaviour happened for
sigma, the MAPE value of the optimal bandwidth with sigma = 0 is big-
ger than the corresponding for sigma = 10 and the last is bigger than the
corresponding for sigma = 100. Also it is observed that for the parameters
gencoef = 0.8, sigma = 0, we got that the (h1 = 1.2, h2 = 0.7) values do not
change for n ∈ {24, 48} and initClaimX ∈ {50, 100, 400}.

Finally, we observed the data considering that the value of gencoef is
changing and the other parameters are fixed. We obtained for almost all the
simulations that the MAPE value of the optimal bandwidth with
gencoef = 0.95 is bigger than the corresponding value for gencoef = 0.9
and the value for value for gencoef = 0.9 is bigger than the corresponding
for gencoef = 0.8.

In general we observed that the optimal bandwidth values
(h1 = 1.2, h2 = 0.7) appeared more often in our simulations.

As the claims are simulated randomly, then the MAPE values change if
we do twice the simulation with the same parameters, but it did not change
the choice of the best bandwidth at least in those simulations that we had
time to do twice.
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TABLE 4.1: Results for n = 24

MAPE

gencoef initClaimX sigma h1=10, h2=5 h1=7, h2=3.7 h1=2, h2=1 h1=1.2, h2=0.7

0.8 50 0 0.05239153 0.04950009 0.05031823 0.04283571

0.8 50 10 0.1130467 0.1205555 0.12076147 0.10934454

0.8 50 100 0.2110623 0.2515607 0.22917599 0.22330274

0.8 100 0 0.04896509 0.03481668 0.03591951 0.03268953

0.8 100 10 0.07504927 0.08340853 0.07783647 0.08365175

0.8 100 100 0.1860499 0.2292519 0.20086716 0.19275778

0.8 400 0 0.04966032 0.02362223 0.02098084 0.01932486

0.8 400 10 0.05300417 0.03417279 0.03528973 0.03585865

0.8 400 100 0.1429019 0.1439266 0.12918006 0.14100178

0.9 50 0 0.03898546 0.04087841 0.0370854 0.03580557

0.9 50 10 0.07094376 0.083007 0.09998923 0.09769359

0.9 50 100 0.2314684 0.2107483 0.20975367 0.18500695

0.9 100 0 0.02652894 0.02806231 0.02430436 0.02796716

0.9 100 10 0.06042328 0.06025865 0.0565313 0.048984

0.9 100 100 0.1727693 0.1764435 0.19795467 0.16746475

0.9 400 0 0.01305924 0.01289301 0.01463703 0.01301537

0.9 400 10 0.01785943 0.01726466 0.01865221 0.01649384

0.9 400 100 0.09514138 0.1000631 0.10537459 0.10242955

0.95 50 0 0.0306518 0.03391098 0.02720126 0.02902589

0.95 50 10 0.06921831 0.06098155 0.071658 0.06757005

0.95 50 100 0.2015863 0.2034348 0.21543789 0.24146918

0.95 100 0 0.01989925 0.02272246 0.02282828 0.02096513

0.95 100 10 0.03517107 0.03771949 0.03753382 0.03593285

0.95 100 100 0.1628117 0.1623241 0.19989581 0.17025282

0.95 400 0 0.01138654 0.01052849 0.06929823 0.01178066

0.95 400 10 0.01402963 0.01380302 0.01283079 0.01370195

0.95 400 100 0.06981378 0.07175351 0.07601472 0.07354817
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TABLE 4.2: Results for n = 48

MAPE

gencoef initClaimX sigma h1=10, h2=5 h1=7, h2=3.7 h1=2, h2=1 h1=1.2, h2=0.7

0.8 50 0 0.05123699 0.04785876 0.04523905 0.041593352

0.8 50 10 0.08878973 0.09721086 0.0869612 0.090049155

0.8 50 100 0.13114406 0.1336883 0.13318084 0.122783186

0.8 100 0 0.05548114 0.0348827 0.03631337 0.02819702

0.8 100 10 0.09647795 0.08025852 0.08926725 0.077744276

0.8 100 100 0.11402357 0.1312216 0.12677362 0.113933871

0.8 400 0 0.05023926 0.022444 0.01629616 0.013947765

0.8 400 10 0.04195101 0.03663222 0.03930255 0.039581354

0.8 400 100 0.10847604 0.1042241 0.10296888 0.089351645

0.9 50 0 0.02515505 0.02721037 0.02582932 0.026186506

0.9 50 10 0.06930435 0.0574893 0.07612974 0.066008021

0.9 50 100 0.1511512 0.1216148 0.13332033 0.116086557

0.9 100 0 0.02088546 0.01809355 0.02186476 0.016307195

0.9 100 10 0.05519259 0.04466511 0.05215932 0.04600764

0.9 100 100 0.10551851 0.1024782 0.1089914 0.112870781

0.9 400 0 0.01017455 0.0079162 0.0093448 0.008362374

0.9 400 10 0.01986731 0.01683672 0.0195674 0.019453192

0.9 400 100 0.07122501 0.07732212 0.06180346 0.07569379

0.95 50 0 0.0227879 0.02144606 0.01822586 0.016777859

0.95 50 10 0.05144733 0.05150686 0.05013246 0.045056431

0.95 50 100 0.12209427 0.1258446 0.12334552 0.114103484

0.95 100 0 0.01408179 0.01439067 0.01361614 0.013666387

0.95 100 10 0.02851292 0.02617789 0.03111062 0.029363331

0.95 100 100 0.10313513 0.08955379 0.114944 0.092549139

0.95 400 0 0.00714146 0.00646308 0.00748951 0.006144965

0.95 400 10 0.00945515 0.01034975 0.01064544 0.010492822

0.95 400 100 0.05351058 0.0479374 0.04971626 0.046846448
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Chapter 5

Conclusion

The CLM can be regarded as a structured histogram type estimator on a tri-
angle, so it can be improved by the kernel density estimator. Kernel density
estimators are sensitive to the choice of bandwidth, but the choice of a kernel
function does not usually affect the results considerably, for this reason the
selection of the bandwidth of the kernel estimator is a subject of considerable
research.

The CCL is a generalization of the CLM. In the CCL it is considered that
the data is recorded in continuous time, the critical point of the CCL method
is the choice of the bandwidth. There exist several methods for finding an op-
timal bandwidth, but they are time consuming. In this thesis we studied how
different input scenarios affect the optimal bandwidths of the CCL model.

The simulation results suggest that n, initClaimX, sigma, gencoef vari-
ables affect the process to find the best bandwidth (for our four fixed values
of bandwidth), but in some cases, for some special parameters, there are no
changes. The changes could be better seen if we would have more bandwidth
values for comparing. Unfortunately we could not include more values in
this study due to the time consuming procedures in R and the limited time.
We could also observe that a small value of bandwidth tends to be in general
more suitable for different sets of input parameters.

We think that this is a study than can be taken as a basis of further works
about bandwidth selection in CCL, which is necessary to increase the predic-
tive power of the CCL.
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