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1 Introduction

1.1 Overview of the literature

Plates, shells and beams (straight and curved) are the main structural el-
ements in more complex structures. Modern construction techniques pro-
vide for the production of basic elements with the subsequent installation.
Extremely important is the quality control during manufacturing and in-
stallation. Here the important role play non-destructive testing methods.
One possible method might be offered via an analysis of natural vibrations.
Mindlin shows in the [55] that the rotational inertia effect is small for the
lower plate modes. Huang [28] studied the effects of rotational inertia and
shear deformation for the natural frequencies and mode shapes in uniform
Timoshenko beam with boundary conditions for free supported ends. He has
shown that the effect of these two effects for the natural frequencies increases
with the number of modes or cross-sectional dimensions. But the compara-
tive impact on the normal modes of vibration, seems to be very little. Murty
[56] developed a linear approximate equation for the transverse vibrations of
uniform short beams, including shear deformation and rotary inertia effects.
Its values of natural frequencies are in better agreement with the experi-
mental data for comparison with the results obtained using shift correction
coefficients proposed by Timoshenko [72], [70], [71] and Cowper [18]. Adams
and Bacon [1] showed that the effect of the shear deformation is a function
of the aspect ratio (i.e., ratio of length to thickness) and less than 1% for
isotropic materials with an aspect ratio of more than twenty.

The effect of the shear deformation and rotatory inertia on the vibrations
of beams, rings and arches are investigated also by Rao [64], Lee et al. [40],
[42], [41], Wu and Chiang [78], [79], [80]. The work by Shames [68] gives
us a reason to use the Euler-Bernoulli beam theory in the dissertation and
to assume that plane cross sections, normal to the neutral axis before de-
formation, continue to remain plane and normal to the neutral axis and do
not undergo any strain in their planes. Free vibrations of curved beams or
arches in term of Euler-Bernoulli theory are the main subject of research in
the dissertation. We will use the first modes of vibrations only in our study.
The frequencies of free vibrations of curved beams and arches of constant
dimensions of the cross section of the arch are calculated by Petyt and Fleis-
cher [61], Markus and Nanosi [53], Chidaparam and Leissa [15], Cerri et al.
[12], [13], Auciello and DeRosa [4], DeRosa [20], Viola et al. [77], [76], [75]
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making use of analytical and numerical methods.
Finite element and finite strip methods have been used by Cheung et al. [14],
Yang and Chen [84], Yang et al. [83], Ishaguddin et al. [29], Karaagac et
al. [32]. A method based on curved beam elements is developed by Wu and
Chiang [78], [79], [80].
Due to their high stiffness and strength and other mechanical properties
compared to the weight the composite and laminate structures have gained
popularity during last decades. This involves the need for investigation of
the behavior of structures made of composites and laminates. The founda-
tion of the mechanics of composite materials are presented in the books by
Herakovich [27], Jones [30], Daniel [19], Tuttle [73]. Various numerical and
semi-analytical models for the analysis of granular materials are developed
by Kacianauskas et al. [31].
Orthotropic beams and plates are studied by Bui et al. [9], Ogierman and
Kokot [59], Bao et al. [6] and others.

Thin-walled plate and shell structures are treated by Kollar and Springer
[36], Reddy [65], Vinson and Sierakovski [74], Qatu [62], Gürdal et al. [25],
Xiang and Wang [81].
The vibrations and stability of structural elements containing cracks and
other defects have deserved the attention of many researchers. However,
the most of attention is paid to the vibrations of beams (see Dimarogonas
[21], [22], [23], Nandwana and Maiti [58], Nahvi and Jabbari [57], Kisa and
Brandon [34], Kisa et al. [34], Zheng and Kessissoglou [86]). Lellep and
Kägo [43] investigated the influence of defects on the eigenfrequencies of
classic stretched strips.
The presence of cracks and other defects in structural elements is a source
of additional compliance. Anifantis and Dimarogonas [3], Dimarogonas [22],
Chondros et al. [16], [17], Rizos et al. [66], Kukla [37] explored the idea of
an elastic spring modelling the additional flexibility due to a crack in the
cases of vibrating beams and bars weakened with crack. This approach was
extended to the case of elastic plate strips by Lellep and Kägo [43], [38].
Axisymmetric vibrations of elastic circular cylindrical shells with piece wise
constant thickness were treated by Lellep and Roots [49], [50]. In the 1990s
scientists have paid attention to the development of methods for describing
the vibrations of beams containing a crack. Rizos et al. [66], Liang et al.
[51], [52], Nandwana and Maiti [58], Kisa et al. [34], [35], Yang and Chen
[84], Ostachowicz and Krawczuk [60], Bamnios and Trochides [5] studied the
behavior of a beam having a crack at a certain place. Rizos et al. [66],
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Ostachovicz and Krawczuk [60], Kisa et al. [34] and other attempted to
simulate the presence of a crack in a beam using the analogy of rotational
springs. According to this approach considered cracked beam is consisting
of two parts connected by a rotational spring in place of a crack location.
This model has been successful in order to describe the local compliance
due to the presence of cracks. In the works Dimarogonas [22], Dimarogonas
and Paipetis [23] calculations showed a very good approximation methods
of linear elastic fracture mechanics (see Anderson [2], Broberg [7] and Broek
[8]) experimental data.

This idea is explored in the non-destructive detection of defects. Another
method for non-destructive evaluation of plate-like structures is based on
Lamb waves (see Ratassepp et al. [63]). Lamb waves are used also in the
determination of material constants in [39].

The influence of the axial force on the vibrations of Euler-Bernoulli beams
was revealed by Caddemi and Calio [10], also by Matsunaga [54]. The Ti-
moshenko arches are investigated by Calio et al. [11]. Here, as well as in the
paper by Kawakami et al. [33] out-of-plane vibrations of curved beams are
considered. Functionally graded materials are considered by Eroglu [24].

The foundations of vibrations of beams, plates and shells are presented
in the books by Qatu [62], Reddy [65], Vinson and Sierakowski [74], Hen-
rych [26]. The book by Soedel [69] contains the governing equations of the
dynamic analysis of beams, plates, shells and of certain non-shell structures.
The main principles of the analysis of composite and laminated structures
can be found in the books by Tuttle [73], Qatu [62], Daniel and Ishai [19],
Jones [30], Herakovich [27], Sadeghpour et al. [67] and others. Arches are
considered by Xu et al. [82]. In the paper by Lellep and Liyvapuu [45] a
method of determination of natural frequencies of elastic laminated arches
was developed. These results are extended to the case of composite and
laminated arches of variable thickness.

During last decades a lot of attention has been paid to the natural vibra-
tions of beams, plates and shells with defects (see Kukla [37], Yang and Chen
[84], Lellep and Roots [49], [50]). In the investigations of this type the key
problem is the modelling of influence of the defect on the structural behavior.
Dimarogonas [21], also Chondros et al. [17] have used the model of ”mass-
less rotational spring”. According to this concept a beam with a defect or
a crack is modelled as a mechanical system consisting of two bars which are
connected at the cross section where the defect occurs. This approach was
employed by Zheng and Fan [85] and others. Lellep and Liyvapuu [46][47],
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[48] extended this method to the case of natural vibrations of circular arches
having rectangular cross sections with piece-wise constant dimensions. In the
present study the natural frequencies of elastic arches with step wise varying
cross sections are investigated.

1.2 Aim of the dissertation

The main goal of the research is to investigate the frequency of natural vi-
brations of elastic stepped arches with crack-like defects and to analyse the
sensitivity of the frequency to the geometrical, mechanical and physical prop-
erties of the arch. The reasons to choose the methodology that is used in
the study and the detailed description of its development are revealed in the
introductory section and in Sections 2, 3 and 4 of the present dissertation.

1.3 Structure of the dissertation

The thesis is organized as follows. The first section (Introduction) provides
an overview of the study and analysis of vibration, in particular the analysis
of free vibrations, in recent decades; it is followed by the explanation of the
aim and structure of the dissertation. The main part of the thesis (Sections
2, 3 and 4) describes in detail our method, which is then applied to the arches
having both isotropic and laminated structure. The second section discusses
two particular cases of stepped arches. At first, the arch of constant thick-
ness simply supported at both ends is studied. The second case is related to
laminated arches of constant thickness without cracks. The cases of simply
supported arches and arches clamped at both ends are investigated. The
third section addresses the issue of the dependence of the frequency of free
vibrations on the parameters of the stepped arches. The fourth section exam-
ines the frequency of free vibrations of stepped arches with cracks clamped
at both ends. The arches are supposed to be with an internal cavity. Finally,
the conclusions in English and Estonian are presented, copies of published
articles and the author’s CV are enclosed.
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2 Free vibrations of arches with cracks

In the second section of the dissertation we consider arches with constant
thickness. The determination of natural frequencies of these arches is the
goal of the research. At first we consider a simply supported at the both
ends circular arch with a crack. Then we will study natural vibrations of a
laminated arch simply supported at the both ends and arches clamped at the
both ends.

2.1 Elastic arch with a crack

Formulation of the problem
Let us consider natural vibrations of an elastic arch of radius R = const.
It is assumed that the arch is simply supported at both ends (see Fig.1).
We use polar coordinates. When using polar coordinates the position of
current cross section is defined by the angle ϕ whereas the edges of the arch
correspond to α = 0 and α = β, respectively. It is assumed that at ϕ = α
a crack-like defect is located. The defect is treated as a stable crack; no
attention will be paid to its extension. Let the depth (length) of the crack
be c < h. It is assumed herein that the arch has rectangular cross section
with dimensions h (thickness) and b (width of the arch). The aim of the
section is to determine the frequencies of natural vibrations and to reveal the
sensitivity of eigenfrequencies to crack parameters. Note that the arch will
be treated as a curved beam with the neutral curved axis lying wholly in
one plane. It is assumed that the motion of every point of the neutral curve
takes place in this plane only.

Solution of the equation of motion
Equilibrium conditions of an element of the arch lead to the equations (Soedel
[69]):

∂M

∂s
−Q = 0,

∂N

∂s
+
Q

R
+ ps = ρ̄hÜ , (2.1)

∂Q

∂s
− N

R
+ pn = ρ̄hẄ ,

where dots denote the differentiation with respect to time t and s is the
length of the arch. In (2.1) U and W denote the displacements in the cir-
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Figure 1: Elastic arch with the crack

cumferential and transverse direction, respectively, whereas ps and pn stand
for the external loads in these directions. Here N and M are the membrane
force and bending moment, Q denotes the shear force; ρ̄ is the mass per unit
width and h — the thickness of the arch. According to the classical approach
ps = u = 0. Assuming that

M(0, t) = 0, M(β, t) = 0 (2.2)

and the membrane force N vanishes at the edges of the arch it follows from
(2.1) that M = −NR and

M ′′ +M +R2(pn − ρ̄hẄ ) = 0, (2.3)

where prims denote the differentiation with respect to the angle ϕ and s =
ϕR.



In the case of curved beams and arches the strain components are the relative
extension (see Soedel [69])

ε =
1

R
(U ′ +W ) (2.4)

and the curvature

κ = − 1

R2
(−U ′ +W ′′). (2.5)

According to the Hooke’s law (see [44], [45], [69])

N = Ebhε, M =
Eh3b

12
κ. (2.6)

Here E stands for the Young’s modulus.
Thus

N =
Ehb

R
(U ′ +W ),

M =
Eh3b

12R2
(U ′ −W ′′), (2.7)

Since N = 0 the equation (2.17) yields U ′ = −W . Therefore

κ = − 1

R2
(W +W ′′) (2.8)

and

M =
Eh3b

12R2
(−W −W ′′). (2.9)

We will focus on the free vibrations of the arch. Taking pn = 0 and substi-
tuting (2.9) in (2.3) one obtains the equation

Eh3

12R2
(W IV + 2W ′′ +W ) + ρ̄hR2Ẅ = 0. (2.10)

In order to solve the differential linear equation (2.10) with partial derivatives
the method of Fourier’ will be employed. According to this method let us
assume that

W (ϕ, t) = w(ϕ) · sin (ωt), (2.11)
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where ω stands for the frequency of natural vibrations and w(ϕ) is an un-
known function of the variable ϕ. The substitution (2.11) in (2.10) leads to
the equation

wIV + 2w′′ + w(1− k2) = 0, (2.12)

where

k =

√
12ρ̄R4ω2

Eh2
. (2.13)

The roots of the characteristic equation of the linear differential equation
(2.12) are

λ = ±
√
−1± k. (2.14)

We assume that −1 + k > 0 and −1 − k < 0. Thus the general solution of
(2.12) takes form

w = A1 cosh (µϕ) + A2 sinh (µϕ) + A3 cos (νϕ) + A4 sin (νϕ) (2.15)

for ϕ ∈ [0, α] and

w = B1 cosh (µϕ) +B2 sinh (µϕ) +B3 cos (νϕ) +B4 sin (νϕ) (2.16)

for ϕ ∈ [α, β].
Here the notation µ2 = 1− k, ν2 = 1 + k is used.

Arbitrary constants A1, A2, A3, A4 and B1, B2, B3, B4 in (2.15), (2.16)
have to be determined from boundary and intermediate conditions.

Additional flexibility caused by the crack
Let us use the method developed by Chondros et al. [17], Dimarogonas [22],
Kukla [37]. The authors of [17] supposed that a slope of the deflection can
be considered as a discontinuous quantity at the cross section with cracks.

Let us denote the jump of the discontinuous quantity at the cross section
ϕ = α as

θ = W ′(α + 0, t)−W ′(α− 0, t). (2.17)

It is recognized that there exists a relationship between the local com-
pliance of the arch C and the stress intensity factor K known in the linear
elastic fracture mechanics.

The quantity θ can be treated as a generalized displacement correspond-
ing to the generalized force (bending moment) Mc = M(ϕ, t)|ϕ=α one can
write

θ = C ·Mc, (2.18)
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where C is the additional compliance caused by the crack.
On the other hand, it is known in the fracture mechanics that the energy

release rate can be calculated as (here A = bc)

G =
M2

c

2

dC

dA
(2.19)

or as (see Anderson [2], Broek [8])

G =
K2

E ′
. (2.20)

In (2.20) E ′ = E for plane stress state and E ′ = E
(1−ν2) for the plane defor-

mation state.
The stress intensity factor K itself is defined as

K = σ
√
πcF (s). (2.21)

Here s = c
h
. If the cracked element is subjected to pure bending then

σ =
6Mc

bh2
. (2.22)

The shape function F in (2.21)must be defined on the basis of experimental
results. It depends on the type of a cracked element. Following Dimarogonas
[21], Rizos et al. [66] one can take

F (s) = 1.93− 3.07s+ 14.53s2 − 25.11s3 + 25.80s4, (2.23)

where s = c/h.
Combining the relations (2.18)—(2.23) after algebraic manipulations one

obtains
dC

ds
=

72π

E ′h2b
sF 2(s). (2.24)

The integration of (2.24) leads to the result

C =
72π

E ′h2b
f(s), (2.25)

where

f(s) =

∫ s

0

ξF 2(ξ)dξ. (2.26)

15



Thus the jump of the slope can be evaluated as

w′(α + 0)− w′(α− 0) = p
(
w′′(α) + w(α)

)
, (2.27)

where

p = −6πh(1− ν2)
R2

· f(s). (2.28)

Boundary and intermediate conditions for a simply supported arch
Boundary conditions for an arch simply supported at both ends are

w(0) = 0, w′′(0) = 0,

w(β) = 0, w′′(β) = 0. (2.29)

At the internal points of the interval (0, β) the displacement W and its deriva-
tive, also bending moment M and shear force Q must be continuous. There-
fore one has

w(α− 0) = w(α + 0),

w′′(α− 0) = w′′(α + 0), (2.30)

w′′′(α− 0) = w′′′(α + 0).

The quantity w′ is discontinuous at ϕ = α; the jump condition for it (2.27)
must be fulfilled.

The conditions (2.29) furnish at ϕ = 0 the equations

A1 + A3 = 0,

µ2A1 − ν2A3 = 0. (2.31)

It immediately follows from (2.31) that

A1 = A3 = 0. (2.32)

The conditions (2.29) furnish at ϕ = β the equations

B1 = −B2 tanh (µβ), B3 = −B4 tan (νβ). (2.33)

Taking (2.27), (2.30), (2.32), (2.33) into account the continuity requirements
can be presented in the form of the following system

16



A2 sinh (µα) + A4 sin (να) =

= B2

(
sinh (µα) − tanh (µβ) cosh (µα)

)
+

+ B4

(
sin (να)− tan (νβ) cos (να)

)
,

A2µ cosh (µα) +A4ν cos (να) = (2.34)

= p
[
B2(µ

2 + 1)
(
sinh (µα) − tanh (µβ) cosh (µα)

)
+

+ B4(1− ν2)
(
sin (να)− tan (νβ) cos (να)

)]
,

A2µ
2 sinh (µα)− A4ν

2 sin (να) =

= B2µ
2
(

sinh (µα) − tanh (µβ) cosh (µα)
)

+

+ B4ν
2
(

tan (νβ) cos (να)− sin (να)
)
,

A2µ
3 cosh (µα)− A4ν

3 cos (να) =

= B2µ
3
(

cosh (µα) − tanh (µβ) sin (µα)
)

+

+ B4ν
3
(
− cos (να)− tan (νβ) sin (να)

)
.

Evidently, we have the linear homogeneous system of four algebraic equa-
tions (2.34) with the unknowns A2, A4, B2, B4. This system has a non-trivial
solution if and only if its determinant ∆ equals to zero.

Numerical results and discussion
The equation ∆ = 0 is solved up to the end numerically making use of the
computer code MATLAB. We found the lowest frequency corresponding to
the first mode of vibration. Some examples are shown in Fig.2, Fig.3. The
results presented in Fig.2, Fig.3 correspond to the simply supported arch
made of steel with moduli E = 2.1 · 1011 Pa, ν = 0.3, ρ = 7865 kg/m3.

The geometrical dimensions of the arch are R = 1 m, b = 0.05 m, h = 0.05 m.
In Fig.2 β = 1.5 rad and in Fig.3 β = 1 rad.
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Figure 2: Natural frequency vs. length of the crack, β = 1.5 rad.

Figure 3: Natural frequency vs. length of the crack, β = 1 rad.
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Different curves in Fig.2 and Fig.3 correspond to different extensions of the
crack. Evidently, the higher frequencies correspond to the larger angle of the
arch. It can be seen from Fig.2 and Fig.3 that the eigenfrequency has the
highest level for the arch without any defects.

Results obtained by the method presented above are compared with the
results of Wu, Chang [78] and Petyt, Fleischer [61] in the case of simply
supported arches in Table 2.1. and Table 2.2.

Here K indicates the number of natural frequency.
Table 2.1 corresponds to the arch with β = 1 rad, R = 30 in ≈ 0.762 m,
h = 0.01289 in ≈ 3.27 · 10−4 m
The material of the arch is a mild steel with characteristics:
E = 107 lb/in2 ≈ 2.871 · 1011 Pa, ρ = 0.1 lb/in3 ≈ 2768.2 kg/m3.

Here ω0 = ω
√

AR4

EI
, I = 1

12
bh3, A = bh.

Table 2.1. Comparison of results, (β = 1 rad)

K 1 2 3 4 5
ω0 0.366 1.590 3.672 6.481 10.159

Petyt, Fleischer [61] 0.349 1.571 3.612 6.470 10.144

Table 2.2. Comparison of results, (β = π/2)

K 1 2 3 4 5
ω0 2 15 35 63 99

Wu, Chiang [78] — 13.773 32.426 61.610 96.375

It can be seen from Table 2.1 and Table 2.2 that the results of the current
study are quite close to results obtained by other researchers.

2.2 Laminated arches

Basic assumptions
Free vibrations of an elastic arch made of a multi layered material will be
considered. It assumed that the cross-section of the arch is rectangular with
the width b and total height (thickness) H = const.

The cross section of the arch consists of layers with thickness hj (j =
0, 1, . . . , n). Each layer is assumed to be an elastic layer with material pa-
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Figure 4: Elastic laminated arch

rameters ρj (density), Ej (Young’s modulus), νj (Poisson’s ratio). The layers
are treated as orthotropic laminae consisting of a matrix material and of uni-
formly embedded fibers. However, in the case of an orthotropic lamina these
engineering constants are not independent. For a plane stress situation one
has (see Gürdal et al.[25]) for the neighbouring layers must be satisfied re-
strictions

νij
Ei

=
νji
Ej

(2.35)

for i = 0, 1, . . . , n− 1, j = i+ 1.

The goal of the study is to determine the natural frequencies of free vibrations
of laminated elastic arches and to elucidate the sensitivity of eigenfrequencies
on the geometrical parameters of the laminate.
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Governing equations
In the theory of laminated elastic plates the physical relations can be pre-
sented as (see Kollar and Springer [36], Reddy [65], Vinson and Sierakovski
[74])

N = Aε+Bκ (2.36)

and
M = Bε+Dκ. (2.37)

Here N and M stand for vectors of membrane forces and principal moments,
respectively, whereas ε and κ are corresponding vectors of strain components
and curvatures. The elements of matrices A,B and D can be calculated as
(Vinson and Sierakowski [74])

Aij =
n∑
k=1

Q
(k)
ij (zk − zk−1) ,

Bij =
1

2

n∑
k=1

Q
(k)
ij

(
z2k − z2k−1

)
, (2.38)

Dij =
1

3

n∑
k=1

Q
(k)
ij

(
z3k − z3k−1

)
,

where |zk − zk−1| = hk.
In the case of laminates for which each lamina is reinforced with a unidi-

rectional array of fibers one has

Q
(k)
11 =

E
(k)
1

1− ν(k)12 ν
(k)
21

, Q
(k)
12 =

ν
(k)
12 E

(k)
2

1− ν(k)12 ν
(k)
21

, Q
(k)
22 =

E
(k)
2

1− ν(k)12 ν
(k)
21

, (2.39)

where the superscript (k) indicates the number of the lamina. In the case of
beams and arches the quantities A,B and C are scalars. Also the vectors ε
and κ are one-dimensional strain components.
These can be expressed as (2.6),(2.5).

The Hooke’s law furnishes with (2.36), (2.37) the relations

N =
A

R
(U ′ +W ) +

B

R2
(U ′ −W ′′) (2.40)

and

M =
B

R
(U ′ +W ) +

D

R2
(U ′ −W ′′) . (2.41)
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According to the Euler-Bernoulli beam theory there is no extension of the
middle surface of the arch. Therefore, one can take ε = 0 and U ′ = −W .
Thus one obtains

M = Dκ, (2.42)

where

D =
Eh3b

12
. (2.43)

Evidently, (2.42) coincides with (2.9). Similarly, the the equilibrium condi-
tions lead to the equation (2.10), as in the previous case.

Let the general solution on the equation of motion be

w = C1 cosh (µϕ) + C2 sinh(µϕ) + C3 cos (νϕ) + C4 sin (νϕ), (2.44)

where C1, C2, C3 and C4 are arbitrary constants and

µ =

√
1− ωR2

√
ρ̄

D
, ν =

√
1 + ωR2

√
ρ̄

D
. (2.45)

In the case of an arch simply supported at both ends the boundary require-
ments can be presented by (2.29).

It follows from (2.29), (2.44), (2.45) that

ω = ±

√
D

ρ̄
· π

2k2 − β2

β2R2
, (2.46)

where k = 1, 2, . . . , n.
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Arches clamped at the both ends
In the case of an arch clamped at both ends the boundary requirements are

w(0) = 0, w′(0) = 0 (2.47)

and
w(β) = 0, w′(β) = 0. (2.48)

Conditions (2.47), (2.48) with (2.44) lead to the linear algebraic system
with the determinant

∆ =

∣∣∣∣∣∣∣∣
1 0 1 0
0 µ 0 ν

cosh (µβ) sinh (µβ) cos (νβ) sin (νβ)
µ sinh (µβ) µ cosh (µβ) −ν sin (νβ) ν cos (νβ)

∣∣∣∣∣∣∣∣ . (2.49)

Evidently, the determinant (2.49) equals to zero.

Numerical results

The results of calculations are presented in Fig.5—Fig.7 and Table 2.3.
The obtained results correspond to the three-layers arch with thicknesses
h0, h1, h2.

The dependence of the natural frequency on the order of stacking of layers
with different materials is shown in Fig.5. Here as in the previous case
h0 = h1 = h2 = 0.01 m = const.

The natural frequency versus radius of the arch is depicted in Fig.6 for
different values of the thickness h2. Here h0 = h1 = 0.01m.

It can be seen from Fig.6 that the natural frequency decreases with in-
creasing the radius of the arch.

The sensitivity of the natural frequency on the angle β is shown in Fig.7 for
different values of the radius of the arch. Here h0 = h1 = h2 = 0.01 m. It
can be seen from Fig.7 that the larger is the radius of the arch the lower is
the natural frequency.

The frequency decreases if the angle β increases.
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Figure 5: Natural frequency vs. radius of the arch

(A– aluminum, P– polystirol, S– steel)
Table 2.3. Materials of layers

E,Pa ρ, kg/m3 ν
(h2) Steel 2.1 · 1011 7865 0.3
(h1) Aluninum 7 · 109 2700 0.35
(h0) Polystirol 1.5 · 109 30 0.1

It can be seen from Fig.5 that the lowest natural frequency is achieved in
the case of stacking materials in the order Steel—Polystirol—Aluminum.
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Figure 6: Natural frequency vs. radius of the arch

Figure 7: Natural frequency vs. angle of the arch
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3 Natural frequencies of stepped arches

The aim of this section is to determine the eigenfrequencies of elastic stepped
arches and to study the sensitivity of free vibrations on the crack location
and depth. This section is based on the papers Lellep and Liyvapuu [46],
[47].

3.1 Stepped arches without defects

Let us consider an elastic circular arch of radius R. The arch is simply
supported at the both ends (see Fig.8). As in the previous sections the
current angle ϕ defines the position of the cross-section of the arch. It is
assumed that the arch has rectangular cross-section with a constant width b
and the height h = hj for ϕ ∈ (αj, αj+1). The quantities hj are assumed to
be given constants.
It is assumed that the due to the initial excitation the arch is performing
free vibrations around its equilibrium position. The goal is to determine
the natural frequencies of the free vibrations and to reveal the sensitivity of
parameters. We can assume that the arch under consideration is made of a
composite of laminated material.
In the theory of elastic plates (see Kollar and Springer [36], Reddy[65], Vin-
son and Sierakowski[74]) membrane force N and bending moment M are
presented as follows

N =

Kj∑
k=1

∫ zk+1

zk

σsdz (3.1)

and

M =

Kj∑
k=1

∫ zk+1

zk

σszdz,

|zk+1 − zk| = hkj

is the thickness of layer number k; here zk is the local coordinate directed
through the thickness of the arch and Kj is the number of layers.
Shear force

Qs =

∫ h/2

−h/2
σsϕdz, (3.2)

where σsϕ — tangential stress component
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Figure 8: Elastic stepped arch

The Hooke’s law for a multilayered arch is given by (2.36), (2.37).
Here ε and κ are vectors of strain components and curvatures, respectively,
expressed by (2.6), (2.5).

The elements of matrices A,B and D (see Vinson and Sierakowski [74])
given by (2.38).

Also the vectors ε and κ are one-dimensional strain components.

It easily follows from governing equations that in the case of stepped
arches and

Mj = −Djκ, (3.3)

where κ is defined by (2.8). In the case of free vibrations of stepped arches
one has

Dj

R2

(
W IV + 2W ′′ +W

)
+ ρ̄jR

2Ẅ = 0, (3.4)

where ρ̄j — mass per unit area of the middle surface of the arch in different
regions.



Here j = 0 for ϕ ∈ (0, α) and j = 1 for ϕ ∈ (α, β).
The general solution of equation (3.4) is

w = Cj1 cosh (µjϕ) + Cj2 sinh (µjϕ) + Cj3 cos (νjϕ) + Cj4 sin (νjϕ), (3.5)

where Cj1, Cj2, Cj3 and Cj4 are arbitrary constants and

µj =

√
1− ωR2

√
ρ̄j
Dj

, νj =

√
1 + ωR2

√
ρ̄j
Dj

. (3.6)

Boundary conditions for an arch simply supported at the both edges are
presented by (2.29) and for clamped arches by (2.47), (2.48).

Thus one can write

w(αj − 0) = w(αj + 0),

w′(αj − 0) = w′(αj + 0), (3.7)

Dj−1

(
w(αj − 0) + w′′(αj − 0)

)
= Dj

(
w(αj + 0) + w′′(αj + 0)

)
,

Dj−1

(
w′(αj − 0) + w′′′(αj − 0)

)
= Dj

(
w′(αj + 0) + w′′′(αj + 0)

)
for each j = 1, 2, . . . , n,
where

Dj =
Eh3jb

12R2
. (3.8)

In order to determine the frequency of the free vibrations of stepped arch one
has to determine the constants Cj1, Cj2, Cj3, Cj4 so that all boundary and in-
termediate conditions are satisfied. Thus the system of boundary conditions
with intermediate conditions (3.7) consists of 4n+ 4 algebraic equations.

In the case n = 1 the determinant of this system can be expressed as

∆ =

∣∣∣∣∣∣∣∣
ξ1 ξ2 ξ3 ξ4
µ0ξ5 ν0ξ6 µ1ξ7 −ν1ξ8
µ2
0ξ1 −ν20ξ2 µ2

1ξ3 −ν21ξ4
µ3
0ξ5 −ν30ξ6 µ3

1ξ7 ν31ξ8

∣∣∣∣∣∣∣∣ , (3.9)

where

ξ1 = sinh (µ0α), ξ5 = cosh (µ0α),
ξ2 = sin (ν0α), ξ6 = cos (ν0α),
ξ3 = tanh (µ1β) cosh (µ1α)− sinh (µ1α), ξ7 = tan (ν1β) sin (ν1α) + cos (ν1α),
ξ4 = tan (ν1β) cos (ν1α)− sin (ν1α), ξ8 = tanh (µ1β) sinh (µ1α)− cosh (µ1α).
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The equation ∆ = 0 is solved numerically using the computer code of MAT-
LAB. The results of calculations are presented in Fig.9—Fig.11.

The lowest frequency of free vibrations is presented in Fig.9 for various values
of the angle β. The arch is made of a mild steel with E = 2.1 · 1011 Pa. The
dimensions of the arch are R = 1 m, h0 = 0.02 m, h1 = 0.01 m.

The natural frequency versus the step coordinate α is presented in Fig.10.
Different curves in Fig.10 correspond to different values of the ratio of thick-
nesses γ = h1/h0.
Here β = 1.5 rad, b = 0.01 m, h0 = 0.05 m.

The relationship between ω and α is shown in Fig.11 for different materials.
Here R = 1 m, h0 = 0.02 m, h1 = 0.01 m. It can be seen from Fig.11 that
curves corresponding to bronze and concrete are quite near to each other.

Figure 9: Natural frequency vs. angle of the arch
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Figure 10: Natural frequency vs. ratio of the thicknesses, γ = h1
h0

Figure 11: Natural frequency vs. materials of the arch made
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3.2 Stepped arch with cracks

Let us consider an elastic stepped arch with cracks. We assume that the arch
has piece-wise constant thickness

h = hj, ϕ ∈ (αj, αj+1) (3.10)

for j = 0, 1, . . . , n. Cracks with length cj are placed in re-entrant corners of
steps (see Fig.12). Let other geometrical, physical and mechanical properties
of the arch be the same as in the previous section 3.1.

Figure 12: Elastic stepped arch with cracks

Let us study an impact of a surface crack in the cross section ϕ = αj on
the behavior of the arch. Evidently, the continuity conditions and boundary
requirements used in the previous section remain valid.

The goal of this section is to study the behavior of an elastic stepped arch
with surface cracks.
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Equations of equilibrium of an element of a vibrating arch can be transformed
into (3.4) for ϕ ∈ (αj, αj+1) j = 0, 1, . . . , n.

Now the general solution of (3.4) is to be taken as

w = C1j cosh (µjϕ = + C2j sinh (µjϕ) + C3j cos (νjϕ) + C4j sin (νjϕ). (3.11)

For determination of constants C1, C2, C3 and C4 one can use the bound-
ary conditions (2.29), also intermediate conditions (2.30) and (2.27). The
set of intermediate conditions can be presented as (see Lellep and Liyvapuu
[44]) in form

[w(αj)] = 0,

[w′(αj)] =
6πhj+1

R2
· f(sj)

(
w′′(αj + 0) + w(α)

)
, (3.12)

[w′′(αj)] = 0,

[w′′′(αj)] = 0.

In (3.12) the square brackets denote the jump of corresponding quantities
and

f(sj) = 1.86s2j − 3.95s3j + 16.37s4j − 34.23s5j +

+ 76.81s6j − 126.9s7j + 172s8j − 143.97s9j + 66.56s10j . (3.13)

Here sj = cj/hj+1, cj being the crack depth.

The requirements (3.7) form a linear algebraic system with the determinant
∆. Since this is a homogeneous system it has a non-trivial solution if and
only if ∆ = 0. This equation enables to determine the natural frequencies
for an arch containing a crack.

The results of calculations are presented in Fig.13—Fig.16 for the arch with
R = 1 m, β = 1 rad, h0 = 0.02 m, h1 = 0.01 m.

The natural frequency versus α is depicted in Fig.13 for different extensions
of the crack. The upper curve corresponds to the undamaged arch (with
s = 0).

The dependence of natural frequency on the radius of the arch is shown in
Fig.14 for different radii of the arch.

The natural frequency versus the step location is presented in Fig.15 and
Fig.16 for the cases s = 0 and s = 0.8, respectively.
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Figure 13: Natural frequency vs. depth of the crack

Figure 14: Natural frequency vs. radius of the arch
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Figure 15: Natural frequency vs. step location (s = 0)

Figure 16: Natural frequency vs. step location (s = 0.8)
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4 Free vibrations of tubular elastic arches

Let us consider the dynamic behavior of an elastic arch of rectangular uni-
form or non-uniform cross section. Here we will use capital letters to denote
external dimensions of the cross-section of the arch and small letter for the
internal dimensions. It is assumed that the external dimensions of the cross
section are B (width) and H (height). Let b and h be for internal width and
height, respectively.

Figure 17: Stepped arch with tubular cross-sections

We assume that the height H is piece-wise constant, e.g.

H = Hj, ϕ ∈ (αj, αj+1) (4.1)

for j = 0, . . . , n. However, the radius of the arch R = const and B = const.
Let the arch be a circular arch with radius R and central angle β. (see
Fig.17). For the sake of simplicity one can take α0 = 0, αn+1 = β.

The cross sectional area of the arch is Sj = BHj for j = 0, . . . , n. How-
ever, the area of these parts which are occupied with the material is

Sj = BHj − bh (4.2)



for ϕ ∈ (αj, αj+1) j = 0, . . . , n.
The arch is weakened with cracks of length cj locating at ϕ = αj, (j =
1, . . . , n).

The goal of the study is to define frequencies of natural vibrations and to
analyze the sensitivity of eigenfrequencies on the crack parameters.

The basic equations used in the case remain valid.
The Hooke’s law for a stepped arch can be presented as

M = −Dj

R2
(W +W ′′) (4.3)

for ϕ ∈ (αj, αj+1) j = 0, . . . , n. Here

Dj = −E
∫∫

A

z2dxdz, (4.4)

where A is domain of integration and depends on the configuration of the
cross section of the arch.

It appears that the system of equilibrium equations (2.1) can be converted
in a single third order equation. According to the first equation in (2.1) and
(2.6)

N ′ = −M
′

R
. (4.5)

Differentiating the last equality in (2.1) with respect to ϕ and taking
Q = −N ′ and (4.5) into account one obtains

M ′′′ +M ′ = µ̄jR
2Ẅ ′ (4.6)

for ϕ ∈ (αj, αj+1) j = 0, . . . , n.

Substituting the bending moment from (4.3) into (4.6) one reaches to the
equation

Dj(W
V + 2W ′′′ +W ′) + ρSjR

4Ẅ ′ = 0 (4.7)

for ϕ ∈ (αj, αj+1) j = 0, . . . , n; where µ̄j = ρSj, ρ being the density of the
material.

The equation (4.7) can be solved by the method of separation of variables
(see section 2.). Substituting (2.11) in (4.7) results in the equation

Dj(w
V + 2w′′′ + w′)− w′ · ρSjR4ω2 = 0. (4.8)
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The latter can be presented as

wV + 2w′′′ + w′(1− k2j ) = 0, (4.9)

where

kj =

√
ρSjR4ω2

Dj

. (4.10)

The characteristic equation of (4.9) has the form

λ5j + 2λ3j + λj(1− k2j ) = 0. (4.11)

The roots of (4.11) are

λj1 = 0,

λj2,3 = ±
√

1− kj, (4.12)

λj4,5 = ±i
√

1 + kj,

where i is the imaginary unit.
The general solution of (4.9) is

C1j cosh (µjϕ) + C2j sinh (µjϕ) + C3j cos (νjϕ) + C4j sin (νjϕ) + C5j. (4.13)

Here µj =
√

1− kj, νj =
√

1 + kj.
The slope of the deflection is considered as a discontinuous quantity at

the cross section with cracks.
In the case of hollow sectional beams instead of (2.22) one has

σj =
6MjHj

BjH3
j − bh3

. (4.14)

The differential equation (here sj = cj/Hj) (2.22) takes the form

dCj
dsj

=
72H4

jBj

E ′(BjH3
j − bh3)2

sjF
2(sj). (4.15)

The equation (4.15) with the initial condition Cj(0) = 0 has the solution

Cj =
72H4

jBj

E ′(BjH3
j − bh3)2

f(sj) (4.16)
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in the case where cj ≤ 1
2
(Hj−h). Here the function f(sj) is defined by (3.13).

Summarizing the results obtained above one can present the jump conditions
for the slope of the deflection at ϕ = αj as

θj = − 1

R2
CjDj(αj + 0)

(
w(αj + 0) + w′′(αj + 0)

)
, (4.17)

where Dj and Cj are defined by (4.4) and (4.16), respectively. Note that
(4.15), (4.16) apply for small cracks; in the case of larger cracks (4.15) and
(4.16) must be modified suitably.

Some numerical results of calculation using the computer code MATLAB are
presented in Fig. 18—Fig. 21.

The frequency of free vibrations is presented in Fig. 18 for various radii of
the arch. The arch is made of a mild steel with E = 2.1 · 1011 Pa.

The natural frequency versus depth of the crack can be seen in Fig.19. The
dimensions of the arch are R = 1 m, h0 = 0.02 m, h1 = 0.01 m; material
mild steel.

Natural frequencies of arches made of various materials are depicted in
Fig. 20. Here R = 1 m, h0 = 0.02 m, h1 = 0.01 m. Characteristics of the
materials are shown in Table 4.1 below.

Table 4.1. Constants of different materials

E, (Pa) ρ, (kg/m3) ν
Steel 2.1 · 1011 7865 0.3
Aluninum 7 · 109 2700 0.33
Glass 7 · 109 2600 0.25
Concrete 1.7 · 109 1500 0.15
Polystirol 1.5 · 109 30 0.1

It can be seen that curves corresponding to aluminum, glass and steel are
quite close to each other.

Different curves in Fig.21 correspond to different values of the ratio of thick-
nesses γ = h1/h0.

38



Figure 18: Natural frequency vs. radius of the arch

Figure 19: Natural frequency vs. depth of the crack
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Figure 20: Natural frequency vs. material of the arch made

Figure 21: Natural frequency vs. ratio of the step γ = h1
h0
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Summary

In the present dissertation, the natural frequencies of free vibrations of cir-
cular elastic arches are studied. The circular elastic arches, in which each
segment has a piece-wise constant thickness, are under consideration. It is
assumed that stable crack-like surface defects occur at the re-entrant corners
of the steps. The propagation of the cracks is neglected. The cracks are
considered to be stationary surface cracks which have not fully penetrated
the arch thickness. Combining the methods of the theory of elastic plates
and shells and the theory of linear elastic fracture mechanics, a new method
for determining the natural frequencies of elastic structures is developed in
the thesis. The dissertation is based on the five articles of the author (four
of which have been published). The dissertation consists of the review of the
obtained results, the copies of the papers, the list of literature and the CV
of the author. The review starts with the consideration of the background of
the study of free vibrations, then overview of the used literature is provided
and the aim of the thesis is presented (these parts form the Introduction),
which is followed by the three main sections. In the second section of the
dissertation, the method of finding the natural frequencies of arches with a
constant thickness is developed. Two problems are discussed: the first one
regards the arches made of homogeneous materials and containing surface
cracks; the second case covers laminated arches without cracks. In the both
cases, simply supported and clamped arches are studied. Because of the
small amplitude of the oscillations in the case of free vibration, the material
of the arches is assumed to be a purely elastic material and the hypothesis of
Kirchhoff is considered applicable. A refined version of the classical bending
theory is employed. The influence of cracks on the vibrational characteristics
is taken into account with the use of the model of distributed line springs.
The latter employs the stress intensity coefficient known in the elastic frac-
ture mechanics. In the third section, stepped arches without and with cracks
are studied. In the fourth section of the dissertation, the developed method
is used for determination of the natural frequency of free vibration in case of
hollow elastic arches. The stepped arches under consideration are assumed
to be clamped at both ends. The influence of the geometrical parameters
and material properties on the vibration of the arches is analysed.
The method developed in the dissertation can be used in the non-destructive
testing of structures.
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Kokkuvõte

Pragudega elastsete astmeliste kaarte omavõnkumised

Käesolevas väitekirjas vaadeldakse elastsete astmeliste kaarte omavõnkumisi.
Vaatluse all olevad kaared on tükiti konstantse paksusega ja konstantse laiu-
sega. Kaarte tükiti konstantse paksuse muutumise kohtades asuvad praod.
Eeldatakse, et praod on stabiilsed ja konstantse pikkusega. Kasutades elast-
sete plaatide ja koorikute teooria ning lineaarse purunemismehaanika mee-
todeid on välja töötatud analüütilis-numbriline meetod kaarte vabavõnku-
miste sageduste määramiseks. Antud dissertatsioon põhineb autori viiel
teaduslikul artiklil, millest neli on avaldatud ja üks ametlikult vastu võetud.
Väitekiri koosneb kokkuvõtvast ülevaateartiklist, publitseeritud ja trükki
suunatud artiklite koopiatest ja kokkuvõttest. Lisatud on autori elulookir-
jeldus.
Väitekirja sissejuhatavas osas on esitatud kirjanduse ülevaade ning on kir-
jeldatud väitekirja eesmärke ja struktuuri. Töös uuritakse kaarte vabavõn-
kumisi konstantse ja tükiti konstantse paksuse korral. Esiteks vaadeldakse
pinnalt lähtuva praoga homogeensest materjalist kaart, seejärel uuritakse
lamineeritud elastse kaare vabavõnkumisi nii vabalt toetatud kui ka jäigalt
kinnitatud kaare korral. Eeldatakse, et kehtivad Kirchhoffi hüpoteesid. Prao
mõju vabavõnkumiste sagedusele modelleeritakse jaotatud lineaarse vedru
mudeli abil. Vastavalt sellele on prao mõju kaare omavõnkumisele seotud
lokaalse järeleandlikkuse koefitsiendi ning pinge intensiivsuse koefitsiendiga,
mis arvutatakse purunemismehaanika meetoditega. Uuritakse ka astmeliste
kaarte vabavõnkumisi. Vaadeldud on nii pragudega kaari kui ka ilma de-
fektideta kaari. Dissertatsiooni viimane osa on pühendatud jäigalt kinni-
tatud õõnsustega kaarte vabavõnkumiste uurimisele. Kõikidel juhtudel on
omavõnkumiste uurimiseks konstrueeritud analüütilis-numbrilised meetodid,
mis põhinevad klassikalise plaatide ja koorikute teooria ning purunemisme-
haanika võrranditel ja kriteeriumitel.
Välja töötatud meetod võib leida kasutamist konstruktsioonide mittepurus-
taval katsetamisel.
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