
UNIVERSITY OF TARTU
Institute of Computer Science
Computer Science Curriculum

Erik Jaaniso

Automatic mapping of free texts to
bioinformatics ontology terms

Master’s Thesis (30 ECTS)

Supervisor: Hedi Peterson, PhD

Tartu 2016

Bioinformaatika ontoloogia terminite automaatne leid-
mine vabatekstist

Lühikokkuvõte: Bioinformaatika valdkonnas on olemas palju tööriistu ja
teenuseid, mille hulk kasvab üha kiirenevas tempos. Et informatsioon nende
ressursside kohta oleks kättesaadav võimalikult kasulikul viisil, annoteerime
me need ontoloogia terminitega. Hetkel toimub annoteerimine käsitsi, mis on
aeganõudev ja veaohtlik protsess. Antud töös seame eesmärgiks luua tööriist,
mis aitab annotaatorit, pakkudes talle annoteerimissoovitusi. Me loome prog-
rammi, mis loeb sisse vabatekstilise tööriistade ja teenuste kirjelduse, lisab
neile seotud veebilehtede ja teadusartiklite sisu ja sellel põhinevalt annab
välja parimad leitud ontoloogia terminite vasted. Seejärel, optimimeerime
programmi parameetreid käsitsi tehtud annotatsioonide põhjal. Esmased tu-
lemused on paljulubavad – paljud leitud soovitused on kooskõlas käsitsi teh-
tud annotatsioonidega. Veelgi enam, kogenud annotaatorite väitel on mitmed
teised soovitused samuti korrektsed.

Võtmesõnad: tekstianalüüs, bioinformaatika, ontoloogiad

CERCS: B110, P170

2

Automatic mapping of free texts to bioinformatics on-
tology terms

Abstract: In the field of bioinformatics, the number of tools and services is
ever-increasing. In order to make information about these resources available
in a useful was, we annotate them with ontology terms. This is currently
done manually – which is time-consuming and error-prone. In this thesis,
we set out to make a tool that helps the annotator by providing annotation
suggestions. We developed a program, that reads in free text descriptions
of tools and services, adds content of web pages and publications related to
the tool and based on this outputs best matches to ontology terms. Then,
we optimised the parameters of the program on manually done annotation
sets. Initial results look promising, as when comparing performance against
these manual annotations, we see that many suggestions are agreeing with
them. Moreover, according to experienced annotators, many of the other
suggestions are also correct.

Keywords: text analysis, bioinformatics, ontologies

CERCS: B110, P170

3

Contents
1 Introduction 6

2 Background information 7
2.1 EDAM ontology . 7
2.2 Mapping of free text . 7
2.3 Existing algorithms . 8

2.3.1 Initial mapper . 8
2.3.2 ZOOMA . 8

3 Methods 10
3.1 Architecture . 10
3.2 Input: The free texts . 10

3.2.1 SEQwiki . 10
3.2.2 SEQwiki tags . 11
3.2.3 ms-utils.org . 11
3.2.4 BioConductor . 12
3.2.5 bio.tools . 13
3.2.6 Obtaining the data . 14

3.3 Query: Abstracted input . 14
3.4 Edam: The ontology concepts 15
3.5 Processor: Making inputs ready for mapping 16
3.6 Fetcher: Getting web page and publication content 17

3.6.1 Publications . 17
3.6.2 Publication sources . 19
3.6.3 Extracting content from DOI links 22
3.6.4 Web pages . 25
3.6.5 Getting content of PDF files 25
3.6.6 Saving content to local database 26

3.7 PreProcessor: Cleaning and tokenising 27
3.8 Idf: Inverse document frequency weights 30

3.8.1 IDF for concepts . 32
3.8.2 IDF for queries . 32

3.9 Processor utility program . 35
3.9.1 Database management 35
3.9.2 IDF management . 36

3.10 Mapper: The mapping algorithm 37
3.10.1 Approximate matching 37
3.10.2 Proximity matching . 40
3.10.3 Best scores at a destination position 42

4

3.10.4 Score between source and destination lists 45
3.10.5 Bi-directional matching 47
3.10.6 Final score between a query and a concept 49
3.10.7 Final output . 52
3.10.8 Optimisation . 52

3.11 Output: Getting the results 55
3.11.1 As plain text . 56
3.11.2 As HTML . 57

3.12 Benchmark: Evaluating performance 59
3.12.1 Benchmark output . 59
3.12.2 Metrics . 59

4 Results 63
4.1 Parameter tuning . 63

4.1.1 Approximate matching 63
4.1.2 Proximity matching . 65
4.1.3 Inverse document frequency 66
4.1.4 Bi-directional matching 71
4.1.5 Score scaling . 72
4.1.6 Multipliers, normalisers and weights 72
4.1.7 Pre-processing parameters 74
4.1.8 Conclusions . 76

4.2 Results of automatic mapping 77
4.2.1 SEQwiki . 77
4.2.2 SEQwiki tags . 79
4.2.3 ms-utils.org . 80
4.2.4 BioConductor . 82
4.2.5 bio.tools . 85

5 Discussion 87

6 Conclusions 89

A Used libraries 93

B Program parameters 94

5

1 Introduction
In the field of bioinformatics, the number of tools and services is ever-
increasing. Which means, that a problem a scientist might have, can already
have a solution, or at least tools available to reach it. But how does he
find this valuable work of others and not waste his resources on duplication
efforts?

One option is to collect the descriptions of these resources – tools and
services – in a common place. But even there, it will be difficult to find the
relevant tools from thousands of entries. Hence, we should annotate these
resources in a standardised way.

One possibility is to use ontologies for this task. Ontologies allow to
semantically connect meta-data – this simplifies the organisation and merging
of resources and provides better browse and search capabilities. For example,
if standard annotations are available, we could query the database and get a
list of tools, that convert from a set of inputs we have to a set of outputs we
want, and additionally get a description of operations necessary to achieve
this.

But how to annotate these resources? One way is to do it manually.
However, this is very time-consuming – the resource spent on annotating
could be better allocated elsewhere. Moreover, the current distributed way of
annotating involves three potential problems – carelessness (mistakes due to
lack of motivation), mistakes due to lack of knowledge about the tool/service
and mistakes due to lack of knowledge of the used ontology.

So, in this thesis we look at ways to partially automate this process. We
set out to make a tool, that gives suggestions to the annotator – this can
help both to reduce mistakes and free up the annotator’s time, as he doesn’t
have to look deeply into each tool or service anymore.

6

2 Background information

2.1 EDAM ontology
EDAM is a simple ontology for bioinformatics purposes [1].

It has 4 main sub-ontologies or branches:

topic describes a general concept or field, e.g., “Data handling” and “Pro-
teomics”

operation describes a function that processes a set of inputs to a set of
outputs, e.g., “Classification” and “Sequence alignment”

data describes the type of input or output, e.g., “Image” and “Ontology”

format describes the format of the input or output, e.g., “HTML” and
“FASTA”

Generally, only concepts and data types from the fields of bioinformatics
and computational biology have been included.

EDAM concepts can be related to other concepts, e.g., an operation might
have a topic and format might be a format of a concrete data concept. Con-
cepts are organised in a hierarchy structure, e.g., “Multiple sequence align-
ment” is a child of “Sequence alignment”, which is a child of “Alignment”.
Concepts can be deprecated be marking them as obsolete.

2.2 Mapping of free text
Free text is any text not annotated with meta-data or any additional inform-
ation. For example, the content of a book is free text, but also the abstract
of a journal article or every word in a web page.

There are different ways to categorise and annotate a collection of free
texts with terms from an ontology. A person familiar with the ontology might
read the content of this collection and based on his interpretation of the texts
and his knowledge of the annotation possibilities of the ontology, manually
assign concepts to the collection.

In this work, this collection of free texts is the description of a bioin-
formatics tool or service: its name, reference manual, an abstract of the
corresponding journal article, etc. As for the annotator part, we will try to
do it automatically.

One way to algorithmically find annotations, is by comparing words in
the free texts with words in the ontology concepts. If we find matching words

7

between a free text and a concept, then there is a chance that the concept is
describing one of the ideas expressed in the free text.

However, what to do, if matches are found to many concepts, which ones
are more descriptive of the full text? What if the text contains spelling
mistakes or non-relevant content to its main ideas?

In this thesis we develop techniques for finding terms from an ontology
to describe a bioinformatics tool or service, using word-to-word matching,
while trying to minimise the concerns raised in the previous paragraph.

2.3 Existing algorithms
2.3.1 Initial mapper

The initial mapper was written by Rabie Saidi [2]. It allows comparing
keywords, consisting of one or a couple of words, against concept descriptors
in EDAM. Scores based on the similarity of a keyword string and strings
describing the concepts are calculated. Then, concepts corresponding to the
highest scores are suggested as annotations for the keyword.

While working well, it does so only in case of very short input text, such
as a tool or service name or for keywords attached to the tool or service. The
reason is, that the full input text is compared against concept descriptors –
if input text is very long, then two strings with very different lengths will be
compared.

To enable more useful results from the automatic mapper, we would also
like to use all parts available in the tool or service description. So the ap-
proach described in this section needs to be extended, by enabling individual
word-to-word comparisons as first step.

2.3.2 ZOOMA

One existing tool finding possible ontology mappings for free text terms is
ZOOMA [3]. It works with not only one, but a combination of ontologies.
In addition to string comparisons, it uses a repository of previous mappings
to use existing knowledge in deciding the best mapping. In doing so it may
be able to avoid many pitfalls associated with basing decisions only on the
results of simple word-to-word comparisons.

However, it is mainly concerned with biological entities, rather than bioin-
formatics tools and services. But more importantly, it does 1-to-1 mappings,
while we are interested in annotating tools and services with potentially many
concepts, and, like the mapper described in the previous paragraph, it works

8

only for short phrases. So, it serves a different purpose and is not usable for
the task we set out to solve.

9

3 Methods

3.1 Architecture

Input Query
Input

Processor

Edam

EDAM ontology

SEQwiki

SEQwiki tags

ms-utils.org

BioConductor

bio.tools

PreProcessor

Fetcher

Idf

Mapper

Output

Benchmark Results

Query

CSV

CSV

CSV

CSV XML

OWL

Concepts

tokens

weightswebpages

publications

docs

QueryProcessed

ConceptsProcessed
Mapping

HTML HTML

txt

Figure 1: Architecture

The data processing pipeline of the automatic mapper can be seen on
Figure 1. The round boxes illustrate inputs and outputs, which will be
described in sections 3.2, 3.11 and 3.12. Square boxes encapsulate steps
along the pipeline – in the following sections, we will describe each of those.

The program has been implemented as a command-line program in the
Java programming language. Argument parsing is done by the JCommander
library (listed in Appendix A). A listing of all options is given in Appendix B.

3.2 Input: The free texts
In this section, we describe the different databases about bioinformatics tools
and services and the metadata these contain.

3.2.1 SEQwiki

The SEQanswers wiki (SEQwiki from now on) is a catalogue of bioinform-
atics tools for high-throughput sequencing (HTS) analysis [4]. It was born
out of pressing need for a structured knowledge sharing platform that could
keep up with the rapid emergence of HTS analysis tools. Wiki pages for
each tool include a short free-text summary, an optional longer description,
input and output formats used by the tool, licence, features and so on. It

10

is a volunteer based initiative, so the level of annotations might fluctuate
based on the person annotating the resources. A data dump of all the tools
can be obtained from the SEQanswers website [5]. We are interested in the
following fields:

Name Tool name, which might contain its purpose or used formats in it

Summary A short, usually one-two sentence description about the tool

Biological domain Corresponding to EDAM topic

Bioinformatics method Corresponding to EDAM operation

In addition, the full description available at each individual tool page and
properties like “PubMed id” and “URL type” (which includes Homepage,
Manual, etc) could be exploited for the mapping. As of writing, there are
700 tools in SEQwiki.

3.2.2 SEQwiki tags

Tools in SEQanswers have been annotated with tags from “Biological applica-
tion domain(s)” and “Principal bioinformatics method(s)”, which correspond
to EDAM topic and operation respectively. Manual mapping of these tags to
EDAM terms has been done and many tags have been renamed to the match-
ing EDAM label or synonym. The manual mapping took several weeks to
complete.

One report of such mapping is available on SEQanswers [6]. While out-
of-date, it still offers a valuable comparison target for the automatic mapper.
Thus, it could be used to test and tune the performance of the automatic
mapper in case of simple keyword-to-keyword matches. The report contains
172 mappings from SEQanswers tag to EDAM term.

While the up-to-date tags should directly correspond to an EDAM term
or synonym, there are still mistakes or omissions. One example is mix-
ups, where a SEQwiki domain has been erroneously mapped to an EDAM
operation, or a method mapped to a topic. So, in addition to suggesting
annotations for SEQwiki tools, based on input described in the previous
section, the interoperability between EDAM terms and existing SEQwiki
tags can be improved.

3.2.3 ms-utils.org

Ms-utils.org is a list of free software directed to mass spectrometry experts [7].
Emphasis is on tools for visualisation and analysis of mass spectrometry data

11

and automated methods for proteomics and protein analysis. As of writing,
235 tools are available in the software list.

We are interested in the following readily available metadata:

Name Tool name, which might contain its purpose or used formats in it

Description A very short, one-sentence summary of the tool

Link Homepage of the tool

Paper Optional PubMed ID(s) of related articles attached to the tool

In addition, ongoing manual curation to EDAM topics, operations and
formats is being performed. This can be used as benchmark for the automatic
mapper.

3.2.4 BioConductor

BioConductor is an open bioinformatics project, creating free software for
the analysis and comprehension of high-throughput genomic data [8]. It is
primarily based on the R programming language. 1085 software packages
are listed in the BioConductor file used as input.

Package metadata includes the following:

Name Tool name

Title A short title (a few words)

Description A short description (a few sentences)

biocViews One or more hierarchical tags, analogous to EDAM term labels

Also, each tool includes a reference manual in PDF format that can be
used as additional source for extracting EDAM terms. It can be obtained us-
ing an URL pattern where the tool name is placed in for each tool. Each tool
can contain additional documentation (vignettes) that can also be fetched for
additional input.

Manual curation is being done for EDAM topics and operations. Like for
ms-utils.org, this could be used as benchmark.

12

3.2.5 bio.tools

The Tools and Data Services Registry (hereinafter Registry) is a community-
driven curation effort for bioinformatics, developed under the European Bioin-
formatics for Life Science infrastructure (ELIXIR). resources [9]. It strives to
become a standard portal for analytical tools and data services in bioinform-
atics. Aiming for comprehensiveness, it should help scientists find the best
tools for their needs. The bio.tools input data used in this thesis contains
2402 entries of tools and services.

Consistency of tool and service description is achieved using the EDAM
ontology. In fact, the previously described tool databases are scheduled to
be merged in the Registry, and annotations using a common ontology would
help to ensure consistency. For example, some BioConductor packages have
already been imported.

The motivation to use Registry entries database as input to the automatic
mapper is threefold:

1. Improve the manual curation of existing entries to EDAM terms

2. Conversely, improve the automatic mapping algorithm and tune para-
meters to suggest terms more similarly to manual mapping

3. Lay the groundwork for an on-line term suggester, used at a time when
a new tool is being added to the Registry

The Registry uses the BiotoolsXSD schema as a resource description
model [10]. Among other attributes it defines, the following are useful for
the automatic mapper:

name Canonical resource name (1–50 characters)

homepage Resource homepage (URL)

mirror Mirror homepage (URL) (optional)

description Textual description of the resource (up to 1000 characters)

topic EDAM topic term(s)

functionName EDAM operation term(s)

dataType EDAM data term(s), input or output (optional)

dataFormat EDAM format term(s), input or output (optional)

docsHome Link to documentation main page (optional)

13

docsGithub Link to Github page (optional)

publicationsPrimaryID PMCID, PMID or DOI (these IDs are explained
in section 3.6.1) of the primary publication (optional)

publicationsOtherID PMCID, PMID or DOI of other relevant publica-
tions (optional)

Webpages, docs and publications contain only URLs and IDs pointing
to their content. The content itself has to be fetched from these external
sources. This is the topic of section 3.6.

3.2.6 Obtaining the data

For ms-utils.org and BioConductor, the manual curation is being worked
on in Google Docs. From there, we could easily obtain CSV files of the data.
For SEQwiki, a CSV download link was provided. In case of the mapping
report, converting the HTML table to CSV is also trivial. CSV files are read
using the opencsv software library (listed in Appendix A).

Obtaining all resources in the Registry for off-line analysis is possible
through its REST API [11]. The resulting XML file can be parsed using
capabilities built-in to the standard Java distribution.

SEQwiki and bio.tools input can also be obtained in JSON format, in
which case new input classes could be defined to parse it.

3.3 Query: Abstracted input
Different inputs have different fields describing the same concepts. In order
to work with the input parts’ content in an input type independent way, we
define a new structure abstracting away these differences.

A Query, to be mapped to EDAM concepts, is defined as follows:

name Name of the tool

webpageUrls Links to homepage and other web resources

description Short free-text description of the tool

keywords Tags attached to the tool

publicationIds Publications related to the tool

docUrls Links to documentation resources

annotations EDAM URIs of the manual curation

14

How different inputs relate to the abstract query can be seen in Table 1.
For SEQwiki, the webpage URL is obtained by appending the tool name
to the general SEQanswers URL. This gives the wiki page of the tool, from
where a longer description of it can be read. Additional webpages of the
tool and potential PubMed IDs are not being used currently. For Biocon-
ductor, package Vignettes are looked for from a few standard locations.

Table 1: Mapping of Input to Query

Query part SEQwiki SEQwiki tags ms-utils.org BioConductor bio.tools

name Name - Name Name + Title name

webpageUrls from Name - Link - homepage,
mirror

description Summary - Description Description description

keywords Domain,
Method

Domain/
Method - biocViews -

publicationIds - - Paper -

publications
PrimaryID,
publications
OtherID

docUrls - - -
Reference
Manual,
Vignettes

docsHome,
docsGithub

annotations - topic/
operation

topic,
operation,
format (in, out)

topic,
operation

topic,
functionName,
dataType,
dataFormat

3.4 Edam: The ontology concepts
The EDAM ontology is available in Web Ontology Language (OWL) format,
which is based on XML and Resource Description Framework (RDF). EDAM
version 1.14 contains 3218 concepts (425 in topic, 728 in operation, 1480 in
data and 585 in format branch). The EDAM ontology homepage contains a
download link and additional information [12].

Concepts are loaded using the OWL API library [13]. Currently, the
hierarchy within EDAM and any relations between concepts are ignored;

15

any semantic reasoning thus also not done. As we get a clearer picture on
how EDAM terms are found and suggested, we might want to take these hier-
archical relations into account. In essence, each concept is regarded as an
independent mapping target, with the following structure for string match-
ing:

label Preferred label (short name or phrase in common use)

exactSynonyms List of optional exact synonyms of the preferred term

narrowSynonyms List of optional narrow synonyms

broadSynonym List of optional broad synonyms

definition Concise description of the concept

comment Optional peripheral but important information

Concepts are stored in a map data structure, with their unique EDAM
URI as key. Each concept contains also a boolean flag, indicating whether
the concept is obsolete.

3.5 Processor: Making inputs ready for mapping
Before queries can be mapped to concepts, both need to be processed. The
following steps are done:

• For possible homepage and documentation URLs in the query, the con-
tent of the corresponding web pages is obtained; for possible publica-
tion IDs present in the query, the corresponding publications will be
obtained and the found content will be stored in a structure (publica-
tion title, abstract, ...) (section 3.6)

• Strings in all query and concept parts will be stripped of punctuation
and tokenized at word borders, with optional stopwords removal and
stemming (section 3.7)

• For term weighting, the inverse document frequency (IDF) for all tokens
is obtained (section 3.8)

Content from the Internet can be fetched directly or obtained from a local
database where it has been pre-saved (section 3.6.6). In case of query tokens,
IDF values are obtained from a pre-generated file. Managing the web content
database and the IDF file is done using a utility program (section 3.9).

16

For each query, a new structure for storing the results of processing is
made. Same for each concept. These will consist of the same parts as the
original structure, but with each string replaced with a list of tokens. And
for each list of tokens there is a list of IDF scores, with entries corresponding
to the tokens. In the query, URLs will be replaced with tokens of the content
of the corresponding web resources. Publication IDs will be replaced with
two structures: a publication containing strings of the various parts of a
publication (described in section 3.6.1) and a processed publication containing
tokens and IDF scores of the same publication.

Note, that we could also not store the list of IDF scores and just take the
value from the map representation of the IDF file each time it is required
during the mapping. However, we prefer small gains in speed over small gains
in memory usage.

3.6 Fetcher: Getting web page and publication content
This section describes, how getting a web page or publication content from
the Internet is done, given an URL or publication ID. For fetching HTML
and XML pages, we use the jsoup library (listed in Appendix A).

3.6.1 Publications

A publication can have different parts, like title and abstract. Not all sources
where publication information is pulled from have all parts available. Thus,
if all publication parts can’t be filled using the first tried source, then a
next source is tried, until we have a complete publication or we run out of
sources. If the publication part fetched from the next source is smaller in
content than we currently have, the current content is not replaced. Also, we
define a minimum length or size for the publication parts. This can helped
if the fetched content is only partial or erroneous. For example, at least two
keywords per publication should be retrieved. If this is the case, then the
keywords part is final and no more sources are probed for keywords. The
source can still be fetched from to complete other parts. However, if all parts
the source can potentially provide are already final, fetching from it is not
done.

A publication is defined as follows:

pmid PubMed ID of the article. It is a unique identifier assigned to each
record in PubMed (described in next paragraph). The format of the ID
is a positive integer. This ID is set in case the original publication ID in
the query was in PMID format. But sources can also include other IDs

17

associated with the article in the article’s metadata. Thus, we could
fill in this ID, and IDs mentioned below, after the initial fetching. If
all IDs have been set, the article’s ID is considered final. We try to get
all IDs, as knowing more IDs enables us to query more sources.

pmcid PubMed Central ID of the article. A unique identifier assigned to each
record in PubMed Central (described in next paragraph). The format
is “PMC” with a positive integer appended to it (e.g., PMC1234).

doi Digital object identifier (DOI) is a persistent interoperable identifier by
the International DOI Foundation for uniquely identifying objects [14].
Once a DOI ID has been registered, the related resource can be accessed
by appending the ID to http://doi.org/. If the resource is moved,
only redirection metadata has to be updated by the owner, the URL for
accessing the resource remains the same Format is as follows: “10.” +
registrant code + “/” + suffix chosen by registrant (e.g., 10.1000/j42).
A DOI ID may be specified using some prefixes (like “http://doi.org”
or “doi:”), we remove this prefix part to avoid duplicates. Also, DOI
names are case-insensitive (but only for ASCII characters, that is, only
characters “A” to “Z” and “a” to “z” are treated case-insensitively)
However, some on-line tools treat these characters case-sensitively. So,
for better interoperability, we save the ID preserving case and give let-
ters cased as in the original publication ID when fetching from sources.
The DOI system is often used for journal articles.

title Title of the article. Minimum length to be considered final has been
set to 10 characters.

keywords User-defined keywords the article has been tagged with. Usually
presented along with the abstract, but not available for all articles.
They are not from any standard vocabulary or any standard form, just
written as the author sees fit. If a good match between a keyword and
an EDAM concept is found, this is valuable additional input for the
mapping algorithm. We require at least 2 keywords from a source for
this part to be considered final.

meshTerms Medical Subject Headings (MeSH) thesaurus is a hierarchical
controlled vocabulary by the United States National Library of Medi-
cine [15]. It is used for annotating and classifying journal articles and
books in biomedical and health-related fields. Each journal article in
PubMed is indexed with MeSH terms. Terms can be narrowed down
using qualifiers and some terms can be marked as being major topics

18

http://doi.org/

of the article. Some information may be lost when article themes are
translated to MeSH terms. As with keywords, we require at least 2
terms per article.

efoTerms The Experimental Factor Ontology (EFO) is an ontology used at
the European Bioinformatics Institute [16]. It combines parts of several
other ontologies, including mainly biomedical data, such as anatomy,
disease and chemical compounds. EFO terms have been mapped from
the full text of articles (when available) by Europe PMC (described
in next paragraph). The count of how many times the term was en-
countered is also included. As with MeSH terms, some information
may have been lost while mapping to this controlled vocabulary. We
require 2 EFO terms for this part to be final.

goTerms The Gene Ontology (GO) is a controlled vocabulary by the Gene
Ontology Consortium [17]. Its terms define gene product properties
in three domains: cellular component, biological process and molecu-
lar function. GO terms have also be mined by Europe PMC. While,
as with MeSH and EFO terms, information might have been lost by
representing article content with GO terms, and, its domains don’t ne-
cessarily overlap with EDAM, it can still be small valuable additional
input to the mapper. We require 2 GO terms for this part to be final.

abstract Abstract of the article. After the title, this is the part that has
the highest potential to be fetched. As the abstract should contain the
main concepts and ideas of the article and not much noise, then it is
a valuable resource for mapping to EDAM. We require the abstract to
be at least 500 characters to be considered final.

fulltext The full content of the article (including the title and abstract).
Article abstracts are rather limited in size, so searching for matches in
the full-text of the article can improve results. However, we can more
easily pick up noise from the full content, especially if the article is not
directly related to the tool it is attached to, and the full content of
an article might not be as readily available. We require it to be 5000
characters in order to not probe next sources for it.

3.6.2 Publication sources

Different web services can answer with metadata, or even full text, about
an article, when given a publication ID as parameter in the query. Usually
XML format is used, from which we can extract the information we need.

19

However, in many cases some or any data is not available in XML form.
Then the article is usually available in HTML format, for viewing in the
browser. We can still extract information then, however, this can be more
error-prone. Namely, an HTML view of the article may not be so well defined
and be geared more towards the presentational, rather than structural side
of the content. Also, web pages could be more susceptible to changes and
redesign.

What follows, is a description of sources we have used to fetch articles
from.

PubMed PubMed is a search engine for accessing references and abstracts,
mainly in life sciences and biomedicine more particularly [18]. The main bib-
liographical database used is MEDLINE. Both are administered, like MeSH
terms, by the United States National Library of Medicine. By using a
PubMed ID as query, we get an HTML view of the corresponding article.
From the HTML, we can extract the publication abstract (which is between
“<abstracttext>” tags), but also title, MeSH terms and sometimes keywords.
PubMed does not include the full text of journal articles, but only links to
them.

PubMed Central PubMed Central is, in a sense, the companion service to
PubMed [19]. It is a digital archive of the actual articles along with their full
content. However, it only includes publicly accessible literature, thus only
a subset of entries indexed in PubMed are available. As of time of writing,
3.9 million articles are available. Using the PMCID of a publication, we can
thus extract the full text of an article from the PubMed Central website.
Publication title, abstract and optional keywords (but not MeSH terms) can
also be extracted. If the full text is not available in HTML format for some
reason (some old articles for example), then a PDF link is extracted from
the page (if available) and the corresponding PDF file fetched.

Entrez Entrez is an indexer and search engine for the many databases of
National Center for Biotechnology Information (part of United States Na-
tional Library of Medicine). This includes PubMed and PubMed Central.
However, the Entrez programming utilities [20] enable us to get the PubMed
and PMC entries in a structurally better format, like XML. For example,
for PubMed, article title is between <ArticleTitle> tags, keywords between
<Keyword> tags, MeSH term name between <DescriptorName> tags and
abstract between <AbstractText>. In addition, the XML output contains

20

all possible IDs (that is, PMID, PMCID and DOI) that the article has been
registered with.

Europe PMC Europe PubMed Central (formerly UK PubMed Central)
is a mirror service of both PubMed and PubMed Central, but with some
additional content and features [21]. It is managed by the European Bioin-
formatics Institute (like EFO terms). As of writing, it contains 31.1 million
abstracts (including 26 million from PubMed) and 3.7 million full text art-
icles. Using its RESTful API web service for articles, we can get query for
articles using either PMID, PMCID or DOI for it. From the resulting XML
file, we can extract the title, optional keywords, MeSH terms, abstract and
any missing IDs. In addition, we can see from the output, if Europe PMC
has the full text available (in either XML or HTML format) and if terms
mined from it are available (in XML format). If so, then these additional
resources are fetched. The EFO and GO ontology concepts are mined from
publication full texts by the Europe PMC project itself.

DOI DOI links usually point to the article on the publisher’s website. So,
here, we are not dealing with a single source for publication content, but
each journal website might need different rules to extract content relevant to
us. As not all articles are available through PubMed and every bit of extra
information in the query helps when mapping to EDAM concepts, we invest
some effort to define these rules. This is described in the next section.

Given all these sources, we have to decide on the order these are queried.
As Europe PMC can potentially give us all the parts of the publication and
we can receive well structured and uniform output for our publications, we
query it first. If Europe PMC fails to provide us with some parts, we query
the PubMed, PubMed Central or follow http://doi.org/DOI, depending if
the original specified ID was a PMID, PMCID or DOI. In case of PubMed
and PubMed Central, the XML output received through Entrez is parsed
first and if it fails to provide some expected parts, we try the HTML version
on PubMed or PubMed Central website. If we still have some publication
parts missing and have sources that could potentially try to fill these, we
query those, unless we don’t know the IDs to query the source, because we
have not received them from previously queried sources. In our data fetching
pipeline, PubMed is the most preferred option and DOI the least preferred.

21

3.6.3 Extracting content from DOI links

For extracting relevant content into the publication structure from the various
websites that DOI links point to, we need a way to define different extraction
rules for these sites. For this, we can exploit the CSS-like element selector
syntax provided by the jsoup library [22], which can execute on a fetched and
parsed HTML document. For example, “.fulltext > p” selects all paragraph
tags that are direct descendants of an element of class “fulltext”. This can
return zero to many elements whose content we can convert to plain text then.
In case more than one matching elements are returned, we can separate the
text content of these with newlines — this does not affect text processing,
but provides a nicer text output we can use to check that rules are working.

Actually, we use the same technique for extracting the title, abstract,
etc from HTML and XML documents from PubMed, PubMed Central and
Europe PMC. However, in case of DOI, the number of possible websites is
greater, with their content more prone to change. So we need a configura-
tion file for the rules. For the format, we have chosen YAML (YAML Ain’t
Markup Language [23]), which is a human-readable data-serialisation stand-
ard. It can be read using the SnakeYAML library (listed in Appendix A).

Each rule set should have a unique identifier, which we can use to get
the rules we need. As the rules are per website, then a natural choice is
the domain name of the on-line journal. Usually, an on-line journal has
claimed a certain registrant code for the DOI links it uses. For example, links
beginning with “10.1234” could point to “www.example.com”. But some-
times, a journal has many registrant codes, i.e., “10.4321” could also point
to “www.example.com”. Thus, to avoid duplication, we defined a second
structure, where we map registrant codes to domain names. Thus, “1234”
and “4321” will both map to “www.example.com”, which we can use as key
to retrieve the rules. Also, sometimes journals use a common platform, so
it may be possible to use common rules for these. Which means we could
merge “www.example.com” and “www.example.org” to a common rules set
with id “platform-X”.

An example configuration file with only two registrant codes follows:

’1234’: platform-X
’4321’: platform-X

platform-X:

title: ’#article-title’
keywords: li.kwd
keywords_split: .Abstract p:matches((?i)^\s*keywords\s*:)
abstract: .abstract_area > h4 ~ p

22

fulltext:
’.fulltext-view > p,
.fulltext-view > .section > h2,
.fulltext-view .subsection > .fig’

fulltext_src: /*$
fulltext_dst: \.full
fulltext_a: .viewFullText a
pdf_src: /full/(.*)\.html$
pdf_dst: /pdf/$1\.pdf
pdf_a: ’a[name=FullTextPDF]’

The example shows all possible rule types, but only those that can be
used have to be defined, so in reality a subset of those will be defined for a
given ruleset. The meaning of the rules is as follows:

title Selector for article title. If many elements are returned, only the
text of the first element is used. In the example, the element with id
“article-title” is selected.

keywords Selector for keywords. In the example, all list elements with class
“kwd” will be selected.

keywords_split If keywords are not selectable as separate elements, we
need to break down the string we get from the one element containing
all keywords. In the example, keywords are contained within a para-
graph, that is a descendant of an “Abstract” class element, and the
paragraph begins with the string “Keywords:“ (ignoring case and al-
lowing whitespace). Selecting this paragraph, we get one string, from
which we remove “Keywords:“ from the front and split the remaining
string on comma to get the individual keywords. Other separators can’t
be specified currently.

abstract Selector for the article abstract. Can consist of one or more para-
graphs. In the example, selects all paragraphs of same level that follow
the “h4” tag that is a direct descendant of a .abstract_area element.

fulltext Selector for full text. If the full text is on a separate page and title
and abstract should be extracted differently on that separate page, then
selectors for title and abstract have to also be included here. Other-
wise, the previously specified title and abstract selectors will be reused.
In the example, the following will be selected: all “p” tags directly des-
cending from fulltext-view class, all “h2” tags directly descending from

23

section class that directly descends from fulltext-view class and all ele-
ments of fig class that are direct descendants of elements of subscetion
class who are descending from (not necessarily directly) from fulltext-
view class.

fulltext_src The full text of the article may be on the same page as redir-
ected to by the DOI link, or it may be on a separated page. In case it
is on a separate page, we need to know the URL of that page. Often,
we can construct this URL by simply changing a few things in the cur-
rent URL. We can use regular expressions for this, this rule specifies
the source pattern for the replacement. In the example, all potential
slashes are remove from the end of the URL.

fulltext_dst This rule specifies the destination pattern of the replacement.
In the example, the string “.full” will be appended to the current URL.
After fetching the resulting URL, we use the rule in fulltext to extract
the full text from resulting HTML document.

fulltext_a In some cases, a simple regular expression string replacement
might not be possible or might be too complicated or fragile for getting
the URL of the full-text HTML page. In that case, the current page
might contain a link to the full-text page. We can specify here the
selector to get the tag containing this link. The URL can then be read
from the “href” attribute of this tag. Only the first “a” tag found is
used. In the example, we select the “a” tag that is the descendant of a
viewFullText class element.

pdf_src If getting the fulltext from HTML fails or the full-text is not avail-
able in HTML format, we try to get it from a PDF file, if available.
This specifies the source pattern for regex URL replacement, as in
the fulltext_src rule. In the example, the end of the URL is in form
“/full/article42.html”.

pdf_dst The destination pattern for regular expression URL replacement
for PDF files. In the example, the end of the URL will be transformed
to “/pdf/article42.pdf”.

pdf_a For PDF files, this simple URL replacement often does not work and
we use the option to select the element containing the link to the file
instead. In the example, we select the first “a” tag whose name at-
tribute is “FullTextPDF”. The PDF file will be fetched from the URL
pointed to by the “href” attribute of this “a” tag.

24

Specifying these rules for all on-line journals is a lot of work. Also, basing
the rules on just one article might not cover all possible scenarios. However,
this system described here is meant as a backup, rather than primary mean
to get publication content. For many articles, most or all content can be
received through the Europe PMC API or through Entrez utilities. So, the
configuration file and the rulesets do not have to be comprehensive and per-
fect. Just using the publications used in the current input files and from
these choosing the ones used multiple times will give good enough results.
Any further work in defining rules will only yield small improvements. In case
rules are missing for a journal, the entire content of the webpage containing
the article is set as publication fulltext.

Currently, we have specified rules for all DOI registrants that can be
extracted from publications present in bio.tools, which makes, in total, 42
rulesets.

3.6.4 Web pages

In addition to publications, which are fetched based on ID, we are also inter-
ested in the content of web pages and documentation pages specified in the
input as URLs. The variety of these pages is however even greater than in
case of DOI links. It would be very time-consuming to find out for each page,
what is relevant content and what is not (navigation header, sidebar, etc).
So in case of these resources, we currently just take the whole text content
of the HTML document for processing. So this does include noise and we
may pick up keywords that cause false positives, but depending on how this
resource is used during the automatic mapping this noise could be filtered
out.

However, for one case we do extract relevant content from the web page.
Namely, in case of SEQwiki input, we get the longer description from each
individual tool wiki page. So we have defined a rule to select this descrip-
tion in case the webpage is from the “seqanswers.com” domain. It may be
worth exploring, if this could be done for some other web pages that occur
frequently, like GitHub, and make a YAML configuration file similar to the
DOI one.

3.6.5 Getting content of PDF files

In addition to HTML and XML documents, we also encounter documents
in PDF format. This can happen, when homepage and documentation links
point directly to PDF files or we try to fetch the publication fulltext from
a PDF or a DOI link points directly to a PDF file. It is hard to get any

25

structured content from a PDF file, so we just get the full plain text content
of the PDF (parsing is done by the PDFBox library, listed in Appendix A).

As with HTML web pages, the PDF file might contain non-relevant con-
tent. But in addition, parsing from it is not perfect and thus the return text
may contain different errors, like spelling mistakes, words broken into many
parts, random symbols.

In case of publications, we are mainly interested to fetch the PDF file as
it contains the full-text of the article. But in addition to setting the fulltext
of publication, PDF files might contain different metadata, which might be
relevant to us. The basic PDF info dictionary contains among others the
Title, Subject and Keywords fields, which we can use as publication title,
abstract and keywords, respectively.

PDF files might contain additional metadata in XMP (Extensible Metadata
Platform) format, which is, like the OWL format, based on RDF. We use
the XMPBox library (part of Apache PDFBox listed in Appendix A) to read
this metadata from PDF files. The metadata can be found in different XMP
schemas. Currently, we take title, keywords and abstract from the Dub-
lin Core schema [24] properties dc:title, dc:subject and dc:description and
keywords from the pdf:Keywords property of the Adobe PDF Schema [25].

However, PDF files do not contain metadata, especially in XMP format,
that often. Also, by the time we fetch the PDF file, the properties PDF
metadata could potentially fill are already final, or at least their content is
already longer that could be obtained from the PDF. Although the PDF file
could potentially deliver us keywords about the publications, we determined
this rarely happens, so as an optimisation, if we already have the full-text of
the publication and are only missing keywords, then the PDF is not fetched.
PDF metadata has definitely its use however, when the PDF file is the first
and only file we are going to fetch for a given publication.

3.6.6 Saving content to local database

If we are analysing the same inputs multiple times (to test different paramet-
ers or algorithms for example), then we need the web page and publication
contents each time. Fetching them each time would take many seconds per
resource and would put unnecessary load on the resource provider. Therefore,
we need a way to cache the fetched text.

We are using the MapDB library for this (listed in Appendix A). It allows
storing structures in an on-disk database. We define three maps for this:
webpages, publications and docs. The unique key for each map entry will
be an URL or a publication ID. As for the content, in case of webapges and
docs, the value stored will be the string representing the plain text content of

26

a website, and in case of publications, the stored value will be the serialized
publication structure we have filled in during fetching.

Note, that in case of webpages and docs the same URL might be present
in both, thus some duplication is possible. However, in the future, we might
want to describe different rules when extracting content from URLs that
contain a homepage and URLs that contain documentation for example.

If a database file is specified to the automatic mapper, then contents of
web pages and publications are read from there. If some are not present
there and fetching is not disabled, they will be fetched from the web and put
to the database. The database can also be filled beforehand, as described in
section 3.9.

3.7 PreProcessor: Cleaning and tokenising
As the mapper works at word level, we need to break the strings making up
the concept and query parts to a list of tokens at word boundaries. Dur-
ing this, punctuation (like commas, quotation marks, periods) will also be
removed, as it is mostly not a part of the word and can make matching of
words fail. In addition, some words might be removed (e.g., because they are
very common and don’t carry a meaning) and words may be manipulated to
only include their stem.

The following will be done:

1. First, the special case of hyphenation is considered, which is mostly
a problem only in some PDF files. For example, if we have “ex-”
at the end of the line and “ample” one the next line. So, in case
a hyphenation symbol is encountered before a newline symbol, then
both symbols, and any extra whitespace, are removed to make the word
“example”. As hyphen, we consider the ASCII hyphen-minus (“-”) and
the Unicode character HYPHEN (U+2010). As newline, we consider
different symbols, including the ASCII line feed (“\n”) and the Unicode
character LINE SEPARATOR (U+2028). In some unfortunate case,
like “nineteenth-<newline> and twentieth-century”, this will do the
wrong thing (make the word “nineteenthand”), however we assume
these are quite rare, compared to legitimate cases anyway.

2. When removing punctuation, we have two choices about what to do
with punctuation that is between two letters or numbers (like “se-
quence(s)” or “yes/no”): just remove the punctuation, effectively mak-
ing the two parts on both sides of it into one word (“sequences” and
“yesno”), or replace it with space, making two separate words (“se-
quence s” and “yes no”). We choose the first approach, assuming, that

27

if no whitespace has been left before and after the punctuation symbol,
this is intentional and means the punctuation symbol is part of the one
word. However, there are some exceptions to this, so as second step,
replace with a space (“ ”) the following symbols: en dash (“–”), em
dash (“—”) and slash (“/”).

3. There is another special punctuation we need to consider: the apo-
strophe (“ ’ ”). Namely, stopword lists, discussed in the next section,
contain only letters, and the apostrophe symbol. If we remove the apo-
stroph in the processed string, we should also remove it in the stopword
list. This can however result words that actually should not be removed
in the stopword list, such as “he’ll” is transformed to “hell”. This means
the apostrophe will remain also in other case, like in case of possess-
ive (“bacteria’s”) or otherwise (“3’utr”). There are other apostrophe
characters besides the ASCII apostrophe character, for example the
Unicode character MODIFIER LETTER APOSTROPHE (code point
U+02BC). So, in this step we replace all the different apostrophe char-
acter representations with the ASCII one (“ ’ ”).

4. Now we are ready to remove punctuation. Replace all punctuation
symbols, except the apostrophe, with an empty string. As punctuation,
we include all symbols from the Unicode categories Punctuation and
Symbol.

5. We need a clear way to define word boundaries. At this stage, what is
remaining is words made up of letters, numbers and apostrophe, which
are separated by one or more whitespace characters. So replace all
sequences of one or more characters from the Unicode separator and
control character categories with a space character.

6. Next, we remove some of the apostrophe characters. Namely, we are
actually not interested in apostrophe characters at the beginning and
end of words, where they are often used as single quotation marks. Also
remove words that are made of only apostrophe characters.

7. So far, we have left numbers untouched. If numbers are part of a word,
like “ 3’utr ”, then they should not be removed. For free-standing
numbers, like “ 3 ”, it’s more debatable. At this step, allow free-
standing numbers to be removed. This is an optional operation, that
can be turned on by using the corresponding program parameter.

8. Removing a freestanding apostrophe or a freestanding number leaves

28

two subsequent space characters in the input. So we replace all se-
quences of two or more space characters with one space character.

9. We use one space character to separate two words. In the beginning
and end of the input string, they separate one word and the empty
string, which we are not interested in. Therefore, remove potential
space characters from the beginning and end of the input string.

10. When comparing words, we are not interested in case, e.g., “Virus” in
the beginning of a sentence should be equal to “virus” in the middle of
another sentence. To achieve this equality, we could convert all letters
to upper or lower case. We choose to convert all letters to lower case
here.

11. Now we can break the input string to a list of tokens (i.e., words in our
case). Words are separated by one space character in the input, so just
split the input string at space.

12. Next, stop words removal is done, by comparing each word from the
list we got in the previous step with a list of words that should be
filtered out. Stop words are the most common words in a language, so
they are often filtered out before processing, e.g., because they could
cause a lot of false positive matches or because we might want to in-
crease performance by making our input smaller. Often, stop words
lists mostly include function words, which are words that carry little
meaning themselves, but are needed to grammatically connect other
words. Examples of function words include articles (“a”, “the”), pro-
nouns (“he”, “him”), particles (“if”, “from”). There are many English
stop words lists of differing size and content available, we have chosen
to include a few of them. They are summarized in Table 2. In addition
to choosing a list from the table, we could also choose to not do stop
words removal, as the benefit of removing stop words might not be
clear in all cases.

13. Next, stemming is considered. Stemming is the process of removing
any suffixes from a word to reduce it to its root. For example, the
words “sequence”, “sequences”, “sequenced” and “sequencing” have a
very similar meaning and we might want to treat them equivalently.
Reducing them to the root means that a string comparison between
any two of them will result in equality. Actually, stemming does not
necessarily reduce words to a valid root, as it is not necessary that re-
lated words map to a valid root, but just to the same string, that we call

29

Table 2: Stop words lists

List name Source Word count

corenlp Stanford CoreNLP
http://stanfordnlp.github.io/CoreNLP/ 257

lucene Apache Lucene
https://lucene.apache.org/ 33

mallet MALLET
http://mallet.cs.umass.edu/ 524

smart SMART Information Retrieval System
of Cornell University 571

snowball Snowball stemmer project
http://snowball.tartarus.org/ 174

a stem. So in the example, the words will be reduced to the stem “se-
quenc”, not to the actual root “sequence”. We use the Porter stemming
algorithm [26], for which we borrowed the original Java implementation
(listed in Appendix A). As we have not removed the apostrophe from
inside the words, we needed to do a small modification: in the first
step of the algorithm, remove also the possessive form from the end of
words, e.g., remove “’s” from “sequence’s”. As stemming can have both
positive (group words of similar meaning) and negative (cause words of
different meaning to be grouped) effects, we allow it to be turned off.

14. As last step, we may want to remove words that are shorter than some
length. For example, we may want to remove all words of length one,
such as “x”, “y”, “z”. By default, the minimum required length is 0,
but we can increase it to evaluate its effect on performance.

3.8 Idf: Inverse document frequency weights
Not all words are created equal. For example, the mentioned stop words
occur very frequently. But even if we remove these words that carry little
meaning, we are still left with meaningful words, that occur much more
frequently than other meaningful words. Take “sequence” for example — a
large number of bioinformatics articles will contain this words. This does not
mean, that “sequence” is one of the most important concepts describing all
these articles. Words describing other concepts more meaningful for an article
at hand might occur less frequently in the article than the word “sequence”.

30

http://stanfordnlp.github.io/CoreNLP/
https://lucene.apache.org/
http://mallet.cs.umass.edu/
http://snowball.tartarus.org/

So we need a way to raise the importance of these words and lower the
importance of “sequence”.

To solve this, we can weight terms using inverse document frequency
(IDF) [27]. Its value shows, how common a term is in a collection of docu-
ments. In a sense, it is a measure of how much information a word provides.
The value is proportional to the number of documents in a corpus and in-
verse proportional to the number of documents the term occurs in. After
logarithmically scaling this division, we obtain the following formula:

idf(t) = log(N

df(t)), (1)

where idft is the inverse document frequency of a word t, N is the number of
documents in a collection of documents and dft is the number of documents
containing word t in that collection.

If IDF value is required for a word that does not occur in any of the
documents, a division-by-zero will happen. We can thus also adjust the
denominator and use the following formula:

idf(t) = log(N

df(t) + 1). (2)

For our purposes, we want the IDF weight to be a value between 0 and
1, with 0 meaning that the term occurs in all documents and 1 meaning that
it occurs in only one (Equation 1) or in no documents (Equation 2). Thus,
we normalise the weights with the maximum possible value log(N):

idfnorm(t) =
log(N

df(t))
log(N) , (3)

idfnorm(t) =
log(N

df(t)+1)
log(N) . (4)

Note, that if in the second case the value of df(t) is equal to N , the value of
idfnorm(t) will be slightly less than 0. In such case, we set the value to 0.

One important question when computing IDF scores for terms in a doc-
ument, is the choice of the document collection. Different approaches could
be tried. We could choose a very large corpus, such as all articles from the
English Wikipedia, in which case scores will be approximately based on the
frequency of the words in the language itself. Or, we could choose the doc-
ument collection to be representative of the documents we are interested to
compute the scores for, like all available journal articles, or all articles from a
certain field. For the tokens in the concepts and queries we need IDF weights
for, we have chosen to try the second approach.

31

3.8.1 IDF for concepts

In case of EDAM concepts, we choose as the document corpus all concepts
that we read from the EDAM ontology file. Thus, for any word in an EDAM
concept we are currently calculating IDF score for, we have at least one
document in the corpus containing this word. That is, df(t) is at least 1 and
we can use Equation 3. In case of EDAM version 1.14, N is 3218.

As we can compute IDF weights based on the data available in the onto-
logy file alone, we don’t need any additional input for processing the map of
EDAM concepts. Processing is done as follows:

1. For each concept (i.e., document), we pre-process all its parts (i.e.,
labels, exact synonyms, etc), using the steps from section 3.7, and store
the resulting lists of tokens as part of the processed concept structure.

2. From these lists of tokens, we collect all distinct tokens and increase
their count by 1 in a global map, where the key is a token and the value
is its count.

3. When all concepts have been processed, we make a new global map,
where the key is a token and the value is its IDF score computed from
Equation 3.

4. Now we can do a second pass: for each list of tokens in each concept,
compute IDF scores for the tokens and store the list of scores along-
side their corresponding list of tokens. The global maps can now be
discarded.

We can see the most frequent terms (i.e., the terms with the smallest
IDF scores) for concepts in Table 3. Most of these terms are not occurring
frequently in general usage, but on the other hand we can expect to fre-
quently see them in relation to bioinformatics tools or journal articles. Some
frequent words in general usage, which were not eliminated by the rather
small “lucene” stop words list, have also made it top the top (like “from”,
“other”). These words were probably mostly picked up from concept defini-
tions and comments, which contain sentences rather than concise phrases of
mostly only 2–3 words like labels and synonyms contain.

3.8.2 IDF for queries

In case of queries, we have different options for choosing the document corpus.
If we are working with entries from bio.tools, we could choose as document
corpus all entries from bio.tools. So in case of the bio.tools input file

32

Table 3: Top 30 most frequent stemmed terms for concepts from EDAM
version 1.14 (3218 documents) and queries from bio.tools (2402 documents).
In both cases, the lucene stop words list was used, which is rather small, so
many function words can be seen at the top. Count shows the number of
documents the term occurs in.

Concepts Queries
Term Count IDF score Term Count IDF score
sequenc 1011 0.143 us 2215 0.0104
from 765 0.178 from 2046 0.0205
databas 657 0.197 all 2022 0.0221
protein 608 0.206 data 1876 0.0317
identifi 598 0.208 help 1853 0.0333
format 584 0.211 you 1833 0.0347
data 582 0.212 search 1820 0.0356
structur 457 0.242 can 1796 0.0373
us 359 0.272 new 1780 0.0384
molecular 343 0.277 http 1770 0.0392
id 333 0.281 pleas 1754 0.0403
gene 330 0.282 about 1753 0.0404
report 323 0.285 refer 1739 0.0414
entri 314 0.288 sequenc 1739 0.0414
includ 294 0.296 on 1725 0.0425
typic 294 0.296 version 1714 0.0433
align 272 0.306 develop 1701 0.0443
inform 252 0.315 inform 1696 0.0446
acid 240 0.321 more 1689 0.0452
other 208 0.339 avail 1674 0.0463
name 200 0.344 provid 1672 0.0465
more 198 0.345 softwar 1660 0.0474
annot 191 0.350 list 1654 0.0479
analysi 188 0.352 sourc 1632 0.0496
specif 188 0.352 support 1619 0.0506
gener 187 0.352 1 1615 0.0509
dna 183 0.355 download 1611 0.0512
featur 182 0.356 tool 1610 0.0513
predict 173 0.362 file 1602 0.0520
exampl 172 0.363 need 1601 0.0520

33

used in this thesis, N is 2402. However, in addition to running the automatic
mapper on entries already present in the bio.tools input, we could be doing
mapping for new entries to be included to the http://bio.tools Registry.
Or, we could work on another input type, which is too small to be a document
corpus for meaningful IDF calculations. Then, we could use the bio.tools
entries as document corpus instead, especially if the other input is meant to
be merged into the Registry eventually. In such case, we might need IDF
scores for words, which are not present in any of the bio.tools entries.
Therefore, for IDF calculations in case of queries, we use Equation 4.

The list of queries given as input for the mapper might not constitute the
document corpus the IDF scores should be based on. Therefore, we need an
external file we can read IDF scores for given terms from. We generate this
external file using an external utility program (described in section 3.9).

In the IDF generation step, we take a list of queries as input (such as
all entries from bio.tools) and proceed like in steps 1–3 from the previous
section about concepts. Except we use the query parts (name, description,
etc), we don’t need to store the processed tokens for later use and we use
Equation 4. We write the resulting maps to a file in the following form:

term<tab>term_count<tab>term_idf

When processing new queries, we use this generated file as source to
compute and store all IDF weights for all tokens in the queries. As we used
Equation 4, if a token is not present in the file, its IDF score will be 1. One
thing to remember, however, is that the used preprocessing options (stop-
words list used, whether stemming was done, etc) must be the same as were
used when generating the IDF file. Which means, if we want to experiment
with different pre-processing options, while also doing IDF scaling, we must
generate and use different IDF files for each case.

In Table 3, we see the most frequent terms for queries from bio.tools.
A lot of terms seem to concern navigating a web page or getting software
or data (“help”, “search”, “http”, “about”, “version”, “more”, “software”,
“sourc”, “download”, “tool”, “file”, etc). The top entry — “us” — is both
the personal pronoun not removed by the lucene stopwords list, but probably
more frequently the result of stemming “use”, “using”, etc. A number (“1”)
is also at the top.

Scores for the top frequent queries are an order of magnitude lower than
for top frequent concepts. This can be caused by the repetitive nature of
web pages and documentation, especially when contrasted with a concise
controlled vocabulary.

Some entries, like “sequenc” and “data”, are near the top in both lists.
This means that when matching these terms, their scores will be reduced

34

http://bio.tools

considerably. Which is why we should support disabling IDF for either con-
cepts or queries, or disabling IDF for just some concept or query parts, or
weakening the effects of the IDF weight scores.

3.9 Processor utility program
In sections 3.6.6 and 3.8.2 we defined a database to store fetched web pages
and publications and a file to store IDF scores of all terms in a document
corpus based on a large list of queries. To create, manipulate and query these
files, we have created a separate utility program.

3.9.1 Database management

In this section, we refer to the content of a web page or documentation page
and to the publication structure as resource, and to a URL or publication
ID identifying this resource as ID. Except if there are differences in handling
these resources, in which case these differences will be brought out.

The following operations concerning the database file have currently been
implemented:

• Fetch and print a resource, given its ID

• Print a list of all IDs present in a file, output can be plain text or
HTML with clickable links of the IDs

– in case of publications, we can also try to convert all publication
IDs to DOI and print the resulting list of DOIs

– and more usefully, print all DOIs directly or indirectly obtainable
from an input file for which no rules currently exist in the DOI
YAML configuration file

• Initialize a new database, given a file name

• Fetch all resources present in a file and add them to the specified data-
base, overwriting existing entries

• Fetch and store only those resources from a given file which are not
already present in the database

• Given an ID, fetch and store its corresponding resource to the database

• Print all IDs present in the database, giving output in plain text or
HTML

35

– print all IDs of publications, whose fulltext part is not yet final

• Given an ID, print the corresponding resource in the database

• Given an ID, remove the corresponding resource from the database

• Remove all resources (i.e., remove all web pages or remove all docu-
mentation or remove all publications) present in the database

• Remove all resources whose ID matches given regular expression from
the database

• Given an ID, refresh the corresponding resource in the database, i.e.,
if there is a resource with the given ID available, then re-fetch and
re-store it, if no such resource if available, nothing is done

• Refresh all resources in the database

– refresh all publications, whose ID was given as a PMID
– refresh all publications, whose ID was given as a PMCID
– refresh all publications, whose ID was given as a DOI
– refresh all publications, whose ID was given as a DOI and whose

registrant code matches the given registrant code; this is useful
if we have just changed the rules for the given registrant in the
YAML configuration file

– refresh all publications, whose fulltext part is not yet final

• Refresh all resources in the database matching the given regular ex-
pression

• Commit changes to the database (this is usually not needed, as com-
mitting is done automatically for all operations defined here)

• Compact the database

3.9.2 IDF management

We have implemented the following operations concerning the IDF file:

• Generate a new IDF file based on the given input file of queries, getting
the content for web pages and publications from the given database and
using given pre-processing options

36

• If no database is available, we may still generate an IDF file, but in
such case web page and publication content will not be available

• Even if a database is available, we may decide that the content of web
pages or publications is too noisy and separately disable their usage in
IDF calculations

• Print a list of most frequent terms, given an IDF file

3.10 Mapper: The mapping algorithm
We have obtained a set of concepts, each concept consisting of lists of tokens
representing the pre-processed words of each of its parts (label, an exact
synonym, etc). Similarly, we have obtained a list of queries, each query con-
sisting of lists of tokens, each such list representing one query part, like name
or one publication abstract. We want to give the best annotation suggestions
for each input we receive. This means, for each query, finding out, scoring
and ordering the concepts, whose parts match best the parts of the query
in question. The next sections explain in a “bottom-up” fashion how this
matching is done.

3.10.1 Approximate matching

We start by matching one word in the query to one word in a concept. To
give a score to the match between a list of tokens in the query and a list
of tokens in the concept, we should score each word-to-word match. One
possibility would be to give a score of 1, if the words are equal, and score it
0, if they are not equal. However, sometimes there are small differences in
words that otherwise should be considered equal. This can happen because
of spelling differences between dialects, spelling mistakes, errors extracting
text from a PDF, errors in optical character recognition, etc. We may still
want to consider the words in equal in such cases, but giving some score
between 0 and 1 to differentiate them from perfect matches.

To do such approximate matching, we use the Levenshtein distance metric
between two strings. The Levenshtein distance between strings a and b is
defined as the minimum number of edit operations to change a into b. We
allow the following operations: inserting a character, deleting a character
and changing one character into another. We may want to assign a cost to
each operation, but we choose the simple case of all costs being 1, thus the
distance is equal to the number of operations.

37

The Levenshtein distance for strings a and b can be recursively defined
as:

da,b(i, j) = min


da,b(i− 1, j) + 1
da,b(i, j − 1) + 1
da,b(i− 1, j − 1) + (ai = bi ? 1 : 0),

(5)

where da,b(i, j) is the distance between the first i characters of a and the
first j characters of b. If length of a is m and length of b is n, then the
distance between a and b is the value at da,b(m,n). We find this value using
the standard dynamic programming technique that employs a m + 1 times
n+ 1 matrix, illustrated in Figure 2.

a b r a c a

0 1 2 3 4 5 6

d 1 1 2 3 4 5 6

a 2 1 2 3 3 4 5

b 3 2 1 2 3 4 5

r 4 3 2 1 2 3 4

a 5 4 3 2 1 2 3

Figure 2: Calculating the Levenshtein distance between “abraca” and
“dabra”

We denote the found Levenshtein distance as d and define the score
between a and b as:

sw = l − k · d
l

, (6)

where l = maxm,n. We call k the mismatch multiplier parameter. It is
essentially the real-valued cost of all three edit operations. If it is equal to
1, then sw is the relative edit distance. If we decide, that an approximate
match should get a lower score than its relative edit distance suggests, we
increase the value of k.

In addition, a low enough score can very likely be the result of matching
two unrelated but somewhat similarly spelled words, rather than the result
of matching two related words that were accidentally spelled differently. We
may decide, that such low scores should not raise the total score between
two lists of tokens. Hence, introduce also the parameter match minimum —

38

if score sw is below its value, then sw is set to 0. Setting match minimum to
1 will mean that no approximate matching is allowed.

As an example, we take the words “optimize” and “optimise”. Their
Levenstein distance is 1 — from the one operation of changing “z” to “s”.
If k is 2, then the final score will be 8−2·1

8 = 0.75. However, if stemming is
done, then we would be comparing “optim” and “optimis”. In such case, the
distance is 2 — from inserting “i” and “s”. The length of the longer word
— l — is equal to 7. So total score is 7−2·2

7 ≈ 0.43. If we have set match
minimum to 0.5, then the final score will be 0.

As another example, we can take “center” and “centre”. Changing one
into the other requires only the transposition “er” to “re”. However, as we
have not defined such operation, then we do a removal operation of “e” and
insertion operation of “r”, and get as distance 2.

These examples illustrated some problems our current approach might
have. However, disabling stemming or defining a transposition operation
with a cost smaller than 2 can have their own problems. The performance
of these different approaches, and the performance of varying the parameter
values of mismatch multiplier and match minimum, could be compared.

Another source of problems could be decisions made in the pre-processing
phase when splitting the input string into words. For example, “pre-processing”
would be pre-processed to the word “preprocess”, while “pre processing”
would be split to two words: “pre” and “process”. Thus, comparing “pre-
processing” to “pre processing” would mean comparing “preprocess” to “pre”
and comparing “preprocess” to “process”. Both would yield scores lower (or
even 0), than it should be.

To compensate for this mistake, we could do the following: in addition to
comparing every word from the source list with every world in the destination
list, compare every two words with every world and compare every word
with every two words. Which means, that we would also try to match “pre-
processing” to “pre processing”, which has an edit distance of 1. If we decide
to enable this approach, then we allow one mismatch for free (so it will work
even if match minimum is 1 for example).

Enabling this approach would mean, that a triple amount of comparisons
will be done. So we may want to disable it, if performance becomes an issue.
Also, we may want to expand this approach to enable comparisons of three
words to one and so on. Hence, we introduce the parameter compound words
— a value of 0 means that the described approach will be disabled, 1 means
that two words to one word comparison will be enabled, 2 means that three
words to one word comparisons will be enabled additionally, etc.

39

3.10.2 Proximity matching

We have a source list of words that we try to match to a destination list of
words. A word in the destination list can be matched more than once by
words in the source list. To get the final score, we could just independently
sum up the maximum scores of the words in the destination list. However,
we may also want to have a higher score, if not only words, but also phrases
match.

For example, given the sentence “The quick brown fox jumps over the
lazy dog”, we may want that “brown fox” matches it better than “brown
clever fox” which matches it better than “lazy fox”. All three source lists
have two exact matches to the destination list, so based on this alone, we
can’t differentiate between them. In the subsequent examples, we will use
the following example destination sentence:

• “quick brown fox jumps over lazy dog”

To enable proximity matching, we define a penalty for the matched word
in the destination list not having the expected words from the source list on
its left and right side. If it has the correct words on its sides, there is no
penalty and we set the proximity matching score sp to 1; if it hasn’t any of
the corresponding words from the source list in its neighbourhood, then sp
is 0. For example, in matching the destination word list with “quick brown
fox”, the position score at “brown” will be 1. However, when matching it
with “lazy fox”, the position score at “fox” will be 0.

Naturally, there can be cases between 0 and 1. When matching the
sentence with “slow brown fox”, then there is a match on the right side
of “brown”, but no match on the left side. Therefore, to get the position
score, we take the arithmetic average over two best position scores — 0 and
1 in this case, getting a score of 0+1

2 = 0.5. There are two special cases to
this:

1. If the matched word is the first word of the destination list and also
the first word of the source list, and analogously the last word of the
lists, then we only take one position score into account. For example,
matching the sentence with “quick brown” means that the position
score at “quick” will be 1, as we require only “brown” to be at its right
side.

2. If the destination list consists of only one word, then the position score
is always 1 in case of a match.

In addition, we want to give a position score greater than zero to cases
when the words are almost, but not exactly at the same relative positions in

40

the destination and source lists. For example, if the sentence is matched with
“quick fox”, then at position “quick” in the destination we expect to also have
“fox” on its right, but it is actually one step further to the right. In this case,
the position score will be o1, which is set by the program parameter position
off by 1. As a more complicated example, we match the sentence with
“brown very quick fox”. In this case, we have two position scores at position
“fox”: “brown” is off by 2 and “quick” is off by 1. The final score is taken
as the arithmetic average: o1+o2

2 , where o2 is set by the parameter position
off by 2. If we try with sentence “brown very quick fox jumps”, then the
position score will be 1+o1

2 , as we now have the extra word “jumps” in the
right position.

Words can also be switched, for example when matching with “brown
quick”. In this case, at position “brown” in the destination sentence, we have
“quick” at the left side instead of being on the right side. We set the penalty
of such case equivalent to o1, that is position off by 1. Similarly, “brown
very quick” will have a penalty of o2.

We can also have the case, when the match on the right or left side
is from the same word as the currently matched one. For example, when
matching destination “foo buffalo buffalo bar” with “zoo buffalo zap”. In the
destination at the first “buffalo” position we have no match on the left side,
but have a match on the right side, which originates from the same word
from the source list as the current match. We decide to set the penalty of
such case to o1.

Additionally, we should decide what to do in case the words are not be-
sides each other in neither the source list and destination list. For example,
when matching the sentence with “quick grey fox”, then “quick” is two po-
sitions to the left of “fox” in both the source and destination sentences. In
such case, an off-by-1 error will happen because “quick” is off by one po-
sition in the destination list and an off-by-1 error will happen, because it
is off by one position in the source list, so in total we get a score of o2 at
position “fox” in the destination. That way, we don’t have to look more than
two positions to the left and right for matches in the destination list when
computing the proximity score. The words immediately next to the matched
word in the source or destination are more important for the context and
should contribute a higher score.

If position is off by more than 2, then the position score is 0. We may
also be tempted to define o3 and so on, or to define the score decrease as a
decay function. However, for simplicity and performance, we can also say,
that if position of two words in the source list differ by more than 2 in the
destination list, that it is not a meaningful proximity and we should not take
this into account any more.

41

In order to implement this, we do the following: for each match we find
in the destination list (score not less than match minimum), remember also
the position index of the word in the source list that matched. Previous
examples can be seen in Table 4.

Table 4: Proximity matching

quick brown fox jumps over lazy @pos : score
quick brown fox 1 2 3 - - - brown : 1
lazy fox - - 2 - - 1 fox : 0
slow brown fox - 2 3 - - - brown : 1

2
quick brown 1 2 - - - - quick : 1
quick fox 1 - 2 - - - quick : o1
brown very quick fox 3 1 4 - - - fox : o1+o2

2
brown very quick fox jumps 3 1 4 5 - - fox : 1+o1

2
brown quick 2 1 - - - - brown : o1/2
brown very quick 3 1 - - - - brown : o2/2
quick grey fox 1 - 3 - - - fox : o2/2
quick fox brown fox 1 3 2, 4 - - - fox : max

The last entry in the table is also interesting: the sentence is matched
twice by “fox”. In this case, we do proximity matching for both matches
independently, compute the final score for them and assign the maximum
of these two scores to position “fox” in the destination. How this is done is
explained further down.

For a general summary of proximity matching, see Table 5.
In addition, we may decide that if a word from a context in the source

list fits well into a context in the destination list, but the contexts have only
been approximately matched, then this fitting score should be reduced. That
is, when computing an individual position score, we reduce it if the match
score at the position we found a relation to is less than 1.

3.10.3 Best scores at a destination position

Putting it together, we get the formula:

spsjl,k
= spjl,k

· spmswk
, where (7)

• k is a match from the neighbourhood N , which includes all matches at
and around our current position j not farther than j − 3 and j + 3,

• jl is the l-th match at our current position j,

42

Table 5: Word at position i in source matched a word at position j in destin-
ation. We look at all matches at positions j− 3, . . . , j+ 3 in the destination.
For every such match we look at the position it occurred (column) and the
value of the position index in the source list. If the value occurs in the table,
we get a score from the “score” column. Otherwise, the score is 0. As result,
we take the average of two highest scores (except in the special cases).

score j − 3 j − 2 j − 1 j j + 1 j + 2 j + 3
1 i− 1 i+ 1

o1 i− 1
i− 2,
i+ 1,
i

i− 1,
i+ 1

i+ 2,
i− 1,
i

i+ 1

o2 i− 1
i− 2,
i+ 1,
i

i− 3,
i+ 2

i− 2,
i+ 2 i+ 3

i+ 2,
i− 1,
i

i+ 1

• spjl,k
is the individual position score from match jl to k, computed using

explanations given above

• swk
is the match score for match k

• pms is a scaling factor, controlled by the position match scaling
parameter:

– if set to 0, match score of linked position does not influence the
position score

– if set to 1, match score of linked position influences the position
score linearly

– if set to e.g., 0.5, influence will be according to square root, which
is somewhere between no influence and linear influence

Next, we find the two maximum values of spjl,k
over all k ∈ N and take

the average of these two values as spjl
. Except for the two special cases

mentioned above, when

1. spjl
will be equal to the one maximum value

2. spjl
will be equal to 1

43

The final score for the l-th match at position j is as follows:

sjl = (swjl
− α · (1− spjl

)) · idfisl , where (8)

• swjl
is the match score between the word at position j in the destination

and the word corresponding to the l-th match in the source list

• α is a parameter controlled by position loss, with a value between
0 and 1:

– if set to 0, then the proximity score will be ignored
– if set to 1, then the final score will be 0 (or less), if proximity score

is 0
– if set to a value between 0 and 1, its effect will be between these

2 extreme cases

• idf l is the IDF weight of the word from the source list that corresponds
to the l-th match

• is is the IDF scaling factor:

– if set to 0, then the IDF scores of the words in the source list will
be ignored

– if set to 1, then the influence of these scores will be linear
– if set to greater than 1, then the effect of IDF scores will be mag-

nified
– if set to a value between 0 and 1, then the effect of IDF scores will

be lessened

Note, that we have decided to make the match score and proximity score
independent, in the sense, that position loss is not scaled by the match qual-
ity, but is given as fraction of the full perfect score of 1. This means, that
swjl
− α · (1 − spjl

) may be less than 0, in which case it is set to 0. This
independence does not matter in case of exact matches that are not in the
right place and approximate matches that are in the right place, but only for
of out-of-context approximate matches, who we will be penalising more by
choosing such form of calculating the final score.

44

3.10.4 Score between source and destination lists

Let’s fix a destination list of words, for example, a query description. When
we try to match it with one concept, we try to match it with the label of the
concept, with all exact synonyms of the concept, etc. While we don’t know
yet, how to get the overall score for a match between a list of words and
another list of words, let’s just say that we get a score with a value between
0 and 1 for all the described matchings. The question is now, how do we
aggregate these scores?

One option would be to take the average. But then, if we add a few
synonyms to the concept, which don’t match at all the query description, the
average score will decrease. We would probably like it to remain the same.

We could also take the maximum score. But let’s assume two sentences
in the description: one talks about “High-throughput sequencing” and the
other “Next-generation sequencing”. We have a concept with label “High-
throughput sequencing” and with an exact synonym to it “Next-generation
sequencing”. Both match the phrase in one of the sentences and we take
whichever has the higher match score (if we have decided that matching
a label is more important, we take its score). However, as the description
mentions basically the same concept twice, then it seems to be an important
feature of the tool or service it describes. So we may want to exploit the
semantic richness of the concept more and base the score on matching both
sentences.

We do this in the following way. When matching label to description, we
get the values sjl for each word j in the description. Unless there is word
repetition in the label, there will usually be only one such score per word j,
or zero such scores in case of no match. We multiply these with m1/β

label mlabel

is set by the program parameter label multiplier and is a value between
0 and 1 enabling to decrease the importance of the label part. β is set by
score scaling and will be explained later. As the label of a concept should
be the most important and normative part of a concept, we usually set it
to 1. Now, we define sjmax which is equal to the maximum over all l match
scores sjl from label to word j of description, or to 0 if there are no matches.

Next, for an exact synonym of a concept, we get the scoresm1/β
exactsynonym·sjl

for each word j of destination. If any of these scores is higher than the current
maximum score sjmax at that position, then sjmax is set to that higher score.
We repeat the procedure with all other exact synonyms and also with all other
parts of the concept, including definition and comment, if present.

Like for the label,mexactsynonym is set by parameter exact synonym, which
we can set to be a bit less than 1, if we want matches by exact synonyms
matter a bit less than matches by labels. Analogously for other concept

45

parts.
In the end, we have a score sjmax for each word j of the description. Many

of the scores will be 0, because no match from any concept part to a word in
description was found. The other scores can be a result of a match between
one or another concept part, that is, we have a mix of score sources for
the score set of the description. Note, however, that when these scores were
computed, then in proximity scoring, matches of only the same source were
taken into account.

We get the final score of matching the description as:

sdescription =
∑n

j=1 sjmax idfqisj
n

β ·mdescription, where (9)

• n is the number of words in the description

• idfj is the IDF weight of the word j in the description

• qis is the query IDF scaling factor, which has value 0 or greater, its
effects being explained at the end the previous section

• β is score scaling, set by parameter score scaling

– calculating the score with the scaling value as 0 does not make
sense, so we allow disabling score scaling by setting it to 0

– setting it to 1 also effectively disables score scaling
– a value greater than 1 makes bad scores even worse compared to

good score
– a value between 0 and 1 makes good and bad scores more equal

and is the reason we have actually introduced this parameter

• mdescription is the description multiplier, similar to the multipliers for
concept parts

Here, we weighted the scores with IDF weights of words in the destination
list (the description sentence). These scores have already been weighted with
IDF weights of words from the source list, this being done in the previous
section. So each match score has been multiplied with idfcisc · idfqisq , where
idfc is an IDF score for a word from a concept and idfq is an IDF score for a
word from a query; cis is the concept IDF scaling factor, set by the concept
IDF scaling parameter, and qis is the query IDF scaling factor, set by the
query IDF scaling parameter. If we do concept to query matching, then in
Equation 8 we will have idfcisl and in Equation 9 idfqisj , and if we do query to

46

concept matching, then in Equation 8 we will have idfqisl and in Equation 9
idfcisj .

To elaborate on β, let’s consider the following example. Let’s have two
descriptions – one 10 words long and the other 1000 words long. Let’s say,
that we match the first one perfectly with one word and nothing else, with
proximity scoring disabled, thus getting the score 1

10 = 0.1. Similarly, let’s
match the same word 10 times in the second description, thus getting the
score 10

1000 = 0.01. Should the second match be scored 10 times worse?
To score equally, the second description would have to contain the word 100
times, which is not a reasonable requirement. To make the scores not depend
linearly on the number of words, we use the score scaling parameter. Let’s
set β to 0.2. Then the score in the first case will be 0.10.2 ≈ 0.63 and in the
second case will be 0.010.2 ≈ 0.40.

The same way we computed sdescription, we will also find skeyword1 , skeyword2 ,
spublication1title

, spublication1keyword1
, spublication2keyword1

, spublication2keyword2
, spublication3efoT erm1

,
etc. There is an additional step done in case of mined terms (EFO and GO).
Namely, after finding the score of matching these, this score is additionally
multiplied by

(
count
f

)β
, where count is the number of times the term was

mined (see section 3.6.1), f is the number of words in the full text the term
was mined from and β is score scaling.

3.10.5 Bi-directional matching

We can also match the other way: from query to concept. However, we
will do it with a slight difference, namely, we will not calculate the score by
matching all query parts to the concept, but we will calculate it by matching
only all query parts of the same type to the concepts. The reason being, that
in case of concepts we have a well-defined controlled vocabulary, where each
part of a concept is strongly connected to the main idea of the concept. But
in case of queries, we have parts of varying quality. For example, a web page
that can contain a lot of noise and contain words only weakly related to the
tool or service it is attached to in the query. So it would be better not to
mix the noise picked up from this web page with a better quality source, like
query keywords.

Thus, we calculate the scores of matching concept parts separately for
each query part type and look at these scores at a later stage. Among others,
we will get the following scores:

• slabel,name – score of matching the label of a concept with the name of a
query

47

• sexactsynonym1,keywords – score of matching an exact synonym of a concept
with all keywords of a query

• snarrowsynonym2,publicationmesh
– score of matching a narrow synonym of a

concept with all meshTerms of all publications of a query

Like mentioned in the previous section, we have also multipliers for the
query parts, such as mdescription and mpublicationmesh

. However, as we are not
mixing description with meshTerms yet, we have currently no need to differ-
entiate between the query part types. So we set all these multipliers to 1.
We may have a need for them in the future however. Namely, we may de-
cide to differentiate between query parts within one query type, for example
between a primary and other publication. But until then, there are no pro-
gram parameters available to set these multipliers to some other value than
1.

So now, we can match from query to concept and from concept to query.
But which one to choose?

Consider the one-word sentence “ideas”. We may match to it from “green
ideas”. Or we may match to it from “colorless green ideas sleep furiously”.
In both cases, the match score will be the same. However, we may argue,
that the second case contains more ideas than the first case, and as the first
case manages to more succinctly describe the one-word sentence, we should
prefer the first case. So we could also do an opposite matching: from “ideas”
to the two cases. In which case, the first case will get a higher score indeed.
However, we don’t know if “ideas” is part of concepts or part of a query. To
solve this situation, we could take the average of the two scores as the final
score.

Taking the average makes also better the situation, where we have a much
longer sentence, containing thousands of words, but the word “ideas” only
once. If we match this sentence to “ideas” we get a perfect score, but if we
match the other way, we get a very low score. Both scores could be considered
to be wrong, as a very low score should also not be indicative of successfully
extracting an idea from a long text. Or, on the other hand, if “ideas” was
just noise in this long text (illustrated by the fact that it occurred only once),
then taking an average means that this very low score will bring the score
down from being a perfect score. So, in a way, taking the average of the two
scores is a way to reduce errors and noise.

However, we have more than two scores currently. We decide to combine
our current scores the following way: we take sq = max(sname, skeywords1 , . . .)
and sc,name = max(slabel,name, sexactsynonym1,name, . . .). Then, we calculate the

48

weighted average of sq and sc,name as follows:

Sname = wqsq + wcsc,name
wq + wc

, (10)

where wq and wc are query weight and concept weight, respectively. If
wq is set to 0, then matching from concept to query is not done at all. If wq
is set to a value larger than wc, then matching from concept to query is more
important than doing the opposite.

Analogously, we calculate also the values Skeywords, Spublicationmesh
, In

case of mined terms, we consider all of them to be of the same query part
type, which is why we will get SminedTerms instead of SefoTerms and SgotTerms.

3.10.6 Final score between a query and a concept

We have now the following 11 scores to describe a match between a query and
a concept: Sname, Swebpages, Sdescription, Skeywords, Spublicationtitle

, Spublicationkeywords
,

SpublicationmeshT erms
, SpublicationminedT erms

, Spublicationabstract
, Spublicationfulltext

, Sdocs.
The question now is again: how do we combine them to a single match score?

We could again take the maximum value. Before we do that, however,
we should normalise the values to a common range. Namely, matching a
query part made of long text (such as a publication full-text) is harder than
matching short text (such as a keyword made of two words). Even if we find
very good matches for both, the score will still be noticeably smaller for the
former match. As, in case of a very good match against a keyword, we can
expect to match the entire keyword (both words), but against a full-text, we
are not expecting to match the entire full-text (all words), even matching a
few percents is good.

So, to normalise these values, we take as new scores Spublicationfulltext
·

npublicationfulltext
and Skeywords ·nkeyword, choosing the normalisers publication

fulltext normaliser and keyword normaliser such, that scores of an ex-
cellent, good and mediocre match in case of publication full-text would be
of comparable value to scores of an excellent, good and mediocre match in
case of keywords. Similarly, we calibrate the rest of the normalisers nname,
ndescription,

Now, with the scores normalised, we can take the maximum score as our
final score Smax. This score is made up of two part – sq and sc – so we could
also remember, which query part was matched the best (with score sq) and
which concept part was matched the best (with score sc), and indicate these
best matching parts in the output.

We could also indicate in the output, which scores we consider good,
which mediocre and which bad. It might be possible to set these decision

49

limits automatically, currently however, we are setting these manually via
program parameters. The limits depend on the normaliser values, but can
also depend on the input type, concept branch, etc. For example, we could set
that scores over 0.63 are good and that scores under 0.57 are bad. Parameters
to do so are good score topic, bad score topic, good score operation,
etc.

But coming back to our decision to choose the maximum of the S scores
as our final score. Let’s assume that we get the maximum score from a match
against a meshTerm. This could well be a mistake, there could have been
some approximations made when translating an idea describing the query
part to the meshTerm or maybe the query has over 10 terms attached to it
and the meshTerm we got an excellent match for is only tangentially related
to the query, with some other concepts describing the query better. Let’s
say there is such other concept, and we get good scores when matching the
query description, a query publication title and publication abstract with
this concept. But if all three are smaller than the score of matching the
meshTerm, we still choose the concept matching the meshTerm, even if it
didn’t match any other part of the query.

So, we could take the approach, that the more parts of the query have a
good match to a concept, the stronger is the connection between the query
and the concept. To implement it, we can take an average over all scores S
of all query parts that are present in the query. This will also even out noise,
such as meshTerm from the previous example.

Thus, we get the formula:

Savg = wname (Snamenname)γ + · · ·+ wdoc (Sdocsndoc)γ

wname + · · ·+ wdoc
, (11)

where the weights wname and wdoc are set by name weight and doc weight,
weights for query parts not present in the query are 0 and γ is the average
scaling parameter.

Weights are used to make the scores S of some query parts more important
or less important than others. For example, the description of a tool should
contain, on average, more pertinent information than, say, the web page of
a tool, which might contain more noise. So, we could decide to take into
account the score of matching a concept to a description with twice the
weight as matching it to a web page. But on the other hand, the web page
has potentially more content and may contain ideas not present in the short
description, therefore we don’t set its weight to a very small value or 0 either.
Just like for other parameters, we could optimise the values of the weights
by measuring the accuracy of the automatic mapper over a large query set
while varying the weight values.

50

The average scaling parameter serves an opposite function to the score
scaling parameter described before. Namely, when calculating Savg, we may
want to enlarge the difference between good, mediocre and bad matches. For
example, we may not want two bad matches, having only half the score of
a good match, to result in an equal or better match. So mediocre and bad
matches should boost the final score less, than their score numbers would
suggest. Note, that the scores have actually been scaled up by β previously.
Thus, we should set γ to at least 1

beta
so that the scores would again be

approximately equal to the number of matched words divided by the total
number of words. If we set γ bigger than that, this will start to emphasis
good matches and marginalise bad ones.

This scaling makes scores a lot smaller. While previously – depending on
score scaling and other parameters of course – good scores would be in
the range 0.7 (70%) for example, then now – if β ·γ is 2 for example – already
0.01 (1%) could be considered a good score. And while good scores would
be in the range of a few percent, then the theoretical maximum, although
extremely unlikely, would still be 100%.

While this is not a problem, what might constitute an annoyance, is
that scores Savg between different queries might not be comparable between
queries anymore. This could happen for instance, when one query has only
keywords available, which could be considered a good source of good matches,
while for another query we have many other parts (like webpage, doc, etc)
available. All these other parts actually help to differentiate between concepts
better for the query, but they will also result in the score number being
smaller (as we can’t expect all these parts to have a good match to a concept,
even in case of a good match). This means, that we can’t set limits to
differentiate good, mediocre and bad scores anymore. So, as a workaround,
we still set the limits based on Smax and also decide the match quality based
on Smax. Note, that ordering matches by Savg and ordering matches by Smax
does not give the same result. So, we actually still select the best match
according to Savg and use the match quality as an additional hint.

As even when using Savg, we still would want to find Smax, then we still
have to normalise scores. Using the normalised scores when calculating Savg
(in Equation 11) has the added benefit of being able to work with the weights
under the assumption, that setting all weights to 1 would mean that all query
parts have equal importance.

Sometimes, we may not want to use Savg at all and just limit ourselves
with Smax. The program parameter mapping strategy can be set to either
“average” or “best” to select the required strategy.

51

3.10.7 Final output

As final output we would like to give out for each query a list of concepts,
ordered from best matching to least matching. Therefore, for a query, we
calculate the Savg or Smax score, depending on strategy, against all concepts
in the ontology given as input, and order the concepts based on this score.
But there are some additional things to consider.

First, as mentioned in the background, a concept in the EDAM ontology
is from one of the following branches: topic, operation, data, format. We
would like to get results for each of these branches, therefore, we should not
mix the results of matching different branches. Therefore, instead of one
ordered list of results, we get four lists. Or actually, we may want to disable
matching concepts from some branch. This can be done using the program
parameter branches, which is a list of values describing the branches where
matching is enabled (e.g., “topic”, “operation”).

As also mentioned in the background, some concepts can be obsolete.
With the boolean parameter obsolete we can decide if obsolete concepts
should be matched against or not.

We are not interested in the full list of concepts, ordered by score, but
only in some limited number of best matches. The match parameter is used
to set the number of top matches we are interested in. So, while matching
concepts, if a score of the concept makes it the top, it gets inserted into the
list to the correct position, otherwise it is discarded.

So, as final output we can expect the following: a list of queries that were
matched and for each query, a list of top matched concepts per branch. For
each match, we can output the label of the matched concept, the concept
part corresponding to sc (and potentially its text content), the query part
corresponding to sq and the final match score (with the hint about match
quality described above).

3.10.8 Optimisation

Before starting to optimise the parameters and getting the results, we should
see if we can optimise the speed of the mapper. This can be important, when
the number of entries in the input is very large. In addition, this can also be
important when using the automatic mapper in an on-line situation, when
we would expect that the annotation suggestions don’t appear more than a
few seconds after specifying the description of a tool or service.

One way to decrease the run time of the mapper, is to disable or modify
some parameters. For example, setting compound words from 1 to 0 would
cause roughly 3 times less comparisons to happen. The speed gain can be

52

even bigger – for example, if we have approximate match disabled and set
compound words from 0 to 1, then this will automatically allow 1 mistake for
the compound comparisons and this can increase the run time by an order of
magnitude. We could also disable bi-directional matching by setting either
concept weight or query weight to 0 – this will cut run time more or less
by half. We could also disable matching for some query parts, especially for
web pages, docs and publication full-text, as these can contain the longest
texts. Or disable matching in some concept branch we are not interested
in – run time will decrease by roughly how many concepts were disabled
compared to the time it took when they were enabled.

However, we also looked at optimising performance without manipulating
parameters. We found, that unsurprisingly, the majority of time is spent
doing string comparisons between words. The first approach we had taken,
was quite naive: for every word pair, compute the Levenshtein distance, then
calculate the score given by Equation 6 and if that score was not smaller than
match minimum, then count it as a match. This can be optimised quite easily.
In case match minimum is 1, we have disabled approximate matching, and
in such case just use string equality check for finding a match. Otherwise,
compute the maximum number of allowed errors, such that the score will
still be greater than match minimum:

dmax =
⌊
l · (1− swmin

)
k

⌋
(12)

Then, we notice that the edit distance is equal to at least the difference
in length between the compared strings. Thus, if the string lengths differ
by more than dmax, then the score will be less than match minimum, so we
don’t need to know the exact score and can skip calculating the Levenshtein
distance. Using these optimisations, we get the following results: if match
minimum is disabled, then total mapping run time is decreased more than 20
times; if match minimum is set to 0.35, then run time is decreased a bit over
1.5 times. These improvement factors are just indicative, as they can depend
on various parameters.

Next, we will try to improve the time of approximate matching even fur-
ther. Computing the Levenshtein matrix takes O(mn) in time, where m and
n are the lengths of the strings whose edit distance we are computing. From
Figure 2 we notice, that not all values in the matrix need to be computed to
get the lowest right value that represents the edit distance. We use improve-
ments made to the basic algorithm by Ukkonen [28]. On the figure, we have
coloured diagonal: on the green one, the error is at least 0, on the yellow
ones, the error is at least 1, etc. Ukkoken noticed, that a number of diag-
onals far away from the central one can be discarded outright. Also, if the

53

cost of operations is 1, then in each diagonal we only need to remember the
position, where one number changes to the next one. Thus we can translate
the Levenshtein matrix coordinates to a smaller matrix, with which we will
actually be working. We work by iterating over the error – first find places
where 0 changes to 1, then places where 1 changes to 2, 2 to 3 etc. If we ar-
rive at the end of the diagonal containing the edit distance (the upper yellow
diagonal on the figure), we have an answer. Berghel and Roach improved
the algorithm even further [29]. They noticed, that the number of values
calculated can be reduced even further. For example, not all places where 2
changes to 3 have to be found — this is often the case on diagonals farther
away from the centre diagonals, where have basically reached a dead-end
concerning the optimal path. We implemented the algorithm given in the
“Afterword” section of their article. Notice, that the algorithm will calculate
the edit distance for two strings. However, if it will be greater than dmax,
then we are not interested in it. As the algorithm works over a loop with d
as index, we can stop executing it if d grows larger than dmax and we haven’t
an answer yet, returning an invalid distance.

This new algorithm is O(dmax · min(m,n)), where dmax depends on k
and swmin

, which are set to 2 and 0.35, like in the simple optimisation case.
Compared to the simple optimisation case, the increase in speed is a bit over
3 and compared to the naive case, run time has decreased roughly 5 times (for
used parameters). As m and n are rather small (stemmed English language
words, so usually less than 10), then speed gains are not overly dramatic.
However, the speed is increased 5 times for the whole mapper run (as other
operations are at least an order of magnitude less costly than calculating the
edit distance), then this could still be considered an important gain.

Of course, another option is to disable approximate matching all-together.
In this case, the built-in Java string comparison will be done, which just
compares strings character-by-character until a difference is found (if string
lengths were not equal, then this is not done). In such case, we get a speed
increase of about 4.5 times over the improved edit distance algorithm (when
match minimum is 0.35 and mismatch multiplier 2). This a difference
between the overall mapper run times, the actual difference between the
options is probably a bit higher, as now other operation costs besides com-
paring words to words also start to become more important (although still
many times less costly).

One such operation, which is also at the core of the mapper, is proximity
matching. A naive algorithm for it could be considered as such: for a destina-
tion word list, make an array with size equal to the number of words, and for
each array position make a list to save the matches. However, as the number
of matches will be rather small, compared to the number of words in the list,

54

then this array would usually be quite sparse. So it might be better to make
just one list of matches for the destination list: for each match, we save it to
the list with the match score and source list index, as before, and adding the
destination list index. If matches are added in destination list index order
into the match list, then we can just move upwards and downwards in the
list for a position to get the nearest matches on the right and left of that
position. If we make match minimum smaller, then there will be many more
matches and our position matching will get slower. However, approximate
matching will also get slower and position matching will still be an order of
magnitude slower from it.

Other optimisations, like replacing some variable length list structure
with arrays, could yield even more speed gains. But these will most likely
increase performance a few percent instead of a few times. One algorithmic
optimisation we could try: stop calculations once it has been determined,
that the match we are currently calculating a score for can’t theoretically
make it to the top any more.

However, if we have multiple processor cores available, then we can still
decrease run time multiple times by parallelising the algorithm. We have
chosen the following way: as calculating matches for a query is independent
from calculating matches for another query, then each query can be handled
by a separate processor thread. We have a list of queries, from which threads
can pick a query, and a list of results, where the mapping is put. As we want
to preserve the order of queries, each thread also remembers the index of
the query it took. As the synchronisation cost is minimal (the get and put
operations for the lists), then we can expect speed to increase linearly with
the number of threads. Increasing thread count from 1 to 8 on an Intel Core
i7 system with advertised thread count of 8, increased speed by 4.0. This
is expected, as the processor employs Intel’s Hyper-Threading: each actual
processor core present two virtual cores to the operating system.

This enables us to do processing of multiple queries, for example during
parameter tuning, multiple times faster. If we want to get speed gains for
one query this way, parallelisation should be done deeper in the mapper.

3.11 Output: Getting the results
We can output the mapping results in two formats: plain text and HTML.
The plain text output can be used as input for other tools for displaying and
doing analysis of results. The HTML output is for displaying the results in
a more intuitive way than just text file lines, with some added conveniences,
such as displaying the content of queries or proving links to tool homepages
or matched concept URLs.

55

3.11.1 As plain text
The plain text output can be written to standard output or a text file. An
example result for a tool from the bio.tools input, when mapping was
enabled for all branches and top 3 matches per branch are output, follows:

1 PASTA | Genetic variation | http://edamontology.org/topic_0199 |
false | topic | narrow_synonym | webpage | 0.0036608106763123733

2 PASTA | Small molecules | http://edamontology.org/topic_0154 |
false | topic | narrow_synonym | publication_mesh | 0.0035594688293943627

3 PASTA | Pathology | http://edamontology.org/topic_0634 |
false | topic | label | publication_abstract | 0.0032547220482351384

4 PASTA | Aggregation | http://edamontology.org/operation_3436 |
false | operation | label | description | 0.011032163882532895

5 PASTA | Protein secondary structure prediction |
http://edamontology.org/operation_0267 | false | operation |
exact_synonym | publication_fulltext | 0.0032746269399028236

6 PASTA | Protein secondary structure prediction (coils) |
http://edamontology.org/operation_0470 | false | operation |
label | publication_fulltext | 0.002947160256308562

7 PASTA | Protein sequence | http://edamontology.org/data_2976 |
false | data | label | description | 0.02983743484576472

8 PASTA | Sequence | http://edamontology.org/data_2044 |
false | data | label | webpage | 0.027199031526033222

9 PASTA | Protein residue | http://edamontology.org/data_1756 |
false | data | exact_synonym | webpage | 0.024387215023225817

10 PASTA | protein | http://edamontology.org/format_1208 |
false | format | label | webpage | 0.030948125267984246

11 PASTA | Protein secondary structure format |
http://edamontology.org/format_2077 | false | format |
label | publication_abstract | 0.017590781403984544

12 PASTA | FASTA | http://edamontology.org/format_1929 |
false | format | label | webpage | 0.016265366321642064

Lines have been wrapped to fit the page. Line numbers are not present
in the output.

Each line consists of the following, separated by “|”:

1. query name (a tool or service name)

2. label of matched concept

3. URI of matched EDAM term

4. whether the concept is obsolete

5. branch of the concept

6. best matched concept part (corresponding to sc)

56

7. best matched query part (corresponding to sq)

8. match score

The output could be customised (entried grouped, order change, etc), per
input type for example, depending on annotator needs. We have done so for
SEQwiki for example.

3.11.2 As HTML

An example HTML output, equivalent to the plain text output of the previ-
ous section, can be seen on Figure 3.

On the left hand side, we can see the query content. First, the tool name
(PASTA) followed by a short description. It has one publication, with PMID
24848016, attached to it. We can see the publication title, MeSH, EFO, GO
terms and abstract. The full text is not presented, only its character count
is printed. The tool has also one documentation URL attached, which is
also brought out. The homepage can be accessed by clicking on the name
(PASTA). Also, clicking on the Publication header goes to the corresponding
journal article and clicking on terms goes to the individual term web pages.
For EFO and GO terms, their count (how many times they were found in the
full-text) is also brought out. The publication is missing one part, namely,
author assigned keywords.

On the right hand side, we can see found matches, grouped by branch
and ordered by score. From top to bottom, the branches are topic, operation,
data and format. For each branch we can see the top 3 matches. First,
we have the matched concept label, followed by the best matched concept
part, followed by the best matched query part. In case the best matched
concept part is not a label, the content of the concept part is brought out in
parentheses after the label. Such as the narrow synonym “Mutation” for label
“Genetic variation”. In case the description of the best matched query part
is ambiguous, it is made more specific. For example, “Peptides” is added
for publication_mesh. Clicking on the matched concept label takes to the
corresponding EDAM URI. If the matched label text is stricken through, this
means the concept is obsolete (we did not match any obsolete concepts in the
top 3). In the last column scores can be seen. Here, Savg has been used with
large average scaling, so numbers are low. Colours are set by the score
limits given as parameters and mean the following: green for good match,
yellow for mediocre match and red for bad match. As the colours are based
on Smax and not Savg, then it may happen in some cases (like in the case of
a match composed of only one excellent match between parts and another

57

Figure 3: Result of mapping in HTML format for “PASTA”
58

match composed of several good matches between parts), that green scores
are below yellow or red score and yellow scores are below red scores.

3.12 Benchmark: Evaluating performance
As mentioned in the Input section, some input types have manual annotation
data available. In some cases, the manual curation is outdated or incomplete
or still ongoing, and it can always be debated whether the concrete manu-
ally chosen terms are the best ones for a given resource. However, these
manual annotations still provide a valuable reference dataset against which
to benchmark the automatic mapper.

3.12.1 Benchmark output

We call a true positive (TP) a term that was both found by the automatic
mapper and annotated manually with; a false positive (FP) a term that was
found by the automatic mapper, but which was not used to annotate the
resource; a false negative (FN) a term that was used to manually annotate
the resource, but which the automatic mapper failed to find. True negatives
(TN) would be the EDAM terms that both the annotator and automatic
mapper ignored, but we are not interested in this large set.

To visually see the performance of the mapper against the manual an-
notations, we can, for each query, add mapping correctness information for
each match. We add this to the HTML output format of the previous section,
the result for the same PASTA tool can be seen on Figure 4. TP concepts
are green, FPs yellow and red FNs have been added to the end of the list.
So, the first match in the data branch and the third match in the format
branch are TPs. We can also see, that two manual annotations not found by
the automatic mapper are obsolete concepts (as they are stricken through).

3.12.2 Metrics

In addition to be able to see the performance of the automatic mapper at
individual query level, we might want to have an overview of the overall
performance over all entries. So, a table of mean metrics is also output as
part of the benchmark HTML report. An example for the bio.tools input,
with 2402 entries and where top 3 matches were returned, can be seen in
Table 6.

The metrics are defined as follows:

Precision TP
TP+FP

59

Figure 4: Benchmarking “PASTA”
60

Table 6: Mean metrics

topic operation data format average
Precision 10.57% 10.28% 13.70% 6.64% 10.30%
Recall 20.59% 25.49% 23.75% 14.18% 21.00%
F1 score 13.17% 14.15% 16.47% 8.54% 13.08%
F2 score 16.44% 19.07% 19.78% 10.99% 16.57%
Jaccard index 8.71% 9.45% 10.84% 5.65% 8.66%
Average precision 15.33% 18.97% 16.68% 8.46% 14.86%
R-Precision 13.48% 15.01% 15.01% 6.06% 12.39%
Discounted cumulative gain 19.92% 24.09% 22.80% 12.93% 19.94%
DCG (alternative) 18.51% 21.47% 21.26% 10.73% 17.99%

Recall TP
TP+FN

F1 score 2 · Precision·Recall
Precision+Recall

F2 score 5 · Precision·Recall
4·Precision+Recall

Jaccard index TP
TP+FP+FN

Average precision
∑n

k=1 P(k)rel(k)
TP+FN , where k is the rank in the matches list,

n is the number of top entries in the matches list, P(k) is the precision
at point k (precision ignoring later entries) and rel(k) is 1 if match at
k is also a manual annotation and 0 otherwise

R-Precision r
TP+FN , where r is the number of TP s within the first TP+FN

entries

Discounted cumulative gain DCG
IDCG

, DCG = rel1 +∑n
i=2

reli
log2(i) , where n is

the number of entries in the matches list, i is the rank in the matches
list, reli is 1 if match at ith position is also present in manual annota-
tions and 0 otherwise and IDCG is the maximum possible DCG for
n

DCG (alternative) like previous DCG, but DCG = ∑n
i=1

2reli −1
log2(i+1) is used

instead

These are calculated for each query individually and an average over all
queries taken to get the final results per branch. An average of the final
branch results is also given.

61

Precision shows how many of the results in the top list are correct (in
the sense that they were also used for manually annotating). Recall shows
how many of the correct results the automatic mapper was able to retrieve.
In many cases, there are not many manual annotations available. So, for
example, if we display the top 5 best matches and there is only 1 manual
annotation done, which is present in the top 5, then the precision will be only
20%. But many of the remaining 4 FPs could probably also be considered
correct, or at least good hints to the curator. However, we should still require
that the one manual annotation is retrieved by the mapper. In the example,
this is the case, so recall is 100%.

A better metric to use instead of precision might be the average precision,
which takes into account the ranking order of results. So, for example, if the
manual annotation was returned as second result by the automatic mapper,
then the sum in average precision formula will consist of only the precision
calculated at this position. At this rank 2, TP is 1, FP is 1 and thus precision
is 1

1+1 = 50%, thus average precision in this case will be 50%. If the manual
annotation would have been returned forth, then average precision would
have been 1

1+3 = 25%. R-Precision is often highly correlated to average
precision and DCG is also a measure taking into account the ranking of TPs.

Based on this, we should avoid looking too much at precision and other
metrics that don’t look at ranking order and contain FPs, and for simplicity,
we choose to look at only one of the ranked metrics. So, in the next sec-
tion, we will look only at recall and average precision when measuring the
performance of the automatic mapper.

While doing this, we should still keep in mind, that the benchmark values
are based on the assumption, that the manual curation is 100% correct, which
is not the case.

62

4 Results

4.1 Parameter tuning
After having defined an automatic mapper in the previous section, we would
like to start getting good results from it. However, at this point, all the
parameters defined in the previous section have been given values based on
educated guesses, which might not be optimal. We would like to optimise
these parameters to give maximally good results on real datasets.

We could try to make an automatic optimiser for the parameters. How-
ever, we don’t know if the parameters have been well defined and as first
approximation would like to get a rough overview of what works and what
not, so we will try to manually change parameters and observe changes in
performance measures. We do this for each parameter by varying its value
while keeping other parameters constant. Note, that this is not entirely cor-
rect, as the parameters are not independent.

The majority of tuning was done using the bio.tools input type, where
other inputs would eventually be merged to. However, some experiments
were done with other input types as well. In all case, matching of obsolete
concepts was enabled, with 5 top results returned and mapping was done in
all branches for which manual annotation data was available. Tuning was
done, both, when all query parts were enabled, and also for individual query
parts alone, to test, if there are differences in behaviour for longer texts (like
full-text) and short keywords for example.

The measures looked at where recall and average precision. In case the
effects of changing parameters were clearly visible, then these measures were
correlated, so it didn’t matter which one to take into account. If measure
values were changing a little, when parameter values were changed, then
there could be differences in the changes of recall and average precision. But
it can be argued, that in such cases these fluctuations were too small to be
significant. However, it could also be observed sometimes, that the measures
peaked at slightly different parameter values. In such case parameter value
somewhere between the two peaks could be chosen as final decision.

4.1.1 Approximate matching

First, we look at the effects of approximate matching. Parameter mismatch
multiplier is set initially to 0.35 and compound words is 0.

Parameter mismatch multiplier could be set to a larger value than
1, as we may want to make approximate matching a bit more costly. For
publication abstracts, for example, increasing the value up to 2, increased

63

measures by roughly 20%. At higher values, the measures started to drop
off very slightly. The same could be observed for keywords, but with smaller
increase (10%). Setting the parameter to a higher value means also that less
approximate matches happen which means that execution is faster. So we
set mismatch multiplier provisionally to 2.

As setting mismatch multiplier higher can mean that more matches
will have a score lower than match minimum, then the effects we saw in the
previous paragraph could actually be caused by match minimum. However,
testing revealed, that varying match minimum has very little effect on the
results. In some branches, enabling approximate matching seemed to make
results very slightly worse and in some branches the opposite. But in general,
we failed to see any clear pattern.

If anything, making match minimum smaller decreased results very slightly
in case of long texts. Enabling approximate matching means, that some mis-
spelled words will be correctly picked up, but also some similarly written,
but not related words will be picked up. In case of long texts, the concept
we are interested in will be mentioned in many places, thus it will not affect
results much, if it is sometimes misspelled. On the other hand, the longer
the text, the more possibilities we have for approximately match incorrect
words.

For shorter input, like keywords, approximate matching might be more
useful. In case of SEQwiki tags, we get a slight increase of 2% in case
approximate matching is enabled by setting match minimum to 0.35. Also,
the speed penalty of approximate matching is not an issue if the input is so
small. Still, the improvement was too small (only two extra TPs) to draw
any conclusions, so more experimenting should be done.

As the effects of approximate matching on matching accuracy seem to
be very small, but its effects on execution speed are considerable (see sec-
tion 3.10.8), then in most cases it should be disabled by setting match
minimum to 1. We enable it only for very short input in the hope that it
sometimes finds a few extra correct matches.

For the compound words parameter, our conclusion is similar. Setting it
to 1 from 0 only very slightly changes the result, but running time is consid-
erably affected. However, differently from approximate matching, it should
generally improve results, as it more likely will correct pre-processing errors,
than cause incorrect matches. For example, setting it to 1 for SEQwiki
tags would correctly find a mapping from “Split-read” to “Split read map-
ping” that would otherwise be missing (because “Split-read” is pre-processed
to “Splitread” and “Split read” to two words “Split” and “read”). So, we set
compound words to 1 for short input and unless we have much processing
power available, disable it for longer input. Also, currently compound words

64

is set globally for all query parts, we may want to be able to enable in some
query parts (like keyword matching) and disable in other (like for full-text).

4.1.2 Proximity matching

There are four proximity matching parameters to optimise: position loss
(initially 0.5), position off by 1 (initially 0.7), position off by 2 (ini-
tially 0.3) and position match scaling (initially 0.5).

Either disabling proximity matching (setting position loss to 0) or re-
quiring all matching to happen in at least partially the right context (setting
position loss to 1), had noticeable effects on the results. An illustration of
a test can be seen on Figure 5. After enabling proximity matching, results get
better while position loss is increased, until some point when they start
gradually getting worse. Tests done for other input types also suggested that
a good value is somewhere around the halfway between 0 and 1. As result
of the tests, we set the default value of position loss to 0.4.

0.0 0.2 0.4 0.6 0.8

0
5

10
15

20

position loss

av
er
ag
e
pr
ec
isi
on

[%
]

topic
operation
data
format

Figure 5: Varying position loss in bio.tools with all query parts enabled

Effects of varying position off by 1 and position off by 2, which

65

describe proximity matching to further away words, were a lot smaller. In
case of position off by 1 tests suggested a value around 0.35, although
this is to be taken with high uncertainty. In case of position off by 2
changes in measures were hardly noticeable, but results seemed to suggest it
should be minimal, so we set it to 0.05. This suggests a position off by
3 is not necessary.

Parameter position match scaling needs approximate matching to be
enabled to have any effect, so we had match minimum set to 0.35. Its effect
on results were also minimal, but setting it to either 0 to 1 seemed to slightly
worsen results in both case compared to values around 0.5, so we set it to
0.5 currently.

4.1.3 Inverse document frequency

Using inverse document frequency to weight words, i.e., penalising frequent
words, can have considerable effects on the results.

First, we look into query idf scaling. So far, we have had bi-directional
matching enabled, but we may be interested to see, if IDF has different ef-
fects when only matching from concepts to queries is enabled and when only
matching from queries to concepts is enabled. A test for the first case, i.e.,
only matching from concepts to queries, can be seen on Figure 6. We see, that
IDF can have big effects, at least in this case, where publication keywords are
used. A good value for query idf scaling seems to be around 0.5, where
average precision can be 2-3 times higher than in the case when IDF score
are not used at all (query idf scaling is 0). Except in the format branch,
where query idf scaling doesn’t seem to have much effect.

For the opposite case, only matching from queries to concepts, this effect
is less pronounced, as seen on Figure 7. Moreover, for the data branch,
enabling query idf scaling has clearly negative effects.

When bi-directional matching is enabled and matching is enabled for all
query parts, we get results as seen on 8. We see, that results in the data and
format branches drop quite significantly when IDF weighting is enabled and
increased. Getting results separately for both matching directions shows,
that results go down again when matching is done from queries to concepts.
So we may be tempted to disable query idf scaling in cases when match-
ing is done in this direction. However, as seen for publication keywords, IDF
scoring increases score in the topic and operation branches even for this dir-
ection. And when matching with all parts of the query, then results go down
in the data and format branches for both directions. Also, when working
with the ms-utils.org input, we found that enabling IDF scoring for query
words improved results in the format branch.

66

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

query idf scaling

av
er
ag
e
pr
ec
isi
on

[%
]

topic
operation
data
format

Figure 6: Varying query idf scaling in bio.tools for only publication
keywords, when concept weight is set to 0. Low scores are caused by the
fact, that only some entries in bio.tools have publications attached and of
these, only some have keywords available in the publication.

67

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

query idf scaling

av
er
ag
e
pr
ec
isi
on

[%
]

topic
operation
data
format

Figure 7: Varying query idf scaling in bio.tools for only publication
keywords, when query weight is set to 0

68

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

query idf scaling

av
er
ag
e
pr
ec
isi
on

[%
]

topic
operation
data
format

Figure 8: Varying query idf scaling in bio.tools, when all query parts
are enabled

69

So, the effects of IDF seems to be a more complex issue and necessitates
more thorough investigation, not only by looking at the overall metrics, but
by going through individual results. For example, the reason why enabling
IDF weighting has such negative effects in the data branch is probably the
following. In the data branch, there are 1480 concepts (in EDAM version
1.14), but some of them are used much more often than others. For example,
in bio.tools, a lot of tools are annotated with concepts “Sequence” and
“Data”. However, as seen from Table 3, these are words that occur very
often in queries and thus have low scores (0.0414 and 0.0317 respectively).
This means, that these two words must occur in one query more often, than
some other word with a higher IDF weight, to get a similar match score.
Thus, often some other words will be chosen over these and we get many
false negatives containing “Sequence” and “Data”. But the idea seems to
work in principle, as IDF scoring helped for the topic and operation branches
for example.

So we could measure performance, without looking at these two words,
and maybe some others as well (as the curator might not need suggestions
to “Sequence” and “Data” if these are very common). And more thoroughly
investigate the relationship of IDF scoring to bi-directional matching and
maybe some other parameters as well. But currently, as a simple workaround,
we introduce the following parameter: disable-query-idf-branches. This
enables us to disable query words IDF scoring selectively in some branches.
So for bio.tools, we use it to disable query IDF scoring in the data and
format branches. In topic and operation branches, IDF weighting is still
done, with query idf scaling having the default chosen value of 0.5.

Also, we introduce the parameters disable name keywords idf, disable
description idf, etc, to disable query IDF scaling for only some query
parts. The rational, although Figures 6 and 7 seem to contradict this, is that
IDF scoring should be mainly useful for longer texts.

We also tested the effects of IDF scores for the words in concepts by vary-
ing the concept idf scaling parameter. We found, that this parameter
was best kept at 0, as increasing it decreased performance in all branches.
However, when IDF scaling is disabled for words in concept labels and syn-
onyms, then it has a slight positive effect, with best performance around
0.5. Thus we only allow IDF scaling to happen in concept definitions and
comments and introduce the parameter enable label synonyms idf if we
really wish to have IDF scoring for concept labels and synonyms.

In conclusion, IDF weights have a strong effect on performance as they
influence greatly which words are preferred over which words. So, the match
choices made when varying IDF weights should be studied more carefully.

70

4.1.4 Bi-directional matching

Next, we test if the idea of doing bi-directional matching was a valid one.
Results can be seen on Figure 9. We see, that when doing only concept to
query matching (concept weight is 0) or when doing only query to concept
matching (concept weight is infty), then results are noticeably worse than
for bi-directional matching. The exception is the format branch, where it
seems that only queries to concept matching should be done. It’s not clear,
if it is a rule or an exception, like maybe a manifestation of the fact that
parameters are not independent from each other. For example, when doing
the same test for only publication abstracts, then bi-directional matching
had higher performance than only queries to concept matching also in the
format branch. So, currently we keep it enabled for all branches. As for the
values of the weights, we set both concept weight and query weight to 1,
in essence taking the mean of both direction matches.

0.0 0.5 1.0 1.5 2.0 ∞

0
5

10
15

20

concept weight

av
er
ag
e
pr
ec
isi
on

[%
]

topic
operation
data
format

Figure 9: Varying concept weight, while query weight is 1, in bio.tools,
when all query parts are enabled

71

4.1.5 Score scaling

As seen on Figure 10, score scaling seems to also be a valid concept, except
for the format branch again. We set its default value to 0.2.

0.10 0.20 0.30 1

0
5

10
15

20

score scaling

av
er
ag
e
pr
ec
isi
on

[%
]

topic
operation
data
format

Figure 10: Varying score scaling in bio.tools, when all query parts are
enabled

4.1.6 Multipliers, normalisers and weights

In this section, we will see, how the different multiplier, normaliser and weight
parameters of concept and query parts should be set in order to best combine
the scores of these parts.

First, we have a look at the multipliers of concept parts, that can be used
to set the relative importance between concept label, synonyms, definition and
comment. The concept’s label is the most important part of a concept, thus
we set its multiplier to 1. We expect that matching of exact synonyms should
have a slightly lesser score, and that matching of narrow and broad synonyms
a bit lesser still. However, testing revealed, that setting the exact synonyms’s

72

multiplier to a smaller value than the label’s multiplier was not justified,
as performance started to drop. In case of narrow and broad synonyms, the
same could be observed. Or to be more precise, the optimal value of the
multiplier seemed to be somewhere around 0.97–0.98. However, the difference
of performance to having the value at 1 was very small. So we set this
multiplier also to 1.

As for definition and comment multipliers, their values had the best
effect at around 0.5–0.75. But only when concept IDF weights were dis-
abled. If concept IDF weights are enabled, then definition and comment
multipliers should also be set to 1 for best performance. And in that case,
performance was better than when concept IDF weighting was disabled and
definition and comment multipliers were around 0.5–0.75.

So, in the end, we set all concept multipliers to 1. But the options to
change these parameters will remain available, as we may still decide that
the matches provided through matching narrow synoyms for example are not
as good as matches provided through labels.

Next, we look at the publication part normalisers. Their goal is to make
the scores of matching short query parts (like name) more comparable with
scores of matching long query parts (like web page content).

Currently, setting these normalisers has to be done manually. First, we
set mapping strategy to “best”. Then, we set the normaliser value of a
query part to 1, and the normaliser value of all other query parts to 0. From
the mapping result, we find the usual score or score range of good matches,
discarding the few possible outliers. We repeat this for every query part.
Then, for the query part that had the lowest score, we set the normaliser
to 1. For other parts we set it so, that multiplying their good match score
range with their normaliser gets as result a score comparable to the score of
the part that had the lowest scores.

For example, we set publication fulltext normaliser and webpage
normaliser to 1, publication abstract normaliser to 0.985, description
normaliser to 0.92 and publication keyword normaliser to 0.77. In gen-
eral, the shorter the content of the query part, the more its score needs to
be reduced.

Next, we look at changing the relative importance between query parts,
by changing their weights. We set name weight and description weight to
1, as these are succinct and good sources for getting concept matches. Setting
the weight of the description even higher was found not to be justified. The
different publication keywords seemed to change the result a little, but it
could be seen that the weight for the mined terms and MeSH terms should
be lower than normal — these were set to 0.25. The user-assigned keywords
are a better source, as they are more close to the ideas that the author

73

intended to express, we set publication keyword weight to 0.75. The
abstract influenced the results more, a good weight value for it seemed to
be around 0.75. The publication title is often highly correlated with the
abstract and full-text and performance measures clearly showed its weight
should be less than 1 – it was set to 0.25. It should be noted, that the
different publication parts are often correlated, so we should try to make
sure that their cumulative weight does not get too big when compared to the
other query parts. As for the parts with long texts – publication full-text,
web pages and documentation – a good value seemed to be between 0.5.

Some choices we made were somewhat deliberate, as sometimes perform-
ance measures did not change enough to decide on the best value (we could
see that the value should be somewhere between 0 and 1, but it was hard
to see where exactly). Also, for the documentation link we may get slightly
better results if we disable matching against it entirely. However, it may
find or reinforce some interesting matches, that most other parts are miss-
ing. For example, documentation (but also web pages) often contain the used
data formats in the instructions on how to use the tool – this is more often
missing in other query parts. By looking through the results, we may notice
that some query parts pick up bad matches more often, so we could tune the
weights further then.

When computing the weighted average of the query parts, we use the
average scaling parameter. We mentioned in section 3.10.6, that its value
should be set to at least 1

score scaling to cancel out the effects of score scaling.
This can be seen on Figure 11. In that test we had score scaling set to
0.2, so average scaling should be set to at least 5. From the plot, we see
that we should set it even higher – the effect of this will be, that the scores
of mediocre matches will be diminished more than the scores of good match,
so mediocre matches will become relatively less important. A good value for
score scaling seemed to generally be around 10 up to 15.

Last, we compare the “best” and “average” strategies of combining the
results of query parts. From Table 7, it can be seen that, except for the
format branch, the use of the “average” strategy is well justified.

4.1.7 Pre-processing parameters

We haven’t yet looked at changing the parameters defined in the following
steps of preprocessing (section 3.7):

7 — set by remove numbers

12 — set by stopwords

74

2 4 6 8 10 12

0
5

10
15

20

average scaling

av
er
ag
e
pr
ec
isi
on

[%
]

topic
operation
data
format

Figure 11: Varying average scaling in bio.tools, while score scaling
is 0.2 and only the description query part is enabled

Table 7: Comparing “best” and “average” mapping strategies in bio.tools,
when all query parts have been enabled and top 5 matches per branch are
taken into account

(a) Metrics for the “best” strategy

topic operation data format average
Recall 21.74% 28.29% 28.66% 19.62% 24.58%
Average Precision 13.69% 17.55% 14.54% 10.77% 14.14%

(b) Metrics for the “average” strategy

topic operation data format average
Recall 26.25% 31.59% 31.11% 19.42% 27.09%
Average Precision 16.84% 20.45% 18.61% 9.68% 16.39%

75

13 — set by no stemming

14 — set by short words

Removing free-standing numbers had almost no effect. So we decide to
keep them.

Same for removing short words. Setting short words to 1 (removing all
words of length 1) had little effect, while setting it to 2 slightly decreased
performance.

The more interesting parameters where those controlling stopwords re-
moval and stemming. For short texts, stemming had a clear positive effect.
But when tried on publication full-texts, it actually caused performance to
drop (except in the topic branch, where it increased). While removing stop
words had less impact on the results, it had a similar pattern: it worked
better for short texts and decreased performance for longer text (except in
topic branch). Also, the shorter the stop word list, the better – so we set as
default the “lucene” list, which has only 33 words.

As stopwords removal and stemming had still an overall positive influence
(except in the format branch), then these operations will be done. Also,
removing stop words has a noticeable positive effect on the execution speed
of the mapper.

But in general, the effect of these two pre-processing parameters should
be studied more thoroughly. We may, for example, want to be able to disable
them for longer texts, while keeping them enabled for shorter texts. Note,
that the content of the query IDF file also depends on these parameters, so
if we implement such feature, then multiple query IDF files might be needed
at once.

4.1.8 Conclusions

In this section we got a rough overview how well different ideas of the mapper
algorithm worked and tried to find optimal parameters controlling the beha-
viour of the algorithm. As result, we have set these parameters to reasonable
defaults, which can be seen in Appendix B.

However, these should not be considered final. We should still look more
deeply into optimising some of them, for example parameters concerning IDF
or pre-processing. Also, some parameters, like multipliers and weights, can
be changed also later according to the task or input type at hand or according
to suggestions by curators.

We could also be interested in controlling the parameters individually for
each branch and individually for each query or concept part, or at least based
on if the part generally contains short of long text. However, while allowing

76

more control, this also means that the parameter space will increase many
times.

Increasing the number of parameters can be a problem if we want to at-
tempt any automated optimisation. However, a brute-force approach could
be prohibitively expensive anyway. Using some genetic algorithm for para-
meter optimisation might be possible. To make it more feasible, we could
also look at only optimising a few, more important parameters. Also, before
such endeavour is attempted, we should also try to increase the quality of
the manual annotation.

4.2 Results of automatic mapping
In this section, we provide an example result for each input type. While
a curator would be better in judging the mapping quality, we can point to
some more obvious shortcomings of the algorithm and some more obvious
good matches.

In each case, the default parameters named in Appendix B were used
with minor modifications. These modifications are brought out under each
input type.

The ontology file used was EDAM version 1.14. Also, for each input
type, the query IDF file used was the file based on entries of bio.tools, as
it was found that it gives the best performance. For example, in case of using
the query IDF file generated from ms-utils.org entries when mapping ms-
utils.org entries, the performance was significantly worse than when using
the bio.tools query IDF file. The reason might be, that the bio.tools file
is based on larger input, but this has to be investigated more thoroughly.

Also, where applicable, a table with Recall and Average Precision metrics
is given for each input type. While example outputs show top 3 matches per
branch, the metrics values are based on a mapper run where top 5 matches
were output.

4.2.1 SEQwiki

No manual annotation data was available for SEQwiki, so no metrics were
calculated.

Modification to parameters where the following:

• name weight to 0.5,

• description weight to 1,

• keyword weight to 1.5,

77

Figure 12: Results for “AB Large Indel Tool”

Figure 13: Results for the “AGE” tool

78

• webpage weight to 1,

because the keywords (biological domains and bioinformatics method) are
the most accurate part in the query and tool names seemed to cause many
strange matches.

For “AB Large Indel Tool” (Figure 12), we can make the following obser-
vations:

• We can see a Domain/Method mixup, as the Domain “Indel detection”
has matched the operation “Indel detection”. This means, that “Indel
detection” has to be moved under Method in SEQwiki.

• As “Sequencing” has a low IDF score, we have not matched to topic
“Sequencing”, but to other topics we consider more relevant.

• One such is “Clone library”, the word “clone” appears once in the
description and is mentioned multiple times in the web page, where
also the phrase “clones from each library” appears (which gets a little
boost from position matching).

For “AGE” (Figure 13), we can make the following observations:

• The top topic suggestion with a good score (matched through the
stemmed version of the broad synonym “Aging”) is clearly wrong. The
tool name “AGE” does not relate to human age.

• We have matched the operation “Alignment”, which is a parent of the
matched “Sequence alignment”, which is a parent of the matched “Local
sequence alignment”. Instead of receiving three parent-children terms,
we may find more useful to get some unrelated suggestions instead of
some of these terms.

• “Local sequence alignment” is matched, because “local end alignments”
appears in the wiki page of the tool.

4.2.2 SEQwiki tags

As mapping of the short SEQwiki tags to concepts can be done by simple
string comparison, then the original mapper by Rabie Saidi could be used
here. Using it for concepts in the topic and operation branches and returning
top 3 entries, we measured its performance and got as result Recall 66.6%
and Average precision 57.7%.

79

Then, we used the new mapper with default parameters, with additionally
setting compound words to 1 and match minimum to 0.35. Recall increased
to 74.8% and Average precision to 68.9%.

This shows, that some of the features developed for matching free-texts
have also been useful in the simplest case – direct keyword-to-keyword match-
ing.

Most of the remaining concepts will be hard to map against using only
string comparisons. For example, from “Viewer” to “Visualisation”. The
matching could be achieved however, if additional synonym information was
available.

But there are still some more promising examples, for example from “As-
sembly” to “Sequence assembly”. There are many concepts with their la-
bels containing “assembly” and we have chosen as top 3 the following: “As-
sembly”, “Assembly QC” and “EST assembly”. It could be argued, that just
the word “Assembly” is more related to “Sequence assembly” than “Assembly
QC”, however we can’t say this based on the characters in “Sequence” and
“QC” alone, but need additional input about the meaning or common usage
of words in some context.

4.2.3 ms-utils.org

Table 8: Metrics for ms-utils.org

topic operation format average
Recall 58.97% 46.34% 51.83% 52.38%
Average Precision 36.49% 34.78% 40.27% 37.18%

Metrics for ms-utils.org (Table 8) were quite good, at least when com-
pared to other input types.

Modifications to parameters were the following: matching of obsolete
concepts was enabled and query-idf-scaling was set to 0.6 (as it increased
metric by around 0.5% points).

For the “GenePattern” tool (Figure 14), we can observe the following:

• The top topic “Proteomics” is a true positive that occurs in the de-
scription and in every part of the publication.

• Conversely, we have the FN “Functional genomics”, because no “func-
tional” or “genomics” appear in any part of the query.

80

Figure 14: Results for “GenePattern”
81

• The false positive topic “Biomarkers” can be a correct suggestion, as
the keyword appears in the MeSH terms list. But unfortunately as
“Biological Markers”, so it will not be matched there. Fortunately, it
also appears as “biomarker” in the abstract and full-text, thus we still
pick it up.

• The operations “Deisotoping” and “iTRAQ” appear only once in the
full-text and not in a context describing the tool itself, but they are
probably chosen over “Clustering”, that occurs multiple times and also
occurs in the abstract, because “Clustering” is a quite frequent word.
This is probably not the correct behaviour here.

• We see that the correct format “GCT/Res format” is picked, because
it contains the tool name (GenePattern) it its description. So here
we see an example, when matching query name and matching concept
definition is useful.

• The third entry – “ppm” – does appear in the full-text multiple times.
But what is meant there, is the parts-per-million unit, not the PPM
image file.

4.2.4 BioConductor

Table 9: Metrics for BioConductor

topic operation average
Recall 40.99% 31.47% 36.23%
Average Precision 25.82% 22.31% 24.07%

Modification to parameters where the following:

• include obsolete concepts,

• webpage normaliser to 0,

• name normaliser to 0.89,

• description normaliser to 0.95,

• keyword normaliser to 0.79,

• doc normaliser to 1,

82

Figure 15: Results for “canceR”
83

• name weight to 0.5,

• description weight to 1,

• keyword weight to 1.5,

• doc weight to 0.75,

• query idf scaling to 0.4,

as among other things, we wanted emphasis more the biocViews keywords,
which are a good source for the mapper.

For the “GenePattern” tool (Figure 14), we can observe the following:

• The top topic, which is a TP, is matched through both “Gene expres-
sion” (in description, biocViews and docs) and narrow synonym “Tran-
scription” (in docs), strengthening the tie between query and concept.

• The second topic “Oncology (Cancer)” is probably a good suggestion,
as it seems to describe what the package is about. In this case, match-
ing the tool name – “canceR” – does the correct thing (compare to
matching “AGE” above).

• The concept “Software engineering” could be third, but is probably not
higher, because it contains quite common words (IDF score is relatively
low) and it only occurs in biocView, and not as “Software engineering”,
but “Software”.

• The rest of the matches seem to lack in variety as mostly different
variations of “Gene expressions” are suggested.

• The format “txt” could be a good match, as it is mentioned several
times in the documentation. Here we see a case, when documentation
is quite useful, as mentioning this format is not important enough to
include in the description or keywords, but we would still like to know,
with what formats the tool works with.

The “Software engineering” keyword is an interesting case, as in BioCon-
ductor, it is almost always used to annotate the tool. However, very often
we miss it. So one way to increase average precision in the topic branch,
from around 26% (as seen in Table 9) to around 38%, or even to 42% if IDF
weighting is disabled, is to only take the biocViews keywords as source. How-
ever, even if it would considerably raise performance according to metrics,
we decide not to do it, as other useful concepts, like “Oncology (Cancer)”,

84

would not be suggested then. For the curator, it’s also easier to manually
find concepts from the list of keywords than by going through documentation
for example, from where the automatic mapper can quickly find and suggest
potential matches.

4.2.5 bio.tools

Modification to parameters were the following:

• include obsolete concepts,

• disable query idf branches to “data, format”,

• good score data to 0.77,

• good score format to 0.70,

• bad score data to 0.65,

• bad score format to 0.63,

where score limits had to be changed as scores have been altered by dis-
abling IDF weighting in data and format branches (done because of reasons
explained in section 4.1.3).

We have used an example for bio.tools output previously (Figure 4),
so we will reuse it here. We can observe the following:

• The top topic, a FP picked through narrow synonym “Mutation”, is
picked because of stemming (“Mutations” in abstract, “Mutate” in web
page, “mutated” in full-text).

• The top operation, the FP “Aggregation”, is about aggregation of data
items, which is not the same aggregation as mentioned multiple times
in different query parts.

• The correctly found format “FASTA” is only present in longer texts
(full-text and web page).

• Every time proteins are talked about in the query parts, we pick the
“protein” format with high confidence. Quite often, this would not be
a valid suggestion probably.

Metrics for bio.tools can be seen in Table 7. Scores may seem quite
low, however, this is not necessarily caused only by the shortcoming of the
automatic mapper or mistakes in the manual annotations. Namely, many

85

tools in bio.tools are badly described (have only a short description and
no publication), and for many queries, for example all from a software suite
called EMBOSS, have the same general publication attached, causing false
positive results. So, improving the quality of the query could increase scores.

86

5 Discussion
In this word we tried to maximise the performance of the automatic mapper
by looking at metrics that show how well its output compares to available
manual annotations. However, the best metric is actually the tool’s usefulness
to the curator.

Manual accession of the results by experienced annotators is still ongoing.
The first indications from people doing the curation show, that the tool can
be used to find and make useful annotations. Most false positive terms
make sense, which shows that manual curation might have missed many
useful annotations, that we can now potentially add. Also, catching all false
negatives should not be a goal in itself, as some of them could be less relevant
concepts, or even mistakes, than the ones that are labelled as false positive.
Another positive aspect about the mapper, is its flexibility – we can map
both very short and long texts and map queries made up of many parts,
each potentially providing valuable additional input to the mapper.

However, as seen in the example results, the automatic mapper does
make many mistakes. In some cases, less relevant concepts are ranked above
more relevant concepts. We could try to rectify this by tuning parameters or
by disabling/enabling some features or matching of some query parts. But
the suggestions can also be outright mistakes and these could be harder to
correct. For example, from texts attached to the tools, we can pick up terms
from sentences that are used to describe something not related to the tool
itself. And, as we saw frequently, many mistakes are caused by the fact, that
the mapper does simple character comparison and doesn’t know anything
about the meaning of the words.

To reduce the number of mistakes and make the tool more useful, we will
continue to do incremental updates. Many of these were already discussed
in this thesis, for example:

• take into account the hierarchy and relationships within the EDAM
ontology,

• more intelligently extract content from web pages,

• differentiate between primary and other publications,

• investigate more the effects of using features such as IDF, stop words
removal and stemming,

• also, experiment with different sources for calculating IDF scores,

• automatically find normalisation parameters or score limits,

87

• provide different output according to curators’ wishes.

Moreover, the addition of following features or concepts could be useful:

On-line suggestions That is, integration of the mapping tool into the
Registry and other portals to simplify upload of new material. The automatic
mapper could act as a web server, answering to query requests with mapping
responses.

Annotating training materials Another useful resource to annotate, for
better discoverablity, is training materials of tools included in the Registry,
which are usually in PPT or PDF format.

Concept search Concept searching means that ideas, not words, of the
query are matched against ideas of the concepts. We could try to add some
techniques used there, for example word-sense disambiguation, which means
finding the correct meaning for words having multiple meanings. For this we
could use the WordNet lexical database for English1, which is around 50 MB
in size while uncompressed, and has free libraries available to work with it.

Discovering new tools One potentially useful extension would be the
ability to find new interesting software that is still not annotated in bio.tools.
This could be achieved by trying to map a collection of publications and find-
ing the ones that have the highest score or largest number of good matches to
EDAM concepts. For example, over 1 million Open Access articles could be
downloaded from PubMed Central2 or Europe PMC3. The test case would be
Nucleic Acids Research journal as each year hundreds of bioinformatics web
applications and databases are published in special issues of Nucleic Acids
Research journal.

Extracting new EDAM concepts As an opposite application, we could
also discover new EDAM concepts. For this, we need a tool to extract
keywords from the source full-texts. One such possible tool is Maui4. Then,
keywords which are extracted with high enough confidence, but which we
can’t map to EDAM with a good enough score, can be suggested as new
EDAM concepts.

1http://wordnet.princeton.edu/
2https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
3http://europepmc.org/FtpSite
4https://github.com/zelandiya/maui

88

http://wordnet.princeton.edu/
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
http://europepmc.org/FtpSite
https://github.com/zelandiya/maui

6 Conclusions
In the background section (2) we saw, that available tools not satisfy our
needs. Thus, in the methods section (3), we set out to program and optimise
a tool for automatically reading in free text, adding content from the Internet,
and mapping it against EDAM ontology terms, giving as output the best
matches. In results (4), we optimised parameters for the program and saw
that it can suggest many correct terms. According to experienced curators,
we have developed a useful tool to make their job easier. Development and
improvement, in cooperation with curators, will continue.
Source code of the automatic mapper is available at:

• https://github.com/edamontology/edammap

with documentation at:

• https://github.com/edamontology/edammap/wiki

89

https://github.com/edamontology/edammap
https://github.com/edamontology/edammap/wiki

References
[1] J. Ison, M. Kalaš, I. Jonassen, D. Bolser, M. Uludag, H. McWilliam, J.

Malone, R. Lopez, S. Pettifer and P. Rice, ‘Edam: An ontology of bioin-
formatics operations, types of data and identifiers, topics and formats’,
Bioinformatics, vol. 29, no. 10, pp. 1325–1332, 15th May 2013, issn:
1367-4803, 1460-2059. doi: 10.1093/bioinformatics/btt113.

[2] R. Saidi. Initial EDAM mapper, [Online]. Available: https://github.
com/edamontology/edammap/commit/a685bd9bd8c1c95363d063cb26d84794526508d1
(visited on 02/02/2016).

[3] Samples, Phenotypes and Ontologies Team at the EBI. Zooma, [On-
line]. Available: http://www.ebi.ac.uk/spot/zooma/ (visited on
29/02/2016).

[4] J.-W. Li, K. Robison, M. Martin, A. Sjödin, B. Usadel, M. Young, E. C.
Olivares and D. M. Bolser, ‘The SEQanswers wiki: A wiki database of
tools for high-throughput sequencing analysis’, Nucleic Acids Research,
vol. 40, pp. D1313–D1317, D1 2012, issn: 0305-1048, 1362-4962. doi:
10.1093/nar/gkr1058. [Online]. Available: http://seqanswers.com/
wiki/SEQanswers (visited on 12/05/2016).

[5] SEQwiki : Software list, [Online]. Available: http://seqanswers.com/
wiki/Software/list (visited on 18/04/2016).

[6] SEQwiki : Mapping report, [Online]. Available: http://seqanswers.
com/wiki/Ontology:EDAM#tab=Mapping_report (visited on 28/02/2016).

[7] M. Palmblad and V. Schwämmle. Ms-utils.org, [Online]. Available: http:
//www.ms-utils.org/wiki/pmwiki.php/Main/SoftwareList (vis-
ited on 12/05/2016).

[8] R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S.
Dudoit, B. Ellis, L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn,
W. Huber, S. Iacus, R. Irizarry, F. Leisch, C. Li, M. Maechler, A. J.
Rossini, G. Sawitzki, C. Smith, G. Smyth, L. Tierney, J. Y. Yang and J.
Zhang, ‘Bioconductor: Open software development for computational
biology and bioinformatics’, Genome Biology, vol. 5, R80, 2004, issn:
1474-760X. doi: 10.1186/gb-2004-5-10-r80. [Online]. Available:
http://bioconductor.org/ (visited on 12/05/2016).

90

http://dx.doi.org/10.1093/bioinformatics/btt113
https://github.com/edamontology/edammap/commit/a685bd9bd8c1c95363d063cb26d84794526508d1
https://github.com/edamontology/edammap/commit/a685bd9bd8c1c95363d063cb26d84794526508d1
http://www.ebi.ac.uk/spot/zooma/
http://dx.doi.org/10.1093/nar/gkr1058
http://seqanswers.com/wiki/SEQanswers
http://seqanswers.com/wiki/SEQanswers
http://seqanswers.com/wiki/Software/list
http://seqanswers.com/wiki/Software/list
http://seqanswers.com/wiki/Ontology:EDAM#tab=Mapping_report
http://seqanswers.com/wiki/Ontology:EDAM#tab=Mapping_report
http://www.ms-utils.org/wiki/pmwiki.php/Main/SoftwareList
http://www.ms-utils.org/wiki/pmwiki.php/Main/SoftwareList
http://dx.doi.org/10.1186/gb-2004-5-10-r80
http://bioconductor.org/

[9] J. Ison, K. Rapacki, H. Ménager, M. Kalaš, E. Rydza, P. Chmura, C.
Anthon, N. Beard, K. Berka, D. Bolser, T. Booth, A. Bretaudeau, J.
Brezovsky, R. Casadio, G. Cesareni, F. Coppens, M. Cornell, G. Cuc-
curu, K. Davidsen, G. D. Vedova, T. Dogan, O. Doppelt-Azeroual, L.
Emery, E. Gasteiger, T. Gatter, T. Goldberg, M. Grosjean, B. Grün-
ing, M. Helmer-Citterich, H. Ienasescu, V. Ioannidis, M. C. Jespersen,
R. Jimenez, N. Juty, P. Juvan, M. Koch, C. Laibe, J.-W. Li, L. Licata,
F. Mareuil, I. Mičetić, R. M. Friborg, S. Moretti, C. Morris, S. Möller,
A. Nenadic, H. Peterson, G. Profiti, P. Rice, P. Romano, P. Roncaglia,
R. Saidi, A. Schafferhans, V. Schwämmle, C. Smith, M. M. Sperotto, H.
Stockinger, R. S. Vařeková, S. C. E. Tosatto, V. de la Torre, P. Uva, A.
Via, G. Yachdav, F. Zambelli, G. Vriend, B. Rost, H. Parkinson, P. Løn-
green and S. Brunak, ‘Tools and data services registry: A community
effort to document bioinformatics resources’, Nucleic Acids Research,
vol. 44, pp. D38–D47, D1 4th Jan. 2016, issn: 0305-1048, 1362-4962.
doi: 10.1093/nar/gkv1116. [Online]. Available: https://bio.tools/
(visited on 12/05/2016).

[10] biotoolsXSD : Resource description model for bioinformatics, [Online].
Available: https://github.com/bio-tools/biotoolsXSD (visited on
28/04/2016).

[11] Bio.tools REST API : All the resources in the registry, [Online]. Avail-
able: https://bio.tools/api/tool (visited on 02/05/2016).

[12] Edam: Ontology of bioinformatics operations, types of data, formats,
and topics, [Online]. Available: http://edamontology.org/page (vis-
ited on 19/05/2016).

[13] M. Horridge and S. Bechhofer, ‘The OWL API: A Java API for OWL
ontologies’, Semantic Web Journal, vol. 2, no. 1, pp. 11–21, 2011, issn:
1570-0844.

[14] The DOI R© Handbook, [Online]. Available: https://www.doi.org/
hb.html (visited on 02/05/2016).

[15] Medical Subject Headings, [Online]. Available: https://www.ncbi.
nlm.nih.gov/mesh/ (visited on 14/05/2016).

[16] J. Malone, E. Holloway, T. Adamusiak, M. Kapushesky, J. Zheng,
N. Kolesnikov, A. Zhukova, A. Brazma and H. Parkinson, ‘Modeling
sample variables with an Experimental Factor Ontology’, Bioinform-
atics, vol. 26, no. 8, pp. 1112–1118, 15th Apr. 2010, issn: 1367-4803,
1460-2059. doi: 10.1093/bioinformatics/btq099.

91

http://dx.doi.org/10.1093/nar/gkv1116
https://bio.tools/
https://github.com/bio-tools/biotoolsXSD
https://bio.tools/api/tool
http://edamontology.org/page
https://www.doi.org/hb.html
https://www.doi.org/hb.html
https://www.ncbi.nlm.nih.gov/mesh/
https://www.ncbi.nlm.nih.gov/mesh/
http://dx.doi.org/10.1093/bioinformatics/btq099

[17] T. G. O. Consortium, ‘Gene Ontology Consortium: Going forward’,
Nucleic Acids Research, vol. 43, pp. D1049–D1056, D1 28th Jan. 2015,
issn: 0305-1048, 1362-4962. doi: 10.1093/nar/gku1179.

[18] Pubmed, [Online]. Available: https : / / www . ncbi . nlm . nih . gov /
pubmed (visited on 14/05/2016).

[19] PubMed Central, [Online]. Available: https://www.ncbi.nlm.nih.
gov/pmc/ (visited on 14/05/2016).

[20] Entrez Programming Utilities Help, [Online]. Available: https://www.
ncbi.nlm.nih.gov/books/NBK25501/ (visited on 28/04/2016).

[21] T. E. P. Consortium, ‘Europe PMC: A full-text literature database for
the life sciences and platform for innovation’, Nucleic Acids Research,
vol. 43, pp. D1042–D1048, D1 28th Jan. 2015, issn: 0305-1048, 1362-
4962. doi: 10.1093/nar/gku1061.

[22] Jsoup : Class Selector, [Online]. Available: https : / / jsoup . org /
apidocs/org/jsoup/select/Selector.html (visited on 05/05/2016).

[23] Yaml: YAML Ain’t Markup Language, [Online]. Available: http://
yaml.org/ (visited on 28/04/2016).

[24] The Dublin Core Metadata Initiative, [Online]. Available: http : / /
dublincore.org/ (visited on 01/05/2016).

[25] Adobe XMP Developer Center, [Online]. Available: https : / / www .
adobe.com/devnet/xmp.html (visited on 01/05/2016).

[26] M.F. Porter, ‘An algorithm for suffix stripping’, Program, vol. 14, no. 3,
pp. 130–137, 1st Mar. 1980, issn: 0033-0337. doi: 10.1108/eb046814.

[27] Karen Sparck Jones, ‘A statistical interpretation of term specificity and
its application in retrieval’, Journal of Documentation, vol. 28, no. 1,
pp. 11–21, 1972, issn: 0022-0418. doi: 10.1108/eb026526.

[28] E. Ukkonen, ‘Algorithms for approximate string matching’, Informa-
tion and Control, vol. 64, no. 1, pp. 100–118, 1985, issn: 0019-9958.
doi: 10.1016/S0019-9958(85)80046-2.

[29] H. Berghel and D. Roach, ‘An extension of Ukkonen’s enhanced dy-
namic programming ASM algorithm’, ACM Trans. Inf. Syst., vol. 14,
no. 1, pp. 94–106, 1996, issn: 1046-8188. doi: 10 . 1145 / 214174 .
214183.

92

http://dx.doi.org/10.1093/nar/gku1179
https://www.ncbi.nlm.nih.gov/pubmed
https://www.ncbi.nlm.nih.gov/pubmed
https://www.ncbi.nlm.nih.gov/pmc/
https://www.ncbi.nlm.nih.gov/pmc/
https://www.ncbi.nlm.nih.gov/books/NBK25501/
https://www.ncbi.nlm.nih.gov/books/NBK25501/
http://dx.doi.org/10.1093/nar/gku1061
https://jsoup.org/apidocs/org/jsoup/select/Selector.html
https://jsoup.org/apidocs/org/jsoup/select/Selector.html
http://yaml.org/
http://yaml.org/
http://dublincore.org/
http://dublincore.org/
https://www.adobe.com/devnet/xmp.html
https://www.adobe.com/devnet/xmp.html
http://dx.doi.org/10.1108/eb046814
http://dx.doi.org/10.1108/eb026526
http://dx.doi.org/10.1016/S0019-9958(85)80046-2
http://dx.doi.org/10.1145/214174.214183
http://dx.doi.org/10.1145/214174.214183

A Used libraries

Library version URL
JCommander 1.48 http://jcommander.org/
OWL API [13] 5.0.1 http://owlcs.github.io/owlapi/
opencsv 3.7 http://opencsv.sourceforge.net/
jsoup 1.9.1 https://jsoup.org/
SnakeYAML 1.16 https://bitbucket.org/asomov/snakeyaml
Apache PDFBox 2.0.1 https://pdfbox.apache.org/
MapDB 3.0.0-M6 http://www.mapdb.org/
Porter stemmer [26] Release 4 http://tartarus.org/martin/PorterStemmer/java.txt

93

http://jcommander.org/
http://owlcs.github.io/owlapi/
http://opencsv.sourceforge.net/
https://jsoup.org/
https://bitbucket.org/asomov/snakeyaml
https://pdfbox.apache.org/
http://www.mapdb.org/
http://tartarus.org/martin/PorterStemmer/java.txt

B Program parameters
--average-scaling

Scaling for the average strategy
Default: 10.0

--bad-score-data
Final scores under this are considered bad (in data branch)
Default: 0.57

--bad-score-format
Final scores under this are considered bad (in format branch)
Default: 0.57

--bad-score-operation
Final scores under this are considered bad (in operation branch)
Default: 0.57

--bad-score-topic
Final scores under this are considered bad (in topic branch)
Default: 0.57

-k, --benchmark-report
File to write HTML benchmark report to. It will contain metrics and
comparisons to the manual mapping specified in the input query file.
Default: <empty string>

-b, --branches
Branches to include. Space separated from list [topic, operation, data,
format].
Default: [topic, operation]

--comment-multiplier
Score multiplier for matching a concept comment. Set to 0 to disable
matching of comments.
Default: 1.0

--compound-words
Try to match words that have accidentally been made compound (given
number is maximum number of words in an accidental compound minus one)
Default: 0

--concept-idf-scaling
Set to 0 to disable concept IDF. Setting to 1 means linear IDF weighting.
Default: 0.5

--concept-weight
Weight of matching a concept (with a query). Set to 0 to disable matching
of concepts.
Default: 1.0

-d, --database
Use the given database for getting and storing webpages, publications and
docs

94

Default: <empty string>
--definition-multiplier

Score multiplier for matching a concept definition. Set to 0 to disable
matching of definitions.
Default: 1.0

--description-normaliser
Score normaliser for matching a query description. Set to 0 to disable
matching of descriptions.
Default: 0.92

--description-weight
Weight of query description in average strategy. Set to 0 to disable
matching of descriptions in average strategy.
Default: 1.0

--disable-abstract-idf
Disable IDF weighting for publication abstract
Default: false

--disable-description-idf
Disable IDF weighting for query description
Default: false

--disable-name-keywords-idf
Disable IDF weighting for query name and keywords
Default: false

--disable-query-idf-branches
Branches to disable query IDF in. Space separated from list [topic,
operation, data, format].
Default: []

--disable-title-keywords-idf
Disable IDF weighting for publication title and keywords
Default: false

--doc-normaliser
Score normaliser for matching a query doc. Set to 0 to disable matching
of docs.
Default: 1.0

--doc-weight
Weight of query doc in average strategy. Set to 0 to disable matching of
docs in average strategy.
Default: 0.5

* -e, --edam
Path of the EDAM ontology file

--enable-label-synonyms-idf
Enable IDF weighting for concept label and synonyms
Default: false

--exact-synonym-multiplier

95

Score multiplier for matching a concept exact synonym. Set to 0 to
disable matching of exact synonyms.
Default: 1.0

--fetching-disabled
Disable fetching of webpages, publications and docs
Default: false

--good-score-data
Final scores over this are considered good (in data branch)
Default: 0.63

--good-score-format
Final scores over this are considered good (in format branch)
Default: 0.63

--good-score-operation
Final scores over this are considered good (in operation branch)
Default: 0.63

--good-score-topic
Final scores over this are considered good (in topic branch)
Default: 0.63

-h, --help
Print this help
Default: false

--keyword-normaliser
Score normaliser for matching a query keyword. Set to 0 to disable
matching of keywords.
Default: 0.77

--keyword-weight
Weight of query keyword in average strategy. Set to 0 to disable matching
of keywords in average strategy.
Default: 1.0

--label-multiplier
Score multiplier for matching a concept label. Set to 0 to disable
matching of labels.
Default: 1.0

--mapping-strategy
Choose the best or take the average of query parts matches
Default: average
Possible Values: [best, average]

-m, --match
Number of best matches per branch to output
Default: 3

--match-minimum
Minimum score allowed for approximate match. Set to 1 to disable
approximate matching.

96

Default: 1.0
--mismatch-multiplier

Multiplier for score decrease caused by mismatch
Default: 2.0

--name-normaliser
Score normaliser for matching a query name. Set to 0 to disable matching
of names.
Default: 0.81

--name-weight
Weight of query name in average strategy. Set to 0 to disable matching of
names in average strategy.
Default: 1.0

--narrow-broad-synonym-multiplier
Score multiplier for matching a concept narrow or broad synonym. Set to 0
to disable matching of narrow and broad synonyms.
Default: 1.0

--no-stemming
Don’t do stemming as part of pre-processing
Default: false

--obsolete
Include obsolete concepts
Default: false

-o, --output
File to write results to. If not specified or invalid, will be written to
standard output.
Default: <empty string>

--position-loss
Maximum loss caused by wrong positions of matched words
Default: 0.4

--position-match-scaling
Set to 0 to not have match score of neighbor influence position score.
Setting to 1 means linear influence.
Default: 0.5

--position-off-by-1
Multiplier of a position score component for the case when a word is
inserted between matched words or matched words are switched
Default: 0.35

--position-off-by-2
Multiplier of a position score component for the case when two words are
inserted between matched words or matched words are switched with an
additional word between them
Default: 0.05

--publication-abstract-normaliser

97

Score normaliser for matching a publication abstract. Set to 0 to disable
matching of abstracts.
Default: 0.985

--publication-abstract-weight
Weight of publication abstract in average strategy. Set to 0 to disable
matching of abstracts in average strategy.
Default: 0.75

--publication-fulltext-normaliser
Score normaliser for matching a publication fulltext. Set to 0 to disable
matching of fulltexts.
Default: 1.0

--publication-fulltext-weight
Weight of publication fulltext in average strategy. Set to 0 to disable
matching of fulltexts in average strategy.
Default: 0.5

--publication-keyword-normaliser
Score normaliser for matching a publication keyword. Set to 0 to disable
matching of keywords.
Default: 0.77

--publication-keyword-weight
Weight of publication keyword in average strategy. Set to 0 to disable
matching of keywords in average strategy.
Default: 0.75

--publication-mesh-normaliser
Score normaliser for matching a publication MeSH term. Set to 0 to
disable matching of MeSH terms.
Default: 0.75

--publication-mesh-weight
Weight of publication MeSH term in average strategy. Set to 0 to disable
matching of MeSH terms in average strategy.
Default: 0.25

--publication-mined-term-normaliser
Score normaliser for matching a publication mined term (EFO, GO). Set to
0 to disable matching of mined terms.
Default: 1.0

--publication-mined-term-weight
Weight of publication mined term (EFO, GO) in average strategy. Set to 0
to disable matching of mined terms in average strategy.
Default: 0.25

--publication-title-normaliser
Score normaliser for matching a publication title. Set to 0 to disable
matching of titles.
Default: 0.91

98

--publication-title-weight
Weight of publication title in average strategy. Set to 0 to disable
matching of titles in average strategy.
Default: 0.25

* -q, --query
Path of file containing queries

--query-idf
Use the given query IDF file; if not specified, weighting of queries with
IDF scores will be disabled
Default: <empty string>

--query-idf-scaling
Set to 0 to disable query IDF. Setting to 1 means linear IDF weighting.
Default: 0.5

--query-weight
Weight of matching a query (with a concept). Set to 0 to disable matching
of queries.
Default: 1.0

--remove-numbers
Remove free-standing numbers (i.e., that not part of a word) as part of
pre-processing
Default: false

-r, --report
File to write a HTML report to. In addition to the usual output, but with
formatting in a browser.
Default: <empty string>

--score-scaling
Score is scaled before appyling multiplier and weighting with other
direction match. Setting to 0 or 1 means no scaling.
Default: 0.2

--short-word
When all pre-processing steps are done, tokens with length less or equal
to this length are removed
Default: 0

-s, --stopwords
Do stopwords removal as part of pre-processing, using the chosen
stopwords list
Default: lucene
Possible Values: [off, corenlp, lucene, mallet, smart, snowball]

--threads
How many threads to use for mapping (one query is processed by one
thread)
Default: 4

-t, --type

99

Specifies the type of the query and how to output the results
Default: generic
Possible Values: [generic, SEQwiki, SEQwikiTags, SEQwikiTool, msutils,
biotools, BioConductor]

--webpage-normaliser
Score normaliser for matching a query webpage. Set to 0 to disable
matching of webpages.
Default: 1.0

--webpage-weight
Weight of query webpage in average strategy. Set to 0 to disable matching
of webpages in average strategy.
Default: 0.5

100

Non-exclusive licence to reproduce thesis and make thesis public

I, Erik Jaaniso,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

Automatic mapping of free texts to bioinformatics ontology terms,

supervised by Hedi Peterson.

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 19.05.2016

101

	Introduction
	Background information
	EDAM ontology
	Mapping of free text
	Existing algorithms
	Initial mapper
	ZOOMA

	Methods
	Architecture
	Input: The free texts
	SEQwiki
	SEQwiki tags
	ms-utils.org
	BioConductor
	bio.tools
	Obtaining the data

	Query: Abstracted input
	Edam: The ontology concepts
	Processor: Making inputs ready for mapping
	Fetcher: Getting web page and publication content
	Publications
	Publication sources
	Extracting content from DOI links
	Web pages
	Getting content of PDF files
	Saving content to local database

	PreProcessor: Cleaning and tokenising
	Idf: Inverse document frequency weights
	IDF for concepts
	IDF for queries

	Processor utility program
	Database management
	IDF management

	Mapper: The mapping algorithm
	Approximate matching
	Proximity matching
	Best scores at a destination position
	Score between source and destination lists
	Bi-directional matching
	Final score between a query and a concept
	Final output
	Optimisation

	Output: Getting the results
	As plain text
	As HTML

	Benchmark: Evaluating performance
	Benchmark output
	Metrics

	Results
	Parameter tuning
	Approximate matching
	Proximity matching
	Inverse document frequency
	Bi-directional matching
	Score scaling
	Multipliers, normalisers and weights
	Pre-processing parameters
	Conclusions

	Results of automatic mapping
	SEQwiki
	SEQwiki tags
	ms-utils.org
	BioConductor
	bio.tools

	Discussion
	Conclusions
	Used libraries
	Program parameters

