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I. INTRODUCTION

Many problems in nature, science and engineering (for example, in signal
and image processing, tomography, heat conduction, geophysics, inverse
scattering) are ill-posed in the sense that small errors in data can cause a
large error in the solution. Modelling of these problems often leads to inte-
gral equations of the first kind; also systems of linear equations, where the
condition number of the matrix is very large, can be considered as ill-posed
problems. In applications the data are typically noisy, containing unavoid-
able measurement errors. When dealing with well-posed problems, where
the solution depends continuously on the data, the solving algorithms do
not need to take into account the noise level of data. In ill-posed problems,
however, it is crucial to take into account all available information about
the solution and the noise. For solving ill-posed problems special methods,
regularization methods [19,47,53,89] have been developed. These meth-
ods contain a free parameter, which controls the amount of regularization.
When applying regularization, one has to make two decisions: 1) select the
regularization method and 2) choose a proper regularization parameter.

In this work we consider basic regularization methods: the methods of
Tikhonov and Lavrentiev, their iterated variants, Landweber method, trun-
cated singular value decomposition (TSVD) and conjugate gradient type
methods (CG, CGLS, CGME) [19,37]. The regularization parameter is the
stopping index in iteration methods, the number of terms in TSVD, and a
positive real number in remaining methods.

For theoretical study it is typically assumed that the exact noise level
6 is known with ||y — y«|l < 6, where y are given (measured) data and
V4 are exact data. Then one can show that if the regularization parameter
is chosen properly, in dependence of the noise level §, then the regular-
ized solution converges to the exact solution as 6 — 0. This convergence
is guaranteed for well-known parameter choice rules: discrepancy princi-
ple [65,87-89], modified discrepancy principle [22,73,74], monotone error
rule [84] and balancing principle [3,4,7-9,15-18,50,54-56,58-63,70], which
has received much attention recently. Often these rules are implemented by
computing regularized approximations for a sequence of parameters until a
certain condition is fulfilled (in balancing principle a large sequence of reg-
ularized solutions is computed). In case of smooth solution more accurate
than the Tikhonov approximation is its m > 2 times iterated variant but
to compute a new approximation, the iterated Tikhonov method requires



solving m equations. Instead of iterated approximation we suggest to use
extrapolated approximation, which is a linear combination of m Tikhonov
approximations with different parameters and which requires solving only
one equation to compute a new approximation. The accuracy of both ap-
proximations is the same. The extrapolated approximation is preferred to
the iterated one also in case of Lavrentiev method, by the same motivation.

All regularization methods have difficulties, if no information about the
noise level of the data is given. Then it is known [1] that no rule for choice
of the regularization parameter can guarantee the convergence of regular-
ized solutions to the exact one as the noise level of the data tends to zero.
Nevertheless, heuristic rules, i.e. rules not using noise level §, are very pop-
ular: quasioptimality criterion [2,5, 6,10, 23,49,51, 52,85, 86] and its ana-
log [69], generalized cross-validation (GCV) [24,91], Hanke-Raus rule [42]
and L-curve rule [44,45]. The reason of popularity of these rules is that in
applied ill-posed problems the noise level is usually not known exactly but
if in classical parameter choice rules (discrepancy principle etc.) the sup-
posed noise level is somewhat smaller than the actual noise level, then the
error of approximate solution can be arbitrarily large. On the other hand,
classical parameter choice rules are also quite sensitive to overestimation
of the noise level. In this work we propose some strategies for construct-
ing rules for choice of the regularization parameter, give several specific
new rules and present the results of extensive numerical experiments on
test problems of Hansen [43,45], which are widely used in literature for
testing regularization algorithms. Additional test problems are taken from
papers [13,14].

If no information about the noise level is known, then many heuristic
rules, such as the quasioptimality criterion and its analog by Neubauer,
Hanke-Raus rule, and Brezinski-Rodrigues-Seatzu rule choose the regular-
ization parameter as the global minimizer of a certain function. These rules
often give good results but sometimes fail. The main problem with these
heuristic rules is that the global minimizers of the corresponding functions
are sometimes very small, leading to very large error. Instead of global
minimizer we propose to use a larger local minimizer, if there is a large
maximum between them. The algorithm is to make computations with de-
creasing values of the parameter and stop the calculations, if the value of
the function to be minimized is some fixed number of times larger than its
minimal value. An alternative approach is to take the regularization param-
eter to be the largest local minimizer of a certain function. We also propose
other modifications to known rules.

Consider parameter choice in (iterated) Tikhonov method in case of ex-
actly given noise level. It is known that the monotone error rule gives a reg-
ularization parameter oy that is always larger than or equal to the optimal.
However, to decrease this parameter, one cannot decrease the coefficient in
front of the noise level, since then neither convergence nor order optimal



error estimate will be guaranteed. We use an alternative way: we modify
the parameter oo to find its smaller estimate, optimizing coefficients on
test problems. In our tests the estimated regularization parameter oge
gave much better results than the original parameter ooye. The same ideas
are also applicable to Landweber iteration method, where the monotone er-
ror rule and the discrepancy principle choose nyg and np such that nyg is
smaller than or equal to the optimal stopping index and np—1 < nyg < np.
Numerical experiments recommend not to stop at nyg or np but at 2nyg or
2np or somewhat later.

In the Tikhonov method, in case of possible overestimation or moderate
underestimation of the noise level we propose to use the rule R2e (post-
estimation of the parameter from rule R2 [80]), which is less sensitive to
false estimation of noise level than the discrepancy principle and the mono-
tone error rule. In case of possible overestimation of the noise level, if
underestimation is excluded, we propose to use oy = min(mge, Xr2e)-

In some ill-posed problems the noise level of the data is known approxi-
mately. Recently, a rule DM for choice of the regularization parameter was
proposed [33], which guarantees convergence of the approximate solution
to the exact solution, as the noise level tends to zero, provided that the ratio
of actual to presumed noise levels remains bounded. This rule contains two
free parameters, whose values we found by optimizing on test problems.

In numerical experiments our rules gave better results than old rules.
For example, in most cases the best of our heuristic rules and the rule DM
in case of 100 times underestimated or overestimated noise level gave bet-
ter results than the discrepancy principle in case of 2 times overestimated
noise level. In Lavrentiev method the rule MEagl and heuristic rule QmC
gave, on average, only 1% or 4% larger errors, respectively, than the optimal
parameter (see Table 33). In method CGME, the heuristic rule DHP chose
the optimal stopping index in most problems in case of smooth solution
(see Table 45).

The main attention in this thesis is given to numerical analysis of reg-
ularization parameter choice rules with respect to their accuracy. While
often the parameter choice rules are formulated together with proof that
the error of the corresponding regularized solution tends to zero, as the
noise level 6 tends to zero, in real problems, however, the process 6 — 0
cannot be accomplished; the range of §’s is limited by physical factors. In
addition, theoretical error estimates often contain constants, whose values
are unknown or hard to find but which are crucial in practical application
of the algorithm. Numerical tests are a way to estimate the actual error at
particular range of §’s. They also take into account changes in problem re-
sulting from discretization, which inevitably occurs when reformulating the
usually infinite-dimensional problem for solving on computer. We believe
that a combination of mathematical analysis and execution on sample data
sets is the best way to understand the performance of an algorithm.



Contribution of the thesis can be formulated as follows.

o Elaboration of extrapolated versions of Tikhonov and Lavrentiev
methods, guaranteeing high accuracy in case of smooth solutions by
moderate amount of computations.

e New parameter choice rules that work in wide range of practice-ori-
ented problems and with various regularization methods. These rules
include both the rules that use information about noise level as well
as the rules that don’t. Also they include rules that allow the noise
level to be known only approximately.

e Strategies and principles to construct new rules, verified by perfor-
mance tests of particular rules that are realizations of these strate-
gies. Extensive numerical experiments show the advantage of result-
ing rules over known rules.

e Framework for numerical comparison of rules.

The set of test problems was not large, for larger set all conclusions
may not hold but if problems from papers [13,14] were added, the results
remained similar.

Main results of this work are reported in talks at conferences Approxi-
mation Methods and Orthogonal Expansions (Kaariku 2003, Kaariku 2008),
Mathematical Modelling and Analysis (Trakai 2005, Jirmala 2006, Kaariku
2008), Inverse and IlI-Posed Problems of Mathematical Physics (Novosibirsk
2007), Inverse Problems: Modeling and Simulation (Fethiye 2008), Methods
of Algebra and Analysis (Tartu 2008), Applied Inverse Problems (Vienna
2009).

In the following we make some notational conventions. Generic regu-
larization parameter will be A. In continuous methods we use traditional
parameter «, so in these methods A = «. In simple iteration methods the
iteration step n will be the regularization parameter, in this case A = 1/n.
When dealing with iteration methods, we write everywhere in expressions,
where the regularization parameter A is in subscript, simply n instead of
1/n, so for example, the approximate solution found by an iteration method
is x) = xy. Wherever we have defined some approximation x., we automat-
ically define ». = Ax.—7y. Wherever we have defined the function d. (A) (like
dp(A) = |7 |l in classical discrepancy principle), we also define the function
@.A) = d.(A)/ VA in case of non-self-adjoint problem and the function
@.(A) = d.(A)/A in case of self-adjoint problem—or vice versa, having the
function @.(A), we assume that also d.(A) = \/X(p.(A) ord.(A) = A@.(A)
for non-self-adjoint and self-adjoint problems, respectively, are defined.
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Il. REGULARIZATION METHODS

2.1. The problem

Let A: X — Y be a linear bounded operator between real Hilbert spaces. We
are interested in finding the minimum norm solution x4 of the equation

AX = Vi, Y« € R(A) (2.1)

in case where instead of exact data y only its approximation v is available.
We do not assume the range R(A) to be closed or the kernel N (A) to be
trivial, so in general this problem is ill-posed.

Since y4 € R(A), the minimum norm solution x4 exists. In theoretical
study, however, some additional information about x4 is needed. Often it
is assumed that the solution x, satisfies the source condition

X — x5 = R((A*A)P), (2.2)

where X is some initial approximation of the solution of (2.1) and p > 0
is a constant (may be fractional). Regularization under generalized source
conditions is studied, for example, in [66].

In some cases we consider problems with y, &€ R(A) but Qys € R(A),
where Q is the orthoprojector Y — R(A). In this case we are interested in
the minimum norm solution of equation

A*¥Ax = A*y,.

2.2. Operator form of regularization methods

Ill-posedness of the problem means that small error in right hand side can
lead to large error in computed solution. To solve the problem in stable
way, we turn to regularization.

Many regularization methods can be uniformly treated as special cases
of the general regularization method of the form [19,89]

xp= I —-A*Agr\(A*A))X + gr(A*A)A* y. (2.3)

Here x, is the regularized solution and A is a positive real number, called
regularization parameter. A particular regularization method is determined
by the family {g) : A € (0, )} of piecewise continuos generating functions
defined on [0, ||A*A|/] and satisfying the following conditions:

sup  lga®l<yA™t  (A>0), (2.4)
O<t<||A*A|
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sup tPI1—tga(t) <ypA? (A >0, 0<p <po), (2.5)
O<t<||A*A]l

sup [t'2ga(H) <y« AP (A >0), (2.6)
O<t<||A*All
where y, yp, ¥« and po are positive constants. The largest po for which
the inequality (2.5) holds, is called the gqualification of the method; it can be
finite or infinite.
Denoting ¥ = AX — y and using the commutativity property (see [89])
A*Agr(A*A) = ga(A*A)A* A, the equality (2.3) can also be written as

XA =X — gr(A*A)A*T. (2.7)
From this we obtain an expression for the discrepancy vy = Ax) — y:
A= (I — AA*gr(AA™))7 = K)(AA™)7T, (2.8)

where the discrepancy functions K, are defined as K (t) = 1 — tga(t).

All abovementioned formulas and conditions can be adjusted to the case
of self-adjoint problem, where X = Y and A = A* > 0, by simply omitting
A*. Thus instead of (2.3), (2.7), and (2.8), in this case we can compute the
approximates and their discrepancies according to formulas

xp=U—-Agr(A)X + gr(A)y =X — ga(A)7, (2.9)
A= U —Agr(A))T = K\(A)7, (2.10)

where the functions g, and K, are defined in the same way as before.

In continuous regularization methods the parameter A can take every
value in the interval (0, o). In iterative regularization methods the parame-
ter A has only discrete values that can be associated with iteration steps.

2.3. Particular regularization methods

The most prominent regularization method is the Tikhonov method to-
gether with its iterated variant. The m-iterated Tikhonov method (m = 1,
2, ...) is defined as follows. Take x¢.x = X and compute Xi.x, ..., Xm:«x
iteratively from

X + A¥AX i = @Xp-1.0 + A¥y  (n=1, ...,m); (2.11)

the approximate solution of (2.1) is then xy;.«-

The ordinary Tikhonov method (m = 1) takes X = 0. In this case we also
write x instead of x1.y (and 7 instead of 71.x).

The m-iterated Tikhonov method is a special case of (2.3) with A = «x and
Ir(t) = Gma(t) = t71(1 = (1 + &« 1t)™™). Inequalities (2.4), (2.5), (2.6) are
satisfied with y = m, y, = (p/m)? (1 — p/m)™ ¥, y, = m!'/? and pg = m.
In addition, K (t) = Ky (t) = (1 + o Le)™™,

If |y — v« < 6, then under assumption (2.2) a proper choice of « (de-
pending on §) guarantees |[Xy.q — X« |l = O(sP/(P+1)y for all p < 2m (see
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Theorem 3 of Section 3.4). We say that the maximal guaranteed accuracy of
m-iterated Tikhonov method is ©(§2™/@m+1)),
We also introduce the iteration operator

By = Ko (AAT)V/ M) — (1 4 o7l AA*)~1/2) (2.12)
which acts as “iteration by half step”, as can be seen from the relations
||Bo<7’m;o<|| = (Tm;a,Terl;tx)l/z and Bg{’"m;(x = Tm+1;x-

The analogs of this operator can also be defined for other methods of finite
qualification po by formula By = Ki(AA*)1/(2P0) For methods of infinite
qualification we let By = I.

The self-adjoint analog of the m-iterated Tikhonov method in case A* =
A = 0 is the m-iterated Lavrentiev method (m = 1, 2, ...), which starts with
X0« = X and computes X1.qx, ..., Xm:x from

(aXn;o( + AXn;o() = aXn_l;o( + y (n = 1, .e ,m),

the approximate solution of (2.1) is xm.x. This method is a special case of
(2.9) with the same A and g, (t) as in m-iterated Tikhonov method. There-
fore also the inequalities (2.4), (2.5), (2.6) are satisfied with the same con-
stants. In particular, pg = m.

The maximal guaranteed accuracy of m-iterated Lavrentiev method is
O(8™/m+Dy (Theorem 4 of Section 3.4). Order optimal error bounds in
Hilbert scales for a priori parameter choice and for discrepancy principle
are given in [48].

The iteration operator By for m-iterated Lavrentiev method can be de-
fined as

By = Ko (AA®)VM = (1 + 1 A) 7L, (2.13)
it satisfies Ba¥Vm:a = ¥m+1:ax-

We now formulate some properties that are useful later; they can be
proved by direct computation.

Proposition. The functions gm.x and Km:x of m-iterated Tikhonov method
(and of m-iterated Lavrentiev method) satisfy relations

Im+1:x(t) — Gm:a (F) = O(_IKm+1;o((t), (2.14)
%gm;cx(t) = _mO(_ZKm+l;o((t), (2.15)
Km+1;a(t) = (1 + (xilt)ile;(x(t)- (2.16)

For m-iterated Tikhonov method a direct consequence of these proper-
ties is the equality

O((Xm;o( - xm+1;o() = A*Tm+1;o(, (2.17)
since by (2.14)
Im+1;0(ATA)A*T = g (AT A)A*T = o 'Ky 1,0 (A¥A) AT,

whose left hand side is by (2.7) equal to Xm:« — Xm+1;« and right hand side

13



Let us now consider iterative methods. One of the simplest of these is
the Landweber method or explicit iteration scheme. Let u € (0,2/]|A*Al).
Take x¢ = X and compute x1, X2, ... iteratively from

Xn = Xn-1— HA® (Axp_1 — V) n=1,2, ...). (2.18)

This method is of the form (2.3) with A = 1/n and ga(t) = gn(t) = t 1 (1 —
(1 — pt)™). Inequalities (2.4), (2.5), (2.6) are satisfied with y = u, y, =
(p/(ue)?, ysx = u''?, and pg = c.

Many papers note that the Landweber method is not practical, since it
needs too many iterations. Based on our computational experience, we
strongly recommend to implement this method by operator form of itera-
tions (as recommended in [87,89]), which allows to compute X, for indices
n=mk@m=2;k=1,2,...). Define the operators

m-—1
Co=pl, Cr=Cr1y I-A*ACG-1) (k=1,2,...). (2.19)

j=0
Then x,, = (I - A*ACy)X + CrA* y. Typically this algorithm is applied with
m = 2 (scheme of Schultz-Hotelling). In our numerical tests this algorithm
was particularly effective, since the operator A was often a diagonal matrix.

Another iterative method is the implicit iteration scheme. Let &« > 0 be a
constant. Take x¢ = X and compute x1, X2, ... iteratively from

oxn + A*Axy = dxn_1 + A*y n=1, 2, ...). (2.20)

Here A = 1/n and g (t) = gn(t) = t 71 (1 — (1 + «~'t)™"). Inequalities (2.4),
(2.5), (2.6) are satisfied withy = ™1, yp, = (ap)?, yx = « 12 sup t71/2(1-
e—t), and po = . 0<t<oo

Also the implicit iteration scheme can be implemented via operator iter-
ations (2.19) by taking Co = («I + A*A)~!; other formulas do not change.

Both Landweber method and the implicit iteration scheme can be viewed
as discrete variants of a continuous regularization method, the method of
asymptotical regularization or method of Cauchy problem, which finds the
approximate solution of (2.1) as the solution of the problem

%xa +A*Axg = A¥Y,  xp=X. (2.21)

Here A = o and ga(t) = gu(t) = t1(1 — ). Inequalities (2.4), (2.5), (2.6)
are satisfied with y = 1, y, = (p/e)?, y« = sup t 1/2(1 —e™t) =~ 0.6382,
and pg = . O<t<e

Of the form (2.3) is also the spectral cut-off method

lA*All
Xo = J EdEnA*y, (2.22)

0.4
where {E,} is the spectral family of A*A. In this method A = « and
ga(t) = ga(t) = t71,if t = &, and O otherwise. Inequalities (2.4), (2.5),
(2.6) are satisfied with y = y, = yx = 1 and po = . For compact operators

14



this method is called truncated singular value decomposition (TSVD). The
compact operator A has a singular value decomposition (oj, ui, v;), where
o; are positive real numbers in decreasing order, {u;}, {v;} are complete
orthonormal systems in X, Y, respectively, and all these components are
related to each other by relations Au; = ov;, A*v; = oju; (i =1, 2, ...).
In TSVD we identify the regularization parameter with the number of terms
used, finding the approximate solution of (2.1) as
LS|
Xn = — (¥, vi)u;.
i-1 Y
Here g (t) = gn(t) = t71,if o = t, and O otherwise.
Wherever we refer to iteration methods in the following, we also include
TSVD among them.
In self-adjoint problems self-adjoint variants of methods (2.18), (2.20),
(2.21), (2.22) can be used, omitting A* in formulas of these methods and
also in operator iterations (2.19).

2.4. Conjugate gradient type methods

To find the approximate solution of Ax = y, we can use conjugate gradient
type methods CGLS and CGME, which minimize the discrepancy or the error,
respectively, in Krylov subspace.

The CGLS method is the method of conjugate gradients applied to sym-
metrized equation A*Ax = A*y. Let xo be an initial approximation (for
example xo = 0) and 9 = Axg — . To start the algorithm, additionally fix
the initial values 19 = 0 and p_; = . Forn =1, 2, ... compute iteratively

2
g, lpnil

Un = Pn-1+ Bn-1Un-1
lpn-2l?’ ’

*
Pn-1=A%"n_1,

Ipn-1ll®

Vn = Altne Yn= S0

The CGME method is the method of conjugate gradients applied to dually
symmetrized problem AA*z = y with x = A*z. Again let x( be an initial
approximation and ¥9 = Axg — . Fix the initial values 1y = 0 and v_; = oo.
For n =1, 2,... compute iteratively

Xn =Xn-1—YnUn, ¥"n=7"n-1—¥Y¥nVUn-

71112
pn-1=A%1n-1, Bn-1= a2 W =Pn1 Bn-1un-1,
n—
71 1I2
Un =AUp, Yn= Ws Xn =Xn-1—YnUn, Tn ="n-1—YnVUn-
n

If we wish to compute the approximates x; in these methods accord-
ing to the relation x, = xn_1 — A*z,, then we can replace u,, = pn_1 +
Bn-1Uyn—1 in above algorithms by two formulas w,, = -1 + Bn—1Wn-1,
Un = A*wy,, whereby wqg = 0.

15



The conjugate gradient method (CG) itself is defined for a self-adjoint
non-negative operator A. Let xg be an initial approximation and vy = Axg —

y.Letug=0andr-; = . Forn =1, 2, ... compute
7n-1l1?
Bn-1 = 172l Up =Tn-1+ Bn-1Un-1,
"o
_lrneall®

Un=AlUn, Yn= s Xn =Xn-1—YnUn, "n="n-1—YnVn-

(un, vn)

2.5. Extrapolation of Tikhonov and Lavrentiev methods

Extrapolation is a technique to increase the accuracy of regularization meth-
ods by finding the approximate solution not as one Tikhonov or Lavrentiev
approximation but as a linear combination of several approximations.

Up to now, there are few papers that address the idea of extrapolation
as a means to increase the accuracy of approximation methods in ill-posed
problems. In [57] (see also [83]) the extrapolated Tikhonov method and a
version of the extrapolated Lavrentiev method were proposed for systems
of linear algebraic equations. The extrapolated Tikhonov method for oper-
ator equations with exact data was studied in [25]. In [11, 12] some other
techniques for extrapolation of Tikhonov method for ill-conditioned linear
systems were proposed. In case of noisy data the extrapolated Tikhonov
method was studied in [28, 29].

Let X5 ---, Xu&,, be Tikhonov approximations (Lavrentiev approxima-
tions) with pairwise different parameters «i, ..., &;. The m-extrapolated
Tikhonov (Lavrentiev) approximation is given by

m m o -1
Xorynom = 2, diXey,  di=]] (1 - —l> . (2.23)
. , o
i=1 j=1 J
The coefficients d; are chosen in such way that the leading terms in error
m

expansion are eliminated. It is easy to see that Z d; = 1 but the coefficients
i=1
have alternating signs, S0 Xq,...,a,, 1S DOt @ convex combination of x;.
For example, if o1 = o/2, o2 = &, 3 = 2, then

1
y 2 = ) y " =5 - a "
Xoq,000 = 2Xx/2 — X X 1,000,003 3xo(/2 2xXx + 3x2¢x

If the sequence of parameters (o) is defined as &, = q" (@ < 1;n =0, 1,
...), then

Xomonss = (1 = @) M (=aXap + Xeotnsn)
Xomons,omz = (1= @) 2 (@2 (1 + @) 'Xey — AXotnsy + (1 + @) Xai),
Xotn,0nsnsomszomes = (L= @) 31+ ) (=% + g+ q%) 'xay
+ Xy = A + 1+ A+ %) Xa,.5)-
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The following table shows rounded values of coefficients d; for m =1, ...,
5 at g = 0.1 (upper part) and g = 0.9 (lower part):

m di do ds dy ds
1 1

2| -0.11 1.1

3| 1.1-1073  —0.12 1.1

4(-11-10% 1.2.-1073 -0.12 1.1

50 1.1-1071°-12.10% 1.3-1073 -0.12 1.1
1 1

2 -9 10

3 38.4 -90.0 52.6

4 -103 384 —474 194

5 197 -1032 2019 —~1748 565

In case of source-like solutions (2.2) the maximal guaranteed accuracy
of m-extrapolated Tikhonov approximation is ©(82™/(m+1)) versus the
maximal guaranteed accuracy ©(5°/3) of single Tikhonov approximation
(cf. Theorem 12). For Lavrentiev method the accuracies are ©(5™/(m+1))
and O(8'/2), respectively.

In [28] it is shown that the m-extrapolated Tikhonov approximation coin-
cides with the approximation found by the non-stationary m times iterated
Tikhonov regularization [40], which starts with x = 0 and computes the

iterates Xu;, Xay, 000 « - - » Xt1,00...,00m LTOM
(an“l,___,o(n + A*AX(XL.“,(X" = O(nX(Xl‘m,(xn71 + A*y (1’1, = 1, - ,m), (224)
taking xu; ..., @S the approximate solution of (2.1). Numerical experience

shows that if m is large and «’s are not very different, then the non-
stationary iterated Tikhonov method is computationally more stable than
the direct formula (2.23) and this is the way we have calculated extrapolated
approximations in numerical tests of Chapter IV. The same remarks hold
for Lavrentiev method.

Extrapolated Tikhonov approximation can be viewed as being of type
(2.3) in two ways.

1. Let m be fixed and let the sequence of parameters i, ..., &, be
computed on base of single «, for example from relations oy, = xn-19g
(n =2,..., m;q fixed) and either &¢; = x or o, = X Or Amy2| = .

m
Then A = aand ga(t) = ga(t) = t 711 = [[(1 + o;'t)™!). In this
i=1

setting the extrapolated Tikhonov method is an analog of m-iterated
Tikhonov method, where at different steps n different o, are used.
Under assumption (2.2) a proper choice of « gives the approximate
solution X = Xa.....x,, With maximal accuracy ©(§°™/2m+1)y,

2. Let &1, o2, ... be a fixed infinite sequence. Compute approximations
Xeayy Xoag,o01 -+ -» Xaq, ;0,000 -+ - Here the regularization parameter is
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n
A=1/nand ga(t) = gn(t) =t 11— [(1+ ;' t)""). In this case the
i=1
extrapolated Tikhonov method is an analog of non-stationary iterated
Tikhonov method [40] (implicit iteration scheme with parameter o,
at step n). Under assumption (2.2) a proper choice of n gives the
approximate solution x,, = Xq,...«, With accuracy O(57/P*1)) for all

p > 0.

Extrapolation can also be used together with iterated version of Tikho-
nov (Lavrentiev) method. Let «q, ..., &, be pairwise different parameters
and let x j,, be j-iterated Tikhonov (Lavrentiev) approximation with param-
eterx; i =1,...,m; j =1, ..., M;). For different «; different number
of iterations My, ..., M, may be used. The extrapolated approximation is
given by

m M;

X XL ey O, 002 10y K2 ey Kt eems K. Z Z di, jX jo;»
Y A e i=1j=1
where the coefficients d; ; can be uniquely determined from relation (see

[28] and Theorem 14)

m M t\J m £\ M
szi,j<1+_) :1_[<1+—) (Vt € R).
i—1j=1 % i=1 i

As with extrapolation of single Tikhonov (Lavrentiev) approximations, also
here the extrapolated approximation can be found by non-stationary iter-
ated Tikhonov (Lavrentiev) method, where M, iteration steps are performed
with parameter «;, then M> steps with parameter o, ..., M;, steps with pa-
rameter o,.

Extrapolation can increase the accuracy of approximate solution for ex-
ample in case, where several approximations X,.«,, in m-iterated Tikhonov
method are computed for a sequence () of parameters until some con-
dition is fulfilled, and traditionally a single approximation with maximal
accuracy O(5%™/(2m+1)y is declared to be the final approximate solution
(as, for example, in balancing principle, see Section 3.1.6). The accuracy of
extrapolated approximation with m terms and with proper parameters is
the same as the accuracy of m-iterated Tikhonov approximation. At the
same time, extrapolation requires less computational work since at tran-
sition from Xm:«, t0 Xm:x,., in m-iterated Tikhonov method m equations
have to be solved, whereas at transition from x; ... x,, 10 Xxo,...,%m.; W€ Need
to solve only one additional equation.
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IIl. RULES FOR CHOICE OF THE REGULARIZATION
PARAMETER

When applying regularization methods, we need to properly choose the reg-
ularization parameter A. If A is too big, then the computed approximation
Xy is too close to the initial guess X (see (2.7) and (2.4)) but if A is too
small, then the numerical implementation tends to be unstable due to ill-
posedness of the problem. There are several strategies (so-called rules) for
choosing this parameter, using different kinds of information. The work re-
ported in this thesis is mainly devoted to a posteriori rules. These rules can
be classified according to how much information there is available about
the noise level.

1. Noise level is known fully: ||y — v« |l < 6, where ¢ is known.

2. Noise level is not known.

3. Noise level is known approximately: there holds lim 1y = vl <

where C is an unknown constant. 6=0 o

If the noise level is fully known (case 1), then for source-like solutions
(2.2) the best error estimate (with the fastest convergence rate) that can be
achieved with any method is [87,89]

C,

lxxa — x|l < const 5#. (3.1)

This error estimate is called order optimal. In a given method a proper
choice of regularization parameter A may guarantee the error estimate (3.1)
for all p € [0,M] with some finite M or for all p € [0, o). Theoretical
performance of a parameter choice rule may be characterized by maximal
p for which the order optimal error estimate (3.1) holds.
In the following, A« denotes the optimal regularization parameter, i.e.
Ay = argmin{||xa — xx ||}
A=0
(in iterative methods the minimum is taken over A € N).

3.1. Parameter choice rules for known noise level

If the noise level 6 with ||y — y«|l < 6 is known, then many rules choose
the regularization parameter A as the solution of some equation d(A) =
CS, C = 1. We now consider several forms of d(A) for which these rules
guarantee convergence || xy—xx| — 0 as 6 — 0 and often also order-optimal
error estimate, thereby referring to theorems of Section 3.4.
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3.1.1. Discrepancy principle.

The most widely used parameter choice rule is the discrepancy principle
[65,87-89], which can be formulated as follows.

Define dp(A) = |lrall (this means that dp(x) = |7l for continuous
methods and dp(n) = ||#5|| for iterative methods).

e In a continuous regularization method choose the regularization pa-

rameter &« = op as the solution of the equation dp(x) = Cé, where
C > 1 is a fixed constant.

e In an iterative regularization method choose the regularization pa-
rameter n = np as the first n for which dp(n) < Cé, where C > 1 is a
fixed constant.

The parameter found according to this rule can in principle be any pos-
itive number, no matter how large or small. In computation, however, the
range of its values is finite, depending on chosen data type and possibly
other factors. Thus, when making calculations, we supplement this rule
with the following conditions.

e In case of continuous regularization method let & € [min, Xmax]- If
dp(0max) < C6, then take ap = max. If dp(x) > C6 on the whole
segment [ Xmin, ®max ], then take &tp = Gtmin-

e In case of iterative regularization method let n € [Nmin, Nmax]. If
dp (Mmin) < C6, then take np = npax. If dp(n) > C6 on the segment
["min, Mmax], then np = Nmax.

Analogously we restrict other parameter choice rules.

In m-iterated Tikhonov method the discrepancy principle guarantees the
order optimal error estimate (3.1) for all p < 2m — 1 in case of source-like
solutions (2.2) (see Theorem 3 of Section 3.4).

In ordinary Lavrentiev method (m = 1) the discrepancy principle is not
applicable and leads to divergence of approximate solutions but it can be
used in iterated Lavrentiev method with m > 2. Then in case of source-
like solutions it guarantees order optimal error estimate (3.1) for all p <
m — 1 (see Theorem 4). Note that in [67] the discrepancy principle for
modifications of Lavrentiev method in Hilbert scales is investigated and
in [64] the rule dp(x) = 6° with s € (0, 1) is proposed.

For method CGLS the discrepancy principle guarantees convergence and
in case of source-like solution (2.2) also order optimal error estimates for
all p [37,68,71].

Also in method CGME the discrepancy principle is not applicable and
leads to divergence of approximate solutions. For this method Hanke pro-
posed [37,38] a version of the discrepancy principle dpuy(n) = Cd, where

n

dpu(n) = (Z ||ri||‘2)_1/2. This rule guarantees the convergence and for

i=0
source-like solutions (2.2) also order optimal error estimate (3.1).

20



Discrepancy principle can also be used in extrapolated Tikhonov method
and in extrapolated Lavrentiev method or even in extrapolation of iterated
variants of these methods. In [28] the following results are proved.

If in extrapolated Tikhonov approximation or in extrapolated Lavrentiev
approximation the number m of terms is fixed and &, = g, « with fixed
dn (m =1, ..., m), then the function dp(x) = ||¥«;....,an || 1S monotonically
increasing. If op is the solution of the equation dp(x) = C¢, then for
Xo = Xaq,.,0,m With & = ap there holds |[xx — xxIl — 0 as 6 — 0 and in
case (2.2) the error estimate (3.1) is valid with p < 2m — 1 for extrapolated
Tikhonov approximation and with p < m — 1 for extrapolated Lavrentiev
approximation (see Theorem 12).

If in extrapolated Tikhonov approximation or in extrapolated Lavren-
tiev approximation the sequence x; > o2 > ... is given, then the function

dp(n) = |[¥a,,..x, |l 1S monotonically decreasing. If Z ot = o, ot <
n-1 n=1

(xi‘l, then there exists n for which dp(n) < Cé. Let np be the first n for
i=1
which the last inequality holds. Then for x,, = xq,..,«, With n = np there
holds ||x; — x«|l — 0 as & — 0 and in case (2.2) the error estimate (3.1) is
valid with any p > 0 (see Theorem 13).

Let oy = gnax (n =1, ..., m) with m and g, fixed. Let

XX = XA aey X1 8D geaey XD ey Rt yeees X,
—_—— e — —
My My Mm
be an approximation found by extrapolation of iterated Tikhonov method
or iterated Lavrentiev method, where M,, is the number of iteration steps
performed with parameter ;. Define dp(«x) = ||[7v«ll. If &p is the solution
of the equation dp(x) = C96, then ||xy — xx|| — 0 as 6 — 0 and in case
(2.2) the error estimate (3.1) is valid with p < 2(M; + ... + My,) — 1 for
Tikhonov method and with p < M; + ...+ M, — 1 for Lavrentiev method
(see Theorem 14).
In all previous equalities and inequalities it is assumed that C > 1 but
for practical purposes C = 1 also works well.

3.1.2. Modified discrepancy principle.

In m-iterated Tikhonov method and in m-iterated Lavrentiev method the
following modification of the discrepancy principle (rule MD, also called
Raus-Gfrerer rule) [22, 73, 74] can be used. Define dyp(x) = |Ba?m:xll,
where B is the iteration operator (2.12) or (2.13) in non-self-adjoint or self-
adjoint case, respectively. Choose the regularization parameter &« = oyp as
the solution of the equation dyp () = C with constant C > 1.

Thus, for m-iterated Tikhonov method dyp (&) = (Fppas Yms1:0) /% and
for m-iterated Lavrentiev method dmp (&) = [[*m+1;«ll. Unlike ordinary dis-
crepancy principle, the modified discrepancy principle is order optimal for
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full range: in case of source-like solutions (2.2) the error estimate (3.1)
holds for all p < 2m in m-iterated Tikhonov method and for all p < m
in m-iterated Lavrentiev method (including m = 1).

In m-iterated Tikhonov method the monotone error rule (considered in
the following subsection) is better than the modified discrepancy principle:
in [84] it is proved that amp > ome (and in case y & N (A*) even oyp >
oome), which implies the inequality [|xayp — Xl = X o — X5l

Using the rule MD in ordinary Tikhonov method (m = 1), we have to
compute the discrepancy 2.x. Replacing this discrepancy of two times
iterated approximation by discrepancy 74« Of extrapolated approxima-
tion, we come to the function demp() = (Y«,¥a,q«). (Here and in the
following, “e” in front of the rule name means using extrapolated approx-
imations.) This can be generalized to extrapolated Tikhonov approxima-
tion, where the number m of terms is fixed. In [28] it is proved that if
on = qn& with gy fixed (n = 1, ..., m + 1), then the function deyp () =
Pyt ¥ o1nctmay ) -2 is monotonically decreasing. If X o = X ..., Where
& = eMmp 1S the solution of demp () = C6, then ||xy — x| = 0as d - 0
and in case of source-like solutions (2.2) the error estimate (3.1) holds with
p < 2m (cf. Theorem 15).

In extrapolated Tikhonov method we often choose the regularization pa-
rameter « from some sequence (&), for example, from the geometric se-
quence oy = q" m=0,1,...; q <1). In this case we stop at first x = oy,
for which demp () < C6.

Analogous results also hold for m-extrapolated Lavrentiev method (for
ordinary Lavrentiev method, if m = 1). Here demp (&) = |7 «;,....00m21 |, Where
o1, ..., On+1 are defined in the same way as above. If @ = cemp iS the
solution of demp () = C§, then for xx = X«;,...,a,, there holds [[xy—x«| — O
as 0 — 0 and in case (2.2) the error estimate (3.1) is valid with p < m (see
Theorem 16, also [72] for case m = 1).

3.1.3. Monotone error rule.

The monotone error rule [84] is based on the idea to search for the smallest
computable value Ay of the regularization parameter A, for which it can be
guaranteed that the error || x) — xx || is a monotonically increasing function
of A for A € (Amg, ).

In case of continuous regularization methods of the form (2.3) let

(Yoo — - G (AA*)TF)

| ga(AA*)7]]
Choose the regularization parameter « = ome as the solution of the equa-
tion dmye(x) = C6. If the function dyg() is non-monotone, then choose

o = oMe as the largest solution of this equation. In case of exactly known
noise level the best value of C is C = 1.

dme(x) =
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The name of the monotone error rule is justified by the property (Theo-
rem 20)

%lea — x|l =20 forall o e [omg, ). 3.2)

Therefore, if @ € [amE, ), then || Xy — Xl = [[Xxye — X« |l. This means that
the optimal parameter oy always satisfies ox < oE.
In m-iterated Tikhonov method we have due to (2.15) and (2.8)

(Tm;tx,Terl;(x) _ ||BaTm;0(||2
||Tm+1;¢x|| ||Bg(7’m;¢x|| ’
which is a monotone function of . Monotone error rule in m-iterated

Tikhonov method is order optimal for full range p < 2m (see Theorem 3).
It is interesting to note that in case of asymptotical regularization we

dme(x) =

2
In case of iterative methods of the form

have %glx(AA*)? = —airo( and therefore dye(o) = dp(x).

Xn+1 ZXn_A*Zn, Zn S Y (1’L= 0, 1, ) (33)
let
(rn +7Tn+1,2n)
2| znll
Choose the regularization parameter n = nyg as the first n for which
dME(n) < 0.
This choice guarantees (Theorem 19) the monotonicity property

due(n) = (3.4)

IXn — x5l < lxn-1 —x%Il form=1, ..., nug,

SO | Xnye — X1l < llxn—x«ll forallm =0, 1, ..., nue. Also always ny = nyg.

Of the form (3.3) are for example Landweber method with z,, = u(Ax, -
y), the implicit iteration scheme with z,, = (al + AA*) "1 (Ax, —y), and the
methods CGLS and CGME with z,, = y,w;. This variant of the monotone
error rule was proposed and studied for simple iteration methods in [26,36]
and for methods CGLS and CGME in [27]. In Landweber method, in implicit
iteration scheme and in some other methods of the form (3.3) np — 1 <
nMe < np (see [26, 36]).

Sometimes a sequence of approximations of the form x,, = A*z, (n = 0,
1,...) arises during the computations. Since x,;11 = Xn—A* (Zn—2n+1), this
sequence can be viewed as a special case of previously considered iterative
regularization methods. Therefore the monotone error rule with
(*n + Yne1,Zn — Zn+1)

21zn = zn1 |l
guarantees monotone decrease of error for n = 0, 1, ..., nye. In many
regularization methods the elements z, here can be computed separately
and x;, can be found as x,, = A*z,.

This variant of monotone error rule can be applied for example to the se-
quence of Tikhonov approximations x, with decreasing parameters «; >

dme(n) = (3.5)
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o> > ... (this sequence arises, for example, when choosing the regulariza-
tion parameter according to the balancing principle) or to the extrapolated
Tikhonov approximations with fixed number of terms and varying o« = o,
or to the extrapolated Tikhonov approximations with varying number »n of
terms or to some other arbitrary sequence of extrapolated approximations.

In ordinary Tikhonov method (m = 1) we can replace the discrepancy of
iterated approximation by the discrepancy of extrapolated approximation,
as we did in modified discrepancy principle, and choose the parameter « =

Yo, V. .
oeMme from equation deme() = 8, where dem() = H. In [28] it
®,qx

is proved that ||[xXx,: — Xxll = 0 as 6 — 0 and under assumption (2.2) the
error estimate (3.1) holds for p < 2 (cf Theorem 15). Generally, if m is the
number of terms in extrapolated Tikhonov approximation and &, = gn&
with fixed g, (m =1, ..., m + 1), then for xy = xq,,...x,, We can choose the

parameter & = xeme from the equation deme(x) = CS, where

(Val,...,am;Val,...,am,(xmﬂ) (3.6)

deMe () =
||7’o(1 ..... O, Bm+1 Il

or, if it is assumed that « = g" for some n = 0, 1, ..., as the first & = g"
satisfying deme (@) < C6.

In extrapolated Tikhonov method with given sequence of parameters
o =0 > let Xp = X0, @0 AME(M) = (T + Vna1, 1) [ 21 lD).
In [28] it is proved that dme(n) is monotonically decreasing. If in addition

Z ot =00, ot < Z o; 1, then there exists n for which dwe(n) < C5 and

1f nME is the first n for which dye(n) < C6, then for x;,, with n = nyg there
holds ||x;, — x«|| — 0 as 8 — 0. In case of source-like solutions (2.2) also
the error estimate (3.1) is valid for all p > 0. If dp(n) is the discrepancy
of the extrapolated approximation x;, then dp(n + 1) < duyg(n) < dp(n),
so the stopping indices np and nyg, found by the discrepancy principle
and the monotone error rule, respectively, satisfy np — 1 < nyg < np (see
Theorem 13).

Analogs of monotone error rule for Lavrentiev method. In our paper [35]
an attempt was made to formulate the monotone error rule for Lavrentiev
method. Unfortunately this has not succeeded but several analogs of the
monotone error rule were proposed, which gave good results in numerical
tests. Assume now X = Y, A = A* > (.

Straightforward is the analog of ME rule with function

By |2 _ 17m+ 15012
IIBT{”ZyII 17 m2:all

As proved in [35], the function dyga(o) is monotonically increasing with
dmea(0) = [|Qy]l and ‘)l(gr.}o dmea(x) = |||, where Q is the orthoprojec-

dMEa(x) =

tor of Y onto R(A). Therefore if ||Qy| < Cé < ||y||, then the equation
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dMea(x) = C6 has a unique solution ovga. Under additional assumptions
1"m+2,«ll = IIBQHZ(y — vy)|l for all @ = oomea and C = 2 the convergence
X oyes — Xas Il = 0 as 6 — 0 has been proven and for source-like solutions
(2.2) the error estimate (3.1) has been shown to hold with p < m (see The-
orem 11). Numerical experiments suggest that with high probability the
order optimality of rule MEa also holds without the additional assumption
Fmsz.all = IBEH2 (v = vo)ll.

Unlike the monotone error rule in Tikhonov method, the rule MEa does
not guarantee monotonicity of the error for o« > otmga.

Instead of MEa, we can use an analog of that rule, which can be derived
as follows. Since by (2.10), (2.15), and (2.9)

1K+ 1,07 112

dmea(x) = WZ’;?”
ot o) [deome | e [t
m oc )‘%ngrl;o((A)?H m? H%XWH?NH

and the derivatives can be approximated as

Hix | o Txmigec = Xmiall Hix o Ixmertigec = Xme1all
do m;x 0((1 _q) ’ do m+1;x 0((1 _q)
with g < 1, the function dyga () is approximated by function
x m+1 Xmega — Xmeocll?
dMan _ . = || m;qo m,(x” . (3.7)
1-qg m ||Xm+1;q(x - Xm+1;(x||

We choose the regularization parameter & = &mgaq as the solution of equa-
tion dmgag(x) = C6 with C > 1, or if the parameter is searched from the
sequence of parameters &, = &n-1q with g < 1, then as the largest «,, for
which dMan(O(n) < Cé.

Let us now consider the question, what form the genuine monotone error
rule in (iterated) Lavrentiev method should have. For simplicity, take now
X = 0. Let y € R(A) and let x be the solution of Ax = y. Then7 = —y =
—Ax. Using the equalities

%xm;a = —%gm;a(A)? = Mo ’Kms1.0(A)7 = —mo>BTH Ax
and assuming ||y — y«| < 6, we get for m-iterated Lavrentiev method,
along the lines of analogous derivation for m-iterated Tikhonov method

(see Theorem 20):
d

d _
@”xm;zx_x* ||2 = 2(Xmx—Xx, axm;zx) =2mu« 2(xm;o(_x>i<; —BQHIAX)

= 2ma 2 (Axmq — AX 5, =BT x) = 2mo? (rpw + ¥ — V5, B 1 x)
> 2ma [ (Fmge, —BRIX) — |1y — v B x|l
> 2mo ’[(By, BT x) — 8|1 BT x||1.
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Let
(B&'y, By x)

IB& x|
If oomE is the solution of dye(x) = 9§, then [[xXm:x — X« || iS @ monotonically
increasing function of o for ot > otuvE.

Unfortunately dyg(o) cannot be computed in practice, since x is un-
known in case v € R(A) and even non-existent in case y ¢ R(A). Sub-
stituting x in (3.8) by various approximate solutions of Ax = 7y, we get
approximations of the monotone error rule function (3.8). The more accu-
rate approximations we have for x, the larger is the probability that the
resulting rule R yields a parameter ag for which the error is an increasing
function (i.e the monotonicity property (3.2) holds) for all @ > og.

Replacing x by ordinary Lavrentiev approximation x, = &~ !By Y, we get
the function dyga (). However, when finding the approximate solution of
Ax = 7y, in contrast to the problem (2.1), we consider this problem as a
problem with exact right hand side. Therefore, here a smaller regulariza-
tion parameter v with v < 1 may be preferred. Replacing x in (3.8) by
Lavrentiev approximation (va) !B, &Y, we get the function

(B&”y,B&”“Bvay) _ rm:oc: Vex,..o v ex)
||Bzyxn+leo(J’|| ||7’(x,...,o<,vo<||
where 7,...«,va has m + 1 indices «. For v = 1 this function coincides with
dyea(x). If v € R(A), then (va)*ley - x as vx — 0, so the func-
tion dmen (o) approximates the function dyg in process v — 0. However,
very small values of v cause numerical instabilities; numerical experiments
suggest to limit the values of v to v = 1073, In tests the best values for

non-smooth solutions were found to be around v = 0.17.
Alternatively, x in (3.8) can be replaced by iterated Lavrentiev approxi-

dume(x) = (3.8)

dMEn((x) = ’ V= 1’

k
mation Xy« Since gia(t) =t 11— (1 + o)™ ) = a1 D (1 + a7 1t) 7,
Ko j=1
we have X« = o' > Bk and the function dug () gets the form
j=1

k
(Ym0, Z.j:l Tm+j+1;¢x)

d x) =
() I 2'1":1 Ym+j+1all

For k = 1 this coincides with duga (). If ¥ € R(A), then xy.o — x as k — oo,
therefore the function dygk () can be considered as the approximation of
the function dyg (). Instead of iterated Lavrentiev approximation, x in
(3.8) can also be replaced by extrapolated Lavrentiev approximation Xy, ... o
to form the function

AdMEke (&) =

where 1, &2, ... is some sequence of parameters, for example, &, = ®;-1q
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(@ <1) and in addition ; = « or the geometric mean of 1, ..., Gy )41 18
(approximately) o.

In similar way we can modify the function dmgaq (). Namely, in dyga ()
all iterations are performed with the same parameter « but in dygn () one
iteration uses smaller parameter vx. In function dmgaq (), when choosing
the parameter & from the sequence &, = &pq with g < 1, this means
that instead of « we can use the parameter g'a with [ € N. Replacing
« in one side of the scalar product in the numerator [[Xm;qx — xm;(xll2 =
(Xm;go— Xm0 Xmzqe — Xm;) @nd in denominator by qla, we get the function

X m+1 (Xm;q(x - Xm;ou Xm;quo( - Xm;qlo()
1-q m?2

hieag () ||xm+1;ql+1o< - xm+l;ql(x”
In numerical experiments with g = 1/1.2 the optimal [ was [ = 5 for non-
smooth solutions and [ = 4 for source-like solutions (2.2) with p = 1.

Note that in [20,21] a rule dgn () = C6 with

(Yo, 72500
don (o) = S
||7’2;o(||
was proposed.
3.1.4. Rule R1.

Previous rules have the disadvantage that they cannot be used, if the equa-
tion Ax = 7y has only quasisolution (i.e f & R(A) but Qf € R(A), where
Q:Y — Y is the orthoprojector onto R(A)). The following rule was formu-
lated in [77].

In case of continuous regularization methods (2.3) let
3
5
where |A*| = (AA*)Y2. Choose the regularization parameter A = AR1k as
the smallest A for which dg; x(A) = C6. In general the function dgj k(A) is
not monotone and the equation dgrj k(A) = C6 may have many solutions.
The papers [75,76] study an analog of this rule, where the largest solution
of this equation was taken for the regularization parameter (instead of the
smallest).

For m-iterated Tikhonov method we get

K (AAS K koo (AA K1 )P (k=

ok A* (AAT)k-2y

m+k+%;o(” (

1
drix(A) = A7K|[lax?kpekly, || (k= 0, > 1, D,

—_
N—

dri k() =

w
Il

By induction, using the relations
*
A i = a(merifl;(X - Xm+i;0():

A(Xm+ifl;0( - Xm+i;(x) = TYm+i-1;x — Ym+ioo
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we can represent dg; x («) in the form

k k
(Z(—l)i(f)rmm Z(—l)i@rmw)”z (k=0,1,...),

i=0 i=0
drik(e) =1 77 ) '

(k+ 3 13
1/2 _ 2 ) _ 1
X Hl_zo( 1)1( i )xmﬂH (k—z, 2,...).
From here we get the following practically usable formulas for smaller k:

de,O(O() =dup(x) = (Vm;a;Terl;a)l/z,

l/2|

de,l/Z(O() = a71/2||A*Tm+l;a|| =X |Xm;¢x - Xm+l;¢x||;

1/2
de,l(O() = (7’m+1;o( —Ym+2;060 Ym;x — 7’m+1;o() / s
1/2
dri132(x) = / 1m0 — 2Xm+1:0 + Xm+2:xl-

Note that another formulas for realization of rule R1 and other quasiopti-
mal rules are given in [81].
For self-adjoint problems in case of continuous methods (2.9) let
drix(A) = A7K||aAkBK )| (k= 0, % 1, % ).
Choose the regularization parameter A = Agr; x as the smallest A for which
de,k = C6é.

For m-iterated Tikhonov method and m-iterated Lavrentiev method the
constant C is to be chosen to satisfy the inequality C > j/,i‘(k), where y; =
(yk/T(S))T(S), T($) =1+ (s+1)/m, h(k) = k —1/2 in m-iterated Tikhonov
method and h(k) = k in m-iterated Lavrentiev method.

Rule R1 in m-iterated Tikhonov method and in m-iterated Lavrentiev
method is order optimal for full range p < 2m and p < m, respectively
(see Theorems 3, 4). The analog of rule R1, where the largest solution of
the equation dg; k() = C6 is taken to be the regularization parameter,
guarantees the convergence || xx — xX«|| — O also in case, where the noise
level is known approximately by the condition ||y — y«]||/6 < c as 6 — 0,
where ¢ is an unknown constant (see [75, 76], cf. Theorem 10).

We use this rule in Section 3.3 as the first step in two-step rule DM. Rule
R1 itself is not included in tables of Chapter IV, since rules ME, R2, Me gave
better results.

3.1.5. Rule R2.

In [80] the following rule was proposed for Tikhonov method and for its
iterated variant. Let
||A*7’m+1;o( ||2K(0()S

d =
r2 (00) al/z(A*Tm+1;o(;A*7’m+2;o(),

where k(x) = (1 + «||A]|"2), s € [0,1]. Choose the regularization param-
eter & = oy as the solution of the equation dro () = Cd. Note that the
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influence of the factor k() is small for small & but for large & sometimes
it is useful. Our numerical tests are always performed with s = 1.

As in Rule R1, this equation may have many solutions and both the
smallest and the largest are of interest. We propose to take the largest solu-
tion; then typically ar2 = o4« and a somewhat smaller estimated parameter
&Rr2e = bage with b < 1 is often better.

Note that in order to avoid numerical instability when finding the small-
est solution of dro () = C9, [80] recommends to find the smallest solution
under condition & > (y*(S/M)Z, where M is an upper bound of ||x, — X||.

The bounds for the constant C are not quite obvious. Originally in
[80] the rule R2 was proposed with constant C > yf,4,m, where yr, =

s/2 k
(Si/z(%. This gives C > 0.3849 for m = 1 and C > 0.2862 for m = 2.
Based on our numerical tests, we recommend somewhat smaller constants:
C=03form=1,C=0.2form=2,and C =0.13 for m = 3.

In m-iterated Tikhonov method in case of (2.2) the rule R2 with the small-
est solution of equation dr» () = Cd guarantees the error estimate (3.1) for
all p < 2m—1 and under certain mild additional assumption about the error
of vy, also for all p < 2m (see Theorems 5, 6).

Due to (2.17) the expression of dr» () can be written as

\/&”Xm;(x - Xm+1;(x||2K(0()5
(xm;o( — Xm+1l;00 Xm+1l;x — xm+2;o()l/2.
In numerical tests this function is preferred because of better computa-
tional stability.
In case of extrapolated Tikhonov method let o, = q"x (@ < 1, n =0, 1,
...)and

dr2 (x) =

_ \/&”qu,...,(xm = X1, Ol ||2K(0‘)S

(qu,...,am = XXy 13 XX ey s 1 — X XYy Ry 2
Choose the parameter &« = &er2 as the solution of the equation der2 () =
Cé or, ifitis assumed that x = q" (g < 1; n =0, 1, ...), as the first & = g"
for which der2 (g") < C6.

derz () e

3.1.6. Balancing principle.

The balancing principle [3, 4, 7-9, 15-18, 50, 54-56, 58-63, 70], originating
from work by Lepskii about parameter estimation for stochastic regression,
has received much attention in recent years. Sometimes the balancing prin-
ciple is also called Lepskii type rule. As shown in [34], the balancing princi-
ple is closely related to rule R1.

Let g < 1 be a constant. Define the sequence of parameters Ag, Ay, ...,
AN, where Ag = 62, A; = Ag/q' fori =1, 2, ..., N, and N is the first index
i for which A; > 1. There are several variants of the balancing principle
for methods (2.3), in all of these the regularization parameter A = Agp is
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chosen as the first A; for which a certain condition is fulfilled. In [59, 60]
this condition is

co
||x2\1 - x?\iJrl || > \/—2\—1 (39)
and in [70] 5
. . C
3 e by = x> T (3.10)
i

In Tikhonov method ¢ = 2 was proposed. Instead of a fixed constant c
the paper [34] recommends to use ¢ of the forms ¢ = ¢’(1 — q)//q and
¢ =c’(1-q""'J) in these formulas, respectively, and also gives some rea-
sonable bounds of ¢’ for different methods (see Theorem 9). In [34] it is
also suggested to take g € [0.5,0.9], since the values from this interval bal-
ance the size of constants in error estimates found in [34] with the amount
of computational work needed to reach A; for which the condition of the
balancing principle is satisfied. For Tikhonov method the balancing princi-
ple with the condition (3.9) or (3.10) is order optimal in case of source-like
solutions (2.2) for p < 2, if ¢’ = 3v/3/16 ~ 0.3248 or ¢’ > 1, respectively
(Theorems 7, 8).
Instead of (3.10), numerical experiments suggest to use the condition

co
|l > \/—A—i’ (3.11)

since the calculations with (3.10) showed that very often (3.10) was satis-
fied with j = i — 1 or j = i. This condition also avoids double loop and
is therefore significantly faster to check. In Tikhonov method we recom-
mend ¢ = 0.3(1 — gi*'/)qU~1"V/2_ Also note that the value Ao = &2 is
problematic, since often the optimal A is less than &2.

For methods (2.9) the balancing principle is the same as described above,
only the analogs of inequalities (3.9), (3.10), (3.11), have A; in denominators,

dje{i-1,i}: ||x)\j—x;\

instead of \//\71
In [34] an analog of the balancing principle (3.9) was proposed for meth-
ods (2.3), where the largest A, = q" (@ < 1; n =0, 1, ...) for which
lxa, - xa,, Il < <2
A Al = \//\—z
was taken to be the regularization parameter. This rule guarantees conver-
gence || x) — x| — 0 for all c as 6 — 0 under assumption that ||y — y«||/d
remains bounded. If ¢ > yy1,2(1 — q)//q with y1,2 = yllfégpzo/po), then in
case ||y — ¥4l < & for source-like solutions (2.2) this rule also gives order
optimal error estimate for p < 2py.

3.1.7. Estimated parameters.

Sometimes it is known either theoretically or practically that a parameter
choice rule has a bias, choosing typically too large or too small parame-
ter. Therefore it is reasonable to post-estimate the computed parameter,
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shifting it towards smaller or larger values. The amount of shift generally
depends on the size of the original parameter, so different formulas can
be applied. We describe here only the strategies we used to construct the
final rules with post-estimated parameters. The rules themselves are formu-
lated in Chapter IV together with results they give on test problems. Names
of rules with post-estimated parameters have the letter “e” (“estimation”)
added to the end of original rules’ names.

In Tikhonov method always ame = &opt (and often ome and xgpt are not
very close). So it is reasonable to decrease the parameters found by ME-rule
a little. Assuming that oopt < 1, there exist k = 1 for which &op = (x’lfﬂa
and [ < 1 for which xept = lame. In Tikhonov method our numerical experi-
ments suggested to use the estimated parameter oyge = min(cy XuE, €2 Xy
instead of avmg, where ¢1 = 0.53, c2 = 0.6, c3 = 1.06. The same formula with
similar constants cy, ¢z, c3 gives quite good results also for extrapolated
Tikhonov method with 2 or 3 terms.

Our numerical tests showed that in 90% of cases (typically for smaller
«’s) also ar2 = &opt. Here we found that the estimated parameter otroe =
0.5xR2 is usually better than oRo.

Comparing the parameters oiyge and oroe, we found that ovge is better
of the two, if ||y — y«|| is equal to or slightly less than 9§, but oroe is better,
if || — y«|| is considerably less than 6. In both cases otnve = min(omge, XR2e)
often chooses the best of them.

In Landweber method np and nyg are close: np — 1 < nyg < np, SO
nye and mostly also np are smaller than the optimal stopping index 7.
Therefore it makes sense to use the estimated indices npe = round(cnp)
and nyg = round(cnye) instead of np and g, respectively. The constant
¢ = 2.3 is found by numerical experiments.

Also in CGLS nye < ny, so a larger index is preferred. We take nyge =
round(0.99n:13). Also for discrepancy principle npe = round(1.02n45%)
usually gives better results than np.

3.2. Parameter choice rules for unknown noise level

If the noise level is unknown, then no rule for choosing the regulariza-
tion parameter « can guarantee the convergence ||[xy — Xx|| — 0 as 6 — 0.
Namely, it was shown by Bakushinskii [1] that for ill-posed problems with
R(A) # R(A) the worst case error

sup{llxa —xxll:y €Y, [y — y«ll < 6}

can converge to 0 as 6 goes to 0, only if the regularization parameter is
chosen depending on the noise level. Nevertheless, some heuristic rules
are rather popular, because they often work well in practice and because in
applied ill-posed problems the exact noise level is often unknown. Typically
these rules minimize (or maximize) certain functions. Well-known heuristic
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rules are for example quasioptimality criterion [85, 86] (see also [2,5,6,10,
23,49,51,52]), generalized cross-validation (GCV) [91], L-curve rule [44,45,
82] (for limitations of L-curve rule see [39,90]), and Hanke-Raus rule [42].

3.2.1. Known rules.

An overview of heuristic rules can be found in [19,41]. For our purposes
we review some known rules that are similar to the rules that we will derive
using strategies of Subsection 3.2.2.

A classical rule in case of unknown noise level is the quasioptimality cri-
terion. In m-iterated Tikhonov method or in m-iterated Lavrentiev method
let () = | Xm:x — Xm+1:xll- Choose the parameter & = xq as the global
minimizer of the function @q ().

Note that @q (&) = dr1,1/2(00) //cx.

Another version of the quasioptimality criterion minimizes the function
Paq(&) = [ Xm:a—Xm;qell, where q is a constant. The rule with this function
is very natural to apply, if we choose the regularization parameter on the
mesh (&), where o, = qotn—1; then the regularization parameter is oy,
such that dqq () is minimal.

The quasioptimality criterion can be carried over from m-iterated Tikho-
nov method to extrapolated Tikhonov method with m terms. Let &, = @™
and @eq(&i) = [[Xseq(m,q,00) — Xseq(m+1,q,;) I, Where seq(k, g, x) is a finite
sequence of parameters defined by

seq(k,q, ) = (quflgj,qu{%J”,...,qu[ﬂ’l).

For Tikhonov method Neubauer [69] proposed a modification of the qua-
sioptimality criterion: minimize the function @qon(&) = | Xm:x — Xom:«ll in
the interval [ Omin, 1], Wwhere opin is the smallest eigenvalue of discretized
version of the operator A* A (we assume that ||A|| = 1).

For class of methods (2.3) this function has the form @pqgn(A) = [|xa—Xall,
where X) = ga(A*A)A* Ax,.

The Hanke-Raus rule [42] in m-iterated Tikhonov method finds the reg-
ularization parameter ¢ = opr as the global minimizer of the function
@HR(x) = dvp(x)/+/& In Landweber method the Hanke-Raus rule mini-
mizes the function @ugr(n) = n'/2||ry|l for n = 1. The ideas of construct-
ing the Hanke-Raus rule may also be used in TSVD, minimizing @ur(n) =
l7nll/On+1. In CGLS and in CGME the Hanke-Raus rule finds the global min-
imum of the function ur(n) = \/on+1 l7nll, where (g,) is a sequence con-
structed as follows: starting with k_1 = 0, g9 = 0, compute kK, = 1+BnKkn-1,
On+1 =0n+Ynkn(m=0,1,...).

In [13] it was proposed to minimize the function @grs(n) = 72/l A% 7l
in iteration methods and @grs(x) = I7all?/ (xllx«ll) in Tikhonov method.

In Reginska’s version [82] of the well-known L-curve rule the regular-
ization parameter is chosen as the minimizer of the function @ (A) =
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I7allllxall. In our experiments the results with this rule were worse than
those with rules presented in tables. We used the function @y (A) in TSVD
for constructing rules HRL’ and HRLm'.

3.2.2. Strategies for constructing new rules.

The main problem with many heuristic rules is that the global minimums
of functions that these rules minimize occur at very small A, leading to
very large error. The reason of this is that the discretized versions (as
used in computing) of several of these functions tend to zero as A — 0,
due to Banach-Steinhaus theorem. For example, if the discretized problem
has a unique solution, then the finite-dimensional analogs of @ur(A) =
dwp(A) VA converge to 0 as A — 0 [42], this also holds for other functions
@A) =d(A)/ \/X, where d(A) is a function from previously considered rules
that use noise level. So the global minimizer of these functions is A = 0.
Therefore, in practice it is important to bound the minimization interval
from below.

In m-iterated Tikhonov method the papers [49] and [69] propose to find
the minimizer of the quasioptimality function and the minimizer of a cer-
tain analog of the quasioptimality function on the interval [Anijn, 1], where
Amin = MOmin and omin is the smallest eigenvalue of discretized analog of
A*A. Tt was noticed that the function @qgn(x) is monotonically increas-
ing for A < Apin and has a large maximum near Ani,. However, our nu-
merical experiments showed that this lower bound is sometimes too small
(see column QN of Table 16 in Chapter IV). On the other hand, numer-
ical experiments suggest that for problems with small condition number
the reasonable bound should be much smaller. For example, we obtained
better results with the lower bound Omin = (MAmin)® in problems with
cond(A) < 10°.

In TSVD, when solving discrete N x N problems, we used Apin = o, wWith
some M < N, in several rules.

The problem of finding an appropriate a priori lower bound Apin for A’s
is hard. In general, instead of an a priori lower bound some a posteriori
lower bound determined during computations may be more promising.

Based on numerical evidence, we propose the following strategies to stop
the computations. We make computations for decreasing A’s, starting from
a certain initial value (usually A = 1).

1. Climbing approach. Stop the computation at the point, where the
value of a function @ (A) has become C times larger than its current
minimum value. Take « at which the function has this minimum value
as the regularization parameter. Suitable values of C for functions
that we used are around 4 in Tikhonov method, 20-50 in Landweber
method, 10-20 in CGLS, and 100 in CGME.

33



2. First local minimum. Stop the computation at the first local minimum
of @(A). In some functions @ (), for example, in functions used
in rule R2 or in quasioptimality criterion, the first local minimizer is
too large, in this case often the first local minimum of the function
@ (x) x€ with ¢ = 1/3 suits.

The climbing approach may also be used in TSVD method but here we
preferred an alternative approach, stopping the computations at some fixed
n =M withM < N.

In [31] we present theoretical and numerical arguments in favor of the
approach that several heuristic rules can be viewed and new rules be for-
mulated as partners of order optimal rules. Namely, many previously con-
sidered rules choose the regularization parameter in methods (2.3) from
condition d(A) ~ §. Under assumption X — x5 = (A*A)? 2w, |lw| = w
(and maybe, for example in case of rule R2 [80], under certain additional
assumptions) the inequalities

al) < const (AP/2w + A~1/25)

(3.12)
hold true for 0 < p < 2pg (except in discrepancy principle, for which
0 < p < 2pg — 1). The same estimates for ||x) — xx|| and d(/\)/\/x mo-
tivate the following heuristic parameter choice rule. Let @(A) = d(A)/ VA.
Choose the regularization parameter A as the minimizer of the function
@ (A). Thus, if in case of known ¢ a rule chooses the regularization param-
eter A as the solution of the equation d(A) = 6, then in case of unknown
6 the parameter A that minimizes the function d(A)/ VA may be a reason-
able choice. This approach was used already in [42], where on base of the
modified discrepancy principle (order optimal rule), the Hanke-Raus rule
(heuristic rule) was derived.

The estimates (3.12) are minimized by A = (5/w)%/®*D_ It has been
proved in [31] (see Theorem 17) that under assumption (2.2) the approxi-
mate solution x, in considered methods satisfies the error estimate

llxa = x| < const(l + %)w”(p”mf/(p“), (3.13)

where Ay = max{d(A),C|ly — y«ll}, (A) = d(A) /A with d(A) from rules
D, MD, ME, R1, R2, and Ag = (|Y — v« |l/w)?/?*V To minimize this error

estimate, d(?\)/?\pz_;’1 should be minimized in region d(A) < const||y — y«|;
for large p the function to be minimized is close to @ (A).
Also, if A is the global minimizer of @ (A), then a part of the error esti-

mate (3.13) can be further estimated as

1Y =yl _ @) Ny =2l _ 1y = sl

PA)VA @A) dA) T d@)
Therefore, for the global minimizer of @ (A) the error estimate (3.13) is of
optimal order, if d(A) is of the same order as ||y — y«|/. In practice often

llxx — x|l < const (AP/20 + A~1/2§),
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Figure 1. Typical behavior of functions @q(«) and @ur () in Tikhonov method.
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the function d(A) of an order optimal rule d(A) =~ § stays near the level
0 = ||y — v« |l after reaching this level.

On the other hand, if in error estimate (3.13) the inequality d(A) > ||y —
4| holds, then this estimate is of order d(A)?/?*1 which usually does
not cause problems, since d(A) is a function that decreases to the level 6.
Butif d(A) < ||y — y«ll, then the error may be very large.

These arguments can also be applied to self-adjoint case, where we use
the function @ (A) = d(A)/A.

For CGLS in [42] on base of estimates [68]

Ixn — x4l < const (en""*w + 0k/28), IIrall < const (ex”* 2w + 8)

the stopping index argmin{max{1, Qn}”2 l*n |} was proposed.

If two functions have different behaviors, then we can combine them to
make use of desirable properties of both functions to choose the regular-
ization parameter. For example, in (iterated) Tikhonov method the values
of functions @q(«x) and @grz(x) are sometimes very small, if « is small,
so the global minimum lies at too small «; on the other hand, the values
of functions gur () and @prs(x) are much larger at small «, though the
global minimizers of these function tend to be larger than the optimal .
Typical behavior of the functions @q(«) and @ur(x) in Tikhonov method
is illustrated by Figure 1. In rule QHR we choose the regularization pa-
rameter as the local minimum of @q(x)k(x) for which @ur () is minimal.
In rule HR2 we combine the functions @ur(x) and @gr2 () in such way
that in the region, where @g» () and @ugr () have similar values, the func-
tion @r2 () dominates, and in region, where @r» () is significantly smaller
than @ur (&), the function @ur () dominates. More precisely, the regular-
ization parameter & = ayr2 is found as the global argmin of

QHr2.7 (X) = QQRZ((x)((PRz((X)/CPHR((X))TQQHR(0()1*(<PR2(0<)/<PHR(O<))T_
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In numerical tests the rule with this function gives good results but the
best results with this approach were obtained with the function @gr2 (&),
which is similar to @ur2,+ (), except that it uses the function @grs(x) in-
stead of @ur(x).

These functions can also be used to choose the regularization parameter
as a certain local minimizer of some other functions as in rules QHR?2 and
QHR?2 (see Chapter IV).

Choosing the proper local minimizer in Tikhonov method can be assisted
by the error estimate |[x) — xx| < (1 + W(A)) ?1\1’>1£ XA — x|, where

W(A) = sup M
AL<H<A2 Y”A*Bgu?’u”
and X is found by (2.3) with y instead of y, where ¥ is an arbitrary element
satisfying |Qn (3 — ¥x) I = 1Qp(y — ¥4) |l and (QRA(X — x4), 7 — ¥x) 20
(0 < n < |A*Al)), Qj is the spectral family of the operator AA*, and [A1,A2]
is the interval containing the global minimizer of the function f(A) = ||X) —
X« |l (see Theorem 18, also for values of &).
For Lavrentiev method an analog of W (A) is

XA — X
W) = sup Hlixa — xpll
AL<u<Ar Y”B;ﬂ’u”

for CGLS the function

W(n) = sup IxXm — xnll

meM On+1ll7nll
may be used, where M is either {1,2,...,nmax} or a subset of this set (for
computational reasons), for example M containing points 1, 2, ..., 10 and

differences of other points form an arithmetic progression. Using this func-
tion could improve results in CGLS (Rule HRmWC in Chapter IV).

In TSVD method the function @q(n) = l[xn — Xn+1ll to be minimized
in quasioptimality criterion, is oscillating in some problems and then only

maximums of this function are near to the error of the approximate solu-
n+2

tion. We modified this function to @qa(n) = ( Z llxn — xillz)l/z. The last
i=n-2

function does not oscillate but sometimes it is smaller than both @q(n)

and the error. Therefore, instead of @qa(n) we minimized the maximum of

@q(n) and @qa(n).

In Landweber method, in TSVD, and in CGLS the Hanke-Raus rule min-
imizes the functions n ||7xll, [7nll/0ns1 and eni1llrsll, respectively. In
these methods the Hanke-Raus rule tends to choose too small stopping
index. With this reason, we modified the Hanke-Raus rule, subtracting
the discrepancy at a later iteration step from the discrepancy at step n,
so in Landweber method we minimized n(||[¥nll — |["2n+100ll), in TSVD
(Il = lI71.5n+811) /On+1, and in CGLS @n+1 (17nll = [[72n+1011). In TSVD the
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value of |71 58]l for odd n was found as \/I71.5n+7.5/l171.5n+85/l. Analo-
gous modifications were applied to BRS rule, which also tends to choose too
small stopping index. These ideas can be useful in other functions as well,
for example we modified the function @qon(n) = [|xn — X241l in Landweber
method to @onm (1) = Xy — X2n+1001l.

Besides minimization of some function one may use the observation that
several monotone functions attain a certain level (“plateau”) around the op-
timal stopping index A4 and after that do not change much. This approach
gave good results in conjugate gradient type methods. Examples of such
functions are

n n n-1
(X x5 dpa(n) = (X Il =) (X a7 T,
i=0 i=0 i=0
which are monotonically decreasing even if || x| (in CGLS) and |7y (in
CGME) may not be. In rule DHP, used in CGME, we choose the stopping
index npgp as the first n for which the function dpg(n) decreases in next
10 steps by no more than 1.5 times.

3.3. Parameter choice rules for approximate noise level

Up to now we have considered cases, where the exact upper bound of the
noise level is given or no information about the noise level is known at all.
In some situations the noise level may be known approximately: instead of
ly — y«ll < 6 it holds ||y — y«||/6 < const as 6 — 0. Here the constant
on the right hand side may be greater than 1, so the actual noise level may
be underestimated. In this case usual rules for choosing the regularization
parameter lead to divergence of approximate solutions.

The first rules (analogs of R1, where the largest A is taken as the regu-
larization parameter, instead of the smallest) for choice of the regulariza-
tion parameter A, guaranteeing x) — X% as 6 — 0 under assumption that
|y — ¥«l|l/6 remains bounded, were proposed in [75,76]. The same con-
vergence is valid also for the analog of the balancing principle, proposed
in [34] (see the end of the Section 3.1.6).

The rules of [75,76] guarantee convergence but better error estimates
can be obtained, adding the second step. The corresponding rule was pro-
posed in [33].

We now formulate a rule for many methods that minimizes a certain
function in interval [A,A], where the lower endpoint A is found from an-
other parameter choice rule that uses the supposed noise level 6. These
rules use two-step strategy: 1) using approximate noise level ¢, find A; 2)
minimize certain function in [A,A]. We denote this rule by DM, where D
refers to 6 and M refers to minimization.

Rule DM for Tikhonov method finds the parameter &« = apy according
to the following two-step strategy. 1) Find « as the maximal solution of
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dri,1/2(e) = ¢10. 2) Find & = apm as the minimizer of gg2 () x? on [, 1].

This rule can be generalized to extrapolated Tikhonov approximation
with fixed number m of terms and with parameters o, = q"« (q fixed;
n =1, ..., m). To this end replace dri,1/2(x) by deri1,1/2(x) in 1) and
Pr2 (&) by @erz (&) in 2).

For ordinary (m = 1) and extrapolated (m > 1) Tikhonov approximation
X« the choice of & from the rule DM guarantees convergence || xx—Xx || — 0,
as 0 — 0, if lim|y — y«ll/6 < C. In case of source-like solutions (2.2) the
error estimate (3.1) holds with p < 2m, if ¢y is large enough (theoretical
bound 0.24).

Practical values of constants ci, c» can be determined by computation
and they are much smaller: we found that ¢; = 0.001...0.02 and ¢y =
0.03...0.14 give the smallest error.

Rule DM for m-iterated Tikhonov method (m > 1). Find « as the maximal
solution of dr1 1/2() = 16 with ¢; = (m + 1)™"1/m™. 2) Fix ¢» € (0,1),
g € (0,1) and find apym as the minimizer of @qq(x) k() @™ /x2/? in
[x,0.4m + 0.6]. If the equation in 1) has no solutions, then let « be the
largest local minimum of dgrj 12 ().

Rule DM for m-iterated Lavrentiev method (m = 1). 1) Find « as the
minimal solution of (7,1, Arx2)//& = c16. 2) Fix c2 € (0,1), g € (0,1) and
find @ = apm as the minimizer of (qu(O()K(O()O'OOS ®‘? on [, m]. We used
€1 =2.5-1075 ¢ = 0.25.

Rule DM for Landweber method. 1) Find N as the first n > 1, for which
VIl A*r,ll < 16 with ¢1 = 1/\/%. 2) Fix ¢» € [0,1/2] and choose n =
npum as the minimizer of n2||r,|| on [1, N]. In self-adjoint problems the rule
DM is as follows. 1) Find N as the first n > 1 for which vVn(Ary, rn) < 16
with ¢; = 1/\/%. 2) Fix ¢ € [0,1] and choose n = npy as the minimizer
of n®||ry|l on [1,N].

Rule DM for CGLS. 1) Find N as the first n for which \/on+1 |A*m |l < ¢10.
2) Fix ¢» € (0,1/2) and find n = npm as the minimizer of Q,CfH(IITnII -
172n+111) on [1,N] (we suggest c; = 0.25, c» = 0.4).

3.4. Theoretical results

Here we review some theoretical results concerning the choice of the regu-
larization parameter A in methods of the forms (2.3) and (2.9). Theorems 1-
10 are known results, Theorems 11-18 are proved in our papers; for longer
proofs we refer to corresponding papers.

From (2.4), (2.6) follows the error estimate ||x) — xx| < ¥Y(A) with

{IIK;\(A*A) (% — x) || +y«8/AY2  for method (2.3),

Y(A) = KA (A) (X — x) || + yS/A for method (2.9).

In this estimate the first term dominates for large A and the second term
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for small A. The quality of a parameter choice rule can be characterized by
the following quasioptimality property.

Definition 1. [78] A rule R for a posteriori choice of the regularization pa-
rameter A = Ay is called quasioptimal (or weakly quasioptimal) if there exists
a constant C (which does not depend on A, x«, v) such that for each y € Y,
|y — v« < 6 there holds the error estimate

XAz — X%l < C}\n](?)W(A) +0O5). (3.14)

The error estimate (3.14) is satisfied, if the following stronger error esti-
mate holds:
XA — Xl < C’ %ni(?)‘l’(z\). (3.15)

Theorem 1. [78] Let v € R(A), ||y — x|l < 6. Let the generating function
ga(t) in approximation (2.3) satisfy the conditions (2.5) with py = o0, yg =1,

(2.6),and sup tgx(t) <1withlimtg,(t) =10 <t < ||[A*A||). Assume
0<A<[|A*A| A-0
further that the function A — g, (t) is continuous, nonnegative and monoton-

ically increasing, the function A — g)(t)/A is monotonically decreasing and
d%\g;\(t) <yy(d —tgr(t)),y =const (0 <t < ||[A*A|, A = 0). Then the rule

D in method (2.3) is quasioptimal. If the generating function g)(t) in ap-
proximation (2.9) satisfies the self-adjoint analogs of above conditions (with
(2.4) instead of (2.6) and A instead of A* A), then the rule D in method (2.9)
is quasioptimal.

Theorem 2. [78] Let v € R(A), ||y — yv«| < 6. Let the generating func-
tion gy (t) in approximation (2.3) satisfy the conditions (2.5) with yo = 1,
(2.6). Assume further that the function A — gy (t) is continuous, nonnegative
and monotonically increasing, and satisfies the conditions }\in% tgr(t) =1,

d%g;\(t) < yyBA(t)(1 —tga(t)), y = const, where i (t) = (1 — tga(t))!/P°
for methods with pg < o and Bx(t) = 1 for methods with py = oo, and
o 1tSIHlfli‘)*A”(1‘32\1(t))’”(l —tga, () (1 —tga, (1) < 5/571(?\1_1 -AhP0<
A1 <Az, p =0, where y,, = (y,,/T(S))T(S), T(s) =1+ (s + 1)/po for meth-
ods with pg < oo, T(s) = 1 for methods with pg = (0 <t < [[A*A],
A = 0). Then the rules MD, ME, R1, Bl, B2 in method (2.3) are quasiopti-
mal. If the generating function g, (t) in approximation (2.9) satisfies the self-
adjoint analogs of above conditions (with (2.4) instead of (2.6) and A instead
of A* A), then the rules MD, ME, R1, B1, B2 in method (2.9) are quasioptimal.
The following four theorems give the convergence results and error esti-
mates for a priori parameter choice and for rules D, MD, ME, R1, R2.
Theorem 3. [74,76,84,88,89] Let y € R(A), ||y — v« < 6. If in approxima-
tion (2.23) the regularization parameter A = A(9) is chosen by a priori rule

A ~ 671, then || xas) — XxIl = 0 as & — 0 and for source-like solutions (2.2)
the error estimate (3.1) holds with p < 2pg. If in approximation (2.3) the
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regularization parameter A = A(5) is chosen by one of rules D, MD, ME, R1,
then ||xa5) — x|l = 0 as & — 0 and for source-like solutions (2.2) the error
estimate (3.1) holds true with p < 2po — 1 in case of rule D or with p < 2py
in case of rules MD, ME, R1.

Theorem 4. [73,75,87-89] Let v € R(A), ||y — v« < 6. If in approxima-
tion (2.19) the regularization parameter A = A(9) is chosen by a priori rule

A ~ &7+, then || x5y — XxIl = 0 as & — 0 and for source-like solutions (2.2)
the error estimate (3.1) holds with p < po. If in approximation (2.9) the reg-
ularization parameter A = A() is chosen by one of rules D (with assumption
po > 1), MD, R1, then ||xxi5) —xx|l — 0 as 6 — 0 and for source-like solutions
(2.2) the error estimate (3.1) holds true with p < po — 1 in case of rule D or
with p < pg in case of rules MD, R1.
Theorem 5. [80] Let Qy € R(A), ||y — v« < 6. If the regularization
parameter x = x(0) in m-iterated Tikhonov method is chosen as the smallest
solution of the equation drz(x) = C6 with C > 1, then || xxi5) — X« = 0 as
6 — 0 and for source-like solutions (2.2) the error estimate (3.1) holds true
withp <2m — 1.
Theorem 6. [80] Let Qy € R(A), ||y — y«ll < 6. If the regularization
parameter x = x(9) in m-iterated Tikhonov method is the unique solution
of equation dgz(x) = CS with C > 2 and the inequality |||A*|B3"°™¥|| >
[[|A*|B3+2™ (v — y4)|| is valid for all « = x(§5), then the error estimate (3.15)
m c/2-1 )1/2

c/2-1" m ’

Next three theorems concern the balancing principle (Section 3.1.6). The
first two of them show that the two forms (3.9), (3.10) of the balancing
principle are quasioptimal, the third establishes a monotonous dependence
of error on the constant ¢ in these two variants of balancing principle.
Theorem 7. [34, 79] Let Qy € R(A), ||y — y«| < 6. If the regularization
parameter x = x(0) is chosen according to the balancing principle (3.9) with
c> (1 -q)yyi2/(y«/a), then for methods (2.11), (2.18), (2.20), (2.21) the
error estimate (3.15) holds true.
Theorem 8. [34,79] Let v € R(A), ||y — v« < 6. If the regularization pa-
rameter x = x(9) is chosen according to the balancing principle (3.10) with
c > yyll/z/y*, then for methods (2.11), (2.18), (2.20), (2.21) the quasioptimal
error estimate (3.15) holds true.
Theorem 9. [34] Let v € R(A), ||y — v« < &. If the regularization param-
eter ¢ = «x(c) in m-iterated Tikhonov method is chosen from the condition
(3.9) withc > (@™ — 1) or from the condition (3.10) withc > (g™ - 1)(1 -
qi“‘j)(l —q)~ ! then the error IXx(c) — Xl is a monotonically increasing
function of parameter c; particularly || Xxc) — Xl > | Xapm — X1l

For approximately given noise level we can say the following.
Theorem 10. [32,33] Let v € R(A). Consider choice of the regularization
parameter A = A(S) according to the following rule.

holds true with C" = 2/m (C + y1,2.2m+1) + max(
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Rule P. Let s € (0,1). Let 0 = 2 for approximation (2.3) and

o = 1 for approximation (2.9). If dri1,2(1) < C9, then choose

A(6) = 1. Otherwise choose A(6) as the global minimizer of the

function £f(A) = A=%/7||Bara|l on the interval [Ar1,1/2,1].
Iflly — y«ll/6 < const as § — 0, then in methods (2.11), (2.18), (2.20), (2.21)
and in self-adjoint variants of these methods the rule P guarantees conver-
gence ||xxi) — X+l — 0 as 6 — 0 and for approximations (2.3), (2.9) the
following error estimates hold true. 1) If ||y — v«| < max{d,do}, where

o0 = %HB’)\((;)TA((;)H, then (3.15) holds with C' = 1/(1—0s). 2)Ifmax(5, 6g) <
Iy — ysll < %IIBm I, then (3.15) holds with C' = const(||y — vl /50) /@),

The proofs of the following Theorems 11-19 can be found in our papers.
Next Theorem 11 shows that the rule MEa (Section 3.1.3) for Lavrentiev
method is quasioptimal.

Theorem 11. [35] Let v € R(A), ||y — y«| < 6. If the regularization pa-
rameter x = x(0) in m-iterated Lavrentiev method is chosen by Rule MEa
with C > 2 and the inequality |BIV"°F| = ||B™+2(y — v)| is satisfied for
all x > x(5), then the quasioptimal error estimate (3.15) holds true with
C':C+1+max( m C/2_1>1/2
Cc/i2-1" m '
The following three theorems concern parameter choice in extrapolated
Tikhonov and extrapolated Lavrentiev approximations.

Theorem 12. [28,30] Let v € R(A), ||y — v«ll < 8. Let m be fixed and let
Op = qn& With qy fixed m = 1, ..., m, m + 1). Let xx = Xq,,...x,, b€ an
extrapolated Tikhonov approximation or an extrapolated Lavrentiev approx-
imation. Then the functions dp(«), demp(x) are monotonically decreasing.
Let C > 1. If o is chosen from the discrepancy principle dp(x) = C9, then
Ixaq — x|l = 0 as & — 0 and for source-like solutions (2.2) the error esti-
mate (3.1) holds true with p < 2m — 1 in extrapolated Tikhonov method and
with p < m — 1 in extrapolated Lavrentiev method. If « is chosen from the
modified discrepancy principle dopp(x) = Co, then || Xy — xx|| = 0asd — 0
and for source-like solutions (2.2) the error estimate (3.1) holds true with
p < 2m in extrapolated Tikhonov method and with p < m in extrapolated
Lavrentiev method.

Theorem 13. [28] Let v € R(A), ||y — y«|l < 6. Let the sequence x; >
o2 = ... be given and let xy, = Xq,,.. x, be an extrapolated Tikhonov ap-
proximation. Then the functions dp(n), dyr(n) are monotonically decreas-
ing and dp(n + 1) < dye(n) < dp(n) for all n. Let np, nyg be the first
numbers with dp(n) < C6, dyg(n) < Co respectively, with C > 1. Then

np—1<nyg<npand |[xp —x«ll <llxpn1—x«lm=1,2,..., nmp). If
a monotonically decreasing infinite sequence 1, X2, ... satisfies conditions
n-1

1 < const Z (xi’l, then the existence of finite np and nyg is

o0

-1 _ _
Z X" =0, Ky
i=1 i=1
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guaranteed and for n € {np,nyge} llxn — x|l — 0 as & — 0; for source-like
solutions (2.2) also the errvor estimate (3.1) holds true for all p > 0.
Theorem 14. [28,30] Let y € R(A), ||y —yx«|l < 6. Let m, M, be fixed and let
Opn = qn& With fixed qgn m =1, ..., M). Let Xx = Xxy,..,%1, 02,102,001 Coppreons Xt
——

be an extrapolated Tikhonov approximation or an extrapolated Lavrentiev
approximation. If the regularization parameter x = x(0) is chosen by the
discrepancy principle dp(x) = Co with C > 1, then ||xq — Xx|| = 0asé — 0
and for source-like solutions (2.2) the error estimate (3.1) holds true with
p <2(M; +M> +...4+ My) — 1 in extrapolated Tikhonov method and with
p <My + M+ ...+ My, — 1 in extrapolated Lavrentiev method.

Next two theorems deal with the approach, where in rules MD and ME the
discrepancy of additionally iterated approximation is replaced by a proper
linear combination (cf. rules eMD and eME in Sections 3.1.2, 3.1.3, respec-
tively).

Theorem 15. [28] Let y € R(A), |y — y«ll < 6. Let Xm:a and Xm;qx be
approximations found by m-iterated Tikhonov method (by Tikhonov method,
ifm=1)and let

Umiax = (1 — qu)_lxm;a + (1 - qm)_lxm;qa- (3.16)
Denote Sy« = AVm:x—2 . If the regularization parameter x = x(J) is chosen
by rules (Ym:a Sm:a) /> = CS with C > 1 oF (Fmeos Smia) /| Smill = CS with
C>(q@™-1)/(m(1-q)), then || xm:x—Xxx|l — 0 asé — 0 and for source-like
solutions (2.2) the error estimate (3.1) holds true with p < 2m.
Theorem 16. [28] Let y € R(A), lly — y«ll < 6. Let Xmx and Xm;qu
be approximations found by m-iterated Lavrentiev method (by Lavrentiev
method, if m = 1) and let vy.« be their linear combination (3.16). Denote
Smix = AUm:a — ). If the regularization parameter x = «(6) is chosen by
the rule ||sm:xll = CO with C > 1, then |[xm:« — Xl — 0 as 6 — 0 and for
source-like solutions (2.2) the ervor estimate (3.1) holds true with p < m.

For theoretical justification of the minimization strategy (Section 3.2.2)
the following results can be used.

Theorem 17. [31] Let v € R(A). Let the function g,(t) in method (2.3) be
continuous, non-negative and monotonically increasing for each t > 0 and

satisfy conditions (2.5), (2.6) and d%\g)\(t) <yyBa(t)(1 —tga(t)), ¥y = const,

where Ba(t) = (1 — tga(t))!/P0 for methods with pg < o and Ba(t) = 1 for
methods with pg = « (0 <t < ||A*A||, A > 0). Then for source-like solutions
Xy =X + (A*A)P 2w, |lw| = w the error estimate

||xA—x*||sc(l+%)w”<”“m§“”“), Ay =max{d(A), Clly — y«II}
0

holds for all A > 0, where @ (A) = d(A)/VA, Ao = (ly — ysll/w)?/P*V) and
0<p=<2pp—1incased(A) =dp(A) or d(A) = due(A) or d(A) = drz(A),
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and 0 < p < 2pg in case d(A) = dup(A) or d(A) = drik(A), and C =1 for
rules D, MD, ME, C = Vi for rule R2, C = 5/’,571/2 for rule R1,k.

Theorem 18. [31] Let v € R(A). Let X\ be an approximate solution of
Ax = ¥, found by m-iterated Tikhonov method, where y is an element for

which |Qu(¥ — yo)ll = 1Qu(y — yo)ll, (QuAX —x%), Yy —>0) 200 < <
|A*All), Qu is the spectral family of operator AA*. If the global minimizer of
the function f(A) = || X — x« || lies in the interval [A1,A2], then ||x) — x| <
(1+W(A)) 21\r>11(:") XA — x|, Wwhere

XA — X
W(A) = sup 1'1”)‘72“”’
AL<H<A2 Y”A*Baﬂ’u”

E=1form=1,E=10+m/(m+1)™H"1 form = 2.
The proofs of the following two theorems are short and we present these
proofs.

Theorem 19. [36] Let v € R(A), ||y — v« < 6. If due(n) = O in iterative
regularization methods of the form (3.3), then || xn+1 — X« || < llxn — x|l

Proof.
0 — X 1? = llxxns1 — X112
= (Xn + Xn+1 — 2Xs5, Xn — Xn+1) = (Xn + Xn+1 — 2X5, A% 2Zp)
= (Axn + AXns1 — 2AX5,Zn) = (tn + 1 + 2(¥ — V%), Zn)
= (rn+Tn+1,2n) — 21y = ysllllzull 2 (rn + Yne1, zn) — 261 zall

Therefore, if dyg(n) = &, then ||xn — Xl = | Xne1 — Xx|l. O

Theorem 20. [84] Let vy € R(A), ||y — v« < 6. If dye(x) = 6 in continuous
regularization methods of the form (2.3), then the function e(x) = ||xXx—Xx ||
is increasing at .

Proof.
S X = 2~ Xy £ Xa)
= 2~ 0, e Gl AP AVATT) = 205~ 0, ~A* g (AAT)T)
= 2(Axq — Axy, —%ga(AA*)F) =2(ra+ ¥ — Vs, —%ga(AA*)?)
2 2[ (s~ o Gl AAIT) — [ = el 2 o AA* ]
2 2[(r, A= Gl AAIP) — S| g (44T,

Hence, if dye(x) = 6, then %lea —xxl = 0. O
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IV. NUMERICAL RESULTS

4.1. Test problems, noise generation, and general remarks

Numerical computations, the results of which we present here, are made
with parametrized test problems that allow to form the matrix, exact so-
lution vector, and corresponding right hand side of prescribed dimension.
Most tests are performed with the set of test problems by Hansen [43,45,
46], which is becoming a de facto standard in studying numerics of ill-posed
problems. Table 1 describes the problems used in experiments, showing the
problems’ names, descriptions and condition numbers at discretization pa-
rameter 100. Other parameters, if existent, had default values that can be
considered being appropriate for ill-posed problems.

We have made an attempt to computationally estimate the smoothness
parameter p in (2.2) for default solutions of these problems. For this we
solved the problems 100 times at every noise level 1071, 107191 ... 1076,
using discretization parameter 1000: these values should as much as possi-
ble minimize distortive effects caused by discretization and particular noise
vectors. At each noise level 6 we computed the average over all noise vec-
tors of errors of approximate solutions found by Tikhonov method with
monotone error rule and by Landweber method with discrepancy princi-
ple. Assuming that the error e(d) is of the form e(5) ~ ¢8?/P*1 with ¢
constant, we calculated the best p by method of least squares (taking log-
arithms of both sides before). In Table 1 these results are in the column
Est p. The column Maxerr shows maximal relative errors of ¢57/P*1) with
respect to e(d). It turned out in calculations that perturbations in e(d),
compared to the function ¢87/P*1) were quite large even for such small §
as 1075, This shows that theoretical convergence results about rules should
be used with caution at least in region 6 € [10°6,1071].

In addition, we used some more or less artificial test problems from
[13], whose matrices are described in Table 2. As in [13], we combined
these matrices with 6 solution vectors of Table 3. In the following, the
cases, where some other set of test problems (except Hansen’s) was used,
are specially noted.

The discretization parameter (number of rows/columns of resulting ma-
trix) is typically 100. On one hand, this value is large enough to reveal
the characteristic properties of problems, methods and rules; on the other
hand it is small enough, so that the computer could generate sufficiently
large amount of data to make various comparisons. We have also experi-
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Table 1. Hansen'’s test problems [43,45,46] used in numerical tests, together with
smoothness estimations of default solutions.

Nr Problem cond;oo selfadj Est p Maxerr Description

1 baart S5e+17 no 0.17 20% (Artificial) Fredholm integral equation of
the first kind
2 deriv2 le+4 yes  0.20 1% Computation of the second derivative

foxgood 1e+19 yes  0.63 25% A problem that does not satisfy the dis-
crete Picard condition

4 gravity 3e+19 yes 0.51 4% A gravity surveying problem

5 heat 2e+38 no 0.52 32% Inverse heat equation

6 ilaplace 9e+32 no 0.04 6% Inverse Laplace transform

7 phillips 2e+6 yes 0.69 21% An example problem by Phillips

8 shaw 5e+18 yes  0.22 31% An image reconstruction problem

9 spikes 3e+19 no 0.00 1% Test problem whose solution is a pulse
train of spikes

10 wing le+20 no 0.06 11% Fredholm integral equation with discon-

tinuous solution

Table 2. Test problems from [13].

Nr Problem cond;gy selfadj Description

11 gauss 6e+18 yes  Test problem with Gauss matrix a;; = , /%eiﬂl‘*ﬁz
with o = 0.01

1
12 hilbert 4e+19 yes  Test problem with Hilbert matrix a;; = Hji—l
13 lotkin 2e+21 no Test problem with Lotkin matrix (same as Hilbert ma-
trix, except a;; = 1)
14 moler 2e+4 yes  Test problem with Moler matrix A = BT B, where b;; =

1, bii+1 = 1, and b;j = 0 otherwise

i-1
16 prolate le+17 yes  Test problem with a symmetric, ill-conditioned Toe-
plitz matrix

i+j—2
15 pascal le+60 yes  Test problem with Pascal matrix a;; = (l J )

Table 3. Solution vectors for test problems of [13]. Here N is discretization
parameter of the problem (usually 100) andi =1, ..., N.

Description X Description Xi
constant 1 sinusoidal n 2"(;\]_ D
linear % linear+sinusoidal ﬁ + % sin 277(11\[— D
i_[gJ 2 0, ifis[ﬁJ
. 2 . 2
quadratic ( N ) step function N
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mented with other values of the discretization parameter but for example
the results with parameter 1000 were quite similar to the results with pa-
rameter 100.

Since the performance of methods and rules generally depends on the
smoothness p of exact solution in (2.2), we complemented the standard
solutions x of (now discrete) test problems with smoothened solutions
|AlP x4, with p = 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 4, 8. In the following ta-
bles p always means this additional smoothness and is not related to initial
smoothness in Table 1. The right hand side of the equation was computed
as yx = A|A|Px,. After discretization all problems were scaled (normal-
ized) in such way that the Euclidian norms of the operator and right-hand
side were 1.

On base of exact data y, we formed the noisy data y, where ||y — y« || =
§for 6§ =0.5,1071, ..., 107%. In most cases the noise v — yx added to y
had uniform distribution (we preferred this to normal distribution since itis
more consistent with the usual assumption ||y — ¥« | < § made in studying
ill-posed problems). Besides this we used correlated noise, where the com-
ponents of noise vector had nonzero correlation. The amount of correla-
tion was determined by randomly choosing the parameter w € [—0.5,0.5],
where w = 0 corresponds to white noise, w = —0.5 corresponds to noise,
which has dominantly high frequencies in frequency domain (blue noise),
and w = 0.5 corresponds to noise with dominantly lower frequencies (red
noise). If correlated noise was used, it is mentioned in heading of the cor-
responding table.

To enlarge the common base of comparisons, we generated 10 noise vec-
tors and saved them beforehand, so that at different runs the same 10 noise
vectors were used in all problems. Then the problems were regularized us-
ing different methods, choosing the regularization parameters by rules that
we wanted to compare. In experiments we also took into account the pos-
sibility of over- or underestimation of the noise level: although the actual
noise level was 6, we applied the rules as if the noise level was dé, where
d € [0.01,100]. Thus, if d > 1, then the noise level was overestimated.

To speed up the computations, the discrete problem of the form Ax = y
was further transformed in the following way. Using a fast-working stan-
dard function of the programming language, the singular value decompo-
sition of A was calculated as A = UAVT, where A is a diagonal matrix,
U, V are orthogonal matrices and I means transposition. Then the prob-
lem UAVTx = y was replaced by the problem AX = 7 with & = VIx
and ¥ = UTy. This, however, brought a small decrease in computational
stability but its influence was noticeable only at very small values of the
regularization parameter (close to machine precision).

As Table 1 shows, half of Hansen’s problems are self-adjoint. Meth-
ods, which are also applicable in non-self-adjoint problems, were used in
all problems 1-10. Methods for self-adjoint problems were used only in
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problems 2, 3, 4, 7, 8 of Hansen (exception is Table 33).

Taking into account normalization of problems, the interval of regular-
ization parameters was taken to be [10739, 1] for methods of Tikhonov and
Lavrentiev, or [, 1] with & > 10739 if numerical instabilities occurred in
the interval [1073°, &) in these methods, for example, if a theoretically pos-
itive expression turned out to be numerically negative. If in Landweber
method a parameter choice rule did not stop the iterations earlier, itera-
tions were stopped at 259, In CGLS and CGME maximal number of iterations
was 4000. This upper bound of iterations was, however, not necessary in
most problems.

In the following sections we present several rules with particular numer-
ical constants. These constants are always in some sense optimal: either
they have been optimized on data set considered here or on some larger
data set (additional problems (mainly artificial), additional 6’s, larger num-
ber of noise vectors), or they have been selected with the aim to balance the
behavior of rules between different smoothness indices (with smoothness
p = 0 having the largest weight) or different noise level ill-estimation in-
dices (with indices close to d = 1 having the largest weight). The constants
were optimized mainly for uncorrelated noise.

Since in model equations the exact solution is known, it is possible to
find the regularization parameter A = Ay, which gives the smallest error:
Ixa, —xxll = 1}1>1101{|le — x«|l}. For every rule R the error ratio [|x, — xx|l/

lIxa, — x«Il describes the performance of rule R on this particular problem.
To compare the rules or to present their properties, the following tables
show the averages of these error ratios over various parameters of data set
(problems, smoothness indices p, noise levels §, runs). Besides averages
of error ratios we also computed root-mean-squares of error ratios for our
numerical experiments but the better-worse relationships of methods and
rules remained mostly the same.

Numerical tests were made with GNU Octave, a freeware analog of Mat-
lab, primarily intended for numerical computations.

4.2. Comparison of potential of methods

Tables 4 and 5 compare the potential of methods at noise level § = 1074,
showing the averages of minimal relative errors [x), — x«ll/llxx|l over 10
runs for p = 0 in case of uncorrelated noise and correlated noise, respec-
tively. Tables 6 and 7 contain analogous results for p = 2. The best results
for every problem are shown in bold. For other 6’s the better-worse rela-
tionships of methods remained the same. Typically the best results were
produced by methods of Landweber, TSVD, and CGLS. If p = 0, then the
results of Tikhonov method were close to the best.

Note different typical behavior of error in methods CGLS and CGME (Fig-
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Table 4. 103 times the averages of minimal relative errors in methods for § =
1074, p = 0. Self-adjoint variants of methods are marked with *.

Probl. | Tikh *Lavr Landw “*Landw TSVD CGLS CGME *CG
1 62.7 - 61.9 - 89.6 89.3 116 -
2 107 123 107 115 117 109 129 115
3 495 26.0 4.51 17.2 5.61 5.54 8.27 164
4 7.12 215 6.79 14.9 6.71 7.01 14.8 144
5 18.0 - 16.9 - 17.3 17.0 20.9 -
6 70.7 - 69.7 - 70.8  69.5 96.3 -
7 5.12  17.1 4.69 9.73 438 4.74 8.44 8.04
8 31.1 61.5 30.9 50.4 35.8 35.2 47.4  48.6
9 788 - 788 - 802 796 823 -
10 364 - 363 - 446 445 595 -

Table 5. 10° times the averages of minimal relative errors in methods for § =
1074, p = 0 (correlated noise).

Probl. | Tikh *Lavr Landw *Landw TSVD CGLS CGME *CG
1 54.7 - 53.9 - 67.2 67.0 116 -
2 98.0 117 96.3 110 99.1 96.5 119 110
3 3.42 25.7 291 16.9 4.45 4.12 8.35 15.9
4 5.48 21.1 5.33 14.6 5.75 5.60 14.6 14.2
5 16.3 - 15.7 - 16.1 15.7 20.8 -
6 55.9 - 55.9 - 61.1 59.6 96.2 -
7 415 16.8 3.77 9.60 3.37 3.96 8.25 7.85
8 30.7 61.5 30.2 50.5 34.7 34.4 47.5 48.6
9 781 - 781 - 793 789 822 -
10 357 - 356 - 451 451 595 -

Figure 2. Errors of approximate solutions computed by TSVD on truncation steps
0, 1, ..., 60, by CGLS, CGME on iteration steps 0, 1, ..., 60 and by Landweber

method on iteration steps 2°, 21, ..., 259 in problem baart at § = 107, p = 0;
—- TSVD, -~ CGLS, ——— CGME, ----- Landweber.
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Table 6. 103 times the averages of minimal relative errors in methods for § =
1074, p = 2.

Probl. | Tikh *Lavr Landw “*Landw TSVD CGLS CGME *CG
1 0.35 - 0.12 - 0.20 0.20 0.22 -
2 0.80 134 0.30 1.73 0.25 0.24 0.73 1.61
3 0.30 14.0 0.04 1.51 0.08 0.08 0.19 1.00
4 0.55 13.9 0.17 1.22 0.15 0.18 0.60 1.03
5 1.19 - 0.59 - 0.40 0.55 1.13 -
6 0.51 - 0.19 - 0.17 0.19 0.59 -
7 0.71 13.6 0.12 1.13 0.07 0.09 0.22 1.26
8 0.51 14.1 0.10 1.57 0.10 0.10 0.12 1.38
9 0.48 - 0.19 - 0.25 0.24 0.91 -
10 0.24 - 0.08 - 0.12 0.12 0.29 -

Table 7. 103 times the averages of minimal relative errors in methods for § =
1074, p = 2 (correlated noise).

Probl. | Tikh *Lavr Landw “*Landw TSVD CGLS CGME *CG
1 0.35 - 0.15 - 0.16 0.18 0.22 -
2 0.84 129 0.36 1.72 0.25 0.37 0.73 1.60
3 0.32 13.9 0.05 1.50 0.07 0.10 0.21 1.00
4 0.59 13.7 0.14 1.20 0.15 0.16 0.59 1.01
5 1.13 - 0.52 - 041 0.49 1.15 -
6 0.56 - 0.23 - 0.17 0.21 0.61 -
7 0.72 13.2 0.14 1.11 0.09 0.10 0.19 1.22
8 0.54 13.9 0.09 1.53 0.08 0.10 0.17 1.37
9 0.60 - 0.31 - 0.27 0.35 0.93 -
10 0.28 - 0.12 - 0.11 0.15 0.24 -

ure 2): in both methods the error of approximate solution decreases quickly
before the optimal stopping index but in CGME it begins to increase very
quickly afterwards, whereas in CGLS it begins to increase with some delay.

In CGLS the number of iterations was much smaller than in Landweber
method: in our tests the mean and median of optimal stopping indices
were 14 and 5 in CGLS, versus 1.4 - 1013 and 1038 in Landweber method.
But since we implemented the Landweber method using operator iterations
(2.19) with m = 2, the overall computing time was the shortest in Landwe-
ber method, followed by Lavrentiev and Tikhonov method; somewhat more
time was needed in CGLS and CGME.

4.3. Results in Tikhonov method

Now we compare rules in each method separately. Adding the letters e or m
to the name of some rule means post-estimation or modification of the cor-
responding rule, respectively. Adding the letters C or 1 to the name of some
rule means climbing approach or first local minimum (see Section 3.2.2).
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4.3.1. Comparison of refinements of known rules.

Table 8 presents the results for known and modified rules that use full
information about noise level.

T1) Discrepancy principle: «p is the solution of the equation dp(«x) = 6.

T2) Monotone error rule: oo is the solution of the equation dyvg(x) = 6.

T3) Rule MEe: using ove from T2, take otvpe = min(0.53 ame, 0.60(1{4'86).

T4) Rule R2: xg» is the largest solution of the equation dgr2 () = 0.36.

T5) Rule R2e: using or> from T4, take orre = 0.50R>.

T6) Rule Me: using oge, droe from T3, T5, take oive = min(ouge, XR2e).

Here and in the following, the column R in tables, where R is a name of a
rule, shows the average (over all free parameters: runs, 8’s, problems 1-10
unless noted otherwise, p’s) of error ratios ||xx, — X« l/ll1xa, — x«| for regu-
larization parameter Ag in method under consideration. Recall that here the
denominator is the error of regularized solution at optimal regularization
parameter. The column heading R,2 means that the results in this column
are computed with 2 times overestimated noise level 26 = 2|y — yx]||, in-
stead of 6 = ||y — v« .

Table 8 confirms the disadvantages of discrepancy principle: saturation
(large values of D for p = 1) and sensitivity to inexact noise level (results in
column D,2 are much larger than in column D for p < 1). We also see that
the estimated parameters from rules MEe and R2e give better results than
the parameters from ME and R2, respectively. However, if the error level
used in rules was 2 times larger than the actual, the results of rules ME and
MEe were not so good.

Note also that the column Me almost coincides with column MEe and
the column Me,2 with column R2e,2 (this also holds in single problems, see
Tables 16 and 17). For p = 1.5 the rules MEe, R2e, and Me gave remark-
ably small averages. Although the results of MEe and Me were similar, the
maximums of Me were smaller, especially at larger p (for example, 2.53 and
2.18, respectively, for p = 2).

Table 8. Means of error ratios for rules in case of exact noise level and in case of
2 times overestimated noise level at various smoothness indices p.

p D D,2 ME ME,2 MEe MEe,2 R2 R2,2 R2e R2e2 Me Me,2
0 1.19 223 133 254 1.15 2.01 154 184 1.39 1.59 1.16 1.58
0.25 1.64 3.82 191 4.58 1.56 3.37 293 3.50 2.63 3.04 1.57 2.55
0.5 1.69 4.09 2.02 565 1.56 3.92 246 3.33 2.02 259 1.58 2.59
0.75 1.61 3.65 1.79 593 135 3.66 2.03 292 1.57 2.08 136 2.08

1 1.81 3.14 159 594 118 334 1.75 246 133 1.65 1.19 1.65
1.5 250 277 145 5.66 113 293 138 194 1.14 1.28 1.14 1.28
2 283 276 139 545 112 275 126 168 1.11 1.17 1.13 1.17
4 3.01 280 138 543 1.12 272 122 159 111 1.14 113 1.14
8 3.03 279 138 537 1.12 269 122 1.58 1.11 1.14 113 1.14

mean 2.14 3.12 1.58 5.17 1.26 3.04 1.75 232 149 174 126 1.69
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Table 9. Means of error ratios for rules in case of exact noise level and in case
of 2 times overestimated noise level at various smoothness indices p (positively
correlated noise).

14 D D,2 ME ME,2 MEe MEe,2 R2 R2,2 R2e R2e,2 Me Me,2
0 1.28 2.16 145 244 1.19 186 144 1.72 132 149 1.20 1.48
0.25 1.63 3.20 1.93 3.88 154 2.82 238 288 216 249 155 212
0.5 1.65 3.31 1.97 4.54 148 3.17 2.07 270 1.80 2.14 150 2.14
0.75 1.54 281 1.73 456 132 280 1.64 225 146 167 140 1.67

1 1.68 234 154 435 117 242 138 184 1.25 1.33 1.23 1.33
1.5 219 221 143 4.02 113 211 118 147 1.20 1.13 1.22 1.13
2 245 245 143 402 116 206 1.20 133 132 1.18 1.34 1.18
4 265 234 139 4.02 112 202 116 130 1.23 1.13 1.25 1.13
8 264 228 138 3.85 1.12 194 115 1.27 1.24 1.12 126 1.12

mean 1.97 2.57 1.58 396 1.25 236 151 1.86 144 1.52 133 148

Table 10. Means of error ratios for rules in case of exact noise level and in case
of 2 times overestimated noise level at various smoothness indices p (correlated
noise).

14 D D,2 ME ME,2 MEe MEe,2 R2 R2,2 R2e R2e,2 Me Me,2
0 1.23 243 138 2.78 1.17 216 1.64 197 146 169 1.17 1.69
0.25 1.69 498 1.99 6.09 1.59 4.42 3.71 446 3.23 3.81 1.59 3.28
0.5 1.82 749 217 9.71 1,56 7.16 4.90 6.19 4.16 5.03 1.58 5.03
0.75 1.69 6.52 1.88 109 136 6.75 3.76 5.37 2.86 3.80 1.41 3.80

1 1.96 5.02 160 105 1.18 5.79 3.09 441 226 292 121 292
1.5 273 478 144 11.0 113 5.64 225 330 1.79 2.05 1.18 2.05
2 3.02 394 141 8.68 116 4.27 167 221 1.61 156 131 1.56
4 3.59 544 135 134 1.14 659 200 286 1.87 1.82 1.23 1.82
8 3.27 3.65 139 986 1.14 4.70 155 202 1.53 139 123 1.39

mean 2.33 4.92 1.62 9.22 1.27 527 273 3.64 231 267 132 261

Table 11. Means of error ratios for rules in case of exact noise level and in case
of 2 times overestimated noise level at various smoothness indices p (negatively
correlated noise).

p D D,2 ME ME_2 MEe MEe,2 R2 R2,2 R2e R2e,2 Me Me,2
0 1.18 3.39 1.32 3.87 1.17 3.02 225 272 1.95 230 1.18 2.29
0.25 1.74 648 2.02 8.03 161 583 4.80 576 4.19 4.89 167 4.23
0.5 1.70 9.11 196 129 146 8.89 541 744 424 566 1.50 5.66
0.75 1.85 9.76 1.97 16.7 141 103 5.58 8.14 4.01 5.73 141 5.73

1 222 917 1.75 19.1 1.23 105 519 7.72 3.39 492 123 4.92
1.5 3.15 693 144 16,5 1.15 850 3.16 487 195 284 1.15 2.84
2 3.58 5.84 142 138 114 6.85 216 333 145 193 117 1.93
4 425 7.19 137 193 1.14 939 241 3.71 151 211 116 211
8 427 7.58 140 19.1 1.14 941 254 398 1.58 227 115 227

mean 2.66 7.27 1.63 144 1.27 8.08 3.72 530 270 3.63 1.29 3.55
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Table 10 is an analog of Table 8 for correlated noise of data (correlation
parameter w is chosen randomly from [-0.5,0.5] with uniform distribu-
tion). The columns D, ME, MEe, Me in Table 10 are approximately 10% larger
than in Table 8 but other columns are 50%-80% larger. Tables 9, 11 are
analogs of Table 10 for correlated noise of data with positive correlation
(w € [0,0.5]) and negative correlation (w € [—0.5,0]), respectively. In case
of correlated noise with exactly known noise level (especially in case of pos-
itively correlated noise) the rule MEe turned out to perform better than the
rule Me. Since the mutual relationships of rules remained the same for var-
ious types of correlations, we present only one table for correlated noise
(w € [-0.5,0.5]) in the following.

Tables 12, 13 show analogous results for different variants of balanc-
ing principle in Tikhonov method (A = «). Here we formed an increasing
sequence &g, &1, ..., XN, where g = 82, o = ®i_1/q with g = 0.9, and
an is the first «;, which is greater than or equal to 1. Parameters ogp;
and o+ were chosen as the first «;, for which (3.9) holds with ¢ = 2
and ¢ = 3v/3(1 - q)/(16./q), respectively; oz and o2+ were chosen as
the first o4, for which (3.10) holds with ¢ = 2 and ¢ = (1 — qi+1*j)/q,
respectively; g3 was chosen as the first «;, for which (3.11) holds with
c = 03(1 _ qi+1—j)q(j—i—1)/2_

Table 12. Means of error ratios for balancing principle.

p Bl B1,2 Bl1* Bl1*2 B2 B2,2 B2* B2*%2 B3 B3,2
0 6.27 748 190 235 3.82 458 271 334 185 229
0.25 12.6 15.7 319 413 746 9.05 496 648 3.08 4.01
0.5 204 27.0 3.67 5.07 104 13.8 6.12 8.24 3.51 4.87
0.75 259 363 3.52 521 122 168 6.48 9.25 3.37 4.96

1 299 419 338 5.08 135 189 6.56 9.76 3.21 4.83
1.5 33.0 48.1 3.11 4.84 142 208 6.33 9.66 296 4.56
2 33.0 488 299 467 141 209 6.09 944 282 440
4 33.6 49.6 3.01 4.70 144 21.2 6.07 933 280 4.36
8 33.8 494 3.02 4.68 145 21.1 6.01 931 279 4.32

mean 254 36.0 3.09 453 116 163 570 831 293 4.29

Table 13. Means of error ratios for balancing principle (correlated noise).

p Bl B1,2 Bl1* B1*2 B2 B2,2 B2* B2*2 B3 B3.2
0 717 859 205 257 426 516 299 3.72 200 249
0.25 174 219 424 553 987 122 658 846 4.16 5.34
0.5 30.2 39.8 683 892 163 21.1 104 133 6.76 8.62
0.75 489 68.2 6.56 958 225 313 119 17.0 6.64 09.11

1 563 80.2 6.23 917 241 348 11.7 170 681 8.76
1.5 678 958 6.07 932 286 420 124 195 795 878
2 50.0 745 4.63 738 223 324 970 152 8.69 6.97
4 856 126 742 11.6 359 535 150 231 186 10.7
8 69.1 102 550 853 281 424 11.1 173 16,5 7.82

mean 48.1 68.5 5,50 807 21.3 305 102 149 8.68 7.63
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As can be seen from Tables 12, 13, the balancing principle with original
large constants ¢ = 2 gives significantly larger error in rules B1, B2 than
the rule B3 and rules B1*, B2* with smaller constants. However, the results
for balancing principle were worse than results for rules MEe, R2e, Me in
Table 8, especially when the noise is correlated (Table 13). We also exper-
imented with constant 0.25 instead of 0.3 and obtained better results with
rule (3.11) in case of uncorrelated noise but in case of correlated noise the
results were significantly worse. As the last two columns of Table 13 show,
in case of larger p even larger constant would be better.

Table 14 shows the results of the same rules as in Table 8 with the dif-
ference that the approximate solution is computed by 2-iterated Tikhonov
method. Here, the proper constants in rules are somewhat different than
those in ordinary Tikhonov method.

T1-2) Discrepancy principle: ap is the solution of dp(x) = 6.

T2-2) Monotone error rule: o is the solution of dyg(x) = 6.

T3-2) Rule MEe: using o from T2-2, take otyee = min(0.8 cive, 0.70(1{4'](5)4).

T4-2) Rule R2: oR? is the largest solution of dr> (o) = 0.226.

T5-2) Rule R2e: using ar» from T4-2, take otr2e = 0.90R2.

T6-2) Rule Me: using ctmee, Xr2e from T3-2, T5-2, take otyve = min(ctmee, Xr2e)-

Table 14. Means of error ratios in 2-iterated Tikhonov method, compared to
minimums of ordinary Tikhonov method.

14 D D,2 ME ME_2 MEe MEe,2 R2 R2,2 R2e R2e,2 Me Me,2
0 1.26 2.34 1.29 239 1.16 205 156 181 1.53 1.77 1.16 1.77
0.25 1.74 4.15 1.81 4.28 155 348 299 345 295 3.37 155 2.89
0.5 1.72 482 1.84 511 1.54 4.09 239 3.39 231 3.28 1.54 3.27
0.75 1.39 467 1.53 499 1.25 3.68 194 280 1.85 266 1.26 2.66

1 1.08 4.24 1.23 4.73 098 3.20 1.64 226 1.56 211 098 211
1.5 0.76 3.34 091 4.02 0.74 251 1.06 166 099 1.52 0.74 1.52
2 0.59 254 0.70 3.26 0.59 190 0.79 1.16 0.74 1.04 0.59 1.04
4 046 1.64 048 233 045 1.24 048 0.66 046 0.59 045 0.59
8 0.46 1.58 0.47 227 044 121 047 064 045 057 044 0.57

mean 1.05 3.26 1.14 3.71 097 259 148 198 143 188 097 1.82

Table 15. Means of error ratios in 2-iterated Tikhonov method, compared to
minimums of ordinary Tikhonov method (correlated noise).

p D D,2 ME ME_2 MEe MEe,2 R2 R2,2 R2e R2e,2 Me Me,2
0 1.31 257 134 263 1.19 221 1.66 194 1.63 1.90 1.18 1.89
0.25 1.81 540 1.89 5.59 1.63 4,51 3.76 4.37 3.69 4.27 163 3.74
0.5 1.87 821 1.99 863 1.61 714 4.82 6.17 4.69 599 1.63 5.98
0.75 146 858 1.59 9.19 1.30 6.88 3.91 5.32 3.75 5.07 1.32 5.07

1 1.09 725 1.24 8.08 0.98 5.38 3.11 416 295 3.90 0.99 3.90
1.5 0.77 6.49 090 785 0.73 4.84 2.00 3.07 185 280 0.73 2.80
2 0.61 4.03 069 5.09 064 295 127 175 119 159 0.73 1.59
4 044 3.89 044 5.69 043 3.01 097 154 088 1.35 048 1.35
8 046 234 046 3.86 045 1.94 0.66 091 0.62 082 050 0.82

mean 1.09 542 117 6.29 1.00 432 246 3.25 236 3.08 1.02 3.02
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Again, the error ratios are computed as the error of 2-iterated Tikho-
nov method with chosen parameter divided by the error of ordinary Tikho-
nov method with best parameter. The results in Table 14 show that if
Xx € R(A*), then in most cases the error of 2-iterated approximation by
rules MEe and Me was smaller than the error of the best single Tikhonov
approximations. For rules R2, R2e, and Me at large p this holds even when
the noise level is 2 times overestimated. Table 15 is an analog of Table 14
for correlated noise. The differences of Tables 14 and 15 are the same as
the differences of Tables 8 and 10.

4.3.2. Minimization strategy.

Tables 16-20 compare means of error ratios by problems for rules that
choose the regularization parameter by the minimization strategy of Sec-
tion 3.2. In Tables 16, 17 the results for rules D, MEe, R2e, Me by problems
are provided for reference (here and in the following tables the columns us-
ing 6 and columns not using 6 are separated by [). To test the performance
of rules on other problems, we have added the results on test problems [13]
of Table 2. The first row labeled 'mean’ presents arithmetic means of error
ratios over problems 1-10, the second row 'mean’ gives the same means
over problems 11-16.

T7) Rules HR and BRS: apr and oprs are the global minimizers of the
functions @ur () and @grs(x), respectively.

T8) Rule QN (rule of Neubauer [69]): xqn is the minimizer of the function
@an (o) on the interval [m Omin, 11, where omiy is the smallest eigenvalue of

Table 16. Means of error ratios for p = 0 by problems. Problems 1-10 are from
[43,45,46], problems 11-16 are from [13] (see Tables 1 and 2).

Probl. D D,2 MEe MEe,2 R2e R2e,2 Me Me,2| HR QN BRS QHR

1 1.41 237 138 226 1.67 200 138 200|276 1.56 2.61 2.79
2 1.19 1.74 1.02 133 109 1.16 1.05 1.16| 960 1.95 960 1.20
3 1.35 5.88 1.38 5.15 275 348 137 348 | 818 218 5.23 9.54
4 1.14 238 1.08 211 1.18 147 1.08 147|282 1.13 2.08 1.10
5 1.06 1.53 1.03 137 1.05 1.15 1.04 1.15| 1.70 1le+4 135 1.80
6 1.25 189 116 1.70 1.27 145 1.16 145|205 1.20 1.87 1.27
7 1.03 198 1.04 182 1.05 1.19 1.04 1.19|1le+5 1.08 1le+5 1.09
8 1.30 2.25 1.25 2.06 145 1.65 1.25 1.65| 2.58 144 225 243
9 1.02 1.05 1.02 1.05 1.03 1.04 1.02 1.04| 1.07 1.04 1.06 1.06

10 1.19 138 1.18 1.36 1.39 140 1.18 1.34| 1.56 143 1.55 1.55
mean 1.19 225 1.15 2.02 1.39 1.60 1.16 1.59 | le+4 1le+3 1le+4 2.38
11 1.19 212 1.13 191 1.21 1.43 1.13 143|244 1.18 187 143
12 1.39 216 126 194 154 1.73 1.26 1.73 | 3.04 1.80 245 2.64
13 1.59 244 129 228 160 1.85 1.29 1.84 | 4.79 3.21 290 3.35
14 1.06 1.77 1.08 1.52 1.26 1.25 1.19 1.25|3e+3 1.60 3e+3 17.2
15 1.02 1.04 102 1.03 1.03 1.04 1.02 1.03| 1.06 1.05 1.06 1.06
16 1.50 2.07 1.57 2.08 136 1.52 1.36 152|262 135 156 221
mean 1.29 193 1.23 1.79 133 147 121 147| 502 1.70 502 4.65
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Table 17. Means of error ratios for p = 2 by problems.

Probl. D D,2 MEe MEe,2 R2e R2e,2 Me Me,2| HR QN BRS QHR

1 293 3.21 1.11 4.08 1.09 131 1.08 131|722 1.72 2.69 1.30
2 3.38 2.64 1.20 1.83 1.16 1.10 1.22 1.10|7e+3 1.04 7e+3 1.05
3 3.59 396 1.12 412 1.12 1.36 1.12 1.36| 7.03 1.26 3.42 1.15
4 2.83 227 1.07 213 1.06 1.05 1.07 1.05]| 3.69 1.12 223 1.12
5 244 2.04 112 147 1.18 1.06 1.20 1.06 | 2.18 7e+4 240 1.05
6 2.28 215 1.06 228 1.05 1.07 106 1.07| 3.91 1.12 2.00 1.13
7 3.03 228 109 1.74 1.12 1.05 1.13 1.05|2e+5 1.06 2e+5 1.06
8 248 240 1.05 255 1.04 1.08 1.05 1.08| 442 1.27 217 1.15
9 239 292 1.07 3.10 1.05 1.25 1.06 1.25| 530 1.18 255 1.18

10 236 4.05 1.19 492 1.18 1.55 1.16 1.55]| 8.54 1.75 3.25 1.29
mean 2.77 2.79 1.11 2.82 1.11 1.19 1.12 1.19 | 2e+4 7e+3 2e+4 1.15
11 2.53 2.06 1.06 2.06 1.05 1.03 1.06 1.03 | 3.53 1.10 2.03 1.10
12 2.26 2.62 1.10 3.07 1.07 1.22 1.08 1.22| 532 125 226 1.16
13 2.72 3.04 1.14 3.21 1.15 1.37 1.14 1.37| 544 127 270 233
14 3.84 3.29 1.23 254 1.12 1.18 1.23 1.18|2e+4 1.05 Z2e+4 1.05
15 3.56 344 208 273 250 6.24 186 6.24 | 43.0 543 276 4.09
16 1.61 1.58 1.35 197 1.03 1.02 1.03 1.02| 290 1.14 1.63 1.09
mean 2.75 7.83 1.33 6.69 132 201 123 2.01|3e+3 1.87 3e+3 1.81

the matrix A* A.

T9) Rule QHR: xqmnr is the local minimizer of the function @q(a)k(x)
such that the function @pur () is minimal.

T10) The rules QC, R2C, BRSC choose the parameter by the climbing
approach in the functions @r2 (), Pq(«x), and @prs(x) with C = 4.

T11) Rules QC’ and R2C’ choose the parameter by the climbing approach
in the functions @q(«) and @r2 () with C = 4 but unlike the rules of T10,
here the choice is made only from local minimizers of the corresponding
functions on the interval (&min, 1); endpoints are excluded.

T12)Rules Q1, D1, R21, DR21 and BRS1 choose the parameter as the first
(the largest) local minimum of the functions (pQ(a)a0'36, (pD((x)K((x)(xo'3,
Pra2 (00 %42, @p (002 @r2 ()8 %36, and prs () %, respectively.

T13) Rules HR2 and BR2 choose the parameter as the global minimizer
of the functions @ur2,+ () and @gr2,+ () with T = 0.07.

T14) Rules QHR?2 and QBR2 choose the local minimizer of the function
@aq(x) k(o) for which the functions @ur2,+ () and @gr2,+ () with T = 0.04
are minimal.

The best heuristic rules not using 6 were comparable to rules using 6:
the results were worse in case of exact  but even better in case of 2 times
overestimated noise level.

The biggest challenge to all rules turned out to be the problem 15 in case
p = 2; the problem 14 was hard to heuristic rules Q1, R21, QHR2, QBR2 in
case p = 0.

Note that in case of smooth solution (Table 17) the rule QHR, containing
neither noise level information nor any parameters, gave very good results.
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Table 18. Means of errors by problems for rules of minimization strategy, p = 0.

Probl. QC R2C BRSC QC’ R2C’ Q1 D1 R21 DR21 BRS1 HR2 BR2 QHR2QBR2
1 1.56 1.84 2.61 1.55 1.83 2.24 2.05 2.20 1.75 2.02 1.85 1.95 1.75 1.73
2 155 141 1.35 1.55 140 1.06 1.61 1.17 1.94 1.59 1.61 1.25 1.20 1.20
3 218 2.11 5.23 215 2.09 1.89 3.75 2.13 248 3.60 2.70 2.80 2.08 2.89
4 1.13 1.11 2.08 1.12 1.11 1.45 1.54 1.78 1.06 1.47 1.11 1.08 1.10 1.11
5 134 1.19 1.35 1..30 1.19 1.30 1.20 1.78 1.28 1.14 1.14 1.26 1.16 1.17
6 120 1.18 1.87 1.19 1.17 1.22 1.55 1.34 1.21 146 1.31 1.17 1.23 1.20
7 1.08 1.08 1.61 1.07 1.09 1.19 1.25 1.46 1.10 1.17 1.08 1.12 1.09 1.08
8§ 144 145 225 143 144 1.71 1.78 1.68 143 1.70 1.60 1.45 1.49 142
9 104 1.05 1.06 1.04 1.05 1.06 1.05 1.06 1.03 1.04 1.05 1.05 1.05 1.04
10 1.43 1.42 1.55 1.43 1.42 1.83 1.48 1.81 1.47 1.48 1.47 1.47 1.47 1.48

mean 1.39 1.38 2.10 1.38 1.38 149 1.72 1.64 147 1.67 1.49 1.46 1.36 1.43
11 1.18 1.16 1.87 1.17 1.16 1.36 1.45 1.50 1.14 1.41 1.20 1.13 1.18 1.16
12 2.01 1.92 245 1.94 1.91 2.27 1.81 2.26 1.51 1.77 2.19 2.10 2.07 1.97
13 3.25 3.24 2.90 3.25 3.24 4.15 3.42 4.17 3.14 1.92 3.39 2.71 2.05 2.05
14 1.85 1.76 2.07 1.84 1.76 19.8 1.87 19.6 1.86 1.74 2.06 1.58 16.7 16.7
15 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06
16 1.35 1.34 1.56 1.35 1.34 1.59 1.32 1.62 1.27 1.33 1.50 1.29 1.41 1.31

mean 1.78 1.75 1.99 1.77 1.75 5.04 1.82 5.04 1.66 1.54 1.90 1.65 4.08 4.04

Table 19. Means of errors by problems for
(correlated noise).

rules of minimization strategy, p = 0

Probl. R2C QC BRSC R2C’ QC’ Q1 D1 R21 DR21 BRS1 HR2 BR2 QHR2QBR2
1 1.52 1.80 2.51 1.52 1.80 2.23 2.00 2.20 1.74 1.96 1.82 1.91 1.65 1.71
2 1.22 1.18 1.32 1.21 1.17 1.15 1.46 1.28 1.77 1.44 1.78 1.30 1.16 1.16
3 231 2.05 5.85 2.28 2.06 1.93 4.11 2.19 2.62 3.97 2.78 2.88 2.35 2.77
4 1.16 1.15 2.29 1.15 1.15 1.54 1.71 2.26 1.16 1.63 1.20 1.15 1.14 1.14
5 139 1.32 1.51 1.35 1.32 1.37 2.43 1.98 3.87 1.60 1.26 1.60 1.23 1.31
6 1.22 1.18 1.94 1.21 1.18 1.25 1.61 1.31 1.28 1.54 1.40 1.26 1.26 1.24
7 1.08 1.06 1.79 1.06 1.07 1.26 2.27 2.05 4.18 1.85 1.90 1.09 1.07 1.06
8§ 135 1.32 2.29 1.33 1.32 1.57 1.80 1.57 1.40 1.70 1.52 1.48 1.49 141
9 1.04 1.05 1.06 1.04 1.05 1.06 1.05 1.06 1.03 1.04 1.05 1.05 1.05 1.04
10 1.44 1.44 1.56 1.44 1.44 1.84 1.49 1.82 1.48 1.49 1.48 1.48 1.47 1.48
mean 1.37 1.36 2.21 1.36 1.36 1.52 1.99 1.77 2.05 1.82 1.62 1.52 1.39 1.43
11 117 1.17 2.21 1.17 1.17 145 1.72 1.69 1.28 1.66 1.30 1.20 1.22 1.19
12 240 2.28 3.13 2.33 2.27 2.65 2.26 2.61 1.88 2.22 2.71 2.53 2.46 2.39
13 3.07 3.06 2.78 3.07 3.07 3.96 3.32 4.01 3.04 1.87 3.29 2.60 2.04 2.02
14 2.02 1.89 2.23 2.01 1.88 23.1 2.05 229 2.00 1.81 2.44 1.80 21.3 21.3
15 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05
16 1.47 1.44 1.87 1.46 1.44 1.72 1.53 1.76 1.38 1.54 1.65 1.36 1.51 1.41
mean 1.86 1.82 2.21 1.85 1.81 5.66 1.99 5.67 1.77 1.69 2.07 1.76 4.93 4.89
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Table 20. Means of errors by problems for rules of minimization strategy, p = 2.

Probl. R2C QC BRSC R2C’ QC’ Q1 D1 R21 DR21BRS1 HR2 BR2 QHR2QBR2
1 1.72 1.90 2.69 1.76 1.95 1.75 2.20 1.90 1.77 1.95 1.23 1.34 1.30 1.34
1.04 1.17 446 1.08 1.23 1.23 11.3 1.52 16.1 6.64 1.11 1.10 1.05 1.05
1.26 1.38 3.42 1.29 1.44 1.64 294 1.83 2.12 2.58 1.13 1.13 1.17 1.15
1.12 1.25 2.23 1.15 1.30 1.56 2.46 2.03 2.47 2.26 1.14 1.15 1.12 1.12
1.04 1.17 240 1.07 1.22 1.32 3.13 1.67 3.25 292 1.12 1.11 1.05 1.05
1.12 1.25 2.00 1.16 1.30 1.70 1.98 1.97 1.95 1.84 1.14 1.15 1.13 1.13
1.06 1.17 2.54 1.09 1.23 1.26 3.23 1.49 3.20 3.03 1.12 1.11 1.06 1.06
1.27 1.40 2.17 1.31 145 1.84 2.09 2.04 1.99 190 1.17 1.24 1.21 1.21
1.18 1.33 2.55 1.22 1.38 1.60 2.26 1.92 1.93 197 1.20 1.20 1.18 1.18
10 1.75 1.86 3.25 1.78 191 1.87 2.38 2.00 1.72 2.00 1.26 1.46 1.29 1.48
mean 1.26 1.39 2.77 1.29 1.44 1.58 3.39 1.84 3.65 2.71 1.16 1.20 1.16 1.18
11 1.10 1.22 2.03 1.13 1.27 1.59 2.25 1.97 2.34 2.10 1.12 1.15 1.10 1.10
12 1.25 1.39 2.26 1.28 1.44 1.65 1.99 1.87 1.74 1.78 1.16 1.24 1.17 1.21
13 1.27 1.36 2.70 1.29 141 1.60 2.42 1.83 1.99 2.19 1.31 1.38 1.31 1.38
14 1.05 1.17 3.41 1.08 1.24 1.29 4.05 1.55 5.54 3.65 1.11 1.11 1.05 1.05
15 4.94 5.10 27.6 5.00 5.17 4.38 16.0 4.58 5.03 11.4 4.05 3.23 4.17 4.82
16 1.14 1.22 1.63 1.16 1.25 1.32 2.03 147 2.20 1.98 1.10 1.17 1.12 1.12
mean 1.79 1.91 6.61 1.82 1.96 1.97 4.79 2.21 3.14 3.85 1.64 1.55 1.65 1.78

4.3.3. Rule R2e.
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Tables 21, 22 compare the error ratios of rules D and R2e for different
values of noise level uncertainty coefficient d. In case of overestimated
noise level (d > 1) the rule R2e is significantly better than the discrepancy
principle. In contrast to the discrepancy principle and other rules, the rule
R2e also allows moderate underestimation of the noise level. The same
conclusions can be made about rule R2e in 2-extrapolated Tikhonov method
(see Table 59).

Comparison of Tables 21 and 22 shows that for rule R2e the error ra-
tios in case of correlated noise are larger than the error ratios in case of
uncorrelated noise but the advantage over discrepancy principle still holds.

4.3.4. Rule DM.

Tables 23, 24 show the results for rule DM with parameters c; = 0.002,
c2 = 0.03 in Tikhonov method at various coefficients d of noise level ill-
estimation. It can be seen that the means of error ratios do not change with
d as much as in rule R2e, allowing wider range of over- or underestimation
of the noise level. Table 25 compares some particular sets of parameters
c1, ¢z in rule DM for p = 0 and p = 2. If we have more information about
the noise level, parameters of the first row may be used, since they give
smaller error ratios for d close to 1. If we do not have much information,
parameters for which the rule is less sensitive to ill-estimation of the noise
level should be preferred.
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Table 21. Means of error ratios for rules D (upper part) and R2e (lower part) in
case, where the estimated noise level is d times larger than the actual noise level.

p\d 05 0.6 0.8 1 1.3 1.6 2 3 5 10
0 1.19 1.82 205 223 256 3.06 3.69
0.25 1.64 291 341 3.82 462 5.67 6.75
0.5 1.69 3.01 3.62 4.09 5.00 6.44 842
A 0.75 1.61 2.61 3.19 3.65 4.57 6.26 8.44
i:'; 1 >> 1 1.81 228 276 3.14 401 5.69 780
& 1.5 2,50 225 256 277 338 4.78 6.54
2 283 237 261 276 3.27 452 6.08
4 3.01 245 270 280 3.26 449 5.95
8 3.03 246 2,69 279 3.24 445 5.89
mean 214 246 284 3.12 3.77 5.04 6.62
0 384 1.75 136 139 146 1.52 1.59 176 2.09 249
0.25 4.77 238 258 263 280 291 3.04 334 3.88 4.67
0.5 517 249 198 202 219 237 259 311 3.79 481
& 0.75 450 229 154 157 170 1.87 2.08 255 3.28 4.46
% 1 473 193 129 133 141 151 1.65 201 274 4.00
E 1.5 464 170 116 1.14 116 1.21 1.28 1.53 2.05 290
2 443 153 114 111 111 113 1.17 135 175 237
4 407 154 114 111 110 1.11 1.14 129 164 213
8 408 154 114 111 110 1.11 1.14 1.28 1.63 210

mean 4.47 191 148 149 156 1.63 1.74 202 254 332

Table 22. Means of error ratios for rules D (upper part) and R2e (lower part) in
case, where the estimated noise level is d times larger than the actual noise level
(correlated noise).

p\d 05 06 08 1 13 16 2 3 5 10
0 123 1.97 222 243 280 338 411
0.25 1.69 3.83 449 498 595 7.22 869
0.5 1.82 589 6.86 7.49 873 107 13.4
2 0.75 169 459 565 652 825 114 154
=1 = 1 196 3.59 445 502 6224 846 12.0
& 15 273 324 408 478 650 100 143
2 302 293 354 394 497 725 929
4 359 392 4.88 544 696 102 145
8 327 283 336 365 461 670 997
mean 233 364 439 492 611 837 113
0 546 199 149 147 155 161 169 189 227 275
025 472 285 322 329 347 361 381 422 500 6.01
0.5 523 430 407 417 443 469 503 577 6.88 821
&§ 075 484 3.07 269 284 314 340 3.80 4.68 6.00 8.03
Tl 339 239 202 220 239 261 292 357 484 6.79
215 548 219 157 161 173 185 205 257 3.58 548
2 489 1.82 144 142 143 147 156 1.78 243 3.59
4 366 197 143 147 154 163 1.82 221 3.19 440
8 3.88 1.68 129 127 128 131 139 158 211 287

mean 4.62 247 214 219 233 247 267 3.14 4.03 535
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Table 23. Means of error ratios in Tikhonov method with Rule DM, ¢; = 0.002,
c2 = 0.03 for p = 0 (left), p = 2 (right), where the used noise level is d times the
actual noise level.

Case p = 0, values of d Case p = 2, values of d

Probl.|0.01 0.1 0.5 1 2 10 100{0.01 0.1 0.5 1 2 10 100
1.46 1.46 1.46 1.46 1.49 1.69 2.51|1.93 1.93 1.93 1.84 1.74 1.33 3.33
1.56 1.56 1.34 1.08 1.08 1.07 1.25(1.22 1.22 1.22 1.22 1.22 1.22 1.43
2.02 2.02 2.02 2.02 2.02 1.84 5.88|1.55 1.55 1.55 1.55 1.55 1.26 3.23
1.12 1.12 1.12 1.12 1.12 1.11 1.62|1.33 1.33 1.33 1.33 1.33 1.25 1.75
1.66 1.16 1.16 1.10 1.10 1.10 1.17|1.21 1.21 1.21 1.21 1.21 1.21 1.15
1.16 1.16 1.16 1.16 1.16 1.16 1.44|1.33 1.33 1.33 1.33 1.33 1.29 1.82
1.11 1.11 1.11 1.11 1.11 1.11 1.36|1.21 1.21 1.21 1.21 1.21 1.21 1.37
1.39 1.39 1.39 1.39 1.39 1.46 2.06(1.49 1.49 1.49 1.49 1.49 1.26 2.02
1.03 1.03 1.03 1.03 1.03 1.03 1.05|1.42 1.42 1.42 142 1.42 1.26 2.38
10 |1.42 142 142 142 142 147 1.54|2.20 2.20 2.20 1.85 1.62 1.28 3.85
mean | 1.39 1.34 1.32 1.29 1.29 1.30 1.99(1.49 1.49 1.49 1.44 1.41 1.26 2.23
11 |1.16 1.16 1.16 1.16 1.16 1.16 1.56|1.30 1.30 1.30 1.30 1.30 1.25 1.69
12 {1.43 1.43 143 1.43 1.43 1.47 2.13|1.50 1.50 1.50 1.50 1.50 1.26 2.46
13 [2.41 241 241 241 241 2.42 3.80|1.46 1.46 1.46 1.46 1.46 1.33 2.81
14 |3.28 1.83 1.66 1.56 1.45 1.36 1.70(1.23 1.23 1.23 1.23 1.23 1.21 1.92
15 |[1.05 1.05 1.05 1.05 1.06 1.06 1.06|6.04 6.04 5.22 4.38 3.60 3.04 18.3
16 |1.36 1.36 1.36 1.36 1.33 1.35 2.21(1.32 1.32 1.32 1.32 1.32 1.16 1.81
mean |1.78 1.54 1.51 1.50 1.47 1.47 2.08(2.14 2.14 2.01 1.87 1.74 1.54 4.83
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Table 24. Means of error ratios in Tikhonov method with Rule DM, ¢; = 0.002,
c2 = 0.03 for p = 0 (left), p = 2 (right), where the used noise level is d times the
actual noise level (correlated noise).

values of d for p = 0 values of d for p =2

Probl.|0.01 0.1 0.5 1 2 10 100{0.01 0.1 0.5 1 2 10 100
1.44 144 1.44 1.48 1.50 1.75 2.62|1.82 1.81 1.79 1.72 1.72 1.93 5.69
2.09 1.32 1.12 1.08 1.08 1.10 1.57{2.10 1.51 1.33 1.22 1.22 1.26 2.25
2.03 2.03 2.03 1.98 198 2.33 7.29(1.78 1.78 1.78 1.79 1.80 1.79 5.12
1.16 1.16 1.16 1.16 1.16 1.18 1.97|1.30 1.30 1.30 1.29 1.29 1.42 3.11
1.83 1.32 1.18 1.17 1.20 1.20 1.44|1.27 1.27 1.27 1.27 1.26 1.28 1.92
1.17 1.17 1.17 1.17 1.17 1.22 1.59|1.29 1.29 1.29 1.28 1.29 1.44 3.40
1.10 1.10 1.10 1.10 1.10 1.11 1.66|1.24 1.24 1.24 1.23 1.23 1.32 2.49
1.29 1.29 1.29 1.29 1.30 1.45 2.13|1.52 1.48 1.48 1.47 1.47 1.59 4.17
1.03 1.03 1.03 1.03 1.03 1.03 1.06|1.30 1.30 1.28 1.29 1.29 1.45 3.73
10 [1.44 1.44 1.44 1.44 1.44 1.49 1.60|3.46 3.46 3.48 3.34 3.39 3.22 8.07
mean (1.46 1.33 1.30 1.29 1.30 1.39 2.29|1.71 1.64 1.62 1.59 1.60 1.67 4.00
11 {1.19 1.19 1.19 1.19 1.18 1.26 2.01|1.28 1.28 1.28 1.27 1.27 1.40 3.23
12 |1.70 1.70 1.71 1.72 1.72 1.93 292|147 1.47 1.44 145 1.45 1.59 4.61
13 |2.04 2.04 2.08 2.09 2.09 2.43 3.87|1.60 1.60 1.57 1.58 1.58 2.03 5.09
14 |3.21 2.03 1.74 1.57 1.51 1.43 1.93|2.04 1.30 1.30 1.29 1.30 1.38 2.79
15 {1.05 1.05 1.05 1.05 1.05 1.05 1.05|19.5 19.5 189 17.5 169 15.2 234
16 [1.48 1.48 1.48 1.47 1.46 1.58 3.07|1.35 1.35 1.30 1.27 1.21 1.18 3.20
mean [1.78 1.58 1.54 1.52 1.50 1.61 2.48|4.54 4.42 4.30 4.06 3.95 3.80 7.05

—_
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Table 25. Averages of error ratios over problems of Hansen for rule DM with
different c1, c2; p = 0 (upper) and p = 2 (lower).

values of d

Nr ¢ c; 10.01 0.03 0.1 0.3 0.5 1 2 4 10 30 100
I 002 0.14|1.87 145 1.41 136 1.32 1.28 1.28 1.45 1.78 2.51 3.49
I 0.002 0.07(1.85 1.42 1.38 1.34 1.34 1.33 1.29 1.30 1.28 1.43 1.85
Im 0.002 0.03|1.39 1.37 1.34 1.34 1.32 1.29 1.29 1.30 1.30 1.46 1.99
IV 0.001 0.03|1.44 1.39 1.36 1.34 1.34 1.32 1.29 1.29 1.31 1.37 1.58
I 0.02 0.14|1.81 1.81 1.75 1.59 1.49 1.32 1.26 1.40 2.23 4.61 9.38
I 0.002 0.07({1.59 1.59 1.59 1.59 1.59 1.53 1.49 1.43 1.28 1.30 2.23
III 0.002 0.03(1.49 149 149 149 149 144 141 1.36 1.26 1.29 2.23
IV 0.001 0.03|1.49 1.49 149 149 149 149 1.44 141 1.34 1.24 1.52
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The rule DM differs from the rule R2C essentially only by the strategy of
choosing the endpoint of minimization interval: rule DM uses noise level
information and solves the equation dgri,1/2() = C9, rule R2C determines
the endpoint by increase condition of @gr» (), not using 6. Figure 3 com-
pares the rule DM with rule R2C, illustrating dependence of error on d. In
practice this comparison may help to decide, whether additional efforts to
more precisely estimate the actual noise level will be worth of increased ac-
curacy. In Tables 18 and 20 the rule R2C gives averages 1.38 for p = 0 and
1.39 for p = 2, hence DM is superior over R2C, if d € [0.1,10] incase p = 0
orifd e [3,30] in case p = 2.

For analogous results in extrapolated Tikhonov approximation, see Sec-
tion 4.8.4.

Figure 3. Error ratios in Tikhonov method for rules R2C and DM: p = 0 (left) and
p = 2 (right); - DM, ——- DMII, -—— DML, ----- DM IV, —— R2C.

0.01 0.1 1 10 100 0.01 0.1 1 10 100

In practice we may have an approximate knowledge about how much
the supposed noise level doé differs from the actual noise level §. This
knowledge may be used to choose the constants c; and ¢ in rule DM. In
Table 26 each cell contains constants c; and c» that give the smallest maxi-
mum of averages over all Hansen’s problems with p = 0, if we assume that
d € [dmin, dmax]. Table 27 shows the corresponding minimums and maxi-
mums of these averages. Computations were made on discrete set of values
c1=107%,10738 ..., 10 Y and c; = 107, 1071, ..., 1073,
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Table 26. Values of constants c¢; (lower left) and ¢, (upper right) in rule DM, giving
the smallest maximum of averages over range [dmin, dmax] Of noise ill-estimation
coefficient d over problems of Hansen with p = 0.

- dmax 1 2 4 10 30 100
min
0.01 5.0e-2 1.0e-2 1.0e-2 1.0e-2 1.0e-2 2.0e-3
. 2.5e-2 1.0e-2 6.3e-3 2.5e-3 1.0e-3 4.0e-4
0.03 2.0e-2 5.0e-2 3.2e-2 1.0e-2 1.0e-2 1.3e-2
. 2.5e-2 1.0e-2 6.3e-3 2.5e-3 1.0e-3 4.0e-4
0.1 5.0e-2 2.5e-2 2.0e-2 5.0e-2 1.0e-2 1.0e-2
: 2.5e-2 1.0e-2 6.3e-3 2.5e-3 1.0e-3 2.5e-4
0.3 1.0e-2 5.0e-2 4.0e-2 2.0e-2 5.0e-2 1.0e-2
: 4.0e-3 1.0e-2 6.3e-3 2.5e-3 1.0e-3 2.5e-4
0.5 5.0e-2 1.0e-2 5.0e-2 2.5e-2 5.0e-2 1.0e-2
: 6.3e-3 2.5e-3 6.3e-3 2.5e-3 1.0e-3 2.5e-4
1 1.0e-1 5.0e-2 1.0e-2 5.0e-2 2.5e-2 5.0e-2
2.5e-2 2.5e-3 1.0e-3 2.5e-3 1.0e-3 2.5e-4

Table 27. Minimal and maximal averages in rule DM over all problems of Hansen,
corresponding to c¢; and ¢ in Table 26, p = 0.

mmdmax 1 2 4 10 30 100
0.01 |1.28..1.34 1.29..1.34 1.29..1.36 1.29..1.39 1.29..1.41 131..1.44
0.03 |1.29..1.33 1.28..1.34 1.29..1.34 1.29..1.36 1.29..1.39 1.29..1.42
01 |1.28..1.30 1.29..1.31 1.29..1.33 1.28..1.34 1.29..1.34 1.29..1.39
03 |1.29..1.29 1.28..1.30 1.29..1.30 1.29..1.33 1.28..1.34 1.29..1.36
05 |1.29..1.29 1.29..1.30 1.28..1.30 1.29..1.31 1.28..1.34 1.29..1.34
1 |1.28..1.28 1.29..1.29 1.29..1.29 1.28..1.30 1.29..1.31 1.28..1.34

We also made computations with the variant of rule DM, which mini-
mizes @q ()« instead of @r2(x)x on the second step but in case of
very small or very large d the results were essentially worse.

4.4. Results in Lavrentiev method

For studying rules in Lavrentiev method we limit our test set to self-adjoint
problems of Hansen, problems of [13] are included only in Table 33.

4.4.1. Analogs of monotone error rule.

Tables 28-30 show the results of analogs of the monotone error rule in
Lavrentiev method, where the regularization parameter is chosen as the
solution g of equation dr(x) = C6, where R is GN, MD, MEa, MEn, MEK,
MEke, MEaq, MEaql. Values of additional parameters in functions dg () are
given in the first column of every table, the parameter g was always 1/1.2.
For comparison the tables also contain the results for iterated Lavrentiev
method: 2-iterated with the modified discrepancy principle and 3-iterated
Lavrentiev method with the discrepancy principle (both with X = 0).
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Table 28. Averages and maximums of error ratios in Lavrentiev method for vari-
ous analogs of the monotone error rule, p = 0 (uncorrelated noise left, correlated
noise right).

Rule OptC | Avg Max Monind | Avg Max Monind
GN 1.059 | 1.19 6.31 0.145 1.34 28.6 0.135
MD 1.143 | 1.19 6.31 0.172 1.33 28.6 0.154
MEa 1.364 | 1.07 2.26 0.145 1.14 10.1 0.138
MEn, v =0.17 | 1.096 | 1.05 1.97 0.096 1.11  8.59 0.094
MEK, k = 2 1.251 | 1.10 2.14 0.235 1.15 8.59 0.221

MEke, k =1 1.421 | 1.05 2.26 0.046 1.12  10.1 0.042
MEke, k = 2 1.280 | 1.05 2.26 0.026 1.12  10.1 0.023
MEaq 1.209 | 1.08 2.26 0.159 1.14 10.1 0.150
MEaql, I =5 1.004 | 1.01 1.25 0.036 1.05 5.21 0.042
2-Lavrw/MD | 1.187 | 0.98 4.30 0.000 1.08 19.6 0.000
3-Lavr w/ D 1.530 | 0.94 2.68 0.000 1.00 12.1 0.000

Table 29. Averages and maximums of error ratios in Lavrentiev method for vari-
ous analogs of the monotone error rule, p = 1 (uncorrelated noise left, correlated
noise right).

Rule OptC | Avg Max Monind | Avg Max Monind
GN 1.021 | 1.20 2.29  0.158 1.23 346  0.099
MD 1.263 | 1.02 1.08 0.105 1.08 1.70  0.209
MEa 1.583 | 1.03 1.09 0.135 1.07 1.17 0.209
MEn, v = 0.4 1.287 | 1.01 1.05 0.096 1.02 1.16  0.086
MEK, k = 2 1.365 | 1.07 1.16  0.222 1.11 126  0.278

MEke, k =1 1.661 | 1.02 1.15 0.025 1.02 1.16 0.087
MEke, k = 2 1.416 | 1.01 1.08 0.005 1.01 1.27 0.041
MEaq 1.430 | 1.05 1.13 0.164 1.08 1.20 0.220
MEaql, l = 4 1.041 | 1.01 1.05 0.097 1.02 1.14 0.092
2-Lavr w/MD | 1.352 | 0.58 1.00 0.000 0.61 1.02 0.000
3-Lavr w/ D 1.856 | 0.63 1.23 0.000 0.65 0.98 0.000

Table 30. Averages and maximums of error ratios in Lavrentiev method for vari-
ous analogs of the monotone error rule in case of rough 6, p = 0.

d=2 d=3 d=10 d =100
Rule Avg Max | Avg Max | Avg Max | Avg Max
GN 146 8.18 | 1.66 104 | 2.49 18.1 | 4.97 33.6
MD 1.38 8.18 | 1.56 104 | 2.34 16.7 | 4.80 33.6
MEa 1.19 4.11 | 129 550 | 1.83 128 | 3.57 28.6
MEn, v =0.17 | 1.27 354 | 1.41 4.76 | 200 128 | 3.74 30.2
MEK, k = 2 1.17 359 | 1.27 550 | 1.81 12.8 | 3.53 28.6

MEke, k =1 1.22 411 | 1.36 6.31 | 1.93 14.0 | 3.75 30.2
MEke, k = 2 1.27 4.11 | 1.40 550 | 202 14.0 | 3.76 30.2
MEaq 1.18 4.11 | 1.27 5,50 | 1.81 12.8 | 3.54 28.6
MEaql, I =5 1.20 1.79 | 1.32 261 | 1.86 8.18 | 3.46 27.0
2-Lavrw/MD | 1.14 6.19 | 1.30 8.46 | 1.99 15.1 | 4.07 31.7
3-Lavr w/ D 1.01 4.25 | 114 631|171 128 | 3.53 29.1
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The optimal constants C in these rules were found by optimization on
self-adjoint problems of Hansen at uncorrelated noise, over all 6’s and 10
runs. Tables 28 and 29 correspond to cases p = 0, and p = 1, respectively
(in the latter case the original solution x4 of each problem was replaced
by Ax., and the right-hand side was computed as A(Ax)). In addition
to averages and maximums of error ratios over self-adjoint problems of
Hansen, averages of the monotonicity indicators max(&men — &R, 0)/ ®mon,

. d . . .
where &mon = min{«’ : @HMD( —Ux|l = 0,x = &}, are given in additional

columns. The smaller this indicator is, the larger is the number of cases,
where the error is a monotonically increasing function of « for o« > og.
Four zeros in monotonicity indicators show that in corresponding approxi-
mations the chosen parameter g was always larger than &mep in Lavrentiev
method.

In Table 28 the rules GN and MD gave the largest averages and max-
imums of error ratios, in Table 29 the rule GN gave large averages and
maximums, the modified discrepancy principle gave large maximum of er-
ror ratios. As expected, the methods with higher qualification (2 or 3 times
iterated Lavrentiev methods and extrapolated Lavrentiev methods with 2 or
3 terms have the qualification 2 or 3, respectively) had small averages of
error ratios in smooth case.

Rules MEa and MEaq were good in Lavrentiev method but their modifi-
cations were even slightly better. Note that in smooth case the modified
discrepancy principle in 3-extrapolated Lavrentiev approximation gave 20%
smaller averages and maximums of error ratios than the discrepancy prin-
ciple (these results are not included in tables).

In Table 30 we provide results for non-smooth case (p = 0), if the sup-
posed noise level is dd and the rules are applied with the optimal constant
C. Again, two first rules gave the largest numbers. Setting aside the first
two rules, other rules gave smaller maximumes of error ratios than 2-iterated
Lavrentiev method in case of all 4 and 3-iterated Lavrentiev method in case
d =1, 2. The smallest values of averages and maximums of error ratios in
Lavrentiev method were obtained by rules MEaql, MEn with v = 0.17 and
MEke with k = 2; the rule MEaqgl had especially good performance in non-
smooth case. However, the set of problems was not large enough for more
far-reaching conclusions.

Note that for choosing the parameter « in m-iterated Lavrentiev method
many rules require additional iterations for computation of iterated Lavren-
tiev approximations xy.q with n > m. But then x. itself can be considered
to be an approximate solution of (2.1). Our rule MEa requires computation
of Xm+2.« but if x4 42.« has been computed, one can take the approximate
solution to be x,+1.« With choice of & from the modified discrepancy prin-
ciple

lAxXm12;0 — Yl = CO, C=>1. 4.1)
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Or Xm+2:« With choice of « from the discrepancy principle [|Axm12:4— VIl =
Cd, giving the same « as (4.1). The corresponding means of error ratios are
shown in two last rows of Tables 28-30. If the solution has source-like
representation (2.2), then for xy,+1;« and for xu42.« with & from (4.1) the
error estimate (3.1) holds with p < m + 1, for xu.« with the proper «
the error estimate (3.1) holds with p < m (but remind large maximums in
Table 30).

Instead of iterated approximations, one can also use extrapolated ap-
proximations. Note that the rule MEk needs computing of Xj,+k+1:.« but
rules MEaq, MEaql use x, +1.« with different & and the rule MEke uses X«
with different «. Actually, if x4, with different «’s are available and the so-
Iution is smooth, then using extrapolated iterated Lavrentiev approximation
Xm:ay,...on, INStead of Xy« is strongly recommended due to much higher
qualification (the qualification is nm, see [28]).

4.4.2. Rule DM.

Tables 31 and 32 show the results for the rule DM with parameters ¢; =
2.5-107% ¢» = 0.25 at various levels d of noise level ill-estimation. The
results were very good both in case of correlated and uncorrelated noise.

Table 31. Means of error ratios in Lavrentiev method with Rule DM, ¢; = 2.5-107,
c2 = 0.25 for p = 0 (left), p = 1 (right), where the used noise level is d times the
actual noise level.

Case p = 0, values of d Case p = 1, values of d

Probl.|0.01 0.1 0.5 1 2 10 100(0.01 0.1 0.5 1 2 10 100
2 |1.01 1.01 1.01 1.01 1.01 1.01 1.01|1.03 1.03 1.03 1.03 1.03 1.03 1.03
3 1.01 1.01 1.01 1.01 1.01 1.01 1.01|1.02 1.02 1.02 1.02 1.02 1.02 1.02
4 1.05 1.05 1.05 1.05 1.05 1.05 1.06|1.04 1.04 1.04 1.04 1.04 1.04 1.04
7 1.02 1.02 1.02 1.02 1.02 1.02 1.02|1.03 1.03 1.03 1.03 1.03 1.03 1.03
8 1.01 1.01 1.01 1.01 1.01 1.01 1.01|1.02 1.02 1.02 1.02 1.02 1.02 1.02

mean |1.02 1.02 1.02 1.02 1.02 1.02 1.02|1.03 1.03 1.03 1.03 1.03 1.03 1.03

Table 32. Means of error ratios in Lavrentiev method with Rule DM, ¢; = 2.5-1079,
c2 = 0.25 for p = 0 (left), p = 1 (right), where the used noise level is d times the
actual noise level (correlated noise).

Case p = 0, values of d Case p = 1, values of d

Probl.{0.01 0.1 05 1 2 10 100(0.01 0.1 05 1 2 10 100
2 |1.01 1.01 1.01 1.01 1.01 1.01 1.01|1.03 1.03 1.03 1.03 1.03 1.03 1.03
3 |1.01 1.01 1.01 1.01 1.01 1.01 1.01|1.03 1.03 1.03 1.03 1.03 1.03 1.03
4 1.08 1.08 1.08 1.08 1.09 1.10 1.12|1.08 1.08 1.08 1.08 1.08 1.06 1.04
7 |1.02 1.02 1.02 1.02 1.02 1.02 1.02|1.03 1.03 1.03 1.03 1.03 1.03 1.03
8 |[1.01 1.01 1.01 1.01 1.01 1.01 1.02(1.02 1.02 1.02 1.02 1.02 1.02 1.02

mean |1.03 1.03 1.03 1.03 1.03 1.03 1.04(1.04 1.04 1.04 1.04 1.04 1.03 1.03

64



4.4.3. General comparison of rules.

Table 33 contains the means of error ratios in Lavrentiev method by prob-
lems. The following rules are included.

Lv1) Rule MD: oxyp is the solution of the equation dyp (o) = 1.1436.

Lv2) Rules MEa, MEn, MEaql: oga is the solution of dypa(x) = 1.3646;
&Men 1s the solution of dmen () = 1.0966 with v = 0.17, and cmgaq1 is the
solution of dmgaqi() = 1.0046 withl =5 and g = 1/1.2.

Lv3) Rules QC and QmC choose the parameters cqc and cqmc as the
global minimizers of the functions @qq() (1 + «|All™1) and & M7+ 150l -
(Ym+1;00 Tm+2;(x)l/2/(7’m+2;m Vm+3;(x)1/2 (1+allAl™Y), respectively, with g =
1/1.2, using the climbing approach with C = 1.5 and C = 2.5.

In general, the error ratios given by Lavrentiev method are better than
those found by Tikhonov method but note that Tables 4-7 show somewhat
lower overall potential of this method. Also Lavrentiev method is applicable
only to self-adjoint problems.

Table 33. Means of error ratios in Lavrentiev method by problems, p = 0.

Probl. | MD MD,2 MEa MEa,2 MEn MEn,2 MEagl MEagl,2| QC QmC
2 1.76 2.17 121 159 118 156 1.04 1.29 | 1.07 1.05
3 1.07 116 105 1.09 1.03 1.20 1.00 1.18 | 1.01 1.00
4 1.04 119 1.04 108 1.01 120 1.00 1.19 | 1.01 1.00
7 1.03 1.21 1.04 108 1.01 1.21 1.01 1.20 | 1.00 1.00
8 1.02 115 101 1.09 1.01 1.16 1.00 1.15 | 1.03 1.02
mean | 1.19 1.38 1.07 1.19 1.05 1.27 1.01 1.20 | 1.03 1.01
11 1.03 1.16 1.03 109 1.01 1.19 1.00 1.17 | 1.01 1.00
12 1.01 1.11 1.01 107 100 1.12 1.00 1.10 | 139 1.15
14 1.20 146 1.05 1.20 1.04 126 1.01 1.17 | 1.31 1.14
15 1.00 1.01 1.00 1.01 100 1.01 1.00 1.01 | 1.02 1.02
16 1.03 131 1.01 114 1.06 130 1.05 1.29 | 1.01 1.00
mean | 1.05 1.21 1.02 1.10 1.02 1.17 1.01 1.15 | 1.15 1.07

4.5. Results in Landweber method

Tables 34-36 contain the averages of error ratios for the Landweber method
with u = 1, using the following stopping rules. We implemented Landweber
method by operator iterations with m = 2. The stopping index in rules
was computed exactly, by gradually refining the mesh n = 2k, taking the
closest previously found approximation as a new initial approximation on
each refinement step.

Ln1) Discrepancy principle: np is the firstindex n>1 for which dp (n) <é.

Ln?2) Rule De: find np from Lnl and take npe = round(2.3np).

Ln3) Rule MEe: find nyg as the first n > 1 for which dyg(n) < 6 and take
NMee = round(2.31ME).

Ln4) Hanke-Raus rule: nyr = argmin{/n ||rnll,n = 1}.
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Table 34. Means of error ratios in Landweber method for p = 0.

Probl.| D D,2 De De?2 MEe MEe,2l HR HRmC QN QNmC BRS BRSC
1.46 247 1.40 236 140 236|271 250 180 1.75 2.60 2.03
1.30 1.91 1.05 143 1.05 143|976 1.95 976 1.59 976 1.62
1.92 6.36 1.76 5.00 1.75 5.01| 7.75 298 5.01 3.63 6.29 3.61
142 2.84 1.16 213 1.17 230|270 1.83 1.27 1.61 2.90 1.40
1.22 1.89 1.05 1.53 1.05 1.54| 1.67 7.39 1le+4 237 184 217
1.34 196 1.24 1.72 1.24 1.73|2.00 139 1.24 130 211 1.27
1.33 2.79 1.08 1.96 1.08 1.97 | 2e+5 1.44 2e+5 1.49 2e+5 1.39
1.40 2.36 1.29 2.03 1.29 2.06| 2.58 2.11 1.60 1.56 2.51 1.55
1.02 1.05 1.02 1.05 1.02 1.05| 1.07 1.07 1.05 1.04 1.07 1.05
1.19 1.37 1.18 135 1.18 1.35| 1.55 1.41 148 1.41 149 141
mean | 1.36 2.50 1.22 2.06 1.23 2.08 | 2e+4 2.41 2e+4 1.77 2e+4 1.75
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Table 35. Means of error ratios in Landweber method for p = 0 (correlated noise).

Probl. | D D,2 De De?2 MEe MEe,2] HR HRmC QN QNmC BRS BRSC
1.46 239 1.37 2.27 1.38 2.28| 2.63 3.39 1.71 3.06 2.53 1.90
1.64 247 1.19 1.67 1.20 1.67| 911 244 911 2.69 911 2.16
210 788 190 598 1.89 599 10.0 3.13 591 344 7.84 3.67
1.47 3.23 1.20 245 1.21 260| 3.01 1.88 1.32 1.33 3.34 1.36
1.34 2.20 1.16 1.79 1.16 1.79| 1.86 7.97 1le+4 2.87 2.03 2.29
1.31 2.01 1.20 1.78 1.20 1.78| 2.04 1.57 1.24 1.26 2.14 1.25
1.28 3.04 1.10 2.10 1.11 2.11 | 3e+5 2.48 3e+5 249 3e+5 1.82
1.36 2.41 1.24 2.07 1.24 2.09| 264 232 167 1.47 251 148
1.02 1.05 1.02 1.05 1.02 1.05| 1.07 1.09 1.05 1.04 1.07 1.05
1.20 138 1.18 136 1.18 1.36| 1.56 141 149 141 149 141
mean | 1.42 2.81 1.26 2.25 1.26 2.27 | 3e+4 2.77 3e+4 2.11 3e+4 1.84
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Table 36. Means of error ratios in Landweber method for p = 2.

Probl. | D D,2 De De?2 MEe MEe,2] HR HRmC QN QNmC BRS BRSC
1 2.78 275 296 11.8 292 119|525 242 6.05 784 19.3 6.55
1.22 4.03 1.23 221 1.23 2.22|2e+4 1.29 2e+4 1.64 2e+4 1.39
1.71 28.3 291 8.25 291 8.28| 38.6 8.04 6.67 8.25 18.2 7.94
1.50 6.22 1.26 2.29 1.22 233|338 299 149 3.02 4.88 1.48
1.19 3.56 1.18 1.83 1.15 1.83| 2.34 1.26 le+5 149 2.89 1.16
1.64 6.82 1.22 3.00 1.20 3.02| 4.11 3.55 1.37 234 6.59 1.56
144 5.95 1.25 2.04 1.23 2.06|5e+5 1.59 5e+5 1.81 5e+5 1.32
1.60 7.55 1.27 3.01 1.26 3.20| 3.89 8.20 1.93 247 5.50 2.22
1.78 104 1.38 3.94 1.36 4.14| 6.76 5.59 1.57 1.76 7.92 1.65
10 2.39 31.0 2.74 834 274 836 33.9 119 9.62 9.15 194 8.99
mean | 1.73 13.1 1.74 4.67 1.72 4.73 | 5e+4 6.86 6Ge+4 3.98 5e+4 3.43
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Ln5) Rule HRmC (modification of the Hanke-Raus rule) chooses npgrmc
as the index n > 1, which minimizes the function /n (|[7x| — l["2n+100ll),
using the climbing approach with C = 50.

Ln6) Rule QN (rule of Neubauer): ngn = argmin{||x, — x2xll,n = 1}.

Ln7) Rule ONmC (modification of Neubauer’s rule) chooses ngNmc as
n > 1, which minimizes || x; — X2n+100ll, using the climbing approach with
C = 20.

L8) Rule BRS (rule of Brezinski-Rodriguez-Seatzu): npgs is the global min-
imizer of @grs(n).

L9) Rule BRSC (modification of rule BRS) chooses ngrsc as the index n >
1, which minimizes the function [|7, || ([[7%]l = 172n+10011) /| A* 7 ||, using the
climbing approach with C = 15.

Since the stopping index of the monotone error rule differs from the
stopping index of the discrepancy principle by at most 1, the columns De
and MEe in Table 34 almost coincide.

In case of smooth solution with p = 2 the average in column D,2 in Table
36 is 7.5 times larger than the average in column D but the ratio of averages
in columns De,2 and De is only 2.7.

For the rule DM we found by varying parameters c¢; and ¢ that the best
values were ¢; = 0.35 and c» = 0.49 but the results were worse than for
rule QNmC that does not use 6.

4.6. Results in TSVD

Tables 37-39 contain the averages of error ratios in the method of trun-
cated singular value decomposition, using the following truncation rules. If

m + 1/2 € N, then the expression |7y, || means \/ll?’m—o.5|| 1"m+05ll. Some
rules contain an a priori upper bound of the truncation level: if the dimen-
sions of the discrete problem are N x N, then make computations only for
n < M(N, k), where M (N, k) = max(max(round((1.02-k)N-2,1),N —k)).
SP1) Discrepancy principle: np is the first index n for which dp(n) < 6.
SP2) Rule Q: ng = argmin{||x, — Xn41l1} = argmin{o,,}; (¥, Vns1) [}
SP3) Rule Qm chooses ngm as the global minimizer of the function
2y1/2
max(( >l —xil2)"% Ixn — xni1ll).
n-2<i<n+2

SP4) Rule HR’: in a discrete N x N problem choose nyg' as n < M(N, 10)
for which pur(n) = ||[*nll/On+1 is minimal.

SP5) Rule HRm: niyrm = argmin{([[vnll — [71.5n+811) /On+1}.

SP6) Rule HRL: in a discrete N XN problem choose nyry’ asn < M(N, 10)
for which ||, ||/l xXn|l/Opn+1 is minimal (geometric mean of functions mini-
mized in rules HR and L).

SP7) Rule HRLm’: in a discrete N X N problem choose nyrim’ as n <

M (N, 5) for which (l[75|l = I71.5n+101D)y/ X0l /On+1 is minimal.
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Table 37. Means of error ratios in TSVD for p = 0.

Probl. D D,2 Q Qm HR’ HRm HRL’ HRLm’ BRS’ BRSm
1 1.35 1.72 | 143 195 244 163 191 1.29 2.75 1.78
2 1.28 1.83 | 3.50 1.17 241 4.03 243 3.81 3.00 4.27
3 1.31 282 | 251 1.97 464 216 3.66 216 837 2.99
4 1.33 263 | 203 1.23 2.75 1.57 242 148 3.65 1.93
5 1.24 195 | 282 1.17 1.81 136 157 1.29 2.07 1.48
6 1.21 186 | 140 1.24 196 132 1.80 1.24 210 1.38
7 1.27 3.01 161 141 399 156 1.88 143 342 149
8 1.19 1.79 | 198 182 260 169 184 1.29 286 1.79
9 1.02 1.04 | 1.04 1.07 1.09 1.03 1.05 1.02 1.09 1.03
10 1.06 1.20 | 1.32 140 1.38 133 1.33 1.23 147 1.32
mean | 1.23 198 | 179 144 251 1.77 199 1.62 3.08 1.95
11 1.31 232 | 9.78 129 260 1.65 253 145 3.51 1.88
12 1.22 1.74 | 3.16 1.97 296 1.75 1.82 143 298 1.69
13 1.34 2.02 | 207 181 3.07 169 218 1.39 3.87 1.99
14 1.35 211 | 376 142 197 162 203 1.65 223 1.78
15 1.25 1.01 | 1.02 1.03 1.03 1.02 1.02 1.02 1.03 1.02
16 1.55 2.26 | 55.3 7.15 2.81 3.03 182 233 322 11.0
mean | 1.34 191 | 182 245 241 1.79 190 1.55 281 3.22
Table 38. Means of error ratios in TSVD for p = 0 (correlated noise).
Probl. D D,2 Q Qm HR’ HRm HRL’ HRLm’ BRS’ BRSm
1 1.19 1.80 | 149 2.06 2,57 166 2.02 141 283 1.86
2 1.66 241 | 37.7 1.29 322 6.10 4.73 5.69 4.22 6.48
3 1.32 298 | 200 1.61 546 191 399 1.61 8.75 2.98
4 1.36 295 | 3.24 1.21 3.01 165 268 146 391 1.93
5 1.34 217 | 456 131 193 151 2.77 144 220 1.72
6 1.20 190 | 1.32 1.24 205 134 180 1.22 220 1.51
7 1.31 3.40 | 215 2.04 459 134 841 145 391 1.92
8 1.17 189 | 1.74 1.87 272 162 192 132 3.01 1.75
9 1.01 1.05 | 1.04 1.07 1.09 1.03 1.05 1.02 1.09 1.03
10 1.04 1.20 | 1.32 141 138 132 133 1.20 147 1.30
mean | 1.26 2.18 | 270 1.51 280 1.95 3.07 1.78 3.36 2.25
11 1.27 258 | 122 1.25 290 1.62 277 147 3.81 1.88
12 1.22 185 | 1.87 204 3.13 1.73 191 142 3.14 1.74
13 1.31 238 | 222 1.79 361 1.76 2,55 144 455 2.02
14 1.29 232 | 96.3 4.27 232 171 803 182 254 1.89
15 1.10 1.01 | 1.02 1.04 1.03 1.02 1.02 1.01 1.03 1.02
16 1.71 264 | 519 11.2 3.05 3.28 220 289 3.68 143
mean | 1.32 2.13 | 276 3.60 267 1.85 3.08 1.68 3.13 3.80

68



Table 39. Means of error ratios in TSVD for p = 2.
Probl. D D,2 Q Qm HR’ HRm HRL HRLm’ BRS’ BRSm

1 137 548 | 3.39 205 288 538 548 260 508 10.8
2 1.54 438 | 21.2 223 349 156 348 1.66 438 271
3 227 5.02 | 241 103 36.8 5.02 502 434 181 5.02
4 1.55 8.26 | 1.62 1.73 733 181 194 176 826 212
5 1.31 4.89 | 232 158 3.18 151 227 1.38 571 1.96
6 1.51 439 | 245 164 5.83 213 295 188 125 2.89
7 1.25 249 | le+4 238 249 208 249 186 198 2.28
8 1.25 3.51 | 458 3.13 351 231 321 1.71 228 3.00
9 1.27 579 | 1.64 210 579 202 579 184 226 5.54

10 1.39 292 | 292 195 223 292 223 292 1le+3 19.7
mean | 1.47 4.71 | 1le+3 291 120 267 550 220 163 5.60
11 1.30 4.57 | 871 151 4.77 215 414 1.69 13.5 3.08
12 1.36 4.43 | 256 222 8.17 238 443 202 253 4.25
13 144 4.11 | 227 392 644 195 429 164 222 3.66
14 1.59 4.15 | le+3 288 430 186 2,55 197 759 240
15 2,02 1.02 | 1.02 468 1.02 1.02 1.02 1.02 1.02 1.02
16 149 2.74 | 1le+3 252 270 241 167 182 8.09 6.96
mean | 1.53 3.50 | 520 2.95 4,57 196 3.02 169 129 3.56

SP8) Rule BRS’: in a discrete N x N problem choose ngrs as n < M(N, 20)
for which [|7,12/1|A* 7y, || is minimal.

SP9) Rule BRSm: ngrsm = argmin{ ([l — 715041512 /[IA* x| }.

The upper bound of the truncation level was needed because some func-
tions started to decrease very quickly, attaining their minimums at n = N,
where the error of approximate solution was large. The length of the inter-
val, where this behavior occurred, depended weakly on the discretization
level N.

4.7. Results in conjugate gradient type methods

The following tables present the averages of error ratios ||xu; — X«ll/
Ixn, — x«|l for rules in methods CGLS and CGME. The denominator
Ixn, — x| refers to the minimal error in the corresponding method
(CGLS or CGME).

4.7.1. Rules for CGLS.

For CGLS the following rules were compared. Rules CL1-CL5 use noise level
information, rules CL6-CL9 do not.
CL1) Discrepancy principle: np is the first index n for which dp(n) < 6.
CL2) Rule De. Using np from CL1, find npe = round(1.02nL%).
CL3) Rule ME: nyg is the first index n for which dyg(n) < 6.
CL4) Rule MEe: using nyg from CL3, find nyge = round(0.99n1{4'%3).
CL5) Rule Me: using np and nyg from CL1 and CL3, respectively, find

npe = round (max(ny%43, niid7)).
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Table 40. Means of error ratios in CGLS for p = 0.

Probl.| D D,2 De De2 ME ME_2 MEe MEe,2 Me Me,2| HR QNmC HRmC HRmWC

1.40 1.86 1.42 1.86 1.66 2.27 1.66 2.27 1.40 1.86|2.52 2.28 1.87 1.52
1.20 1.74 1.06 1.43 1.38 2.09 1.08 1.47 1.07 146|912 3.05 1.62 1.62
1.29 2.82 1.43 2.75 2.15 4.88 1.96 4.81 1.29 2.75|5.29 27.8 234 2.34
1.22 2.24 1.20 2.13 1.71 3.61 1.27 3.03 1.19 2.09|2.22 1.59 1.45 1.45
1.13 1.81 1.05 1.62 1.31 2.04 1.07 1.65 1.06 1.63|1.60 1.33 1.45 1.12
1.23 1.79 1.21 1.74 1.54 2.39 1.34 2.20 1.21 1.76|2.12 1.46 1.42 142
1.17 2.39 1.16 2.36 1.74 3.49 1.48 3.15 1.17 2.29|2.34 274 141 141
1.19 1.87 1.19 1.72 1.49 2.62 1.38 2.34 1.17 1.79|2.12 1.95 1.74 1.49
1.02 1.04 1.03 1.04 1.03 1.06 1.03 1.06 1.02 1.04|1.07 1.06 1.04 1.02
1.06 1.20 1.06 1.20 1.16 1.25 1.13 1.24 1.06 1.20|{1.48 1.72 1.38 1.38

S0 0N U A WN =

mean |1.19 1.88 1.18 1.78 1.52 2.57 1.34 2.32 1.16 1.79|93.3 6.96 1.57 1.48

Table 41. Means of error ratios in CGLS for p = 0 (correlated noise).

Probl.| D D,2 De De2 ME ME_2 MEe MEe,2 Me Me,2| HR QNmC HRmC HRmWC

1.23 1.89 1.23 1.89 1.71 2.35 1.71 2.35 1.23 1.89|2.58 2.44 1.97 1.60
1.49 2.25 1.24 1.71 1.75 2.73 1.24 1.66 1.23 1.75|875 3.31 1.49 3.65
1.35 3.12 1.40 2.95 2.20 5.19 1.78 5.01 1.33 2.95|5.97 42.6 2.07 2.07
1.26 2.60 1.19 2.46 1.94 4.00 1.46 3.33 1.23 2.37|2.50 1.64 1.43 143
1.27 2.07 1.22 1.84 1.44 2.33 1.18 1.87 1.21 1.85|1.79 141 1.94 1.30
1.18 1.82 1.14 1.76 1.57 2.39 1.35 2.18 1.18 1.79|2.12 136 1.47 1.36
1.16 2.63 1.15 2.56 2.03 3.80 1.58 3.40 1.16 2.47|2.72 32.0 138 1.39
1.18 1.96 1.18 1.80 1.55 2.75 1.34 2.46 1.18 1.86|2.18 1.99 1.61 1.30
1.01 1.05 1.01 1.05 1.03 1.06 1.02 1.06 1.01 1.05|1.07 1.06 1.04 1.02
1.05 1.21 1.05 1.21 1.15 1.25 1.13 1.24 1.05 1.21|1.47 1.74 135 1.35

SooeNo Uk wWwN -

mean |1.22 2.06 1.18 1.92 1.64 2.78 1.38 2.46 1.18 1.92|89.8 8.96 1.57 1.65

Table 42. Means of error ratios in CGLS for p = 2.

Probl.| D D,2 De De,2 ME ME,2 MEe MEe,2 Me Me,2| HR QNmC HRmC HRmWC

1.29 4.58 1.29 4.58 1.95 8.31 1.95 8.31 1.29 4.58(20.5 118 233 2.33
1.18 2.92 1.26 2.92 1.88 5.94 1.75 5.67 1.26 2.92|2e+4 18.4 2.54 2.54
1.46 4.56 1.46 4.56 1.64 13.9 1.64 13.9 1.46 4.56|52.9 573 6.83 6.83
1.16 4.76 1.36 3.47 1.96 6.32 1.69 4.63 1.32 3.47(4.48 3.22 1.55 1.55
1.16 3.09 1.12 2.63 1.54 4.69 1.23 3.74 1.13 2.54|2.69 2.14 1.24 1.24
1.42 4.00 1.55 2.88 1.99 9.46 1.59 6.76 1.24 3.01{4.48 4.58 185 1.85
1.22 4.00 1.20 4.00 1.97 5.58 1.38 5.18 1.23 4.00(2.24 5.01 1.55 1.55
1.13 2.70 1.13 2.70 1.70 5.51 3.32 6.31 1.13 2.70{10.3 59.1 3.68 3.68
1.35 6.68 1.45 4.95 2.36 10.2 1.64 8.47 1.31 4.95|/5.94 721 150 1.50
1.42 2.88 1.42 2.88 2.18 9.87 2.18 9.87 1.42 2.88|55.3 2e+3 24.9 24.9

SooeNo Uk WwN -

mean (1.28 4.02 1.32 3.56 1.92 7.98 1.84 7.29 1.28 3.56|2e+3 312 4.79 4.79

70



CL6) Hanke-Raus rule: ngr = argmin{@ur(n)}.

CL7) Rule ONmC (analog of Neubauer’s rule): ngnmc is the minimizer
of the function @qNm(n) = llxn — Xull, using the climbing strategy with
C = 20, where X, is the solution of Ax;,, = Ax;, found after n + 1 steps in
CGLS method.

CL8) Rule HRmC: nygrmc is the minimizer of the function @urm(n) =
Von+1 Ulrnll = Iv2n+10l), using the climbing strategy with C = 10.

CL9) Rule HRmMWC: nyrmwc is the minimizer of the function, which coin-
cides with @urm (1) at indices n < 3 and with W for n > 500, with smooth
transition from @urm to W on steps from 3 to 500. Computations are made
on the interval [0, N], where N is determined using the climbing strategy
with C = 20.

From Tables 40-42 we see that the rule Me with the estimated parameter
gives slightly better results than rules D and ME in case p = 0 both for
exact and 2 times overestimated noise level and both for uncorrelated and
correlated noise. Also note that our modifications to the rule HR were able
to improve the results in most problems in case p = 0. Adding the function
W was justified in many problems, if p = 0 (rules HRmC and HRmWC) but
if p was 2, then the results remained unchanged.

4.7.2. Rules for CGME.

Tables 43-45 compare the following rules in CGME.

CM1) Rule DH: npy is the first index for which dpg(n) < 1.26.

CM?2) Rule ME: nyk is the first index n for which dyg(n) < 6.

CM3) Rule MEe: using nyg from CM2, find nyge = round(O.SthEG).

(CM4) Hanke-Raus rule: nyr = argmin{@ggr(n)}.

CMS5) Rule HRC: nygc is the minimizer of the function @ur (n), using the
climbing strategy with C = 100.

CM6) Rule DHP: npyp is the first index n for which the function dpy(n)
decreases in next 10 steps by no more than C = 1.5 times (plateau strategy).

CM7) Rule RMC: nrpmc is the minimizer of dp(n) on [0,N], where N
minimizes Q},L/_ZZ dpu (n — 3) using the climbing strategy with C = 3.

The error ratios for CGME are better than for CGLS but as Tables 4-7
show, the method CGLS itself generally has smaller minimal errors. Note-
worthy is remarkably good performance of the discrepancy principle (DH in
Tables 43-45, also D in Tables 40-42) that is hard to beat by solely refining
D and ME. In case p = 0 the heuristic delta-free rules RMC and DHP gave
similar results than the discrepancy principle in most problems but surpris-
ingly in case p = 2 they gave best possible results in 90% of runs (Table 45).
The rule DHP was not so good in case of correlated noise (Table 44).

Note that some other stopping rules for CGLS and CGME methods are
proposed and numerically tested in [27].

71



Table 43. Means of error ratios in CGME for p = 0.

Probl. | DH DH,2 ME ME2 MEe MEe2| HR HRC DHP RMC

1.02 117 110 123 110 123|174 174 1.01 1.01
1.14 155 1.36 192 123 1.70 | 686 1.27 4.03 1.04
1.07 1.24 1.00 255 1.00 255|419 419 1.00 1.00
1.05 1.51 1.07 168 1.08 1.68 | 161 1.61 1.00 1.04
1.05 124 114 139 1.11 136 | 138 138 1.21 1.09
1.11 116 1.08 1.40 1.07 1.40 | 148 1.48 1.00 1.10
1.05 141 1.14 152 1.14 150|164 166 1.00 1.16
1.02 120 1.09 152 1.09 1.52 | 151 150 1.00 1.13
1.00 1.02 1.01 1.02 1.01 1.02 | 104 1.04 1.00 1.02
1.03 1.03 1.00 1.07 1.00 1.07 | 1.27 132 1.00 1.00

S©®NO U A WN =

mean | 1.06 1.25 1.10 1.53 1.08 1.50 | 70.2 1.72 133 1.06

Table 44. Means of error ratios in CGME for p = 0 (correlated noise).

Probl. | DH DH,2 ME ME2 MEe MEe2| HR HRC DHP RMC

1.01 116 1.09 124 1.09 124|172 1.70 1.01 1.00
140 2.00 1.79 260 1.54 225 | 613 1.08 9.72 1.04
1.07 1.26 1.04 252 1.04 252|395 395 1.00 1.00
1.06 1.50 1.10 1.69 1.10 1.69 | 1.58 1.57 142 1.04
1.16 134 124 151 1.21 148|139 1.13 1.59 1.12
1.08 1.16 1.09 140 1.09 1.40 | 146 142 1.66 1.08
1.10 143 1.17 158 1.19 1.56 | 165 1.69 1.71 1.17
1.02 122 111 154 1.11 154|150 147 1.51 1.13
1.00 1.02 1.01 1.02 1.01 1.02 | 104 1.04 1.06 1.02
1.02 1.02 1.00 1.07 1.00 1.07 | 1.25 1.29 1.00 1.00

SooeNo Uk WwN -

mean | 1.09 1.31 1.16 1.62 1.14 158 | 62.8 1.64 217 1.06

Table 45. Means of error ratios in CGME for p = 2.

Probl. | DH DH,2 ME ME2 MEe MEe,2| HR HRC DHP RMC

1.09 143 1.00 143 100 143 | 31.3 313 1.00 1.00
1.17 156 1.11 2.09 1.11 2.09 | 5e+3 74.5 1.02 1.00
1.00 143 1.00 143 1.00 1.43 | 170 170 1.00 1.00
141 134 100 137 100 137 | 137 137 1.00 1.00
1.05 1.78 131 237 131 237 | 159 159 1.01 1.01
1.01 1.75 1.22 299 122 299 | 285 285 1.00 1.01
1.00 1.77 143 3.20 143 3.20 | 1.75 1.75 1.00 1.00
1.03 171 100 1.71 100 1.71 | 126 12.6 1.00 1.00
1.10 143 1.25 205 1.25 205 | 227 227 1.00 1.00
1.00 140 1.00 143 1.00 1.43 | le+t3 1le+3 1.00 1.00

SooeNo Uk wWwN -

mean | 1.09 1.56 1.13 2.01 1.13 201 | 699 178 1.00 1.00
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4.7.3. Rule DM.

If the noise level is known approximately, then for CGLS, we propose the
two-step rule DM with constants c; = 0.25, ¢» = 0.4.

Tables 46, 47 illustrate behavior of this rule at various degrees of noise
level over- or underestimation. Comparing with Table 40, we see that at
d = 1, p = 0 this rule gives an average that is worse than the average of
best rules that use noise level but better than the best average of a 6-free
rule. The right hand sides of Tables 46, 47 show that if p = 2, then the rule
DM looses its forgiveness of coarse estimation of noise level more quickly
than in case p = 0.

Comparing Tables 46 and 47 with each other, we see that in case of
correlated noise the usable domain of DM is essentially narrower. If p = 2,
then middle columns (d close to 1) are better in case of uncorrelated noise
but at 100 times underestimated noise level (d = 0.01) the results are better
in case of correlated noise.

Table 46. Rule DM in CGLS for p = 0 (left), p = 2 (right), where the supposed
noise level is d times the actual noise level.

Case p = 0, values of d Case p = 2, values of d

Probl.|0.01 0.1 0.5 1 2 10 100{0.01 0.1 0.5 1 2 10 100
5.94 3.46 2.95 1.43 1.51 2.25 3.20|15.6 15.2 8.82 1.28 1.88 8.31 41.2
29.5 4.70 1.58 1.30 1.14 1.60 4.50| 395 1.59 1.59 1.56 1.61 5.94 18.8
3.27 3.27 2.07 2.18 2.70 4.39 8.14|1.77 1.77 1.48 1.44 2.15 139 72.2
1.49 1.49 1.36 1.33 1.60 3.66 8.15|2.78 2.78 2.33 1.21 1.19 6.32 28.5
14.3 14.3 2.26 1.29 1.12 1.83 3.98|35.1 35.1 1.39 1.26 1.24 3.79 15.9
1.63 1.63 1.23 1.33 1.45 2.20 3.28|2.44 2.44 1.76 1.55 1.97 6.17 25.1
1.29 1.29 1.29 1.37 1.42 3.60 8.99|1.46 1.46 1.44 1.46 1.67 4.60 25.4
1.71 1.70 1.31 1.36 1.62 2.41 4.11|5.56 5.56 2.56 1.27 1.48 5.51 27.5
1.51 1.35 1.02 1.02 1.03 1.06 1.12|5.35 2.53 1.51 1.40 1.74 7.68 34.4
26.4 1.55 1.21 1.22 1.23 1.36 1.46|3e+3 109 1.57 1.57 2.87 9.87 45.4
mean |8.70 3.47 1.63 1.38 1.48 2.44 4.69| 316 17.8 2.45 1.40 1.78 7.21 33.4

S5 © 0 NO U WN

Table 47. Rule DM in CGLS for p = 0 (left), p = 2 (right), where the supposed
noise level is d times the actual noise level (correlated noise).

values of d for p = 0 values of d for p =2

Probl.|0.01 0.1 0.5 1 2 10 100{0.01 0.1 0.5 1 2 10 100
5.29 5.24 1.61 1.54 1.62 2.32 3.27|16.1 13.0 6.40 1.75 5.42 9.42 65.9
19.0 3.16 1.59 1.16 1.19 1.85 6.20| 154 2.29 1.81 1.78 2.11 6.72 28.2
498 4.41 1.88 2.33 2.79 4.73 8.97|10.0 10.2 3.88 2.67 2.47 11.6 50.1
1.94 1.92 1.59 1.70 1.90 4.08 8.86|1.76 1.60 2.24 2.09 1.98 10.2 52.8
7.82 743 2.16 1.57 1.29 2.07 4.50|13.2 1.42 1.51 1.74 197 643 274
1.64 1.47 1.34 1.36 1.43 2.21 3.25|1.74 1.76 2.05 2.49 2.94 124 44.1
1.48 1.26 1.35 1.52 1.67 4.07 9.63|1.36 1.38 2.06 2.67 3.49 8.79 49.9
1.74 1.72 1.54 1.46 1.64 2.53 4.30|6.30 5.55 4.85 3.65 3.62 12.9 634
310 1.03 1.03 1.02 1.03 1.06 1.11|1.31 1.41 1.47 2.16 2.78 8.05 50.0
2.32 1.87 1.41 1.23 1.23 1.33 1.46|413 134 120 9.43 2.74 9.38 40.9
mean | 35.7 2.95 1.55 1.49 1.58 2.63 5.16|61.9 17.3 14.6 3.04 2.95 9.59 47.3

S©ONO U A WN =
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4.8. Results in extrapolated Tikhonov method

Since extrapolation forms the approximate solution on base of several sin-
gle Tikhonov approximations, in numerical experiments of this section we
searched the regularization parameter from the sequence Q = (x), where
on =q" (@ =09, n=0,1,...). The task of finding the solution of an
equation d(x) = C was thus replaced by the task of finding the first « in
this sequence for which the inequality d(«) < Cd holds. The extrapolated
approximation with m terms, corresponding to regularization parameter

«, was constructed using Tikhonov approximations X i, with i = —[%J,
—[%J +1,..., [%] — 1. Then « lies exactly in the middle of the sequence

q'« of parameters, if m is odd.

To maintain a common base of comparison, all error ratios were com-
puted by dividing the error of computed approximation by the minimal
error of single Tikhonov approximation. In this sense the results are com-
parable with the results of Section 4.3.

4.8.1. Rules using noise level.

Tables 48-55 show the results for the following rules using noise level in-
formation.

Tel) Rule De. Let axp be the first o, with dp () < 6 in ordinary Tikho-
nov method and o;,p be the first o, with dp(x,) < 6 in m-extrapolated
Tikhonov method. Take &pe = cmpe to be the nearest & € Q to o,y o™,
where (c2,1,¢2,2) = (1.22,-0.12), (¢c3,1,¢3,2) = (1.16,—-0.04). We also rec-
ommend (cs,1,c42) = (1.11,-0.01), (c5,1,¢52) = (1.1,0). The exponent
less than 1 of ap was good only for p > 1.

Te2) Rule MEe. Let o be the first o, with deme(n) < 6 in m-extra-
polated Tikhonov method (see (3.6)). Take omge = mme to be the nearest
o€ Q to min(0.5 e, 0.6408).

Te3) Rule MEs. Let amg be the first «;, for which dye(n) < 6 on se-
quence (xy) (see (3.5)), where x;, is an m-extrapolated approximation cor-
responding to parameter ;. Take onmes = XmMEes tO be the nearest & € Q
to min(0.5 e, 0.6064i2°).

Ted) Rule R2e. Let age be the first &« with dro () < C6 in m-iterated
Tikhonov method, where C = 0.2 in case m = 2 and C = 0.13 in case
m = 3. Take &rze = 0imr2e t0 be the nearest x € Q to 0.5xg>.

Te5) Rule Me. Using otMmEe, &rze from Te2, Te4, respectively, take oie =
min(Xmge, XR2e)-

Te6) Rule maxD. Take amaxp to be the first «; for which dp(n) < 6 on
sequence (x;,), where x, is an n-extrapolated approximation formed using
single Tikhonov approximations xy,, - .-, Xy,

Te7) Rule maxDe. Using omaxp from Te6, take otmaxpe to be the nearest

xeQtootl o
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Table 48. Means of error ratios for 2-extrapolated Tikhonov approximation.

14 De De,2 MEe MEe,2 MEs MEs,2 R2e R2e,2 Me Me,2
0 1.16 2.15 1.15 1.87 1.15 1.88 143 1.52 124 1.51
0.25 1.59 365 1.58 3.12 1.58 3.15 2.78 292 1.79 240
0.5 1.55 444 155 3.64 1.55 3.67 211 242 1.74 242
0.75 1.25 425 1.27 3.12 126 3.16 156 183 141 1.83

1 1.00 3.92 102 254 101 259 130 141 1.15 141
1.5 074 331 079 191 0.78 195 085 0.88 0.83 0.88
2 0.59 270 065 137 0.64 140 0.69 0.67 0.69 0.67
4 045 187 050 085 050 086 054 048 0.55 048
8 045 180 049 083 049 083 053 047 0.54 047

mean 098 3.12 1.00 214 099 216 131 140 110 1.34

Table 49. Means of error ratios for 2-extrapolated Tikhonov approximation (cor-
related noise).

14 De De,2 MEe MEe,2 MEs MEs,2 R2e R2e,2 Me Me,2
0 1.18 231 1.17 200 1.17 202 154 161 1.28 1.61
0.25 1.61 4.76 1.61 4.04 161 4.07 3.32 3.63 1.77 3.06
0.5 1.54 778 153 646 1.52 650 421 4.64 1.75 4.64
0.75 1.31 789 1.32 591 132 596 273 3.65 149 3.65

1 099 639 1.01 431 1.00 439 214 261 113 261
1.5 074 649 0.77 3.64 0.77 3.72 135 157 0.87 1.57
2 0.59 4.25 072 217 0.72 222 1.00 1.04 090 1.04
4 042 448 049 207 049 209 069 0.71 0.63 0.71
8 044 274 051 135 050 1.35 061 0.58 0.62 0.58

mean 098 5.23 1.02 3.55 1.01 3,59 195 223 116 2.16

Table 50. Means of error ratios for 3-extrapolated Tikhonov approximation.

p De De,2 MEe MEe,2 MEs MEs,2 R2e R2e,2 Me Me,2
0 1.17 2.05 116 183 1.16 1.82 143 159 1.16 1.58
0.25 1.64 349 160 3.07 1.61 3.04 280 3.04 1.61 2.50
0.5 1.57 422 158 3.57 1.58 354 227 283 1.58 2.82
0.75 1.26 3.88 1.28 3.01 1.28 296 1.59 234 1.28 231

1 099 346 1.01 240 1.02 235 136 1.51 1.02 1.51
1.5 0.72 287 077 173 0.78 169 084 1.02 0.78 1.02
2 0.54 225 061 1.11 0.62 107 068 0.67 0.63 0.67
4 034 140 044 048 044 048 046 040 047 040
8 033 1.28 041 042 042 042 044 039 045 0.39

mean 095 2.77 098 196 099 193 132 153 1.00 147
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Table 51. Means of error ratios for 3-extrapolated Tikhonov approximation (cor-
related noise).

14 De De,2 MEe MEe,2 MEs MEs,2 R2e R2e,2 Me Me,2
0 1.18 220 1.17 196 1.17 195 1,53 1.70 1.18 1.69
0.25 1.63 448 1.63 3.96 1.63 392 346 3.77 1.64 3.20
0.5 1.53 731 156 6.27 1.56 6.22 431 521 1.58 5.19
0.75 1.32 729 135 578 136 5.69 3.17 4.65 139 4.58

1 099 553 1.01 4.02 1.02 397 241 281 1.04 281
1.5 071 574 074 324 0.75 3.11 137 175 0.78 1.75
2 0.59 354 075 178 0.75 1.75 096 1.03 0.81 1.03
4 034 348 045 1.13 046 1.11 053 0.57 0.50 0.57
8 0.35 207 046 066 046 066 049 046 0.50 046

mean 096 4.63 1.01 3.20 1.02 3.15 203 244 105 236

Table 52. Means of error ratios for extrapolated approximation, n = max (uncor-
related noise left, correlated noise right).

14 maxD maxD,2 maxDe maxDe,2 | maxD maxD,2 maxDe maxDe,2
0 1.29 2.49 1.17 2.25 1.34 2.73 1.19 2.42
0.25 1.80 4.45 1.63 3.82 1.88 5.97 1.66 5.14
0.5 1.81 5.25 1.60 4.65 1.96 9.09 1.60 8.31
0.75 1.48 5.22 1.28 4.47 1.56 9.52 1.36 8.27
1 1.15 4.84 0.99 4.00 1.16 8.52 1.00 6.80
1.5 0.81 4.03 0.71 3.34 0.81 7.29 0.70 5.97
2 0.58 3.18 0.52 2.67 0.66 4.85 0.60 3.97
4 0.31 1.93 0.30 1.78 0.31 4.70 0.31 4.34
8 0.26 1.55 0.26 1.47 0.28 2.21 0.29 2.02
mean 1.06 3.66 0.94 3.16 1.11 6.10 0.97 5.25

Rules Tel-Te5 are intended for choosing the parameter in m-extrapo-
lated approximation (m fixed), rules Te6, Te7 can be used in extrapolated
approximation with maximum number of single Tikhonov approximations
with parameters i, &, ..., &maxD (resSp. XmaxDe)-

The rules MEe and MEs always gave similar results. At exact § the rules
MEe and MEs are somewhat better than ME but in case of 2 times overesti-
mated noise level the rule Me is better.

As Tables 48-52 show, if x4, € R(A*), then in most cases the error of
extrapolated approximation with a posteriori parameter choice was smaller
than the error of the best single Tikhonov approximation. Table 52 shows
the advantage of the approximation with maximum number of terms for
large p.

In Tables 53, 54 the error ratios of 3-extrapolated approximation with
rule R2e and max-extrapolated approximation with rule maxDe are given for
every problem (also including the problems from [13]). In most problems
the error ratios decreased with increasing p, especially if p > 1.

Table 55 shows the averages of error ratios for problem ’heat’.

We do not present the results for the discrepancy principle and mono-
tone error rule since the refined rules De and MEe were somewhat better.
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Table 53. Means of error ratios in 3-extrapolated Tikhonov approximation with
rule MEe by problems.

] YR
o > ] — — ]
N j= & 4] » o =} — < =
£ 2 § T = 2 5 2 £ w2 2 ¢ £ g & =
S 5§ ¥ &8 § & £ & 75 £ z =2 = ¢ & ¢
" —
p <o © & B £ = 8 @ & % & £ 2 &8 a 4

0 1.42 1.02 1.54 1.04 1.00 1.13 0.98 1.26 1.02 1.18 1.10 1.23 1.22 1.07 1.02 1.49
0.25 2.49 1.02 1.61 1.01 0.98 1.13 0.95 1.42 1.39 4.01 1.07 1.33 1.26 1.08 2.07 1.66
0.5 4.09 1.03 1.44 0.94 0.96 1.07 0.88 1.30 1.56 2.49 1.02 1.28 1.21 1.06 4.34 1.41
0.75 1.74 1.03 1.37 0.89 0.93 1.01 0.82 1.18 1.52 2.27 0.94 1.21 1.11 1.02 7.37 1.19
1 1.53 0.99 0.96 0.80 0.89 0.94 0.71 0.92 1.16 1.19 0.84 1.11 1.02 0.96 13.4 0.99
1.5 0.96 0.84 0.66 0.63 0.82 0.74 0.54 0.75 0.93 0.80 0.65 0.91 0.79 0.78 3.85 0.71
2 0.65 0.65 0.49 0.53 0.73 0.58 0.47 0.59 0.69 0.73 0.53 0.73 0.64 0.59 2.90 0.58
4 0.42 0.37 0.40 0.42 0.46 0.44 0.41 0.41 0.48 0.55 0.45 0.47 0.43 0.34 2.52 0.52
8 0.40 0.36 0.40 0.41 0.41 0.42 0.40 0.40 0.42 0.53 0.44 0.43 0.38 0.33 2.52 0.52
mean 1.52 0.81 0.99 0.74 0.80 0.83 0.68 0.91 1.02 1.53 0.78 0.97 0.90 0.80 4.44 1.01

Table 54. Means of error ratios for extrapolated Tikhonov approximation with
rule maxDe.

S o o
o > o] = —_ v
o~ [oN n = = -
£ 0z & T - 2 = 2 £ w B 8 £ B g =
= = 51 Q = = =] =] = Q ~4 =3 @ o
U é o a.) < <= = o = < = s g < =
p 2 © & & £ = ‘a8 @ & 2 & =2 2 § a 4

0 1.43 1.03 1.47 1.12 1.01 1.18 1.01 1.30 1.02 1.19 1.18 1.29 1.24 1.01 1.02 1.60
0.25 2.54 1.02 1.55 1.10 0.97 1.21 0.96 1.55 1.43 3.97 1.18 1.45 1.33 0.98 1.99 1.92
0.5 4.23 0.99 1.38 1.00 0.90 1.18 0.87 1.43 1.64 2.36 1.12 1.42 1.27 0.94 4.00 1.67
0.75 1.82 0.94 1.26 0.92 0.84 1.11 0.81 1.27 1.67 2.19 1.04 1.38 1.13 0.87 6.53 1.46
1 1.58 0.87 0.84 0.81 0.78 1.02 0.68 0.93 1.21 1.19 0.93 1.25 1.03 0.80 11.9 1.26
1.5 0.92 0.68 0.58 0.59 0.69 0.74 0.50 0.73 0.98 0.69 0.66 1.01 0.74 0.62 3.06 0.92
2 0.56 0.49 0.37 0.45 0.57 0.54 0.42 0.55 0.63 0.63 0.52 0.76 0.55 0.43 1.74 0.71
4 0.27 0.25 0.24 0.30 0.30 0.33 0.33 0.30 0.35 0.37 0.35 0.36 0.28 0.20 1.49 0.55
8 0.24 0.22 0.23 0.27 0.24 0.28 0.29 0.26 0.28 0.30 0.31 0.28 0.21 0.18 1.49 0.53
mean 1.51 0.72 0.88 0.73 0.70 0.84 0.65 0.93 1.02 1.43 0.81 1.02 0.86 0.67 3.69 1.18

Table 55. Means (over all p) of error ratios and errors for problem heat.

1) D D,2 Me Me,2 2MEe 2MEe,2 3De 3De,2 |[Xa,—x,l
0.5 1.06 249 1.07 192 099 1.12 0.87 1.19 3.91e-1
107! 1.12 217 106 1.88 093 1.52 0.83 2.33 2.10e-1
1072 1.26 155 1.07 1.57 0.85 1.28 0.77 1.72 7.14e-2
1073 148 128 1.08 1.28 0.80 1.01 0.71 1.26 2.15e-2
1074 1.81 1.26 1.10 1.13 0.78 0.78 0.68 0.92 7.19e-3
107° 251 147 1.13 1.06 0.77 0.70 0.67 0.74 3.18e-3
1073 345 219 1.15 1.04 0.75 0.67 0.66 0.68 1.51e-3
mean 1.81 1.77 1.09 141 0.84 1.01 0.74 1.26
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4.8.2. Rules not using noise level.

Tables 56-58 contain the results for rules using minimization strategy in
extrapolated Tikhonov method with 2 or 3 terms (for analogous results in
single Tikhonov approximation see Tables 18-20). The lower part shows
the means of error ratios in problems of Table 2 with all solution vectors
of Table 3. The rules were selected as the best rules for single Tikhonov
approximation.

Te8) Rules QC, R2C, BRSC choose the parameter by the climbing ap-
proach in the functions @eq (&), @er2 (), and @prs(x), respectively, where
C = 7 in 2-extrapolated Tikhonov approximation and C = 7.5 in 3-extrapo-
lated Tikhonov approximation.

Te9) Rules DR21 and BRS1 choose the parameter as the largest local
minimum of the functions (pD(a)0'9q9eR2(o<)0'1o<0'4 and @grs () x®, where
c =0.58 or ¢ = 0.61 in 2- or 3-extrapolated approximation, respectively.

Rules Te8 require a somewhat larger constant C in conjunction with the
climbing approach than their analogs T10 of Section 4.3.2. Note also the
difference in weighted geometric averages in rules DR21 in Te9 and T12.

In most cases the results remained good. The rule DR21 was good in
case p = 0 and essentially worse in case p = 2. Note also that the problem
14 was hard to most rules in case p = 0 and the problem 15 in case p = 2.
The error in problem 15 has a very sharp minimum, if p = 2, while the
functions used in our rules are quite smooth.

Table 56. Means of error ratios for 2-extrapolated and 3-extrapolated Tikhonov
approximation, p = 0.

2-extrapolated Tikhonov 3-extrapolated Tikhonov
Probl. | QC R2C BRSC DR21 BRSI1 QC R2C BRSC DR21 BRS1
1.56 1.61 2.63 2.18 269 | 1.91 186 2.63 2.62 2.72
1.62 1.58 147 1.59 1.36 | 1.62 1.52 1.47 1.59 1.52
243 237 708 299 414 | 279 285 718 3.19 145
1.11  1.09 2.23 1.15 1.67 | 1.10 1.16 2.20 1.16 1.69
1.71 1.69 142 1.83 1.17 | 1.70 1.67 1.43 1.75 1.18
1.19 1.18 1.85 1.28 1.50 | 1.19 1.19 1.82 1.28 1.49
1.09 1.08 1.78 1.07 1.33 | 1.09 1.06 1.79 1.08 1.35
1.52 1.51 230 1.48 1.94 | 1.52 145 2.27 1.58 2.25
1.04 1.04 1.06 1.05 1.07 | 1.04 1.04 1.06 1.05 1.07
10 1.42 142 1.55 1.51 1.86 | 1.42 144 1.54 1.85 1.87
mean | 1.47 1.46 2.34 1.61 1.87 | 1.54 1.52 2.34 1.72 2.96
11 1.18 1.17 2.01 1.20 1.58 | 1.19 1.22 2.03 1.25 1.59
12 199 195 283 205 230 | 1.98 233 284 206 230
13 3.26 3.25 3.32 3.14 3.52 | 3.27 3.06 3.33 3.20 3.54
14 1.99 193 2.22 1.91 203 | 207 222 567 537 205
15 1.06 1.06 1.06 1.06 1.06 | 1.06 1.05 1.06 1.06 1.06
16 1.66 1.65 2.27 1.74 1.84 | 1.70 192 2.34 2.76 4.18
mean | 1.86 1.84 228 1.85 5.10 | 1.88 1.97 288 2.62 5.52
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Table 57. Means of error ratios for 2-extrapolated and 3-extrapolated Tikhonov
approximation, p = 0 (correlated noise).

2-extrapolated Tikhonov 3-extrapolated Tikhonov
Probl. | QC R2C BRSC DR21 BRSI1 QC R2C BRSC DR21 BRS1

1 1.55 1.56 2.54 2.12 264 | 1.90 1.86 2.53 2.59 2.67
2 147 144 133 1.88 1.27 | 1.65 1.52 1.32 1.88 1.31
3 262 261 838 3.24 4.60 | 2.89 285 855 3.43 15.5
4 1.16 1.15 249 1.31 1.87 | 1.16 1.16 245 1.33 1.89
5 1.72  1.67 1.59 13.4 1.55 | .70 1.67 1.60 13.4 2.09
6 1.21 120 1.94 1.34 1.57 | 1.20 1.19 1.91 1.34 1.56
7 1.04 1.05 1.95 4.21 146 | 1.04 1.06 2.34 4.27 1.48
8 141 141 232 1.46 191 | 145 145 229 1.54 2.21
9 1.04 1.04 1.06 1.05 1.06 | 1.04 1.04 1.06 1.05 1.06

10 144 144 1.55 1.52 1.87 | 145 144 1.55 1.86 1.88
mean | 1.47 1.46 2.52 3.15 1.98 | 1.55 1.52 2.56 3.27  3.17
11 1.20 1.20 2.40 1.42 1.86 | 1.21 1.22 2.39 1.47 1.87
12 237 233 3.57 2.54 2.86 | 2.35 233 3.59 2.56 2.87
13 3.07 3.06 3.33 3.04 3.44 | 3.10 3.06 3.35 3.12 3.48
14 228 213 235 2.15 23.7 | 238 222 6.95 6.66 23.9
15 1.05 1.05 1.05 1.05 1.05 | 1.05 1.05 1.05 1.05 1.05
16 1.86 1.88 2.77 2.00 223 | 1.92 1.92 3.02 3.59 5.21
mean | 1.97 1.94 2.58 2.03 5.86 | 2.00 197 3.39 3.08 6.40

Table 58. Means of error ratios for 2-extrapolated and 3-extrapolated Tikhonov
approximation, p = 2.

2-extrapolated Tikhonov 3-extrapolated Tikhonov

Probl. QC R2C BRSC DR21 BRS1 QC R2C BRSC DR21 BRS1
1.10 1.17 242 0.68 1.51 1.07 1.17 243 0.89 1.69
0.61 067 106 062 0.74 | 059 065 099 0.57 0.73
0.82 086 1.88 0.53 1.11 | 0.64 0.81 1.59 0.62 1.11
0.65 069 090 060 0.61 | 063 067 086 0.56 0.63
0.72 0.79 097 0.74 0.73 | 0.70 0.78 0.92 0.71 0.71
0.70 0.76 1.12 0.65 0.75 | 0.67 0.75 1.15 0.62  0.81
0.54 0.58 0.74 0.54 0.54 | 0.51 0.55 0.67 0.48 0.51
081 087 129 066 083|081 090 130 0.64 0.96
0.82 0.87 2.02 0.75 1.21 | 0.81 0.87 1.99 0.74 1.30
10 1.19 1.28 3.04 1.02 1.87 | 0.93 1.02 2.57 1.22 1.83
mean | 0.79 0.85 1.54 0.68 099 | 0.74 0.82 1.45 0.71 1.03
11 0.63 0.69 0.85 0.60 061 | 061 0.67 0.86 0.57 0.64
12 091 097 206 0.79 1.34 | 094 1.00 220 0.80 1.43
13 0.89 089 189 0.83 1.30 | 0.87 0.87 1.83 0.83 1.36
14 0.57 0.62 1.42 0.59 0.90 | 0.55 0.59 1.30 0.59 0.87
15 3.62 3.64 14.5 3.63 6.72 | 3.62 3.63 6.88 3.62 5.11
16 0.66 0.68 0.62 0.64 060 | 0.63 0.65 0.63 0.59 0.59
mean | 1.21 1.25 3.55 1.18 1.91 1.20 1.23 2.28 1.17 1.67
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4.8.3. Rule R2e.

Table 59 shows the means of error ratios for rule R2e in 2-extrapolated
Tikhonov method at various p and d. Comparison of Table 59 with 21,
where results for ordinary Tikhonov method are given, shows that in 2-ex-
trapolated Tikhonov method, the rule R2e is much more sensitive to under-
estimation of the noise level.

Table 59. Means of error ratios in 2-extrapolated Tikhonov method with the rule
R2e, using the noise level that is d times the actual noise level.

p\d 0.5 0.6 0.8 1 1.3 1.6 2 3 5 10
0 205 259 190 143 142 146 152 1.63 190 2.26
0.25 306 34.0 3.16 2.78 274 283 292 311 356 4.28
0.5 404 469 263 211 201 214 242 287 350 4.11
0.75 321 388 237 156 1.55 1.64 183 219 283 3.65

1 390 33.0 209 130 129 135 141 1.61 213 3.20
1.5 488 271 122 085 0.83 085 0.88 1.09 145 2.02
2 388 23.2 083 069 0.67 0.67 067 0.73 092 1.38
4 397 6.24 057 054 0.52 050 048 048 0.53 0.64
8 395 5,52 056 053 051 049 047 047 0.52 0.61

mean 366 26.7 1.70 131 1.28 132 140 1.57 193 246

4.8.4. Rule DM.

Tables 60, 61 present the results for the rule DM in 2-extrapolated Tikhonov
method at various levels of noise level ill-estimations d. These tables are
analogs of Tables 23, 24 of ordinary Tikhonov method. If p = 2, then the
rule DM is able to choose the regularization parameter in such way that the
2-extrapolated Tikhonov approximation is better, on average, than the best
single Tikhonov approximation even in wider range of d than [0.1,10] for
uncorrelated noise (Table 60). For correlated noise the results are not so
good but for d close to 1 the error still depends only weakly on d.

Table 62 compares some sets of parameters c;, ¢» in rule DM.

Figure 4 compares the rule DM with the rule R2C, illustrating the depen-
dence of the error on d.

In Tables 56 and 58 the rule R2C gives averages 1.46 for p = 0 and 0.85
for p = 2, in 2-extrapolated Tikhonov method, hence DM is superior over
R2C,if d € [0.3,20] incase p =0 ord € [1,50] in case p = 2.
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Table 60. Means of error ratios in 2-extrapolated Tikhonov method with the rule
DM, c; = 0.002, ¢c2 = 0.03 for p = 0 (left), p = 2 (right), where the used noise level
is d times the actual noise level.

Case p = 0, values of d Case p = 2, values of d

Probl.|0.01 0.1 0.5 1 2 10 100{0.01 0.1 0.5 1 2 10 100
1.53 1.53 1.53 1.54 1.56 1.71 2.55|1.24 1.24 1.24 1.17 1.08 0.87 2.13
7.93 5.04 1.57 1.57 1.56 1.09 1.20(15.9 0.68 0.68 0.68 0.68 0.67 0.94
2.55 2.55 2.55 2.55 2.55 2.27 6.26|0.88 0.88 0.88 0.88 0.89 0.60 1.77
1.11 1.11 1.11 1.11 1.11 1.08 1.62(0.70 0.70 0.70 0.70 0.70 0.65 0.87
6.42 2.37 1.15 1.15 1.10 1.10 1.17{0.79 0.79 0.79 0.79 0.79 0.79 0.82
1.19 1.19 1.19 1.19 1.19 1.19 1.44|0.77 0.77 0.77 0.77 0.77 0.74 1.05
1.08 1.08 1.08 1.08 1.08 1.08 1.34{0.58 0.58 0.58 0.58 0.58 0.58 0.72
1.45 1.45 1.45 1.45 1.46 1.49 2.12(0.92 0.92 0.92 0.92 0.86 0.76 1.20
1.04 1.04 1.04 1.04 1.04 1.04 1.06|0.89 0.89 0.89 0.89 0.89 0.79 1.58
10 |1.42 142 142 142 1.43 1.48 1.54|1.34 1.34 1.34 1.13 1.05 0.77 2.59
mean (2.57 1.88 1.41 1.41 1.41 1.35 2.03|2.40 0.88 0.88 0.85 0.83 0.72 1.37
11 |1.17 1.17 1.17 1.17 1.17 1.16 1.58|0.70 0.70 0.70 0.70 0.70 0.68 0.86
12 |{1.56 1.56 1.56 1.56 1.56 1.64 2.32|1.03 1.03 1.03 1.03 1.03 0.87 1.72
13 {1.79 1.79 1.79 1.79 1.79 1.77 2.63|0.95 0.95 0.95 0.95 0.95 0.80 1.71
14 |18.3 4.73 2.92 2.08 1.84 1.56 1.61|7.61 0.62 0.62 0.62 0.62 0.60 1.23
15 |1.05 1.05 1.05 1.06 1.06 1.06 1.06|3.71 3.69 3.54 3.42 3.25 2.63 11.1
16 |1.46 1.46 1.46 1.46 1.44 1.57 2.33|0.71 0.71 0.71 0.71 0.71 0.64 0.78
mean |4.22 1.96 1.66 1.52 1.48 1.46 1.92(2.45 1.28 1.26 1.24 1.21 1.04 2.90
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Table 61. Means of error ratios in 2-extrapolated Tikhonov method with the rule
DM, c; = 0.002, c2 = 0.03 for p = 0 (left), p = 2 (right), where the used noise level
is d times the actual noise level (correlated noise).

values of d for p = 0 values of d for p =2

Probl.|0.01 0.1 0.5 1 2 10 100{0.01 0.1 0.5 1 2 10 100
2.72 1.50 1.52 1.52 1.54 1.69 2.48(1.40 1.35 1.33 1.21 1.12 1.18 3.70
6.56 2.34 1.88 1.69 1.17 1.09 1.45|12.4 1.00 0.81 0.68 0.68 0.73 1.55
2.59 2.59 2.59 2.53 2.54 3.01 8.13(|1.12 1.12 1.11 1.10 1.11 0.92 2.67
1.16 1.16 1.16 1.16 1.16 1.19 1.97|0.67 0.67 0.67 0.67 0.66 0.71 1.64
4.34 2.10 1.49 1.17 1.20 1.20 1.45|0.80 0.80 0.80 0.80 0.80 0.81 1.41
1.18 1.18 1.18 1.18 1.18 1.23 1.60|0.74 0.74 0.73 0.73 0.74 0.81 2.01
1.45 1.05 1.05 1.05 1.05 1.07 1.62{0.59 0.59 0.59 0.59 0.59 0.63 1.39
1.32 1.32 1.32 1.32 1.33 1.48 2.18|0.83 0.83 0.81 0.82 0.82 0.91 2.57
1.03 1.03 1.03 1.03 1.03 1.04 1.06|0.80 0.80 0.80 0.81 0.81 0.90 2.56
10 |1.44 1.44 1.44 1.45 145 149 1.55|2.87 2.86 2.84 2.72 2.50 2.25 4.50
mean 2.38 1.57 1.47 1.41 1.37 1.45 2.35|2.22 1.07 1.05 1.01 0.98 0.99 2.40
11 |1.21 1.21 1.21 1.21 1.21 1.29 2.04|0.66 0.66 0.66 0.65 0.65 0.69 1.63
12 |{1.87 1.87 1.87 1.88 1.88 2.14 3.26|1.09 1.09 1.07 1.07 1.07 1.09 3.25
13 |{1.60 1.60 1.61 1.62 1.63 1.77 2.75|1.08 1.08 1.08 1.07 1.01 1.11 3.13
14 |20.4 5.02 2.90 2.11 1.96 1.55 1.84(9.15 0.87 0.70 0.70 0.70 0.77 1.82
15 |1.05 1.05 1.05 1.05 1.05 1.05 1.05|17.1 174 17.2 17.0 16.8 15.2 12.6
16 |1.62 1.62 1.64 1.63 1.62 1.93 3.17(0.75 0.75 0.75 0.74 0.74 0.68 1.32
mean (4.63 2.06 1.71 1.58 1.56 1.62 2.35|4.97 3.64 3.58 3.54 3.50 3.26 3.96
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Table 62. Averages of error ratios over problems of Hansen for the rule DM for
different c1, c2; p = 0 (upper) and p = 2 (lower).

a

Nr c; [0.01 0.03 01 0.3 0.5 1 2 4 10 30 100
I 002 0.14(345 211 1.61 142 142 139 134 149 1.89 2.47 3.53
II 0.002 0.07|5.28 2.78 1.94 1.58 1.44 1.40 1.39 1.40 1.34 1.48 1.90
m 0.002 0.03(2.57 196 1.88 1.45 1.41 141 141 139 135 1.53 2.03
IV 0.001 0.03]4.99 2.13 1.96 1.61 1.45 1.41 1.41 1.41 137 142 1.69
I 002 0.14(3.04 1.18 1.09 096 0.87 0.78 0.69 0.77 137 2.76 5.86
II 0.002 0.07|5.99 2.50 0.98 0.98 0.96 0.93 0.87 0.84 0.74 0.70 1.37
I 0.002 0.03 (240 0.88 0.88 0.88 0.88 0.85 0.83 0.79 0.72 0.70 1.37
IV 0.001 0.03]4.95 2.19 0.88 0.88 0.88 0.88 0.85 0.83 0.78 0.69 0.87

NNNNO OO OIS

Figure 4. Error ratios in 2-extrapolated Tikhonov method for rules R2C and DM:
p = 0 (left) and p = 2 (right); -~ DM I, DMI, --—-DMII, ----- DMIV, ——
R2C.

0.01 0.1 1 10 100 0.01 0.1 1 10 100
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V. CONCLUSIONS AND DISCUSSION

5.1. Recommendation of methods

In most test problems for both p = 0 and p = 2 the Landweber method
and TSVD had the highest potential to give the best accuracy of regularized
solution, in other problems their results lied close to the best (Tables 4,
5, 6, 7). To harness the potential of the Landweber method, however, one
has to use additional techniques such as operator iterations (2.19), since
in its original form (2.18) the Landweber method converges quite slowly.
This sets certain restrictions on the matrix of the linear system. If using
operator iterations (2.19) is not computationally feasible, and the size of
the problem is small or moderate, we recommend TSVD. If the size is large,
then we recommend either CGLS or Tikhonov method. The CGLS method
works faster in conjunction with rules that find the regularization parame-
ter as the first index for which a certain condition is satisfied, as opposed
to rules which minimize expressions. In Tikhonov method both solving of
an equation and minimizing a function in an interval can be implemented
efficiently, using, for example, method of chords or Newton’s method but
the Tikhonov method has quite low qualification pg = 1. In case of smooth
solution the advantage of Landweber method, TSVD and CGLS over other
methods is more pronounced (Tables 6, 7).

Remaining methods performed not so good in our tests: in Tables 4-
7 the method CGME was always beaten by the method CGLS. The Lavren-
tiev method gave more or less acceptable results in limited number of self-
adjoint problems with low smoothness index p.

If a sequence of Tikhonov approximations arises during computations
and we have a ground to assume that the smoothness index p of the solu-
tion is large (p > 1), then we strongly recommend to use extrapolation. As
Tables 48, 49 show, in this case even an extrapolated approximation with
2 terms, where the regularization parameter is chosen from an a posteriori
rule using noise level, has an accuracy that is better than the accuracy of
the best single Tikhonov approximation. For rules R2e and Me this holds
even when the noise level is overestimated 2 times, if the noise is uncorre-
lated (or if p > 2 in case of correlated noise). Also the best heuristic rules
of Table 58 gave averages below 1, if p = 2. The results for larger p were
quite uniform over problems, see Table 53, except for problems, in which
the error had a very sharp minimum.
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Similar conclusions can be made in case of iterated Tikhonov method,
see Tables 14, 15, but compared to extrapolated Tikhonov approximation,
parameter choice in iterated Tikhonov method may require more compu-
tational work. For example, if parameters are chosen from the sequence
oy = q", then transition from o, to o,+1 requires solving m equations in
m-iterated Tikhonov approximations but only one equation in extrapolated
Tikhonov approximations with m terms (since Tikhonov approximations
with parameters o, Xu-1, ..., &n—m+1 are computed earlier).

5.2. Recommendation of rules

5.2.1. Case of exactly known noise level.

If the bound of the noise level is known (]| v — v« || < 6 with é known), then in
Tikhonov method and its iterated and extrapolated variants we recommend
the rule Me. Tables 8, 9, 10, 11, 14, 15, 48, 49, 50, 51 show that although
in case of exactly known noise level the rules MEe and MEs gave somewhat
better results than the rule Me, in case of 2 times overestimated noise level
the rule Me was clearly better. This did not depend on whether the noise
was correlated or uncorrelated.

In Lavrentiev method we recommend the rule MEagl with L = 5 for p = 0
and with | = 4 for p = 1, since in Tables 28, 29, it gave the smallest av-
erages and the smallest maximums. In addition, Table 30 shows that the
rule MEagl was also reasonably insensitive to moderate overestimation of
the noise level. The rule MEagl requires computing Lavrentiev approxima-
tions at different values of the regularization parameter, so we may form
extrapolated approximations that give smaller averages of error but as Ta-
ble 28 shows, maximums of error can be quite large at p = 0. Also, it can
be seen from Table 30 that the extrapolated approximation can lose its ad-
vantage over single Lavrentiev approximation with rule MEagl the more we
overestimate the actual noise level. Extrapolated approximations may be
useful for larger p, see Table 29, where both averages and maximums of
2-extrapolated Lavrentiev approximation with the rule MD are small among
rules compared.

In Landweber method the estimated parameters from rules De and MEe
show clear advantage over discrepancy principle both for uncorrelated and
correlated noise (Tables 34, 35, 36). At overestimated noise level the rule
De seems to be slightly better than MEe.

In TSVD method the discrepancy principle works well, post-estimation
of the truncation level did not improve it essentially.

In conjugate gradient type methods CGLS and CGME the discrepancy
principle D and its variant DH work very well (Tables 40, 41, 42, 43, 44,
45). In CGLS the accuracy of the discrepancy principle can be somewhat
improved by using post-estimation as in rules De and Me (Tables 40, 41).
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In extrapolated Tikhonov approximation the best results at exact noise
level were produced by the rule De (Tables 48, 49, 50, 51) but it is very
sensible to overestimation of the noise level. In this respect the two similar
rules MEe and MEs may be preferred. Even better stability is provided by
the rule Me but its results at exact noise level were not so good, compared
with others, especially for large p. For small p the rule Me in 3-extrapolated
Tikhonov method gave very good results: its averages of error ratios were
among the smallest both in case of uncorrelated noise and correlated noise
and both at exact noise level and 2 times overestimated noise level.

The difference in performance of rules under uncorrelated noise or cor-
related noise reveals itself most prominently in case of 2 times overesti-
mated noise level. Comparing the performance of rules under different
noise models, we see from Tables 8, 9, 10, 11, 14, 15, 48, 49, 50, 51 about
Tikhonov method and its extrapolated variant that while in case of exactly
known noise level the averages of error ratios for correlated noise were
somewhat larger that the same averages for uncorrelated noise, in case of
2 times overestimated noise level the averages of error ratios for correlated
noise were much larger. For iteration methods this dependence on preci-
sion of noise level estimation is not so emphasized (Tables 34, 35, 40, 41,
43, 44).

5.2.2. Case of unknown noise level.

If the noise level is unknown, then, in the Tikhonov method, we recommend
to use the climbing strategy. Comparing the columns QC and BRSC of Table
18 with columns QN and BRS of Table 16, respectively, we see that the
results in corresponding columns in Tables 18 and 16 are almost the same
in most problems but in some problems rules QN and BRS fail. This holds
for both p = 0 and p = 2 (Tables 20 and 17). Stopping at the first local
minimum can avoid large errors in many problems and is therefore also
an option but as the columns Q1 and BRS1 of Tables 18, 19, 20 show, the
results were not so good compared with columns QC and BRSC of these
tables.

For Tikhonov method in case p = 0 we can recommend the rules R2C
and R2C’, which gave the smallest overall averages in our tests both for
correlated and uncorrelated noise (Tables 18, 19). Also rules QC and QC’
can be recommended. The rules R2C and QC gave the best results also in
extrapolated variants of Tikhonov method (Tables 56, 57, 58).

The rules QHR2 and QBR2 gave very good results in problems 1-10 in
Tables 18, 19, 20 but they needed considerably more computation time
than rules that did not minimize a function unconditionally in the whole
computation interval (in our case [10739,1]).

Of special interest is the rule QHR, which, not using any parameters,
gave a very small average at p = 2 in Table 17.
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For Landweber method the rules HRmC and QNmC can be preferred to
their unmodified counterparts HR and QN, since in most problems they had
better accuracy and, in particular, avoided large errors (Tables 34, 35, 36).
The rule QNmC is notable for its quite good overall average that is smaller
than the average of rules D, De, and MEe (rules that use §) in case of 2 times
overestimated noise level.

For TSVD we recommend the rule HRLm'.

For CGLS the rule HRmC can be recommended (Tables 40, 41, 42). In
some problems the rule HRmWC gave better averages but computing with
this rule was very time-consuming and in many cases the results were the
same as with rule HRmC.

In CGME the rule RMC gave the best overall averages for both uncorre-
lated and correlated noise (Tables 43, 44, 45). The rule DHP gave very good
(even optimal) results in most test problems.

For extrapolated Tikhonov method the above-mentioned rules QC and
R2C are recommended. The rule DR21 for 2-extrapolated Tikhonov method
was close to the best in many test problems (Tables 56, 57) but in some
problems the errors were intolerably large. For p = 2 this rule gave the best
results among rules compared (Table 58), so it can be used, if we know that
the solution is sufficiently smooth.

If the noise level is unknown, then the results by most of our rules in all
methods depend only a little on whether noise is correlated or not (Tables
18, 19, 34, 35, 40, 41, 43, 44, 56, 57).

5.2.3. Case of approximately known noise level.

For Tikhonov method the rule DM gave results that were very good at ex-
actly known noise level and still acceptable, when the noise level was up to
100 times over- or underestimated (Tables 23, 24).

If the probable bounds of over- or underestimation are known, then Ta-
ble 26 gives the best values of constants ¢; and ¢ in our tests with Table 27
showing the corresponding minimums and maximums of averages of error
ratios over the supposed interval of noise ill-estimation coefficient d (for
uncorrelated noise).

For Landweber method we could not find the rule that works better than
the best heuristic rule QNmC (Table 34) in our numerical tests. There also
remains the task of formulating and testing the DM rule for TSVD.

For CGLS the rule DM gave the results that were intermediate between
the results of best rules that use full noise level information and best rules
that do not use this information at all (Tables 46, 47). This rule works best,
if p = 0 and the noise is uncorrelated. If p > 0, then this rule requires more
precise estimation of noise level, especially in case of correlated noise.

In extrapolated Tikhonov method the rule DM can be applied with the
same constants cj, ¢y as in ordinary Tikhonov method (Tables 60, 61), in
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case of smooth solution the rule DM can give the extrapolated approxima-
tion that is more accurate than single Tikhonov approximation with optimal
parameter. In extrapolated Tikhonov method the rule DM may be more sen-
sitive to values of parameters c, ¢, if the noise level is severely over- or
underestimated (Table 62).

5.3. About the set of test problems

We are aware of the limitations that are associated with our set of test
problems. However, some points can be made to assume that the results
remain valid also for other problems.

e Many rules that we propose are based on theoretical foundation (see
Section 3.4). Theoretical explanation of many heuristic rules that
we propose is given in Section 3.2.2: for many rules the theoretical
ground is Theorem 17.

e The set of test problems of Hansen is very diverse, containing prob-
lems with quite different characteristics. Still, in many rules we can
choose the constants in such way that these rules work uniformly well
in all test problems, in whole range of noise levels 6 and smoothness
indices p, and both for uncorrelated and correlated noise.

e On a later stage of this work in many methods experiments were made
on additional very different artificial problems (11-16). The heuristic
rules worked well in problems 11-16 with the constants optimized
for problems 1-10 or with slightly changed constants.

The representativeness of the set of test problems is essential and if
there were a wider representative set of test problems available, then it
would be essential to use it. Very important is the representativeness of the
set of test problems for heuristic parameter choice rules that do not use
noise level. It would also be interesting to test the non-heuristic rules on
additional problem sets.

In addition, it is essential to consider other possibilities of noise gener-
ation. Namely from papers [49, 69] it is known that some heuristic rules
(quasioptimality criterion and its modification by Neubauer) guarantee the
convergence of regularized solutions (despite Bakushinskii’s result [1]), if
the noise distribution satisfies certain conditions.

The exact formulations of rules are not considered final, especially in
case of unknown noise level. The results presented in previous tables indi-
cate that there may be more resources for improvement in case of iteration
methods and TSVD.
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APPENDIX

A.1. A systematics of parameter choice rules in Tikhonov method
Many expressions of functions in stopping rules for m-iterated Tikhonov
method contain scalar products of type

((AA") Py oo (AA®) 2T ),

where i1, j1, i2, j2 are some nonnegative integers. Since this scalar product
is equal to

((AA) " Koy 1o (AA )T, (AAT) 2Ky i (AA®)T)
= ((AA*) T2 K (AA™)T, K jy + joia (AAT)T),

only two of four indices are independent. Therefore we can define quanti-
ties

¥ = &« P2 ((AAS) W T i) 0 (G, 5=0, 1, ... (1.1
Proposition. For all positive integers i, j holds

Y=Y -V (1.2)

Proof. Using (2.17), we have
Y7 = o« ((AA®) " s, (AA ) i o)
= & ((AA") e, RA(Xms - L — Xt jiad))
= oV ((AAN) T e, Vimrjo i — Vi) = \I/iz—l,j—l - ‘I'i271,j- O
Corollary. Ifi < j, then
i ,
= 3 0 (1),
k=0

Proof. Induction on i, using (1.2). O

Using the last corollary, it is possible to calculate ¥; ; in such way that
no application of AA* to .« is needed. Computational experience shows
that this is numerically more stable than applying the direct formula (1.1).
Hereby one needs to compute additional discrepancies ¥y +1;a, - - -, Ym+j-1;
but they have to be computed also in (1.1) to get 7y, j:«-

Note that dp(x) = Yo,0, due(x) = ‘1’5,1/‘1’0,2, drik () = Yorok+1, and
dr2 () = K()YE, /Y1 3.
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A.2. Index of rules for choice of the regularization parameter

In the following table, iTikh, eTikh, iLavr, eLavr mean iterated and extrapo-
lated variants of Tikhonov and Lavrentiev method.

Rule Method Def page Table no | Rule Method Def page Table no
B1 Tikh 30,52 12,13 DR21 eTikh 78 56, 57,58
B1* Tikh 52 12,13 DR21 Tikh 55 18, 19, 20
B2 Tikh 30,52 12,13 eMD eLavr 22
B2* Tikh 52 12,13 eMD eTikh 22
B3 Tikh 30,52 12,13 eMD Tikh 22
BR2 Tikh 36,55 18,19,20 | eME eTikh 24
BRS Tikh 32,54 16,17 eME Tikh 24
BRS’ TSVD 67 37,38,39 | eQ Tikh 32
BRS1 eTikh 78 56, 57,58 | GN Lavr 27 28, 29, 30
BRS1 Tikh 55 18,19,20 | HR CGLS 32,69 40,41,42
BRSC  eTikh 78 56,57,58 | HR CGME 32,71 43, 44,45
BRSC  Tikh 55 18,19,20 | HR iTikh 32
BRSm TSVD 69 37,38,39 | HR Land 32,65 34,35,36
D CGLS 20,69 40,41,42 | HR Tikh 32,54 16,17
D eLavr 21 HR TSVD 32
D eTikh 21 55 HR’ TSVD 67 37, 38, 39
D iLavr 20 28,29, 30 | HR2 Tikh 35,55 18,19, 20
D iTikh 20,53 14,15 HRC CGME 71 43, 44, 45
D Land 20,65 34, 35,36 | HRL TSVD 33,67 37,38,39
D Tikh 20,50 8,9,10, |HRLm’ TSVD 33,67 37,38,39
11, 16, HRm  TSVD 67 37,38, 39
17,21,22 | HRmC CGLS 71 40, 41, 42
D TSVD 20,67 37,38,39 | HRmC Land 65 34, 35, 36
D1 Tikh 55 18,19, 20 | HRmWC CGLS 71 40, 41, 42
De CGLS 69 40,41,42 | L CGLS 32
De eTikh 74 48, 49, L CGME 32
50,51,55 | L Land 32
De Land 31,65 34,35,36|L Tikh 32
DH CGME 20,71 43,44,45|L TSVD 32
DHP CGME 37,71 43,44,45 | maxD eTikh 74 52
DM CGLS 38 46, 47 maxDe eTikh 74 52, 54
DM eTikh 38 60, 61, 62 | MD iLavr 21 28, 29, 30
DM iTikh 38 MD iTikh 21
DM Land 38 MD Lavr 21,65 28,29,
DM Lavr 38 31, 32 30, 33
DM Tikh 37 23, 24, ME CGLS 23,69 40,41,42
25, 26,27 | ME CGME 23,71 43,44, 45
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Rule Method Def page Table no | Rule Method Def page Table no
ME eTikh 23 Qa TSVD 36
ME iTikh 22,53 14,15 OBR2 Tikh 55 18, 19, 20
ME Land 23 QC eTikh 78 56, 57, 58
ME Tikh 22,50 f,l9, 10, QcC Lavr 65 33
QC Tikh 55 18,19, 20
ﬁe CTGIfi gz jg' ié’ 4219c  Tikh 55 18, 19, 20
€ el co 51 55 |QHR - Tikh 35,55 16,17
Me Tih 53 415 QHR2 Tikh 55 18, 19, 20
Me Tikh 31,50 8 0,10, |Qm TSVD 67 37, 38, 39
11,16, 17 QmC Fa.vr 65 33
MEa  Lavr 24,65 28729, |QN iTikh 32,54 16,17
30, 33 QN Land 32,67 34,35,36
MEaq Lavr 25 28,29,30 | QNmC CGLS 71 40, 41, 42
MEagl Lavr 27,65 28,29, ONmC Land 37,67 34, 35,36
30, 33 Qq iLavr 32
MEe CGLS 31,69 40,41,42 | Qq iTikh 32
MEe CGME 71 43,44,45 | Qq Lavr 32
MEe eTikh 74 48, 49, Qq Tikh 32
50,51, | R1 iTikh 27
53,55 IR1 Tikh 27
MEe iTikh 53 14, 15 RO eTikh 31
ﬁﬁe %‘?E}? gi - §4’93i’036 R2 iTikh 28,53 14,15
¢ ! ’ U6 1 | R2 Tikh 28,50 8,09, 10,
) ) 11
MEK  Lavr 26 28, 29, 30 .
MEke Lavr 26 28, 29, 30 | R21 Tﬂi‘h 55 18,19, 20
MEn  Lavr 26,65 28,29, |ReC  elikh 78 56,57, 58
MEs eTikh 74 48, 49, R2C’ Tikh 55 18, 19, 20
50, 51 R2e eTikh 74 48, 49,
Q iLavr 32 50,51, 59
Q iTikh 32 R2e iTikh 53 14, 15
Q Lavr 32 R2e Tikh 31,50 8,9, 10,
Q Tikh 32 11, 16,
Q TSVD 36,67 37,38,39 17,21, 22
Q1 Tikh 55 18,19,20 | RMC  CGME 71 43, 44, 45
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SISUKOKKUVOTE

Mittekorrektsete lilesannete regulariseerimisalgoritmide
numbriline vordlus

To66 on pithendatud mittekorrektsete iilesannete regulariseerimismeetodite
parameetrivalikureeglite numbrilisele analiiiisile tdpsuse seisukohalt.

To606 sisu peatiikkide kaupa on jargmine.

Esimeses peatiikis (sissejuhatuses) kirjeldatakse probleeme ja nendele
t60s pakutud lahendusi.

Teises peatiikis antakse tilevaade mittekorrektsete iilesannete lahendus-
meetoditest, mida t60s vaadeldakse. Need meetodid on Tihhonovi meetod
koos itereeritud kujuga, Lavrentjevi meetod, Landweberi meetod, spektraal-
16ike meetod, kaasgradientide tiitipi meetodid CGLS ja CGME ning Tihhono-
vi ja Lavrentjevi meetodi ekstrapoleeritud variandid.

Kolmandas peatiikis kirjeldatakse mitmesuguseid regulariseerimispara-
meetri valikureegleid nende meetodite jaoks, sealhulgas tuuakse vélja reeg-
lite need teoreetilised omadused, mis on olulised arvutuste tegemise juures.
Uhtlasi pakutakse vilja mitmed strateegiad uute reeglite konstrueerimiseks
nii teadaoleva kui ka mitteteadaoleva veataseme korral.

Neljandas peatiikis on esitatud arvutuseksperimentide tulemused eel-
mises peatiikis formuleeritud reeglite ning eelmises peatiikis esitatud stra-
teegiate realiseeringutena saadud mitmesuguste uute reeglite kohta ulal-
pool nimetatud meetodites nii teadaoleva, mitteteadaoleva kui ka ligikaud-
selt teadaoleva veataseme korral. Tulemused nditatavad, et uued reeglid
annavad paremaid tulemusi kui senised.

Viies peatiikk sisaldab kokkuvdtet saadud tulemustest ja nendel pdhi-
nevaid soovitusi, millist regulariseerimismeetodi ja parameetrivalikureegli
kombinatsiooni on otstarbekas kasutada.
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