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Vehicle Detection Based on Convolutional Neural Networks

Abstract:

Accurate vehicle detection or classification plays an important role in Intelligent Trans-

portations Systems. Ability to detect vehicles in traffic scenes allows analyzing drivers’

behavior as well as detect traffic offenses and accidents. Detection and classification

of vehicles is a challenging task due to weather and light conditions and vehicle type

diversity. Several solutions use feature extraction algorithms along with support vector

machine classifier. However, convolutional neural networks have proved to be potentially

more effective. In this thesis, we present a convolutional neural network trained to

classify and detect vehicles from multiple angles. Moreover, Fast Fourier Transform is

used during data preprocessing. The effect of such preprocessing is examined on the

developed vehicle classifier and detector.
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Sõidukite tuvastus kasutades konvolutsioonilisi närvivõrke

Lühikokkuvõte:

Sõidukite täpne tuvastus ja klassifitseerimine mängib suurt rolli intelligentsete transpordi

süsteemide valdkonnas. Sõidukite tuvastus liikluses võimaldab analüüsida autojuhti-

de käitumist ning lisaks tuvastada liikluseeskirja rikkumisi ja liiklusõnnetusi. Sõidu-

kite tuvastus ja klassifitseerimine on keeruline ülesanne erinevate valgustingimuste,

ilmastikunähtuste ja sõidukite mitmekesisuse tõttu. Mitmed olemasolevad lahendused

kasutavad tunnuste eraldamise algoritme ning tugivektorklassifitseerijat. Hiljuti on kon-

volutsioonilised närvivõrgud osutunud paremaks lahenduseks. Antud lõputöö esitleb

konvolutsioonilist tehisnärvivõrku, mis suudab liigitada ja tuvastada sõidukeid erinevate

nurkade alt. Peale selle eeltöödeldakse andmeid kiire Fourier’ teisenduse abil. Välja

pakutud eeltöötluse mõju uuritakse selle lõputöö käigus valminud sõidukite tuvastus- ja

klassifitseerimisprogrammi abil.

Võtmesõnad:

Tehisnärvivõrk, sõidukite tuvastus, sõidukite klassifitseerimine, kiire Fourier’ teisen-

dus

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-

teooria)

3



Contents

1 Introduction 6

1.1 General view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Road map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 State-of-the-art 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Object detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Object classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Vehicle detection and classification . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Using feature-based methods . . . . . . . . . . . . . . . . . . . 12

2.4.2 Using convolutional neural networks . . . . . . . . . . . . . . . 14

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Methodology 16

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Resizing images . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.2 Data normalization . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.3 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.4 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Activation function . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.2 Convolutional layer . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.3 Pooling layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.4 Fully-connected layer . . . . . . . . . . . . . . . . . . . . . . . 24

4



3.4.5 Proposed network architecture . . . . . . . . . . . . . . . . . . 24

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Results and discussion 26

4.1 Vehicle classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Vehicle detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Conclusion 35

5.1 Future perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

References 42

Appendix 43

I. Licence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5



1 Introduction

1.1 General view

Object detection, tracking and classification can be used for various purposes. In the

Intelligent Transportation Systems (ITS) field object detection is utilized for vehicle and

pedestrian detection, traffic sign and lane detection or vehicle make detection. Ability

to detect or classify traffic related objects makes it possible to further improve the state

of the roads and traffic flow, prevent serious traffic accidents and even register traffic

violations and crimes, such as stolen vehicles or speeding [1]. This is especially important

since the number of passenger car users is constantly rising. Besides, lately, the topic of

autonomous vehicles has been gaining popularity.

It is easy for humans to recognize vehicles in images or videos or distinguish between

different car types. For a computer program, the difficulty of vehicle detection and

classification depends a lot on the type of the data. Lighting conditions and weather are

one of the main challenges not to mention the overall quality of either images or video.

Vehicles come in different shapes and colors, and some models might be even slightly

similar. Moreover, it is definitely more challenging to detect a lot of moving objects in

real time.

Nevertheless, there are many techniques for vehicle detection and classification. A lot of

works approach these tasks by first extracting relevant features and then using a classifier

like Support Vector Machine (SVM) to make further decisions. Since computer vision

field is constantly evolving some new methods are starting to stand out. In this thesis,

we investigate convolutional neural networks and how they can be applied to computer

vision problems.
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1.2 Objectives

The goal of this thesis is to develop a convolutional neural network (CNN) to perform

vehicle detection and classification on vehicle and background images. More precisely

the objectives are as follows:

– Implement a classifier that is able to predict correct image classes: vehicles or

non-vehicles.

– Implement a vehicle detector that has to predict bounding box coordinates of

vehicles.

– Use Fast Fourier Transform (FFT) during data preprocessing.

– Investigate whether FFT improves or reduces the accuracy of the developed solu-

tion.

In this thesis, the detection is limited to finding one vehicle per each input image.

1.3 Contribution

The contributions include a CNN for vehicle detection and classification. In addition to

that, investigating the effect of FFT on input data. To achieve that the following steps

have to be done:

– Finding the vehicle and background datasets.

– Applying preprocessing techniques to the collected data. This step includes the

experimental preprocesing with FFT.

– Developing a CNN architecture suitable for the dataset and the goal of this thesis.

Experimenting with different hyperparameters is essential to get a good model.

– Training the CNN to do vehicle classification and detection.

– Testing the final solution.
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1.4 Road map

This thesis consists of five chapters in total. The rest of the thesis is structured as

follows:

– Chapter 2 introduces existing solutions that use CNNs for object detection as

well as vehicle detection and classification. Additionally, feature based vehicle

detection and classification methods are described.

– In Chapter 3 the classification and detection pipeline of this thesis is presented. This

chapter describes the dataset used for the experiments as well as the preprocessing

steps applied to the data. More importantly, the building blocks of CNNs are

explained along with the proposed network architecture.

– In Chapter 4 the results of the experiments are presented. This chapter includes the

outcomes of using a basic CNN and a CNN with FFT preprocessing for vehicle

classification and detection.

– Lastly, Chapter 5 concludes the work of this thesis and future work perspectives

are presented.
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2 State-of-the-art

This chapter provides an overview of how CNNs are applied to object detection tasks.

Additionally, this chapter presents some solutions that use CNNs for vehicle detection and

classification. Moreover, feature-based methods for vehicle detection and classification

are described.

2.1 Introduction

Object detection and classification play important role in computer vision field. To

achieve good results both object detection and classification need, however, a lot of

preliminary work. This includes image pre-processing such as removing noise, adjusting

contrast, re-sizing, and background subtraction. Next, feasible features have to be de-

tected and extracted. For instance, either Scale-Invariant Feature Transform (SIFT) [2],

Speeded-Up Robust Features (SURF) [3] or Histogram of Oriented Gradients (HOG) [4]

can be used to generate points of interest. For a long time, object detection and classifica-

tion depended on these hand-crafted features. Consequently, selecting good features is

crucial to achieve high accuracy [5].

However, lately, interest in deep learning techniques, such as CNNs, has increased.

Although the first CNN dates back to the 1990s [6], it gained popularity largely after

AlexNet [7] won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC).

Overall, CNNs have achieved outstanding results not only within computer vision field

but also within speech recognition and natural language processing fields. CNNs’ advan-

tages come from needing no extensive pre-processing [8] and hand-crafted features.

Intelligent transportation systems (ITS) rely a lot on object detection and classification.

For instance, object detection is helpful in analyzing traffic flow and behavior or identify-

ing traffic accidents [1]. There are various factors that may make the recognition process

more difficult, such as varying lighting and weather conditions, the number of different
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vehicle types in one image or the distance of captured vehicles.

This chapter introduces existing literature on object detection combined with CNNs.

Moreover, this chapter describes various vehicle detection and classification methods. It

includes older methods that are based on feature extractors and support vector machine

classification as well as methods that use CNNs.

2.2 Object detection

In 2013 Girshick et al. [9] introduced R-CNN, a CNN with region proposals. In their

paper, the authors wish to show that CNN is capable of achieving better results than

methods using low-level features such as HOG. Their object detection pipeline consists

of three parts. First of all, R-CNN uses selective search to create region proposals,

i.e. various regions that might include some object. Next, 4096-dimensional feature

vectors are extracted from each detected region using AlexNet. The only change in the

architecture is the number of units in the classification layer. Afterward, each feature

vector is classified using SVMs where each SVM has been trained for a specific class.

On the ILSVRC2013 detection dataset, R-CNN scored better than Overfeat.

Sermanet et al. [10] come up with a neural network that can be used for three computer

vision tasks: object classification, localization and detection. In addition to that, a feature

extractor, called Overfeat, is released. The authors aim to prove that CNNs are capable

of doing more than classification. AlexNet is used as the base network for classifications.

The modifications done to AlexNet include non-overlapping pooling, smaller stride size

in the first two layers and omitting contrast normalization. For the localization task, the

fully-connected layers of the classification model are changed to a regression network.

The regression network is trained to output four bounding box coordinates. The classifier

and the regression network are run simultaneously. Then, their results are merged to get

the final predictions. The detection task is similar to the localization, but background

class is added for images that do not contain any objects.
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YOLO [11] is one of most recent object detection approaches. Some previous works

use classifiers to perform object detection. In contrast, the proposed method predicts

bounding box coordinates along with class score within the same neural network. Unlike

region proposal-based networks YOLO uses the whole image instead of separate regions

to make decisions. The network architecture is based on GoogleLeNet where inception

modules are replaced by reduction layers. Twenty convolutional layers are first pre-

trained and then another four convolutional and two fully-connected layers are added to

the model. Each input image is divided into a grid. Each grid cell predicts bounding box

coordinates, a bounding box confidence and a class probability.

Ming Liang and Xiaolin Hu [12] propose a recurrent CNN. This solution is inspired

by recurrent connections in recurrent neural networks. The authors develop a recurrent

convolutional layer that is used instead of regular convolutional layers in the proposed

model. Only the first convolutional layer of the network is not recurrent. The base

network and training process were adapted from AlexNet. The depth of the network is

increased by adding recurrent connections.

2.3 Object classification

In 2012 Krizhevsky et al. [7] make a breakthrough in large dataset image classification

by introducing AlexNet. While there are several others machine learning methods used

at the competition, the authors prove that CNNs are capable of managing millions of

images and achieve high results. The key to final results is the depth of AlexNet. There

is no preprocessing done on the dataset except for subtracting the mean. The proposed

network consists of five convolutional and three fully-connected layers. The authors

choose ReLU for the activation function since it drastically improved the speed of the

training. Local response normalization is applied after the activation in first two layers.

Moreover, overlapping pooling helped to reduce overfitting during the training. The final

layer is a softmax layer with 1000 units. The training is done on two GPUs where each

GPU has access to different layers. Data augmentation and dropout are used to reduce
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overfitting of the network.

In 2014 [13] another successful CNN architecture was introduced – VGGNet. With this

neural network, the authors won the first and the second places in the classification and

localization tasks of the ILSVRC’14 competition. The base of the network is inspired

by AlexNet. Similarly to AlexNet, the only preprocessing was mean extraction. The

authors experimented with different network depths to understand how it affects the final

results. One of the differences from previous architectures is the use of smaller kernel

size 3 × 3 in all convolutional layers. In addition to that, the CNN contains multiple

sequential convolutional layers without pooling layer in between. The authors tested

six different configurations of different depth. The best results were achieved when the

network consisted of 16 and 19 layers.

CNN-RNN [14] is a convolutional neural network combined with a recurrent neural

network that is used for multi-label classification. The goal of multi-label classification

is to predict the labels of multiple objects in the same image. The authors observed that

adding RNN to the original network increased the accuracy. Long short term memory

units are used as recurrent units of this network. The CNN part of the network is based

on VGGNet and it is used to collect semantic information from images. The RNN part

deals with the relationship of images and labels.

2.4 Vehicle detection and classification

This section gives a overview of vehicle detection and classification methods that either

use CNNs or feature-based methods.

2.4.1 Using feature-based methods

Vehicle detection and classification has various solutions using descriptors like SIFT,

SURF and HOG Compared to CNNs the features extracted by previously mentioned
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methods are rather low-level. Typically a support vector machine (SVM) is used as the

classifier.

In [15] the authors use a combination of SIFT and bag-of-words and perform the clas-

sification of vehicle make and model using SVM. Another approach first subtracts the

background around the vehicle, then the image is segmented and SIFT is used to extract

the features [16]. The authors perform feature matching to evaluate the results. Ma and

Grimson [17] "adopt SIFT, with several key modifications tuned to vehicle classification,

as descriptors for edge points".

Another vehicle make and model recognition is performed using a modified SURF

algorithm – a symmetrical SURF descriptor [18]. The idea of this modification is to

identify whether the input contains symmetrical objects. The proposed method works

well with real-time data and does not need background subtraction.

X. Li and X. Guo [19] developed a forward vehicle detection system that uses HOG

descriptor and SVM. Their idea relies on detecting shadows underneath vehicles to

distinguish between vehicles and background. Moreover, this method proved to perform

well in different lighting conditions. Similarly to the previous research, Sivaraman and

Trivedi [20] take advantage of shadows underneath vehicles. The features are extracted

using HOG and the proposed symmetrical HOG that detects symmetrical features. In

their research Feng Han et. al [21] use HOG together with SVM to detect people

and vehicles from different viewpoints. Firstly, the authors use stereo cue to detect

either person or vehicle candidates. Then, the classification using HOG features is done

with SVM. For each viewpoint, the authors develop separate classifiers that are applied

simultaneously to get a joined result. Pablo Negri et. al [22] utilize HOG and Haar-like

features in their vehicle detection research. In fact, the authors experiment with merging

these descriptors and achieve accurate final results.
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2.4.2 Using convolutional neural networks

Dong et al. [23] propose a semi-supervised CNN for detecting vehicles from frontal view

images. The filters, used in convolutional layers, are learned using unlabeled data and

the proposed sparse Laplacian filter learning. The output layer is a softmax classifier that

is trained on a small labeled data. The final solution proved to be effective when used

to classify vehicle types. A year before, Dong et al. [24] introduced unsupervised CNN

for vehicle classification. They use CNN to learn features and then classify vehicles

using softmax regression. The filters in their network are learned with sparse filtering

method.

In [25] the authors use CNN with low resolution video frames to detect and classify

vehicles. The pre-processing stage includes re-sizing each frame and adjusting the

contrast with histogram equalization. The proposed CNN architecture detects both high-

level and low-level features. The authors vary the number of filters and filter sizes as well

as the number of hidden layers. In the paper by Heikki Huttunen et al. [26] a simple CNN

outperforms the SIFT and SVM method when applied to vehicle classification.

Transfer learning is another approach used for vehicle detection and classification. It is

a method where an already pre-trained model is used as a starting point or as a feature

extractor. If needed the existing model can be fine-tuned further. In [27] the authors use

fine-tuned YOLO [11] for vehicle detection and fine-tuned AlexNet model for vehicle

classification. The authors additionally use AlexNet as feature extractor and perform

classification on extracted features using linear SVM.

Jorge E. Espinosa et al. [28] compare the performance of AlexNet and Faster R-CNN [29].

Furthermore, Faster R-CNN was fine-tuned and modified by Quarfu Fan et al. [30] to

perform better on vehicle detection. In [31] Fast R-CNN [32], the predecessor of Faster

R-CNN, has been applied to vehicle detection, although the authors simplified it for their

task.
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2.5 Conclusion

This chapter gave an overview of existing solutions in object detection field that utilize

CNNs. Furthermore, two types of vehicle detection and classification approaches were

introduced: feature-based and CNN based methods. Feature-based approaches depend

on the precision of hand engineered features that are extracted using feature descriptors

such as HOG, SIFT or SURF. Therefore, over past few years, several researchers have

chosen CNNs over previously mentioned feature extractors. The related work includes a

variety of CNN architectures, thus showing that CNN is a versatile tool within computer

vision field.
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3 Methodology

3.1 Introduction

It can be concluded from Chapter 2 that CNNs are a popular and useful tool for com-

puter vision tasks. The aim of this work is to utilize CNNs to perform both vehicle

classification and detection. Moreover, another focus of this work is how FFT affects the

accuracy of a CNN. This chapter gives an overview of the methods behind the developed

application.

The work process consists of four steps as illustrated in Figure 1. To begin with, the

dataset is introduced. Next, this chapter describes the preprocessing techniques used

in the implementation. The main difference with other common CNN preprocessing

pipelines is the FFT usage. Then, the idea behind CNNs is introduced along with the

proposed network architecture. Lastly, the network is trained and tested for both object

classification and detection.

Dataset

With FFT

Without FFT

Preprocessing CNN

Detection

Classification

Bounding box
coordinates

Class label

Figure 1. The pipline of the proposed solution.

3.2 Dataset

The dataset [33] by CVLab – EPFL contains 2299 images of cars from multiple angles

as seen in Figure 2. The images of rotating cars were captured during the Geneva

International Motor Show’08. There are at least 100 images of 20 different car mod-

els. Additionally, the dataset provides bounding box coordinates for each image. The

16



data for non-car samples is combined from multiple datasets: GRAZ-02 [34], Caltech

Cars (Rear) background dataset [35] and INRIA car dataset [36]. In total there are

1866 various background images that illustrate highways, parking lots or buildings (see

Figure 2).

Combining the vehicle and background images together results in a dataset with 4164

images. The dataset is split into training and testing set using 80:20 ratio. In the end,

there are 3331 training samples and 833 testing samples.

Figure 2. Sample images from the final dataset. The top row illustrates a vehicle from

different angles. The bottom row contains random background images from non-car

datasets.

3.3 Preprocessing

This section describes the data preprocessing steps of the final solution. This includes

resizing and normalizing the data, generating more training data and finally applying

FFT to images.
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3.3.1 Resizing images

The dataset used in this thesis contains images of various sizes. This is due to combining

the final dataset from different existing images. CNNs usually expect equally sized input

images, thus the car and background images are all resized to 128× 128. Although it is

not necessary, most known CNN architectures seem to prefer square shaped input images.

It is also necessary to scale the bounding boxes to gain accurate coordinates after the

input images are resized.

3.3.2 Data normalization

All of the images are normalized using the standardization method. It is done by first

subtracting the mean from every feature and then diving by standard deviation:

z =
x− µ
σ

where µ is the mean and σ is the standard deviation. The mean and standard deviation

are computed over the training set and the same values are used for normalizing the test

set [37]. Standardization ensures that the features are zero-centered and have a standard

deviation of 1.

3.3.3 Data augmentation

The aim of data augmentation is to generate more training data from an already existing

dataset. The size of a dataset has a great impact on the accuracy of a model and usually

more data results in better models. The problem with small datasets is that models tend

to overfit quicker [38]. Regularization can be used to solve this problem, such as adding

dropout or L1/L2 regularization to a CNN. Data augmentation is another suitable solution

for this problem [38, 37].

The process of data augmentation includes transforming original images in different

ways to produce new data. For example, each input image can be rotated, zoomed in or
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out, flipped vertically or horizontally, shifted in random directions. This way a CNN

will learn from a wider variety of training examples. In this thesis, data augmentation

is used only during the training phase of the vehicle classifier. The transformations

that are used include zooming in and out, shifting both vertically and horizontally and

shearing. Flipping vehicles and roads vertically would not make sense and horizontal

flip is unnecessary since, for example, the vehicles are already depicted from multiple

angles.

3.3.4 Fast Fourier Transform

This section is based on information from [39] and [40]. Fast Fourier Transform (FFT) is

an algorithm to speed up the calculation of Discrete Fourier Transform (DFT). Although

widely used in signal processing FFT can also be used with images. For example, to

reduce noise in images. For an image of size M ×N the 2-D DFT is defined by:

F (u, v) =
1

MN

M−1∑
m=0

N−1∑
n=0

f(m,n) exp [−i2π(mu
M

+
nv

N
)]

where f(m,n) is the original image and F (u, v) is the image in the frequency domain.

Similarly, the inverse of DFT is given by:

F (m,n) =
M−1∑
u=0

N−1∑
v=0

f(u, v) exp [i2π(
mu

M
+
nv

N
)].

The inverse function transforms the image back to the spatial domain. In fact, since 2-D

DFT is separable, the final output can be computed by first computing 1-D DFT for every

image row and then computing 1-D DFT for every column.

The output of 2-D DFT is complex-valued, i.e. consists of both real and imaginary parts.

Therefore, the range of values is larger than that of the original image. Either logarithmic

or square root function (see Equation (1) and (2)) can be applied to the output for better

visualization:

Q(u, v) = log(|F (u, v)|) (1)
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Figure 3. Visualizing spectrum after applying FFT to images. The first column contains

original images. The second column illustrates the spectrums after computing FFT. The

last column is the shifted spectrums.

Q(u, v) =
√
|F (u, v)|. (2)

The DC value F (0, 0) is often shifted to the center of an image, as illustrated in Figure 3.

Doing so displays low frequencies in the center of the image and high frequencies further

away from it.

3.4 Convolutional Neural Network

Convolutional Neural Network (CNN) is a machine learning technique that is inspired

by the human brain. In 1989 and 1990 Yann LeCun et al. [41, 6] introduced several

aspects of modern CNNs, such as feature maps, sub-sampling, and shared weights. The
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proposed method successfully recognized handwritten digits. The famous LeNet-5 [8]

was presented in 1998, the CNN designed to perform digit recognition as well.

Since then multiple new CNN architectures have emerged, e.g. AlexNet [7], VG-

GNet [13], GoogLeNet [42], ZF Net [43], and ResNet [44]. One thing these networks

have in common is that they are all trained on the ImageNet data [45] for the ILSVRC [46].

While LeNet-5 architecture was rather simple, its successors experiment with more deep

network structures. From this, it can be concluded that deep network architectures

improve the accuracy in certain cases. Despite the differences in network architectures,

however, all CNNs contain similar components described further. The sample CNN

architecture is illustrated in Figure 4.

3.4.1 Activation function

Activation functions in deep learning models introduce non-linearity. In CNN models

an activation function is applied after every convolutional layer. Most recent CNN

architectures use rectified linear unit (ReLU):

f(x) = max(0, x)

Other possible activation function are sigmoid and hyperbolic tangent, illustrated in

Equation (3) and Equation (4) respectively.

f(x) = σ(x) =
1

1 + e−x
(3)

f(x) = tanh(x) =
2

1 + e−2x
− 1 (4)

3.4.2 Convolutional layer

Feature detection and extraction happens in convolutional layer. Each convolutional layer

has its own set of kernels that are convolved with the layer’s input resulting in multiple
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feature maps. Let the input of ith feature map of layer l be xli, w
l
ij the kernel and f the

activation function, then

xli = f(
∑
j

wl
ij ∗ xl−1

j )

In this work, the input is made up of images. Thus, each input and feature map is three

dimensional and has the size ofW×H×D [47]. The hyperparameters of a convolutional

layer are the number of kernels and the stride and kernel sizes. If we convolve an input

of size W ×H ×D with N kernels of size Wk ×Hk the size of the output feature map

will be Wo × Ho × N where Wo = W −Wk + 1 and Ho = H − Hk + 1 [47]. If the

stride size S is higher than 1 then Wo =
W−Wk

S
+ 1 and Ho =

H−Hk

S
+ 1.

Figure 4. A sample CNN architecture1. This network consists of two convolutional

layers, two pooling layers using the max pooling function and 2 fully-connected layers.

3.4.3 Pooling layer

A pooling layer, if used, usually follows a convolutional layer. As stated by LeCun et

al. [8] the precise position of every detected feature is irrelevant. Important is the fact

that some feature is present. Thus, pooling layers are used to eliminate unimportant

1This figure is generated by the code from https://github.com/gwding/draw_convnet
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information from feature maps. This is achieved by using a pooling function, such as max

pooling, average pooling or L2-norm pooling [48]. Recently max pooling has become

the most popular pooling function, although the original LeNet-5 [8] used average

pooling.

The pooling function is applied to feature map regions of size n × n. For example, a

maximum value is chosen from each region to be included in the output feature map.

The regions can be either overlapping or not depending on the stride size. The idea of

max pooling is illustrated in Figure 5. If the size of a feature map is W ×H ×N , then

after performing pooling of size Wp ×Hp the output size will be Wo ×Ho ×N where

Wo = W −Wp + 1 and Ho = H − Hp + 1 [47]. Similarly to the convolution, if the

stride size S is higher than 1 then Wo =
W−Wp

S
+ 1 and Ho =

H−Hp

S
+ 1.

Figure 5. Example of 2×2 max pooling with a stride of 2 [47].

While most CNN architectures include pooling layers there has been proposed an all

convolutional architecture [49]. The authors concluded that omitting max pooling layers

does not ruin the accuracy if the stride of convolutional layers is increased. On the other

hand, using pooling layers can help to reduce overfitting since it reduces the number of

parameters as well as the size of the feature maps. For example, the authors of AlexNet

observed that overlapping pooling helped to control overfitting.

23



3.4.4 Fully-connected layer

Fully-connected layers are used as final layers in CNNs. The last layer outputs the

estimations. Multi-class networks use softmax classifier in the final layer while binary

classification is done using the sigmoid function. Similarly to regular neural networks,

the computational units in a fully-connected layer are connected to every unit of the

previous layer. Unlike convolutional and pooling layers fully-connected layers are

one-dimensional.

3.4.5 Proposed network architecture

The CNN architecture is developed using the Keras [50] deep learning framework with

Python and Tensorflow backend. The same network is later used for vehicle classification

and detection with minor changes in the output layer. The proposed CNN contains 6

convolutional layers and 5 max pooling layers. The only fully-connected layer is the

final layer and the layer after the last convolutional layer. The input layer takes in batches

of images of size 128×128×3. ReLU is used between the hidden layers and a sigmoid

activation is used in the output layers of both classification and detection networks.

The first convolutional layer has 32 filters of size 3×3. It is followed by a pooling layer

that uses the max pooling operation with the size of 2×2. The second convolutional layer

has 64 filters with a size of 3×3. Similarly to the first convolutional layer, it is followed

by a max-pooling layer with the kernel size of 2×2. The third convolutional layer has 128

filters with the same kernel size as previous convolutional layer. The 2×2 max pooling

is applied yet again. The fourth convolutional layer is identical to the third one but no

max pooling is used. The final two convolutional layers have 256 filters of size 3×3 and

they are followed by the same max pooling layer like previous convolutional layers. The

parameters of the described layers are also illustrated in Table 1. The output layer has one

unit in the classification task and predicts whether image is vehicle or not. The output

layer of the detection network contains four units for bounding box coordinates.
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Table 1. Parameters of convolutional and pooling layers.

Kernel size Number of kernels Stride size Output size

Convolution 1 3x3 32 1 126 x 126 x 32

Max pool 1 2x2 - 2 63 x 63 x 32

Convolution 2 3x3 64 1 61 x 61 x 32

Max pool 2 2x2 - 2 30 x 30 x 64

Convolution 3 3x3 128 1 28 x 28 x 128

Max pool 3 2x2 - 2 14 x 14 x 128

Convolution 4 3x3 128 1 12 x 12 x 128

Convolution 5 3x3 256 1 10 x 10 x 256

Max pool 4 2x2 - 2 5 x 5 x 256

Convolution 6 3x3 256 1 3 x 3 x 256

Max pool 5 2x2 - 2 1 x 1 x 256

3.5 Conclusion

This chapter described the main methods and steps of the implementation of vehicle

recognition and classification. The workflow starts with obtaining a suitable dataset.

Then, all of the images are preprocessed. Images are resized, and normalized. To

obtain more training data, data augmentation method is used for the classification task.

Additionally, FFT is applied to input images after previous preprocessing steps are done.

Finally, the preprocessed data is fed to the proposed CNN. The output is either a label or

four bounding box coordinates depending on the task.
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4 Results and discussion

This chapter introduces the results of the experiments. Firstly, a CNN without FFT

preprocessing and a CNN with FFT preprocessing are trained and tested for vehicle

classification. The final classifier has to perform a binary classification between vehicles

and non-vehicles. The second part involves the results of vehicle detection. The aim

of the detection network is to either detect a vehicle or to understand that there is

none present. The vehicle detection is also tested using a CNN without FFT and with

FFT.

4.1 Vehicle classification

For vehicle classification task, the network had to distinguish between vehicles and

non-vehicles (background). Two CNN networks were trained and tested: one CNN

without FFT preprocessing step and one with FFT. Both networks were trained for 100

epochs using Adam optimizer and learning rate of 0.001. Loss function was binary

cross-entropy due to binary classification. The training and testing set contained 3331

and 833 images respectively.

The confusion matrices of both networks are illustrated in Figure 7 and Figure 6. From

both confusion matrices, it is obvious that the classification accuracy of both networks

is almost identical. The only difference is the number of false negatives: the network

without FFT processing has less false negatives. Recall and precision (see Equation (5)

and (6)) are used as classification evaluation metrics:

recall =
true positives

true positives+ false negatives
(5)

precision =
true positives

true positives+ false positives
. (6)
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Figure 6. Confusion matrix of the CNN with FFT preprocessing.

27



Figure 7. Confusion matrix of the CNN without FFT preprocessing.
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The explanation of these results may lie in the quality of the dataset. The images of the

vehicles have the same background of an exhibition hall while the background images

contain mostly the scenes from the outside. As a consequence, it is not difficult to

distinguish between the images that contain vehicles and those that do not. In other

words, it would be harder for the network to learn from images that contain vehicles with

a road in the background. The results are provided in Table 2.

Table 2. Precision and recall of both experiments.

recall precision

CNN with FFT 0,976 1

CNN without FFT 0,996 1

4.2 Vehicle detection

For vehicle detection, the proposed CNN was trained on vehicle and background data.

The ground truth boxes of vehicles were provided with the dataset. For background,

the whole image was considered correct detection. Similarly to the classification, two

experiments were conducted: training and testing the CNN without FFT preprocessing

step and with it. In both cases, the network was trained for 200 epochs using Adam

optimizer and learning rate of 0.0001. Mean squared error was used as the loss function.

The training set contained 3331 images and testing was performed on 833 samples.

Intersection over Union (IoU) is used to evaluate the detection results. The IoU algorithm

computes how much the ground truth and predicted bounding boxes overlap. If the

overlap value exceeds the 50% threshold, then the estimation is considered valid [51],

true positive. Everything under the threshold is false positive. The area of intersection is

divided by the area of union to compute the IoU [51]:

ao =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
.
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As seen in Figure 8, the results of the CNN without FFT preprocessing are highly accurate

on the test set: the predicted pink bounding boxes are almost completely overlapping

with the ground truth boxes. Since the ground truth for the background images was the

whole image, then no pink boxes in background images indicate the correct detection.

From the results in Table 3, it is evident that there were no incorrect estimations on the

test set judging by the IoU output.

Figure 8. Detection outputs of the CNN without FFT preprocessing. The green square

indicates the ground truth bounding box and the pink one the predicted bounding box.

Table 3. Evaluation of CNN without FFT preprocessing.

IoU value Background detection Vehicle detection

IoU > 0.5 348 485

IoU < 0.5 0 0
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The accuracy graph of the model is provided in Figure 9. As seen in the Figure, the

testing accuracy is slightly higher than the training accuracy during approximately 40

epochs. The accuracy stops rising a bit before the 100th epoch. The final score of the

model is 96% on the testing set.

Figure 9. CNN without FFT accuracy on train and test sets.

The CNN with FFT preprocessing achieved considerable results as well. As illustrated in

Figure 10, the network was mostly able to guess the position of vehicles in the test images.

However, compared to the previous CNN the position of some bounding boxes is quite

off. One example is the most rightmost image in the top row of Figure 10. Additionally,

sometimes the network proposed bounding boxes in the background images as seen in

Figure 10. Overall, based on the IoU values (see Table 4) the network predicted correctly

214 backgrounds and 373 vehicles.

The accuracy of this model is illustrated in Figure 11. The starting accuracy is slightly

higher compared to the accuracy of the CNN without FFT. Nevertheless, the network’s

final accuracy also exceeds 90%. Similarly, it can be concluded that the accuracy did not
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Figure 10. Detection outputs of the CNN with FFT preprocessing. The green rectangle

indicates the groundtruth bounding box and the pink one the predicted bounding box.
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Table 4. Evaluation of CNN with FFT preprocessing.

IoU value Background detection Vehicle detection

IoU > 0.5 214 373

IoU < 0.5 134 112

change a lot after approximately 100 epochs.

Figure 11. CNN + FFT accuracy on train and test sets.

4.3 Conclusion

This chapter included the results of vehicle classification and detection. One goal of the

experiments was to investigate whether applying FFT to images in the preprocessing

step could affect the accuracy of the network. To achieve that, one CNN was trained

without using FFT to preprocess the images and the other one with FFT. Furthermore,

the overall performance of the developed solution was of interest.
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From the results, it appears that with the proposed network and chosen hyperparameters

the FFT preprocessing did not affect the accuracy of the classifier. Both networks

achieved high results and could easily distinguish between vehicles and non-vehicles.

However, such high results may be caused by the dataset selection. The vehicle and

background images illustrated different environments.

Interestingly enough the vehicle detection showed different results. Compared to the

classifier the vehicle detector performed better when to FFT preprocessing was utilized.

The latter neural network correctly detected every vehicle and background. Although

the CNN with FFT preprocessing performed worse, it was able to detect over half test

images.
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5 Conclusion

Vehicle detection and classification have great influence on the advances in the field

of Intelligent Transportations Systems. This computer vision task help in developing

better road systems by analyzing the traffic and assist in preventing or detecting traffic

accidents. While it is helpful in many ways, detecting and classifying vehicles is not an

easy task.

This thesis investigates two main approaches to vehicle detection and classification. The

related work shows that feature extraction algorithms paired with a classifier like SVM

have been the method of choice for vehicle detection and classification for years. The

main disadvantage is the complexity of extracting the right features and therefore, these

solutions depend a lot on preprocessing. Fortunately, object detection and classification

have become more accurate and fast with the rise of popularity of convolutional neural

networks. These neural networks can produce high results on large datasets without the

need of additional feature extraction and extensive preprocessing in most cases.

In this thesis, the vehicle detection and classification is done utilizing convolutional

neural networks as they have proved to be a suitable choice for the task. The vehicle

classification is a binary classification task where the network has to differentiate between

two types of image data: vehicles and non-vehicles. For vehicle detection, the suggested

neural network is trained to predict bounding box coordinates of the vehicles. This task

involves understanding when there is no vehicle present in an image. The same network

architecture is used to solve both problems. Minor changes are made to the structure of

the output layer to either predict a label or coordinates.

In addition to regular preprocessing, such as data augmentation, resizing and normalizing

images, this thesis proposes to apply Fast Fourier Transform to images. In other words,

the images are processed with two-dimensional Discrete Fourier Transform. To see

whether this improves the final results the experiments were carried out using inputs that

were previously transformed with FFT and using the original images. Both developed
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vehicle classifier and detector were tested in such a way.

Lastly, the results of the mentioned experiments were obtained. The convolutional

networks were able to perform the tasks with both FFT preprocessing applied and

without it. The classification precision and recall were high in case of both experiments.

The detection, however, was performed better by the convolutional network where no

FFT preprocessing was used. From this, it can be concluded that in current experiments

the FFT preprocessing did not significantly affect the final results.

5.1 Future perspectives

The future work could include fine-tuning the current CNN architecture and FFT prepro-

cessing. The current detection results with FFT preprocessing were somewhat worse than

with a basic CNN. Consequently, the algorithm needs more work to be more efficient.

Moreover, the thesis focused on detecting a single vehicle. Therefore in the future, the

current CNN could be modified to detect multiple vehicles in images or videos.
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