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Abstract 

Prosthetic robotics is one of the most rapidly developing fields of robotics and providing 

solutions to many people around the world. Hand amputees can greatly benefit from prosthetic 

arms and can perform many daily tasks that would not be true if not for prosthetic arm. Despite 

the availability of commercial arms in today’s world, the high cost of such products makes it 

unattainable for many people and the need for cost-effective solutions arises more and more. 

3D printing technology has made it available to get a prosthetic arm at lower cost. However, 

one of the main challenges in this application is the reconstruction of the intended motion of 

the fingers. A new approach has been developed to enable for predicting the intended motion 

using just a camera and a combination of image processing and machine learning techniques. 

However, this setup implies a fixed position of the arm which is not practical. In this project, a 

more robust setup is designed and tested to enable for the free motion of the arm as a proof of 

concept. Instead of using the AR tags coordinates relative to the camera frame, the 

transformation between each tag relative to other tags is used. LDA, Decision Trees and SVM 

are used for classification and their performance is compared.  

CERCS: T111 Imaging, image processing; T125 Automation, robotics, control engineering; P176 

Artificial intelligence  

Keywords: non-invasive rehabilitation, prosthetic robotics, April tags, image processing, machine 

learning  
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1 Introduction 

According to the World Health Organization (WHO), there are over a billion people who have 

physical disability in our world  [1]. The significant cost of disability is not easy to quantify but it 

includes social and economic sides which raises the need of rehabilitation services.  Limb loss is 

one of the disability forms that has such a high need of rehabilitation and its prevalence rates in 

various countries has been estimated in various works. In the USA, there were around 41,000 

upper limb amputees in 2005 [2] while in UK there are approximately 5200 cases reported every 

year [3].   

Hand loss is a severe experience and leads to considerable environment inaccessibility and 

prosthetics can greatly improve the quality of life for hand amputees. However, such a need for 

prostheses is not met in many cases especially in developing countries. Many barriers face the 

existence and development of rehabilitation and cost is the most challenging one. Commercial 

upper limb prostheses can cost between $4000 to $10000 for body-powered ones and $25000 

to $75000 for externally-powered ones in the USA for example [4].   

Based on the WHO and the International Society for Prosthetics and Orthotics statistics, disabled 

person in need of prostheses or orthotics are about 0.5% of developing countries population and 

the available services are inadequate. Waiting times for a service or device also can extend to 

months, especially in rural areas. Beside the high cost, the lack of prosthetics professionals 

contributes to the wide shortage in these services [1] [5].  In many publications, especially ones 

that focus on healthcare policies, there are suggested recommendations to tackle the unmet 

needs for amputees. Recommendations include local manufacturing of devices, adequate 

training for using them and the availability of enough professionals to maintain devices and 

provide support when needed [1] [6] [7]. For example, some countries encourage the local 

production of assistive devices or importing the components and assembling locally by offering 

low interest loans for enterprises that work on aids for disabled persons and others provide 

exemption from taxes like Viet Nam [1]. Therefore, providing a cost-effective solution that could 

be produced easily and with minimum required operational knowledge is highly demanded.  

Using 3D printing technology has offered a promising solution that is easy and at a very low cost 

comparing to other alternatives. In [8] there is a review of available 3D printed hand prostheses. 

Hand prosthetics in general are either passive (mainly used as a decorative prosthetic) or can be 

actuated to provide some motion. For the latter type, the motion control can be done by body 

through shoulder or elbow for instance or can be externally controlled by using electric motors 

or pressurized air. 

Providing a method to detect the amputee’s intention for a certain finger motion can greatly 

facilitate controlling the prosthetic hand and provide intuitive usage of the device. There are 

multiple methods to achieve this and the method this thesis is built on uses computer vision and 

called Optical Myography (OMG). Despite the promising results of OMG, it has been 

implemented only with the arm fixed in a particular position and not allowed to move. In this 

work, the OMG method is extended to allow for the free placement of camera on the arm and 
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free movement of the arm. It is achieved by utilizing the relative coordinates of AR tags placed 

on the forearm and machine learning. 

In section 1 of this thesis, the topic is introduced. Section 2 provides a background for hand 

prosthetics and the methods used for reconstructing the intended fingers movement. Section 3 

gives an overview of the OMG method and the possible extension of it. Section 4 explains the 

proposed method starting from testing the idea to selecting the best camera orientation and 

tags layout. Classification using machine learning is then introduced and classification using three 

algorithms is compared. Section 5 provides the results and conclusions as well as further ongoing 

work.  
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2 Background 

Providing cost-effective solutions for prosthetic arms is attracting more interest because of the 

rapid development of several related technologies, e.g., 3D printing.  For example, e-NABLE [9] 

is an open-source community offering many designs for prosthetics for free download and 3D 

printing (Figure 1). Being open-source, their designs have been used extensively not only by 

people in need, but also by students and researchers in various projects. A mechanical design 

course project at Washington University [10] has utilized an open-source design to provide better 

performance in grips whereas in Yuan Ze university, they helped a person with a 3D printed arm 

to play guitar [11].  

 
Figure 1. Raptor Reloaded hand by e-NABLE [9]. 

Despite the significant cost reduction related to using 3D printing technologies in manufacturing 

and maintenance, identifying the intended fingers motion is still a challenge. This identification 

helps to achieve intuitive grasping. There are several options for estimating the intended finger 

motions: electromyography, pressure sensors, computer vision. 

One of the more widely used approaches for estimating intended finger motion is 

Electromyography (EMG) which is using the muscles electrical activity in the arm to identify the 

required movement for fingers. By adopting different machine learning algorithms, researchers 

have been able to implement real-time systems that can predict and provide intended motion. 

In [12], Support Vector Machines were used to achieve hand control with a four-finger robotics 

hand shown in Figure 2 whereas in [13], they used 32 electrodes placed on the forearm and 

applied Neural Networks to detect the intended fingers pose for providing dexterous motion. 

Using force sensors can also be applied for predicting the intended motion [14] [15]. This kind of 

sensors utilizes the use of the Force Sensitive Resistor (FSR), which changes resistance depending 

on how much pressure applied to its sensing area. FSR can thus be used for sensing the pressure 

distribution on the forearm. Such a pressure distribution can be mapped to specific fingers pose 

using machine learning.  
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Figure 2. Four-Finger hand controlled by EMG [12]. 

An alternative to detect intended movement is the application of computer vision. In [16], a 

group of researchers have used a low-cost web camera with a computer to sense the posture of 

an arm (Figure 3). The project was mainly targeting stroke patients to facilitate reach and grasp 

exercise as a stroke rehabilitation system which is typically based on sending stimulating 

electrical signals to the forearm.  These signals vary based on intended motion and an input is 

required to send the correct signals. So, they decided to use the elbow angle as the input and 

implemented a computer vision based system. They used color markers placed on 3 positions in 

the arm as shown in Figure 3 to sense the joint angles in the arm. In their approach, they used 

only a single 2D camera and then extracted the 3D information of positions. To make it more 

accurate and less sensitive to noise, they built a motion model for the arm that contains the 

patterns associated with arm positions in different movements. They then incorporate the model 

with the observed data from captured video and utilized a prediction and correction procedure. 

They could obtain an average accuracy of 91% and they also compared their approach to a 

commercial goniometer with an accuracy from 83% to 99% depending on angles. 
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Figure 3. Illustration for the arm posture sensing system [16]. 
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3 Previous Work 

An approach called Optical Myograph (OMG) was proposed by a research group at the DLR 

(German Aerospace Center) for the reconstruction of intended fingers movement for a hand 

prosthetic application [17]. In OMG, computer vision and machine learning are used to detect 

surface deformations of the forearm and map them to fingers movement. The underlying 

principle of OMG is that the changes in the muscles activity of the arm related to fingers 

movements can be visually tracked because of the induced changes in forearm. In the proof-of-

concept experimental setup (Figure 4) the forearm is strapped to a rig using a couple of bands. 

AR tags [18] are used as fiducial markers to track the changes of the forearm surface in different 

fingers poses.  

 
Figure 4. Illustration for the OMG experimental setup [17] 

AR tags were printed and glued to the surface of the forearm and the person was asked to move 

their fingers based on a visual stimulus on the screen. The poses (position and orientation) of the 

10 AR tags were tracked and saved as a dataset for the machine learning. For each AR tag, the 

corresponding translation is recorded in terms of both linear (x, y, z) and angular (yaw, pitch, roll) 

variables. Next step is filtering the signal and centering it around zero. Using the filtered data, 

two machine learning approaches were used (Ridge Regression (RR) as a linear one and Ridge 

Regression with Random Fourier Features (RRF) as a non-linear one).  To test the approach, a 

combination of cross validation methods was used; the dataset was split into folds and the 

hyperparameters for the regression models were calculated.  

Four different finger poses (thumb flexion, thumb rotation, index flexion, and combo flexion) 

were recorded for the machine learning part, and the detection of a given pose was then double-

checked. Normalized Root Mean Square Error (NRMSE) is used to visualize the results and check 

for performance of the system in each case. the performance of OMG is compered to alternative 

methods, e.g., EMG, FSR, and Ultrasound (US) in Figure 5. Also shown the difference between 
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using RR and RFF models. The main conclusion that can be drawn for the comparison is that OMG 

stands well as an alternative method as the margins of errors are similar to other methods. 

 
Figure 5. Comparing OMG with 2 different regression models with other existing methods [17] 

In an enhancement to this approach, convolutional neural network and plain rectangular markers 

instead of AR tags were used [19]. In order to make the system more portable the camera was 

now attached to the arm instead of the fixed rig. OpenCV was used for image processing 

including the segmentation of the sticker, filtering the image, and applying morphological 

operations. First a median filter is applied to make the image smoother. Transforming the RGB 

channels into Log-Opponent-Chromaticity ones is done prior to segmentation. Application of 

morphological operations is utilized to compensate for the sticker’s boundaries merging with 

forearm or sleeve. Figure 6 shows the experimental setup and segmentation process output.  

              
(a)     (b) 

Figure 6. Enhanced OMG setup (a) and output of segmentation process (b) [19] 
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In order to do the classification of fingers poses, a convolutional neural network consisting of 2 

layers, each having 16 filters was adopted. Here, 5 finger poses were fed for classification (same 

previous 4 plus the rest one) and accuracy level % is presented for each case of fingers in a box 

plot shown in Figure 7. 

 
Figure 7. Enhanced OMG classification accuracy [19]. 

Results from OMG experiments show it can be an alternative method for predicting fingers pose. 

Classification of poses worked with a comparable accuracy to other methods. Using a simple 

machine learning method makes it computationally effective. Being robust to optical challenges 

(changes in contrast or brightness) is also an added advantage. The major breakthrough of this 

method is that the needed hardware for it is simply a camera and a computer which is widely 

available. However, in the described approaches, the arm was assumed to be in a fixed place 

during the experiments which forces the person not to move. Moreover, straps on the arm 

constrained it on the designed rig. In its next enhancement where the camera was moved to the 

arm, more robustness was added to the approach. Despite the flexibility offered by the 

placement of camera on the arm, the arm is still forced to be fixed on a plain surface.  
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4 Methodology 

4.1 Problem definition and the proposed solution 

In the OMG approach, the poses of AR tags relative to the camera frame were used for 

reconstructing the fingers poses. This approach works well with the assumption that the arm is 

always fixed in space, relative to the camera. However, this would not be valid if the arm is 

allowed to move freely, and a different method is needed. The proposed solution is using the 

coordinates of the tags, relative to each other. The coordinates are then fed to a machine 

learning algorithm to map the coordinates changes to fingers poses. 

Initially AR tags were printed on a plain sheet of paper and pictures were taken of it from 

different angels to check for the accuracy of relative coordinates acquisition (Figure 12(a)). 

Smaller tags were then tested similarly. Tags were then placed on the forearm (Figure 15) and 

pictures were taken while the camera is in different orientations and changes in coordinates with 

fingers poses were analyzed to seek the best setup. With the camera placed on the arm, a video 

was captured of the forearm in different fingers poses and then was split into images that were 

fed to a software for detecting and localizing the AR tags. Based on this set of images, a time-vs-

coordinates plot was made, and a pattern was observed. The pattern is analyzed by three 

machine learning algorithms for classification. Figure 8 summarizes the methodology. 

 
Figure 8. Flowchart for the methodology 

Check relative 

coordinates accuracy Find best camera setup 

Video of forearm in different angels  

Image 1 Image 2 Image n 

Classification using machine learning 

… 

Comparing machine learning algorithms performance 

AR tags coordinates 1 AR tags coordinates 2 AR tags coordinates n … 
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4.2 AR tags detection and relative coordinates  

The available code implementation of AR tags was used for detecting and localizing the tags [20]. 

Figure 9 shows interaction with a sheet of paper having some AR tags printed on it where tags 

are detected and identified. The output also includes poses of all detected tags and was saved in 

a text file. The details of detecting and identifying tags are described in [18]. 

 
Figure 9. AR tags detected and identified by their id (21 to 28) 

The mathematical relationship between coordinates of a point in an arbitrary 3D coordinate 

system (known as object or world coordinate system) and the camera 3D coordinate system 

(Figure 10) can be described by the following equation: 

[
𝑋
𝑌
𝑍

] = 𝑅 [
𝑊
𝑉
𝑈

] + 𝑡 = [𝑅 | 𝑡] [

𝑊
𝑉
𝑈
1

] = [

𝑟00

𝑟10

𝑟20

𝑟01

𝑟11

𝑟21

𝑟02

𝑟12

𝑟22

𝑡𝑥

𝑡𝑦

𝑡𝑧

] [

𝑊
𝑉
𝑈
1

]                (1) 

(X, Y, Z) describes the point in camera coordinate system and (W, V, U) in the world coordinate 

one. R is the rotation matrix and t is the translation vector between the two coordinate systems 

[21] . 

The image is formed on an imaging surface where the image coordinate system is located and 

it’s a 2D system (Figure 10). The transformation between the 3D camera coordinate system and 

the 2D image plane is given by the following equation: 
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[
𝑥
𝑦
1

] = 𝑠 [
𝑓𝑥

0
0

0
𝑓𝑦

0

𝑐𝑥

𝑐𝑦

1
] [

𝑋
𝑌
𝑍

]                     (2) 

(x,y) is the point coordinates in the image 2D plane, fx and fy represent the focal length of the 

camera and cx and cy compensate for the offset of the camera optical center and image plane 

center. Distortion effects are ignored here.  s is a scaling factor [21].   

 
Figure 10. Three coordinate systems (world, camera and image) 

Since the world coordinate system is arbitrary, it can be selected to have its origin at AR tag’s 

center (Figure 11). Consequently, the four points defining an AR tag can have the coordinates in 

world systems of: (-h, -h,0), (-h, h,0), (h, h,0) and (h, -h,0) where h is half the tag size. 

Given the (W, V, U) and the camera properties (fx, fy, cx, cy) combined with the detected four 

points locations on the image plane, equations (1) and (2) can be solved for the 3D pose of the 

tag using the Linear Direct Transform method [22]. There is a function to solve this problem 

inside the OpenCV library, named solvePnP and it was used in this work [23].  

In this work, the interest is in the transformation of tags relative to each other and not to the 

camera. Consequently, a relative transformation between any two tags is expressed in terms of 

three directions and will be denoted as X, Y, Z. This is not to be confused with camera coordinates. 

It’s used instead of W, V, U to give more intuition. 
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Figure 11. World Coordinate System centered on an AR tag 

The code in [20] was modified to compute the tags pose relative to each other. With the [R|t] 

matrix computed for two tags (will be named M for short), their pose relative to each other can 

be calculated by following the same procedure. To achieve this, a matrix is needed that makes 

the transformation between the two tags.  

The two tags are assumed to have same size and therefore, their 4 points have same coordinates 

in world coordinate system. Assuming the coordinates vector in world coordinate system is P, 

then P1 = M1 P and P2 = M2 P where M1 and M2 are transformation matrices for the two tags, P1 

and P2 are coordinates vectors in camera coordinate system. 

If the required transformation matrix between the two tags coordinate systems is called Mr, then 

Mr P1 = P2 and it follows that: 

𝑀𝑟  𝑀1 𝑃 = 𝑀2 𝑃  ⇒  ∴ 𝑀𝑟𝑀1 = 𝑀2      ∴ 𝑀𝑟 = 𝑀2
−1 𝑀1 

The accuracy and precision for the software was tested by capturing photos of the sheet of paper 

from different angels. Figure 12 (a) shows the printed tags in 4 different orientations (numbered 

1 to 4) and Figure 12 (b) shows the the measured value for the relative transformation between 

tags 21 and 28 in x direction in each orientation. For comparison, the true value is added to the 
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graph. Orientation was changed to allow for translational and angular changes. Results show an 

error range of 2.9% to 10.8%. 

 
(a) 

 
(b) 

Figure 12. AR tags on plain sheet of paper in different orientation (a) and relative 

transformation between 2 tags (21 and 28) in x direction (b) 
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The low value of the error suggests the practicality of the idea. However, change of coordinates 

in different fingers poses is expected to be small and if the error gets high, the system may be 

confused with another pose than the true one. Therefore, the system must be designed carefully, 

and the range of error should be checked against values related to poses changes.  

The code was used as the main software for detection of AR tags and computing the relative 

coordinates. 

4.3 Arm and forehand muscles 

The movement of fingers and wrist is a complicated type of motion because of the various 

degrees of freedom involved. The finger motion is controlled by muscles located in the forearm. 

Attached to the muscles are the tendons which are fibrous cords that also attach to bones. As 

the muscles contracts, the tendons move the bones and joints they cross. Figure 13 illustrates 

how the flexor pollicis longus muscle (in bold) allows the bending of thumb tip [24]. The muscles 

actions create clear and distinguishable deformations in the forearm surface which can be 

recognized easily. 

 
Figure 13. Forearm muscles [24] 
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4.4 Experiments 

In the experiments, a web camera attached to a computer was used. Video was captured using 

VLC software and then divided into shorter videos, each for a different camera orientation. Each 

video was then split into images. These images represent the database used for machine 

learning.  

The camera (Figure 14) is Microsoft LifeCam HD-3000 which is a very low cost (~30 €) device 

offering reasonable video quality and rate (1280 x 750 pixels at 30 fps). The camera was 

calibrated for obtaining its optical properties. Calibration was done using checkerboard and an 

in-house software at DLR. 

 
Figure 14.  Camera used  

4.5 Tags on arm 

An array of AR tags was then placed on the forearm as shown in Figure 15 and the camera was 

used to acquire pictures for it while held in hand and in different angels. Here two fingers poses 

were captured; stretching the five fingers and fisting them, named as stretch and fist respectively 

(numbered as (1) and (2) respectively in Figure 15). Camera orientation was changed four times 

(a – d). 
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Figure 15. AR tags on forearm in different angels while fingers in 2 different poses 

These images were fed to the software and relative coordinates between detected tags were 

obtained. Figure 16 shows coordinates changes with the fingers pose for relative transformation 

between two tags. On x axis is the camera orientation (a – d) and y axis gives the value of 

coordinate in both stretch and fist cases. Despite the difference in camera angel between a, b 

and d, a pattern is observed, and we can have a good threshold value to differentiate between 

the two poses. However, in the case of orientation c, values were not consistent.  

Figure 17 shows another example of coordinates change for the setup of Figure 15. Using another 

combination of tags could improve the results for classification for orientation c. The challenging 

nature of classification in case of orientation c can be explained by looking into figrue15-c which 

shows that not all tags can be easily detected, if compared to other orientations.  
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Figure 16. Relative coordinates between tags in two fingers poses and 4 camera angels 

 
Figure 17. Relative coordinates between tags in two fingers poses and 4 camera angels 
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4.6 Camera Setup 

The camera was placed on a rig and pictures were taken of the forearm in different fingers poses. 

Experiment was repeated while the camera was in different orientations and comparison was 

made between changes in coordinates with orientation to poses. Initially, four setups were 

considered during this work as illustrated in Figure 18. However, the second and third setups 

were omitted because they do not give much freedom for the person. 

 
Figure 18. Four camera setups 

The two selected setups were tested, and multiple pictures were taken for the forearm to 

compensate for any possible noise. Images were fed to the software and coordinates were 

calculated. Principal Components Analysis (PCA) was applied to remove outliers and find a 

statistical mean. PCA is a statistical procedure which is basically based on finding the principal 

components, the first of which has the largest variation in data [25]. Figure 19 illustrates it. 

For comparison, video was captured for 2 fingers poses, fist and stretch, while the camera was 

in two orientations. Obtained results for 2 tags relative transformation are shown as a graph, one 

using x coordinate (Figure 20-a) and the other using z (Figure 20-b). The specific setup is shown 

on x axis with the number beside the name refers to the first or second orientation. For example, 

arm1 and arm2 mean the camera was on arm and in orientation 1 and 2, respectively. In the case 

of camera on arm, it is clear that the 2 poses can still be differentiated while the camera is in 
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different orientations. Moreover, the difference in values between the two poses is the same in 

the different orientations. However, when the camera is on rig the pattern is not consistent. This 

stems from the inability to obtain a threshold that applies for both rig1 and rig2. Moreover, the 

difference between stretch and fist values is changing between rig1 and rig2. 

 
Figure 19. Relative coordinates between tags after PCA 

 
(a) 

 
(b) 

Figure 20. Changes of coordinates in 2 poses with different camera setups and orientations 
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4.7 Layout of tags 

The layout of tags over the forearm was changed to seek a better one. Two layouts are shown in 

Figure 21. The layout in Figure 21(b) was preferred over the one in Figure 21(a) because it had 

less rate of not detecting the upper tags near the hand and it provides more information about 

the forearm dynamics.  

 
(a) 

 
(b) 

 

Figure 21. Two tags layouts 

Different tags were used during the changes of testing and/or changing algorithms or 

experiments. So, to avoid the confusion with tags identification by their id, numbering scheme 

was adopted. The tag in the middle is titled the master tag and assigned the number 0 while 

other tags are numbered from 1 to 8 as shown in Figure 22. 

Moreover, the relative transformation between any two tags will be named as Tlmn where l and 

m are the tags numbers and n is direction (x, y or z). For example, to refer to the relative 

translation between tag 0 and 1 in x direction, the term T01x is used. 
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Figure 22. Tags numbering 

4.8 Poses identification  

Four hand configurations (Figure 23) were added as a further complication for the identification. 

Images were taken of every pose and transformations were computed. It was noted that some 

coordinates gave very clear distinction while others were more challenging.  

 
Figure 23. Four fingers poses  

T02z is an example for a distinctive feature of the four poses. Outliers and transition data were 

removed from results and plotted (Figure 24). An average value per each pose can be found and 

learned for identification.  
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Figure 24. T02z changes in four fingers poses  

4.9 Initial pattern 

In searching for a pattern, a video was captured for the forearm while doing three poses (two 

grasps - fist and pinch -  and stretch) repeatedly and the camera orientation was changed in the 

middle of the video. Video was then split into frames to be analyzed for tags identification and 

localization. Similarly, some features were better than others. It was noted that T02z also 

provided a better pattern than other ones. Figure 25 shows the three poses. 

Figure 26 (a) shows raw data collected from all frames that shows a repetitive pattern over the 

entire video. Filtered data is shown in (b) and the pattern is obvious. The lighter colored points 

refer to the first camera orientation while the darker ones refer to the second orientation. 



27 

 

 
Figure 25. Three poses (two grasps and stretch)  

 

 
(a)  
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(b) 

Figure 26.  T02z in two grasps and stretch, all values (a) and filtered (b) 

4.10 Machine learning 

For classification using machine learning, video was captured of the three poses (pinch, stretch 

and fist) from three different camera orientations. The video was then split into images and 

analyzed by AR tags software to detect and localize the tags. Relative transformations between 

tags are used as features to create the training model. Three different algorithms were tested 

for classification. 

4.10.1 Database 

Different poses were recorded as videos and split into images. The resulting database contains 

approximately 10,000 images. It is divided into subsets, each for a different combination of 

poses. Moreover, for the two grasps and stretch poses, two independently captured videos were 

split into two sets of images, each of 2000 images. 
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4.10.2 Filtration 

Various noise sources can result in odd data and not detecting one or more tags in different 

images. This is particularly happening in the case of occlusion. Therefore, some filtration is 

needed. The output of the software is saved in a text file and contains a list of all detected tags 

with their relative transformations. A simple regular expression [26] was used to check if there 

are any tag(s) that are not detected. In the filtration step, if a certain tag is not detected, its 

coordinates are replaced with zeros for that image. Prior to the machine learning step, zeros and 

outliers are replaced with previous values. This could be achieved in a real-time system by 

providing last know coordinates of a tag if it is not detected.  

4.10.3 Linear Discriminant Analysis (LDA) 

Given a dataset, the LDA tries to find the directions that could provide best separation between 

the classes of data. As illustrated by Figure 27, one direction could provide a very good separation 

between classes if data is projected along it (direction 1) while another may not be a good one 

(direction 2). LDA helps in identifying such direction(s). Even though this is illustrated for two-

dimensional data, it can be extended for higher dimensions. Given n vectors (representing n 

features) for the data, each is of d-dimensions as input, mean vectors for each class are 

calculated and scatter matrices, both within class and between classes are computed. 

Eigenvectors and eigenvalues are found for these to obtain the direction that gives maximum 

distance between classes and minimum one within the class. Finally, original data is projected 

along these directions. [27] 

 
Figure 27.  Illustration for LDA 
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Initially, all or most tags transformations were used as features. However, poor results were 

obtained (appendix 7.1). This is probably because not all the transformations can be linearly 

separated. Therefore, three transformations (z coordinate) were selected; tag 0 to 1, tag 0 to 2 

and tag 0 to 3 because they showed best pattern among others. With these 3 features, 

classification was possible and accuracy level is around 92%. Figure 28 shows the classification 

results which indicates that both stretch, and fist classes can be easily classified using this 

method.  

 
(a) 
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(b) 

Figure 28.  LDA classification, with all features (a) and with only 3 (b) 

4.10.4 Decision Trees 

Decision trees can be used as a statistical method for predicting a class value based on input 

variables. The tree is composed of nodes, branches and leaves. The nodes have the input 

variables and based on their value, a branch is selected. At the end of the branch there is another 

node, which can either have another variable for decision or carry a class label and in that case, 

it is called a leaf [28]. Figure 29(a) shows part of the tree structure representing the model for 

classifying the fingers poses. 
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(a) 

 
(b) 

Figure 29.  Decision Trees structure (a) and classification results (b) 

Figure 29(b) shows classification results using decision trees and utilizing all the features. 

Accuracy level was around 97% and it outperformed the LDA.  
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4.10.5 Support Vector Machines (SVM) 

Given data in 2D space as shown in Figure 30 where each axis represents a certain feature, SVM 

tries to find a separating line between these points representing two classes. The algorithm tries 

to find the best line that could separate the data (Figure 30). Working in higher dimensions 

means instead of finding a line, finding a hyperplane. In some cases, data points can not be 

linearly separated. However, if projected on a higher dimension function (kernel function), linear 

separation is possible. [29] 

 
Figure 30.  SVM Illustration 

All features were used for SVM classification and accuracy level was, in average, 98%. By 

changing the kernel function to quadratic and cubic, even better results were obtained. Figure 

31 shows classification results when using a cubic kernel. 
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Figure 31.  SVM classification using cubic kernel 

4.10.6 Validation 

When using statistical methods for predicting values for new data, a validation method must be 

used to ensure that the model fits the data well. K-fold cross-validation is a method used for this 

where the data is randomly divided to k subsamples, equal in size. Initially, one subsample is 

used for testing the model and the other k-1 subsamples are used for training. Then, the process 

is repeated k times to check for all subsamples [30]. In this work, 5-fold and 10-fold cross 

validation were used to check for the model.  
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5 Results and Conclusions 

Using relative coordinates of AR tags to allow the application of OMG with the free camera setup 

was tested in this work and proposed as a solution for enhancing OMG. The idea was tested using 

big markers on a sheet of paper and then on the forearm. When used on the forearm, smaller 

tags were needed, and it resulted in reduced accuracy of detection. However, smaller tags allow 

more features of the forearm to be analyzed. 

5.1 Tags relative transformations 

For each image, and in the case of detecting all tags, 28 relative coordinates are computed for 

the tags. As mentioned earlier, some coordinates provide good potential for linear separation 

while others are not. Moreover, some coordinates are more robust than others with camera 

orientation changes. Figures 32, 33 and 34 show some examples for this using T01x, T01y and 

T01z. On the x axis, the number of image is marked from 1 to 1500 where each set of 500 images 

represent an orientation. An ideal signal would be a periodic signal with same three distinctive 

values that correspond to three poses. In Figure 32, T01x signal has a repetitive pattern, but with 

an offset.  The y-transformation in Figure 33 had a worse offset that completely gives a different 

range of numbers in different orientations. In Figure 34, T01z gives the most robust one among 

them. 

 
Figure 32.  T01x 
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Figure 33.  T01y  

 
Figure 34.  T01z  
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5.2 Machine learning results 

Different number of features were tested against three machine learning algorithms. For the 

LDA, T02z was essential to obtain a reasonable accuracy. When combined with T03z as only two 

features, an accuracy of 90% was obtained. Slightly better accuracy (92%) was obtained with the 

addition of T01z and that was the best result with that algorithm. Any addition of features 

resulted in decreasing the accuracy. Moreover, in the case of having all transformations except 

tags 0-1 and 0-2, the accuracy level was 61%.  

While using decision trees, the absence of specific transformations didn’t affect the performance 

the way it did with LDA. Adding more features resulted in better accuracy and absence of certain 

tags did not result in a poor performance. However, not detecting tags 1 and 2 led to an accuracy 

level of 93% even with all other tags detected. 

Using SVM, high accuracy levels were obtained, and it proved robust against the absence of any 

tag. The algorithm was tested in case of misdetection of one tag and two tags and accuracy didn’t 

go below 97%.  

Results are summarized in figure 32 where LDA2 refers to the average value of using LDA with 

combinations of T01z, T02z, T03z and T04z as input features and LDA1 otherwise. DT1 refers to 

using Decision Trees while T02 is excluded from input features and DT2 otherwise. SVM1 refers 

to lowest value obtained with SVM and SVM2 is the average value for using SVM.  

 
Figure 35.  Three Machine Learning Algorithms Performance Comparison  
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LDA was critically dependent on tags 1 and 2 while decision trees were dependent on them to 

obtain a higher accuracy level. However, SVM does not depend on any particular tag(s) to give 

very good results. 

Appendix 7.1 shows the performance of the three algorithms when tested in case of not 

detecting one tag, two tags or three tags respectively. Comparison shows that SVM is not 

affected by not detecting tags, even in case of missing three tags.  

5.3 Further work 

The presented work is part of an ongoing project at the DLR to enhance the OMG for better 

mobility. This work constitutes as a proof of concept for a method of using transformations of 

AR tags relative to each other and not to the camera. This is proposed as a solution to allow free 

placement of camera on arm and free movement of the arm. The next stage is to extend this 

study to larger set of human subjects at the DLR. For a wider scale user study, a stimulus software 

developed at DLR is used to ask the person for a certain pose and then capture the corresponding 

movement of forearm. As the software is coded in C#, the AR detection and coordinates 

computations code needs to be in C#. However, currently it is only available in C++ and Java. 

There exists one implementation in C# that can only detect the tags, but no further computations 

[31]. So, writing the code in C# has to be done to allow for the integration with the other 

components and further experiments. 
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7 Appendices  

7.1 Machine learning algorithms performance comparison 

The performance of the three algorithms used for classification is compared here. The first 

section shows accuracy when one tag is excluded from the input data to machine learning. 

Second and third sections do the same when two and three tags are excluded, respectively.   

7.1.1 One missing tag 
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7.1.2 Two missing tags 

Data in this section and the next one is organized into tables such that rows and columns headers 

represent the tags numbers and colors correspond to different algorithms. For example, if tag 1 

and tag 2 are excluded accuracy is 61.3%, 93.5 and 97.65 for LDA, decision trees and SVM 

respectively. 

 

2 3 4 5 6 7 8 
 

1 
61.3 74.6 75.5 75.6 74.4 73.9 74.2 
93.5 95.6 95.8 95.8 96 96.1 95.8 
97.6 98.1 98 97.9 98 97.7 98.1 

 

2 
 64.6 68.1 69.2 65.6 64.2 65.2 

93.3 92.9 94 92.8 92.7 93.5 
98 98.4 98.3 98 97.9 97.9 

 

3 
  76.2 76 74.1 73.3 73.7 

96 96.1 95.9 96.3 96 
98.7 98.3 98.2 98.4 98.3 

 

4 
   76.2 75.3 74.6 75.3 

97 97 97.1 97 
98.1 98.4 98.3 98.3 

 

5 
    75 73.9 74.7 

97 97 96.9 
97.9 98.2 98 

 

6 
     73.1 73.3 

97 97 
98.4 98.3 

 

7 
      73.1 

96.7 
98.3 

 

LDA Decision Trees SVM 
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7.1.3 Three missing tags 
 

3 4 5 6 7 8 
 

1,2 
59.1 65.1 64.7 60 59.1 59.8 
89.7 93.6 93 93.3 91.7 91 
97.2 97.6 97.5 97.4 97.4 97 

 

1,3 
 76.5 76.5 73.6 72.6 73.5 

95.5 95.7 95.6 95.4 96 
97.9 97.8 97.8 97.7 98.2 

 

1,4 
  76.6 75.4 74.7 75.2 

95.8 96 95.8 95.6 
97.9 97.8 97.8 98 

 

1,5 
   75.4 74.6 75.2 

95.7 95.7 95.7 
97.9 97.6 97.9 

 

1,6 
    73.8 73.9 

96.1 96 
97.8 97.8 

 

1,7 
     73.5 

96.1 
97.7 

 

 

4 5 6 7 8 
 

2,3 
68.3 69.9 64 60.6 62.7 
93.1 94.4 93.3 93.1 92.2 
98.4 98.2 98.1 98 98 

 

2,4 
 73.7 67.5 66.5 66.8 

94.2 93 93.1 93.3 
98.3 98.3 98.4 97.9 

 

2,5 
  70 69.6 68.6 

94.1 94 94.5 
97.9 97.8 98.1 

 

2,6 
   64.6 65 

92.7 93.5 
98 97.8 

 

2,7 
    63.6 

93.6 
97.9 
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5 6 7 8 
 

3,4 
77.7 75.5 74.6 75.5 
96.1 96 96.3 96 
98.7 98.4 98.7 98.4 

 

3,5 
 75.6 74.4 75.4 

96 96.4 96.1 
98.1 98.4 98.2 

 

3,6 
  72.9 73.5 

96.2 96 
98.2 98.4 

 

3,7 
   72.9 

96 
98.3 

 

 

6 7 8 
 

4,5 
75.8 75.5 75.9 
97 97 97 

98.1 98.2 98 
 

4,6 
 74.3 75.1 

97 97.2 
98.4 98.3 

 

4,7 
  74.1 

96.7 
98.3 

 

 

7 8 
 

5,6 
73.6 74 
96.9 97 
98.1 97.8 

 

5,7 
 73.3 

96.7 
98.2 

 

 

6,7,8 
73.2 
96.7 
97.9 
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