
UNIVERSITY OF TARTU
Institute of Computer Science
Computer Science Curriculum

Mohamad Qadura

WebGLadiator Game Engine For Web
Developers

Master’s Thesis (30 ECTS)

Supervisor: Margus Luik

Tartu 2017

WebGLadiator Game Engine for Web Developers

Abstract:
With the modern WebGL technology, the adoption of web games has increased drastically
leaving a gap between the low number of available WebGL developers and high demand
for them. Since WebGL resides in JavaScript ecosystem, developers are more likely
to come to WebGL with web development background. In the JavaScript ecosystem,
developers are accustomed to JavaScript for coding, HTML for structure, and CSS
for layout and design. The present game engines built on top of WebGL do have a
set features to develop games, however, they do not take JavaScript Ecosystem into
consideration which makes it hard for developers with web development background to
migrate to web games development. WebGladiator is a game engine for web developers
that facilitates the migration from web development to game development by providing
the same approach used for web development. In order to keep the same approach,
JSON, used as blueprint files, will be used instead of HTML to structure games, VFL
will be used instead of CSS to layout them, and JavaScript remains the programming
language to write the logic. In this project, we are going to use open source libraries that
will inter-operate under one game engine following proper software design patterns and
architecture to create a hybrid ECS that utilizes the ECS architecture to provide the same
approach for web development.

Keywords:
WebGL, Game Engine, Software Design Patterns

CERCS: P170

WebGLadiator Veebiarendajatele mõeldud mängu mootor
Lühikokkuvõte:

Kaasaegse WebGL tehnoloogiaga, veebimängude juurutamine on meeletult kasvanud,
luues lõhe WebGL arendajate nõudluse ja pakkumuse vahel. Kuna WebGL töötab JavaSc-
ripti baasil, võib suure tõenäosusega näha WebGL arendusega liitumas veebitehnoloo-
giate taustaga arendajaid. JavaScripti ökosüsteemis on arendajad harjunud JavaScriptiga
koodi osas, HTML-ga struktuuri osas ja CSS-iga välimuse ja disaini osas. Praegused
mängumootorid on ehitatud WebGL baasil ja omavad mängudeks selleks ettenähtud
funktsionaalsust, kuid need ei võta arvesse Javascripti Ökosüsteemi, mis raskendab
veebiarendajate sisseelamist veebimängude arendusse.

WebGladiator on mängumootor veebiarendajatele, mis hõlbustab veebiarendajate
liikumist mänguarendusse, pakkudes sama lähenemist, nagu veebiarenduses. Selleks, et
hoida sama lähenemist, JSON on võetud kasutusse HTML-i asemel struktuuri tehno-
loogiana. VFL tehnoloogiat kasutatakse CSS-i asemel paigutuste ja disaini jaoks ning
JavaScript jääb programmeerimiskeeleks, milles kirjutatakse loogika. Selles projektis me
kasutame avatud lähtekoodiga teeke, mis töötavad koos ühes mootoris, järgides õigeid

2

tarkvaraarenduse mustreid ja arhitektuuri, et luua hübriid ECS, mis utiliseerib ECS
arhitektuuri, pakkumaks sama lähenemist veebiarenduse jaoks.

Võtmesõnad:
WebGL, Mängu mootor, Tarkvara disainilahendused

CERCS: P170

3

Contents
1 Introduction 7

1.1 Game Engine Architecture . 8
1.1.1 Graphics . 9
1.1.2 Sounds . 11
1.1.3 Physics and Tweens . 12
1.1.4 HID . 13
1.1.5 Resource Management . 13
1.1.6 Communication . 13

1.2 Available Technologies . 13
1.2.1 Programming Language . 13
1.2.2 Ecosystem . 15

1.3 Added Technologies . 15
1.3.1 Chrome Extension . 15
1.3.2 Dev-Hubs . 16

2 Methods 17
2.1 System Design And Architecture . 17

2.1.1 Entiy/Component System . 17
2.1.2 Managing Life Cycle of Entities 20
2.1.3 Integral Graphics and Layout 21
2.1.4 Managing External Libraries 22
2.1.5 System Architecture . 23
2.1.6 Messaging Buses . 24
2.1.7 Solidarity Using Observer Pattern 24

2.2 Web Approach . 25
2.2.1 Blueprints . 26
2.2.2 Layout with VFL . 27
2.2.3 JavaScript . 29

2.3 Reusability . 29
2.3.1 Reskinning . 29
2.3.2 Reusable Entities . 30
2.3.3 Registry . 30

2.4 Tooling . 31
2.4.1 Chrome DevTool . 31

3 Results 33
3.1 Walk Through . 33

3.1.1 Registering Systems . 34
3.1.2 Game Blueprint . 35

4

3.1.3 Scene Blueprint . 37
3.1.4 Logic . 38
3.1.5 Scene Management . 39
3.1.6 Playing The Game . 40

3.2 Web Tailored Engine . 42
3.2.1 Web Technologies . 42

3.3 Agile Development . 43
3.3.1 Easy Game Setup . 43

3.4 Organized Work flow . 44
3.4.1 Coherent Engine . 44
3.4.2 Readability . 45

4 Discussion 47
4.1 Comparison . 47

4.1.1 List of Engines . 47
4.1.2 Comparison between available engines 48
4.1.3 WebGLadiator . 52

4.2 Decision Making . 52
4.2.1 Did I reinvent the Wheel? . 52

4.3 Critics . 53
4.3.1 Competing Other Engines . 53
4.3.2 Software Design Patterns for Games 53
4.3.3 Adoption Risk . 53

5 Conclusion 54

6 Future Work 55
6.1 Modularity . 55

6.1.1 Dependency Injection And Inversion of Control 55
6.1.2 Game Builder . 55

6.2 New Features . 56
6.2.1 XAML . 56
6.2.2 Unobtrusive VFL . 56

6.3 Open Source . 56
6.3.1 Non-Disclosure . 56
6.3.2 Documentation . 57

References 59

5

Appendix 60
I. Glossary . 60
II. Licence . 61

6

1 Introduction
The rapid growth in the mobile industry, as well as the expansion of low-end and small-
sized devices, has made 2D gaming market a heavily demanded trend. Compared to 3D
games, 2D games are relatively simple to develop and maintain as well requires fewer
resources to run on devices. Hence, while the demand for 2D games was dropping down
as a result of the growth in 3D games, the introduction of low-end devices was the major
factor to bring back 2D games to the scope.

Casual game genre, which we are going to focus on for this project, is One of the
most trending genres of 2D games because it is easy to learn and play, friendly for any
age and gender, and less demanding in terms of time that motivated players of all ages
and genders to play. Minesweeper, Tetris, and FarmVille are examples of famous casual
games, as well as Candy Crush the famous game that was played by over 93 million
people and reported a revenue of 493 million dollars in three months.

The trend in 2D gaming along with the spread of casual games influenced Facebook
early 2017 to start their gaming platform ’Instant Games’. Instant games platform is
more convenient for casual games stressing out the ease of access and availability for
developed games. The new demand for low-end games is continuously motivating
gaming companies to move towards 2D gaming since it is the lightest form of a game.

A game engine is a software framework designed for the creation and development
of video games. Developers use them to create games for consoles, mobile devices, and
personal computers. The core functionality typically provided by a game engine includes
a rendering engine (“renderer”) for 2D or 3D graphics, a physics engine or collision
detection (and collision response), sound, scripting, animation, artificial intelligence, net-
working, streaming, memory management, threading, localization support, scene graph.
The process of game development is often economized, in large part, by reusing/adapting
the same game engine to create different games, or to make it easier to port games to
multiple platforms[War].

Game development companies specialized in web gaming industry start by choosing
an available open source game engine. After that, they start wrapping and customizing it
with their own in-house code. In other words, they do not reinvent the wheel, they just
reshape it accordingly. The reason behind this approach is to achieve ultimate control on
the engine used and drive it towards their ultimate goal of making it as controllable and
easy as possible.

While this approach indeed reduces the time spent in making games, as well as
the LOCs required to be added for new games, companies still are not able to bring a
game engine that would attract web developers to develop web games. Considerably,
WebGL is still a new technology that runs relatively slow on low-end devices, leaving
developers open to developing low-end games e.g 2D games for mobile phones. New
developers who are willing to learn game development would then rather learn how to
make high-end 3D games than to stay with 2D games, for example, they might start

7

with Unreal or Unity leaving a gap for WebGL technology. Our Project, WebGLadiator,
will fill that gap for Web developers and simplify the process of developing games by
standing as a bridge between game development and web development.

Nowadays, there are plenty of available open source game engines, as well as different
libraries that can be put together to build a game engine. Depending on developers’
choice they can either use an available engine or build their own. For this project, we
will be using open source libraries, modifying them if need be, and finally, combine them
all into one game engine.

WebGLadiator will facilitate the migration for web developers by introducing the
concept of blueprints which are a simple JSON file that will be used instead of HTML,
VFL will be used instead of CSS while keeping JavaScript the programming language.
Moreover, it will as well present a capable engine with its features. Beyond being oriented
to the web, WebGLadiator will add extensibility, responsive design, and readability.

1.1 Game Engine Architecture
The core layer of a game engine is a set of systems denoted for functionality where each
system is responsible for an exclusive functionality e.g, graphics, sounds or resource
management. Although each system is responsible for its own functionality, they have to
communicate with each another and the game itself. Game Loop, the heart of a game, is
the central communication between the systems e.g when to load resources and render
them, or when to play sounds and stop them. Figure 1 illustrate its architecture.

Figure 1. Game Engine Architecture

8

The game loop is the center code of the game. Characterized by a state that changes
based on contemporary state and different variables, game logic. Game loop can have 3
main states with a non-mandatory state for resource loading :

1) Preload: the state in which required resources are being loaded, a game or otherwise
a scene cannot be created without the required resources being loaded.

2) Initialize: This is the state where initialization takes place and variables are
assigned their values. Moreover, information gathered from screen size and ratio, input
devices, and operating systems will be used in this state.

3) Update: The main purpose of the update phase is to prepare all objects to be drawn,
so this is where all the game changes such as coordinate updates, health points changes,
damage dealt, as well as physics recalculations. This is also where the input will be
captured and processed.[Mol12]

4) Draw: This state is where all current variables and states get translated into
meaningful graphics.

1.1.1 Graphics

A picture is worth a thousand words. Graphics visualize to the player the current state
based on all current variables. We can imagine the score, a display object moving on
the screen or even a menu button that might or not be disabled. Graphics are commonly
considered the core functionality of a game because it is, after all, what the player sees
while playing a game.

For this project, we are going to use Pixi.js as the graphics system for 2D rendering.
Pixi is a rendering library that will allow you to create rich, interactive graphics, cross
platform applications, and games without having to dive into the WebGL API or deal
with browser and device compatibility[Dig]. In addition to Pixi, AutoLayout.js will be
used as a layout engine, AutoLayout.js is an abstract library for integrating Auto Layout
and VFL into other javascript technologies. It provides a simple API and programming
model that you can use to build your own auto layout and VFL solution[Rut]. VFL for
WebGLadiator is what CSS is for web sites.

9

By design, Pixi’s default behavior for containers is that they scale when resized
causing all contained children to be scaled as well, with this behavior Autolayout will
cause resized children to reposition and resize which leads them to be different from what
we expect. This could only be permitted for games with aspect-ratio enforced. Figure
2 is the code snippet from Pixi responsible for scaling the container when changing its
dimensions

Figure 2. Pixi Snippet for Scaling

Since we want to have responsive games that adapt to any screen size, aspect-ratio
will not be a restriction for us. Even though a full window game does not have an
aspect ration, sub components inside the scene do have aspect ratios. For that reason we
introduced two types of containers:

1) Spacing Container: this container will never scale nor resize, it will instead pass
the boundaries to its children so that they know where to position themselves.

2) Scaling Container: this container will act like a Spacing Container in the Create
state, however, upon a render state it will only scale and stop its children from being
updated.

10

The combination of both types of containers will lead to a seamlessly responsive
game that fits fully into any screen regardless of the aspect ratio. Figure 3 illustrates how
an inner aspect ratio of the smiley face can be reserved regardless of the view port aspect
ratio

Figure 3. Reserving Inner Aspect Ratio

1.1.2 Sounds

The sound system usually responds to events by the user and plays a sound as an
indication for a user’s action e.g user click sound. Moreover, sounds can play as a
background music hence a game can start while the music file is being lazily loaded.

Since Pixi has a resource loader for assets yet not sound, we will use Pixi-Audio
middleware to add a loading parser for sound files. In the future, all Pixi loaders will be
replaced by custom loaders and middlewares on top of another resource loading library
"resource-loader". The purpose is to achieve more flexibility in the code by reducing
dependency on Pixi and move toward an easily customizable sound system.

11

1.1.3 Physics and Tweens

Physics is better explained with a real life example like Angry Birds game. When the
player pulls the sling to a specific angle and a specific distance then releases his finger,
the physics system calculates based on the distance, angle, bird’s weight, and gravity the
resulting trajectory in which the bird should fly with acceleration 4 describes physics in
Angry Birds Game

Figure 4. Angry Birds Physics

Tweens on the other hand only take time into consideration and add smoothing to it.
When dealing with tweens, a developer can change the value of anything based on the
current time covered e.g moving 200 pixels horizontally over 1 second. For our project
we will be concentrating on Tweens rather than Physics since casual games, with Angry
Birds exception, rarely require any physics. Tween.js will be used as a tween library.

12

1.1.4 HID

Human Interaction Device is what connects the player to a game usually, nowadays touch
screens on mobile phones and tablets are vastly used. The main difference between a
mouse and touch screen is that with the mouse the pointer is always available which
means that it is always known where the user is currently pointing at. For touch screens,
however, only when the user touches the screen the coordinate can be known. considering
hovering as an example, with a mouse a user can simply hover by moving the mouse but
with touch, the user has to implicitly tap.

Since Pixi handles graphics, any HID event that is bound to graphics is handled by
Pixi as well e.g tapping a button. However, keyboard and gamepads are excluded from
Pixi. In this project, we are going to add a unified layer for both mouse and touch devices
and defer Pixi’s EventEmitter with observer pattern using RX.js in order to simplify the
process of differentiating between user actions. Keyboard support will be added in the
future, as the initial game does not require a keyboard, only an abstract keyboard class
will be used for now.

1.1.5 Resource Management

Pixi does support drawing custom graphics, but for an eye candy game using images is
much preferable over drawing graphics. Not only will resource loading deal with images,
it will also deal with sounds and JSON files.

1.1.6 Communication

Communication is the means of interaction between all the components in the engine as
well as the game rules. Communication is event-based characterized by a command or a
message sent when a set of event occurs for a component that meets a current condition.

1.2 Available Technologies
Nowadays, there are plenty of available open source technologies that will help build a
project from scratch without the need to buy any license. However, with greater power
comes greater responsibility, choosing the software is not an easy task, it has to be well
planned and researched. Although the presence of many choices sounds to simplify the
process, it can, however, make it even more complicated if wrong software were chosen.

1.2.1 Programming Language

Since WebGLadiator will target web games, for this project we are going to use Type-
Script. Typescript is a super set of JavaScript that brings object-oriented programming to

13

JavaScript as well as typing. The mere benefit of Typescript is that it allows Object Ori-
ented Programming which is much cleaner and simpler than the prototyping JavaScript.
Moreover, since it is strongly typed, it is more understandable for both developers and
can utilize the use of IDE. figure 5 Illustrates the difference between the languages

Figure 5. Javascript to Typescript

14

1.2.2 Ecosystem

In order to work with typescript and manage our libraries, we are going to rely on
environment software that helps in development process while keeping in mind the future
collaboration between different developers.

1) Visual Studio Code (VSCode): VSCode is a true example of extensible software,
it allows addition of extensions, as well as configuring the environment as per our
requirements, we can consider here auto-formatting which is a vital case in software
development, imagine multiple developers working on the same file and everyone has his
own way of writing code. Any developer who pushes/pulls his code will end up having
multiple committed changes that are only related to formatting.

2) Git: a version control system for tracking changes in computer files and coor-
dinating work on those files among multiple people. It is primarily used for software
development, but it can be used to keep track of changes in any files.[AS]

3) Git Kraken: an open source GUI to utilize the use of Git that handles or the main
operation to be done by Git and simplifies visually the process of handling repositories.

4) Microsoft Team Service: Formerly called Visual Studio online, is a service by
Microsoft that utilizes the communication and collaboration inside a team of developers.
Although this project is one be one person, the service is still vital as it offers a backlog
to track the progress and the ability to create user stories, features, bugs, and utilizes
Git-Flow.

5) Node.js: an open-source, cross-platform JavaScript runtime environment for
developing a diverse variety of server tools and applications. Although Node.js is not a
JavaScript framework, many of its basic modules are written in JavaScript, and developers
can write new modules in JavaScript. The runtime environment interprets JavaScript
using Google’s V8 JavaScript engine.[Cuo]

1.3 Added Technologies
Since our project is not only about using available libraries and combining them all
together, we are going to introduce a set of features that will contribute to the project and
make development much easier and stable

1.3.1 Chrome Extension

Google allows the addition of extensions for chrome that can be used to interact with
the browser hence an inspected window. Accordingly, we are going to do develop an
extension and use to interact with the engine and all its systems, the extension will allow
real-time editing and debugging of the running game built with the engine. Since we are
using solid design patterns and we are managing life cycles behind the scenes no extra

15

code will be needed to make the extension work. Instead, the extension will access and
read required data from the engine and display it for the developer.

1.3.2 Dev-Hubs

Dev-Hubs, created by Mohamad Qaddura, is a developer-to-developer approach in
E-Learning built around the flexibility of GitHub and Open Source universe. Hubs
address the hardship in the learning curve in complicated yet useful technologies and the
complexity of acquiring or otherwise finding the proper resource to study.

Current available Hubs that relate to our project are ReactiveXHub and ChromeEx-
tensionHub. If need be, any complicated technology used in this project will as well has
its own Hub. Never the less, VFL is a very hard to learn and there is no enough resource
on how to use with Autolayout. Hence, at some point, VFLHub should be added.

16

2 Methods
In software engineering, a design pattern is a general repeatable solution to a commonly
occurring problem in software design. A design pattern isn’t a finished design that can be
transformed directly into code. It is a description or template for how to solve a problem
that can be used in many different situations [Shv]. In this project, we are going to rely
heavily on software design patterns not only for solving problems from our perspective
but also from developers’ perspective making it easier to understand the conventions we
use.

Moreover, we will as well use the same convention as with other game engines to
be coherent. However, we will improvise in our architecture and take slightly different
methods to make the engine simpler and more specific, in other words, we are going
to make the engine more specific towards casual games while maintaining a level of
flexibility for the engine to be used, in the future, for other types of games.

In our project we will be building a Tic Tac Toe game as a showcase for the engine,
hence most of the examples given will be based on the game itself.

2.1 System Design And Architecture
WebGLadiator uses software design pattern along with abstract level from an Entity/-
Component System derived from the component design pattern. The use of software
design patterns with the focus on the component pattern will help simplify the process for
a developer. Hence, each design has its own responsibility, while other software design
patterns are generic and can be applied to any software architecture, the component
pattern is specific to game engines.

2.1.1 Entiy/Component System

Component/Entity Systems are an architectural pattern used mostly in game development.
An ECS follows the Composition over Inheritance principle to allow for greater flexibility
when defining entities (anything that’s part of a game’s scene: enemies, doors, bullets)
by building out of individual parts that can be mixed-and-matched. This eliminates the
ambiguity problems of long inheritance chains and promotes clean design. However,
ECS systems do incur a small cost to performance[Wik].

Einstein once said, "Everything should be made as simple as possible, but not simpler".
In an ECS, creating different entities (Tic Tac Square) with different components (Sounds,
Textures) means that our blueprint file will grow larger in size since we have to also
include the components to be used. Hence, it is reasonable to have a lightweight ECS in
order to shorten the time of learning as well as building a simple game. An ECS alone
would add a complication for developing casual games since the developer will have to
get familiar with the architecture before starting. Moreover, developers coming from

17

Pixi or Phaser background are not used to ECS and that would require extra tutoring and
teach for developers.In terms of Pixi, figure 6 illustrates the hierarchy of Display Objects
where container acts as both an Entity and Display object.

Figure 6. Pixi Hierarchy

Our system will slightly differ from the typical ECS in the way we compose entities
components. Entities composition will be similar to that of standard ECS approach
and facilitated by blueprint files. On the other hand, components will be implemented
differently such that the entity will have direct access to the components e.g graphics and
layout system will be an integral part of the entity. On the other hand, other components
like sounds will access by entities based on the code logic since most sounds are played
based on the occurrence of an event. Hence, In terms of an ECS, we are elevating entities
to containers directly. 7 illustrates the hierarchy in WebGLadiator.

18

Figure 7. WegGLadiator Hierarchy

In the figure above, we use composition to add Pixi’s display objects into our game
objects as a twin. Our view class is the parent of all our game objects and entities and
has all display properties, hence we right our display properties in the View class only
without the need to do that in our inherited classes.

19

2.1.2 Managing Life Cycle of Entities

In terms of object creation, an object can either be directly created or lazily created when
needed. Blueprints will utilize this process by using flags e.g isLazy flag which means
that the lazy game object will not be created directly by the builder, instead, it will be
created by code on demand. Moreover, a developer can use loops inside blueprint in
order to create multiple instances of an object while applying different attributes for each
instance.

The life cycle of a game object starts when it is it gets created by the blueprint
builder. Blueprint builder uses builder pattern in order to minimize the number of
arguments passed to the constructor and put them inside a blueprint file, this automates
the creation of objects existing in the blueprint itself, afterward, the builder will initialize
and execute each class’s code without any interaction from the developer. Afterward,
the initialization phase starts, and at this phase, variables are assigned their equivalent
values e.g uncommon configuration in a blueprint. Once the objects are created and
initialized, they start subscribing to messages, HID events. Figure 8 Illustrates the life
cycle of objects.

Figure 8. Life Cycle

The life cycle ends with the destruction of objects that are not needed anymore e.g
when switching between scenes. Destruction sequence has opposite direction of the
creation sequence such that objects first get unsubscribed, then variables are nullified,
followed by the removal of the objects from the scene graph to avoid consuming or other
wise leaking memory.

20

2.1.3 Integral Graphics and Layout

The layout engine is a constraint based engine that returns different calculated values for
different screen sizes, objects will take their layout positions from result calculated by the
layout engine. Moreover, objects will have dynamic positions changing by animations,
yet these positions do not affect the result from the layout engine. For that reason, objects
will have two displacement properties each, left is for the static displacement calculated
from layout engine and x is for dynamic displacement calculated from animations e.g
object sliding in. As a result, this will retain the layout of the game while allowing
objects to animate.

Twin pattern is a software design pattern that allows developers to model multiple
inheritances in programming languages that do not support multiple inheritances. This
pattern avoids many of the problems with multiple inheritances[Mos]. Since JavaScript
does not allow multiple inheritance, it is reasonable to use twin pattern, in our case in
which will be applied to Pixi classes. This will help us compose Pixi classes and integrate
it into our class as shown in figure 9 for our animated class.

Figure 9. Twin Pattern For Animated Sprite

The above figure helps us to apply multiple inheritances for our animated sprite and
to be less dependant on code changes from Pixi. Hence, if in the future Pixi decided to
rename the function goToAndStop to playUntil we do not do a global change in the code,
instead, we will use the new function from Pixi without the need to rename ours.

21

Now that we have our own twin classes we have to make them accessible by the
layout engine. The layout engine is a simple iterator that traverses the scene graph from
top to bottom and computes the dimensions and positions for all entities.

2.1.4 Managing External Libraries

When we add external libraries we have to keep in mind that they might get updated
anytime. Another case is that we might want to use different libraries with same func-
tionality e.g changing from one sound library to another. In order to integrate the system,
we use adapter design pattern that used to allow an existent library to be used without
modifying its source code by adding an interface to use it. Using this approach we ensure
that we create a single system for similar purpose libraries, the pattern is illustrated in
figure 10.

Figure 10. Adapter Design Pattern

We will take PixiAudioAdapter as an example here, whenever we want to play, pause,
stop, or even change the volume of a sound we call the methods using our adapter which
provides adequate access to our sound library while hiding the libraries implementation.
In the future, if a used library was updated, then we only change our adapter to adapt the
new changes without having to change the code anywhere else.

22

2.1.5 System Architecture

In order to separate the concerns of each functionality in the engine we are going to
divide them into different systems e.g graphics system, sound system, and any other
distinct functionality included. Over each system, we will use facade design pattern that
utilizes access to a system and keeps unified code among similar functionality adapters.

Going back to our sound system example, even if we have two different sound
adapters we will still use one for a game, the choice to which adapter to use is up to
the developer. However, the facade will govern the access to the adapters to hide their
implementation and isolate any functionality that is not a part of adapter’s functionality,
e.g autolayout adapter does not have to know about the current screen size, instead, the
layout facade’s takes responsibility. Accordingly, the developer will use the facade to
access the corresponding adapter. Hence, this way we only need to change the adapter if
we needed a different library. Facade pattern is illustrated in figure 11.

Figure 11. Facade Design Pattern

23

2.1.6 Messaging Buses

In order for objects to exchange events and information, we are going to use messaging
buses to transmit messages between them. Messaging bus responsibility is not limited to
transmit messages, it also will ensure that only components registered to a message will
receive in order to avoid heavy communication and filtering.

In Javascript, we can implement communication using event emitter, signals, or
observable stream. Table 1 gives a quick overview of their differences.

Implementation Favors Event Type Extensibility
Event Emitter Inheritance. String Limited

Signals Composition Member Limited
Observer Both Object Flexible

Table 1. Communication using Event Emitter vs Signal vs Observer

As per our project, we want to obtain messaging that is composite and flexible, for that
reason we are going to use observer pattern with RxJS. RxJS provides robust operations
using operators that will simplify the code when dealing with multiple messages.

2.1.7 Solidarity Using Observer Pattern

Since games run over a set of events, messages, and operations we are going to use the
observer pattern with ReactiveX.ReactiveX is a library for composing asynchronous
and event-based programs by using observable sequences. It extends the observer
pattern to support sequences of data and/or events and adds operators that allow you to
compose sequences together declaratively while abstracting away concerns about things
like low-level threading, synchronization, thread-safety, concurrent data structures, and
non-blocking I/O [Mic].

to interconnect them together in a form of operation stream, this gives the flexibility
to handle different kinds of events as shown in the figure12

24

Figure 12. ReactiveX for Speed Click Game

In figure 12 we use ReactiveX to listen to a click event on the canvas, then we buffer
all the clicks over one second interval. After that, we accumulate the total and then send
the total to the heavy Operation. This allows us to interconnect HID events with time
events inside a single stream. Hence, we did a complicated logic that would require
otherwise to use different functions for each event, HID and time, and then another
function to combine the calculations.

2.2 Web Approach
In order to provide a smooth migration from web development to game development, we
will be focusing upon making the process of developing a game on our engine similar
to what web developers are used to developing websites. In terms of web development,
GUI is rarely used by developers, as developers see every single line of code and interact
to it via text editors rather than IDEs and CLI instead of GUI software. But before we
explain our criteria in making the engine oriented for web developers, we have to answer
the firstly asked question, why do we have to use WebGL?

Until recently, most companies were using HTML and Flash to develop games. With
the introduction of CSS3 and the enhancement HTML5 as well as the declination of
Flash, companies started moving towards HTML5 which has proved itself capable of
making simple games.Adding to that, HTML5 is cross platform and all it requires is a
browser, which eliminates the need to install a game and that influenced the web games
market. Moreover, CSS3 was a big advantage to games in HTML as it is robust and
flexible in animations which make it easy to design and layout a game. On the other hand,
HTML was meant for website not for graphics, which means not only performance will
be affected but there are missing features that cannot be done with HTML, to mention
simple yet effective features we can consider Geometry, which in HTML is absent hence
all game objects come in rectangular shapes which become a clear inconvenience for
HID. Adding to that, layering, blending, and masking is absent in HTML. Of course,

25

there is always a work around to achieve these features but that all comes at the cost of
performance.

In order to void the costly work around required to develop games with HTML, we
are going to use WebGL that is specific for graphics and includes geometry, blending,
layering and masking. We will make the development on top of our engine similar to
that of web development. For that purpose, we are going to introduce the concept of
blueprints which are simple JSON files that will act just like HTML does in building the
content the game and structuring it. VFL will be the replacement for CSS and JavaScript
remains the programming language.

2.2.1 Blueprints

Blueprint concept is introduced to act like HTML so that we structure the content of
the game in a readable way. instead of using HTML we are going to use JSON for the
reason that it is easier to parse and manipulate with JavaScript. Moreover, we will use
utilize operators inside in the blueprint inspired by Angular. for example, repeating,
conditionals, filler. A blueprint file will describe the structure of the scene graph where all
nodes can have children nodes that are entities, game objects, or components. Blueprint
files can as well have nested blueprints inside them, figure 13 is a blueprint for a Tic Tac
Toe Game

26

Figure 13. Tic Tac Toe Game Blueprint

The game blueprint includes blueprints for all three scenes blueprints that has entities
and components inside to use, and two strategies responsible for game overall logic
throughout all the scenes. We can as well see VFL for every scene. sceneMap in this
blueprint is a property of Game class, which can be passed by the blueprint to the class
upon construction. This means that attributes, properties as well as configurations can be
passed via blueprints.

2.2.2 Layout with VFL

CSS is robust and clean, using it for games to some extent can be helpful and easier for
developers to use since they are already used to it. However, CSS can only be accessed by
DOM elements which means in order to read CSS properties we have to have a complete
DOM of the scene graph and that alone means we have to as well build HTML tree for

27

the game, for this reason using CSS will be an overhead to use. Hence, we will be using
Visual Formatting Language (VFL) the language is used to minimize the constraints into
small strings that would otherwise be large and hard to change. Layout system uses VFL
as a language and autolayout.js as a library to parse the constraints passed as VFL. in the
left of figure 14 we can see the used VFL, to the right is the result obtained.

Figure 14. VFL Showcase

In order to make Games responsive, we will force aspect ratio by using VFL con-
straint, this way entities will resize based on the aspect ratio they are given inside the
game as in Figure 15 shows both VFL and aspect ratio enforcement

Figure 15. Forcing Aspect Ratio With VFL

In the figure above, we force to have the width equal to the height of the grid which
means that grid is 1x1. Moreover, using autolayout we obtain extra values that we can
use for padding, anchoring, and pivoting as we can get the width, height, x, y, right,
bottom, and center of any calculated object.

28

2.2.3 JavaScript

In order to read the game logic, we need a programming language and since we are
using web technologies JavaScript is the one option. However, we will use a superset
of JavaScript which TypeScript that will be transpiled into JavaScript upon building the
game. The reason for using TypeScript is that it has types which directly enables auto
complete and makes the code easier to understand, more over TypeScript favors Object
Oriented Programming over Prototyping that plain JavaScript uses.

Blueprints are made with JSON because it is faster and easier to read and update
with JavaScript, this will give us more flexibility in both writing and debugging the code.
That means developers can as well access blueprints from browser’s console to see if
there is something wrong in the blueprint itself.

2.3 Reusability
When developing multiple games we have to keep in mind that there are plenty of usable
code that should easily be extended. Moreover, there are many cases where we want the
same logic yet only we want to change the UI. Using the blueprint files we simplify the
procedures of creating and using different UI. Moreover, it will also be easier to change
the logic, since it is simple to just add the new game object to the blueprint.

2.3.1 Reskinning

Reskinning is a process where app developers do not have to create a game from scratch.
You take a pre-made source code of a game and change its design completely, to give it a
brand new look. There are many benefits of reskinning pre-made codes such as saving
development time, increasing revenue, minimizing risks and so on. This is a pretty good
way for even a beginner app developer to test out the waters in the app business [Gam].

the most basic form of reskinning is just to change the assets that we are preloading
e.g the PNG files. However, sometimes we want to add new resources without removing
a new one e.g two buttons with different assets. In our case, it will be as simple as adding
a reference in the manifest file and using it in the blueprint file.

29

2.3.2 Reusable Entities

Although the appearance of a game object might differ from one to another, the logic
does not always have to. imagine having a button that has a different sprite for each
state, and another button that has a different animation for each state. This means that
the only thing that is actually changing is the state machine of the button, the sprites and
animations are no more than the visualization of the state. The state machine of a button
is shown in the figure16.

Figure 16. Button State Machine

For this purpose, we are going to have provided few different classes to be reused.
That will include game objects e.g text, sprite, animated sprite. Moreover, Entities, are
added including scene and application classes where the application is the root of the
game and can contain different scenes. Adding to that our UI will include primitive like
buttons and widgets that would be a menu and drop downs. Due to time restriction, only
the folder for widgets is created without the implementation of the equivalent classes.

2.3.3 Registry

Since we want to separate the entities and controls that we provided from our engine
code we are going to use a git submodule for that and include in it only the reusable
entities without including anything from the system, this way it is much easier to get
ready made game objects that are actually needed for a game.

30

2.4 Tooling
A programming tool or software development tool is a computer program that software
developers use to create, debug, maintain, or otherwise support other programs and
applications. The term usually refers to relatively simple programs, that can be combined
together to accomplish a task, much as one might use multiple hand tools to fix a physical
object. The ability to use a variety of tools productively is one hallmark of a skilled
software engineer [Ker]. Our main tool for this project is the chrome devtool.

2.4.1 Chrome DevTool

A DevTools extension adds functionality to the Chrome DevTools. It can add new UI
panels and sidebars, interact with the inspected page, get information about network
requests, and more. View featured DevTools extensions. DevTools extensions have
access to an additional set of DevTools-specific extension APIs[Goo] the workflow for a
devtool extension that we are going to use is illustrated in figure 17

Figure 17. Chrome DevTools

31

JavaScript is a weakly typed prototyping language which means we have control
over any object by just having a reference to it. Hence, we change the prototype of the
object and treat it as a JSON object to call its methods, which we are going to use for our
chrome extension, Figure 18 illustrates the simplicity of doing so

Figure 18. JavaScript Method Calls

32

3 Results
The implementation of our engine provides many benefits for game developers that will
use it. These benefits can reach out to a single developer as well as a team of developers.
Initially, new web developers do not have to accommodate themselves to the game
engine, as it will be used the same way they used to develop websites. Beyond that, If a
developer wants to develop a game than our engine would make it as smooth as possible
from start to end. Adding to that, if a company wants to make games and reuse what they
did for previous games then they can make good use of our engine.

Not only will we make the process of developing games faster, we will also separate
the concern between the UI and the logic as blueprints will handle most of the UI without
risking control over the code logic as it goes the same way it is with web development
where separation of concerns is well considered and maintained in all frameworks.
Moreover, In the cases where developers want to change from one library to another,
they can use their own adapter for that purpose. Altogether, developers will still have the
same confidence as they have when developing websites, regardless of being concerned
about their experience in game development.

Before we start with explaining our result, we are going to have a quick walk through
on how to build a game using WebGLadiator. The walk through will be on how to build
a Tic Tac Toe game with WebGLadiator.

3.1 Walk Through
In this section, we are going to build our Tic Tac Toe game on top of WebGLadiator.
Accordingly, we will see how to register needed system and which adapters to use for
each system, then how to divide our game into different scenes using blueprints. After
that, we are going see how to nest blueprints inside scenes. Finally, we will check how to
write the code to run our game logic. In order to keep it readable, we will write the game
using a simple coding style that means we might have extra lines of codes that could be
optimized especially when it comes to ReactiveX operators, that will be used as least as
possible.

33

3.1.1 Registering Systems

Before we start building the game, we have to choose which systems we are going to use
e.g whether to use a sound system or not. Accordingly, we have as well to choose the
adapters equivalent to each library we want to use and inject it into the system. Our main
script, first executed script in TypeScript, will be where we take this step and write our
system related code there as shown in figure 19

Figure 19. Registering Systems

In the figure above we inject all our adapters into their equivalent systems. Later on,
we can refer to these systems that will take responsibility of using the adapter without
the need to have direct access to the adapters. It is worth mentioning, that during the
development we decided to change from WebSocketIO, used for real time multiplier
gaming, to Colyseus, which adds lobby management to WebSocketIO, and it was done
by simply changing the injected adapter without the need to do global changes in the
code.

At the bottom of the figure, we call blueprint builder to build our game blueprint
which we are going to go through later. Hence, we build a game from the main script
itself.

34

3.1.2 Game Blueprint

In order to build a game, we have to ensure the simplicity of both the process and
structure. Game blueprint will be used to contain different scenes and every scene can
have its own folder with required files. Figure 20 shows the game blueprint.

Figure 20. Game Blueprint

In the figure above, we create the game blueprint that gets build in the main script.
The game blueprint includes three scenes; intro, outro, and the main scene that has most
of the game logic.

35

The scene map as well as the VFL, are arguments passed to the Game class that maps
each scene to its blueprint with its layout. Moreover, we can see two strategies that are
not scene related, they are always active regarding which scene is currently active. Hence,
we can distribute our code based on the scope to which each file belongs as shown in
figure 21.

Figure 21. Folder Structure

By allowing developers to structure their folders based on the scope of the file, it will
be easier to manage the files and to know what is each class responsible for.

36

3.1.3 Scene Blueprint

Every scene has its own blueprint that includes a tree of entities and game objects to be
built. Similarly, the scene blueprint is itself nested inside the game blueprint. Figure 22
shows the blueprint for outro scene.

Figure 22. Outro Scene Blueprint

In the figure above, text and animated sprite game objects are already implemented
by WebGLadiator and reused by referencing them in the blueprint and passing their
equivalent arguments e.g font style for texts. On the other hand, outro scene requires its
own logic so a different class was created for it in a separate file.

37

3.1.4 Logic

Scenes have their own blueprint that will build the scene and layout it yet the logic for
each class should be written inside. Considering the outro scene, it is responsible for
displaying the winner after the game is finished and informs the game to go back to intro
scene. figure 23 shows the code for outro scene. Moreover, if we consider a background
image, it only requires using layout, hence no need to create a separate class for it since
in most of the cases it does not have any logic.

Figure 23. Outro Scene Logic

In the figure above, we can see two functions; one which is responsible for HID
events and the other is responsible starting the logic. The reason for that is to divide
the responsibility between the functions which is a common approach in programming.
outro scene waits for a user tap then sends a message to the game to switch back to
intro scene, while start method reads the current result to display the text based on a win
or a loss. We can see here that the life cycle is completely hidden, the constructor is
not needed, methods to destroy the scene are not added since WebGLadiator does that
without intervention from the developer.

As per the methods, all methods get called by the builder without intervention from
the developer and it is up to him whether to include them or not, we use three methods;

1) listenToBusEvents: used to listen to messages.
2) listenToHIDEvents: used to listen to HID events.
3) start: generic and can be used to write both of the functions above, this is can as

well be used to run the code internally.
If a developer has a class that only needs to listen to messages, then he can add the

first message and does not need to add the other ones. Similarly, if he wants to use a class

38

that only needs to listen to HID events e.g button, then he can use the second method
alone. On the other hand, the last method can be added to include listen to any event or
also run internal code like in Unity.

3.1.5 Scene Management

In order to manage the game state, which scene the game should be, we will a game state
strategy the global class that will be responsible to load the game and as well to switch
between scenes. Figure 24 shows the code in start function of the strategy.

Figure 24. Game State Strategy

In the figure above the class extends Strategy class and in the start function, which
gets called automatically by the builder, we load the resources and for now we just log
the progress until it is completed then we load the intro scene. In the second part of the
function, we listen to the changes in the game data source and based on the current state
we transition to main or outro scene. It is worth mentioning here, that the code is as per
server implementation and the state is used as per the server works.

39

3.1.6 Playing The Game

The result of our code will run on different devices with different screen sizes. By using
the layout system via VFL our game will run on any screen size regardless of the aspect
ratio. Figure 25 shows a screen shot of two opponents playing against each another
where every player has "X" as his mark.

Figure 25. Responsive Tic Tac Toe

In the figure above, we see that the game fits any screen regardless of the aspect ratio
and orientation. The header and footer are usually absent in Tic Tac Toe games, but we
added them as a show case, they both are tiled sprites with fixed height and full width.
On the other hand, the board takes all available space without stretching, we achieved
that by enforcing the inner aspect ratio of the board.

40

During the game play, both intro and outro scenes will send messages to this strategy
to inform the strategy to change the scene. Figure 26 shows the code in event function of
the strategy.

Figure 26. Game State Events

In the above figure, we can see that events function which also gets called automati-
cally is separate from the start function as every function has a different responsibility.
Accordingly, the code here is responsible for listening to finishing messages and switches
to the next scene.

41

3.2 Web Tailored Engine
From a web developer perspective, the ability to change from one field to another is
a matter of adapting. Presenting the engine the same way it is for the web will help
developers adapt quickly. Adding to that, the similarity web developers would see can
motivate them to start with game development as a way to learn new skills the easy way.

3.2.1 Web Technologies

As per the web standards and technologies, WebGLadiator retained the structure as is in
order to reflect it for game development. The approach to game development is similar to
that of web development in terms of the three technologies: JavaScript for code, HTML
for structure, and CSS for design and layout that were equivalently replaced TypeScript,
JSON, and VFL. Moreover, the code organization and the separation of concern is similar
to what modern web framework provides, e.g Angular. Let us have a look at a code
example from angular in Figure 27

Figure 27. Angular Code Example

The reason why we give this example from angular is that angular is a popular frame-
work and other similar frameworks use the same convention. If we look at MyComponent
the component decorator ’@Component’ takes the template argument which is HTML
snippet that in our case it is called blueprint. The reason why we do not use ’template’
as a wording is that template has many meanings and might confuse developer. We can
as well see the ngOnInit function which the function called upon initialization however
without being called from the constructor in the same way our builder calls the functions.
Figure 28 shows our code example.

42

Figure 28. Intro Scene Code Example

In the code example, we see how every function will be automatically called by the
builder without having to call them from the constructor which is absent this would
eliminate the confusion for develops as per what to name functions and where to call
them. This way it looks similar to web frameworks and as well reduces the overheads
when it comes to inheriting from classes with a constructor. Moreover, developers will
be using same naming conventions for same functions. Adding to that, creating the scene,
was done by extending the scene class and adding it to the game was done through the
blueprints.

3.3 Agile Development
Agile software development requires that starting and ending development of the software
should be as smooth and fast as possible while being ready to make any changes at any
time. If we apply that on our case, then starting with the new game is a matter of creating
a blueprint. Afterward, adding new code is simplified by life cycle management and
builder, the developer will start writing his code directly. This means that a developer
will only concentrate exclusively on the writing the code for his logic rather than the UI.
Throughout the development process, if needed, a developer can just remove unnecessary
entities or game objects from the equivalent blueprint and if a slight change, like changing
a parameter, is needed then it could be done via blueprint without touching the code.

3.3.1 Easy Game Setup

Starting from a scratch with a new game can be frustrating as the developer has to make
a lot of decision that might or might not be correct. If we consider only creating the
layout of a game, then using VFL will avoid having to write our own calculations and

43

aspect ration consideration. However, in our case, a developer would just need to create
a blueprint file and add to it the VFL required and that is very similar to the design steps
needed for web development with CSS. Adding to that, since we have reusable elements,
a developer can simply use our tiled sprite as a UI debugging technique to visualize his
layout before starting.

Now that the developer knows how his game is going to look, he will start by using
proper controls he needs for the game that we have already made. Upon adding menus,
buttons and what he needs for his game the user can judge the interaction inside his game.
Followed by that, the user then can easily create his own code and add it accordingly
without having to worry about his previous actions because it is just a matter of removing
them from the blueprint file.

3.4 Organized Work flow
With the use of software design patterns and the well-organized engine, the developer
will concentrate on simplicity rather than hard work. Developers will concentrate on
completing their game without the need to worry about the engine, they will build the
game until the end without having to write unnecessary code that was taken care by the
engine e.g. One of the pitfalls of large LOC is that it is hard to remember the intent for
writing them as well as hard to change them on demand. Figure 29 indicates how coding
was done before and after WebGLadiator.

Figure 29. Before and After WebGLadiator

3.4.1 Coherent Engine

The purpose of creating an engine instead of using one is to be in control while making
games. The structure and coherence are spread all over the engine from an entity to a

44

system. Not only will this mean that it is easier to develop games, but also to understand
another developer’s code and work in a similar pattern all over a team. This process is
generally costly and requires

Using software design patterns along with a modified ECS translates into this easily
understandable and usable engine. If we consider a developer who wants to know not
only how to make games with our engine but also how was our engine made, then he
can relate our decisions to our conventions used e.g he will google it. For example, if a
developer sees a Facade and multiple Adapters, yet did not understand the naming, he
can google about facade and adapter software design patterns and that might help him
understand how our decisions were made.

3.4.2 Readability

To make our code readable we had to use conventional naming for our files that simplifies
the understanding of what each file does. Classes are implemented based upon their
functionality, for example using the builder, Singleton, and strategy instead of manager
and utility as a name. along with separating the concern between visuals and logic whilst
assisting developers, we made the engine simple enough to assist developers but no more
simple. By reducing the complexity, readability in our case went beyond our own code
to reach developers’ code among each another.

When a developer wants to add his code, he doesn’t have to worry about how the code
should look like because that is managed by the engine, all the developer will concentrate
on is to make the logic work and everything else will be taken care of the engine. For
example, if life cycle management was missing it will mean that the developer will have
to maintain the life cycle his own. Imagine having two developers, then everyone will
write it his own resulting into two different implementations of the very same thing.
Figure 30 shows between WebGLadiator code and usual code.

Figure 30. WebGLadiator Code Comparison

If we consider the example above, then we can see that we eliminated the need to
call the method from the constructor while also we made sure all developers will use the
same name for the method e.g some one can call initEvents or initHID. Moreover, in the
second method, we are emitting the ’CellPlayedMesage’ event, which is a wrong string

45

missing the second ’s’ letter. Hence, no one will receive this message and the developer
might not be aware of it.

46

4 Discussion
The project could distinguish itself from other available WebGL game engines by bridging
game development with web development. Moreover, we added around it responsive
game development which facilitates creating games for any screen size and any aspect
ratio that web developers are familiar with. Adding to that, being extensible and modular
would eliminate the need to build an in-house engine by game companies. In this chapter,
we are going to compare WebGLadiator with other available WebGL game engines.

While taking decisions, many of the decisions were different from those of other
game engines. WebGLadiator takes its responsibility in creating games just like other
engines. Moreover, our different approach has added different aspects that are slightly
or completely absent in other game engines. Hence, we are offering auxiliaries along
with the package that developers can benefit from our extra features and approach while
developing their games on top of our engine.

4.1 Comparison
When comparing the currently available game engines we will be focusing upon source
code availability, readability, learning curve, target platform, and continuity of devel-
opment. Moreover, the comparison is going to take place among engines that are built
around WebGL technology.

4.1.1 List of Engines

There is an adequate number of game engines for WebGL with different features and
design. Since WebGL is the main perspective for the comparison, it is worth mentioning
that with the current state of web technology, specifically WebGL support. Figure 31
shows vote result for most popular WebGL game engines provided by ClayIO a platform
that publishes web games.

47

Figure 31. Which HTML5 Game Engine is right for you? [Cla17]

The figure above lists HTML game engines by the cost of license where free means an
open source project which we intend to do. Followed by popularity and rating equivalent
to the number of downloads and votes, the higher value the better. Moreover, tags refer
to what we call features and represents what each engine provides. From the features
included, WebGLadiator provides 2D, sounds, free, WebGL, TypeScript adding to that
WebGLadiator is HTML-like instead of flash-like tag, provides blueprints instead of
game-maker tag.

4.1.2 Comparison between available engines

While Construct 2 is on the top of the list, the project became out dated as the last release
was in 2014. Construct 3 is currently in beta version, Construct 3 is very similar to
PlayCanvas which is to be discussed as well, hence for clarity, we will separate version
2 and 3. Construct indeed proved itself by adding a GUI which goes beyond being
extensible to ease of use. Our perspective from a GUI is a bit different, WebGLadiator
will replace GUI with blueprint files, the idea of using blueprints is that JavaScript
developers are moving towards GUI-less approaches. for example using Sublime Text
Editor instead of IDEs, using gulp and NPM instead of automation tools, since in
JavaScript ecosystem everything runs in the console, for example, compiling, building,
releasing and running web apps is mainly done using CLI.

Phaser is a flash-like game engine, with the initial intent to be the engine to replace
flash with WebGL. Phaser uses JavaScript to develop games the same way in Flash and
is close to an ECS architecture. While Phaser supports plenty of features even social
platform plugins, Phaser is written in JavaScript 5 (without TypeScript nor es6) which
makes the code quantitive with plenty of nested namespaces. For example, loading
an image would be Phaser.Game.load.image() while loading a JSON file would be
Phaser.Game.load.json(), Although both of them are resources and decoding them should

48

be delegated to a middle-ware. On the other hand, WebGLadiator is written in TypeScript
to make the code more understandable and is utilized by Software Design Patterns,
specifically builders, in order to reduce the LOCs that would be otherwise required.
Figure 32 shows two benefits included in WebGladiator for resource management and
IntelliSense with TypeScript that speeds up the process of coding applications by reducing
typos and other common mistakes through auto completion popups when typing, querying
parameters of functions, query hints related to syntax errors, etc.

Figure 32. Resource Management and Intellisence

Pixi developers did the exact opposite of what Phaser did in terms of licensing, they
made the software as a branding for themselves which lead to contracts with Kinder,
Disney, Toyota and many other companies that Pixi developers (GoodBoyDigital) made
benefit of and added to their gallery page under http://www.pixijs.com/gallery. As a
result, it was a push for them to keep working for Pixi. The downsides of Pixi is that it
is just a rendering engine that can and is mostly used by most game engines including
Phaser. One of the contributing reasons why it is voted 5 out of 5 is that it gives freedom
for companies to make their own engine on top of it as quoted by reviewers "Great as
a blazing fast rendering base for bigger apps and games. I love that performance is a
first class citizen here, with no wasteful or expensive default settings"[Dak16]. As per
WebGLadiator, we are using Pixi for graphics system to make WebGLadiator a superset
of PIXI that adds for the least sound and animation systems.

49

Another engine in the is PlayCanvas which is a cloud based IDE and game engine
that follows the ECS approach. PlayCanvas is a full ECS engine that goes beyond
development to deployment. One downside with PlayCancas is that it uses ES5 which
involves writing a lot of code. Imagine inheritance over a prototyping language, and
using it for a casual game makes it an over simplification that the LOCs required are just
too much. Figure 33 shows lines required just for a Button.

Figure 33. Creating a Button with PlayCanvas

While we can see the plenty lines of code to create only one game object are okay,
but we can still minimize that the way we do it in WebGLadiator as in 34, we can also
note that we don’t need to dispose the events, managed automatically, and also we have
support ’tap’ event.

50

Figure 34. Button

In addition to the engines mentioned earlier, it is worth mentioning the coming back
engine by Black Storm Labs called GameClosure. Although the project was almost
closed for 2 years, by introducing Instant Games GameClosure came back to deliver
EverWing, the biggest instant game.Noteworthy here, that while we use Autolayout,
Facebook has their own Yoga.js layout library which could be used by GameClouse. Up
to the list, GameClosure, without our additions like layout and lifecycle management,
is the closest to WebGLadiator. However, The difference between WebGLadiator and
GameClosure is we focus on web approach while GameClosure focuses on mobile
approach from a UI designer perspective. Strictly, WebGLadiator focuses on bringing
the game for web developers while being an ECS while GameClosure concentrates on
mobile developers and the game UI rather than the game itself as in Figure 35.

Figure 35. Creating UI with GameClosure

51

4.1.3 WebGLadiator

WebGLadiator, in terms of initial stage and vision, used available open source libraries
which assisted in our journey and eliminated the need to write our own graphics, sounds,
layout libraries. Instead, we just utilized them all together. In addition, WebGLadiator
is targeted towards JavaScript developers and the way they write their code for the web.
In other words, developers interested in WebGL will find it easy to learn because it is
written for web developers to be used for web technologies.

In terms of a website development, developers usually write their code in JavaScript,
styling, and lay outing in CSS, and visuals using HTML. For WebGLadiator, CSS is
equivalent for VFL and HTML is equivalent for Blueprint. Even though we might
have developers coming from Unity, specialized in CSharp, to develop a game for the
web would require them to work with JavaScript and this can as well benefit from
WebGladiator.

Using WebGLadiator might be perceived as a risk, it is a safe step if considered
specifically when developers prefer using plain old style. Many companies nowadays do
the very same steps to obtain their version of WebGLadiator. The absence of developers
who could actually implement the project makes it pretty difficult to control their engine
which develops a cumbersome burden over time. WebGLadiator translates the technical
details that would otherwise be difficult to understand by a new developer, into simple
code that a developer can use until he is knowledgeable and then can improve the code if
need be.

4.2 Decision Making
The major decision for this project was a challenge itself; should I make an engine from
available libraries or should I use an engine and make it extensible? another decision was
how to choose which library or technology for this project and specifically why WebGL.
Adding to that, the use of software design patterns was a side decision that introduced
new challenges and solutions.

4.2.1 Did I reinvent the Wheel?

Although WegGLadiator might look like a way for reinventing the wheel, it is more
viable to say that it was more using the wheel to invent the car. The game engine part
itself was a way of reinventing the wheel, but using available libraries it made least
effort to obtain the result. The additions, blueprints, manifest, layout, and life cycle
management were a completely new way of making an engine that made WebGLadiator
recognizable among the others.

The addition of a chrome extension is by itself a new addition to the game engine,
and a stress out that if we develop an engine for the web we have to use technologies

52

for the web. In other words, we did add new features that are otherwise absent in other
engines. Moving slowly and carefully, while planning ahead made the engine extensible
enough to use an extension.

4.3 Critics
4.3.1 Competing Other Engines

If we are to consider game engines by the architecture they use, for example, ECS in Unity.
Then WebGLadiator then we have to consider the long lifetime of Unity and engines alike.
If however, we consider the simplicity, then WebGLadiator simplifies the process of
developing a game by addressing JavaScript developers with same development process
under the hood. This means that we utilize and ECS in the way a simple game should be
done.

4.3.2 Software Design Patterns for Games

Software Design Patterns are meant for any kind of software with complicated structures.
The idea of using them is to organize the structure under a layer of the convention that
would be otherwise easy to follow and understand. Another approach would be to call all
classes with the names: Utility, Helper, Manager, Operator. The naming would work fine
but it won’t really give a meaning for the functionality that every class is responsible for.

4.3.3 Adoption Risk

The first question to come in mind when adopting a new software is the risk of having
it acting unexpectedly or otherwise forcing the user, developer in our case, to follow a
lot of constraints that would hold him back. WebGLadiator allows developers to do fall
back to manually managed code as the builder is an assessment rather than an obligation.
If the developer does not want to use a blueprint or use it partially then he is free to do it
the way he wants and write his code just like he would do normally

53

5 Conclusion

Now that we know most of the aspects of the project we narrow it down to a conclusive
state. The ecosystem for WebGLadiator is web friendly following the same approach
as of web development yet for games. Web Developers, as well as WebGL developers,
will find it easy to accommodate to the engine as it presents itself as a web first platform.
Never the less, it makes use of Typescript as well which makes it easier to see code using
IntelliSense and auto completion. In addition to that, the engine provides same convention
JavaScript developers would see otherwise. For example, VFL to WebGLadiator is what
CSS is to The Web, Blueprints are the same as HTML, and JavaScript remains used
either way.

WebGLadiator can be used to eliminate the mandatory step when starting a new
engine, which is to wrap it and extend it to be used as per the business requirements for a
game company. WebGLadiator will take responsibility for this step in a conventional
manner in order to be self-explanatory for web developers. Software Design Patterns used
are easy to follow and understand how to use them since there are plenty of resources
explaining them. Classes are named based on their functionality rather than generic terms,
which is easier for software developers to understand what is every class responsibility.

Aside from the architectural assessment offered by WebGLadiator, WebGladiator
added features that are not focused upon in other engines, for example, responsive layout
and blueprint. The usual step of having to start from a scratch with a game engine is
taken care by WebGLadiator. Developers will not feel any more obliged to write their
engine of scratch if however, they wanted to add they can inject their own code into the
engine and at the before the game starts as in.

54

6 Future Work
Although the project is sufficient to make a game, it does not mean that it stops develop-
ment at this stage. In reality, just like any other project, there is always something to add
and make use of. A project does not stop at the same time it achieves something. As an
extensible engine, it is expected the project will always be improved.

Modularity is a key point of the project, although it is modular there are still many
other conventions that would make much modular. Dependency Injection and Inversion
of Control are the first steps to a modular system. A GUI builder would make it much
easier to use for a modular project. On the other hand, there are features to be considered
as an enhancement for the project. Last but not least step by step the project should be
open source for others to use.

6.1 Modularity
Modularity gives freedom to developers to include or otherwise exclude pieces of code
on the fly without having to worry about removing or adding them manually. In our
project, we handle that so far by importing only needed files. On the other hand, GUI
game builder would make it a drag-drop functionality to add new components to the
system which will simplify the workflow for games.

6.1.1 Dependency Injection And Inversion of Control

IoC is the general concept where control of flow is Inverted from client code to framework,
which “Does something for the client”. SL (Service Locator) and DI (Dependency
Injection) are two design patterns stem off from IoC.[Wiz17]. Using the following we
will avoid having to import files manually. the snippet below is how angular handles the
imports in 36

Figure 36. Angular

6.1.2 Game Builder

The game builder would allow a drag and drop functionality which is by itself superior.
However, another major point of using it is to simplify the process of building blueprints
and importing files. In the case of big games, blueprints will grow bigger and imports

55

will grow as well, the presence of a game builder would minimize the effort in import
and managing them.

6.2 New Features
There are still some features not implemented yet but would make a big difference for
the engine the most two important ones are using XAML in favor of JSON and making
VFL Unobtrusive

6.2.1 XAML

JSON is meant to be used for data rather than the presentation of data. blueprints currently
are in JSON but having them in XAML would make it more understandable to read the
blueprint and in the future, game builder along with XAML would make a blueprint
much easier and simpler as then it would look the same as HTML. Since javascript
developers are not friends with GUI it should be kept in mind that the game builder will
only be a middleware between the developer and the game hence a developer can make
his game without the need of a game builder at all.

6.2.2 Unobtrusive VFL

VFL is a key point for lay outing games, right now we are using it directly in the blueprint
by composing the VFL over the blueprint. However, if VFL was separated into its own
layout file and then only referenced by graphical nodes we can share properties between
different nodes same way for CSS classes.

6.3 Open Source
Open sourcing a project might not be a good idea just after it starts working, people might
have the bad impression about the future of the project. That is why it is better to wait
until the project is completely stable and then release publicly. Moreover, documentation
is the only way for new comers to understand how would they use the project.

6.3.1 Non-Disclosure

Once the project is ready and stable it should be open sourced. Meanwhile, it is better to
keep it private until the point where there is no risk in realizing it. The risk includes both
developers not being able to use it after some time and the owner not being able to fix
reported issues.

56

6.3.2 Documentation

Documentation is the only channel of communication between an owner and a user.
Typescript alone, unlike ECMAScript, allows IntelliSense which is a vital part of docu-
menting code. Adding to that, YUML could be used to generate diagrams small in size.
Last but not least there are plenty of libraries that automatically generates a website out
of comments, for example, Pixi is using it for their official documentation.

57

References
[AS] Kathryn Huff Anthony Scopatz. Effective computation in physics. O’Reilly

Media.

[Bea] Vangie Beal. Tweening. http://www.webopedia.com/TERM/T/tweening.
html.

[Chi] Laureline Chiapello. Formalizing casual games: A study based on game
designers’ professional knowledge. DiGRA Conference. 2013.

[Cla] Scott Clark. Web-based mobile apps of the fu-
ture using html 5, css and javascript. http://
www.htmlgoodies.com/beyond/article.php/3893911/
Web-based-Mobile-Apps-of-the-Future-Using-HTML-5-CSS-and-JavaScript.
htm.

[Cla17] Clay. Which html5 game engine is right for you? https://html5gameengine.
com/tag/webgl, 2017.

[Con17] Josh Constine. Facebook messenger rolls out instant games worldwide. https:
//techcrunch.com/2017/05/02/messenger-games/, 2017.

[Cuo] Jerry Cuomo. Anthony scopatz, kathryn huff. https://www.ibm.
com/developerworks/community/blogs/gcuomo/entry/javascript_
everywhere_and_the_three_amigos?lang=en.

[Dak16] Dakota. Pixi review. https://html5gameengine.com/details/13/
pixi-js, November 2016.

[Dig] GoodBoy Digital. Pixijs. https://github.com/pixijs/pixi.js?utm_
source=html5weekly#what-to-use-pixijs-for-and-when-to-use-it.

[Gam] Reskin Games. What is reskinning? http://www.reskingames.com/.

[Goo] Google. Extending devtools. https://developer.chrome.com/
extensions/devtools.

[Ker] Brian Kernighan. Software tools,. Addison-Wesley.

[Mic] Microsoft. Introduction to reactivex. http://reactivex.io/intro.html.

[Mol12] Willian Molinari. What is the game loop?
https://gamedevelopment.tutsplus.com/articles/
gamedev-glossary-what-is-the-game-loop--gamedev-2469, November
2012.

58

http://www.webopedia.com/TERM/T/tweening.html
http://www.webopedia.com/TERM/T/tweening.html
http://www.htmlgoodies.com/beyond/article.php/3893911/Web-based-Mobile-Apps-of-the-Future-Using-HTML-5-CSS-and-JavaScript.htm
http://www.htmlgoodies.com/beyond/article.php/3893911/Web-based-Mobile-Apps-of-the-Future-Using-HTML-5-CSS-and-JavaScript.htm
http://www.htmlgoodies.com/beyond/article.php/3893911/Web-based-Mobile-Apps-of-the-Future-Using-HTML-5-CSS-and-JavaScript.htm
http://www.htmlgoodies.com/beyond/article.php/3893911/Web-based-Mobile-Apps-of-the-Future-Using-HTML-5-CSS-and-JavaScript.htm
https://html5gameengine.com/tag/webgl
https://html5gameengine.com/tag/webgl
https://techcrunch.com/2017/05/02/messenger-games/
https://techcrunch.com/2017/05/02/messenger-games/
https://www.ibm.com/developerworks/community/blogs/gcuomo/entry/javascript_everywhere_and_the_three_amigos?lang=en
https://www.ibm.com/developerworks/community/blogs/gcuomo/entry/javascript_everywhere_and_the_three_amigos?lang=en
https://www.ibm.com/developerworks/community/blogs/gcuomo/entry/javascript_everywhere_and_the_three_amigos?lang=en
https://html5gameengine.com/details/13/pixi-js
https://html5gameengine.com/details/13/pixi-js
https://github.com/pixijs/pixi.js?utm_source=html5weekly#what-to-use-pixijs-for-and-when-to-use-it
https://github.com/pixijs/pixi.js?utm_source=html5weekly#what-to-use-pixijs-for-and-when-to-use-it
http://www.reskingames.com/
https://developer.chrome.com/extensions/devtools
https://developer.chrome.com/extensions/devtools
http://reactivex.io/intro.html
https://gamedevelopment.tutsplus.com/articles/gamedev-glossary-what-is-the-game-loop--gamedev-2469
https://gamedevelopment.tutsplus.com/articles/gamedev-glossary-what-is-the-game-loop--gamedev-2469

[Mos] Hanspeter Mossenbock. Twin - a design pattern for modelling multiple inheri-
tance. University of Linz, Institute for System Software.

[Rut] Hein Rutjes. Autolayoutjs. https://github.com/IjzerenHein/
autolayout.js#getting-started.

[Shv] Alexander Shvets. Design patterns. https://sourcemaking.com/design_
patterns.

[War] Jeff Ward. What is a game engine. http://www.gamecareerguide.com/
features/529/what_is_a_game.

[Wik] WikiDots. What’s an entity system? http://entity-systems.wikidot.
com/.

[Wiz17] Grid Wizard. Ioc vs di vs sl. https://gridwizard.wordpress.com/2014/
05/28/dependency-injection-vs-service-locator, 2017.

59

https://github.com/IjzerenHein/autolayout.js#getting-started
https://github.com/IjzerenHein/autolayout.js#getting-started
https://sourcemaking.com/design_patterns
https://sourcemaking.com/design_patterns
http://www.gamecareerguide.com/features/529/what_is_a_game
http://www.gamecareerguide.com/features/529/what_is_a_game
http://entity-systems.wikidot.com/
http://entity-systems.wikidot.com/
https://gridwizard.wordpress.com/2014/05/28/dependency-injection-vs-service-locator
https://gridwizard.wordpress.com/2014/05/28/dependency-injection-vs-service-locator

Appendix

I. Glossary
Casual Games : Casual games can have any type of gameplay, and fit in any genre.

They are typically distinguished by their simple rules and lack of commitment[Chi].
Instant Games : HTML5 cross-platform gaming experience, on Messenger and

Facebook News Feed for both mobile and web. This new games experience allows people
to easily discover, share, and play games without having to install new apps[Con17].

Tween : Short for in-between, the process of generating intermediate frames between
two images to give the appearance that the first image evolves smoothly into the second
image[Bea].

Blueprint : JSON format file used to structure the content of the game in a readable
way to simplify the process of creating the scene graph via code.

Cascading Style Sheets (CSS) : Style sheet language used for describing the pre-
sentation of a document written in a markup language. Although most often used to set
the visual style of web pages and user interfaces written in HTML and XHTML, the
language can be applied to any XML document[Cla].

60

II. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Mohamad Qaddura,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term
of validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

of my thesis

WebGladiator Game Engine For The Web
supervised by Margus Luik

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 13.08.2017

61

	Introduction
	Game Engine Architecture
	Graphics
	Sounds
	Physics and Tweens
	HID
	Resource Management
	Communication

	Available Technologies
	Programming Language
	 Ecosystem

	Added Technologies
	Chrome Extension
	Dev-Hubs

	Methods
	System Design And Architecture
	Entiy/Component System
	Managing Life Cycle of Entities
	Integral Graphics and Layout
	Managing External Libraries
	System Architecture
	Messaging Buses
	Solidarity Using Observer Pattern

	Web Approach
	Blueprints
	Layout with VFL
	JavaScript

	Reusability
	Reskinning
	Reusable Entities
	Registry

	Tooling
	Chrome DevTool

	Results
	Walk Through
	Registering Systems
	Game Blueprint
	Scene Blueprint
	Logic
	Scene Management
	Playing The Game

	Web Tailored Engine
	Web Technologies

	Agile Development
	Easy Game Setup

	Organized Work flow
	Coherent Engine
	Readability

	Discussion
	Comparison
	List of Engines
	Comparison between available engines
	WebGLadiator

	Decision Making
	Did I reinvent the Wheel?

	Critics
	Competing Other Engines
	Software Design Patterns for Games
	Adoption Risk

	Conclusion
	Future Work
	Modularity
	Dependency Injection And Inversion of Control
	Game Builder

	New Features
	XAML
	Unobtrusive VFL

	Open Source
	Non-Disclosure
	Documentation

	References
	Appendix
	I. Glossary
	II. Licence

