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Abstract

The normal menstrual cycle requires a delicate interplay between the hypothalamus, pituitary and ovary. Therefore, its
length is an important indicator of female reproductive health. Menstrual cycle length has been shown to be partially
controlled by genetic factors, especially in the follicle-stimulating hormone beta-subunit (FSHB) locus. A genome-wide
association study meta-analysis of menstrual cycle length in 44 871 women of European ancestry confirmed the previously
observed association with the FSHB locus and identified four additional novel signals in, or near, the GNRH1, PGR, NR5A2 and
INS-IGF2 genes. These findings not only confirm the role of the hypothalamic-pituitary-gonadal axis in the genetic
regulation of menstrual cycle length but also highlight potential novel local regulatory mechanisms, such as those mediated

by IGF2.

Introduction

A menstrual cycle is crucial for human reproduction as it is
required for oocyte selection, maturation and ovulation in
preparation for its fertilization and subsequent pregnancy (1).
The median menstrual cycle length is 27-30 days, depending on
age (2) and can be divided into two distinct ovarian phases—
the follicular and luteal phases separated by ovulation. During
the follicular phase the emerging follicle secretes estrogen that
causes proliferation of the endometrium, the uterine lining, and
in the subsequent luteal phase progesterone secretion from
the corpus luteum of the ruptured follicle causes endometrium
to cease proliferating and change both phenotypically and
functionally in preparation for implantation of the embryo
(3). The menstrual cycle and its length are under the control
of reproductive hormones secreted via the integration of the
hypothalamic-pituitary—gonadal axis (HPG axis), where the
gonadotropin-releasing hormone (GnRH) secreted from the
hypothalamus stimulates the release of the gonadotropins,
follicle-stimulating hormone (FSH) and luteinizing hormone
(LH), from the anterior pituitary (3,4). FSH and LH in turn
stimulate follicular growth and secretion of estrogens to prepare
for ovulation and progesterone from ovarian follicular cells (3,4).
The length of menstrual cycle reflects fertility status and has
been associated with a range of reproductive traits, such as
time to pregnancy, risk of spontaneous abortion and success
rates in assisted reproduction (5-7). Moreover, shorter cycles
have been associated with an increased risk of a gynecological
condition known as endometriosis (8). Although a small twin
study suggested no significant heritability for menstrual cycle
length (9), it was recently demonstrated that a genetic variant in
the promoter of follicle-stimulating hormone beta subunit gene
(FSHB) is associated with longer menstrual cycles, nulliparity
and lower endometriosis risk (10). However, only variants in, or
near, the FSHB gene reached genome-wide significance among
9534 women (10), leaving the possibility that additional loci
regulating menstrual cycle length could be revealed in larger
studies.

Here, we present the results of a genome-wide association
study (GWAS) meta-analysis of 44 871 women of European
ancestry. We confirm the previous association with the FSHB
locus (10) and also identify four additional novel association
signals, contributing to an increase in our knowledge on the
underlying genetics of menstrual cycle length control along
the hypothalamus-pituitary-ovarian axis and also providing a
genetic basis for the observed epidemiological correlations with
gynecological pathologies.

Results

Genome-wide association signals for menstrual cycle
length

A total of five loci reached genome-wide significance (linear
regression, P < 5 x 10°%) for association with menstrual cycle
length in the meta-analysis, including data from two cohorts
and a total of 44 871 women (Table 1, Fig. 1 and Supplementary
Material, Fig. 1). The strongest signal [rs11031006, Pyeta = 3.6 x
1073, Bykes = —0.16 (s.e. = 0.01)] is in strong LD (r? = 0.80) with the
previously reported variant in FSHB promoter (rs10835638), while
the remaining four loci are signals previously not reported. The
strongest novel association [rs6670899, Pmeta = 6.6 x 1023, Bykpp =
—0.06 (s.e. = 0.01)] is 105 kb upstream of the NR5A2 gene, which
encodes a DNA-binding zinc finger transcription factor that is
implicated in regulation of steroidogenesis during granulosa cell
differentiation (11). This same region has previously been asso-
ciated with age at menarche (12) [lead signal rs6427782 A-allele
(r? = 0.45 with rs6670899) was shown to increase age at menarche
(12) and increases menstrual cycle length in our analysis, Pmeta
= 4.7 x 10°]. The second novel signal [rs13261573, Ppeta = 1.2
x 107, Bugps = —0.07 (s.e. = 0.01)] is in the second intron of
the DOCK5 gene, but in strong LD (r? = 0.90) with rs6185 (Pmeta
= 2.0 x 10'%), a missense variant in the gonadotropin-releasing
hormone 1 gene (GNRH1). GNRH1 encodes the precursor for
a peptide in the gonadotropin-releasing hormone family that
regulates the release of FSH and LH from the anterior pituitary
(3,4). We also observed two additional signals on chromosome
11; the first [lead signal rs471811, Preta = 3.0 x 108, Buxsp = —0.03
(s.e. = 0.01)] lies 42 kb upstream of progesterone receptor gene
(PGR) and 14 kb downstream of a PGR antisense RNA (PGR-AS1).
The second novel signal on chromosome 11 [rs11042596, Preta =
4.5 x 108, Bukep = 0.04 (s.e. = 0.01)], is located 31 kb downstream
the INS-IGF2 and IGF2 genes.

SNP-based heritability of menstrual cycle length

We evaluated single nucleotide polymorphism (SNP)-based her-
itability (phenotypic variance explained by SNPs in the GWAS
meta-analysis) using LD-score regression (LDSC) (13). The overall
SNP-based heritability of menstrual cycle length was estimated
at 6.1% (s.e. = 1.2). After filtering out all variants within +
500 kb of the lead SNPs, the heritability estimate for men-
strual cycle length decreased to 5.4% (s.e. = 1.1), indicating that
common SNPs explain a small but significant part of menstrual
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Table 1. Genetic variants associated with menstrual cycle length

Region Nearest SNP Alleles, other UKBB EGCUT Meta-analysis
gene(s) allele/effect  Effect (SDof  P-value Effect (SDof P P P heterogeneity
allele (EAF)  the binned the binned
menstrual menstrual
cycle length) cycle length)
11:30226528  FSHB 1s11031006  A/G (0.86) ~0.16 (0.01)  1.1x 1073 -0.06(0.02) 6.6x10™* 36 x 3.7 x 1076
10736
1:199891438  NRSA2 156670899  A/C (0.57) —0.05(0.01) 1.1x107 —004(0.01) 47x10"* 66 x 0.43
10~ 13
8:25248615 DOCK5/  rs13261573  A/G (0.75) —0.07 (0.02) 1.7 x 10711 -0.02 (0.01) 7.0 x 1072 1.2 x 0.02
GNRH1 10-10
11:101044203 PGR/ rs471811 C/T (0.31) —0.03(0.01) 48x1075  —0.06(0.01) 63x1075 3.0x 0.33
PGR-AS1 108
11:2118860 IGF2/ rs11042596  G/T (0.34) 0.04 (0.01) 1.1x 1077 0.02 (0.01) 3.5 x 1072 4.5 x 0.21
INS-IGF2 108

SD - standard deviation.

cycle length variability, and moreover, the majority of the SNP-
heritability still remains to be discovered.

Gene-based associations of menstrual cycle length

A Multi-marker Analysis of GenoMic Annotation (MAGMA) (14)
genome-wide gene association analysis of our GWAS meta-
analysis summary statistics highlighted 10 genes that passed
the suggested threshold for significance (P = 2.7 x 10, Bonfer-
roni correction for association testing of 18 297 protein coding
genes): ARL14EP, SMAD3, MPPED2, RHBDD1, IGF2, COL4A4, PGR,
INS-IGF2, FSHB and ARHGEF3 (Supplementary Material, Table 1).
Six of these genes (ARL14EP/FSHB/MPPED2, IGF2, INS-IGF2 and
PGR) overlap with three loci identified in the single-marker anal-
ysis, while the remaining four novel gene signals did not har-
bor genome-wide significant SNPs (lowest P-values for SNPs in
SMAD3, RHBDD1, COL4A4 and ARHGEF3 were 1511856909, P = 6.2
x 10°8; rs4673173, P = 1.0 x 107; rs12467261, P = 1.3 x 107; and
1573086331, P = 1.9 x 10, respectively).

Genetic associations between menstrual cycle length
and other traits

To evaluate the potential shared genetic architecture between
menstrual cycle length and other traits, we performed a look-
up in the GWAS catalogue (https://www.ebi.ac.uk/gwas/; Sup-
plementary Material, Table 2) for menstrual cycle length asso-
ciated variants and candidate SNPs identified by the Functional
Mapping and Annotation of Genome-Wide Association Studies
(FUMA) tool. Several significant associations were found for the
FSHB locus, including gonadotropin (FSH and LH) levels, age
at menarche and menopause, spontaneous dizygotic twinning,
endometriosis and polycystic ovary syndrome (PCOS) (P <= 3 x
10°%). Additionally, the NR5A2 locus was associated with menar-
che timing (P = 5 x 10°®) and showed some evidence for associ-
ation with age at voice drop (P = 6 x 10”7) and pancreatic cancer
(P=1 x 10'11).

Next, to determine whether other phenotypes were associ-
ated with loci regulating menstrual cycle length, we conducted
a PheWAS using the sentinel markers for each locus (rs11031006,
16670899, rs13261573, rs471811 and rs11042596) and the UK
Biobank (UKBB) phenotypes present in the Oxford Brain Imaging

Genetics (BIG) browser (http://big.stats.ox.ac.uk/). Associations
with a P < 2.1 x 10 (corresponding to a Bonferroni-corrected
threshold of 0.05/2419) are shown in Supplementary Material,
Table 3. Again, the FSHB locus (rs11031006) showed the largest
number of associations, including three genome-wide signifi-
cant associations (P < 5 x 10%) with ‘Years since last cervical
smear’, ‘Bilateral oophorectomy (both ovaries removed)’, ‘Diag-
noses - main ICD10: N92 Excessive, frequent and irregular men-
struation’ in UKBB. Nominally significant associations were also
observed for ‘Age when periods started (menarche)’ (P = 1.7 x
107), ‘Non-cancer illness code, self-reported: endometriosis’ (P =
3.8 x 107), ‘Part of a multiple birth’ (P = 4.6 x 107), supporting the
findings from the GWAS catalogue look-up. In this comparison,
the allele associated with longer cycles decreased the risk of
oophorectomy, menstrual cycle disturbances and endometriosis
and was associated with later menarche. Similarly, rs6670899
(NR5A2) menstrual cycle-lengthening allele was associated with
later menarche timing (P = 3.2 x 10°8).

Since the menstrual cycle and its disturbances are an impor-
tant part of PCOS symptoms, we additionally performed a look-
up of the reported PCOS susceptibility loci (15-19) and observed
nominally significant (P < 0.05) associations with five loci (FSHB,
FSHR, RABSB/SUOX, IRF1/RAD50 and KRR1) (Supplementary
Material, Table 4).

Finally, we carried out a genetic correlation analysis with
the LDSC method implemented in LD-Hub (20). Comparison
with cardiometabolic, anthropometric, autoimmune, hormone,
cancer and reproductive traits [for example lowest P-values were
observed for age of first birth (r; = 0.12,s.e. = 0.07, P = 0.055) and
age at menopause (rg = 0.15, s.e. = 0.08, P = 0.058)] revealed no
significant correlations (Supplementary Material, Table 5).

Functional annotation of associated variants and
candidate gene mapping

Functional mapping and annotation of genetic associations for
menstrual cycle length was carried out using FUMA (21), and a
total of 600 candidate SNPs (defined as being in LD with the lead
SNPs with a r? >= 0.6) were identified. The majority of these
(~90%; Supplementary Material, Fig. 2A and Table 6) were located
in intergenic or intronic regions, and >75% of the variants over-
lapped chromatin state annotations (Supplementary Material,
Fig. 2C and Table 6), suggesting that they affect gene regulation.
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To identify the potential effector transcripts for the five sig-
nificant loci for menstrual cycle length, genes within the loci
were prioritized if there was evidence for both expression quan-
titative trait loci (eQTL) and chromatin interaction (21).

In the FSHB locus, a total of 2 lead SNPs (rs11031006 and
rs11032051), 8 independent (> < 0.6) significant SNPs and
359 candidate SNPs were identified (Supplementary Material,
Table 6). Numerous significant eQTL associations (FDR < 0.05)
were identified in different data sets (Supplementary Material,
Table 7), but genes that were highlighted by both eQTL and
chromatin interaction mapping included FSHB, ARLI4EP and
MPPED2 (Supplementary Material, Fig. 3).

The INS-IGF2 locus (lead signal rs11042596) included a total
of 34 candidate SNPs, with the lowest Regulome DataBase (RDB)
score (1d—likely to affect binding and linked to expression of a
gene target) for rs6578986. eQTL mapping and chromatin inter-
actions highlighted IGF2 and INS-IGF2 as likely effector tran-
scripts at this locus (Supplementary Material, Table 7 and Fig.
3).

The PGR locus (lead signal rs471811) included a total of 61
candidate SNPs, and ANGPTL5 was prioritized by both eQTL
[thyroid in GTEx_v7 (22); FDR < 0.05] and chromatin interaction
analysis.

In the NR5A2 locus on chromosome 1 (lead variant rs6670899),
4 independent significant SNPs and 133 candidate SNPs were
identified (Supplementary Material, Table 6), 6 of which have evi-
dence for likely affecting regulatory element binding (RDB score
2; Supplementary Material, Table 6). Two genes were prioritized
based on eQTL data [ZNF281 in dorsolateral prefrontal cortex (23)
and C1orf106 in testis (GTEx_v7 (22); FDR < 0.05), while ZNF281
was also additionally mapped using chromatin interaction data].

Finally, in the DOCK5-GNRH1 locus on chromosome 8 (lead
variant rs132661573), 13 potential candidate SNPs were identi-
fied (Supplementary Material, Table 6), including rs6185, a mis-
sense variant in the GNRH1 gene. Seven of the 13 candidates are
also eQTLs for GNRH1 in whole blood (GTEx_v7 (22), FDR < 0.05).

Tissue specificity and gene set enrichment analysis

Using the list of genes that were highlighted either in gene-based
analysis and/or had both eQTL and chromatin interaction data
supporting their candidacy, we performed a tissue specificity
and pathway enrichment analysis with the GENE2FUNC option
implemented in FUMA (21). Enrichment test of differentially
expressed genes (DEGs) across GTEx_v7 30 tissue types (see
Materials and methods) showed significantly higher expression
of prioritized genes in female reproductive tissues: uterus
(Bonferroni corrected P-value; Pgon, = 0.047), cervix uteri (Ppon
= 0.048) and ovary (Pgon = 0.050; Supplementary Material,
Fig. 4 and Table 8). Prioritized genes were also overrepresented in
hormone activity-related pathways [for example, GO hormone
activity FDR = 7.6 x 107, KEGG GnRH signaling pathway FDR =
1.5 x 103, WikiPathways (24) ovarian infertility genes FDR = 7.5
x 10” (Supplementary Material, Table 9)]. Tissue and cell-type
enrichment analysis with DEPICT (25) revealed no significant
enrichments.

Using GREAT (26) we found that genes within the five
significant menstrual cycle length GWAS loci are enriched for
uterus and circulating hormone level-related mouse phenotypes
(Supplementary Material, Table 10) and further highlighted an
enrichment at these loci for ‘genes involved in hormone ligand-
binding receptors’ (Prpr = 1.3 x 10°%; Supplementary Material,
Table 11). Reviewing the MGI mouse phenotype database (27)
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showed that mouse knockouts of Fshb, Nr5a2, Gnrhl and Pgr all
present with female reproductive phenotypes (Supplementary
Material, Table 12), including altered estrous cycle length or
abnormal ovulation for Fshb, Gnrhl and Pgr (progesterone
receptor) (Supplementary Material, Table 13). Nr5a2 (nuclear
receptor subfamily 5, group A, member 2) is linked to reduced
fertility, primarily by reduced circulating progesterone levels in
Nr5a2+/- female mice (28).

The presence of female reproductive phenotypes in mice
with altered expression of Fshb, Nr5a2, Gnrhl and Pgr provides
evidence that these genes may be causal and could explain, at
least in part, the mediating mechanisms underlying four of the
five significant loci associated with menstrual cycle length. Fur-
ther experimental validation will be necessary to fully unravel
the mechanism of these non-coding associations.

Discussion

This large-scale GWAS meta-analysis reveals several novel
insights into the genetic control of menstrual cycle length and
provides evidence of the genetic underpinnings of the epidemi-
ological associations between menstrual cycle length and other
traits. Understanding the genetics regulating normal menstrual
cycle variation is vital for figuring out the mechanisms leading to
different menstrual cycle-related pathologies. Moreover, genetic
control of menstrual cycle and folliculogenesis is of importance
for in vitro fertilization treatment, where markers allowing for
individualization of treatment protocols are still extensively
sought (29).

While some of the results confirm what is already known
about the biology of the menstrual cycle (such as the regula-
tory role of GnRH and FSH in the HPG axis), others point to
potentially novel modulators and the role of local control of
folliculogenesis. For example, IGF2 has been proposed to be an
important local regulator of folliculogenesis (30) as it stimulates
estrogen production (31) and modulates the action of FSH and
LH, whereas IGF2 expression in turn is regulated by FSH (32).
However, to our knowledge no direct link between genetic vari-
ation in the INS-IGF2 region and menstrual cycle length had
been previously demonstrated. Similarly, while it is known that
progesterone is the dominant hormone in the second half of
the menstrual cycle, the evidence linking genetic variation in
the progesterone signaling pathway with menstrual cycle length
was scarce (33,34). SMAD3, highlighted in gene-based analysis,
is shown to modulate the proliferation of follicular granulosa
cells and also ovarian steroidogenesis (35) and is an essential
regulator of FSH signaling in the mouse (36). Recently, genetic
variation in SMAD3 was associated with dizygotic twinning (37).
However, the obvious candidacy and support for one gene in
most of these loci does not exclude the possibility that there
might be additional genes and/or functional sequence in these
loci that contribute to menstrual cycle length.

Analysis of pleiotropy between menstrual cycle length-
associated variants and GWAS signals of other traits confirmed
the central role of the FSHB locus, which is involved in regulating
the reproductive lifespan from menarche to menopause and
is also associated with gynecological diseases such as PCOS
and endometriosis and with menstrual cycle disturbances.
Additionally, we found nominally significant associations with
some of the reported PCOS susceptibility loci (15-19), which
might help understand how these loci are involved in PCOS
pathogenesis. However, it should be emphasized that women
with self-reported irregular menstrual cycles (a hallmark
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characteristic of PCOS) were excluded from the analyses,
potentially limiting the overlap.

While there is epidemiological evidence that shorter men-
strual cycles are associated with earlier age at menopause (38),
we did not observe a significant overlap on a genetic level,
as these traits did not show a significant genetic correlation.
At the same time, the FSHB locus is significantly associated
with both menstrual cycle length and age at menopause (10,39),
indicating that this locus is probably largely driving the observed
phenotypic correlation between menstrual cycle length and age
at menopause in the literature.

Our study has a number of limitations. First, only self-
reported data were available for menstrual cycle length, which
might be difficult to accurately recall. Second, the UKBB includes
women >40 years, some of whom are approaching menopause
and might therefore have more irregular and shorter cycles
(40), characteristic to the perimenopause. Therefore, a certain
effect of the perimenopause on the effect sizes observed in
UKBB cannot be ruled out, especially for the FSHB locus, where
we observed significant heterogeneity in the effect estimates
for the two cohorts. Also, participants in the UKBB were asked
about their current cycle length, whereas EGCUT participants
were asked to report their cycle length at the age of 25-35 years,
where it is believed to be most regular (40). Although it is possible
that the effect estimates from these two cohorts may not be
directly comparable, we observe consistency in effect direction
and magnitude. Third, we cannot rule out the possibility that
some women in our sample have reported their cycle length
during use of hormonal contraceptives or others hormones,
which affect menstrual cycle length. Finally, while our sample
size is the largest to date, it may still be underpowered to detect
further associations.

In conclusion, the largest menstrual cycle length GWAS
meta-analysis to date not only confirms the role of key players
in the HPG axis in the genetic regulation of menstrual cycle
length (GNRH1, FSHB and PGR) but also pinpoints novel genes
with a potential local regulatory role (such as IGF2/INS-IGF2
and NR5A2). Our analysis also highlights the central role of
the FSHB locus in female reproductive health and provides
evidence that the systemic determinants of normal menstrual
cycle length (FSHB) are also associated with menstrual cycle-
related pathologies, such as excessive, frequent and irregular
menstruation. However, the loci identified as significant in our
analysis represent a small fraction of the SNP-heritability for
menstrual cycle length, warranting additional larger meta-
analysis efforts to further uncover the remaining genetic
underpinnings of menstrual cycle length. Additionally, we
believe the current exploratory analysis forms a good basis for
further similar studies with more refined research questions,
such as the role of the identified variants in regulating cycle
length at different stages of a woman'’s life.

Data availability

Summary statistics of single-marker analyses are available
at http://www.geenivaramu.ee/tools/Cycle_length_Laisk et_al_
2018.gz.

Materials and methods
Study cohorts

The current meta-analysis included a total of 44 871 women of
European ancestry from two cohorts. We used the data of the

UKBB, a population-based biobank comprising 502 637 people
(aged 37-73 years) recruited from across the UK during 2006-
2010, who have filled out detailed medical history questionnaires
(41). Menstrual cycle length information was derived from data
field 3710 ‘Length of menstrual cycle’. Participants were asked
‘How many days is your usual menstrual cycle? (The number
of days between each menstrual period)’. This question was
asked of women who had indicated they were not menopausal
and still had menstrual periods in their answer to data field
2724 [‘Have you had your menopause (periods stopped)?’].
The phenotype was transformed according to the default
PHESANT pipeline (42), whereby the integer phenotype is split
into three ordered bins if a single value represents >20% of
all respondents answers. As a result, length of menstrual
cycle was split into <26, 26-28 and >28 days. All answers
corresponding to ‘Irregular cycle’, ‘Do not know’ and ‘Prefer
not to answer’ were coded as NA. As a result, each bin included
14 211 (mean age, 45.7 years; range, 39-69 years), 4949 [45.7 (40—
70) years]|, and 29 227 [45.9 (40-70) years| individuals, respec-
tively. Additionally, individuals were filtered as described in
https://github.com/Nealelab/UK_Biobank_GWAS, leaving 30 245
individuals for final analysis.

We also included data from the Estonian Biobank (EGCUT), a
population-based biobank with 51 515 participants of European
ancestry (43). In EGCUT, women >35 years were asked about
their menstrual cycle length using the question ‘Approximately
how long was your menstrual cycle when you were between 25
and 35 years old?’, with the following choices: ‘I don’t know’,
‘T have not had any menstrual cycles’, ‘lrregular’, ‘20 days or
less’, 21-24 days’, ‘25-29 days’, ‘30-135 days’ or ‘more than
35 days’. To follow a similar structure as with the UKBB data,
the answers were regrouped into three bins: <25, 25-29 and
>30 days, resulting in 2877 [56.3 (33-95) years|, 10 354 [54.3
(33-101) years] and 1395 [50.9 (34-96) years]| individuals in each
bin, respectively.

GWAS and meta-analysis

In the UKBB data set, quality control and association testing were
carried out as described in https://github.com/Nealelab/UK_
Biobank GWAS. In brief, samples were filtered for white British
genetic ancestry, related individuals, individuals with sex
chromosome aneuploidies and individuals who had withdrawn
their participation in the UKBB. The analysis included SNPs
imputed to the Haplotype Reference Consortium (HRC) reference
panel, and additional filters included minor allele frequency
(MAF) > 0.1%, Hardy-Weinberg equilibrium (HWE) P > 1 x
10 and imputation INFO score > 0.8. Association testing was
carried out using linear regression implemented in HAIL (https://
github.com/hail-is/hail), adjusting for the first 10 principal
components (PCs).

In EGCUT, Ilumina Human CoreExome, OmniExpress,
370CNV BeadChip and GSA arrays were used for genotyping.
Quality control included filtering on the basis of sample call
rate (<98%), heterozygosity (> mean + 3SD), genotype and
phenotype sex discordance, cryptic relatedness (IBD > 20%)
and outliers from the European descent based on the MDS plot
in comparison with HapMap reference samples. SNP quality
filtering included call rate (<99%), MAF (<1%) and extreme
deviation from HWE (P < 1 x 107%). Imputation was performed
using SHAPEIT?2 for prephasing, the Estonian-specific reference
panel [PMID: 28401899] and IMPUTE2 [PMID: 19543373] with
default parameters. Association testing was carried out with
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EPACTS (https:/github.com/statgen/EPACTS), adjusting for 10
PCs and age at recruitment.

Before meta-analysis, results from individual cohorts under-
went central quality control with EasyQC (44), checking for allele
frequency against the HRC reference and filtering out variants
with a MAF < 1% and INFO score < 0.4. The results from individ-
ual cohorts were meta-analyzed with METAL (45) using sample-
size weighted P-value-based meta-analysis with genomic con-
trol correction. The meta-analysis included 9 344 826 markers,
and those with a P < 5 x 108 were considered genome-wide
significant.

To convert the effects obtained from the linear regression of
binned trait to a standardized scale, we calculated the mean and
variance of the 0, 1 and 2 binned menstrual cycle length pheno-
type and divided the effect estimates from linear regression with
calculated standard deviation of the binned phenotype.

Gene-based testing

Gene-based genome-wide association analysis was carried out
with MAGMA 1.6 (14) with default settings implemented in
FUMA (21). Briefly, variants were assigned to protein-coding
genes (n = 18 297; Ensembl build 85) if they are located in
the gene body, and the resulting SNP P-values are combined
into a gene test-statistic using the SNP-wise mean model (14).
According to the number of tested genes, the level of genome-
wide significance was set at 0.05/18 297 = 2.7 x 10°.

Heritability estimate

The menstrual cycle length GWAS meta-analysis summary
statistics and LDSC method (13) were used for heritability
estimation. The LD estimates from European ancestry samples
in the 1000 Genomes Project were used as a reference.

Functional mapping

Functional annotation was performed using the FUMA plat-
form designed for prioritization, annotation and interpretation
of GWAS results (21). As the first step, independent significant
SNPs in the GWAS meta-analysis summary statistics were iden-
tified based on their P-values (P < 5 x 10%) and independence
from each other (r? < 0.6 in the 1000G phase 3 reference) within
a 1Mb window. Thereafter, lead SNPs were identified from inde-
pendent significant SNPs, which are independent of each other
(r* < 0.1). SNPs that were in LD with the identified independent
SNPs (r? > 0.6) within a 1Mb window, have a MAF of > 1% and
GWAS meta-analysis P-value of >0.05 were selected as candidate
SNPs and taken forward for further annotation.

FUMA annotates candidate SNPs in genomic risk loci based
on functional consequences on genes Annotate Variation
(ANNOVAR) (46), CADD (a continuous score showing how
deleterious the SNP is to protein structure/function; scores
>12.37 indicate potential pathogenicity) (47) and RegulomeDB
scores (ranging from 1 to 7, where lower score indicates greater
evidence for having regulatory function) (48), 15 chromatin
states from the Roadmap Epigenomics Project (49,50), eQTL
data (GTEx v6 and v7) (22), blood eQTL browser (51), BIOS
QTL browser (52), BRAINEAC (53), MuTHER (54), xQTLServer
(55) and the CommonMind Consortium (23) and 3D chromatin
interactions from HI-C experiments of 21 tissues/cell types
(56), also embedded in the FUMA platform. Next, genes were

Human Molecular Genetics, 2018, Vol. 27, No. 24 | 4329

mapped using positional mapping, which is based on ANNOVAR
annotations and maximum distance between SNPs (default
10 kb) and genes, eQTL mapping and chromatin interaction
mapping. Chromatin interaction mapping was performed with
significant chromatin interactions (defined as FDR < 1 x 10°).
The two ends of significant chromatin interactions were defined
as follows: region 1, a region overlapping with one of the
candidate SNPs; and region 2, another end of the significant
interaction, used to map to genes based on overlap with a
promoter region (250 bp upstream and 50 bp downstream of
the transcription start site).

Genetic associations between menstrual cycle length
and other traits

The Oxford BIG Server (v2.0; http://big.stats.ox.ac.uk/) was used
to query the sentinel variants in each locus against an array of
UKBB phenotypes (Supplementary Material, Table 3). Addition-
ally, during the FUMA functional mapping, sentinel SNPs and
proximal SNPs in tight LD (r? = 0.6) were linked with the GWAS
catalog (https://www.ebi.ac.uk/gwas/). Full results of the GWAS
catalog query are shown in Supplementary Material, Table 2.

We analyzed genome-wide genetic correlation analyses
applying the LDSC method (13) using the LD-Hub resource and 50
selected traits (cardiometabolic, anthropometric, autoimmune,
hormone, reproductive, cancer and aging categories). Full
results of the LDSC genetic correlation analysis are reported
in Supplementary Material, Table 5.

Tissue specificity and gene set enrichment analyses

Tissue and gene set enrichment analyses were carried out with
GENE2FUNC implemented in FUMA (21). Genes that were high-
lighted in MAGMA gene-based analysis or which had functional
annotation support from eQTL and chromatin interaction data
were used as an input (a total of 14 genes). Using all genes
as a background gene set, 2 x 2 enrichment tests were carried
out. The GTEx v7 30 general tissue types data set was used for
tissue specificity analyses. DEG sets are pre-calculated in the
GENE2FUNC by performing two-sided t-test for any one of tissues
against all others. For this, expression values were normalized
(zero-mean) following a log, transformation of expression values
(transcripts per million). Genes with P < 0.05 after Bonferroni
correction and absolute log fold change >0.58 were defined as
DEGs in a given tissue compared to others. In addition to general
DEG, upregulated and downregulated DEG sets were also pre-
calculated by taking sign of t-statistics into account. Our set of
prioritized input genes was tested against each of the DEG sets
using a hypergeometric test, where background genes are genes
that have average expression value > 1 in at least one of the
tissues. Significant enrichment at Bonferroni corrected P < 0.05
are colored in red in Supplementary Material, Figure 4.

Tools used in this paper.
HAIL: https://github.com/hail-is/hail
Oxford BIG browser: http://big.stats.ox.ac.uk/
FUMA: http://fuma.ctglab.nl/
GWAS catalog: https://www.ebi.ac.uk/gwas/
GREAT: http://great.stanford.edu/public/html/
HaploReg: http://archive.broadinstitute.org/mammals/
haploreg/haploreg.php
MGIL: http://www.informatics.jax.org/phenotypes.shtml
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