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Introduction

Suppose you are an inventor and you want to be able to prove you had a certain in-

genious idea before anyone else. However, you do not want to reveal what the idea

is. You thus just want your documents to be tied to the time they were created,

possibly without revealing the contents of the documents themselves. This is the

problem of time-stamping. Simple forms of time-stamping have been around for

hundreds of years via the notary and patent offices and even the postal service has

been used to this effect, but in the current age of electronic communication such

archaic methods may often be too slow. Cryptographic time-stamping schemes

can be used to remedy that situation.

However, constructing a scheme that is reliable but also secure against forgeries is

by no means a trivial matter. Many of the models originally discussed have turned

out to be insecure under the original assumptions. This does not mean they are

insecure but means that their security cannot be proven in the way originally

thought plausible and that either stronger or different assumptions are needed.

One of the best known examples is the unbounded hash tree based approach of

Harber and Stornetta that was later analyzed by Saarepera and Buldas.

This thesis concentrates on the impossibility of constructing a secure hash func-

tion for the unbounded time-stamping scheme Saarepera and Buldas proposed

from collision-resistant hash functions. Impossibility results of this type are usu-

ally proved via so called oracle separation methods by showing that given use of

a certain oracle, one of the primitives exists and the other doesn’t. We mainly

concern ourselves with studying the properties of one candidate for such an oracle
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– one that constructs a large hash tree and then uses that to give time-stamping

certificates. We study the possibilities of exploiting this oracle to find collisions

for hash functions and show that constructing an adversary that could actually do

that is quite complicated.

The first chapter gives a gentle introduction into the unbounded time stamping

scheme described by Harber and Stornetta and shows the origins of the problem.

The second chapter is mainly dedicated to cryptographic reductions and meth-

ods of proving that none can exist between two primitives. The third chapter is

composed of original results that study the properties of the proposed hash tree

oracle and show that the simplest possible approach the adversary could take can

be foiled by a cleverly constructed oracle. The fourth chapter discusses some other

approaches that can be ruled out in a similar manner and then goes on to discuss

other possible constructions for separation oracles.
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1. Unbounded Timestamping

1.1 Timestamping Introduction

Suppose you are an inventor and you just had a brilliant idea. You want to protect

yourself against someone later claiming to have had that same idea, but earlier. If

he honestly claims so, there is relatively little you can and should be able to do.

To avoid a dishonest claim of this type, it would be sufficient if you could securely

tie your idea to the date and possibly time at which you discovered it. This is the

problem of timestamping.

One simple model would be to have a trusted central authority that recieves the

idea, appends a timestamp to it in a standard way and then signs it. Assuming

that the signature scheme is secure and the central authority is always trustworthy,

this is a good model and it has been used in paperwork for hundreds of years –

notary and patent offices essentially fill this role.

Assume however that the inventor does not want to trust a central authority with

his idea. Over the years, many rather ingenious things have been done to the

effect of timestamping. The most common of them involved paranoid inventors

sending the documents describing the invention to themselves in a sealed envelope.

The postal timestamp could later be used in court, assuming the envelope was left

sealed until that time.

The digital version of that scheme would be to send a hash value computed using

a publicly known hash function of your invention to the central authority instead

7



of the plaintext document. Assuming that the hash function is hard to reverse,

this trusts relatively little information about your actual work into the hands of

the authority. When the timestamp needs to be verified, the document can be

presented and people can check that the signature is indeed given to the hash

value corresponding to it.

This scheme is not without its problems. The main one is that it is rather easy for

the authority to issue backdated timestamps, so it may be possible for someone

to get a timestamp to their document that claims he had the results earlier, when

he didn’t. We would like to make it hard for even the central authority itself to

forge timestamps. This can indeed be achieved and many different models have

been built that do so.

This thesis works with the model proposed by Harber and Stornetta in [6]. The

the security of this model was extensively scrutinized by Buldas and Saarepera in

[4] and it was shown that collision-resistance, one of the most common properties

expected from a hash function does not imply that it is secure for that scheme. The

main aim of this thesis is to explore the possibility that no constructions of secure

hash functions for this scheme could be made from collision resistant functions.

Before going into the details of security, we first explain the scheme itself.

1.2 The Scheme of Harber and Stornetta

1.2.1 Parties Involved

The scheme of Harber and Stornetta involves three parties: a Client C, a Server

S and a repository R and gives two procedures – one for creating a timestamp

and one for verifying it. It is assumed that R is write-only so once something is

commited to it, it cannot be changed. This can be accomplished in practice by

publishing the value in a widely available medium so many different and unaffil-

iated parties can mirror it (a quote from Linus Torvalds: ”Only wimps use tape

backup: real men just upload their important stuff on ftp, and let the rest of the
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world mirror it”). The server is in the role of a ”trusted authority” but is severely

more restricted than in the naive notary or postal stamp models described in the

previous section.

The scheme uses two hash functions hc : {0, 1}∗ → {0, 1}k (that is, a function from

a bitstring of any length to one of length k) and hs : {0, 1}2k → {0, 1}k. The

function hc is the function used by the clients to get hash values from original

documents. The other, hs is the server side function which is used for computing

the published hash value.

1.2.2 Hash Circuits

In this work we are mainly concerned with the properties of the server-side function

hs. We note that it is defined to be from 2k length bitstrings to k length bit

stings. We can therefore model hs as a function with two inputs of length k and

with one output of the same length. This allows us to write hs(x1, x2) = y where

x1, x2, y ∈ {0, 1}k. We can also model them as circuit elements (or ”gates”) where

we assume that each ”wire” carries k bits simultaneously (see fig. 1.1).

y

x1 x2

hs

Figure 1.1: Diagram for hs(x1, x2) = y.

Since the output is of the same length as the inputs, we can use the output of one of

these elements as an input for another one. This allows us to build trees of the hs

gate, taking many different inputs x1, . . . , xm but giving only one single output rt.

There are many ways of constructing a tree given a fixed number of inputs (see fig.

1.2 for two example trees for four inputs - the first depicts hs(hs(x1, x2), hs(x3, x4))

and the second is for hs(hs(hs(x2, x4), x1), x3)). From now on we call such trees

composed of hash functions either hash trees, hash circuits or Merkle trees in
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honour of Ralph Merkle who invented them in 1980 [10]. We call the value r

returned at the bottom of the tree its root value.

hs

x1 x2 x3 x4

hs

hs

r

x3

x1

x4x2

hs

hs

hs

r

Figure 1.2: Examples of hash trees with 4 inputs.

1.2.3 Time-stamping Procedure

Time-stamping procedure is divided into rounds of equal duration. During each

round, the server S waits for hash values of length k assumably formed by hc to

be sent to it by the clients C. At the end of the round t, it takes all the values

x1, . . . , xm ∈ {0, 1}k sent to it by the clients and then builds a hash circuit out

of them. It then calculates the root value rt. How the binary tree is constructed

is chosen by the server S and is by the initial scheme not restricted in any way,

assuming that all inputs sent to S are used in it. For example, both trees from

fig. 1.2 could be used in case of four inputs. This is why the scheme is called

unbounded.

The server then publishes the value rt into the repository R and starts sending out

certificates to the clients. The certificate itself is an ordered 4-tuple c = (x, t, n, z)

where x is the value being certified, t is the number of the round that just ended,

n = n1n2 . . . nl, ni ∈ {0, 1} describes the path from x down to the root and

z = (z1, . . . , zl) ∈ ({0, 1}k)l gives the information to verify that path.
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hs

x5 x6

hs

hs hs

x10hs

x7
hs

x9x8

x1
hs

x2 x3

y4

rt

hshs

y2z2

y3 z3

z1y1

x4

Figure 1.3: A larger tree with a path marked from x4.

We give a small example by describing the certificate of x4 in fig. 1.3. The sequence

n encodes the structure of the path starting from the original value x4 downwards

while the sequence z gives the other inputs used alongside x4 and values calculated

from that. As x4 is the left input for the first box, n1 = 1 and we take z1 to be

the other input into that box (which in this case is hs(x5, x6)). We now move to

the second box on the path and see that the output of the previous box is now the

right input. We thus set n2 = 0 to signify that and then take z2 to be the second

input into this box (which in this case is hs(x1, hs(x2, x3))). The third and final

element on the path has the second one as the left input again so we set n3 = 1 and

take z3 to be the other input again. Since there are no more boxes, the certificate

for x4 for the tree given in fig. 1.3 is c = (x4, t, 101, (z1, z2, z3)).

1.2.4 The Verification Procedure

The verification procedure can be carried out by C based on his original document

D and the certificate c = (x, t, n, z) issued for it. The first step is to check that the

x in the certificate indeed matches the hash value hc(D) of the original document.

The calculation then proceeds by defining y1 := x and then inductively calculating
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the sequence y2, . . . , yl+1 based on the formula

yi+1 :=

 hs(zi, yi) ni = 0

hs(yi, zi) ni = 1
. (1.1)

Once it has the value yl+1 it queries the repository R for the value rt and checks

whether rt = yl+1. We refer the reader back to fig. 1.3 for an illustration of z and

y values in the circuit.

For notational convenience we define the verifier function V (x, n, z) := yl+1. Then

the last paragraph describes how to check whether V (x, n, z) = rt.

Essentially, a certificate for x thus consists of the path that leads from x down to

the root, where n specifies which direction the path turns to and z gives all the

other values used in that path alongside yi.

1.3 Security of the scheme

1.3.1 Introduction to Cryptology

Cryptology is the science of secure communication in the widest sense. It has roots

dating back to antiquity but arose in its modern form only in the last century. The

main goal of modern cryptology is to construct communication schemes that are

secure relative to certain possible attacks.

We bring a small example from the time-stamping scenario described above. Sup-

pose there is a malicious adversary that intercepts the value of hc(D) as it is

transmitted from client C to server S. Suppose that this adversary is somehow

capable of deducing vital details about D from that value. This would be consid-

ered an attack. If C wants to be secure against this type of attack, he has two

options – use a secure channel that cannot be eavesdropped or use a hash function

hc that does not reveal any useful information about D from hc(D). The second
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would be considered a security property of that hc.

Cryptology research can be divided into two broad categories. The first one is

trying to construct certain secure primitives such as functions that are hard to re-

verse like we would have needed in the previous example. The second tries to use

these primitives in more complicated schemes such as the time-stamping scheme

described in the previous section and to prove the security of these schemes on the

assumption of the security of the primitives.

The main problem of applied cryptology is that practically no provably secure

primitives actually exist. The security of most of them rests on different types

of assumptions (large integers being hard to factor, discrete logarithm problem

being hard for certain groups, P 6= NP). Also, given infinite amount of time, most

primitives can easily be shown to be breakable. Therefore the notion of security

is usually defined in terms of a bounded time adversary being able to gain only a

mariginal advantage. We now present a concrete example of that paradigm which

we can use to explain what we mean exactly.

1.3.2 Understanding Cryptographic Security

We first define the notion of a collision that is central in the presentation of this

thesis:

Definition 1.3.1. We say that the pair x1, x2 ∈ {0, 1}n form a collision for

h : {0, 1}n → {0, 1}m if x1 6= x2 and h(x1) = h(x2).

We now bring a textbook security property definition and then try to describe

what is meant by it in simpler terms.

Definition 1.3.2. We say that a family χ of hash functions h : {0, 1}n → {0, 1}m

(n > m) is (t, ε)-collision resistant if for any t-time adversary A we have

Pr[h← χ, (m0, m1)← A(h) : m0 6= m1, h(m0) = h(m1)] < ε . (1.2)

We first start by specifying what is a t-time adversary. By an adversary we usually
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mean an algorithm (a computer program) that is given certain input and produces

a certain output corresponding to that input which has some sort of undesirable

properties. In our example, the adversary A is given as input the description of

h and is expected to output a pair of values (m0, m1) (which is described in the

definition by (m0, m1) ← A(h)). We call an adversary program t-time adversary

if it makes at most t steps in its execution before producing an output in some

computational model. What that model is, does not usually concern us, so it can

be a Turing machine, a random access machine or any other reasonable model of

that type. It could also be a human being who is given exact instructions on what

to do (so he cannot use his creativity) and has at most t minutes of time before

he is required to produce an output. By the Church-Turing thesis all such models

are equal and although some are faster and some are slower, we are usually not

concerned about the specific implementation. Therefore one model is usually just

fixed, Turing machine being the most common choice for that.

However, the adversary does not even have to be wholy deterministic and in fact

is often considered to have access to an infinite supply of random cointoss results

on which to base his random descisions. In essence a t-time adversary is thus

an adversary (a computer program or a non-creative human being) that has only

a limited amount of time t before an output is expected from it and that works

according to fixed rules, but may use randomness in his descisions. Due to the fact

that the algorithm might be randomized, its output is not one specific value but

rather chosen from a certain distribution based on the randomness distribution

given to it.

The equation 1.2 can be stated in words: ”The probability that after randomly

choosing a h from χ the two values m1 and m2 returned by the adversary A with

input h are different but h(m1) = h(m2) is less than ε”. We call such a pair of

(m1, m2) a collision and if the adversary has a low chance of finding one for this

family of hash functions χ we call the family collision resistant.
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There are several reasons that security is defined like it is:

Firstly, we define collision resistance on a family of hash functions because for

every single function there exists an adversary that finds a collision: since there

are more possible input values (2n) than output values (2m), there has to be at

least one such pair (m1, m2) and we can take an adversary that doesn’t even look

at the input and just blindly returns this pair. It is guaranteed to find a collision

for the fixed h (although it fails to find a collision for most of the others).

Secondly, we bound the time the adversary is allowed to work because if we did

not, it could just try all the possible pairs until one fit and then return it. This

would, however, take at least roughly 2n · 2n = 22n steps so if we choose t to be a

lot smaller (say n or n2), that tactic would not lead to a good chance of finding a

collision.

Thirdly, we use ε instead of 0 because the latter is infeasible – since we know that

given infinite time, we can always find a collision, it is only rational (and can in

fact be proven) that the adversary does gain a small advantage even if it only

works for a short time (and as the time bound increases, so does the advantage).

This is the basic model the security properties of the primitives are defined in -

we have a time-bounded adversary that is allowed to gain a small advantage (just

as long as it is small). The security of the schemes is usually defined for roughly

the same model. We now go on to investigate the security of the Harber-Stornetta

scheme.

1.3.3 The Actual Security of Harber-Stornetta Scheme

The original authors considered security against the attack where the bounded

time adversary is allowed to commit hash values x1, . . . , xn to timestamping, re-

ceives their certificates from the server and the root value from the repository. He

is then expected to produce x that is different from x1, . . . , xn and a certificate for

it that would be valid for the original period.
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This is a very strong security claim, which means that no value x could possibly

be backdated at a later time with a reasonable probability. The original paper

postulated that the scheme is secure in that respect if hs was chosen to be collision

resistant. The curious reader may start to wonder what collision resistance could

possibly have to do with the security of this type of scheme against this type of

attack.

The scheme was critically revised by Buldas and Saarepera in [4]. They noted that

the scheme is in fact insecure against the described type of attack. Simply put,

the adversary could always randomly choose x, y ∈ {0, 1}k, compute w = hs(x, y)

and then commit w. Upon getting a valid certificate c = (w, t, n, z) for w from

the server it could construct a valid certificate for x by appending 1 to n and y

to z so cx = (x, t, n||1, z||y) would be a valid certificate. Therefore, unless w = x,

the scheme would be ”broken”. After noting that the same trick could be used for

producing a certificate for y as well and that we can choose x 6= y we can always

backdate at least one value.

They however noted that this attack has a critical flaw - the adversary had to know

what he wanted to backdate (the x and y values) when he commited his values

to timestamping. It follows that this type of attack does not really jeopardize

the security of this scheme in practical applications. They then gave a security

condition that better describes a real-world attack scenario.

The new scenario is this: We assume that the server may coerce with the adversary

and may allow it to commit a few values ri into the repository R. The adversary

then waits for something to backdate (not knowing what it may be). Once any-

thing of that type arrives (for instance a new invention he wants to claim patent

rights to), he tries to backdate it to one of the values ri previously commited by

him. If he succeeds, the attack is considered successful.

This differs from the previous attack model mainly by that the adversary has no
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knowledge what he has to backdate when he is allowed to commit the original

values. For this, the adversary needs to be broken up into two parts - one that

finds the values to be commited and the other that tries to produce a certificate

for a value fed to it for backdating. The new security property is defined in the

following way:

Definition 1.3.3. We say that the Harber-Stornetta scheme is (t, ε)-secure relative

to the distribution D if for any t-time adversary A = (A1, A2)

Pr[(r, a) = A1, x← D, (n, z) = A2(x, a) : V (x, n, z) = r] < ε . (1.3)

Note that the small a is just extra information that A1 passes to A2 as they are

still in essence one program.

Buldas and Saarepera then go on to show that the original scheme is secure in

that respect if it uses a collision-free hash function assuming that the structure of

the trees being constructed is restricted and verification checks whether the certifi-

cate is consistent with the tree structure. This version of timestamping is called

restricted-tree timestamping and since rather good approximations to collision-free

hash functions exist, a scheme implemented that way can be made secure.

1.4 Chain Resistance Property

The security of the unbounded case still remains a problem, however. Buldas

and Saarepera introduce a new security property for hash functions called chain

resistance for just that purpouse.

Definition 1.4.1. A hash function h : {0, 1}2k → {0, 1}k is (t, ε)-chain resistant

(relative to a distribution Dk on {0, 1}k) if for every t-time adversary A = (A1, A2)

Pr[(r, a) = A1, x← Dk, (n, z) = A2(x, a) : V (x, n, z) = r] < ε . (1.4)

This essentially means that for a randomly chosen x← Dk it is hard to construct
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a chain from h that leads from x down to r. This definition is rather directly

adopted from the security condition for the Harber-Stornetta scheme. As such, it

is rather trivial to show that if hs used in the scheme is (t, ε)-chain resistant, then

the scheme itself is (t, ε)-secure.

The definition nearly repeats the security condition for the Harber-Stornetta scheme.

However, in this case, it is not a property of a scheme but rather the property of

a hash function. The main question that arises is: Do hash functions with this

property actually exist and can we construct them? The simplest way of doing this

would be proving that a certain already known security property such as collision

resistance would automatically imply chain resistance.

Buldas and Saarepera showed that no standard reductions used in cryptography

today could allow one to prove that collision resistance implies chain resistance.

They conjecture that a so-called black-box construction of a chain resistant func-

tion from a collision-resistant one may also be impossible. The topic of this thesis

is to examine that hypothesis.
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2. Cryptographic Reductions

2.1 The Construction of Merkle and Damg̊ard

To illustrate what a black-box reduction actually means, we begin this chapter

with a theorem due to Merkle [9] and Damg̊ard [5] who proved it independently.

To illustrate the reduction better, we use a somewhat simplified form of the original

construction. The reader more interested in how such constructions are used in

practice should consult a good cryptographic textbook (for instance [14]).

Theorem 2.1.1. Assume that for fixed n, m ∈ N there exists a family F1 of

collision-resistant hash functions f : {0, 1}n+m → {0, 1}m. Then for every k ∈ N

there also exist a family F2 of hash functions h : {0, 1}k → {0, 1}m that is collision-

resistant.

Proof. We start by constructing the family F2. Let f : {0, 1}n+m → {0, 1}m be

any function from F1 and let s ∈ {0, 1}m be a randomly chosen seed. We now

define a function hf,s : {0, 1}k → {0, 1}m by showing how it works on a fixed input

x ∈ {0, 1}k. The family F2 can then be defined as the set of all such functions hf,s

where f ∈ F1 and s ∈ {0, 1}m.

If n does not divide k, we begin by adding zeroes to the end of x until its length

is a multiple of n. We then break x into blocks of n bits so x = x1|x2| · · · |xl for

l = d k
n
e. After that, we construct y1, . . . , yl ∈ {0, 1}m by specifying y1 = f(s|x1)

and yi = f(yi−1|xi) for i = 2, . . . , l. The value yl is then returned as the output of

hf,s(x).
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The preceeding description of computation can easily be formalized as an algo-

rithm. It should also be easy to see that if f can be computed in t steps then

h can be computed in roughly lt + n steps so it remains relatively efficient. It is

also crucial to note that we use f in a black-box manner – we do not know how

it works, only that it does. We give it input and it gives us output, but how it

computes the output does not concern us.

We now need to show that if F1 is collision-resistant then so is F2. Assume the

opposite, eg. that F1 is indeed collision-resistant but that F2 is not. There then

exists an adversary A that can break the collision-resistance property for the func-

tions h ∈ F2 with more than a negligible probability. Assume A can find a collision

pair (a, b) for hf,s ∈ F2. Let a = a1|a2| · · · |al and b = b1| · · · |bl where both ai and

bi are all blocks of length n bits where a and b are padded with zeroes if needed.

Then the computation of h(a) yields a sequence a′1, . . . , a
′
l and the computation of

h(b) gives b′1, . . . , b
′
l. Since (a, b) is a collision, we have a′l = h(a) = h(b) = b′l. This

implies that f(a′l−1|al) = f(b′l). If a′l−1|al 6= b′l−1|bl, this gives us a collision for f . If

not, let r be the smallest such value that a′r+1 = b′r+1 but a′r|ar+1 6= b′r|br+1. This

value has to exist because (a, b) is a collision so a 6= b which implies that ar and

br differ at some point. It is also clear that it gives us a collision for f . Therefore,

we can also break f ∈ F1 by choosing a random seed s, using A to find a collision

for hf,s and use that to find one for f .

We note that we essentially constructed an adversary for F1 based on an adversary

A for F2. The construction is efficient because we essentially follow the same steps

as in the computation of h. This implies that F1 cannot be collision-resistant which

contradicts our original assumption. Therefore, F2 has to be collision resistant if

F1 is.

We note that the proof if fully constructive – we show how to construct F2 and

then show how to break F1 if we know how to break F2. This proof technique is

known as a reduction – we reduce the problem of the security of F2 to the security

of F1.
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2.2 Cryptographic Practice

Reductions of this type are one of the main tools in cryptography. The idea is to

prove the security of a complex scheme based on the security of its constituents by

showing that if there exists an adversary that breaks the complex scheme then we

can construct an adversary that breaks at least one of the constituent primitives.

Since the security of the primitive is taken as a premise, this gives a contradiction

and thus the scheme must be secure. However, since we want the scheme to work

regardless of the actual primitives being used, we cannot make any assumptions

about them other than them being efficient. This gives rise to so-called black-box

reductions – we are assumed to be presented with a method of implementing the

original primitive (the black box) and we can use it, but we have no idea on how

it is constructed.

Cryptographic reductions are similar in many ways to complexity-theoretic reduc-

tions. While cryptography studies the security of certain problems then complexity

theory is more interested in how efficiently something could be computed in theory.

It is clear that complexity theory plays a rather important role in cryptography as

well, since the notion of being easily computable is used quite often – we want the

primitives to be easily computable but the adversaries not to be so. It follows that

many cryptologists today have a rather strong background in complexity theory.

Complexity-theoretic reductions are usually used to prove that one problem is no

less hard to solve for a computer than the other. However, as complexity theory is

more interested in general limits than on specific problems, there is a large body

of theorems that show that certain types of problems cannot be reduced to certain

others via certain types of reductions. The reductions were introduced into cryp-

tology in the early eighties by Micali and it did not take long for cryptologists to

start coming up with the same types of theorems for the limits of cryptographic

reductions. For that, however, they first needed to formalize the notion of a cryp-

tographic reduction. Before introducing the formalizations, we need to introduce

some complexity-theoretic preliminaries.
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2.3 Complexity-theoretic Preliminaries

2.3.1 Algorithms in General

First of all, we need to be more general and use the notion of an algorithm not

only in the role of an adversary but also in the role of constructions. In the case of

a construction, it describes what to do in order to get from the given input to the

desired output. While it is more convenient to think of a computer running the

program in case of an adversary, this intuition works poorly for the construction

sense. The construction is better thought of as a set of instructions by which the

computer (be it a machine or human) could work. However, everything said in

the first chapter about the notion still applies – it does not matter what sort of a

formalization or an implementation we consider. All that is important is that the

instructions could be followed in a bounded time (be it bounded in the number of

steps, in actual computational time or what not), can be completed without any

creativity but with an access to a random source (a.k.a. given a certain input and

a certain sequence of random coins, the instructions always lead to the same result

with the same amount of time or steps). All these assumptions (including the fact

that we consider a random source to be available at all times which means that

the algorithms are randomized) are implicit in the following chapter.

In the first chapter we used the notion of t-time algorithm. In reality, it is more

common to speak of polynomial-time algorithms, which means that the number

of steps t allowed is bounded by a polynomial of the length of the input or by

some other specific parameter (for instance, if the input is a function, such as for

the collision-resistance adversary, we often consider the input length of the hash

function to be the parameter instead of the length of the description). The poly-

nomial can be of arbitrarily large degree and can have arbitrarily large constants,

and thus such an adversary may not be computable in practice. What we are more

interested in, however, is the fact that all the functions that can be calculated fast
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for inputs of reasonable size do work in polynomial time so if we can rule out any

polynomial time adversary, we can be rather sure no efficient adversary could exist

at all for any larger inputs.

Formally, we say f(x) = O(g(x)) (f is bounded by g) if there exist c and k0 such

that ∀x > k0 : f(x) < cg(x) and we say that f(n) is polynomial in n if f(n) = O(nc)

for some c. For further convenience we also define f(x) = ω(g(x)) to hold when

limx→∞
g(x)
f(x)

= 0. We define an adversary to be in polynomial time relative to n

if t is bounded by a polynomial of n. We also sometimes say efficient instead of

polynomial-time.

2.3.2 Oracle Machines

We also need the notion of an oracle machine. For our purposes, we say that an

algorithm A is an oracle machine with an oracle O (denoted AO) if O calculates

a function f : {0, 1}∗ → {0, 1}∗ and AO can make calls to that function that are

then calculated for him in a fixed number of steps by the oracle, regardless of how

much time the computation would actually take. Since we work in a polynomial

security model, we can directly adopt the complexity-theoretic model of an oracle

working in one timestep. The notion of an oracle machine formalizes the notion

of an algorithm with black-box access to a certain function. The oracle can be

thought of as a module, providing certain type of functionality. For instance, the

construction for h given in Theorem 2.1.1 used f as an oracle. We also note that

the oracle function may even be hard or even impossible to compute. The func-

tionality of calculating it is given to the algorithm from the outside and it does not

concern the algorithm how the value for the oracle function is found. The name

”oracle” even suggests it for an oracle is a person or a prophetic agency considered

to be a source of superhuman knowledge in the non-technical speech. Where the

oracle gets his or her knowledge is beyond the realm of reason but is usually not

questioned.
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We also describe what it means for an adversary to break a certain security prop-

erty (such as collision-resistance). Without going too much into the mathematical

formalism, we say that a primitive P is a security condition along with all the

possible functions for which the security constraint has a meaning but may or

may not hold. Collision-resistant hash function is a good example of a primitive

– the security constraint is that of collision resistance and the family of functions

is that of all the possible hash functions as it makes sense to talk about collision

resistance for all of them. We denote the set of the functions associated with the

primitive P as FP and call its elements the implementations of P . We say that the

adversary A P-breaks the implementation f ∈ FP or a family of implementations

F ⊂ FP if its success probability for breaking the security property of P for them

is greater than n−ω(1) (where again n is the parameter that is usually taken to

be the input length of either the adversary or the primitive being broken). The

reader interested in a more formal approach is encouraged to read [12].

With this mathematical machinery in place, we can define the reductions.

2.4 Possible Formalizations of Reductions

Reingold, Trevisan and Vadhan consider seven different types of reductions in [12],

starting with the most restrictive ”fully black-box” to the least restrictive ”free”

reduction. We explore only those relevant to further discussion.

2.4.1 Fully Black-box Reductions

Simply put, the notion of a fully black-box reduction captures the simplest form

of cryptographic reduction where the new primitive is constructed from the old

by using the original primitive as a black box. In this case, the adversary for

the original primitive is also constructed in a black-box fashion from the original

primitive and the adversary for the new construction. Since we formalize the notion

of a construction with a black-box access to something as an oracle machine, this
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gives us the following definition:

Definition 2.4.1. We say that there exists a fully black-box reduction from a

primitive P to primitive Q if there exist polynomial-time oracle machines G and

S such that

Correctness For every implementation f ∈ FQ we have that Gf ∈ FP .

Security For every implementation f ∈ FQ and every adversary A, if A P-breaks

Gf then SA,f Q-breaks f .

In the definition, G is the construction of a new primitive and S is the construction

of the adversary. G is allowed to use the original implementation f and S is al-

lowed to use the new adversary and the implementation f . We require both G and

S to work in polynomial time for the constructions to be efficient. That require-

ment is logical because we want the reductions to be usable in the real world and

because most primitives can be broken given infinite time, regardless of any oracles.

The Merkle-Damg̊ard construction given in the beginning of this chapter is a good

example of a fully black-box construction. In there, Q is collision-resistant hash

functions of type f : {0, 1}n+m → {0, 1}m, P is collision-resistant hash functions

of type h : {0, 1}∗ → {0, 1}m, G is the construction for h and S is the construction

for the adversary. It might be helpful to skim through the proof of Theorem 2.1.1

again to better understand how and why a reduction of this type actually works.

Since this construction is the easiest, most reductions done in cryptography are

of this type. It is however quite limiting because we require the adversary to be

constructed explicitly given the new adversary and f .

2.4.2 The two Semi Black-box Reductions

The semi black-box reduction is a lot less limiting because it no longer requires an

explicitly constructed adversary for the original primitive based on the adversary
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for the new one. All it needs is that if an adversary exists for the new scheme then

one must also exist for the original. This is formalized in the following way:

Definition 2.4.2. We say that there exists a semi black-box reduction from a

primitive P to primitive Q if there exists a polynomial-time oracle machine G

such that

Correctness For every implementation f ∈ FQ we have that Gf ∈ FP .

Security For every polynomial-time oracle machine A1 there exists a polynomial

time oracle machine A2 such that for every implementation f , if A1 P-breaks

Gf then A2 Q-breaks f .

We note that every black-box reduction is also a semi-black box-reduction: if there

exists a polynomial time adversary A, we can take A1 = A and A2 = SA. Since

both S and A are polynomial-time, it follows that so is A2 and the implication

is proved. Semi black-box constructions are however clearly more general because

all we have to prove in this case is that an adversary to the original primitive Q

exists, which may often be done without explicitly constructing it. This definition

roughly corresponds to a non-constructive security proof where f is still black-box.

We also introduce a similar but even more general notion of ∀∃-semi black-box

reduction:

Definition 2.4.3. We say that there exists a ∀∃-semi black-box reduction from

a primitive P to primitive Q if for every f ∈ FQ there exists a polynomial-time

oracle machine G such that

Correctness Gf ∈ FP .

Security For every polynomial-time oracle machine A1 there exists a polynomial-

time oracle machine A2 such that if Af
1 P-breaks Gf then A2 Q-breaks f .

This allows us to supply a different construction for every possible f instead of

constraining us to a ”one size fits all” variant that has to work for every single

implementation. It should again be clear that all semi black-box constructions are
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also ∀∃-semi black-box constructions. We also note that to date, reductions that

don’t fit the last pattern are nearly unheared of. Therefore, if one could prove

that no ∀∃-semi black-box reduction can exist between two primitives then that

essentially means that tools used in modern cryptology are unable to give such a

construction.

We also note that the two preceeding definitions differ a little from those given by

Reingold et al. The difference is in the fact that we can construct A2 for every A1

regardless of which f it breaks. The definitions given here better reflect common

cryptographic practice and the intuition of actual cryptographers.

2.4.3 Relativizing Reductions

As noted before, the idea of proving the nonexistence of reductions of certain type

arose from complexity theory, where the central question for 35 years has been

”P = NP?”. In 1975 Baker, Gill and Solovay used a clever trick in [1] to show that

all the possible reduction types used in complexity theory during that time could

not show that equality. The method they used became known as oracle separation

and the reductions it prevented were named relativizing reductions.

The same idea was carried over from complexity theory into cryptography by Im-

pagliazzo and Rudich in [8]. While the previous definitions of reductions formalized

our intuitive ideas about what a reduction could possibly look like, this reduction

type is more of an ingenious mathematical tool.

However, we first need to introduce the notion of a primitive existing relative to

some oracle.

Definition 2.4.4. We say that a primitive P exists relative to an oracle Π if there

exist polynomial-time oracle machines that implement P when given access to Π

and that at least one of them is secure even when an adversary has access to Π.

This essentially formalizes the case where we just add a new base operation to the

computational model we are using – besides being able to do all the normal opera-
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tions in one step, we allow both the adversaries and the function constructions to

make oracle calls to Π. As usual, we say that a primitive exists if we can implement

it. This definition allows us to define the notion of a relativizing reduction which

essentially means a reduction that holds in the presence of all possible oracles.

Definition 2.4.5. There exists a relativizing reduction from a primitive P to a

primitive Q if for every oracle Π, if Q exists relative to Π then so does P .

This definition has one clear advantage over the previous ones. Namely, it is rather

easy to prove that no relativizing reductions exist between two primitives – all we

need for that is to show that there is an oracle O such that the primitive Q exists

relative to it but that no polynomial time implementation of P is secure against

adversaries with an access to that oracle.

However, what makes this definition useful is the fact that it fits into the previous

hierarchy. Firstly, all fully black-box constructions are relativizing. To see that,

assume that there exists a black box reduction from P to Q that is not relativizing.

Then there exists such an oracle O that Q exists relative to it but P does not.

Let f ∈ FQ be an efficient and secure implementation of Q relative to O. It then

follows from the black-box reduction that there exists Gf ∈ FP for which there is

an adversary AO,f that breaks it. Then SA,f,O is an adversary for f that breaks

it, which is a contradiction since we assumed f to be secure relative to O. Since

all fully black box reductions are relativizing, we can use the oracle separation

technique to rule out the possibility of fully black box reductions. This approach

has proven quite fruitful for many different important primitives. However, Those

types of results can usually be extended. For that, we need to look a little down-

ward in the hierarchy.

We note that for all relativizing reductions we can construct an equivalent ∀∃-semi

black-box reduction. To see that, assume we have a relativizing reduction from

P to Q and consider an implementation f ∈ FQ. If f is secure against any poly-

nomial time adversary Af
1 , then Q exists relative to oracle f which also implies

that P exists relative to f or that there exists a polynomial time implementation
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G = Gf (we just dont use the oracle f) of P for which no polynomial-time adver-

sary Af
2 could break it.

What turns out to be more interesting, however, is the fact that in almost all

cases, the reverse implication also holds – namely, that for most ∀∃-semi black-

box reductions there also exists a relativizing one. All that is required for that is

to be able to embed any oracle into any implementation of the primitive Q so that

the implementation would still be secure and well-formed. The proof is described

in [12] and they also give the formal requirements made to the embedding. The

only problem with using their approach is that they consider only binary oracles

that have exactly two possible output values. Their approach can, however, be

extended to cover arbitrary oracles. The problem is that we cannot hope to be

able to embed any possible oracle into some primitives because their output length

is usually limited. However, since our main interest is in trying to prove the non-

existence of a reduction, we can get by with just embedding the separation oracle.

This leads to the following theorem adopted from [4] but considered as folklore

there:

Theorem 2.4.1. Assume there is an oracle O and that there is a polynomial-time

implementation f ∈ FQ secure relative to an oracle O but no polynomial time

implementation g ∈ FP is secure relative to O. Suppose further that O = πf for

a polynomial time algorithm π. Then there exist no ∀∃-semi black-box reductions

from P to Q.

Proof. Let f be the secure and efficient implementation ofQ relative toO. Assume

that there exists a ∀∃-semi black-box reduction and let g = Gf ∈ FP be the end

result of it for f . Since, by the premises, no implementation of P is secure relative

to O, there exists an adversary AO
1 that P-breaks g. Since O = πf (O can be

computed using f in polynomial time), we can convert AO
1 into A′f

1 that does

exactly the same things but uses πf instead of O. Since we have a ∀∃-semi black-

box construction, it follows that there also exists an adversary Af
2 and we can

convert it back to A′O
2 by noting that f has to be computable in polynomial time
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when given access to O. This however means that A′O
2 Q-breaks f , which is a

contradiction since we assumed that f was secure relative to O.

We see that this theorem is quite general. All that it requires is that we are able

to embed the separating oracle into an instance of the original primitive that is

also secure with respect to that oracle. This is usually rather easy to do, since we

can set aside a negligible fraction of the inputs to be used for oracle calls and use

the rest as we would normally.

2.5 A Proof Technique With two Oracles

Hsiao and Reyzin give an alternative method of proving there are no fully black-

box reductions in [7] using two oracles instead of one. We give their result along

with a sketch of a proof:

Theorem 2.5.1. Let A and f be two oracles such that

(a) There is a polynomial-time oracle machine T f that implements Q.

(b) For all polynomial-time oracle machines P , if P f implements P then there

is a polynomial-time oracle machine DA,f that breaks P f .

(c) There is no polynomial-time oracle machine S such that SA,f breaks T f .

Then there exist no fully black-box reductions from P to Q.

We note that f can be thought of as advice for implementing Q well and A can

be thought of as the adversary part of the oracle that can be used to break P but

is useless against that one good implementation of Q.

Proof. This theorem is essentially a corollary of the original oracle separation

through relativization. Combine A and f into a single oracle (A, f). ThenQ clearly

exists relative to it since T f implements Q because of (a) and no polynomial-time

adversary breaks it with that oracle due to (c). The property (b) ensures that no

implementation of P is secure and thus the result follows.
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The importance of this theorem is more in the idea here – we are allowed to

give a good advice oracle that helps us with constructing a secure instance of

Q along with the oracle meant for breaking P . This advice oracle then ideally

allows us to prove unconditional irreducibility theorems for even the primitives we

don’t normally know how to implement well. Other than that, the theorem offers

relatively little new.

2.6 The Approach of this Thesis and Related

Work

As we have shown thus far, all that would be needed to rule out fully black-box

constructions is an oracle that could be used to break chain-resistance while leav-

ing at least one family of functions collision-resistant. Buldas and Saarepera [4]

demonstrated that no collision-resistant hash function could be proved to be chain-

resistant by fully or semi black-box reductions. The oracles they used are of little

help to us, however, since they rely on the same function being broken for both

chain and collision resistance. The article still suggests that oracle separation could

nonetheless be used to rule out the construction of a chain resistant function from a

collision resistant one. We explore that possibility by trying to construct an oracle

based on a suitable hash tree. How it is done exactly is covered in the next chapter.

We also note some other related work. Jürgenson and Buldas show in [2] that

black-box constructions cannot give a collision-resistant function based on chain-

resistant functions. Their result is essentially the other direction of what we are

trying to prove. For practical considerations, Buldas and Laur prove in [3] that

the hash functions that are chain-resistant need not even be one-way.
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3. The Hash Tree Oracle and a

Pair-checking Adversary

3.1 The Construction Idea for the Separation

Oracle

As mentioned at the end of the previous chapter, our approach is to try to construct

a separation oracle that could rule out constructions of chain-resistant functions

from collision resistant ones. For that we need an oracle that breaks all implemen-

tations of chain-resistance while leaving at least one family of hash functions secure

in the collision-resistance sense. The first thing we note is that chain-resistance

is quite a complex property. It is hard to think of any useful information that

the oracle could give that would help break it other than the actual root value

and certificates. There is one natural candidate for an oracle that can do that –

namely one that constructs a tree from a large amount of inputs and then returns

the root value and certificates based on that tree.

We now consider the oracle as constructing a tree from all the possible inputs

x ∈ {0, 1}n that could be sent to be timestamped. We can formalize the oracle

O = (O1,O2,O3) such that O1(H) returns the root value of that tree constructed

for the hash function H and O2(x, H) gives a certificate (n, z) for x by taking the

path from that tree starting from the input x. It is clear that such an oracle will

break every hash function in the chain-resistance sense with probability 1. Inspired

by the theorem with two oracles in the previous chapter, we also add a third part
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O3 to the oracle which would implement a truly randomly chosen function from

some well-chosen hash function family. All we would need in this case is to show

that the hash function supplied by O3 is hard to break. Due to it being computed

by the oracle the hash function that we deem unbreakable does not have to be

polynomial-time. It also means we get control over information flow in the oracle,

which is to say, the oracle knows how much info about the function leaks or would

leak to the adversary when it constructs a certain type of tree since it can observe

what oracle calls would be made in its computation.

We note that this representation for the oracle is clearly not optimal in the sense

of the lenghts of its inputs and outputs. We could modify them so that the out-

puts they currently give could be computed in polynomial time from the ones they

would give then. For instance, O2 can give out only the corresponding z1 and n1

of the certificate, as the next entry can then be constructed by computing H(x, z1)

or H(z1, x) (depending on n1) and we can call the oracle again and again until we

end up in the root. There are a few other tricks that could be used. However,

these shorter representations would only be useful if we considered embedding the

oracle into a function, which we would need for ruling out semi black-box con-

structions. This thesis is mainly concerned with fully black-box constructions and

as such leaves the possibility of an embedding as a future problem to be solved

once this oracle is indeed shown to give the desired separation.

There are, however, severe limitations on using this type of oracle. We now try to

describe what they seem to be and how they could possibly be avoided.

3.2 How not to Construct a Separation Oracle

The approach suggested in the preceeding section initially sounds very promising.

However, Buldas managed to prove (as a yet unpublished result) that if the oracle

indeed gives out the root of a full tree (a tree with all the possible inputs x) from
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O1, such an oracle can always be exploited to find a collision. We state the result

as a theorem:

Theorem 3.2.1. Let h : {0, 1}n → {0, 1}m be a hash function. Then there exists a

polynomial time oracle machine construction for H : {0, 1}4n → {0, 1}2n such that

if a full tree is built from Hh, its root value r = (r1, r2), r1, r2 ∈ {0, 1}n will be a

collision for h.

Proof. We show that Hh(x1, x2, y1, y2) (x1, x2, y2, y2 ∈ {0, 1}n) can be constructed

as follows:

• Check if x1 and x2 form a collision for h. If they do, return (x1, x2).

• Check if y1 and y2 form a collision for h. If they do, return (y1, y2).

• If neither condition was satisfied, return 02n.

It is clear that if a collision is ever presented to Hh as either left or right input, it

will also return a collision as output – it can be the same collision but it may also

be the collision passed as the other input. Since we are presented with a full tree,

every possible 2n-bit string is given as input somewhere. Since there is at least

one collision, a string encoding that must also be given as input from somewhere

and it follows that a collision will also nessecarily be returned as the root value

because there is a path of Hh leading from the collision down into the root.

This theorem means that an oracle that constructs the full tree can always be ex-

ploited. We note that we do not need to break the chain-resistance property with

probability one. This means that we are allowed to fail to produce a certificate for

some inputs x for O2 as long as we can produce a certificate with a non-negligible

probability. This means that the tree does not need to be full, but it still needs to

be quite large – it needs to use at least a polynomial fraction 1
p(n)

of all possible

inputs.
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3.3 Extending the Construction

The previous construction leaves some room for generalization. Suppose we check

more than one pair per each input, but still pass on our findings so if a collision is

ever found, it will propagate to the root. This leaves us with a question of what

inputs to check.

After some consideration we can formulate our question in terms of graph theory.

Suppose we are trying to construct H : {0, 1}2k → {0, 1}k that will find collisions

for h : {0, 1}n → {0, 1}m. Since we are trying to mimic the previous construction,

assume that for each x ∈ {0, 1}k the function has a set of pairs in h it will check

for and if it finds a collision it will pass that same value x down. We can then

construct a bipartite graph. Let Pn be the set of unordered pairs from {0, 1}n

(so |Pn| = 2n−1(2n − 1)) and let G = ({0, 1}k, Pn, E) be the bipartite graph such

that (x, (y1, y2)) ∈ E iff H checks the pair (y1, y2) when given x as input. What

we would like is for every subset of {0, 1}k that has at least 2k

p(n)
elements to have

nearly all the elements of {0, 1}2n as its neighbours (so at least one collision would

be among the neighbours). That would mean that no matter what inputs are

given to that tree, assuming there are at least 2k

p(n)
of them, a collision will always

be found. There is one additional constraint – namely, we can check only a poly-

nomially bounded number of pairs, as H is expected to work in polynomial time.

It turns out that just such types of graphs have been considered before in other

applications.

3.4 Disperser Graphs

Definition 3.4.1. We call a bipartite graph D = (V1, V2, E) a (K, ε)-disperser if

the neighbour set N(U) of every U ⊂ V1 with cardinality K has at least (1− ε)|V2|

elements in it.

In our case, we are looking for a K = 2k

p(n)
disperser graph with as small ε as we

can possibly have. It turns out that there are well-known lower bounds on all the
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parameters of disperser graphs.

Dispersers are mainly used as theoretical tools for randomized complexity classes

or for extracting randomness from a weak source. They are generally considered

alongside extractors, which serve a similar but stronger role. Both types of graphs

are often used in complexity theory and cryptography and there are numerous

good surveys about their properties, consntructions and bounds (see Shaltiel [13]

for one).

Let D be the average degree of a vertex in V1. One thing we have to note straight

away is that for us to have any hope of always covering enough of V2, we need

KD ≥ (1 − ε)|V2| since otherwise there simply are not enough neighbours. Since

most of the time some neighbours overlap, this would be an idealistic scenario.

As it turns out, there are much more strict bounds for the parameters. In fact,

Radhakrishnan and Ta-Shma give the following theoretical bounds in [11]:

Theorem 3.4.1. Suppose that G = (V1, V2, E) is a (K, ε)-disperser with N = |V1|

and M = |V2|. Let D be the average degree of a vertex in V1.

(a) Assume that K < N and D < (1−ε)M
2

(so G is not trivial). if 1
M

ε < 1
2

then

D ≥ 1
ε
log N

K−1
.

(b) Assume that K ≤ N
2

and D ≤ M
4
. Then DK

M
≥ c log 1

ε
for some c.

We try to apply these bounds to see how far the previously presented adversary

idea could take us. Let q(n) be the polynomial by which D is bounded. From (a)

we then find that q(n) ≥ c1
ε
log(n) for some constant c and thus ε ≥ c log(n)

q(n)
≥ 1

q′(n)

for some polynomial q′(n). This means that we can guarantee that all but 1
q′(n)

of

all the possible pairs are covered. We now turn to study the structure of the hash

functions and their collisions to show how well this approach could work.
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3.5 The Structure of Hash Function Collisions

3.5.1 Collision Graphs

It should be clear that we can view collisions as edges in a graph with the vertex

set being the domain of the hash function. We formalize that with the following

definition:

Definition 3.5.1. Let h : {0, 1}n → {0, 1}m be a hash function. We call the graph

Gh = ({0, 1}n, E) a collision graph for h if (x1, x2) ∈ E precisely when x1 and x2

form a collision.

We now formally try to describe the structure of collision graphs with simple com-

binatorial arguments.

Lemma 3.5.1. Let Gh be a collision graph for h : {0, 1}n → {0, 1}m . Then for

every x ∈ h({0, 1}n), the vertices in h−1(x) form a clique in Gh.

Proof. Choose x1, x2 ∈ h−1(x), x1 6= x2. Then h(x1) = x = h(x2) and so they

form a collision.

We note that a single vertex without any neighbours also constitutes a clique.

The following lemma completely describes the structure of collision graphs.

Lemma 3.5.2. The collision graph Gh for h : {0, 1}n → {0, 1}m is the union of

at most 2m vertex-disjoint cliques. Also, for any graph G of 2n vertices and the

previous property we can construct a h′ such that G is the collision graph of h′

Proof. There are at most 2m elements in h({0, 1}n). The original of each of them

forms a clique and no vertex can belong to two different originals so the cliques

have to be vertex-disjoint. The second part is obvious, as we can index the cliques

with values from {0, 1}m and then construct the h′ so that h′(x) would return the

index of the clique the vertex x is in.
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3.5.2 Edges to Check in the Best Case

We are interested in the question of how many edges we have to check before we

can be sure there is at least one collision among them.

Lemma 3.5.3. Let h : {0, 1}n → {0, 1}m be a hash function. Then there is at least

one x0 ∈ {0, 1}m such that |h−1(x0)| ≥ 2n−m.

Proof. Assume that the statement does not hold. Then for all x ∈ {0, 1}m we have

that |h−1(x)| < 2n−m. But then |h−1({0, 1}m)| < 2n−m × 2m = 2n

Corollary 3.5.4. The collision graph Gh of h : {0, 1}n → {0, 1}m has at least one

clique of size 2n−m.

We now state a classical theorem of graph theory proved by Turan in 1941

Theorem 3.5.5. (Turan) Let G = (V, E) where |V | = n and G contains no clique

of size r + 1 or larger. Then

|E| ≤
⌊(

1− 1

r

)
n2

2

⌋

and equality can be achieved.

This allows us to prove the following:

Theorem 3.5.6. Let h : {0, 1}n → {0, 1}m be a hash function. Then we can

guarantee that we find a collision by checking for 2n+m cleverly chosen pairs.

Proof. By Turan theorem there exists a graph with the vertex set {0, 1}n such

that it has no cliques of size 2m but has |E| =
⌊(

1− 1
2n−m−1

)
22n

2

⌋
edges. If we

check all the pairs corresponding to edges in the complement of that graph, the

collision graph can not be formed from the remaining edges because by the previous

lemma, it has to have a clique of 2n−m vertices but no such clique can exist due to

the original graph chosen being free of them. The complement of that graph has

1
2
2n(2n − 1)− |E| < 2n+m edges so we can do it by checking 2n+m pairs.

We should note that while in general, any discrete function with domain smaller

than the range is considered a hash function, it is generally assumed that the dif-

ference n−m = ω(log(n)) because if it is smaller, then the ”secure” constructions
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are usually trivial but also hard to use in practice. We also make the same as-

sumption in our work and henceforth consider the difference n−m to be bounded

from below as mentioned.

Considering that using the disperser approach, we can cover all but a polynomial

fraction of the pairs, there is always a possibility of the set induced by the dis-

perser covering those 2n+m cleverly chosen pairs and thus finding a collision. This

means that the disperser construction cannot be ruled out by simple combinato-

rial claims, since there is a theoretical possibility of a K element subset always

covering those vertices that guarantee us a collision.

However, constructing a disperser that does that is a different story entirely. It is

known that there are dispersers with D = Θ(n
ε
) and with log KD

M
= log log 1

ε
+ c

and there are explicit constructions that come pretty close to these bounds (for

instance the one given in [15]), covering a certain set (or actually one of a a family

of sets as we can permute the vertices in the Turan construction) is not guaranteed

by the usual constructions.

3.5.3 Edges to Check in the Worst Case

We however note that the Turan construction is a good case – if we can choose

the pairs ourselves, we can get by with asking for just 2n+m of them. We still have

not answered the question of how many pairs we would need to check in the worst

case. The following theorem and its corollary addresses that question.

Lemma 3.5.7. Let h : {0, 1}n → {0, 1}m be a hash function. Then there are at

least 2n−1(2m − 1) collisions.

Proof. We know the collision graph is composed of vertex-disjoint cliques and

that a clique of size n has 1
2
n(n− 1) edges. Let ni = |h−1(i)| where i ∈ {0, 1}m so∑

i∈{0,1}m ni = 2n. Then there are
∑

i∈{0,1}m
1
2
ni(ni − 1) = 1

2

(∑
i∈{0,1}m n2

i − 2n
)

collisions and the formula is minimized when ni are chosen as equal as possi-

ble. If h maps exactly 2n−m elements to each x ∈ {0, 1}m then there are exactly
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2n−m
(

1
2
2m(2m − 1)

)
= 2n−1(2m − 1) collisions.

Corollary 3.5.8. Let h : {0, 1}n → {0, 1}m be a hash function. Then there can be

at most 2n−1(2n − 2m) pairs that do not form a collision.

We would therefore need to cover all but roughly 2−(n−m) fraction of the inputs.

Since n−m = ω(log n), this means a 1
nω(1) ) fraction and thus the disperser approach

does not get us far enough, because we leave a polynomial fraction uncovered and

this is less than what is needed.

3.6 Infeasibility of the Disperser Approach

We now take a step back and try to understand why extending the construction

fails. We note that our approach is essentially the following – check as many pairs

as you can in the tree and hope you catch one. If you do, just pass it down to the

root. Since the tree is of exponential size, the hope of finding one is quite large,

so it is a reasonable trick to try. So why doesn’t it work? Maybe the approach

of just checking pairs is too simplistic. We note that for these types of adver-

saries we can replace the oracle for h = O3 given to A with a ”collision oracle”

ch : {0, 1}2n → {0, 1} such that ch(x, y) = 1 precisely when h(x) = h(y). We now

explore the boundaries of adversaries with just that oracle.

In this case, the problem for constructing the oracle parts O1 and O2 becomes

simple. All we have to ensure is that we form the tree in such a way that we can

always answer 0 to the oracle queries presented to us within it. If we can ensure

that we answer few enough queries and we answer all of them negatively, then it

follows rather directly that collision-resistance of h = O3 is preserved. It turns out

that if we only consider the collision oracle, this problem is (nearly) equivalent to

trying to find a good enough disperser.

3.6.1 Adjusted Problem Statement

We begin with a definition:
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Definition 3.6.1. We say that Hc : {0, 1}2k → {0, 1}k is a Hash adversary for a

hash function family χ of h : {0, 1}n → {0, 1}m if it is computed by a deterministic

oracle machine that makes at most a polynomial number pH(k) of calls to the

collision oracle ch during any call H(x) where x ∈ {0, 1}2k.

We stress that we consider deterministic machines for hash adversaries. This is

only natural because we expect H to compute a function.

We now prove a somewhat suprising result showing that our problem can be re-

duced to a much simpler one.

Theorem 3.6.1. Let F be a family of hash functions h : {0, 1}n → {0, 1}m .

Assume that for any Hash adversary H and for all but an ε fraction of h ∈ F

there exists a subset K of cardinality δ22k such that for all x ∈ K no call to ch

made by H(x) covers an actual collision for h. Then we can construct a tree with

at least δ22k inputs for any hash adversary H ′ such that no collisions are checked

during its execution. The reverse also holds.

Proof. Let H : {0, 1}2k → {0, 1}k be any hash adversary. We construct a full

Merkle tree of Hc0 such that every possible input x ∈ {0, 1}2k is presented to it

exactly once. We use the dummy oracle c0 that always returns 0. Based on that

tree, we define H ′(x) to do all the calculations and calls to the oracle c done by

Hc0 on the path from H(x) down to the root. Since H makes at most a polyno-

mial number of calls to the oracle and the path is of length k, H ′ is also a hash

adversary. We can therefore extract a δ22k cardinality subset K for which H ′ will

not ask for any actual collision of h from c (for all but an ε fraction of h ∈ F).

We construct the hash tree for H as the union of all the paths in the Merkle tree

that begin from vertices in K. Since no collisions are found on these paths due

to the construction of the set K, these paths are the same as those in the original

Merkle tree constructed with the dummy oracle c0. This means that their union

indeed forms a proper tree and since no path finds a collision, the tree constructed

as their union also fails to find one.
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The reverse is actually trivial: Let H : {0, 1}2k → {0, 1}k be a Hash adversary and

assume that for some h : {0, 1}n → {0, 1}m we can find a tree with at least δ22k

different inputs and during which no collisions are found. If we just take the set

of inputs given to it, we have the required subset of cardinality K for H.

This theorem essentially says that instead of trying to construct a tree, we should

concentrate all our efforts to just finding the subset of input pairs with the re-

quired size and property, because once we can do that for any hash adversary, we

can also construct the tree. This removes one dimension of complexity from our

problem and allows us to look at it in terms of graph problems yet again. The

proof was carried out for full inputs of length 2k but if we can construct a tree

from a polynomial fraction of them, it is bound to contain a polynomial fraction

of different single inputs of length k as well.

3.6.2 Infeasibility Results

We know from before that the disperser graphs fail to give us such a construction

(at least with simplistic attempts). It turns out that a probabilistic argument

shows that we cannot do much better with other means either:

Theorem 3.6.2. Assume that H : {0, 1}2k → {0, 1}k is a hash adversary with an

oracle ch for h where h : {0, 1}n → {0, 1}m is chosen uniformly from a family of

hash functions F . We also assume that for every pair (x, y) ∈ {0, 1}2n, x 6= y the

probability that c(x, y) = 1 is 2−ω(log(n)). Then the probability of not being able to

construct a tree that doesn’t show any collisions is negligible.

Proof. Let N(x1, x2) be the number of different inputs of H on which it checks for

the collision c(x1, x2). It is clear that
∑

(x,y)∈{0,1}4n N(x, y) ≤ p(n)22k since there

are a total of 22k different possible inputs and for each input the number of calls

to ch is bounded by a polynomial p(n). We calculate the expected value of the

number of inputs Np that will lead to a collision being detected in their branch:
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E[Np] ≤
∑
h∈F

Pr[h]
∑

(x,y)∈Pn

N(x, y)[h(x) = h(y)] =

=
∑

(x,y)∈Pn

N(x, y)
∑
h∈F

Pr[h][h(x) = h(y)] =

=
∑

(x,y)∈Pn

N(x, y)2−ω(log(n)) ≤ p(n)22k−ω(log(n)) .

Where [·] is the Iverson symbol (that is 1 when the predicate within the brackets

is true and 0 otherwise) and Pn is the set of unordered pairs from {0, 1}n.

Using the Markov inequality we get that Pr[Np ≥ 22k−1] ≤ p(n)21−ω(log(n)) so a

subtree with at least half of all the different inputs fed to it that fails to find a

collision can be found for all but a p(n)21−ω(log(n)) fraction of h. Using the previous

theorem now gives us the promised result with δ = 1
2
.

What this theorem roughly means is that given any fixed hash adversary, the oracle

can avoid revealing the collisions to it directly. It does not, however, rule out that

from such trees we could somehow deduce the collisions indirectly. We can extend

the construction given in the previous theorem to rule out that as well:

Theorem 3.6.3. Under the assumptions of the previous theorem, the probability

of finding a collision can be made negligibly small.

Proof. Let 2−d be the collision probability in the previous proof. For each h ∈ F

we randomly chose a set Fh ⊂ F of size 20.5d and try to avoid all of their collisions

instead of just those for h itself. The probability of randomly choosing a collision

for one of them from the set of all the possible pairs is 2−d · 20.5d = 2−0.5d and if

d = ω(log n) then so is 0.5d. This means that the argumentation of the theorem

will still go through and that we can still avoid the set of forbidden pairs for all

but a superpolynomial fraction of h ∈ F . This however also means that each

such avoiding tree could be valid for any of the 20.5d possible hash functions in

F instead of just one and considering the construction and size of that set, the
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average chance of guessing a collision correctly only knowing the set Fh that h

belongs to it is still negligible.

This means that an adversary that only uses the approach of checking pairs of

input values for collisions can always be fooled. As such, it rules out one rather

simplistic approach for the adversary trying to exploit the oracle. We now turn to

see if our approach could be extended or improved in any way.
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4. Other Possible Approaches

By now we have shown that it is hard to exploit the tree oracle by just checking

pairs for collisions. However, there are more complicated things that the adversary

could do. We now rule out a few other seemingly promising approaches.

4.1 The Equality Oracle

We note that there is a lexicographic and a rather natural total ordering of bit-

strings that corresponds to the order of natural numbers if the strings are inter-

preted as numbers in base 2. One of the first ideas about finding collisions that

Buldas originally had (also an unpublished result) was to construct a hash ad-

versary that could find the maximum and minimum input that produced a given

output when the full hash tree was used. All that was essentially needed for that

were checks in the form h(x) = y, x ∈ {0, 1}n, y ∈ {0, 1}m. If we formalize that

in the form of an oracle eh(x, y), the same argument as presented for the collision

oracle can be carried out nearly word to word to show that this approach has as

little potential as our previous one, since as before, we can nearly always find trees

that always answer 0 to the query. In this case the lack of potential does not follow

as easily though. We note that it would take 2m− 1 queries of this type that were

answered negatively to determine the value h(x). Therefore there is a possibility

of the adversary still finding out the value of h(x) during the tree. However, the

argument given for ch in theorem 3.6.3 that looked at collisions for a large set of

randomly chosen h′ ∈ F instead of a single h could again be used rather effectively

to rule out the equality oracle giving enough useful information.
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4.2 The Greater-than Oracle

The approach of finding the minimum or maximum of some values gives us another

idea of what to try to rule out. Suppose we base our construction of H on questions

of the form h(x) > h(y) where the order is the same natural lexicographic order

as mentioned before. In that case we can also construct a binary oracle g(x, y) to

answer queries of this type. There is one very important difference between this

oracle and the previous two considered. In the collision and equality oracles, the

answers were clearly asymmetric in the amount of information they gave away.

That meant that 0 was a ”safe” answer and if we could avoid ever answering 1,

that nearly guaranteed that the oracle could not be exploited. In this case, both

answers 0 and 1 give out nearly equal information so always answering 0 is just as

dangerous as always answering 1.

This means that we have to recheck all our steps for the collision oracle. We note

that theorem 3.6.1 essentially relies on our ability to ”fake” safe answers so we

could get a static tree structure. As we remember from the theorem 3.2.1, if we

honestly answer the queries in the full tree then the adversary can guarantee him-

self a collision in the root. We also note that the greater-than oracle can be used

to emulate the collision oracle as c(x, y) = 1 happens exactly when g(x, y) = 0 and

g(y, x) = 0. This means that to use the same technique, we have to find a way

to fake the oracle answers consistently enough that a ”correct” subtree where all

the answers were correct could be extracted but yet falsely enough that the root

would not give the adversary a collision. This is by no means a trivial task.

There is however a way to do so. We extend h : {0, 1}n → {0, 1}m into a larger

range to get h′ : {0, 1}n → {0, 1}m+n such that the most significant bits of h′(x)

correspond to the output of h(x) but the least significant ones are chosen randomly

with a constraint that h′ is injective so no output corresponds to two different in-
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puts. We then answer g(x, y) queries based on h′ instead of h. Clearly, we have

to clean the tree of all the answers that say g(x, y) when h(x) = h(y) but this is

essentially the same as clearing the tree of all the queries where c(x, y) would be

equal to 1.

However a small problem remains. Namely, the argument used to prove that the

answers given by the oracle do not uniquely determine the collisions by some indi-

rect means does not work as it did before. The original idea needs to be modified

a little. Instead of choosing random hash functions into Fh, we choose the other

hash functions in such a way that consistent answers can still be given rather easily

for the greater than. To be precise, we try to avoid answering queries such that

h(x) and h(y) differ only in the last 0.5d bits where 2−d is the collision probabil-

ity. Essentially the same argumentation as before could then be used. Intuiton

behind this approach is that instead of h we simply consider a hash function

h′′ : {0, 1}n → {0, 1}m−0.5d for which we elliminate the collisions in the tree. Since

we remove any oracle queries that distinguish between collisions within a class of

size 20.5d output values, it is easy but rather technical to prove that even knowing

all the information given out by the oracle the chance of finding a collision is still

negligible.

4.3 Greater-than-by-value Oracle

We note that there is one more natural binary oracle we could try to fake: the one

for queries of type h(x) > y. This oracle has one strength over the others: while

it would take 2m − 1 queries to know the actual value of h(x) using the equality

oracle and even more for the others, it only takes roughly m queries to find the

value using this one. This means that we could easily interchange between a binary

oracle of this type and a full oracle for h since we can compute one from the other

in polynomial time. Therefore, if we could learn to somehow fake this oracle in

the same sense as we have faked the three previous ones, it would give us a full
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proof of the separation we have been seeking. It should then be no suprise that

this oracle seems to be much harder to fake and we have not discovered a good

means of doing so. The approach used for greater than does not work because if

each H tries to query an exact value of h(x), it can get it with m queries and there

is no legal way to prevent that.

4.4 Using many Oracles in one Construction

We note that we can also rule out all the constructions that use a combination

of the first tree oracles∗ – the last step in theorem 3.6.2 can be changed to use

δ = 4
5
. Then we can choose the sets separately for all three such that none of

them gives enough information and then take their union which is of size at least

a fraction δ′ = 1
5
. This can be done even after the tricks used in theorem 3.6.3 and

its analogues have been taken into account. Therefore, this thesis rules out any

adversary constructions that work based only on these three oracles and do not

use any additional types of info. This seems to rule out most of the simple ways

of exploiting the oracle, so if the tree oracle does not work, the adversary that can

use it to break collision-resistance for O3 has to be fairly clever.

4.5 Possible other Constructions of Oracles

The work presented up to now leaves the possibility of oracle separation in a rather

ambiguous state – the proposed oracle seems to be hard to exploit, but it seems

to be nearly impossible to rule out an adversary construction that nonetheless

does so. There is one more approach that could lead to some positive results. We

note that for any possible function presented to the oracle, the probability of it

giving any information about the collisions of h supplied by the oracle taken over

all the possible inputs nearly always has to be negligible – if it is not, we could

do without an oracle by simply choosing a random input, using the function on

it and trying to deduce a collision based on that. We essentially proved this fact

∗Of course, if we note that the collision oracle can be emulated with the greater-than oracle,
we can only get by with two oracles and the argument would be somewhat simpler
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for collision checking adversaries in theorem 3.6.2 and then extended it to other

oracle types. This approach might be slightly more general in allowing for more

complex hash adversaries but it leaves a problem of constructing a tree, since the

approach we took in this thesis does not work any more or has to be heavily mod-

ified at the very least. It thus seems that the problem needs more complicated

mathematical machinery, perhaps that of information theory and of Kolmogorov

complexity but perhaps also of advanced complexity and combinatorial theory.

However, there may be a better choice for an oracle that could lead to a easier

separation. We now briefly discuss a few possible alterations to the current scheme.

We first note that the oracle has to be a well-defined function. It can, however, be

highly dependent on its inputs. For instance we may vary the polynomial fraction

of inputs we give out based on the working time of the function given as input.

This may allow us to better limit the number of possible inputs seen. However,

this will probably not help much.

There are certain inherent flaws in the oracle model we have been studying. The

major one is that it can force us to give out exponential amounts of information

during the whole calculation of the tree. This causes us theoretical problems be-

cause there is no way to rule out an exponential amount of it being transmitted

through the root value since a polynomial output may carry information about

an exponential sized set. This makes it nearly impossible to rule out many oracle

calls eventually helping to find a collision. There may be ways of showing that

any information about an exponential sized set that the root gives could not be

reliable or that it could not be gathered at all. However, the current model seems

to present no obvious ways of doing it.

The tree model is good if we want to avoid showing collisons for the function the

tree is constructed from. However, we only have to avoid showing collisions for

just one function – the one provided by O3. This means that we might want to

abandon the tree approach and instead just concentrate on certificates that do
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not have to form a tree when viewed together. This removes one rather restrict-

ing constraint, but does not really solve any problems, since there seem to be no

obvious good ways of constructing a root value without avoiding the problem of

possibly exponential information.

There seems to be one way that clearly solves the problem with O1 giving too

much info – namely, choosing it randomly. The best way to do that for a given

H : {0, 1}2k → {0, 1}k is to uniformly generate a k element long hash chain string

with uniformly chosen inputs its root value. It can, in fact, be shown that if

the root value is chosen that way, a certificate exists for most inputs with rather

high probability. Also, in this case, we clearly need not worry about too much

information leaking from O1. However, there may be problems with unwanted

information leaks from O2 since the path structure of the certificates may then

reveal information that is hard to control. Because of that this model seems to be

much harder to analyze than the one we mainly studied.
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Conclusion

We tried to show that no black-box constructions could exist that would give a hash

function secure for time-stamping from a hash-function that is collision-resistant.

For that we studied an oracle that constructs a large hash tree, gives out its root

value and then outputs certificates according to the tree structure. Since breaking

the time-stamping property requires the tree to be of exponential size, it is hard

to avoid giving the adversary the capacity of performing exponential amounts of

work within that tree.

We manage to show that this oracle does not seem to be easy to exploit for find-

ing collisions. It is known from before that if a full tree is constructed inside the

oracle then it can be used to break collision-resistance for all hash functions. We

try to extend the construction used to find collisions in that proof and conclude

that the simplistic approach of just checking pairs of inputs for collisions is not

enough to find a collision with just one oracle call. We then rule out a few other

simple approaches. Namely we prove that only checking if the hash function gives

a certain output for a given input and checking if one input gives a larger hash

value than the other will also be insufficient, even when used together in the hash

adversary.

We also briefly discuss ways of altering the oracle that may make the proofs easier

in some respects. However, we conclude that the model currently used seems to

be the easiest to study and that while the other models eliminate some theoretical

problems, they give rise to other and more complicated ones.
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Kollisioonivabadel räsifunktsioonidel

põhinevate piiranguteta

ajatempliskeemide

võimalikkusest

Magistritöö (20 AP)

Margus Niitsoo

Käesolevas töös uurime piiranguteta ajatempliskeemi jaoks turvaliste räsifunkt-

sioonide konstrueerimise võimalusi kollisioonivabadest räsifunktsioonidest. Kasu-

tades Harberi ja Stornetta poolt loodud ajatembeldusskeemi ning Buldase ja

Saarepera poolt selle jaoks konstrueeritud turvatingimust uurime nn. musta kas-

ti konstruktsioonide võimatuse tõestuse võimalikkust. Kuna võimatuse tõestuse

lihtsaim variant on oraakliga eraldus, keskendumegi just ühe selle eralduse jaoks

sobivana tunduva oraakli omaduste ja võimaluste uurimisele.

Me eeldame, et oraakel konstrueerib räsipuu, väljastab puu juurväärtuse ning

annab seejärel sellest puust lähtuvalt ajatemplisertifikaate. Me tõestame, et kui

oraakli argumendiks olev musta kasti meetodil koostatud räsifunktsioon ainult alg-

se räsifunktsiooni kollisioonipaare kontrollib või nn. suurem-kui predikaati kasutab,

ei saa seda oraaklit kasutada kollisioonide leidmiseks . Töö tulemused annavad loo-

tust, et nimetatud oraakel on tõepoolest eralduseks sobiv ja lubavad oletada, et

sarnaste oraaklite edasine uurimine võib lõpuks probleemi lahenduseni viia.
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