
UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Ijlal Hussain

Generating Synthetic Event Logs based on
Multi- perspective Business Rules

Master’s Thesis (30 ECTS)

Supervisor(s):

Dr. Fabrizio Maria Maggi

Tartu 2016

2

Generating Synthetic Event Logs based on Multi- perspective Business

Rules

Abstract:

Traditional business modelling is imperative in the sense that activities are provided step by

step, from start to end, leading towards full business process. It has been proved that the

imperative paradigm is most suitable in the context of stable and predictable processes. De-

clarative models are more suitable for variable processes. A declarative model is made of a

set of constrains that cannot be violated during the process execution. In recent years, many

techniques have been developed to discover declarative process model from event logs. To

test these techniques it is sometime necessary to have tools that generate synthetic logs on

which the techniques can be applied. However, majority of the existing tools available in

this field use simulation of an imperative process model to generate synthetic event logs.

These approaches are not suitable for the evaluation of process discovery techniques using

declarative process models. Additionally, there is a need for tools to generate event logs

based on the simulation of multi-perspective declarative models. To close this gap, we de-

veloped a tool for log generation based on multi- perspective Declare models. This model

simulator will base on the translation of Declare constraints into Finite State Automata for

the simulation of declarative processes. The tool will allows users to generate logs with

predefined characteristics (e.g., number and length of the process instances), which is com-

pliant with a given Declare model.

Keywords: Declare, Declarative Process Models, Process Simulation, Log Generation,

Multi-perspective, Integer Linear Programming

CERCS: P170-Computer science, numerical analysis, systems, control

3

Sünteetiliste sündmuste logide genereerimine baseerudes mitmeperspek-

tiivsetele ärireeglitele

Abstrakt:

Traditsiooniline äriprotsesside modelleerimine kasutab imperatiivset lähenemist, kus äri-

protsesse kirjeldatakse üksteise järel sooritatavate tegevuste abil. On näidatud, et imper-

atiivne lähenemine on sobivam lahendus stabiilsete ja ennustatavate protsesside puhul.

Deklaratiivsed mudelid seevastu sobivad muutuvate protsesside kirjeldamiseks.

Deklaratiivne mudel sisaldab endas reeglite hulka mida ei tohi eirata protsessi käitamisel.

Viimastel aastatel on arendatud mitmeid uusi meetodeid deklaratiivsete protsessimudelite

leidmiseks sündmuste logidest. Meetodite testimiseks on vajalik tööriistade olemasolu, mis

genereerivad sünteetilisi sündmuste logisid, mille peal neid meetodeid katsetada. Enamus

olemasolevaid tööriistu kasutavad imperatiivseid protsessimudelid logide genereerimiseks.

Selline lähenemine ei ole sobiv deklaratiivsete protsessimudelite avastamise meetodite tes-

timiseks. Sarnaselt on olemas vajadus tööriistade järgi, mis genereeriks sündmuste logisid

kasutades mitmeperspektiivseid Declare mudeleid. Käesolevas töös esitleme tööriista

mitmeperspektiivsete Declare mudelite genereerimiseks. See töörist tõlgib Declare

piirangud lõpliku olekumasina esitusse,et neid kasutada deklaratiivsete mudelite simu-

leerimiseks. Tööriist võimaldab kasutajatel genereerida logisid eeldefineeritud omadustega

(näiteks protsessi instantside arv ja protsessi pikkus), mis on kooskõlas Declare mudelitega.

Võtmesõnad: Declare, deklaratiivne protsessimudel, protsessi simuleerimine, logide gene-

reerimine, mitmeperspektiive, lineaarne taisarvuline planeerimine

CERCS: P170 - Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimiste-

ooria)

4

Table of Contents

Abbreviations and Acronyms .. 5

1 Introduction ... 6

2 Background ... 7

2.1 Event logs ... 7

2.2 Declare .. 8

2.2.1 Existence Templates ... 10

2.2.2 Relation templates ... 10

2.2.3 Negative Relation Templates .. 11

2.2.4 Choice Templates ... 12

2.2.5 An Example of a Declare Model .. 13

2.3 Declare with Data ... 14

2.4 Finite State Automata ... 14

2.5 Integer Linear Programming .. 15

3 Related Work .. 16

4 Approach ... 18

4.1 Split Activation Constraints ... 18

4.1.1 Alphabet Cleaning .. 20

4.2 Generate MINERFul Input Model .. 21

4.3 Generate Log via MINERFul ... 21

4.4 Restore Keys and add Data ... 22

4.5 Events Log with data .. 22

5 Evaluation ... 23

5.1 Multi-Perspective Process Model ... 23

5.2 Parameter Settings .. 23

5.3 Declare Input Model ... 24

5.4 Generated Event logs .. 26

5.5 Chain Constrains Process Model .. 33

5.6 Performance .. 37

6 Conclusion and Future Work .. 39

Future Work .. 39

7 References ... 41

Appendix ... 44

I. Source Code ... 44

II. License .. 45

5

Abbreviations and Acronyms

API Application Programming Interface

BPM Business Process Management

BPMN Business Process Modelling Notation

BPMNs Business Process Management Systems

CPNs Colored Petri Nets

FSA Finite state Automata

LP Linear Programming

ILP Integer Linear Programming

ML Markup Language

MXML eXtensible Markup Language(MXML)

RE Regular Expression

XES eXtensible Event Steam

XML Extensible Markup Language

6

1 Introduction

Process mining is a rising process management technique allowing for the analysis of busi-

ness processes based on event logs. Recently, XES (eXtensible Event Stream) [1] has been

introduced as an XML based standard of sorting, exchanging and analysing event logs. Ac-

cording to XML based standard, every event in the log represents as an activity (i.e., an

explicit steps in some process)[2] [3] and is linked to a specific case (i.e., an instance of a

process). All events related to a case are grouped and can be run in a single execution of the

process, it is also known as a trace of events. Event logs may store extra information related

to events, for example, the originator or source (i.e., person or device), starting and execu-

tion of the activity, duration of the event, or data elements stored with the event.

Automated discovery of process models from event logs is one of the most developed branch

of process mining. One of the main purpose of process discovery is to extract useful infor-

mation from the event logs. Therefore, testing and evaluation of process discovery tech-

niques and tools require the availability of event logs. Unfortunately, the real log files con-

tain noise [4][5] and are not suitable to controlled experiments where logs needs to have

some given characteristics. Thus, a typical approach implemented for testing process dis-

covery algorithms is based on synthetic logs generated through simulation. Simulation can

create logs with predefined attributes and allow analysts to have more control on the explor-

atory settings to fine tune the developed algorithm.

In recent years, many techniques have been developed to discover declarative process mod-

els from the event logs. In addition, very recent research is focusing on the development of

techniques involving multi-perspective declarative models. Such approach have got the at-

tention of the process mining community and is useful to mine processes working in dy-

namic environments [6][7][8][9] [10][11]. Indeed, differently from procedural process mod-

els that work in a closed world assumption and explicitly specify all the allowed behaviours,

declarative models are open. Therefore, they enjoy flexibility and are more suitable to de-

scribe highly variable behaviours in a compact way. One of the main challenges in the con-

text of testing with declarative models is the capability of supporting multi-perspective spec-

ifications.

There exists several model simulators and log generators for process models

[12][13][14][15][20][24][32][33]. These available tools simulate process model to generate

synthetic logs. The main drawback of these tools are not able to generate log based on multi-

perspective constraints. Therefore, tools for the generation of event logs based on the simu-

lation of multi-perspective declarative models are needed. we will develop a tool for log

generation based on multi- perspective Declare models [16]. The proposed simulator simu-

lates declarative processes by translating Declare constraints into Finite State Automata.

The tool allows user to generate logs with predefined characteristics (e.g., number and

length of the process instances), which is compliant with a given Declare model.

7

2 Background

This section discusses some background elements of proposed research, i.e., the concept of

event logs, Declare-based modelling of processes, and Finite state Automata.

2.1 Event logs

Event logs are the starting point of process mining. Event logs represent or contains infor-

mation of how organizational workflow has been executed in an organization [17]. The in-

formation in event log structured in a text file. Such information can be collected from Busi-

ness Process Management Systems (BPMSs) BPMS which has the ability to store infor-

mation about the workflow execution [18]. Event log consists of collection of traces each

trace is related to a single process instance. If the log consists of 5 traces, then this log

contains data about 5 instances of a business process. Traces are single data entries that can

be collected from the sequences of events carried out to perform an activity. Events or ac-

tivities are another important element of event logs. The standard attributes of events are

shown in Figure 2.1

Attribute Name Description

Activity Name
Name of an element. The purpose of this attributes is to make un-

derstandable generated log.

Lifecycle transition It shows the status of event logs for example Start, Finish etc.,

Timestamp Data and time when an element executed

Originator Originator and any number of additional data

Figure 2.1: Standard attributes of Events

Example of event logs based on standard attributes are shown in Figure 2.2.

Figure 2.2: An example of XES containing Trace and events with standard attributes

The IEEE Task Force on Process Mining recognized XES (eXtensible Event Steam) [1]as

a standard for event logs. This standard defines how the event log can be stored, exchange

8

and analysed. Since BPMS support execution of a process model therefore, logs correspond

to the process model that has been executed by BPMS’s execution engine. XES has its open-

source reference implementation library known as OpenXES

Figure 2.3 The UML 2.0 class diagram for the complete meta-model for the XES standard

(Adapted from [23])

2.2 Declare

In this thesis Process models are defined using Declare Process modelling language. This

modelling language originally introduced by Pesic and van der Aalst in[19]. In Declare

rather than specifying the sequence of activities from the start to end of the process, a set of

constraints are defined for the models. The constraints must be true during the process exe-

cution. Therefore, only valid activities are allowed that comply with the constraints. Con-

straints are applied on the set of activities and they are related to temporal ordering. A De-

clare model consists of at least one constrain and these constrains are based on templates.

Templates are very easy to understand for all type of users because of it graphical interface.

List of standard templates given in Figure 2.4.

9

Figure 2.4: Semantic of Declare Templates [20]

Each constraint in process model corresponds to their respective template. Using these tem-

plates makes process model independent of its formal implementation. This approach helps

analyst to understand the graphical representation without knowing the hidden formulas.

The graphical representation of a Declare process model consists of nodes and arcs and

represents activities and constraints respectively.

Contrasted to procedural approaches, Declare models are more applicable to illustrates busi-

ness processes working in unpredictable environments. Considering all what is not explic-

itly indicated is permitted, few constraints can determine numerous several available behav-

iours. Declare template may be divided into three major groups: existence templates, rela-

tion templates and choice templates.

10

2.2.1 Existence Templates

Existence templates is a set of unary templates. These templates can be apply only a single

activity. However, some of these template can be branched by replacing a parameter with a

disjunction of parameters. Table 2.1 list of Existence Templates

Template Name Description Notation

Init(a) A process instance must start from a

End (a) a will be the last activity of the instance

𝐴𝑡𝑀𝑜𝑠𝑡𝑂𝑛𝑒(a)
a should occur only at most once in pro-

cess

𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛(a) In each process a must occur at least once

𝐴𝑏𝑠𝑒𝑛𝑐𝑒(a) a should not occur in a process

Table 2.1: Existence Templates

2.2.2 Relation templates

The relation templates are used to correlate activities. These templates can be ordered or un-

ordered. Ordered means that events should be in a sequence while in un-ordered templates

events will occur in any order. The relation templates are divided in two groups: i) positive

relation templates and ii) negative relation templates. In negative relation templates the ex-

ecution of one activity restricts the execution of other activity. Table 2.2 list of relation

templates.

Template Description Notation

Response(a, b) If activity a executed, activity b

must execute eventually.

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒(a, b) This template is stronger version

of response template in which re-

11

strict execution of another a be-

tween an execution of a and fol-

lowing b.

𝐶ℎ𝑎𝑖𝑛𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 (a, b) Whenever activity a executed,

activity b must be occurs directly

after it.

𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒(𝑎, 𝑏) Before execution of activity b,

activity a must be executed

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒 (a, b) every instance of activity B has

to be preceded by an instance of

activity a and the activity b can-

not be executed again before the

activity a is also executed

𝐶ℎ𝑎𝑖𝑛𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒 (a, b) Activity a directly precedes each

b.

𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑑𝐸𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑒(a, b) This template specifies that if ac-

tivity a is executed, activity b

also has to be executed at any

time, either in future or past

𝐶𝑜𝐸𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑒 (a, b) If one of the activities a or b is

executed, the other one has to be

executed as well.

Table 2.2: Relation Templates

2.2.3 Negative Relation Templates

As the name suggests these templates are negated version of relation templates. For exam-

ple, while Response(a, b) specifies that If activity a executed, activity b must execute eventu-

ally 𝑁𝑜𝑡Response(a, b) is complete opposite it which means event b cant execute after exe-

cution of event a. Table 2.3 shows the symbols, description and graphical representation of

all negative relation templates.

Template Name Description Notation

𝑁𝑜𝑡𝐶ℎ𝑎𝑖𝑛𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 (a, b)

𝑁𝑜𝑡𝐶ℎ𝑎𝑖𝑛𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒 (a, b)

a and b never follow each other

directly i.e.,

𝑁𝑜𝑡𝐶ℎ𝑎𝑖𝑛𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 (a, b) If event

12

𝑁𝑜𝑡𝐶ℎ𝑎𝑖𝑛𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑜𝑛 (a, b) a executes, then b should never

executed next to a

𝑁𝑜𝑡𝐶ℎ𝑎𝑖𝑛𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒 (a, b) a

should never precede b directly

𝑁𝑜𝑡𝐶ℎ𝑎𝑖𝑛𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑜𝑛 (a, b) is

combination of above templates

𝑁𝑜𝑡𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 (a, b)

𝑁𝑜𝑡𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒(a, b)

𝑁𝑜𝑡𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑜𝑛 (a, b)

After execution of activity a ac-

tivity b cannot be executed

Before execution of activity b

there cannot execute activity a

𝑁𝑜𝑡𝐶𝑜𝐸𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑒 (a, b)

𝑁𝑜𝑡𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑑𝐸𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑒 (a, b)

It is a negative relation template

that if one of the activities a or b

is executed, the other cannot be

executed in the same trace

Table 2.3 Negative Relation templates

2.2.4 Choice Templates

Choice templates are used to specify that one must choose to execute an activity between

the given activities. Choice templates can be specified as 1 of N this means at least one of

the activity should be executed from N activities. For example, the 1 of 3 template specifies

that no less than one of the three activities A, B, and C must be executed, yet each activities

can be executed a variable number of times as long as at least one of these activities occurs

at least once.

The exclusive choice templates are stronger than choice templates. The exclusive choice 1

of N means at least one of the activity should be executed one or more than one times from

N activities, while other activities (N-1) cannot be executed in any way. For example, 1 of

2 exclusive templates determines one of the two activities A and B must be executed, while

the other activity cannot be executed.

Template Name Description Notation

𝐶ℎ𝑜𝑖𝑐𝑒 (a, b)
At least a or b has to executed in

a process

𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒𝐶ℎ𝑜𝑖𝑐𝑒 (a, b)
At least a or b has to executed

but not both

Table 2.4: Choice Templates

13

2.2.5 An Example of a Declare Model

Fracture treatment a case of Declare procedure model is given in Figure 2.5.The process

involves activities like checkup patients, check the risks of X-ray, change position, settle a

cast, uproot cast, perform operation, and determine recovery its behavior is specified by the

following constraints C1 - C7:

C1 Init (checkup the patient)

C2 AlternatePrecedence (check X-ray risk; perform X-ray)

C3 Precedence (perform X-ray; change position)

C4 Precedence (perform X-ray; apply cast)

C5 Response (apply cast; remove cast)

C6 Precedence (perform X- ray; perform operation or surgery)

C7 Response (perform operation; determine recovery)

Figure 2.5 The Declare model for treatment process [20]

As indicated by above constraints, each process occurrence begins with an activity checkup

patient (C1) and medical team can be perform many times at any stage of the treatment.

It is necessary to take X-ray of the patient before applying cast, surgery or repositioning.

During the treatment X-ray can be taken many times, if required. Due to side effects of rays

and health issues it is important to check the risk factors of X-rays i.e., allergies, pregnancy

etc. and whenever perform X-ray is required these risks should be check every time. There-

fore, activity check X-ray risk must be completed before perform X-ray occurs, without any

other execution of perform X-ray in between (C2,). When the activity perform X-ray is

complete the staff can apply change positions, apply cast or perform surgery (C3, C4, C6).

During the treatment it is possible to take X-ray many times (if required) since the activity

check X-ray is completed before performing a new X-ray activity.

The last activity of this process is determine recovery. When activity perform surgery is

completed all patients send to determine recovery, it is also possible to perform recovery for

those patients who did not undergo a surgery. (C5, C7)

14

2.3 Declare with Data

All the Declare constrains we have discussed in the previous sections focuses only the con-

trol-flow. However, Declare models also support data-flow or data based on their condition.

There is no specific format for these condition but, for the sake of simplicity or differentiate

between activity and payload data name we can used special character for example “.”. In

the proposed thesis we have define like “A.X” where A is an activity name and X is the

payload of event A.

Activation Condition is used to activate a constraint event. For example, if activations con-

dition of an event is set as [A.x > 2], then the event A will a constraint only when the value

of payload x is greater than 2.

For example, in the fracture treatment example Response (Applycast; Removecast) with the

data condition [A:CastStatus == 1].This constrains will be activated when Ap-

plycast.CastStatus equal to 1 (1 for true and 0 for false).If this occurs then we need to exe-

cute Removecast

Figure 2.6: Example of Declare Model with data

2.4 Finite State Automata

A deterministic FSA is a labelled transition system A = (𝐴, 𝑆, 𝜕, 𝑠0, 𝑆𝑓) defined over states

S and an alphabet A, having 𝜕 ∶ 𝑆 𝑥 𝐴 → 𝑆 as transition function, i.e., a function that, given

a starting state and ɑ character, returns the target state (if defined). 𝑠0 ∈ S is the initial state

of A, and Sf ⊆ S is the non-empty set of its accepting states (Sf ≠ ɸ). For the sake of sim-

plicity, we will omit the qualification “deterministic" in the remainder of this thesis. A finite

path 𝜋 of length 𝑛 over A is a sequence 𝜋 = (𝜋1, … … . . , 𝜋𝑛) of tuples 𝜋1 = (𝑠𝑖−1, 𝜕𝑖, 𝑠𝑖)

∈ Ϭ for which the following condition hold true: (i) 𝜋1 , the first tuple, is such that 𝑠0 = s0

(it starts from the initial state of A), and (ii) the starting state of 𝜋𝑖 is the largest state of 𝜋𝑖−1

: 𝜋1= ((s0, 𝜕1 , s1)(s1, 𝜕2 , s2),……(sn-1, 𝜕n , sn)) [20].

A finite string of length 𝑛 ≥ 1, i.e., a concatenation t = t1…..tn of characters ti ∈ A is ac-

cepted by A if a path 𝜋 of length n is defined over A and is such that (i) for every I ∈ [1,n],

𝜋i = (𝑠i−1 , 𝑡𝑖 , 𝑠i
) and (ii)], 𝜋n = (𝑠i−1 , 𝑡𝑛, 𝑠n

) is s.t. 𝑠n ∈ 𝑠𝑓

15

FSAs are closed under the product operation x. A product of two FSAs takes the connection

of languages (sets of accepted strings) recognized by every operand. The product of FSAs

is an isomorphism for the combination of RE, i.e., the product of FSAs respectively corre-

sponding to two REs is equivalent to the FSA that derives from the conjunction of the REs.

[20]

2.5 Integer Linear Programming

Linear programming (LP) is an approach for optimization of a linear objective function of

variables x1, x2……, xn, with respect to linear equality or linear inequality constraints, A

LP can be defined as the problem of either maximizing or minimizing a linear function

subject to its constrains[34]. In LP all fractional solutions are not accurate, and we must

consider the optimization problem

Maximize: ∑

𝑛

𝑗=1

𝑐𝑗𝑥𝑗

Subject to: ∑ 𝑎𝑖𝑗𝑥𝑗 = 𝑏𝑖 (𝑖 = 1,2, … … … . , 𝑚)

𝑛

𝑗=1

,

𝑥𝑗 ≥ 0 (𝑗 = 1,2, … … . … . 𝑛)

𝑥𝑗 integer for some or all (𝑗 = 1,2, … … . … . 𝑛)

The goal is to maximize variable values (i.e., profits in case business) by utilizing available

resources. This problem is known as Linear Integer programming problem. When all deci-

sion variables are in integers called pure integer program, and if some, but not all, variables

are not limited to be an integer is known as mixed integer program.

In the proposed thesis, for solving ILP problems, an open-source ILP solver lp_solve [25]

is used. lp_solve is an LP and ILP based solver and it is freely available under the GNU

Lesser General Public License. The lp_solve jar file is used to solve ILP problem and this

jar file can be download from here [26].

16

3 Related Work

The main goal of automated generation of event log is to test process mining algorithms and

business rules in the process models. Recently, a lot of new techniques and methods are

proposed by different researcher. The first log generation tool was proposed by Hee and Liu

and they presented a framework to generate Petri nets representing processes based on dif-

ferent set of user topological rules [14].

Colored Petri Nets (CPNs) Tools [13] [30] is a widely utilized framework to simulate CPNs.

It provides graphical interface to support the modification of CPNs. Moreover, this tool can

simulate and allow users to generate traces. CPN tools generates random events log from

CPN and the log results are produced in (MXML). The approach [30] extended CP-nets to

generate XML event logs that can be mined by process mining tools supporting XML for-

mat.

Burattin and Sperduti [12] proposed an approach for logs generation. The tool allows users

to generate logs from a BPMN model.

SecSy tool [22] has been developed as a standalone application to generate logs. It allows

useful settings for process models and their executions. It creates sets of logs on each run

and includes few deviations from original model. The result can be produced in both MXML

and XES standard. The main goal of this tool is to execute models with security suited

frameworks. It allows to produce special event logs with specific constraints useful for se-

curity analysis of processes.

A newly proposed easy to use tool [32], provides different simulation strategies and config-

uration options covering most standard use cases. The generated event log from this tool

can be immediately utilized in subsequent steps within a process mining analysis workflow.

The approach presented in [32] is developed as a ProM plugin that allows direct generation

of event logs. The plugin uses token-based simulation, which is driven by Petri net models.

In [33] an approach is presented for generation of sets of event logs. This approach is im-

plemented as a ProM plug-in which can be easily used by process miners, researchers, and

developers. It allows not only to generate the simple event logs, but also to generate a set of

event logs, or event logs with noise. All these functions allow to run experiments in the

relatively easy way with different algorithms implemented as a ProM plug-ins. Generated

logs can be exported using standard ProM plug-ins to use them in other applications. Noise

generation is also quite useful during plug-in testing process. All the above methods de-

scribed are suitable for procedural methods

The latest version of CPN Tools [11][30] has graphical support to add Declare constraints

to the transitions of a CPN, to generate hybrid models. These tools allow both the user-

driven and random executions of such models. CPN tools is an extension of a procedural-

based model and approach proposed in this thesis is an inherent tool to manage Declare

models, particularly in generating event logs. For example, in the proposed tool, users can

specify the number of traces that need to be generated as an input parameter.

17

An approach presented [20] for the automated generation of event logs, starting from De-

clare process models. An evaluation of the implemented tool is presented, showing its ef-

fectiveness in both the generation of new logs and the replication of the behavior of existing

ones. The presented evaluation also shows the capability of the tool of generating very large

logs in a reasonably small amount of time, and its integration with state-of-the-art Declare

modeling and discovery tools. In this approach [20], they have proposed a graph-based

structure as a source to create benchmarking data (event logs). These tools are based on

standard Declare and do not allow users to generate logs from multi-perspective declarative

specification.

Laurent Y [24] presented an approach to generate automated event logs of declarative pro-

cess models using Alloy model-finding method. This approach provides valuable help to a

process modeler both in the design and execution-time phases. During design time it pro-

vides an early understanding while being modeled and the execution-phase is primordial to

confirm the execution of traces. This tool is based on Alloy language. User needs to learn

an Alloy command to write these scripts and Alloy to understand the generated log

18

4 Approach

This section describes the proposed approach used for log generation. The approach is de-

picted in Figure 4.1. To illustrate it we use the model shown in Figure 4.2.This model is

used to generate simple event logs. In this figure a Declare model is consist of only four

activities, namely A, B, C and D, therefore, the model has three constraints response(A, B),

response(A, C) and response (A, D).

Figure 4.1: Flow chart of proposed approach

The proposed approach generate all the possible combination of given activation activities.

For example in Table 4, response (A, B) is represent as response (A0, B), response (A, C) is

split as response (A1, C) and response (A, D) as response (A2, D). All generated activation

are verified using ILP with their data condition. Each constraint gets their data on the basis

of result obtained from ILP. Since log generation uses MINERFul [27], therefore, models

are created that complies with Minerful Input model. In the resulting model, the values re-

ceived from ILP is added and finally events logs with data are generated. Next section dis-

cusses the above step in details.

4.1 Split Activation Constraints

The main goal of this step is to split of activations based on validity of the condition and

generate all possible combinations without any duplications. This step takes Declare model

as an input and splits the activation activities without any duplications. In our example (see

Figure 4.2), all possible combinations of proposed model are given below:

alphabet = {A, A0, A1, A2, A0A1, A0A2, A1A2, A0A1A2, B, C, D}

Step 1:
Split Activation

Constraints

• Check activation
Condition

• Spliting Constraints

Step 2:
Alphabet Cleaning

• Check ILP

• Remove Invalid
acvitivies

• Add data ranges

Step 3:
Generate MINERful

Input Model

• Generate Characters

• Assign Characters to
activites

• Create MINERful input
Model

Step 4:
Generate Log from

MINERful

• Generate Log of input
model

Step 5:
Restore Keys and

Add Data

• Restore activity name

• Adddata

Step 6:
Event Logs with

Data

• Generate log
with Data

19

Where

A0 Occurrence of A with C0 true

A1 Occurrence of A with C1 true

A2 Occurrence of A with C2 true

A0A1 Occurrence of A with C0 and C1 true

A0A2 Occurrence of A with C0 and C2 true

A1A2 Occurrence of A with C1 and C2 true

A0A1A2 Occurrence of A with C0, C1 and C2 true

Figure 4.2: Example of Log genretaion appraoch model

The activation of response (A, B) is denoted by A0, for response (A, C) is denoted by A1 and

so on. Similarly, activation A0A1 is activation for both constraints response (A, B) and re-

sponse (A, C)

Thus, we check if the condition can be true together. For example, for activation constraint

A0A1 we check for activation condition for response (A, B) and response (A, C) will be true

together. According to the activation condition of A the payload value must be less than two

and greater than six which is not possible.

20

 Notation Description

Template (A0)

A0 followed by B

Template (A1)

A1 followed by C

Template (A2)

A2 followed by D

Template (A0A1)

A0A1 is followed by

both B and C

Template (A0A2)

A0A2 is followed by

both B and D

Figure 4.3: Spliting concept of templates

4.1.1 Alphabet Cleaning

One of the main contribution of this thesis is the use of ILP. Every activity that contains

activation condition is checked from ILP. ILP is used to remove elements of the alphabet

that correspond to conditions that cannot be true together. The tool developed in this thesis

uses lp_solve [33] to check ILP. Each activation condition translated to ILP equation and

these equations are solved. We get the ILP results for all given activities.

The detailed ILP result from example (in Figure 4.2) is listed below (Table 4.1).

Activity Name Activation Condition ILP Status Data Range

A (A.X < 2)&&(A.X > 6)&&(A.X < 77) Invalid Null

A0 (A.X < 2)&&(A.X < 6)&&(A.X < 77) Valid 7-66

A1 (A.X < 2)&&(A.X < 6)&&(A.X < 77) Valid 2 – Max

21

A2 (A.X < 2)&&(A.X > 6)&&(A.X > 77) Invalid Null

A0A1 (A.X > 2)&&(A.X < 6)&&(A.X < 77) Valid 2-6

A0A2 (A.X > 2)&&(A.X > 6)&&(A.X > 77) Valid Min – 77

A1A2 (A.X < 2)&&(A.X < 6)&&(A.X > 77) Invalid Null

A0A1A2 (A.X > 2)&&(A.X < 6)&&(A.X > 77 Invalid Null

Table 4.1: ILP Status and Data Ranges of activities

All activities with ILP status Invalid will be remove from the model i.e. A, A2, and A0A1A2

etc. Invalid ILP Status means that the given condition will never become true for example

according to the activation condition of A the payload or data value must be less than two

and greater than six which is not possible. If the condition is true then data range is assign

based on ILP result. For example, activity A1 can occur when data value is greater than two.

4.2 Generate MINERFul Input Model

We use Minerful [29] to create logs. Minerful only allow single character as an activity

name in the process model. For this purpose, we map process activity name with Minerful

equivalent character (TaskChar). For example, in Figure. 4.1, process model consists of

seven activities and these activities are mapped by a, b, c, d, e, f, and g respectively. Table

4.2 lists all activities of input model with their corresponding TaskChar.

Activity Name MINERFul TaskChar

A0 A

A0A1 B

A0A2 C

A1 D

B E

C F

D G

Table 4.2: Activity name with MINERFul equivalent TaskChar

4.3 Generate Log via MINERFul

To generate log from MINERFul three inputs are required, i) Input Model ii) Minimum and

Maximum size of events per trace iii) total number of traces that the generated log must

22

contain. The Maximum size per trace and total number of traces per events must be greater

or equal to one. MINERFul will produce event logs based on predefined parameters. The

resulted output from MINERFul is core structure of proposed log generation format.

4.4 Restore Keys and add Data

The log generated from MINERFul is consists of character that differs from the actual ac-

tivity name of process model. In this step, we restore original names of these activities with-

out altering their traces and events order.

All these activities available in the generated logs are valid and are verified from ILP. ILP

assigns maximum and minimum ranges for each activity. On the basis of ILP result, tool

generates random number selected between given ranges.

4.5 Events Log with data

This is the final step of log generation. The generated log with data is stored at a location

specified by user and in a user selected format i.e., XES format. To complete this task we

have used log storing services provided by MINERFul

23

5 Evaluation

In this section, we use our developed tool for generating event logs.

5.1 Multi-Perspective Process Model

In section 2 we have discussed different templates of Declare and it is not possible to include

all these templates for evaluation of our implementation. For sake of simplicity we create a

sample model containing several templates (see Figure 5.1)

Figure 5.1 Sample Declarative process model for evaluation

The sample model contains six templates response, precedence, alternate response, chain

response, responded existence and not response.

5.2 Parameter Settings

To evaluate the event log we have set event size between 3 to five per trace. Number of

traces also fixed to 5 thesis (see Figure 5.2).

24

Figure 5.2: Parameter setting for Evaluation

5.3 Declare Input Model

As we discussed in the previous section about MINERFul input model and based on ILP

results the generated MINERFul equivalent mapped TaskChars for the valid activation ac-

tivities are shown in the Table 5.1. All activities with null ILP status is removed from the

input model.

Activity Name MINERFul Mapped TaskChar

A A

A0A1A2A3A4 B

A0A1A3A4 C

A0A2A3A4 D

A0A2A4 E

A2 F

A2A4 G

B H

C I

D J

E K

G L

25

H M

Table 5.1 Activities with mapped TaskChars

In the input model, we are including all split activation activities based on activation condi-

tions. For the given evaluation model activation activities with correlated constrains are

shown in the Table 5.2.

Activities Description

Response(B, H)

AlternateResponse(B, J) :

ChainResponse(B, K)

RespondedExistence(B, L)

NotSuccession(B, M)

The TaskChar B is representing activation

activity A0A1A2A3A4 and this activation

activity must be compliant with all given

constrains. The input model generated all

constrains that is required for activation

condition A0A1A2A3A4

Response(C, H)

AlternateResponse(C, J)

RespondedExistence(C, L)

NotSuccession(C, M)

The TaskChar C is representing activation

activity A0A1A3A4 and in input model all

required constraint related to this activation

activity is generated.

Response(D, H)

ChainResponse(D, K)

RespondedExistence(D, L)

NotSuccession(D, M)

TaskChar D is denoted by A0A2A3A4

Response(E, H)

ChainResponse(E, K)

NotSuccession(E, M)

TaskChar E is denoted by A0A2A4

ChainResponse(F, K) TaskChar F is denoted by A2

ChainResponse(G, K)

NotSuccession(G, M)

TaskChar D is denoted by A2A4

Precedence(A, I) The only activation activity is the given

model precedence (A,C) generated in the

input model

Table 5.2 MINERFul Input Model of Evaluation Model

26

5.4 Generated Event logs

The generated XML file format converted into a tabular format. In this section we introduce

each trace of generated log.

Attribute Value

Event No 1

Activity Name A0A2A4

Payload Value 7

lifecycle: transition Complete

time: timestamp 2014-09-25T06:00:50.825+03:00

Attribute Value

Event No 2

Activity Name E

Payload Value 81

lifecycle: transition Complete

time: timestamp 2014-09-26T03:39:03.700+03:00

Attribute Value

Event No 3

Activity Name A

Payload Value 706019319

lifecycle: transition Complete

time: timestamp 2014-09-26T05:45:13.481+03:00

Attribute Value

Event No 4

27

Activity Name D

Payload Value 93

lifecycle: transition Complete

time: timestamp 2014-09-27T04:02:20.403+03:00

Attribute Value

Event No 5

Activity Name B

Payload Value 86

lifecycle: transition Complete

time: timestamp 2014-09-28T00:21:38.168+03:00

This trace contains five events with only one activation activity highlighted in green colour.

The activity A0A2A4 means this activity must be executed by all given correlated constrains.

According to the template A0 response (A, B) which means A must be followed B, A2, chain

response (A, E) , A must be immediately followed by E and not response (A, H), A never

followed by H. In this trace you can see that in the event number two E is immediate fol-

lowing A, B is also following A at event number 5. H is never exists in this trace. Hence,

we can say that this trace is compliant with the given model.

Attribute Value

Event No 6

Activity Name A0A2A4

Payload Value 6

lifecycle: transition Complete

time: timestamp 2014-09-28T03:31:51.171+03:00

Attribute Value

Event No 7

28

Activity Name E

Payload Value 93

lifecycle: transition Complete

time: timestamp 2014-09-28T04:03:59.537+03:00

Attribute Value

Event No 8

Activity Name A0A2A4

Payload Value 6

lifecycle: transition Complete

time: timestamp 2014-09-29T01:23:43.980+03:00

Attribute Value

Event No 9

Activity Name E

Payload Value 78

lifecycle: transition Complete

time: timestamp 2014-09-29T20:45:40.302+03:00

Attribute Value

Event No 10

Activity Name B

Payload Value 87

lifecycle: transition Complete

time: timestamp 2014-09-29T21:01:38.225+03:00

29

The trace number 1 is also contains five events with two but same activation activity high-

lighted in green colour. In this trace the activity E repeating on event number seven and nine

and both events are immediately following A2. Activity B is available in the last of the trace

and it is following by both activating activities i.e., A0A2A4. In the log we can see that

number of constraints are following according to activating activity which is exactly re-

quirement of the given process model

Attribute Value

Event No 11

Activity Name G

Payload Value 93

lifecycle: transition Complete

time: timestamp 2014-09-30T17:11:15.854+03:00

Attribute Value

Event No 12

Activity Name B

Payload Value 83

lifecycle: transition Complete

time: timestamp 2014-10-01T05:54:54.613+03:00

Attribute Value

Event No 13

Activity Name A0A1A3A4

Payload Value 1811582665

lifecycle: transition Complete

time: timestamp 2014-10-01T17:08:44.135+03:00

30

Attribute Value

Event No 14

Activity Name D

Payload Value 80

lifecycle: transition Complete

time: timestamp 014-10-02T12:21:50.018+03:00

Attribute Value

Event No 15

Activity Name B

Payload Value 93

lifecycle: transition Complete

time: timestamp 2014-10-03T11:16:50.199+03:00

The trace number 2 is only one activation activity highlighted in green colour. This trace is

different from the previous two traces because in this trace template responded existence (A,

G) has executed. Responded existence specifies that if event A is executed in the trace, then also

event G has to be executed either after or before event A, so the G is present before A in the

trace while D and B is following proper order. Hence, we can say that this trace is also compliant

with the actual process model.

Attribute Value

Event No 16

Activity Name B

Payload Value 88

lifecycle: transition Complete

time: timestamp 2014-10-03T20:55:04.472+03:00

31

Attribute Value

Event No 17

Activity Name E

Payload Value 77

lifecycle: transition Complete

time: timestamp 2014-10-04T06:37:22.905+03:00

Attribute Value

Event No 18

Activity Name A2A4

Payload Value 1

lifecycle: transition Complete

time: timestamp 2014-10-04T23:49:39.500+03:00

Attribute Value

Event No 19

Activity Name E

Payload Value 92

lifecycle: transition Complete

time: timestamp 2014-10-05T13:51:13.217+03:00

As we have set the size of events per trace between three and five. This trace contains four

events and the only activation activity is at the second last of the trace. According to this

activation activity, activity E must be followed after A2 while A4 never followed by any

activity H. The trace is looking good according to the given model.

32

Attribute Value

Event No 20

Activity Name D

Payload Value 98

lifecycle: transition Complete

time: timestamp 2014-10-06T10:48:22.064+03:00

Attribute Value

Event No 21

Activity Name A0A2A4

Payload Value 5

lifecycle: transition Complete

time: timestamp 2014-10-06T20:40:44.217+03:00

Attribute Value

Event No 22

Activity Name E

Payload Value 88

lifecycle: transition Complete

time: timestamp 2014-10-07T07:45:40.083+03:00

Attribute Value

Event No 23

Activity Name A

Payload Value 448988707

33

lifecycle: transition Complete

time: timestamp 2014-10-07T13:50:42.888+03:00

Attribute Value

Event No 24

Activity Name B

Payload Value 78

lifecycle: transition Complete

time: timestamp 2014-10-08T01:17:24.274+03:00

Trace number five is the last trace of this evaluation and it is containing the same activation

activity as trace number one and two. The result is very clear, activity E is directly following

by A2 and A4 is not following any activity H. Hence, we can see that all generated logs are

compliant with the given model.

5.5 Chain Constrains Process Model

In the Figure 5.3 the reader can see that the response (A, C) which means that the activity C

must be followed by activity A. However, C is also an activation activity of other con-

straints. The given model in split as A0, A0A1, A1, B, C, C0, C0C1, C1, D, and E.

Figure 5.3: Chain of Constraints in a Model

34

To evaluate the result of chain constraint we have generated a very simple event logs. The

maxim and minimum event per trace is three and five respectively and the size of trace is

set to only two. The generated event logs based on the set parameters are given below:-

Attribute Value

Event No 1

Activity Name A1

Payload Value 1981591828

lifecycle: transition Complete

time: timestamp 2015-06-05T12:50:20.484+03:00

Attribute Value

Event No 2

Activity Name C0

Payload Value 1252252207

lifecycle: transition Complete

time: timestamp 2015-06-05T18:35:26.668+03:00

Attribute Value

Event No 3

Activity Name E

Payload Value 13

lifecycle: transition Complete

time: timestamp 2015-06-06T13:06:41.238+03:00

Attribute Value

Event No 4

35

Activity Name B

Payload Value 2

lifecycle: transition Complete

time: timestamp 2015-06-06T20:13:41.174+03:00

Attribute Value

Event No 5

Activity Name D

Payload Value 10

lifecycle: transition Complete

time: timestamp 2015-06-07T18:42:22.365+03:00

Attribute Value

Event No 6

Activity Name A1

Payload Value 1398284071

lifecycle: transition Complete

time: timestamp 2015-06-07T22:04:48.203+03:00

Attribute Value

Event No 7

Activity Name E

Payload Value 10

lifecycle: transition Complete

time: timestamp 2015-06-08T20:17:35.166+03:00

36

Attribute Value

Event No 8

Activity Name A0

Payload Value 2

lifecycle: transition Complete

time: timestamp 2015-06-09T11:57:56.920+03:00

Attribute Value

Event No 9

Activity Name C

Payload Value 3

lifecycle: transition Complete

time: timestamp 2015-06-10T09:57:41.716+03:00

Attribute Value

Event No 10

Activity Name B

Payload Value 5

lifecycle: transition Complete

time: timestamp 2015-06-10T21:41:50.338+03:00

In this specific case we have that A1 should be followed by C, C0, C1 or C0c1. For this

purpose we use a branched response constraint shown in the Figure 5.4.

37

Figure 5.4 Branched Chain Constraints model

5.6 Performance

In order to evaluate the performance of the proposed approach, we have executed different

process models containing different constraints and trace sizes to evaluate the duration of

log generation. The maximum size of events per trace is ten while all data models have same

constraints.

This assessment has been conducted on a machine equipped with Intel (R) Core (TM) i5-

3437 CPU with 3.86 usable memory (RAM).We have used Eclipse and Java as the coding

language for the implementation of the tool. The log generation time is slightly different for

each run so the duration of log generation presented in the Table 5.3 is average of five exe-

cutions.

Number of

Constraints

Number of Traces

10 100 1000 2000

3 0.054 seconds 0.137 seconds 0.755 seconds 1.73 seconds

5 0.109 seconds 0.1756 seconds 0.8874 seconds 1.782 seconds

10 3.6144 seconds 3.686 seconds 4.4368seconds 5.3028 seconds

Table 5.3: Generation times with respect to number of constrains and trace size.

The first column of the performance table is representing the number of constrains in the

models while second column is divided into sub columns based on trace sizes. The reader

38

can see that the duration of log generation with small set of traces is much faster as compared

to higher trace length. We can thus conclude that the performance effects based on the num-

ber of constrains and size of traces in the log.

39

6 Conclusion and Future Work

In this thesis we wanted to cover the following research questions:

 How can we generate event logs from multi-perspective Declarative process mod-

els?

 What are the performances of the proposed approach when using Declarative model

containing different numbers of constrains to generate event logs of different sizes?

In response of our first research question, we tried to address the question by developing a

tool that generates multi-perspective event logs of declarative process models. In addition,

in this thesis, we have developed a method that translate data condition to linear equations

and to solve these ILP equation we used lp_solve. The usage of ILP in this thesis i) detecting

violating activities before generating MINERFul input model and ii) to set a data range for

valid activities. This tools is very simple to use, users can generate event logs easily without

any additional knowledge about the templates automaton and theorem.

Our second research question is about the performance of developed tools. Of course, real

life process data may be containing a lot of constrains and to generate event logs of those

models would be a challenging task. In the evaluation sections we have experimented with

different number of constraints and trace size and the performance result showed that this

tool is capable to generate large logs in a reasonable amount of time

Future Work

This tool can be improve in future by modification in the current implementation or adding

new feature in the proposed application.

 Data Condition: Declare models mainly constituent of three data conditions. The

approach proposed in this thesis focuses only on activation condition. However, this

implementation can be easily extended to implement other data conditions i.e., cor-

relation condition and time condition.

 Logical Operators. Currently, we are focusing only simple condition without any

Logical operator. There is room to implement such logical operators in the data con-

ditions.

 Activity Naming: In current implementation, during splitting the activities spaces

or numeric numbers are not allowed in the activity names. The work can also be

improved by allowing these characters.

 Integer Linear programming: For Integer Linear Programming we have used

lp_solve and it does not support all the problems of linear equations. Furthermore,

large equations or large size processes will affect the performance of this tool.

 Interface: The user interface of Declare Designer is not very intuitive and it can be

improved in terms of usage. Sometime it is very difficult to differentiate two data

conditions because of interface issue.

40

Acknowledgements

All the praises and thanks to Allah Almighty and all the best blessings be upon Holy

Prophet (PBUH) who directed humanity to pursue knowledge without any discrimina-

tion.

I would also like to express my gratitude to University of Tartu, for providing excellent

research environment at the institute. I would like to thank Supervisor Dr. Fabrizio Ma-

ria Maggi and Dr. Claudio (University of Vienna) who ignited critical abilities in me. I

am indebted to them for their guidance, and significant assistance

I am very grateful to my colleagues at Betssongroup for their support and flexibility,

without their flexibility this task was not possible.

Finally, I would like to thank my parents, family members, teachers and friends for their

love, prayers, patience and endless support.

41

7 References

[1] H. Verbeek, J. Buijs, B. Van Dongen, and V. Der Aalst, “Xes, XESame, and Prom

6,” in Information Systems Evolution, vol. 72, Springer, 2011, pp. 60–75.

[2] A. W. Scheer, “Nüttgens. M.: ARIS Architecture and Reference Models for Business

Process Management,” van der Aalst, WMP; Desel, J.; Oberweis, A. Bus. Process

Manag. Tech. Empir. Stud., vol. 1806, pp. 376–389, 2000.

[3] A. Scheer, “ARIS toolset: a software product is born,” Inf. Syst., vol. 19, no. 8, pp.

607–624, 1994.

[4] van Dongen, “BPI challenge 2011,” 2011.

[5] van Dongen, “BPI challenge 2012,” 2012.

[6] C. Di Ciccio and M. Mecella, “On the discovery of declarative control flows for artful

processes,” ACM Trans. Manag. Inf. Syst., vol. 5, no. 4, p. 24, 2015.

[7] F. M. Maggi, “Declarative Process Mining with the Declare Component of ProM.,”

in BPM (Demos), 2013.

[8] F. M. Maggi, R. P. J. C. Bose, and W. M. P. van der Aalst, “Efficient discovery of

understandable declarative process models from event logs,” in Advanced

Information Systems Engineering, 2012, pp. 270–285.

[9] M. L. Bernardi, M. Cimitile, C. Di Francescomarino, and F. M. Maggi, “Using

Discriminative Rule Mining to Discover Declarative Process Models with Non-

atomic Activities,” in Rules on the Web. From Theory to Applications, Springer,

2014, pp. 281–295.

[10] M. Pesic and W. M. P. der Aalst, “A declarative approach for flexible business

processes management,” in Business Process Management Workshops, 2006, pp.

169–180.

[11] P. Pichler, B. Weber, S. Zugal, J. Pinggera, J. Mendling, and H. A. Reijers,

“Imperative versus declarative process modeling languages: An empirical

42

investigation,” in Business Process Management Workshops, 2012, vol. 99, pp. 383–

394.

[12] A. Burattin and A. Sperduti, “PLG: A framework for the generation of business

process models and their execution logs,” in Business Process Management

Workshops, 2011, pp. 214–219.

[13] K. Jensen, L. M. Kristensen, and L. Wells, “Coloured Petri Nets and CPN Tools for

modelling and validation of concurrent systems,” Int. J. Softw. Tools Technol.

Transf., vol. 9, no. 3–4, pp. 213–254, 2007.

[14] K. M. van Hee and Z. Liu, “Generating Benchmarks by Random Stepwise

Refinement of Petri Nets.,” in ACSD/Petri Nets Workshops, 2010, pp. 403–417.

[15] G. Bergmann, Á. Horváth, I. Ráth, and D. Varró, “A benchmark evaluation of

incremental pattern matching in graph transformation,” in Graph Transformations,

Springer, 2008, pp. 396–410.

[16] M. Pesic, H. Schonenberg, and W. M. P. der Aalst, “Declare: Full support for loosely-

structured processes,” in Enterprise Distributed Object Computing Conference,

2007. EDOC 2007. 11th IEEE International, 2007, pp. 287–300.

[17] W. M. P. Van Der Aalst, Process mining: discovery, conformance and enhancement

of business processes. Springer, 2011.

f

[18] M. Dumas, M. La Rosa, J. Mendling, and H. A. Reijers, Fundamentals of business

process management. Springer, 2013.

[19] C. Di Ciccio, M. Mecella, M. Scannapieco, D. Zardetto, and T. Catarci,

“MailOfMine--analyzing mail messages for mining artful collaborative processes,”

in Data-Driven Process Discovery and Analysis, vol. 116, Springer, 2012, pp. 55–

81.

[20] C. Di Ciccio, M. L. Bernardi, M. Cimitile, and F. M. Maggi, “Generating Event Logs

Through the Simulation of Declare Models,” in Enterprise and Organizational

Modeling and Simulation, Springer, 2015, pp. 2–10.

[21] M. Pesic, “Constraint-based workflow management systems: shifting control to

users,” Technische Universiteit Eindhoven, 2008.

43

[22] T. Stocker and R. Accorsi, “Secsy: Security-aware synthesis of process event logs,”

in Workshop on Enterprise Modelling and Information Systems Architectures, 2013,

pp. 71–84.

[23] XES-standard. http://www.xes-standard.org. "vii, 8, 9"

[24] Laurent Y, Bendraou R, Baarir S, Gervais M-P. Planning for declarative processes.

In: Proceedings of the 29th Annual ACM Symposium on Applied Computing. ;

2014:1126-1133.

[25] http://javailp.sourceforge.net/

[26] http://lpsolve.sourceforge.net/5.5/

[27] https://github.com/cdc08x/MINERful

[28] C. Di Ciccio, M. H. M. Schouten, M. de Leoni, and J. Mendling, “Declarative

Process Discovery with MINERful in ProM,” BPM Demos, pp. 60–64, 2015.

[29] https://github.com/cdc08x/MINERful

[30] M. Westergaard and T. Slaats, “Cpn tools 4: A process modeling tool combining

declarative and imperative paradigms,” Autom. Control Comput. Sci., vol. 47, no. 7,

pp. 393–402, 2013.

[31] van Dongen, “BPI challenge 2014,” 2014.

[32] S. K. L. M. Vanden Broucke, J. Vanthienen, and B. Baesens, “Straightforward Petri Net-

based Event Log Generation in ProM,” Available SSRN 2489051, 2014.

[33] Shugurov and A. A. Mitsyuk, “Generation of a set of event logs with noise,” in

Proceedings of the 8th Spring/Summer Young Researchers’ Colloquium on Software

Engineering (SYRCoSE 2014), 2014, pp. 88–95.]

[34] http://web.mit.edu/15.053/www/AMP-Chapter-09.pdf

44

Appendix

I. Source Code

Find source code, Example models and generated log file at

https://github.com/ijlalhussain/LogGenerator

45

II. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Ijlal Hussain (date of birth: 10th of January, 1980),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright, of my thesis

Generating Synthetic Event Logs based on Multi- perspective Business Rules

Supervised by Dr. Fabrizio Maria Maggi.

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property

rights or rights arising from the Personal Data Protection Act.

Tartu, 11.08.2016

