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Introduction

One way of viewing a category is to consider it as a very generic typed monoid,
ie a monoid where only some elements can be multiplied (when they are of
the same “type”) and whose elements form a class instead of merely a set.
Conversely a rather important example of a category is the “dot-category”
based on a monoid.

The latter view of monoids as categories also provides us with a func-
torial description of acts over this monoid, these being the presheaves (or
set-valued functors) on the “dot-category”. Presheaves themselves are relati-
vely important tools of topos theory and give rise to a wealth of notions and
results (some of which would be Grothendieck toposes, sheaves, sheafifica-
tion and the logical functors arising from truth value objects). Since acts are
presheaves (and rather archetypal ones at that), these notions apply to them
as well, providing us with a general view of known act-specific results (for
instance, that every act is a quotient of free acts, or the Hom-tensor adjunc-
tion) and new ones (the sheafification technique and corresponding adjoints,
or the logic on subacts).

One may take this a little farther and consider not just sets, but partially
ordered sets. In the current work we work with the category of partially
ordered acts or posets over a pomonoid (partially ordered monoid). These
can be seen as the “dot-category” version of partial-order-valued functors.

The master thesis consists of two primary parts. In the first part we
examine how close the category of ordered acts is to being a topos. It turns
out that the category is complete and cocomplete, and even cartesian closed,
but unfortunately is not a topos, as it lacks a subobject classifier. There are
some limited subobject classifiers and generalizations thereof, but none for
any of the more common kinds of monomorphisms.

Sydney Bulman-Fleming and Mojgan Mahmoudi have concurrently done
a lot of the same work in their recent article [BFM]. There are things in this
thesis that they did not consider, namely the regularly extremal morphisms.
Also, they study the topos-characteristic notions in much less detail, and
subobject classification actually gets no explicit mention in their work.

In the second part we try to generalize the notion of geometric morphisms
into one that would be useful for posets. For this we introduce the notions of
pofunctors, poadjunctions and universal pococones (generalizations of coli-
mits). We prove a version of the usual Hom-tensor adjunction and find some
naturally occurring geometric morphisms arising from pomonoid homomor-
phisms. Finally, we define the notion of a point in a poset category. In the
end we find that points correspond to flat posets over pomonoids, ie posets
that induce a tensor multiplication that preserves universal pocones.
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1 Preliminaries

For general background in category theory we refer the reader to [Bo] or
[CWM]. The basic text for topos theory used in the current work is [MLM].
For a reasonable degree of self-containment we shall review most of the basic
notions in the following part of the thesis.

1.1 Posets over a pomonoid

The objects of our study are right S-posets over a pomonoid S.

Definition 1.1 A partially ordered monoid (a pomonoid) is an ordered al-
gebraic structure (S,≤,·) such that the following hold:

a) ∀x, y, z ∈ S (x · y) · z = x · (y · z),

b) ∃1 ∈ S : ∀x ∈ S 1 · x = x · 1 = x,

c) ∀x ∈ S x ≤ x,

d) ∀x, y ∈ S (x ≤ y ∧ y ≤ x) ⇒ (x = y),

e) ∀x, y, z ∈ S (x ≤ y ∧ y ≤ z) ⇒ (x ≤ z),

f) ∀x, y, z ∈ S (x ≤ y) ⇒ (x · z ≤ y · z),

g) ∀x, y, z ∈ S (x ≤ y) ⇒ (z · x ≤ z · y).

Definition 1.2 A partially ordered right set over a fixed pomonoid S (a
right S-poset) is an ordered algebraic structure (A,≤,·s)s∈S such that the
following hold:

a) ∀x ∈ A∀s, t ∈ S (x · s) · t = x · (s · t),

b) ∀x ∈ A x · 1 = x,

c) ∀x ∈ A x ≤ x,

d) ∀x, y ∈ A (x ≤ y ∧ y ≤ x) ⇒ (x = y),

e) ∀x, y, z ∈ A (x ≤ y ∧ y ≤ z) ⇒ (x ≤ z),

f) ∀x, y ∈ A∀s ∈ S (x ≤ y) ⇒ (x · s ≤ y · s),

g) ∀x ∈ A∀s, t ∈ S (s ≤ t) ⇒ (x · s ≤ x · t).
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For better distinction between the two multiplications we write simply st
instead of s · t when s and t are elements of a pomonoid.

In the following, we also allow empty posets and empty (one-sided) ideals
of pomonoids. All ideals of a pomonoid are taken as purely algebraic (one-
sided) ideals, with no order restrictions (as it has been done in some studies).

Naturally, left S-posets can be treated in the same way as right S-posets.
Keeping this in mind we deal primarily with right S-posets. Note that proofs
for right S-posets can be carried over to left S-posets and vice versa. We
refer to this operation as taking the left-(right-)sided version of the proof in
question. We write AS to emphasize that A is a right S-poset and SA to
stress that it is a left S-poset.

In the following, let S be a partially ordered monoid (pomonoid) and
PosS the category of partially ordered right sets over this pomonoid with
order-preserving act homomorphisms as morphisms. Also, let ActS denote
the usual category of right S-acts. The categories of left S-posets and S-acts
are denoted correspondingly SPos and SAct.

A mapping f : AS → BS between two S-posets is therefore an S-poset
homomorphism iff the following hold:

a) ∀x ∈ A∀s ∈ S f(x) · s = f(x · s),

b) ∀x, y ∈ A (x ≤ y) ⇒ (f(x) ≤ f(y)).

The morphism sets of the category PosS can also be ordered. For this take
f, g : AS → BS in PosS and define f ≤ g iff f(a) ≤ g(a) for all a ∈ A. In the
following we only consider this pointwise ordering for S-poset morphisms.

The pomonoid S can be made into a right poset SS over itself with its
monoid multiplication and natural order. For any other right S-poset BS and
element b ∈ B, we can define a morphism b : SS → BS with

b(s) = b · s.

As

b(st) = b · (st) = (b · s) · t = b(s) · t

for all s, t ∈ S, this is an act homomorphism. If s ≤ t in S, then

b(s) = b · s ≤ b · t = b(t)

and b is order-preserving as well. So this definition does give us an S-poset
morphism.
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Lemma 1.1 For b, c ∈ B, b ≤ c, s ∈ S

1) b ◦ s = b · s;

2) b ≤ c.

Proof. Obviously

(b ◦ s)(t) = b · (s · t) = (b · s) · t = (b · s)(t)

for all t ∈ S. Likewise,
b(t) = b · t ≤ c · t = c

for all t ∈ S.

Definition 1.3 A right T -poset AT that is also a left S-poset SA is called
an (S, T )-biposet if

s · (a · t) = (s · a) · t

for all a ∈ A, s ∈ S, t ∈ T .

For a category C, we denote the class of its objects as Ob(C).
In the same way, if A,B ∈ Ob(C), then for the set of all morphisms from

A to B we write MorC(A,B).
The category of all sets and functions will be denoted by Sets.
For the terminal object of a category C we write 1C or simply 1, and for

any C ∈ Ob(C) we will denote the unique morphism to 1 as !C : C → 1.
If ≤ is a partial order, then we define < as the relation <:=≤ \ =.

1.2 Monomorphisms

In category theory there are several different types of monomorphisms. Let
us also recall these definitions.

Definition 1.4 A morphism ι : B → C in a category C is called

• a coretraction (or a section), if it is left invertible, i.e.

(∃f : C → B)(f ◦ ι = 1B);

• a regular monomorphism, if it is an equalizer, i.e.

(∃D ∈ Ob(C))(∃f, g : C → D)((B, ι) ≈ Equ(f, g));
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• a strict monomorphism, if

(∀H ∈ Ob(C))(∀h : H → C)[(∀D ∈ Ob(C))(∀f, g : C → D)

(f ◦ ι = g ◦ ι⇒ f ◦ h = g ◦ h) ⇒ (∃!k : H → B)(ι ◦ k = h)];

• a strong monomorphism, if

(∀U, V ∈ Ob(C))(∀f : U → B)(∀g : V → C)(∀π : U → V )

(ι ◦ f = g ◦ π ∧ π is epimorphism ⇒
(∃h : V → B)(f = h ◦ π ∧ g = ι ◦ h));

• an extremal monomorphism, if

(∀D ∈ Ob(C))(∀π : B → D)(∀f : D → C)

(ι = f ◦ π ∧ π is epimorphism ⇒ π is isomorphism),

• a monomorphism, if it is left cancellable, i.e.

(∀D ∈ Ob(C))(∀f, g : D → B)(ι ◦ f = ι ◦ g ⇒ f = g).

We have the following implications (see [HS], pages 103-104, 265-266 and
110 for example):

coretraction ⇒ regular monomorphism ⇒ strict monomorphism ⇒
strong monomorphism ⇒ extremal monomorphism ⇒ monomorphism

1.3 Toposes

Definition 1.5 In a finitely complete category we say that an object W is
the exponential object of objects Y and X, if there exists such a morphism
eval : W × Y → X that for any other morphism α : Z × Y → X there is a
unique morphism α′ : Z → W such that the diagram

W × Y X
eval

//

Z × Y

W × Y

α′×1Y

���
�
�
�
�Z × Y

X

α

��?
??

??
??

??
??

??

commutes.
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The usual notation for the exponential object of Y and X is XY . The
above definition is of course a writeout of the (alternate) definition that
exponentiation is right adjoint to multiplication (ie − × Y a −Y ), with
adjunction expressed in terms of a universal morphism.

Definition 1.6 In a finitely complete category the subobject classifier is a
monomorphism true : 1 → Ω such that for any other monomorphism ι :
B → A there is a unique morphism φB such that the square

A Ω
φB

//

B

A

��

ι

��

B 1
!B // 1

Ω

��

true

��

turns out to be a pullback. The object Ω is usually called the truth value
object of this category, and it is unique up to isomorphism. Actually, the
morphism true is unique up to isomorphism (in the category of morphisms)
as well.

Note that monomorphisms can be replaced with subobjects in the above
definition since equivalent monics are isomorphic. In the following, when
dealing with partially ordered acts, if we have a subobject, we identify it
with the representative monomorphism that injects the image corresponding
to all the monomorphisms belonging to the equivalence class that makes up
this subobject. So ι will always be an injection of a subset.

Definition 1.7 A category C is called an (elementary) topos, if

(i) there exist all finite limits and colimits;

(ii) for each pair of objects E,F ∈ Ob(C) there exists their exponential
object EF ;

(iii) there is a (the) subobject classifier Ω.

Definition 1.8 A category C is called a cartesian closed category, if it is
finitely complete and satisfies (ii).
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2 Subobject classification

Our aim in this part is to see whether the category of S-posets is a topos and
if not, whether there exist some similar constructions for replacing those in
a topos.

2.1 Cartesian closedness

The following fact is also proved at the beginning of section 2.3 of [BFM]

Lemma 2.1 Monomorphisms in the category PosS are precisely the injective
order-preserving S-act homomorphisms.

Proof. Since PosS is a concrete category, every injective order-preserving
S-act homomorphism is a monomorphism. To prove the converse, we only
need to find a free S-poset with one generator. The S-poset SS with its
natural order is just that. Therefore no non-injective morphism can be a
monomorphism and our proof is complete.

Lemma 2.2 The terminal object in PosS is the one-element poset 1 with its
only possible action.

Proof. For an arbitrary S-poset A, define a mapping !A : A → 1 as
!A(x) = ∗ for all x ∈ A, where ∗ is the only element of 1. We actually cannot
define any other maps from A to 1. We have !A(x) · s = ∗ · s = ∗ =!A(x · s)
for any x ∈ A, s ∈ S and !A(x) = ∗ ≤ ∗ =!A(y) for any x ≤ y in A. Hence
!A is a morphism and since we cannot get any other maps A→ 1, we cannot
get any other morphisms either. So 1 is the terminal object in PosS.

The following proposition is effectively the same as Theorem 18 of [BFM].

Proposition 2.1 The category PosS is cartesian closed.

Proof. For the existence of limits and colimits see [Fa]. For the sake
of ease of understanding later, we should mention that products are taken
with componentwise order and action. Also, the equalizer of f : A→ B and
g : A→ B is the embedding of {a ∈ A|f(a) = g(a)} into A.

In the following we ignore the cases when one of the S-posets is empty,
since these cases can be trivially verified.

Take arbitrary objects X, Y ∈ Ob(PosS), both of these are of course
S-posets. As the exponential object XY take the morphism set

XY := MorPosS
(SS × Y,X),
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i.e. the set of all order-preserving S-act homomorphisms from the product
S-poset SS×X to the poset Y . Here, SS is just the pomonoid S considered as
a poset over itself. The order on XY is the pointwise one. Define the S-action
exactly in the same way as it is done in the case of S-acts (see [MLM] page
62): for f : SS × Y → X and s ∈ S, define f · s : SS × Y → X with the
equation

(f · s)(t, y) = f(st, y)

for all t ∈ S, y ∈ Y. We have

(f ·s)((t, y)·u) = (f ·s)(tu, y ·u) = f(stu, y ·u) = (f(st, y))·u = ((f ·s)(t, y))·u

for all t, u ∈ S, y ∈ Y and if (t1, y1) ≤ (t2, y2), then

(f · s)(t1, y1) = f(st1, y1) ≤ f(st2, y2) = (f · s)(t2, y2)

since f itself preserves the order and so does multiplication in S. So indeed
f · s ∈ MorPosS

(SS × Y,X).
Moreover, (f ·1)(s, y) = f(1s, y) = f(s, y) for all s ∈ S, y ∈ Y , so f ·1 = f .

Similarly,

((f · s) · t)(u, y) = (f · s)(tu, y) = f(s(tu), y) = f((st)u, y) = (f · (st))(u, y)

for all s, t, u ∈ S, y ∈ Y and therefore (f · s) · t = f · (st). For the order, if
f ≤ g, then for any s, t ∈ S, y ∈ Y

(f · s)(t, y) = f(st, y) ≤ g(st, y) = (g · s)(t, y),

that is, f · s ≤ g · s. In the same line of thought, if s1 ≤ s2, then

(f · s1)(t, y) = f(s1t, y) ≤ f(s2t, y) = (f · s2)(t, y) for all t ∈ S, y ∈ Y

since f is order-preserving and s1t ≤ s2t. This concludes our verification that
XY with the S-action defined above is an S-poset.

Take the evaluation morphism also precisely the same as in the case of
ActS: for eval : XY × Y → X, have

eval(f, y) = f(1, y) for all f ∈ XY , y ∈ Y.

Then

eval((f, y) · s) = eval(f · s, y · s) = (f · s)(1, y · s)
= f(s · 1, y · s) = (f(1, y)) · s = (eval(f, y)) · s
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for all f ∈ XY , y ∈ Y, s ∈ S. If (f1, y1) ≤ (f2, y2), then

eval(f1, y1) = f1(1, y1) ≤ f1(1, y2) ≤ f2(1, y2) = eval(f2, y2).

Thus eval is indeed a morphism in PosS.

XY × Y X
eval

//

Z × Y

XY × Y

α′×1Y

��

Z × Y

X

α

��?
??

??
??

??
??

??

To show that this morphism set XY is indeed the exponential object, we
have to show that for any object Z ∈ Ob(PosS) and any S-poset morphism
α : Z × Y → X there is a unique morphism α′ : Z → XY such that
eval ◦ (α′ × 1Y ) = α. For that we define α′ as follows: for any z ∈ Z, t ∈
S, y ∈ Y

α′(z)(t, y) = α(z · t, y).

Then we have

α′(z)((t, y) · s) = α(z · (ts), y · s) = (α(z · t, y)) · s = (α′(z)(t, y)) · s

for all s, t ∈ S, z ∈ Z, y ∈ Y . Likewise, if (t1, y1) ≤ (t2, y2), then

α′(z)(t1, y1) = α(z · t1, y1) ≤ α(z · t2, y2) = α′(z)(t2, y2).

Therefore α′(z) is in XY = MorPosS
(SS × Y,X).

Additionally, if z ∈ Z and s ∈ S, then

α′(z ·s)((t, y)) = α((z ·s) · t, y) = α(z · (st), y) = α′(z)(st, y) = (α′(z) ·s)(t, y).

So α′(z · s) = α′(z) · s. Also, for z1 ≤ z2

α′(z1)(t, y) = α(z1 · t, y) ≤ α(z2 · t, y) = α′(z2)(t, y)

for all t ∈ S, y ∈ Y as z1 · t ≤ z2 · t and α is order-preserving. This shows that
α′ is a morphism of PosS.

Consider the equation

eval ◦ (α′ × 1Y ) = α.

This is equivalent to

(eval ◦ (α′ × 1Y ))(z, y) = α(z, y)

11



holding for arbitrary z ∈ Z and y ∈ Y . Some calculation yields

α(z · s, y) = (eval ◦ (α′ × 1Y ))(z · s, y) = eval(α′(z · s), y)
= (α′(z) · s)(1, y) = α′(z)(s1, y) = α′(z)(s, y).

This shows that the α′ defined earlier does make this equation true, and is
also the only PosS morphism to do so. Proof completed.

2.2 Subobject classifiers

In [BFM] the nonexistence of a subobject classifier and the fact that PosS

is not a topos is shown through the fact that not all monomorphisms are
regular (Remark 19, point (2) of [BFM]). Here, we will see why exactly the
subobject classifier cannot exist and we will also seek to remedy that in some
manner.

Proposition 2.2 For any pomonoid S, the category PosS does not have a
subobject classifier. Furthermore, it does not have one for even only the em-
beddings, ie order-reflecting monomorphisms.

Proof. Take A = {a < b < c} and x · s = x for all s ∈ S, x ∈ A. Then A
turns out to be an S-poset. We have the subobject B = {a < c} of A, which
is the equivalence class of the monomorphism ι : B → A, with ι = 1A|B.
If we had a subobject classifier true : 1 → Ω, where Ω is the truth value
object, we would have to have the unique map φB : A→ Ω which makes the
diagram

A Ω
φB

//

B

A

ι

��

B 1
!B // 1

Ω

true

��

into a pullback. Obviously true fixes one element true(∗) in Ω. If the afore-
mentioned diagram is a pullback, then B ∼= {(x, ∗) ∈ A×1|φB(x) = true(∗)}
(for more details see [BFM] page 5).

So φB(a) = φB(c) = true(∗). Since a < b < c and φB is order-preserving,
we have φB(b) = true(∗). But then {(x, ∗) ∈ A × 1|φB(x) = true(∗)} = A.
We have thus found out that regardless of the nature of Ω, B cannot even
have a characteristic map φB making the above diagram into a pullback, not
to mention its uniqueness. Therefore, no object is fit to be the truth value
object. Since ι was also an embedding, we do not have a subobject classifier
for embeddings instead of monomorphisms either.
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Theorem 2.1 The category PosS has the subobject classifier for subobjects
that are downwards closed.

The truth value object is

Ωd = {X|X is a right ideal of S andX is downwards closed}

with true(∗) = S. The order on Ωd is that of reverse inclusion, i.e.

X ≤ Y ⇔ Y ⊆ X.

The S-action is
X · s = {t ∈ S|st ∈ X}.

Proof. Since the S-action is taken directly from the topos of S-acts (see
[MLM] page 35), we only have to see that X · s is downwards closed. Take
t ∈ X · s and t′ ≤ t. Since S is a pomonoid, st′ ≤ st. As X is downwards
closed, st′ ∈ X and consequently t′ ∈ X · s.

We have to verify that Ωd is an S-poset. As it is done in the case of S-acts,
it can be shown that Ωd is an S-act. If Y ⊆ X and s ∈ S, then

Y · s = {t ∈ S|st ∈ Y } ⊆ {t ∈ S|st ∈ X} = X · s.

Also, if s ≤ s′, then st ≤ s′t for any t ∈ S and

X · s′ = {t ∈ S|s′t ∈ X} ⊆ {t ∈ S|st ∈ X} = X · s

since X is downwards closed. This concludes the proof that Ωd is an S-poset.
Take a monomorphism ι : B → A where B is downwards closed and

define
φB(x) = {s ∈ S|x · s ∈ B}

for any x ∈ A. Take x · s ∈ B and t ≤ s. Then x · t ≤ x · s and consequently
x · t ∈ B. So φB is a well-defined homomorphism of S-acts. If x ≤ y, then
x·s ≤ y·s and we have φB(y) = {s ∈ S|y·s ∈ B} ⊆ {s ∈ S|x·s ∈ B} = φB(x)
as B is downwards closed. This shows that φB is also order-preserving and
hence a morphism in the category PosS.

A ΩdφB

//

B

A

ι

��

B 1
!B // 1

Ωd

true

��
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Obviously φB ◦ ι = true◦!B as B is a subact. Also {(a, ∗) ∈ A×1|φB(a) =
true(∗) = S} = B, because if a /∈ B, then 1 /∈ {s ∈ S|a · s ∈ B}, or
equivalently S 6= {s ∈ S|a · s ∈ B} = φB(a). So we have that B is the
pullback of φB and true.

Let ψB : A → Ωd be a morphism such that B is the pullback of ψB and
true. Then B ∼= {(a, ∗) ∈ A × 1|ψB(a) = true(∗) = S}. If x · s ∈ B, then
{t ∈ S|st ∈ ψB(x)} = ψB(x) · s = ψB(x · s) = S 3 1 and so s · 1 ∈ ψB(x).
Hence {s ∈ S|x · s ∈ B} ⊆ ψB(x). If x · s /∈ B (then ψB(x · s) 6= S), we get
S 6= ψB(x · s) = ψB(x) · s = {t ∈ S|st ∈ ψB(x)} and so 1 /∈ {t ∈ S|st ∈
ψB(x)}. So s /∈ ψB(x) and ψB(x) = {s ∈ S|x · s ∈ B} = φB(x). We have
verified, that φB is the only morphism that gives us the desired pullback.
This completes our proof.

By dualizing the order on S, using Theorem 2.1 and dualizing back to S,
we get

Corollary 2.1 The category PosS has the subobject classifier for subobjects
that are upwards closed.

The truth value object is

Ωu = {X|X is a right ideal of S andX is upwards closed}

with true(∗) = S. The order on Ωu is that of inclusion, i.e.

X ≤ Y ⇔ X ⊆ Y.

The S-action is
X · s = {t ∈ S|st ∈ X}.

Proof.

2.3 Monomorphism types

Now that we have seen that monomorphisms and embeddings fail to give us
a subobject classifier, we shall examine whether any other types of mono-
morphism might do better.

In the following we first examine which notions of monomorphisms are
different in the category of S-posets over a pomonoid S. Recall that an em-
bedding is an injective homomorphism of S-acts that both preserves and
reflects the order.

Proposition 3 of [BFM] shows a part of the following proof (epimorp-
hisms are surjective homomorphisms) and Theorem 7 of [BFM] describes the
extremal monomorphisms.
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Lemma 2.3 In PosS extremal monomorphisms are embeddings.

Proof. Take an extremal morphism ι : B → C and suppose it is not an
embedding. Then we have x, y ∈ B such that ι(x) ≤ ι(y), but x 6≤ y. We
can thus define π : B → D and f : D → C with D = Im(ι), π(z) = ι(z)
for all z ∈ B and f inserting D = Im(ι) into C. As π is a surjective S-act
homomorphism, it must also be an S-act epimorphism.

B Dπ
// C

f
//

ι

&&

To see that, take g◦π = f ◦π, with f and g being morphisms in PosS. We
get f = g in S-Act which means they coincide as mappings and consequently
as PosS homomorphisms.

It is trivial to see that π preserves the order. So π is an epimorphism of
S-posets. Obviously ι = f ◦ π. But π is not left invertible, because if we had
i ◦ π = 1B, then x = (i ◦ π)(x) = i(ι(x)) ≤ i(ι(y)) = (i ◦ π)(y) = y, as i must
preserve the order. Therefore we have a factorization ι = f ◦ π, with π an
epimorphism but not an isomorphism. This cannot happen as ι is extremal
and therefore our assumption that ι was not an embedding does not hold.

Lemma 2.4 In PosS, every embedding is a regular monomorphism.

Proof. Let ι : B → C be an embedding and B′ = Imι. Take

D = C q (C \B′).

For a clearer notation, have

D = C1 q C2 qB′

with C1 = C2 = C \B′.
We need an order on D and for that define x ≤ y in D iff one of the

following holds

• x ∈ B′, y ∈ Ci, i = 1, 2 and x ≤ y in C;

• x ∈ Ci, i = 1, 2, y ∈ B′ and x ≤ y in C;

• x, y ∈ B′ and x ≤ y in C;

• x, y ∈ Ci, i = 1, 2 and x ≤ y in C;

• x ∈ Ci, y ∈ Cj, i 6= j and ∃z ∈ B′ such that x ≤ z ≤ y in C.
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Essentially this is the transitive closure of the amalgamated coproduct
of C with itself over B′ in the sense of ActS. Obviously we get a reflexive
relation. By taking transitive closure we ensure transitivity, since the only
failures to remain transitive have to compare elements from different copies
of C. Antisymmetry within the two copies of C carries over, and if we take
x ∈ Ci, y ∈ Cj, i 6= j from different copies, then x ≤ y and y ≤ x holds only
if there are u, v ∈ B′ such that x ≤ u ≤ y ≤ v ≤ x, whence x = u ∈ B′, an
impossibility. So we have a partial order on D.

The action on C can clearly be transferred to D, as B′ is a subact and so
both partial actions (of S on C) are confined to respective copies of C.

Now take from D two elements d ≤ d′ and s ∈ S. Then ds ≤ d′s. The
only place where that might not hold (as C is an S-poset) is when d ∈ Ci

and d′ ∈ Cj, i 6= j. Then d ≤ d′′ ≤ d′, with d′′ ∈ B′. But in that case
ds ≤ d′′s ≤ d′s, and consequently ds ≤ d′s.

Likewise, for d ∈ D and s, s′ ∈ S, with s ≤ s′, we get ds ≤ ds′ as this
holds within both copies of C without problems. So D is indeed an S-poset.

B C
ι //

f1 //
f2

//DD

H

h
99sssssssss

k
OO

Define f1, f2 : C // D, with fi(x) = x if x ∈ B′ and fi(x) = gi(x) if
x /∈ B′, where gi : C → CiqB′ are the isomorphisms. Trivially f1 ◦ ι = f2 ◦ ι.
Since fi are both essentially identities, they preserve the order and the S-
action on D (which was unchanged within the separate copies of C). So they
are both morphisms in PosS.

Moreover, if h : H → C is an order-preserving S-act homomorphism and
f1 ◦h = f2 ◦h then clearly Imh ⊆ B′. Let x ∈ H. Then there exists a unique
b ∈ B such that ι(b) = h(x). Define

k(x) = b.

Because ι is an embedding, k is order-preserving, and obviously also a ho-
momorphism. We have

(ι ◦ k)(x) = ι(b) = h(x)

for all x ∈ H and hence ι ◦ k = h. Since ι is a monomorphism, this means
that we have shown (B, ι) to be the equalizer of f1 and f2. Therefore, ι is a
regular monomorphism.

So far, we have not managed to get anything different from embeddings
and usual monomorphisms (injective homomorphisms). One might try to get
something different and generalize the extremal monomorphisms as follows.
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Definition 2.1 A morphism ι : B → C in a category C is a regularly extre-
mal morphism, if

(∀D ∈ Ob(C))(∀π : B → D)(∀f : D → C)

(ι = f ◦ π ∧ π is regular epimorphism ⇒ π is isomorphism).

The following result shows that this definition is much weaker and is
actually not even a generalization, but more of an overgeneralization.

Lemma 2.5 Monomorphisms are always regularly extremal morphisms, but
regularly extremal morphisms do not have to be monomorphisms.

Proof. First, let us see that a regularly extremal morphism does not
have to be a monomorphism. Take a category with four objects A,B,C and
D. Let f, g : A → B, m : B → C, n : C → D and their composites be
the only non-trivial morphisms in this category, with the added restrictions
m ◦ f = m ◦ g and n ◦ f = n ◦ g. The morphism m is obviously not a
monomorphism. The only possible factorizations of m are either m ◦ 1B or
1C ◦m. 1B is a regular epimorphism, but also an isomorphism. The morphism
m itself is not an isomorphism, not even a coretraction. Therefore it can only
be the coequalizer of f and g. But there are no morphisms from C to D and
thus m is not a regular epimorphism and therefore is a regularly extremal
morphism.

A BA B
f //
g

//

m 44jjjjjjj

n **TTTTTTT
C

D

C

D

Now, let ι : B → C be a monomorphism in an arbitrary category and
let ι = f ◦ π, where π : B → D is a regular epimorphism. Then π must
be the coequalizer of a single morphism a (with a copy of this morphism to
coequalize with), since whatever π coequalizes, f ◦ π = ι makes equal and m
is a monomorphism.

X BX B
a // π //

f

��
ι

��?
??

??
??

??
?? D

C

D

C

From this we establish that π has a left inverse, since 1B ◦ a = 1B ◦ a and
thus there must be a unique b : D → B such that b ◦ π = 1B. In the same
line of reasoning, π ◦ a = π ◦ a and so there is a unique c : D → D such that
c ◦ π = π. But (π ◦ b) ◦ π = π = 1D ◦ π, therefore c = π ◦ b = 1D and π is an
isomorphism. This proves that ι is regularly extremal.
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It turns out that in the case of PosS, the converse holds as well.

Lemma 2.6 In PosS all monomorphisms are precisely the regularly extremal
morphisms.

Proof. We have seen that all monomorphisms are regularly extremal.
Suppose ι : B → C is not a monomorphism, then

∅ 6= {(x, y) ∈ B2|ι(x) = ι(y), x 6= y} = {(xi, yi) ∈ B2|i ∈ I}

for some index set I. We can take D = Im(ι), with π : B → D defined as
π(z) = ι(z) for all z ∈ B. Define f : D → C with f(z) = z for all z ∈ D.
Both π and f are S-poset morphisms and clearly f ◦ π = ι.

I × SI × S
a //
b

// B Dπ
// C

f
//

ι

&&

Take a new poset, denoted I × S, such that it consists of all (i, s), where
i ∈ I, s ∈ S and (i, s) · t = (i, st) for all t ∈ S. With S-induced order (that is,
the only order relations are i · s ≤ i · s′ with s ≤ s′) and the obvious action,
it is evidently an S-poset. The epimorphism π is the coequalizer of the pair
a, b : I × S → B of S-poset morphisms with a(i, s) = xi · s, b(i, s) = yi · s.
To see this, have g ◦ a = g ◦ b for some morphism g : B → G, which means
g(xi) = g(yi) for each i ∈ I. Then we define a new morphism k : D → G
as follows. Take z ∈ D, in which case there is at least one u ∈ B such that
π(u) = z. Define

k(z) = g(u).

For any other such u′ that π(u′) = z we have ι(u′) = ι(u) = z, so g(u) = g(u′)
as well and the map is well-defined. It is also easy to see that k preserves
both the order and the S-action. Of course k◦π = g. As π is an epimorphism,
k must be unique. Therefore ι is not regularly extremal because π is not an
isomorphism, but is a regular epimorphism.

2.4 Category of posets as a topos

By Lemmas 2.3, 2.4 and 2.6 we obtain the following:

Proposition 2.3 In PosS the notions of regular, strict, strong and extremal
monomorphism coincide, being precisely all the embeddings of PosS. Regularly
extremal morphisms are the same as monomorphisms.
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As we can see, most notions of monomorphism lead us to embeddings,
with (actual) monomorphisms (the same as regularly extremal morphisms)
and coretractions being separate. In PosS we cannot classify neither embed-
dings nor monomorphisms. Therefore we cannot use any of those notions to
get PosS to have a partial (i.e. valid only for a certain class of monomorp-
hisms) subobject classifier.

In the end, PosS is not a topos, but it is rather close. It has arbitrary
limits and colimits, exponentials and a restricted subobject classifier. Our
hope was to get a result like that of usual S-acts, which form a Grothendieck
topos (see [MLM], third chapter). This was motivated by S-posets being
very similar to S-acts in the functorial sense, the former as 2-functors to
the category of posets and the latter as functors to the category of sets.
Unfortunately, we can not get a Grothendieck topos out of it (since these have
to be toposes), and one can only hope that there is a suitable 2-categorical
notion of Grothendieck topology that might be used on S-posets as some
sort of 2-sheaves.

2.5 Submonomorphisms and subclassifiers

In the study of S-posets, in some situations it has proved to be useful to
substitute the equalities of composites with inequalities of composites in the
definitions of (co)limits. Subpullbacks, subequalizers etc thus derived have
been introduced in [BFM] and [BFL]. Such an approach motivates our defi-
nition of submonomorphisms in the same way. From [BFM] we obtain that
subpullbacks of f : A→ C and g : B → C can be canonically constructed as

{(a, b)|a ∈ A, b ∈ B, f(a) ≤ g(b)}

and subpullbacks of g and f as

{(b, a)|a ∈ A, b ∈ B, g(b) ≤ f(a)}.

Definition 2.2 We call an S-poset morphism m : AS → BS a submonomor-
phism iff for all S-poset morphisms f, g : CS → AS whenever m ◦ f ≤ m ◦ g,
f ≤ g as well.

Lemma 2.7 Submonomorphisms in PosS are precisely embeddings.

Proof. If m is an embedding and m ◦ f ≤ m ◦ g for f, g : CS → AS, then
m(f(c)) ≤ m(g(c)) for all c ∈ C. Therefore f(c) ≤ g(c) and f ≤ g.

If m is a submonomorphism and m(x) ≤ m(y), then we can consider
morphisms x : SS → AS and y : SS → AS. Then

(m ◦ x)(s) = m(x · s) = m(x) · s ≤ m(y) · s = m(y · s) = (m ◦ y)(s)
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for all s ∈ S. Thus m ◦ x ≤ m ◦ y, whence x ≤ y. In particular, x = x · 1 =
x(1) ≤ y(1) = y · 1 = y. So x ≤ y and m reflects order. Every submonomor-
phism is a monomorphism, since equality implies both inequalities and vice
versa. Therefore m is indeed an embedding.

While we could define subregular, substrict, substrong etc morphisms, by
[BFM] subequalizers are embeddings, subcoequalizers are surjections and we
would not get any new classes of morphisms.

Instead, we define subobject subclassifiers as follows. Note that since ter-
minal objects are not defined with equalities of composites, subterminal ob-
jects are the same as terminal objects.

Definition 2.3 In a category with finite sublimits the subobject subclassifier
(subobject supclassifier) is a monomorphism true : 1 → Ω such that for any
other monomorphism ι : B → A there is a unique morphism φB such that
the square

A Ω
φB

//

B

A

��

ι

��

B 1
!B // 1

Ω

��

true

��

turns out to be a subpullback of φB and true (of true and φB).

These objects are also unique up to isomorphism, which is proved in the
same way as in the case of subobject classifiers.

Once again, it suffices to consider only injections of subsets.
In the case of PosS we have the following result.

Theorem 2.2 The category PosS has the subobject subclassifier for subob-
jects that are downwards closed and the subobject supclassifier for subobjects
that are upwards closed. Moreover, any other subobjects can not be subclas-
sified or supclassified.

Proof. Take precisely the same Ωd, true and φB for downwards closed
subobjects as we did in Theorem 2.1. Take a monomorphism ι : B → A.
Since true(∗) = S,

φB(a) ≤ true(∗) ⇔ S ⊆ φB(a) ⇔ S = φB(a)

⇔ ∀s ∈ S a · s ∈ B ⇔ a ∈ B
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for every a ∈ A. Then

{(a, ∗) ∈ A× 1|φB(a) ≤ true(∗)} = B × 1 ∼= B.

Therefore we do obtain a subpullback.
Let ψB : A→ Ωd be a morphism such that B is the subpullback of ψB and

true. Then B ∼= {(a, ∗) ∈ A×1|ψB(a) ≤ true(∗) = S}. We are trying to prove
φB = ψB. If x · s ∈ B, x ∈ A, s ∈ S, then {t ∈ S|st ∈ ψB(x)} = ψB(x) · s =
ψB(x · s) ⊇ S 3 1 and so s · 1 ∈ ψB(x). Hence {s ∈ S|x · s ∈ B} ⊆ ψB(x). If
x · s /∈ B (then ψB(x · s) 6= S because otherwise ψB(x · s) ⊇ S and x · s ∈ B
from the subpullback), we get S 6= ψB(x ·s) = ψB(x) ·s = {t ∈ S|st ∈ ψB(x)}
and so 1 /∈ {t ∈ S|st ∈ ψB(x)}. So s /∈ ψB(x) and ψB(x) = {s ∈ S|x · s ∈
B} = φB(x). We have verified, that φB is the only morphism that gives us
the desired subpullback.

Upwards closed subobjects are supclassified by using Ωu, true and φB

implied by Corollary 2.1.
Suppose a subobject ι : B → A can be subclassified and there is an

a ∈ A such that a ≤ b for some b ∈ B, but a /∈ B. Then φB(a) ⊇ φB(b) = S,
so a ∈ B, a contradiction. Similarly only upwards closed subobjects can be
supclassified.
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3 Geometric morphisms

As the previous part demonstrated, PosS is not a topos and therefore the
usual notion of a geometric morphism (for more details, see [MLM], chap-
ter VII) does not apply there. In the following we show that by adding a
few order-related restrictions, we can obtain similar morphisms (pogeomet-
ric morphisms) between S-poset categories.

3.1 Pofunctors and poadjunctions

Definition 3.1 We say that a functor F : PosS → PosT is a pofunctor if
for any pair of S-poset morphisms f1, f2 : BS → B′

S with f1 ≤ f2 also
F (f1) ≤ F (f2).

Definition 3.2 We say that two adjoint pofunctors L : PosS → PosT and
R : PosT → PosS, L a R, form a poadjunction (L is left poadjoint to R), if
the corresponding binatural isomorphism

α : MorPosT
(L(−),−) → MorPosS

(−, R(−))

also preserves and reflects the pointwise order of S- and T -poset morphisms.
This means that for all S-posets BS, T -posets CT and f1, f2 : L(BS) → CT ,
f1 ≤ f2 we have αB,C(f1) ≤ αB,C(f2). Also, for all g1, g2 : BS → R(CT ),
g1 ≤ g2 it must hold that α−1

B,C(g1) ≤ α−1
B,C(g2).

Definition 3.3 Let F : I → PosS be a functor on an index category I, where
the objects form a poset (Ob(I),≤). Let C :<→ Ob(I)×MorPosS

×MorPosS

be such a mapping that for each i < j, where i, j ∈ Ob(I), there is an object
C(i < j)1 ∈ Ob(I) and a pair of morphisms C(i < j)2 : F (C(i < j)1) → F (i)
and C(i < j)3 : F (C(i < j)1) → F (j) in PosS. We say that a cocone
(C, (fi)i∈Ob(I)) on a diagram (F (i))i∈Ob(I) of shape F is a pococone of F with
respect to mapping C if

fi ◦C(i < j)2 ≤ fj ◦C(i < j)3

for all i < j, i, j ∈ Ob(I).

F (i) C
fi

//

F (C(i < j)1)

F (i)

C(i<j)2

��

F (C(i < j)1) F (j)
C(i<j)3 // F (j)

C

fj

��
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If we have another functor G : PosS → PosT , then we write G◦C instead
of the longer (1× G × G) ◦C to denote the corresponding mapping for the
functor G ◦ F , ie (G ◦C)(i < j) = (C(i < j)1, G(C(i < j)2), G(C(i < j)3)).

A universal pococone of a functor F : I → PosS with respect to mapping
C is a pococone (U, (ui)i∈Ob(I)) with the property that for every other pococo-
ne (V, (vi)i∈Ob(I)) of the same functor and with respect to the same mapping
there is a unique morphism f : U → V such that f ◦ui = vi for all i ∈ Ob(I).

Note that universal pococones of the same functor with respect to the
same mapping C are unique up to isomorphism, this is proved in the usual
way. Universal pococones of trivial orders are ordinary colimits.

Lemma 3.1 If (U, (ui)i∈Ob(I)) is the universal pococone of F : I → PosS

with respect to U, (V, (vi)i∈Ob(I)) is the universal pococone of G : I → PosS

with respect to V, functors F and G are naturally isomorphic with natural
isomorphisms αi : F (i) → G(i) for all i ∈ Ob(I), U(i < j)1 = V(i < j)1

and
V(i < j)2 ◦ αU(i<j)1 = αi ◦U(i < j)2,

V(i < j)3 ◦ αU(i<j)1 = αj ◦U(i < j)3

for all i < j in Ob(I), then there is a unique morphism αU : U → V such
that

αU ◦ ui = vi ◦ αi

for all i ∈ Ob(I), which is also an isomorphism.

Proof. Due to naturality of α,

G(k) ◦ αi = αj ◦ F (k)

for all morphisms k : i→ j in I.

F (j) G(j)αj

//

F (i)

F (j)

F (k)

��

F (i) G(i)
αi // G(i)

G(j)

G(k)

��

This implies
vj ◦ αj ◦ F (k) = vj ◦G(k) ◦ αi = vi ◦ αi

for k : i→ j. Therefore
(V, (vi ◦ αi)i∈Ob(I))
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is a cocone of F . Also,

vi ◦ αi ◦U(i < j)2 = vi ◦V(i < j)2 ◦ αU(i<j)1

≤ vj ◦V(i < j)3 ◦ αU(i<j)1

= vj ◦ αj ◦U(i < j)3.

So (V, (vi ◦ αi)i∈Ob(I)) is a cocone of F with respect to U. Therefore we have
a unique αU : U → V such that

αU ◦ ui = vi ◦ αi.

G(V(i < j)1) G(j)
V(i<j)3 //G(V(i < j)1)

G(i)

V(i<j)2

��
G(i) Vvi

//

G(j)

V

vj

��

F (U(i < j)1) F (j)
U(i<j)3 //F (U(i < j)1)

F (i)

U(i<j)2

��
F (i) Uui

//

F (j)

U

uj

��
F (i)

F (j)

F (k)

??�����������������������������

G(i)

G(j)

G(k)
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F (U(i < j)1)

G(V(i < j)1)

αU(i<j)1

__?????????????????????????

F (j)

G(j)

αj

JJ�������������������

F (i)

G(i)

αi

ttjjjjjjjjjjjjjjjjj U

V

αU

��?
?

?

Reversing the roles of U and V in the previous argument, we obtain that
there is a unique αV : V → U such that

αV ◦ vi = ui ◦ α−1
i .

Therefore
αV ◦ αU ◦ ui = αV ◦ vi ◦ αi = ui ◦ α−1

i ◦ αi = ui.

Since also
1U ◦ ui = ui,
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the uniqueness property of universal cocone U gives us αV ◦ αU = 1U . Addi-
tionally

αU ◦ αV ◦ vi = αU ◦ ui ◦ α−1
i = vi ◦ αi ◦ α−1

i = vi

and the universal property of V provides αU ◦ αV = 1V . Thus αU is the
isomorphism we wanted.

Proposition 3.1 Left poadjoints preserve universal pococones. More preci-
sely, if (C, (fi)i∈Ob(I)) is the universal pococone of F : I → PosS with res-
pect to mapping C and the functor L : PosS → PosT is a left poadjoint,
then (L(C), (L(fi))i∈Ob(I)) is the universal pococone of L ◦ F with respect to
mapping L ◦C.

Proof. Let L : PosS → PosT be left poadjoint to R : PosT → PosS with
the corresponding natural isomorphisms

αA,B : MorPosT
(L(A), B) → MorPosS

(A,R(B)),

A ∈ Ob(PosS), B ∈ Ob(PosT ). Let I be an index category the object set of
which is also ordered and consider a functor F : I → PosS. Let (C, (fi)i∈Ob(I))
be the universal pococone of F with respect to C, which means

fi ◦C(i < j)2 ≤ fj ◦C(i < j)3

for all i < j, i, j ∈ Ob(I). We are trying to prove that (L(C), (L(fi))i∈Ob(I))
is a universal pococone of L ◦ F with regard to L ◦C.

The functorial image of a cocone is a cocone. Since L is a pofunctor, we
have

L(fi) ◦ L(C(i < j)2) ≤ L(fj) ◦ L(C(i < j)3)

for all i < j, i, j ∈ Ob(I). Therefore (L(C), (L(fi))i∈Ob(I)) is a pococone of
L ◦ F with respect to L ◦C.

Now consider a pococone (D, (gi)i∈Ob(I)) of L ◦ F with respect to L ◦C,
implying

gi ◦ L(C(i < j)2) ≤ gj ◦ L(C(i < j)3).

L(F (i)) L(C)
L(fi) //

L(F (C(i < j)1))

L(F (i))

L(C(i<j)2)

��

L(F (C(i < j)1)) L(F (j))
L(C(i<j)3) // L(F (j))

L(C)

L(fj)

��

D
gi --[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

D

gj

��-
--

--
--

--
--

--
--

-

s

""F
F

F
F
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Due to adjointness we have morphisms

hi = αF (i),D(gi) : F (i) → R(D)

for all i ∈ Ob(I).

L(F (i)) D
gi //

F (i) R(D)
hi //

_
αF (i),D

��

For a morphism k : i→ j the naturality of the isomorphisms yields

hi = αF (i),D(gi) = αF (i),D(gj ◦ L(F (k)))

= (αF (i),D ◦MorPosT
(L(F (k)), D))(gj)

= (MorPosS
(F (k), R(D)) ◦ αF (j),D)(gj)

= MorPosS
(F (k), R(D))(hj) = hj ◦ F (k).

Additionally, the poadjunction implies

αF (C(i<j)1),D(gi ◦ L(C(i < j)2)) ≤ αF (C(i<j)1),D(gj ◦ L(C(i < j)3))

for i < j, i, j ∈ Ob(I), whence

hi ◦C(i < j)2 = αF (i),D(gi) ◦C(i < j)2

= [MorPosS
(C(i < j)2, R(D)) ◦ αF (i),D](gi)

= [αF (C(i<j)1),D ◦MorPosT
(L(C(i < j)2), D)](gi)

= αF (C(i<j)1),D(gi ◦ L(C(i < j)2))

≤ αF (C(i<j)1),D(gj ◦ L(C(i < j)3))

= [αF (C(i<j)1),D ◦MorPosT
(L(C(i < j)3), D)](gj)

= [MorPosS
(C(i < j)3, R(D)) ◦ αF (j),D](gj)

= αF (j),D(gj) ◦C(i < j)3 = hj ◦C(i < j)3.

This makes (R(D), (hi)i∈Ob(I)) into a pococone on F with respect to C.

F (i) C
fi //

F (C(i < j)1)

F (i)

C(i<j)2

��

F (C(i < j)1) F (j)
C(i<j)3 // F (j)

C

fj

��

R(D)
hi --ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

R(D)

hj

��-
--

--
--

--
--

--
--

-

r

""F
F

F
F
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From this we get the unique factorization hi = r ◦ fi with r : C → R(D),
for all i ∈ Ob(I). By adjointness we have s = α−1

C,D(r) : L(C) → D, and by

naturality of α−1
C,D also

s ◦ L(fi) = MorPosT
(L(fi), D)(α−1

C,D(r)) = α−1
F (i),D(MorPosS

(fi, R(D))(r))

= α−1
F (i),D(r ◦ fi) = α−1

F (i),D(hi) = gi.

MorPosS
(F (i), R(D)) MorPosT

(L(F (i)), D)
α−1

F (i),D

//

MorPosS
(C,R(D))

MorPosS
(F (i), R(D))

MorPosS
(fi,R(D))

��

MorPosS
(C,R(D)) MorPosT

(L(C), D)
α−1

C,D // MorPosT
(L(C), D)

MorPosT
(L(F (i)), D)

MorPosT
(L(fi),D)

��

For any other s′ = α−1
C,D(r′) : L(C) → D such that s′ ◦L(fi) = gi for every

i ∈ Ob(I), the naturality of αC,D gives

r′ ◦ fi = αC,D(s′) ◦ fi = MorPosS
(fi, R(D)(αC,D(s′))

= αF (i),D(MorPosT
(L(fi), D)(s′))

= αF (i),D(s′ ◦ L(fi)) = αF (i),D(gi) = hi.

As (C, (fi)i∈Ob(I)) is universal, r = r′ and s is unique.

Lemma 3.2 Every S-poset is a universal pococone of free S-posets SS.

Proof. Let BS be an S-poset. Construct a new category El(B), where
Ob(El(B)) = B and if b, c ∈ B, then MorEl(B)(b, c) = {s ∈ S|c · s = b} and
the composition is the multiplication of S. Note that B is a partial order.

Define a functor F : El(B) → PosS by

F (b) = SS

and
F (s) = s

for all b, c ∈ B, s ∈ MorEl(B)(b, c). From Lemma 1.1

F (ss′) = ss′ = s ◦ s′ = F (s) ◦ F (s′),

F (1) = 1 = 1S and we do obtain a functor.
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We have the S-poset morphisms fb : F (b) → BS defined as

fb = b

for all b ∈ B.
If b < b′, b, b′ ∈ B, we take

B(b < b′)1 = b

and
B(b < b′)2 = B(b < b′)3 = 1 = 1S : SS → SS.

We want to show that (BS, (fb)b∈B) is the universal pococone of F with
respect to the order of B and mapping B.

First of all, take b, c ∈ B, c · s = b. Then by Lemma 1.1

fc ◦ F (s) = c ◦ s = c · s = b = fb

for any s : b→ c in El(B) and we have a cocone.
Secondly, take b < c, b, c ∈ B. Then

fb ◦B(b < c)2 = b ◦ 1 = b ≤ c = b ◦ 1 = fc ◦B(b < c)3

and (BS, (fb)b∈B) turns out to be a pococone.
Take another pococone (CS, (gb)b∈B) with respect to B, which means

gb = gb ◦B(b < c)2 ≤ gc ◦B(b < c)3 = gc

when b < c, b, c ∈ B.

F (b) = SS BS

fb //

F (b) = SS

F (b) = SS

1S

��

F (b) = SS F (c) = SS

1S // F (c) = SS

BS

fc

��

CS

gb --ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

gc

��/
//

//
//

//
//

//
//

//

α

''PPPPPPPPPP

To prove the universal property, we define α : BS → CS with

α(b) = gb(1).

If b < c, then
α(b) = gb(1) ≤ gc(1) = α(c)
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and evidently α(b) ≤ α(b). Also,

α(b · s) = gb·s(1) = (gb ◦ F (s))(1) = gb(s1) = gb(1) · s = α(b) · s

by naturality of the cocone (CS, (gb)b∈B). Hence α is an S-poset morphism.
Moreover,

(α ◦ fb)(s) = α(bs) = gbs(1) = gb(s)

for all s ∈ S.
Suppose there is also an S-poset morphism α′ : BS → CS such that

α′ ◦ fb = gb. Then

α′(b) = α′(fb(1)) = (α′ ◦ fb)(1) = gb(1) = α(b)

for all b ∈ B. Therefore α = α′ and the proof is finished.

3.2 Tensor products

The study of tensor products and flatness properties of S-posets was initiated
by S.M. Fakhruddin in the 1980s so the following facts are nothing new, but
there is no standard reference for them either. So let us recall a few basic
facts about tensor products.

Definition 3.4 The tensor product B ⊗S A of S-posets BS and SA is the
coequalizer of the pair of poset morphisms

B × S × A B × AB × S × A B × A
f //
g

//

where f(b, s, a) = (b · s, a) and g(b, s, a) = (b, s · a).
Recall that coequalizers in the category of posets have a canonical const-

ruction as quotients by the smallest congruences (and corresponding smallest
orders) that identify the images at every point.

If we take a right S-poset BS and an (S, T )-biposet SAT , the tensor
product B ⊗S A can be made into a T -poset by taking

(b⊗ a) · t = b⊗ (a · t)

for all a ∈ A, b ∈ B, t ∈ T .
Similarly, a product BS × SA in Pos (with componentwise order) can be

made into a T -poset if A is an (S, T )-biposet, by defining

(b, a) · t = (b, a · t)

for all a ∈ A, b ∈ B, t ∈ T .
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Lemma 3.3 In the tensor product B ⊗S A we have b⊗ a ≤ b′ ⊗ a′ iff there
exist s1, . . . , sn, t1, . . . , tn ∈ S, b1, . . . , bn ∈ B and a2, . . . , an ∈ A such that

b ≤ b1s1

b1t1 ≤ b2s2 s1a ≤ t1a2
...

...
bntn ≤ b′ snan ≤ tna

′

(1)

Moreover, if a ≤ a′, then b⊗ a ≤ b⊗ a′ and if b ≤ b′, then b⊗ a ≤ b′⊗ a′ for
any b, b′ ∈ B, a, a′ ∈ A.

Proof. The first result is due to [BFL], page 6.
By taking b = b1, s1 = t1 = 1 in the system of inequalities (1), we obtain

both desired inequalities.

Lemma 3.4 A T -act morphism f : B×AT → CT which preserves the order
in both arguments and satisfies the condition

f(b · s, a) = f(b, s · a) (2)

yields a well-defined T -poset morphism f ′ : (B ⊗S A)T → CT by taking

f ′(b⊗ a) = f(b, a).

Proof. Taking b⊗ a ≤ b′ ⊗ a′, we then obtain that

f ′(b⊗ a) = f(b, a) ≤ f(b1s1, a) = f(b1, s1a) ≤ f(b1, t1a2) = f(b1t1, a2)

≤ f(b2s2, a2) = f(b2, s2a2) ≤ f(b2, t2a3) = · · · = f(bn, snan)

≤ f(bn, tna
′) = f(bntn, a

′) ≤ f(b′, a′) = f ′(b′ ⊗ a′).

Given b⊗a = b′⊗a′, we also have b⊗a ≤ b′⊗a′ and b⊗a ≥ b′⊗a′ and can
simply execute the previous argument twice to obtain f ′(b⊗ a) = f ′(b′⊗ a′).

Finally,

f ′((b⊗a) ·t) = f ′(b⊗(a ·t)) = f(b, a ·t) = f((b, a) ·t) = f(b, a) ·t = f ′(b⊗a) ·t

for any a ∈ A, b ∈ B, t ∈ T .

Morphisms that satisfy the equation (2) are generally called balanced mor-
phisms.
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Take an (S, T )-biposet SAT . Recall that the S-action on MorPosT(A,B)
is defined by

(f · s)(a) = f(s · a)

for a ∈ A, f ∈ MorPosT(A,B). The order is simply the pointwise order.
For an (S, T )-biposet SAT , consider the usual two functors

−⊗S A : PosS → PosT

and
MorPosT(A,−) : PosT → PosS,

where for an S-poset morphism f : BS → B′
S we have

(f ⊗S A)(b⊗ a) = f(b)⊗ a

and for a right T -poset morphism f : CT → C ′
T

MorPosT(A, f)(g) = f ◦ g,

for every a ∈ A, b ∈ B and g ∈ MorPosT
(A,C).

Lemma 3.5 The functors − ⊗S A : PosS → PosT and MorPosT(A,−) :
PosT → PosS are pofunctors.

Proof. Note that since f(b · s) ⊗ a = [f(b) · s] ⊗ a = f(b) ⊗ (s · a), the
morphism f ⊗S A is balanced and the functor − ⊗S A is well-defined by
Lemma 3.4 (as both f and tensor multiplication are order-preserving).

Consider a pair of S-poset morphisms f1, f2 : BS → B′
S with f1 ≤ f2.

Then by Lemma 3.3

(f1 ⊗S A)(b⊗ a) = f1(b)⊗ a ≤ f2(b)⊗ a = (f2 ⊗S A)(b⊗ a)

for all a ∈ A, b ∈ B.
Similarly for a pair of T -poset morphisms f1, f2 : CT → C ′

T where f1 ≤ f2

we have

MorPosT(A, f1)(g)(a) = (f1 ◦ g)(a) = f1(g(a)) ≤ f2(g(a))

= (f2 ◦ g)(a) = MorPosT(A, f2)(g)(a)

for any a ∈ A. Therefore MorPosT(A, f1)(g) ≤ MorPosT(A, f2)(g) for all g ∈
MorPosT

(A,C).
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Proposition 3.2 If SAT is an (S, T )-biposet, then the pofunctor − ⊗S A :
PosS → PosT is left poadjoint to the pofunctor MorPosT(A,−) : PosT → PosS.

Proof. In terms of Mor-sets the adjunction can be expressed as a bina-
tural isomorphism between the functors

MorPosT
(−⊗S A,−)

and
MorPosS

(−,MorPosT(A,−))

([MLM] pp 17-18). This means that in order to prove the proposition, we
have to find a binatural collection of bijections

αB,C : MorPosT
(B ⊗S A,C) → MorPosS

(B,MorPosT(A,C))

over all BS ∈ Ob(PosS) and CT ∈ Ob(PosT ) that also satisfy the poadjunc-
tion condition.

To this end we define

αB,C(f)(b)(a) = f(b⊗ a)

for f : (B ⊗S A)T → CT , b ∈ B, a ∈ A.
As long as f is well-defined, α is as well. First we need to verify that

αB,C(f)(b) : A → C is indeed a T -poset morphism. For that take a ≤ a′,
then

αB,C(f)(b)(a) = f(b⊗ a) ≤ f(b⊗ a′) = αB,C(f)(b)(a′)

since f is order-preserving. That b⊗a ≤ b⊗a′ follows from Lemma 3.3. Also,

αB,C(f)(b)(a ·t) = f(b⊗(a ·t)) = f((b⊗a) ·t) = f(b⊗a) ·t = αB,C(f)(b)(a) ·t.

Thus indeed αB,C(f)(b) ∈ MorPosT(A,C)S. We do not yet know whether
αB,C(f) : BS → MorPosT(A,C) is actually an S-poset morphism. It is clearly
order-preserving, which is verified by noticing that if b ≤ b′, then b⊗a ≤ b′⊗a
for every a ∈ A and therefore f(b⊗ a) ≤ f(b′ ⊗ a). Also,

αB,C(f)(b · s)(a) = f(b · s⊗ a) = f(b⊗ s · a)
= αB,C(f)(b)(s · a) = [(αB,C(f)(b)) · s](a)

for all a ∈ A. This concludes the verification that αB,C is well-defined.
We notice that if g ∈ MorPosS

(B,MorPosT(A,C)), then

g(b · s)(a) = (g(b) · s)(a) = g(b)(s · a)
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and
g(b)(a · t) = g(b)(a) · t

for every b ∈ B, a ∈ A and s ∈ S, t ∈ T . Define

β̂B,C(g)(b, a) = g(b)(a)

for any g ∈ MorPosS
(B,MorPosT(A,C)), b ∈ B, a ∈ A. The mapping β̂B,C(g) :

(B × A)T → CT is clearly order-preserving in both arguments and the pre-
vious remarks show that it is also a balanced T -poset morphism. By this and
Lemma 3.4 the inverse of α, defined by

βB,C(g)(b⊗ a) = g(b)(a)

is also a well-defined T -poset morphism (applying the lemma to β̂B,C(g)).
Since clearly

[αB,C(βB,C(g))](b)(a) = [βB,C(g)](b⊗ a) = g(b)(a)

and
[βB,C(αB,C(f))](b⊗ a) = αB,C(f)(b)(a) = f(b⊗ a)

for any a ∈ A, b ∈ B, the components αB,C are bijections.
To check the naturality in B, take an S-poset morphism h : BS → B′

S.
Then

[[αB,C ◦MorPosT
(h⊗S A,C)](f)](b)(a) = [αB,C(f ◦ (h⊗S A))](b)(a)

= f(h(b)⊗ a) = αB′,C(f)(h(b))(a) = ((αB′,C(f) ◦ h)(b))(a)
= [[MorPosS

(h,MorPosT(A,C)) ◦ αB′,C ](f)](b)(a),

for all f ∈ MorPosT
(B′ ⊗S A,C), b ∈ B, a ∈ A.

MorPosT
(B ⊗S A,C) MorPosS

(B,MorPosT(A,C))αB,C

//

MorPosT
(B′ ⊗S A,C)

MorPosT
(B ⊗S A,C)

MorPosT
(h⊗SA,C)

��

MorPosT
(B′ ⊗S A,C) MorPosS

(B′,MorPosT(A,C))
αB′,C // MorPosS

(B′,MorPosT(A,C))

MorPosS
(B,MorPosT(A,C))

MorPosS
(h,MorPosT

(A,C))

��

Likewise for naturality in C, fix a T -poset morphism h : CT → C ′
T . Similar

calculation yields

[[αB,C′ ◦MorPosT
(B ⊗S A, h)](f)](b)(a) = [αB,C′(h ◦ f)](b)(a)

= h(f(b⊗ a)) = (h ◦ (αB,C(f)(b))(a)

= [[MorPosS
(B,MorPosT(A, h)) ◦ αB,C ](f)](b)(a),

33



for all f ∈ MorPosT
(B ⊗S A,C), b ∈ B, a ∈ A.

MorPosT
(B ⊗S A,C

′) MorPosS
(B,MorPosT

(A,C ′))αB,C′
//

MorPosT
(B ⊗S A,C)

MorPosT
(B ⊗S A,C

′)

MorPosT
(B⊗SA,h)

��

MorPosT
(B ⊗S A,C) MorPosS

(B,MorPosT(A,C))
αB,C // MorPosS

(B,MorPosT(A,C))

MorPosS
(B,MorPosT

(A,C ′))

MorPosS
(B,MorPosT

(A,h))

��

For the last part, take f1, f2 ∈ MorPosT
(B ⊗S A,C) with f1 ≤ f2. Then

αB,C(f1)(b)(a) = f1(b⊗ a) ≤ f2(b⊗ a) = αB,C(f2)(b)(a)

for all b ∈ B, a ∈ A. So αB,C indeed preserves order.
For the converse take g1, g2 ∈ MorPosS

(B,MorPosT
(A,C)), g1 ≤ g2. Then

βB,C(g1)(b⊗ a) = g1(b)(a) ≤ g2(b)(a) = βB,C(g2)(b)(a)

and the proof is complete.

There is a special case of turning a tensor product into a T -poset where
the second poset SAT is simply SSS with its natural order. In this case we
have the following result.

Lemma 3.6 For any S-poset BS, there are canonical isomorphisms

(B ⊗S S)S
∼= BS

∼= MorPosS
(SS, BS)S.

Proof. We define α : (B ⊗S S)S → BS and β : BS → MorPosS
(SS, BS)S

with the equations
α(b⊗ s) = b · s

and
β(b)(s) = b · s,

that is, β(b) = b. Since

α(b · s⊗ t) = (b · s) · t = b · (st) = α(b⊗ st)

and by definition the multiplication in an S-poset is order-preserving in both
arguments, α is a well-defined poset morphism according to Lemma 3.4.
Additionally,

α((b⊗ s) · t) = α(b⊗ (st)) = b · (st) = (b · s) · t = α(b⊗ s) · t
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and therefore α is an S-poset morphism as well. The morphism α is clearly
surjective, as α(b⊗ 1) = b · 1 = b for every b ∈ B. Suppose b · s = b′ · s′. Then

b⊗ s = (b · s)⊗ 1 = (b′ · s′)⊗ 1 = b′ ⊗ s′

and α proves to be injective as well. Also, if b ≤ b′, then b ⊗ 1 ≤ b′ ⊗ 1
and α reflects order. We have thus shown that the first morphism α is an
isomorphism.

In the preliminaries we saw that b is an S-poset morphism. Since

(β(b) · t)(s) = β(b)(t · s) = b · (ts) = (b · t) · s = β(b · t)(s)

for all s, t ∈ S and b ∈ B, and multiplication is order-preserving in both
arguments, β is a right S-poset morphism. If we take g ∈ MorPosS

(SS, BS),
we can see that

β(g(1))(s) = g(1) · s = g(s)

for all s ∈ S and so β(g(1)) = g. Moreover, if β(b) = β(b′) (ie β(b)(s) =
β(b′)(s) for all s ∈ S) then

b = b · 1 = β(b)(1) = β(b′)(1) = b′ · 1 = b′

and β is both injective and surjective. Finally, if g1 ≤ g2 in PosS(SS, BS),
then g1(1) ≤ g2(1) which means that β reflects order. Thus it is also an
S-poset isomorphism.

Let f : T → S be a morphism of pomonoids, ie an order-preserving
monoid homomorphism. Any right S-poset AS can be considered as a right
T -poset Af

T by taking
a · t = a · f(t),

a ∈ A, t ∈ T . The same applies to left posets, taking SA to f
TA.

In this manner we obtain a functor (−)f
T : PosS → PosT . If we take

f1, f2 : AS → A′
S, f1 ≤ f2, then

(f1)
f
T (x) = f1(x) ≤ f2(x) = (f2)

f
T (x)

for all x ∈ (A)f
T and this functor is a pofunctor.

It is clear that the (S, S) biposet SSS can be considered as an (S, T )-
biposet in this way.

Lemma 3.7 For any pomonoid morphism f : T → S, there is a natural
isomorphism of pofunctors

−⊗S S
f
T
∼= (−)f

T
∼= MorPosS

(f
TSS,−).
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Proof. The result follows from the isomorphisms of Lemma 3.6, where
the S-posets are taken as T -posets via the morphism f . More precisely, the
isomorphisms α and β are the same, but are taken as right T -poset morp-
hisms:

αB((b⊗ s) ·T t) = αB(b⊗ (s ·T t)) = αB(b⊗ (sf(t)))

= b ·S (sf(t)) = (b ·S s) ·S f(t) = αB(b⊗ s) ·T t,

βB(b)(s ·T t) = βB(b)(sf(t)) = b ·S (sf(t))

= (b ·S s) ·S f(t) = (βB(b)(s)) ·S f(t) = (βB(b)(s)) ·T t.

Also, the isomorphisms are natural in B, ie for an S-poset morphism
h : B → B′

(αB′ ◦ (h⊗S S
f
T ))(b⊗ s) = αB′(h(b)⊗ s) = h(b) · s = h(b · s)

= h(αB(b⊗ s)) = (h ◦ αB)(b⊗ s)

where b ∈ B, s ∈ S.

B′ ⊗S S
f
T B′f

TαB′
//

B ⊗S S
f
T

B′ ⊗S S
f
T

h⊗SSf
T

��

B ⊗S S
f
T Bf

T

αB // Bf
T

B′f
T

h

��

Similarly

[(βB′ ◦ h)(b)](s) = [βB′(h(b))](s) = h(b) · s = h(b · s) = h(βB(b)(s))

= (h ◦ βB(b))(s) = [(MorPosS
(f
TSS, h) ◦ βB)(b)](s)

for any b ∈ B, s ∈ S.

B′f
T MorPosS

(f
TSS, B

′)
βB′

//

Bf
T

B′f
T

h

��

Bf
T MorPosS

(f
TSS, B)

βB // MorPosS
(f
TSS, B)

MorPosS
(f
TSS, B

′)

MorPosS
(f
T SS ,h)

��
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3.3 Pogeometric morphisms

Now we can finally define geometric morphisms for the categories of S-posets.

Definition 3.5 A pogeometric morphism f : PosT → PosS is a pair of po-
functors f ∗ : PosS → PosT and f∗ : PosT → PosS such that f ∗ is left
poadjoint to f∗ and f ∗ preserves finite universal pocones (that is, f ∗ is left
poexact).

PosT PosSPosT PosS
f∗

;;
||

f∗

⊥

Proposition 3.3 A pomonoid morphism f : T → S induces a pogeometric
morphism

f : PosT → PosS

with f ∗(BS) = Bf
T . The pofunctor f ∗ also has a left poadjoint f!.

Proof. By Lemma 3.7 we have

MorPosS
(f
TSS,−) ∼= f ∗ ∼= −⊗S S

f
T .

Proposition 3.2 gives us the poadjunctions

−⊗S S
f
T a MorPosT

(Sf
T ,−) =: f∗

and
f! := −⊗T

f
TS a MorPosS

(f
TSS,−).

Hence

f! = −⊗T
f
TS a MorPosS

(f
TSS,−) ∼= f ∗ ∼= −⊗S S

f
T a MorPosT

(Sf
T ,−) = f∗.

PosS PosT

f∗ //YY

f∗

��

f!

⊥

⊥

Note that these functors are pofunctors. As a right poadjoint, f ∗ preserves
finite universal pocones and is left poexact.
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3.4 Points

Note that Pos, the category of partially ordered sets, is the same as Pos1,
the category of posets over the trivial monoid.

Definition 3.6 A point of a right S-poset category PosS is a pogeometric
morphism f : Pos = Pos1 → PosS.

Let PointsS be the category of points of PosS, where the morphisms are
the natural transformations between the left poadjoints, ie α : f → g in
PointsS iff α : f ∗ → g∗ is a natural transformation.

The morphism sets in this category can be partially ordered by taking
α ≤ β : f ∗ → g∗ iff

αB ≤ βB

in the poset MorPos(f
∗(B), g∗(B)) for every right S-poset BS.

Let f : Pos → PosS be a point of PosS. In this case we have a special
poset A = f ∗(SS), which can be turned into a left S-poset SA by defining

s · a = f ∗(s)(a) (3)

for all a ∈ A and s ∈ S. Since f ∗(s) : f ∗(SS) → f ∗(SS) must be a poset
morphism and f ∗ is a pofunctor, multiplication is indeed associative and
order-preserving.

Lemma 3.8 There is a natural isomorphism of functors

−⊗S A ∼= f ∗ : PosS → Pos,

where f is a point of PosS and SA = Sf
∗(SS) is defined as above.

Proof. Take a right S-poset BS and define a mapping αB : B ⊗S A →
f ∗(B) by

αB(b⊗ a) = f ∗(b)(a).

Define u : B×A→ MorPosS
(SS, BS)×A as u(b, a) = (b, a). The mapping u is

clearly order-preserving. Since f ∗ : PosS → Pos is a pofunctor, the mapping
f ∗(−)(−) ◦ u : B × A→ f ∗(B) is order-preserving in both arguments. Note
that by Lemma 1.1 b · s = b ◦ s : SS → SS → BS for all s ∈ S, b ∈ B.
Additionally,

f ∗(b · s)(a) = f ∗(b · s)(a) = f ∗(b ◦ s)(a) = f ∗(b)(f ∗(s)(a)) = f ∗(b)(s · a).

Thus f ∗(−)(−) ◦ u is balanced and by Lemma 3.4 αB is a well-defined poset
morphism.
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If BS = SS, then

αS(s⊗ a) = f ∗(s)(a) = s · a

which means that αS : S ⊗S A → f ∗(S) is the left-sided version of the
isomorphism from Lemma 3.7 restricted to posets. Thus

S ⊗S A ∼= f ∗(SS)

in Pos.
Every right S-poset BS is a universal pococone of free S-posets SS with

identity morphisms (see Lemma 3.2). Since left poadjoints preserve universal
pococones and both the tensor product − ⊗S A and f ∗ are left poadjoints,
(B ⊗S A, (b ⊗S A)b∈B) is the universal pococone of objects S ⊗S A (with
respect to (−⊗S A) ◦B, and B from Lemma 3.2) and (f ∗(B), (f ∗(b))b∈B) is
the universal pococone of objects f ∗(S) (with respect to f ∗ ◦B).

Observe that the diagram for BS as a cocone consists of morphisms s :
SS → SS. For a ∈ A = f ∗(SS) clearly

f ∗(s)(a) = s · a = αS(s⊗ a) = αS((s⊗A)(1⊗ a)) = (αS ◦ (s⊗S A))(α−1
S (a))

and the functors (−⊗S A)◦F and f ∗ ◦F : El(B) → Pos are isomorphic with
natural isomorphisms αb = αS for all b ∈ B. Here, the functor F is also from
Lemma 3.2.

Note that

(((−⊗S A) ◦B)(b < c))1 = ((f ∗ ◦B)(b < c))1 = B(b < c)1.

Also, if b < c in B and s⊗ a ∈ S ⊗S A, then

f ∗(B(b < c)2) ◦ αB(b<c)1(s⊗ a) = (f ∗(1S) ◦ αS)(s⊗ a) = f ∗(1S)(s · a)
= s · a = αS(s⊗ a) = (αS ◦ (1S ⊗S A))(s⊗ a)

= (αS ◦ (B(b < c)2 ⊗S A))(s⊗ a) = (αb ◦ ((−⊗S A)(B(b < c)2)))(s⊗ a)

and

f ∗(B(b < c)3) ◦ αB(b<c)1(s⊗ a) = (f ∗(1S) ◦ αS)(s⊗ a) = f ∗(1S)(s · a)
= s · a = αS(s⊗ a) = (αS ◦ (1S ⊗S A))(s⊗ a)

= (αS ◦ (B(b < c)3 ⊗S A))(s⊗ a) = (αc ◦ ((−⊗S A)(B(b < c)3)))(s⊗ a).

So
f ∗(B(b < c)2) ◦ αB(b<c)1 = αb ◦ (−⊗S A)(B(b < c)2)
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and
f ∗(B(b < c)3) ◦ αB(b<c)1 = αc ◦ (−⊗S A)(B(b < c)3).

By Lemma 3.1 there is a unique morphism u : B ⊗S A→ f ∗(B) such that

u ◦ (b⊗S A) = f ∗(b) ◦ αb

for all b ∈ B. But

(αB ◦ (b⊗S A))(s⊗ a) = αB((b · s)⊗ a) = f ∗(b · s)(a) = f ∗(b ◦ s)(a)

= (f ∗(b) ◦ f ∗(s))(a) = f ∗(b)(f ∗(s)(a))

= f ∗(b)(s · a) = (f ∗(b) ◦ αb)(s⊗ a)

for all s⊗ a ∈ S ⊗S A. So αB must be this unique morphism, and according
to Lemma 3.1, it is also an isomorphism.

Finally, we check the naturality of these isomorphisms. Take a right S-
poset morphism h : BS → B′

S. Note that h(b) = h ◦ b for all b ∈ B. Then

(αB′ ◦ (h⊗S A))(b⊗ a) = αB′(h(b)⊗ a) = f ∗(h(b))(a)

= f ∗(h ◦ b)(a) = f ∗(h)(f ∗(b)(a))

= (f ∗(h) ◦ αB)(b⊗ a)

for b ∈ B, a ∈ A. So these isomorphisms are natural in B.

Definition 3.7 We call an S-poset SA flat when the induced tensor multip-
lication functor −⊗S A : PosS → Pos is left poexact.

Definition 3.8 We define the category of flat left S-posets SFlat to be the
full subcategory of SPos of flat left S-posets.

Theorem 3.1 There is an equivalence of categories

SFlat PointsSSFlat PointsS

τ //oo
ρ

where τ and ρ are order-preserving functors.

Proof. We define

τ(A)∗ = −⊗S A, τ(A)∗ = MorPos(A,−),

when A ∈ Ob(SFlat) and
ρ(f) = SA
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for f ∈ Ob(PointsS) and SA is defined with equation (3). Since AS is flat,
τ(A) is a point of PosS by Proposition 3.2. Conversely, for a point f , the
functor f ∗ is left poexact. From Lemma 3.8

−⊗S A ∼= f ∗

and if f ∗ is left poexact, the isomorphic functor is as well.
Clearly if we have a left S-poset morphism f : SA → SA

′, then τ(f) :
−⊗S A→ −⊗S A

′ should be defined with

τ(f)B = B ⊗S f

for all right S-posets BS. These components are morphisms in Pos by the left-
sided version of Lemma 3.5. When h : B → B′ is a right S-poset morphism,
we get

(τ(A′)∗(h) ◦ τ(f)B)(b⊗ a) = (h⊗S A
′)(b⊗ f(a)) = h(b)⊗ f(a)

= τ(f)B′(h(b)⊗ a)

= (τ(f)B′ ◦ τ(A)∗(h))(b⊗ a)

for b ∈ B, a ∈ A. So τ(f) is indeed a natural transformation.

B′ ⊗S A B′ ⊗S A
′

τ(f)B′
//

B ⊗S A

B′ ⊗S A

τ(A)∗(h)=h⊗SA

��

B ⊗S A B ⊗S A
′τ(f)B // B ⊗S A
′

B′ ⊗S A
′

h⊗SA′=τ(A′)∗(h)

��

Due to the left-sided version of Lemma 3.5 we have

(τ(g) ◦ τ(f))B = τ(g)B ◦ τ(f)B = (B ⊗S g) ◦ (B ⊗S f)

= B ⊗S (g ◦ f) = τ(g ◦ f)B

and
τ(1A)B = B ⊗S 1A = 1B⊗SA

for all f : SA → SA
′, g : SA

′ → SA
′′, BS ∈ Ob(PosS). Therefore τ(g ◦ f) =

τ(g) ◦ τ(f), τ(1A) = 1−⊗SA and τ is a functor.
Even better, for f, g : SA→ SA

′ with f ≤ g in SFlat we have

τ(f)B = B ⊗S f ≤ B ⊗S g = τ(g)B
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for all right S-posets BS, again by the left-sided version of Lemma 3.5. So the
natural transformations have the same order objectwise and τ is an order-
preserving functor.

For all morphisms of points α : f → g, ie natural transformations α :
f ∗ → g∗, we define a mapping ρ(α) : f ∗(SS) → g∗(SS) as

ρ(α) = αS.

Clearly αS is order-preserving. As α must be natural, then

ρ(α)(s · a) = ρ(α)(f ∗(s(a))) = (αS ◦ f ∗(s))(a) = (g∗(s) ◦ αS)(a) = s · ρ(α)(a)

for a ∈ f ∗(SS), s ∈ S.

f ∗(SS) g∗(SS)αS

//

f ∗(SS)

f ∗(SS)

f∗(s)

��

f ∗(SS) g∗(SS)
αS // g∗(SS)

g∗(SS)

g∗(s)

��

So ρ(α) is indeed a left S-poset morphism. Moreover, for natural transfor-
mations α : f ∗ → g∗ and β : g∗ → h∗ it holds that

ρ(β ◦ α) = (β ◦ α)S = βS ◦ αS = ρ(β) ◦ ρ(α)

and
ρ(1f∗) = (1f∗)S = 1f∗(SS).

So ρ is also a functor.
Take two natural transformations α, β : f ∗ → g∗ with αB ≤ βB for all

right S-posets B. Then

ρ(α)(a) = αS(a) ≤ βS(a) = ρ(β)(a)

for a ∈ A = f ∗(SS). So ρ(α) ≤ ρ(β) and ρ turns out to be order-preserving
as well.

We want to find natural isomorphisms

ρ ◦ τ ∼= 1
SFlat.

For every flat left S-poset SA we have

ρ(τ(A)) = S ⊗S A ∼= A
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in SFlat by the left-sided version of Lemma 3.6. These isomorphisms are
natural in A, the verification of this is done in the same way as the right-
sided version in Lemma 3.7.

We also want to find natural isomorphisms

τ ◦ ρ ∼= 1PointsS
.

For a pogeometric morphism f : Pos → PosS there are natural isomorphisms

τ(ρ(f))∗ = −⊗S ρ(f) = −⊗S f
∗(SS) = −⊗S A ∼= f ∗

by Lemma 3.8. Both of these also have their right poadjoints (unique, since
these are right adjoints). We shall denote these natural isomorphisms by
αf : −⊗S f

∗(SS) → f ∗, with

αf
B(b⊗ a) = f ∗(b(a))

for all b ∈ B, a ∈ f ∗(SS) as in Lemma 3.8. Now take a natural transformation
β : f ∗ → g∗, whence

g∗(h) ◦ βB = βB′ ◦ f ∗(h)
for all right S-poset morphisms h : B → B′. From the above αf are morp-
hisms in PointsS. Additionally,

(αg ◦ (τ(ρ(β))))B(b⊗ a) = (αg
B ◦ (B ⊗S ρ(β)))(b⊗ a)

= αg
B((B ⊗S βS)(b⊗ a))

= αg
B(b⊗ βS(a)) = g∗(b)(βS(a))

= βB(f ∗(b)(a)) = (β ◦ αf )B(b⊗ a)

for a right S-poset BS, a ∈ f ∗(SS), b ∈ B.

τ(ρ(g))∗ g∗
αg

//

τ(ρ(f))∗

τ(ρ(g))∗

τ(ρ(β))

��

τ(ρ(f))∗ f ∗
αf

// f ∗

g∗

β

��

Thus the natural isomorphisms (morphisms between points) αf are na-
tural in f .

In conclusion, we have shown that

ρ ◦ τ ∼= 1
SFlat

and
τ ◦ ρ ∼= 1PointsS

.

So τ (or ρ) is indeed an equivalence of categories. It is even an order equiva-
lence.
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Alamobjektide eristamine ja geomeetrilised

morfismid osaliselt järjestatud polügoonides

Lauri Tart

Resümee

Käesolevas magistritöös vaadeldakse osaliselt järjestatud polügoonide ka-
tegooria toposeteoreetilisi omadusi. Selline lähenemine on motiveeritud sel-
lest, et järjestatud polügoonid on küllaltki sarnased polügoonidega, ja polü-
goonide kategooria on topos (isegi Grothendiecki topos).

Töö koosneb kahest peamisest osast. Esimeses osas uuritakse univer-
saalseid konstruktsioone osaliselt järjestatud polügoonidel. Osutub, et tegu
on täieliku, kotäieliku ja eksponentsiaalobjektidega kategooriaga. Seevastu
alamobjektide eristajaid üldjuhul selles kategoorias ei ole. Teatud erijuhul
alamobjektide eristajad siiski eksisteerivad, kuid kahjuks mitte tuntumate
monomorfismide klasside puhul. Seega ei ole osaliselt järjestatud polügoonide
kategooria topos.

Töö teises osas üldistatakse topostevahelise geomeetrilise morfismi mõis-
tet. Selle tulemusena saadakse nn pogeomeetriline morfism osaliselt järjes-
tatud polügoonide kategooriate vahel. Lisaks vaadeldakse tensorkorrutisi ja
viimaste abil saadavaid pogeomeetrilisi morfisme. Viimase ja olulisima tu-
lemusena defineeritakse punktid osaliselt järjestatud polügoonide kategooria
jaoks ja leitakse, et need on ekvivalentsed lamedate (universaalseid pokoo-
nuseid säilitavate) osaliselt järjestatud polügoonidega.
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