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I. INTRODUCTION

Many problems in nature, science and engineering (for example, in signal
and image processing, tomography, heat conduction, geophysics, inverse
scattering) are ill-posed in the sense that small errors in data can cause a
large error in the solution. Modelling of these problems often leads to inte-
gral equations of the first kind; also systems of linear equations, where the
condition number of the matrix is very large, can be considered as ill-posed
problems. In applications the data are typically noisy, containing unavoid-
able measurement errors. When dealing with well-posed problems, where
the solution depends continuously on the data, the solving algorithms do
not need to take into account the noise level of data. In ill-posed problems,
however, it is crucial to take into account all available information about
the solution and the noise. For solving ill-posed problems special methods,
regularization methods [19, 47, 53, 89] have been developed. These meth-
ods contain a free parameter, which controls the amount of regularization.
When applying regularization, one has to make two decisions: 1) select the
regularization method and 2) choose a proper regularization parameter.

In this work we consider basic regularization methods: the methods of
Tikhonov and Lavrentiev, their iterated variants, Landweber method, trun-
cated singular value decomposition (TSVD) and conjugate gradient type
methods (CG, CGLS, CGME) [19, 37]. The regularization parameter is the
stopping index in iteration methods, the number of terms in TSVD, and a
positive real number in remaining methods.

For theoretical study it is typically assumed that the exact noise level
δ is known with ‖y − y∗‖ ≤ δ, where y are given (measured) data and
y∗ are exact data. Then one can show that if the regularization parameter
is chosen properly, in dependence of the noise level δ, then the regular-
ized solution converges to the exact solution as δ → 0. This convergence
is guaranteed for well-known parameter choice rules: discrepancy princi-
ple [65,87–89], modified discrepancy principle [22,73,74], monotone error
rule [84] and balancing principle [3,4,7–9,15–18,50,54–56,58–63,70], which
has received much attention recently. Often these rules are implemented by
computing regularized approximations for a sequence of parameters until a
certain condition is fulfilled (in balancing principle a large sequence of reg-
ularized solutions is computed). In case of smooth solution more accurate
than the Tikhonov approximation is its m ≥ 2 times iterated variant but
to compute a new approximation, the iterated Tikhonov method requires
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solving m equations. Instead of iterated approximation we suggest to use
extrapolated approximation, which is a linear combination of m Tikhonov
approximations with different parameters and which requires solving only
one equation to compute a new approximation. The accuracy of both ap-
proximations is the same. The extrapolated approximation is preferred to
the iterated one also in case of Lavrentiev method, by the same motivation.

All regularization methods have difficulties, if no information about the
noise level of the data is given. Then it is known [1] that no rule for choice
of the regularization parameter can guarantee the convergence of regular-
ized solutions to the exact one as the noise level of the data tends to zero.
Nevertheless, heuristic rules, i.e. rules not using noise level δ, are very pop-
ular: quasioptimality criterion [2, 5, 6, 10, 23, 49, 51, 52, 85, 86] and its ana-
log [69], generalized cross-validation (GCV) [24, 91], Hanke-Raus rule [42]
and L-curve rule [44,45]. The reason of popularity of these rules is that in
applied ill-posed problems the noise level is usually not known exactly but
if in classical parameter choice rules (discrepancy principle etc.) the sup-
posed noise level is somewhat smaller than the actual noise level, then the
error of approximate solution can be arbitrarily large. On the other hand,
classical parameter choice rules are also quite sensitive to overestimation
of the noise level. In this work we propose some strategies for construct-
ing rules for choice of the regularization parameter, give several specific
new rules and present the results of extensive numerical experiments on
test problems of Hansen [43, 45], which are widely used in literature for
testing regularization algorithms. Additional test problems are taken from
papers [13,14].

If no information about the noise level is known, then many heuristic
rules, such as the quasioptimality criterion and its analog by Neubauer,
Hanke-Raus rule, and Brezinski-Rodrigues-Seatzu rule choose the regular-
ization parameter as the global minimizer of a certain function. These rules
often give good results but sometimes fail. The main problem with these
heuristic rules is that the global minimizers of the corresponding functions
are sometimes very small, leading to very large error. Instead of global
minimizer we propose to use a larger local minimizer, if there is a large
maximum between them. The algorithm is to make computations with de-
creasing values of the parameter and stop the calculations, if the value of
the function to be minimized is some fixed number of times larger than its
minimal value. An alternative approach is to take the regularization param-
eter to be the largest local minimizer of a certain function. We also propose
other modifications to known rules.

Consider parameter choice in (iterated) Tikhonov method in case of ex-
actly given noise level. It is known that the monotone error rule gives a reg-
ularization parameterαME that is always larger than or equal to the optimal.
However, to decrease this parameter, one cannot decrease the coefficient in
front of the noise level, since then neither convergence nor order optimal
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error estimate will be guaranteed. We use an alternative way: we modify
the parameter αME to find its smaller estimate, optimizing coefficients on
test problems. In our tests the estimated regularization parameter αMEe

gave much better results than the original parameter αME. The same ideas
are also applicable to Landweber iteration method, where the monotone er-
ror rule and the discrepancy principle choose nME and nD such that nME is
smaller than or equal to the optimal stopping index and nD−1 ≤ nME ≤ nD.
Numerical experiments recommend not to stop at nME or nD but at 2nME or
2nD or somewhat later.

In the Tikhonov method, in case of possible overestimation or moderate
underestimation of the noise level we propose to use the rule R2e (post-
estimation of the parameter from rule R2 [80]), which is less sensitive to
false estimation of noise level than the discrepancy principle and the mono-
tone error rule. In case of possible overestimation of the noise level, if
underestimation is excluded, we propose to use αMe = min(αMEe,αR2e).

In some ill-posed problems the noise level of the data is known approxi-
mately. Recently, a rule DM for choice of the regularization parameter was
proposed [33], which guarantees convergence of the approximate solution
to the exact solution, as the noise level tends to zero, provided that the ratio
of actual to presumed noise levels remains bounded. This rule contains two
free parameters, whose values we found by optimizing on test problems.

In numerical experiments our rules gave better results than old rules.
For example, in most cases the best of our heuristic rules and the rule DM
in case of 100 times underestimated or overestimated noise level gave bet-
ter results than the discrepancy principle in case of 2 times overestimated
noise level. In Lavrentiev method the rule MEaql and heuristic rule QmC
gave, on average, only 1% or 4% larger errors, respectively, than the optimal
parameter (see Table 33). In method CGME, the heuristic rule DHP chose
the optimal stopping index in most problems in case of smooth solution
(see Table 45).

The main attention in this thesis is given to numerical analysis of reg-
ularization parameter choice rules with respect to their accuracy. While
often the parameter choice rules are formulated together with proof that
the error of the corresponding regularized solution tends to zero, as the
noise level δ tends to zero, in real problems, however, the process δ → 0
cannot be accomplished; the range of δ’s is limited by physical factors. In
addition, theoretical error estimates often contain constants, whose values
are unknown or hard to find but which are crucial in practical application
of the algorithm. Numerical tests are a way to estimate the actual error at
particular range of δ’s. They also take into account changes in problem re-
sulting from discretization, which inevitably occurs when reformulating the
usually infinite-dimensional problem for solving on computer. We believe
that a combination of mathematical analysis and execution on sample data
sets is the best way to understand the performance of an algorithm.
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Contribution of the thesis can be formulated as follows.

• Elaboration of extrapolated versions of Tikhonov and Lavrentiev
methods, guaranteeing high accuracy in case of smooth solutions by
moderate amount of computations.

• New parameter choice rules that work in wide range of practice-ori-
ented problems and with various regularization methods. These rules
include both the rules that use information about noise level as well
as the rules that don’t. Also they include rules that allow the noise
level to be known only approximately.

• Strategies and principles to construct new rules, verified by perfor-
mance tests of particular rules that are realizations of these strate-
gies. Extensive numerical experiments show the advantage of result-
ing rules over known rules.

• Framework for numerical comparison of rules.

The set of test problems was not large, for larger set all conclusions
may not hold but if problems from papers [13,14] were added, the results
remained similar.

Main results of this work are reported in talks at conferences Approxi-
mation Methods and Orthogonal Expansions (Kääriku 2003, Kääriku 2008),
Mathematical Modelling and Analysis (Trakai 2005, Jūrmala 2006, Kääriku
2008), Inverse and Ill-Posed Problems of Mathematical Physics (Novosibirsk
2007), Inverse Problems: Modeling and Simulation (Fethiye 2008), Methods
of Algebra and Analysis (Tartu 2008), Applied Inverse Problems (Vienna
2009).

In the following we make some notational conventions. Generic regu-
larization parameter will be λ. In continuous methods we use traditional
parameter α, so in these methods λ = α. In simple iteration methods the
iteration step n will be the regularization parameter, in this case λ = 1/n.
When dealing with iteration methods, we write everywhere in expressions,
where the regularization parameter λ is in subscript, simply n instead of
1/n, so for example, the approximate solution found by an iteration method
is xλ = xn. Wherever we have defined some approximation xá, we automat-
ically define rá = Axá−y . Wherever we have defined the function dá(λ) (like
dD(λ) = ‖rλ‖ in classical discrepancy principle), we also define the function
ϕá(λ) = dá(λ)/

√
λ in case of non-self-adjoint problem and the function

ϕá(λ) = dá(λ)/λ in case of self-adjoint problem—or vice versa, having the
function ϕá(λ), we assume that also dá(λ) =

√
λϕá(λ) or dá(λ) = λϕá(λ)

for non-self-adjoint and self-adjoint problems, respectively, are defined.
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II. REGULARIZATION METHODS

2.1. The problem

Let A : X → Y be a linear bounded operator between real Hilbert spaces. We
are interested in finding the minimum norm solution x∗ of the equation

Ax = y∗, y∗ ∈ R(A) (2.1)

in case where instead of exact data y∗ only its approximation y is available.
We do not assume the range R(A) to be closed or the kernel N (A) to be
trivial, so in general this problem is ill-posed.

Since y∗ ∈ R(A), the minimum norm solution x∗ exists. In theoretical
study, however, some additional information about x∗ is needed. Often it
is assumed that the solution x∗ satisfies the source condition

x − x∗ = R
(
(A∗A)p

)
, (2.2)

where x is some initial approximation of the solution of (2.1) and p > 0
is a constant (may be fractional). Regularization under generalized source
conditions is studied, for example, in [66].

In some cases we consider problems with y∗ 6∈ R(A) but Qy∗ ∈ R(A),
where Q is the orthoprojector Y → R(A). In this case we are interested in
the minimum norm solution of equation

A∗Ax = A∗y∗.

2.2. Operator form of regularization methods

Ill-posedness of the problem means that small error in right hand side can
lead to large error in computed solution. To solve the problem in stable
way, we turn to regularization.

Many regularization methods can be uniformly treated as special cases
of the general regularization method of the form [19,89]

xλ = (I −A∗Agλ(A∗A))x + gλ(A∗A)A∗y. (2.3)

Here xλ is the regularized solution and λ is a positive real number, called
regularization parameter. A particular regularization method is determined
by the family {gλ : λ ∈ (0,∞)} of piecewise continuos generating functions

defined on [0,‖A∗A‖] and satisfying the following conditions:

sup
0≤t≤‖A∗A‖

|gλ(t)| ≤ γλ−1 (λ > 0), (2.4)
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sup
0≤t≤‖A∗A‖

tp|1− tgλ(t)| ≤ γpλp (λ > 0, 0 ≤ p ≤ p0), (2.5)

sup
0≤t≤‖A∗A‖

|t1/2gλ(t)| ≤ γ∗λ−1/2 (λ > 0), (2.6)

where γ, γp, γ∗ and p0 are positive constants. The largest p0 for which
the inequality (2.5) holds, is called the qualification of the method; it can be
finite or infinite.

Denoting r = Ax − y and using the commutativity property (see [89])
A∗Agλ(A∗A) = gλ(A∗A)A∗A, the equality (2.3) can also be written as

xλ = x − gλ(A∗A)A∗r . (2.7)

From this we obtain an expression for the discrepancy rλ = Axλ −y :

rλ = (I −AA∗gλ(AA∗))r = Kλ(AA∗)r , (2.8)

where the discrepancy functions Kλ are defined as Kλ(t) = 1− tgλ(t).
All abovementioned formulas and conditions can be adjusted to the case

of self-adjoint problem, where X = Y and A = A∗ ≥ 0, by simply omitting
A∗. Thus instead of (2.3), (2.7), and (2.8), in this case we can compute the
approximates and their discrepancies according to formulas

xλ = (I −Agλ(A))x + gλ(A)y = x − gλ(A)r , (2.9)

rλ = (I −Agλ(A))r = Kλ(A)r , (2.10)

where the functions gλ and Kλ are defined in the same way as before.
In continuous regularization methods the parameter λ can take every

value in the interval (0,∞). In iterative regularization methods the parame-
ter λ has only discrete values that can be associated with iteration steps.

2.3. Particular regularization methods

The most prominent regularization method is the Tikhonov method to-
gether with its iterated variant. The m-iterated Tikhonov method (m = 1,
2, . . . ) is defined as follows. Take x0;α = x and compute x1;α, . . . , xm;α

iteratively from

αxn;α +A∗Axn;α = αxn−1;α +A∗y (n = 1, . . . ,m); (2.11)

the approximate solution of (2.1) is then xm;α.
The ordinary Tikhonov method (m = 1) takes x = 0. In this case we also

write xα instead of x1;α (and rα instead of r1;α).
Them-iterated Tikhonov method is a special case of (2.3) with λ = α and

gλ(t) = gm;α(t) = t−1(1 − (1 + α−1t)−m). Inequalities (2.4), (2.5), (2.6) are
satisfied with γ =m, γp = (p/m)p(1− p/m)m−p, γ∗ =m1/2 and p0 =m.
In addition, Kλ(t) = Km;α(t) = (1+α−1t)−m.

If ‖y − y∗‖ ≤ δ, then under assumption (2.2) a proper choice of α (de-
pending on δ) guarantees ‖xm;α − x∗‖ = O(δp/(p+1)) for all p ≤ 2m (see
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Theorem 3 of Section 3.4). We say that the maximal guaranteed accuracy of
m-iterated Tikhonov method is O(δ2m/(2m+1)).

We also introduce the iteration operator

Bα = Km;α(AA
∗)1/(2m) = (1+α−1AA∗)−1/2, (2.12)

which acts as “iteration by half step”, as can be seen from the relations

‖Bαrm;α‖ = (rm;α, rm+1;α)
1/2 and B2

αrm;α = rm+1;α.

The analogs of this operator can also be defined for other methods of finite
qualification p0 by formula Bλ = Kλ(AA

∗)1/(2p0). For methods of infinite
qualification we let Bλ = I.

The self-adjoint analog of the m-iterated Tikhonov method in case A∗ =
A ≥ 0 is the m-iterated Lavrentiev method (m = 1, 2, . . . ), which starts with
x0;α = x and computes x1;α, . . . , xm;α from

(αxn;α +Axn;α) = αxn−1;α +y (n = 1, . . . ,m);

the approximate solution of (2.1) is xm;α. This method is a special case of
(2.9) with the same λ and gλ(t) as in m-iterated Tikhonov method. There-
fore also the inequalities (2.4), (2.5), (2.6) are satisfied with the same con-
stants. In particular, p0 =m.

The maximal guaranteed accuracy of m-iterated Lavrentiev method is
O(δm/(m+1)) (Theorem 4 of Section 3.4). Order optimal error bounds in
Hilbert scales for a priori parameter choice and for discrepancy principle
are given in [48].

The iteration operator Bα for m-iterated Lavrentiev method can be de-
fined as

Bα = Km;α(AA
∗)1/m = (1+α−1A)−1, (2.13)

it satisfies Bαrm;α = rm+1;α.
We now formulate some properties that are useful later; they can be

proved by direct computation.

Proposition. The functions gm;α and Km;α of m-iterated Tikhonov method

(and of m-iterated Lavrentiev method) satisfy relations

gm+1;α(t)− gm;α(t) = α−1Km+1;α(t), (2.14)

d

dα
gm;α(t) = −mα−2Km+1;α(t), (2.15)

Km+1;α(t) = (1+α−1t)−1Km;α(t). (2.16)

For m-iterated Tikhonov method a direct consequence of these proper-
ties is the equality

α(xm;α − xm+1;α) = A∗rm+1;α, (2.17)

since by (2.14)

gm+1;α(A
∗A)A∗r − gm;α(A

∗A)A∗r = α−1Km+1;α(A
∗A)A∗r ,

whose left hand side is by (2.7) equal to xm;α − xm+1;α and right hand side
by (2.8) to α−1A∗rm+1;α.
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Let us now consider iterative methods. One of the simplest of these is
the Landweber method or explicit iteration scheme. Let µ ∈ (0,2/‖A∗A‖).
Take x0 = x and compute x1, x2, . . . iteratively from

xn = xn−1 − µA∗(Axn−1 − y) (n = 1, 2, . . . ). (2.18)

This method is of the form (2.3) with λ = 1/n and gλ(t) = gn(t) = t−1(1−
(1 − µt)n). Inequalities (2.4), (2.5), (2.6) are satisfied with γ = µ, γp =
(p/(µe))p, γ∗ = µ1/2, and p0 = ∞.

Many papers note that the Landweber method is not practical, since it
needs too many iterations. Based on our computational experience, we
strongly recommend to implement this method by operator form of itera-
tions (as recommended in [87,89]), which allows to compute xn for indices
n =mk (m ≥ 2; k = 1, 2, . . . ). Define the operators

C0 = µI, Ck = Ck−1

m−1∑

j=0

(I −A∗ACk−1)
j (k = 1, 2, . . . ). (2.19)

Then xn = (I −A∗ACk)x+CkA∗y . Typically this algorithm is applied with
m = 2 (scheme of Schultz-Hotelling). In our numerical tests this algorithm
was particularly effective, since the operator A was often a diagonal matrix.

Another iterative method is the implicit iteration scheme. Let α > 0 be a
constant. Take x0 = x and compute x1, x2, . . . iteratively from

αxn +A∗Axn = αxn−1 +A∗y (n = 1, 2, . . . ). (2.20)

Here λ = 1/n and gλ(t) = gn(t) = t−1(1− (1+α−1t)−n). Inequalities (2.4),
(2.5), (2.6) are satisfied with γ = α−1, γp = (αp)p, γ∗ = α−1/2 sup

0<t<∞
t−1/2(1−

e−t), and p0 = ∞.
Also the implicit iteration scheme can be implemented via operator iter-

ations (2.19) by taking C0 = (αI +A∗A)−1; other formulas do not change.
Both Landweber method and the implicit iteration scheme can be viewed

as discrete variants of a continuous regularization method, the method of

asymptotical regularization or method of Cauchy problem, which finds the
approximate solution of (2.1) as the solution of the problem

d

dα
xα +A∗Axα = A∗y, x0 = x. (2.21)

Here λ = α and gλ(t) = gα(t) = t−1(1 − eαt). Inequalities (2.4), (2.5), (2.6)
are satisfied with γ = 1, γp = (p/e)p , γ∗ = sup

0<t<∞
t−1/2(1 − e−t) ≈ 0.6382,

and p0 = ∞.
Of the form (2.3) is also the spectral cut-off method

xα =
∫ ‖A∗A‖

α

1

η
dEηA

∗y, (2.22)

where {Eη} is the spectral family of A∗A. In this method λ = α and
gλ(t) = gα(t) = t−1, if t ≥ α, and 0 otherwise. Inequalities (2.4), (2.5),
(2.6) are satisfied with γ = γp = γ∗ = 1 and p0 = ∞. For compact operators
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this method is called truncated singular value decomposition (TSVD). The
compact operator A has a singular value decomposition (σi,ui, vi), where
σi are positive real numbers in decreasing order, {ui}, {vi} are complete
orthonormal systems in X, Y , respectively, and all these components are
related to each other by relations Aui = σivi, A∗vi = σiui (i = 1, 2, . . . ).
In TSVD we identify the regularization parameter with the number of terms
used, finding the approximate solution of (2.1) as

xn =
n∑

i=1

1

σi
(y, vi)ui.

Here gλ(t) = gn(t) = t−1, if σn ≥ t, and 0 otherwise.
Wherever we refer to iteration methods in the following, we also include

TSVD among them.
In self-adjoint problems self-adjoint variants of methods (2.18), (2.20),

(2.21), (2.22) can be used, omitting A∗ in formulas of these methods and
also in operator iterations (2.19).

2.4. Conjugate gradient type methods

To find the approximate solution of Ax = y , we can use conjugate gradient
type methods CGLS and CGME, which minimize the discrepancy or the error,
respectively, in Krylov subspace.

The CGLS method is the method of conjugate gradients applied to sym-
metrized equation A∗Ax = A∗y . Let x0 be an initial approximation (for
example x0 = 0) and r0 = Ax0 − y . To start the algorithm, additionally fix
the initial values u0 = 0 and p−1 = ∞. For n = 1, 2, . . . compute iteratively

pn−1 = A∗rn−1, βn−1 =
‖pn−1‖2

‖pn−2‖2
, un = pn−1 + βn−1un−1,

vn = Aun, γn =
‖pn−1‖2

‖vn‖2
, xn = xn−1 − γnun, rn = rn−1 − γnvn.

The CGME method is the method of conjugate gradients applied to dually
symmetrized problem AA∗z = y with x = A∗z. Again let x0 be an initial
approximation and r0 = Ax0 −y . Fix the initial values u0 = 0 and r−1 = ∞.
For n = 1, 2, . . . compute iteratively

pn−1 = A∗rn−1, βn−1 =
‖rn−1‖2

‖rn−2‖2
, un = pn−1 + βn−1un−1,

vn = Aun, γn =
‖rn−1‖2

‖un‖2
, xn = xn−1 − γnun, rn = rn−1 − γnvn.

If we wish to compute the approximates xn in these methods accord-
ing to the relation xn = xn−1 − A∗zn, then we can replace un = pn−1 +
βn−1un−1 in above algorithms by two formulas wn = rn−1 + βn−1wn−1,
un = A∗wn, whereby w0 = 0.
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The conjugate gradient method (CG) itself is defined for a self-adjoint
non-negative operator A. Let x0 be an initial approximation and r0 = Ax0−
y . Let u0 = 0 and r−1 = ∞. For n = 1, 2, . . . compute

βn−1 =
‖rn−1‖2

‖rn−2‖2
, un = rn−1 + βn−1un−1,

vn = Aun, γn =
‖rn−1‖2

(un, vn)
, xn = xn−1 − γnun, rn = rn−1 − γnvn.

2.5. Extrapolation of Tikhonov and Lavrentiev methods

Extrapolation is a technique to increase the accuracy of regularization meth-
ods by finding the approximate solution not as one Tikhonov or Lavrentiev
approximation but as a linear combination of several approximations.

Up to now, there are few papers that address the idea of extrapolation
as a means to increase the accuracy of approximation methods in ill-posed
problems. In [57] (see also [83]) the extrapolated Tikhonov method and a
version of the extrapolated Lavrentiev method were proposed for systems
of linear algebraic equations. The extrapolated Tikhonov method for oper-
ator equations with exact data was studied in [25]. In [11, 12] some other
techniques for extrapolation of Tikhonov method for ill-conditioned linear
systems were proposed. In case of noisy data the extrapolated Tikhonov
method was studied in [28,29].

Let xα1 , . . . , xαm be Tikhonov approximations (Lavrentiev approxima-
tions) with pairwise different parameters α1, . . . , αm. The m-extrapolated

Tikhonov (Lavrentiev) approximation is given by

xα1,...,αm =
m∑

i=1

dixαi , di =
m∏

j=1
j 6=i

(
1− αi

αj

)−1

. (2.23)

The coefficients di are chosen in such way that the leading terms in error

expansion are eliminated. It is easy to see that
m∑

i=1

di = 1 but the coefficients

have alternating signs, so xα1,...,αm is not a convex combination of xαi .
For example, if α1 = α/2, α2 = α, α3 = 2α, then

xα1,α2 = 2xα/2 − xα, xα1,α2,α3 =
8

3
xα/2 − 2xα +

1

3
x2α.

If the sequence of parameters (αn) is defined as αn = qn (q < 1; n = 0, 1,
. . . ), then

xαn,αn+1 = (1− q)−1(−qxαn + xαn+1),

xαn,αn+1,αn+2 = (1− q)−2(q3(1+ q)−1xαn − qxαn+1 + (1+ q)−1xαn+2

)
,

xαn,αn+1,αn+2,αn+3 = (1− q)−3(1+ q)−1
(
−q6(1+ q + q2)−1xαn

+ q3xαn+1 − qxαn+2 + (1+ q + q2)−1xαn+3

)
.
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The following table shows rounded values of coefficients di for m = 1, . . . ,
5 at q = 0.1 (upper part) and q = 0.9 (lower part):

m d1 d2 d3 d4 d5

1 1
2 −0.11 1.1

3 1.1 · 10−3 −0.12 1.1

4 −1.1 · 10−6 1.2 · 10−3 −0.12 1.1

5 1.1 · 10−10 −1.2 · 10−6 1.3 · 10−3 −0.12 1.1

1 1
2 −9 10
3 38.4 −90.0 52.6
4 −103 384 −474 194
5 197 −1032 2019 −1748 565

In case of source-like solutions (2.2) the maximal guaranteed accuracy
of m-extrapolated Tikhonov approximation is O(δ2m/(2m+1)), versus the
maximal guaranteed accuracy O(δ2/3) of single Tikhonov approximation
(cf. Theorem 12). For Lavrentiev method the accuracies are O(δm/(m+1))

and O(δ1/2), respectively.
In [28] it is shown that them-extrapolated Tikhonov approximation coin-

cides with the approximation found by the non-stationary m times iterated
Tikhonov regularization [40], which starts with x = 0 and computes the
iterates xα1 , xα1,α2 , . . . , xα1,α2...,αm from

αnxα1,...,αn +A∗Axα1,...,αn = αnxα1,...,αn−1 +A∗y (n = 1, . . . ,m), (2.24)

taking xα1,...,αm as the approximate solution of (2.1). Numerical experience
shows that if m is large and αn’s are not very different, then the non-
stationary iterated Tikhonov method is computationally more stable than
the direct formula (2.23) and this is the way we have calculated extrapolated
approximations in numerical tests of Chapter IV. The same remarks hold
for Lavrentiev method.

Extrapolated Tikhonov approximation can be viewed as being of type
(2.3) in two ways.

1. Let m be fixed and let the sequence of parameters α1, . . . , αm be
computed on base of single α, for example from relationsαn = αn−1q

(n = 2, . . . , m; q fixed) and either α1 = α or αm = α or α⌊m/2⌋ = α.

Then λ = α and gλ(t) = gα(t) = t−1(1 −
m∏

i=1

(1 + α−1
i t)

−1). In this

setting the extrapolated Tikhonov method is an analog of m-iterated
Tikhonov method, where at different steps n different αn are used.
Under assumption (2.2) a proper choice of α gives the approximate
solution xα = xα1,...,αm with maximal accuracy O(δ2m/(2m+1)).

2. Let α1, α2, . . . be a fixed infinite sequence. Compute approximations
xα1 , xα1,α2 , . . . , xα1,α2,...,αn , . . . Here the regularization parameter is
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λ = 1/n and gλ(t) = gn(t) = t−1(1−
n∏

i=1

(1+α−1
i t)

−1). In this case the

extrapolated Tikhonov method is an analog of non-stationary iterated
Tikhonov method [40] (implicit iteration scheme with parameter αn
at step n). Under assumption (2.2) a proper choice of n gives the
approximate solution xn = xα1,...,αn with accuracy O(δp/(p+1)) for all
p > 0.

Extrapolation can also be used together with iterated version of Tikho-
nov (Lavrentiev) method. Let α1, . . . , αm be pairwise different parameters
and let xj;αi be j-iterated Tikhonov (Lavrentiev) approximation with param-
eter αi (i = 1, . . . , m; j = 1, . . . , Mi). For different αi different number
of iterations M1, . . . , Mm may be used. The extrapolated approximation is
given by

xα1,...,α1︸ ︷︷ ︸
M1

,α2,...,α2︸ ︷︷ ︸
M2

,...,αm,...,αm︸ ︷︷ ︸
Mm

=
m∑

i=1

Mi∑

j=1

di,jxj;αi ,

where the coefficients di,j can be uniquely determined from relation (see
[28] and Theorem 14)

m∑

i=1

Mi∑

j=1

di,j

(
1+ t

αi

)−j
=

m∏

i=1

(
1+ t

αi

)−Mi
(∀t ∈ R).

As with extrapolation of single Tikhonov (Lavrentiev) approximations, also
here the extrapolated approximation can be found by non-stationary iter-
ated Tikhonov (Lavrentiev) method, whereM1 iteration steps are performed
with parameter α1, thenM2 steps with parameter α2, . . . ,Mm steps with pa-
rameter αm.

Extrapolation can increase the accuracy of approximate solution for ex-
ample in case, where several approximations xm;αn in m-iterated Tikhonov
method are computed for a sequence (αn) of parameters until some con-
dition is fulfilled, and traditionally a single approximation with maximal
accuracy O(δ2m/(2m+1)) is declared to be the final approximate solution
(as, for example, in balancing principle, see Section 3.1.6). The accuracy of
extrapolated approximation with m terms and with proper parameters is
the same as the accuracy of m-iterated Tikhonov approximation. At the
same time, extrapolation requires less computational work since at tran-
sition from xm;αn to xm;αn+1 in m-iterated Tikhonov method m equations
have to be solved, whereas at transition from xα1,...,αm to xα2,...,αm+1 we need
to solve only one additional equation.
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III. RULES FOR CHOICE OF THE REGULARIZATION

PARAMETER

When applying regularization methods, we need to properly choose the reg-
ularization parameter λ. If λ is too big, then the computed approximation
xλ is too close to the initial guess x (see (2.7) and (2.4)) but if λ is too
small, then the numerical implementation tends to be unstable due to ill-
posedness of the problem. There are several strategies (so-called rules) for
choosing this parameter, using different kinds of information. The work re-
ported in this thesis is mainly devoted to a posteriori rules. These rules can
be classified according to how much information there is available about
the noise level.

1. Noise level is known fully: ‖y −y∗‖ ≤ δ, where δ is known.

2. Noise level is not known.

3. Noise level is known approximately: there holds lim
δ→0

‖y −y∗‖
δ

≤ C,
where C is an unknown constant.

If the noise level is fully known (case 1), then for source-like solutions
(2.2) the best error estimate (with the fastest convergence rate) that can be
achieved with any method is [87,89]

‖xλ − x∗‖ ≤ constδ
p
p+1 . (3.1)

This error estimate is called order optimal. In a given method a proper
choice of regularization parameter λ may guarantee the error estimate (3.1)
for all p ∈ [0,M] with some finite M or for all p ∈ [0,∞). Theoretical
performance of a parameter choice rule may be characterized by maximal
p for which the order optimal error estimate (3.1) holds.

In the following, λ∗ denotes the optimal regularization parameter, i.e.

λ∗ = argmin
λ≥0

{‖xλ − x∗‖}

(in iterative methods the minimum is taken over λ ∈ N).

3.1. Parameter choice rules for known noise level

If the noise level δ with ‖y − y∗‖ ≤ δ is known, then many rules choose
the regularization parameter λ as the solution of some equation d(λ) =
Cδ, C ≥ 1. We now consider several forms of d(λ) for which these rules
guarantee convergence ‖xλ−x∗‖ → 0 as δ → 0 and often also order-optimal
error estimate, thereby referring to theorems of Section 3.4.
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3.1.1. Discrepancy principle.

The most widely used parameter choice rule is the discrepancy principle
[65,87–89], which can be formulated as follows.

Define dD(λ) = ‖rλ‖ (this means that dD(α) = ‖rα‖ for continuous
methods and dD(n) = ‖rn‖ for iterative methods).

• In a continuous regularization method choose the regularization pa-
rameter α = αD as the solution of the equation dD(α) = Cδ, where
C > 1 is a fixed constant.

• In an iterative regularization method choose the regularization pa-
rameter n = nD as the first n for which dD(n) ≤ Cδ, where C > 1 is a
fixed constant.

The parameter found according to this rule can in principle be any pos-
itive number, no matter how large or small. In computation, however, the
range of its values is finite, depending on chosen data type and possibly
other factors. Thus, when making calculations, we supplement this rule
with the following conditions.

• In case of continuous regularization method let α ∈ [αmin, αmax]. If
dD(αmax) ≤ Cδ, then take αD = αmax. If dD(α) > Cδ on the whole
segment [αmin, αmax], then take αD = αmin.

• In case of iterative regularization method let n ∈ [nmin,nmax]. If
dD(nmin) ≤ Cδ, then take nD = nmax. If dD(n) > Cδ on the segment
[nmin, nmax], then nD = nmax.

Analogously we restrict other parameter choice rules.
Inm-iterated Tikhonov method the discrepancy principle guarantees the

order optimal error estimate (3.1) for all p ≤ 2m − 1 in case of source-like
solutions (2.2) (see Theorem 3 of Section 3.4).

In ordinary Lavrentiev method (m = 1) the discrepancy principle is not
applicable and leads to divergence of approximate solutions but it can be
used in iterated Lavrentiev method with m ≥ 2. Then in case of source-
like solutions it guarantees order optimal error estimate (3.1) for all p ≤
m − 1 (see Theorem 4). Note that in [67] the discrepancy principle for
modifications of Lavrentiev method in Hilbert scales is investigated and
in [64] the rule dD(α) = δs with s ∈ (0,1) is proposed.

For method CGLS the discrepancy principle guarantees convergence and
in case of source-like solution (2.2) also order optimal error estimates for
all p [37,68,71].

Also in method CGME the discrepancy principle is not applicable and
leads to divergence of approximate solutions. For this method Hanke pro-
posed [37, 38] a version of the discrepancy principle dDH(n) = Cδ, where

dDH(n) =
( n∑

i=0

‖ri‖−2)−1/2
. This rule guarantees the convergence and for

source-like solutions (2.2) also order optimal error estimate (3.1).
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Discrepancy principle can also be used in extrapolated Tikhonov method
and in extrapolated Lavrentiev method or even in extrapolation of iterated
variants of these methods. In [28] the following results are proved.

If in extrapolated Tikhonov approximation or in extrapolated Lavrentiev
approximation the number m of terms is fixed and αn = qnα with fixed
qn (n = 1, . . . , m), then the function dD(α) = ‖rα1,...,αm‖ is monotonically
increasing. If αD is the solution of the equation dD(α) = Cδ, then for
xα = xα1,...,αm with α = αD there holds ‖xα − x∗‖ → 0 as δ → 0 and in
case (2.2) the error estimate (3.1) is valid with p ≤ 2m − 1 for extrapolated
Tikhonov approximation and with p ≤ m − 1 for extrapolated Lavrentiev
approximation (see Theorem 12).

If in extrapolated Tikhonov approximation or in extrapolated Lavren-
tiev approximation the sequence α1 ≥ α2 ≥ . . . is given, then the function

dD(n) = ‖rα1,...,αn‖ is monotonically decreasing. If
∞∑

n=1

α−1
n = ∞, α−1

n ≤
n−1∑

i=1

α−1
i , then there exists n for which dD(n) ≤ Cδ. Let nD be the first n for

which the last inequality holds. Then for xn = xα1,...,αn with n = nD there
holds ‖xn − x∗‖ → 0 as δ → 0 and in case (2.2) the error estimate (3.1) is
valid with any p > 0 (see Theorem 13).

Let αn = qnα (n = 1, . . . , m) with m and qn fixed. Let

xα = xα1,...,α1︸ ︷︷ ︸
M1

,α2,...,α2︸ ︷︷ ︸
M2

,...,αm,...,αm︸ ︷︷ ︸
Mm

be an approximation found by extrapolation of iterated Tikhonov method
or iterated Lavrentiev method, where Mn is the number of iteration steps
performed with parameter αn. Define dD(α) = ‖rα‖. If αD is the solution
of the equation dD(α) = Cδ, then ‖xα − x∗‖ → 0 as δ → 0 and in case
(2.2) the error estimate (3.1) is valid with p ≤ 2(M1 + . . . + Mm) − 1 for
Tikhonov method and with p ≤ M1 + . . . +Mm − 1 for Lavrentiev method
(see Theorem 14).

In all previous equalities and inequalities it is assumed that C > 1 but
for practical purposes C = 1 also works well.

3.1.2. Modified discrepancy principle.

In m-iterated Tikhonov method and in m-iterated Lavrentiev method the
following modification of the discrepancy principle (rule MD, also called
Raus-Gfrerer rule) [22, 73, 74] can be used. Define dMD(α) = ‖Bαrm;α‖,
where Bα is the iteration operator (2.12) or (2.13) in non-self-adjoint or self-
adjoint case, respectively. Choose the regularization parameter α = αMD as
the solution of the equation dMD(α) = Cδ with constant C > 1.

Thus, for m-iterated Tikhonov method dMD(α) = (rm;α, rm+1;α)
1/2 and

for m-iterated Lavrentiev method dMD(α) = ‖rm+1;α‖. Unlike ordinary dis-
crepancy principle, the modified discrepancy principle is order optimal for
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full range: in case of source-like solutions (2.2) the error estimate (3.1)
holds for all p ≤ 2m in m-iterated Tikhonov method and for all p ≤ m

in m-iterated Lavrentiev method (including m = 1).
In m-iterated Tikhonov method the monotone error rule (considered in

the following subsection) is better than the modified discrepancy principle:
in [84] it is proved that αMD ≥ αME (and in case y 6∈ N (A∗) even αMD >

αME), which implies the inequality ‖xαMD − x∗‖ ≥ ‖xαME − x∗‖.
Using the rule MD in ordinary Tikhonov method (m = 1), we have to

compute the discrepancy r2;α. Replacing this discrepancy of two times
iterated approximation by discrepancy rα,qα of extrapolated approxima-
tion, we come to the function deMD(α) = (rα, rα,qα). (Here and in the
following, “e” in front of the rule name means using extrapolated approx-
imations.) This can be generalized to extrapolated Tikhonov approxima-
tion, where the number m of terms is fixed. In [28] it is proved that if
αn = qnα with qn fixed (n = 1, . . . , m + 1), then the function deMD(α) =
(rα1,...,αm,rα1,...,αm+1)

1/2 is monotonically decreasing. If xα=xα1,...,αm, where
α = αeMD is the solution of deMD(α) = Cδ, then ‖xα − x∗‖ → 0 as δ → 0
and in case of source-like solutions (2.2) the error estimate (3.1) holds with
p ≤ 2m (cf. Theorem 15).

In extrapolated Tikhonov method we often choose the regularization pa-
rameter α from some sequence (αn), for example, from the geometric se-
quence αn = qn (n = 0, 1, . . . ; q < 1). In this case we stop at first α = αn
for which deMD(αn) ≤ Cδ.

Analogous results also hold for m-extrapolated Lavrentiev method (for
ordinary Lavrentiev method, if m = 1). Here deMD(α) = ‖rα1,...,αm+1‖, where
α1, . . . , αm+1 are defined in the same way as above. If α = αeMD is the
solution of deMD(α) = Cδ, then for xα = xα1,...,αm there holds ‖xα−x∗‖ → 0
as δ → 0 and in case (2.2) the error estimate (3.1) is valid with p ≤ m (see
Theorem 16, also [72] for case m = 1).

3.1.3. Monotone error rule.

The monotone error rule [84] is based on the idea to search for the smallest
computable value λME of the regularization parameter λ, for which it can be
guaranteed that the error ‖xλ −x∗‖ is a monotonically increasing function
of λ for λ ∈ (λME,∞).

In case of continuous regularization methods of the form (2.3) let

dME(α) =
(
rα,− d

dαgα(AA
∗)r

)
∥∥ d

dαgα(AA
∗)r

∥∥ .

Choose the regularization parameter α = αME as the solution of the equa-
tion dME(α) = Cδ. If the function dME(α) is non-monotone, then choose
α = αME as the largest solution of this equation. In case of exactly known
noise level the best value of C is C = 1.
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The name of the monotone error rule is justified by the property (Theo-
rem 20)

d

dα
‖xα − x∗‖ ≥ 0 for all α ∈ [αME,∞). (3.2)

Therefore, if α ∈ [αME,∞), then ‖xα−x∗‖ ≥ ‖xαME −x∗‖. This means that
the optimal parameter α∗ always satisfies α∗ ≤ αME.

In m-iterated Tikhonov method we have due to (2.15) and (2.8)

dME(α) =
(rm;α, rm+1;α)

‖rm+1;α‖
= ‖Bαrm;α‖2

‖B2
αrm;α‖

,

which is a monotone function of α. Monotone error rule in m-iterated
Tikhonov method is order optimal for full range p ≤ 2m (see Theorem 3).

It is interesting to note that in case of asymptotical regularization we

have
d

dα
gα(AA

∗)r = − 1

α2
rα and therefore dME(α) = dD(α).

In case of iterative methods of the form

xn+1 = xn −A∗zn, zn ∈ Y (n = 0, 1, . . . ) (3.3)

let

dME(n) =
(rn + rn+1, zn)

2‖zn‖
. (3.4)

Choose the regularization parameter n = nME as the first n for which
dME(n) ≤ δ.

This choice guarantees (Theorem 19) the monotonicity property

‖xn − x∗‖ ≤ ‖xn−1 − x∗‖ for n = 1, . . . , nME,

so ‖xnME−x∗‖ ≤ ‖xn−x∗‖ for all n = 0, 1, . . . , nME. Also always n∗ ≥ nME.
Of the form (3.3) are for example Landweber method with zn = µ(Axn−

y), the implicit iteration scheme with zn = (αI+AA∗)−1(Axn−y), and the
methods CGLS and CGME with zn = γnwn. This variant of the monotone
error rule was proposed and studied for simple iteration methods in [26,36]
and for methods CGLS and CGME in [27]. In Landweber method, in implicit
iteration scheme and in some other methods of the form (3.3) nD − 1 ≤
nME ≤ nD (see [26,36]).

Sometimes a sequence of approximations of the form xn = A∗zn (n = 0,
1, . . . ) arises during the computations. Since xn+1 = xn−A∗(zn−zn+1), this
sequence can be viewed as a special case of previously considered iterative
regularization methods. Therefore the monotone error rule with

dME(n) =
(rn + rn+1, zn − zn+1)

2‖zn − zn+1‖
(3.5)

guarantees monotone decrease of error for n = 0, 1, . . . , nME. In many
regularization methods the elements zn here can be computed separately
and xn can be found as xn = A∗zn.

This variant of monotone error rule can be applied for example to the se-
quence of Tikhonov approximations xαn with decreasing parameters α1 >
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α2 > . . . (this sequence arises, for example, when choosing the regulariza-
tion parameter according to the balancing principle) or to the extrapolated
Tikhonov approximations with fixed number of terms and varying α = αn
or to the extrapolated Tikhonov approximations with varying number n of
terms or to some other arbitrary sequence of extrapolated approximations.

In ordinary Tikhonov method (m = 1) we can replace the discrepancy of
iterated approximation by the discrepancy of extrapolated approximation,
as we did in modified discrepancy principle, and choose the parameter α =
αeME from equation deME(α) = δ, where deME(α) =

(rα, rα,qα)

‖rα,qα‖
. In [28] it

is proved that ‖xαeME − x∗‖ → 0 as δ → 0 and under assumption (2.2) the
error estimate (3.1) holds for p ≤ 2 (cf Theorem 15). Generally, if m is the
number of terms in extrapolated Tikhonov approximation and αn = qnα

with fixed qn (n = 1, . . . , m+ 1), then for xα = xα1,...,αm we can choose the
parameter α = αeME from the equation deME(α) = Cδ, where

deME(α) =
(rα1,...,αm , rα1,...,αm,αm+1)

‖rα1,...,αm,αm+1‖
, (3.6)

or, if it is assumed that α = qn for some n = 0, 1, . . . , as the first α = qn
satisfying deME(q

n) ≤ Cδ.
In extrapolated Tikhonov method with given sequence of parameters

α1 ≥ α2 ≥ . . . let xn = xα1,...,αn and dME(n) = (rn + rn+1, rn+1)/(2‖rn+1‖).
In [28] it is proved that dME(n) is monotonically decreasing. If in addition
∞∑

n=1

α−1
n = ∞, α−1

n ≤
n−1∑

i=1

α−1
i , then there exists n for which dME(n) ≤ Cδ and

if nME is the first n for which dME(n) ≤ Cδ, then for xn with n = nME there
holds ‖xn − x∗‖ → 0 as δ → 0. In case of source-like solutions (2.2) also
the error estimate (3.1) is valid for all p > 0. If dD(n) is the discrepancy
of the extrapolated approximation xn, then dD(n + 1) ≤ dME(n) ≤ dD(n),
so the stopping indices nD and nME, found by the discrepancy principle
and the monotone error rule, respectively, satisfy nD − 1 ≤ nME ≤ nD (see
Theorem 13).

Analogs of monotone error rule for Lavrentiev method. In our paper [35]
an attempt was made to formulate the monotone error rule for Lavrentiev
method. Unfortunately this has not succeeded but several analogs of the
monotone error rule were proposed, which gave good results in numerical
tests. Assume now X = Y , A = A∗ ≥ 0.

Straightforward is the analog of ME rule with function

dMEa(α) =
‖Bm+1

α y‖2

‖Bm+2
α y‖ = ‖rm+1;α‖2

‖rm+2;α‖
.

As proved in [35], the function dMEa(α) is monotonically increasing with
dMEa(0) = ‖Qy‖ and lim

α→∞dMEa(α) = ‖y‖, where Q is the orthoprojec-

tor of Y onto R(A). Therefore if ‖Qy‖ ≤ Cδ ≤ ‖y‖, then the equation
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dMEa(α) = Cδ has a unique solution αMEa. Under additional assumptions
‖rm+2,α‖ ≥ ‖Bm+2

α (y − y∗)‖ for all α ≥ αMEa and C ≥ 2 the convergence
‖xαMEa − xα∗‖ → 0 as δ → 0 has been proven and for source-like solutions
(2.2) the error estimate (3.1) has been shown to hold with p ≤m (see The-
orem 11). Numerical experiments suggest that with high probability the
order optimality of rule MEa also holds without the additional assumption
‖rm+2,α‖ ≥ ‖Bm+2

α (y − y∗)‖.
Unlike the monotone error rule in Tikhonov method, the rule MEa does

not guarantee monotonicity of the error for α ≥ αMEa.
Instead of MEa, we can use an analog of that rule, which can be derived

as follows. Since by (2.10), (2.15), and (2.9)

dMEa(α) =
‖Km+1;αr‖2

‖Km+2;αr‖

= α4

m2
· (m+ 1)

α2
·

∥∥∥ d
dαgm;α(A)r

∥∥∥
2

∥∥∥ d
dαgm+1;α(A)r

∥∥∥
= α2m+ 1

m2

∥∥∥ d
dαxm;α

∥∥∥
2

∥∥∥ d
dαxm+1;α

∥∥∥

and the derivatives can be approximated as
∥∥∥∥

d

dα
xm;α

∥∥∥∥ ≈
‖xm;qα − xm;α‖

α(1− q) ,

∥∥∥∥
d

dα
xm+1;α

∥∥∥∥ ≈
‖xm+1;qα − xm+1;α‖

α(1− q)
with q < 1, the function dMEa(α) is approximated by function

dMEaq =
α

1− q ·
m+ 1

m2
· ‖xm;qα − xm;α‖2

‖xm+1;qα − xm+1;α‖
. (3.7)

We choose the regularization parameter α = αMEaq as the solution of equa-
tion dMEaq(α) = Cδ with C > 1, or if the parameter is searched from the
sequence of parameters αn = αn−1q with q < 1, then as the largest αn for
which dMEaq(αn) ≤ Cδ.

Let us now consider the question, what form the genuine monotone error
rule in (iterated) Lavrentiev method should have. For simplicity, take now
x = 0. Let y ∈ R(A) and let x be the solution of Ax = y . Then r = −y =
−Ax. Using the equalities

d

dα
xm;α = −

d

dα
gm;α(A)r =mα−2Km+1;α(A)r = −mα−2Bm+1

α Ax

and assuming ‖y − y∗‖ ≤ δ, we get for m-iterated Lavrentiev method,
along the lines of analogous derivation for m-iterated Tikhonov method
(see Theorem 20):

d

dα
‖xm;α−x∗‖2= 2(xm;α−x∗,

d

dα
xm;α) = 2mα−2(xm;α−x∗,−Bm+1

α Ax)

= 2mα−2(Axm;α −Ax∗,−Bm+1
α x) = 2mα−2(rm;α + y −y∗,−Bm+1

α x)

≥ 2mα−2[(rm;α,−Bm+1
α x)− ‖y − y∗‖‖Bm+1

α x‖]
≥ 2mα−2[(Bmα y,B

m+1
α x)− δ‖Bm+1

α x‖].
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Let

dME(α) =
(Bmα y,B

m+1
α x)

‖Bm+1
α x‖ . (3.8)

If αME is the solution of dME(α) = δ, then ‖xm;α − x∗‖ is a monotonically
increasing function of α for α ≥ αME.

Unfortunately dME(α) cannot be computed in practice, since x is un-
known in case y ∈ R(A) and even non-existent in case y 6∈ R(A). Sub-
stituting x in (3.8) by various approximate solutions of Ax = y , we get
approximations of the monotone error rule function (3.8). The more accu-
rate approximations we have for x, the larger is the probability that the
resulting rule R yields a parameter αR for which the error is an increasing
function (i.e the monotonicity property (3.2) holds) for all α ≥ αR.

Replacing x by ordinary Lavrentiev approximation xα = α−1Bαy , we get
the function dMEa(α). However, when finding the approximate solution of
Ax = y , in contrast to the problem (2.1), we consider this problem as a
problem with exact right hand side. Therefore, here a smaller regulariza-
tion parameter να with ν ≤ 1 may be preferred. Replacing x in (3.8) by
Lavrentiev approximation (να)−1Bναy , we get the function

dMEn(α) =
(Bmα y,B

m+1
α Bναy)

‖Bm+1
α Bναy‖

= (rm;α, rα,...,α,να)

‖rα,...,α,να‖
, ν ≤ 1,

where rα,...,α,να has m+ 1 indices α. For ν = 1 this function coincides with
dMEa(α). If y ∈ R(A), then (να)−1Bναy → x as να → 0, so the func-
tion dMEn(α) approximates the function dME in process ν → 0. However,
very small values of ν cause numerical instabilities; numerical experiments
suggest to limit the values of ν to ν ≥ 10−3. In tests the best values for
non-smooth solutions were found to be around ν ≈ 0.17.

Alternatively, x in (3.8) can be replaced by iterated Lavrentiev approxi-

mation xk;α. Since gk;α(t) = t−1(1 − (1 + α−1t)−k) = α−1
k∑

j=1

(1 + α−1t)−j ,

we have xk;α = α−1
k∑

j=1

B
j
αy and the function dME(α) gets the form

dMEk(α) =
(rm;α,

∑k
j=1 rm+j+1;α)

‖∑k
j=1 rm+j+1;α‖

.

For k = 1 this coincides with dMEa(α). If y ∈ R(A), then xk;α → x as k→ ∞,
therefore the function dMEk(α) can be considered as the approximation of
the function dME(α). Instead of iterated Lavrentiev approximation, x in
(3.8) can also be replaced by extrapolated Lavrentiev approximationxα1,...,αk

to form the function

dMEke(α) =
(rm;α,

∑k
j=1 rα1,...,αm+j+1)

‖∑k
j=1 rα1,...,αm+j+1‖

,

where α1, α2, . . . is some sequence of parameters, for example, αn = αn−1q
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(q < 1) and in addition α1 = α or the geometric mean of α1, . . . , αm+j+1 is
(approximately) α.

In similar way we can modify the function dMEaq(α). Namely, in dMEa(α)

all iterations are performed with the same parameter α but in dMEn(α) one
iteration uses smaller parameter να. In function dMEaq(α), when choosing
the parameter α from the sequence αn = αnq with q < 1, this means
that instead of α we can use the parameter qlα with l ∈ N. Replacing
α in one side of the scalar product in the numerator ‖xm;qα − xm;α‖2 =
(xm;qα−xm;α, xm;qα−xm;α) and in denominator by qlα, we get the function

dMEaql(α) =
α

1− q ·
m+ 1

m2
·
(xm;qα − xm;α, xm;ql+1α − xm;qlα)

‖xm+1;ql+1α − xm+1;qlα‖
.

In numerical experiments with q = 1/1.2 the optimal l was l = 5 for non-
smooth solutions and l = 4 for source-like solutions (2.2) with p = 1.

Note that in [20,21] a rule dGN(α) = Cδ with

dGN(α) =
(rα, r2;α)

‖r2;α‖
was proposed.

3.1.4. Rule R1.

Previous rules have the disadvantage that they cannot be used, if the equa-
tion Ax = y has only quasisolution (i.e f 6∈ R(A) but Qf ∈ R(A), where
Q : Y → Y is the orthoprojector onto R(A)). The following rule was formu-
lated in [77].

In case of continuous regularization methods (2.3) let

dR1,k(λ) = λ−k
∥∥|A∗|2kB2k+1

λ rλ
∥∥ (k = 0,

1

2
, 1,

3

2
, . . . ),

where |A∗| = (AA∗)1/2. Choose the regularization parameter λ = λR1,k as
the smallest λ for which dR1,k(λ) = Cδ. In general the function dR1,k(λ) is
not monotone and the equation dR1,k(λ) = Cδ may have many solutions.
The papers [75,76] study an analog of this rule, where the largest solution
of this equation was taken for the regularization parameter (instead of the
smallest).

For m-iterated Tikhonov method we get

dR1,k(α) =




α−k

(
(AA∗)krm+k;α, (AA

∗)krm+k+1;α
)1/2

(k = 0, 1, . . . ),

α−k‖A∗(AA∗)k− 1
2 r
m+k+ 1

2 ;α‖ (k = 1

2
,

3

2
, . . . ).

By induction, using the relations

A∗rm+i;α = α(xm+i−1;α − xm+i;α),
A(xm+i−1;α − xm+i;α) = rm+i−1;α − rm+i;α,
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we can represent dR1,k(α) in the form

dR1,k(α) =





( k∑

i=0

(−1)i
(
k

i

)
rm+i,

k∑

i=0

(−1)i
(
k

i

)
rm+i+1

)1/2
(k = 0, 1, . . . ),

α1/2
∥∥∥
k+1/2∑

i=0

(−1)i
(
k+ 1

2

i

)
xm+i

∥∥∥ (k = 1

2
,

3

2
, . . . ).

From here we get the following practically usable formulas for smaller k:

dR1,0(α) = dMD(α) = (rm;α, rm+1;α)
1/2,

dR1,1/2(α) = α−1/2‖A∗rm+1;α‖ = α1/2‖xm;α − xm+1;α‖,
dR1,1(α) = (rm+1;α − rm+2;α, rm;α − rm+1;α)

1/2,

dR1,3/2(α) = α1/2‖xm;α − 2xm+1;α + xm+2;α‖.
Note that another formulas for realization of rule R1 and other quasiopti-
mal rules are given in [81].

For self-adjoint problems in case of continuous methods (2.9) let

dR1,k(λ) = λ−k
∥∥AkBk+1

λ rλ
∥∥ (k = 0,

1

2
, 1,

3

2
, . . . ).

Choose the regularization parameter λ = λR1,k as the smallest λ for which
dR1,k = Cδ.

For m-iterated Tikhonov method and m-iterated Lavrentiev method the
constant C is to be chosen to satisfy the inequality C > γ̃h(k)k , where γ̃sk =
(γk/τ(s))

τ(s), τ(s) = 1+ (s + 1)/m, h(k) = k− 1/2 in m-iterated Tikhonov
method and h(k) = k in m-iterated Lavrentiev method.

Rule R1 in m-iterated Tikhonov method and in m-iterated Lavrentiev
method is order optimal for full range p ≤ 2m and p ≤ m, respectively
(see Theorems 3, 4). The analog of rule R1, where the largest solution of
the equation dR1,k(α) = Cδ is taken to be the regularization parameter,
guarantees the convergence ‖xα − x∗‖ → 0 also in case, where the noise
level is known approximately by the condition ‖y − y∗‖/δ ≤ c as δ → 0,
where c is an unknown constant (see [75,76], cf. Theorem 10).

We use this rule in Section 3.3 as the first step in two-step rule DM. Rule
R1 itself is not included in tables of Chapter IV, since rules ME, R2, Me gave
better results.

3.1.5. Rule R2.

In [80] the following rule was proposed for Tikhonov method and for its
iterated variant. Let

dR2(α) =
‖A∗rm+1;α‖2κ(α)s

α1/2(A∗rm+1;α, A∗rm+2;α)
,

where κ(α) = (1 + α‖A‖−2), s ∈ [0,1]. Choose the regularization param-
eter α = αR2 as the solution of the equation dR2(α) = Cδ. Note that the
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influence of the factor κ(α) is small for small α but for large α sometimes
it is useful. Our numerical tests are always performed with s = 1.

As in Rule R1, this equation may have many solutions and both the
smallest and the largest are of interest. We propose to take the largest solu-
tion; then typically αR2 ≥ α∗ and a somewhat smaller estimated parameter
αR2e = bαR2 with b < 1 is often better.

Note that in order to avoid numerical instability when finding the small-
est solution of dR2(α) = Cδ, [80] recommends to find the smallest solution
under condition α ≥ (γ∗δ/M)2, where M is an upper bound of ‖x∗ − x‖.

The bounds for the constant C are not quite obvious. Originally in
[80] the rule R2 was proposed with constant C > γ̃2

1/4,m, where γ̃k,s =
ss/2(2k)k

(s + 2k)k+s/2
. This gives C > 0.3849 for m = 1 and C > 0.2862 for m = 2.

Based on our numerical tests, we recommend somewhat smaller constants:
C = 0.3 for m = 1, C = 0.2 for m = 2, and C = 0.13 for m = 3.

Inm-iterated Tikhonov method in case of (2.2) the rule R2 with the small-
est solution of equation dR2(α) = Cδ guarantees the error estimate (3.1) for
all p ≤ 2m−1 and under certain mild additional assumption about the error
of y , also for all p ≤ 2m (see Theorems 5, 6).

Due to (2.17) the expression of dR2(α) can be written as

dR2(α) =
√
α‖xm;α − xm+1;α‖2κ(α)s

(xm;α − xm+1;α, xm+1;α − xm+2;α)1/2
.

In numerical tests this function is preferred because of better computa-
tional stability.

In case of extrapolated Tikhonov method let αn = qnα (q < 1, n = 0, 1,
. . . ) and

deR2(α) =
√
α‖xα1,...,αm − xα1,...,αm+1‖2κ(α)s

(xα1,...,αm − xα1,...,αm+1 , xα1,...,αm+1 − xα1,...,αm+2)
1/2
.

Choose the parameter α = αeR2 as the solution of the equation deR2(α) =
Cδ or, if it is assumed that α = qn (q < 1; n = 0, 1, . . . ), as the first α = qn
for which deR2(q

n) ≤ Cδ.

3.1.6. Balancing principle.

The balancing principle [3, 4, 7–9, 15–18, 50, 54–56, 58–63, 70], originating
from work by Lepskii about parameter estimation for stochastic regression,
has received much attention in recent years. Sometimes the balancing prin-
ciple is also called Lepskii type rule. As shown in [34], the balancing princi-
ple is closely related to rule R1.

Let q < 1 be a constant. Define the sequence of parameters λ0, λ1, . . . ,
λN , where λ0 = δ2, λi = λ0/q

i for i = 1, 2, . . . , N, and N is the first index
i for which λi ≥ 1. There are several variants of the balancing principle
for methods (2.3), in all of these the regularization parameter λ = λBP is
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chosen as the first λi for which a certain condition is fulfilled. In [59, 60]
this condition is

‖xλi − xλi+1
‖ > cδ√

λi
(3.9)

and in [70]

∃j ∈ {1, . . . , i} : ‖xλj − xλi+1
‖ > cδ√

λi
. (3.10)

In Tikhonov method c = 2 was proposed. Instead of a fixed constant c
the paper [34] recommends to use c of the forms c = c′(1 − q)/√q and
c = c′(1− qi+1−j) in these formulas, respectively, and also gives some rea-
sonable bounds of c′ for different methods (see Theorem 9). In [34] it is
also suggested to take q ∈ [0.5,0.9], since the values from this interval bal-
ance the size of constants in error estimates found in [34] with the amount
of computational work needed to reach λi for which the condition of the
balancing principle is satisfied. For Tikhonov method the balancing princi-
ple with the condition (3.9) or (3.10) is order optimal in case of source-like
solutions (2.2) for p ≤ 2, if c′ ≥ 3

√
3/16 ≈ 0.3248 or c′ ≥ 1, respectively

(Theorems 7, 8).
Instead of (3.10), numerical experiments suggest to use the condition

∃j ∈ {i− 1, i} : ‖xλj − xλi+1
‖ > cδ√

λi
, (3.11)

since the calculations with (3.10) showed that very often (3.10) was satis-
fied with j = i − 1 or j = i. This condition also avoids double loop and
is therefore significantly faster to check. In Tikhonov method we recom-
mend c = 0.3(1 − qi+1−j)q(j−i−1)/2. Also note that the value λ0 = δ2 is
problematic, since often the optimal λ is less than δ2.

For methods (2.9) the balancing principle is the same as described above,
only the analogs of inequalities (3.9), (3.10), (3.11), have λi in denominators,

instead of
√
λi.

In [34] an analog of the balancing principle (3.9) was proposed for meth-
ods (2.3), where the largest λn = qn (q < 1; n = 0, 1, . . . ) for which

‖xλi − xλi+1
‖ ≤ cδ√

λi
was taken to be the regularization parameter. This rule guarantees conver-
gence ‖xλ − x∗‖ → 0 for all c as δ → 0 under assumption that ‖y − y∗‖/δ
remains bounded. If c > γγ̃1/2(1 − q)/

√
q with γ̃1/2 = γ1+1/p0

1/(2+2/p0)
, then in

case ‖y − y∗‖ ≤ δ for source-like solutions (2.2) this rule also gives order
optimal error estimate for p ≤ 2p0.

3.1.7. Estimated parameters.

Sometimes it is known either theoretically or practically that a parameter
choice rule has a bias, choosing typically too large or too small parame-
ter. Therefore it is reasonable to post-estimate the computed parameter,
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shifting it towards smaller or larger values. The amount of shift generally
depends on the size of the original parameter, so different formulas can
be applied. We describe here only the strategies we used to construct the
final rules with post-estimated parameters. The rules themselves are formu-
lated in Chapter IV together with results they give on test problems. Names
of rules with post-estimated parameters have the letter “e” (“estimation”)
added to the end of original rules’ names.

In Tikhonov method always αME ≥ αopt (and often αME and αopt are not
very close). So it is reasonable to decrease the parameters found by ME-rule
a little. Assuming that αopt < 1, there exist k ≥ 1 for which αopt = αkME

and l ≤ 1 for which αopt = lαME. In Tikhonov method our numerical experi-
ments suggested to use the estimated parameter αMEe =min(c1αME, c2α

c3
ME)

instead of αME, where c1 = 0.53, c2 = 0.6, c3 = 1.06. The same formula with
similar constants c1, c2, c3 gives quite good results also for extrapolated
Tikhonov method with 2 or 3 terms.

Our numerical tests showed that in 90% of cases (typically for smaller
α’s) also αR2 ≥ αopt. Here we found that the estimated parameter αR2e =
0.5αR2 is usually better than αR2.

Comparing the parameters αMEe and αR2e, we found that αMEe is better
of the two, if ‖y −y∗‖ is equal to or slightly less than δ, but αR2e is better,
if ‖y−y∗‖ is considerably less than δ. In both cases αMe = min(αMEe, αR2e)

often chooses the best of them.
In Landweber method nD and nME are close: nD − 1 ≤ nME ≤ nD, so

nME and mostly also nD are smaller than the optimal stopping index n∗.
Therefore it makes sense to use the estimated indices nDe = round(cnD)

and nME = round(cnME) instead of nD and nME, respectively. The constant
c = 2.3 is found by numerical experiments.

Also in CGLS nME ≤ n∗, so a larger index is preferred. We take nMEe =
round(0.99n1.13

ME ). Also for discrepancy principle nDe = round(1.02n1.03
D )

usually gives better results than nD.

3.2. Parameter choice rules for unknown noise level

If the noise level is unknown, then no rule for choosing the regulariza-
tion parameter α can guarantee the convergence ‖xα − x∗‖ → 0 as δ → 0.
Namely, it was shown by Bakushinskii [1] that for ill-posed problems with
R(A) 6= R(A) the worst case error

sup{‖xλ − x∗‖ : y ∈ Y , ‖y −y∗‖ ≤ δ}
can converge to 0 as δ goes to 0, only if the regularization parameter is
chosen depending on the noise level. Nevertheless, some heuristic rules
are rather popular, because they often work well in practice and because in
applied ill-posed problems the exact noise level is often unknown. Typically
these rules minimize (or maximize) certain functions. Well-known heuristic
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rules are for example quasioptimality criterion [85,86] (see also [2,5,6,10,
23,49,51,52]), generalized cross-validation (GCV) [91], L-curve rule [44,45,
82] (for limitations of L-curve rule see [39,90]), and Hanke-Raus rule [42].

3.2.1. Known rules.

An overview of heuristic rules can be found in [19, 41]. For our purposes
we review some known rules that are similar to the rules that we will derive
using strategies of Subsection 3.2.2.

A classical rule in case of unknown noise level is the quasioptimality cri-

terion. In m-iterated Tikhonov method or in m-iterated Lavrentiev method
let ϕQ(α) = ‖xm;α − xm+1;α‖. Choose the parameter α = αQ as the global
minimizer of the function ϕQ(α).

Note that ϕQ(α) = dR1,1/2(α)/
√
α.

Another version of the quasioptimality criterion minimizes the function
ϕQq(α) = ‖xm;α−xm;qα‖, where q is a constant. The rule with this function
is very natural to apply, if we choose the regularization parameter on the
mesh (αn), where αn = qαn−1; then the regularization parameter is αn
such that dQq(αn) is minimal.

The quasioptimality criterion can be carried over fromm-iterated Tikho-
nov method to extrapolated Tikhonov method with m terms. Let αn = qn
and ϕeQ(αi) = ‖xseq(m,q,αi) − xseq(m+1,q,αi)‖, where seq(k, q,α) is a finite
sequence of parameters defined by

seq(k, q,α) = (αq−
⌊
k
2

⌋
, αq

−
⌊
k
2

⌋
+1
, . . . , αq

⌈
k
2

⌉
−1
).

For Tikhonov method Neubauer [69] proposed a modification of the qua-
sioptimality criterion: minimize the function ϕQN(α) = ‖xm;α − x2m;α‖ in
the interval [mσmin,1], where σmin is the smallest eigenvalue of discretized
version of the operator A∗A (we assume that ‖A‖ = 1).

For class of methods (2.3) this function has the formϕQN(λ) = ‖xλ−x̃λ‖,
where x̃λ = gλ(A∗A)A∗Axλ.

The Hanke-Raus rule [42] in m-iterated Tikhonov method finds the reg-
ularization parameter α = αHR as the global minimizer of the function
ϕHR(α) = dMD(α)/

√
α. In Landweber method the Hanke-Raus rule mini-

mizes the function ϕHR(n) = n1/2‖rn‖ for n ≥ 1. The ideas of construct-
ing the Hanke-Raus rule may also be used in TSVD, minimizing ϕHR(n) =
‖rn‖/σn+1. In CGLS and in CGME the Hanke-Raus rule finds the global min-
imum of the function ϕHR(n) =

√
̺n+1 ‖rn‖, where (̺n) is a sequence con-

structed as follows: starting with κ−1 = 0, ̺0 = 0, compute κn = 1+βnκn−1,
̺n+1 = ̺n + γnκn (n = 0, 1, . . . ).

In [13] it was proposed to minimize the functionϕBRS(n)=‖rn‖2/‖A∗rn‖
in iteration methods and ϕBRS(α) = ‖rα‖2/(α‖xα‖) in Tikhonov method.

In Regińska’s version [82] of the well-known L-curve rule the regular-
ization parameter is chosen as the minimizer of the function ϕL(λ) =
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‖rλ‖‖xλ‖. In our experiments the results with this rule were worse than
those with rules presented in tables. We used the function ϕL(λ) in TSVD
for constructing rules HRL’ and HRLm’.

3.2.2. Strategies for constructing new rules.

The main problem with many heuristic rules is that the global minimums
of functions that these rules minimize occur at very small λ, leading to
very large error. The reason of this is that the discretized versions (as
used in computing) of several of these functions tend to zero as λ → 0,
due to Banach-Steinhaus theorem. For example, if the discretized problem
has a unique solution, then the finite-dimensional analogs of ϕHR(λ) =
dMD(λ)/

√
λ converge to 0 as λ → 0 [42], this also holds for other functions

ϕ(λ) = d(λ)/
√
λ, where d(λ) is a function from previously considered rules

that use noise level. So the global minimizer of these functions is λ = 0.
Therefore, in practice it is important to bound the minimization interval
from below.

In m-iterated Tikhonov method the papers [49] and [69] propose to find
the minimizer of the quasioptimality function and the minimizer of a cer-
tain analog of the quasioptimality function on the interval [λmin,1], where
λmin = mσmin and σmin is the smallest eigenvalue of discretized analog of
A∗A. It was noticed that the function ϕQN(α) is monotonically increas-
ing for λ < λmin and has a large maximum near λmin. However, our nu-
merical experiments showed that this lower bound is sometimes too small
(see column QN of Table 16 in Chapter IV). On the other hand, numer-
ical experiments suggest that for problems with small condition number
the reasonable bound should be much smaller. For example, we obtained
better results with the lower bound αmin = (mλmin)

3 in problems with
cond(A) ≤ 106.

In TSVD, when solving discrete N×N problems, we used λmin = σM , with
some M ≤ N, in several rules.

The problem of finding an appropriate a priori lower bound λmin for λ’s
is hard. In general, instead of an a priori lower bound some a posteriori

lower bound determined during computations may be more promising.
Based on numerical evidence, we propose the following strategies to stop

the computations. We make computations for decreasing λ’s, starting from
a certain initial value (usually λ = 1).

1. Climbing approach. Stop the computation at the point, where the
value of a function ϕ(λ) has become C times larger than its current
minimum value. Take α at which the function has this minimum value
as the regularization parameter. Suitable values of C for functions
that we used are around 4 in Tikhonov method, 20–50 in Landweber
method, 10–20 in CGLS, and 100 in CGME.
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2. First local minimum. Stop the computation at the first local minimum
of ϕ(λ). In some functions ϕ(α), for example, in functions used
in rule R2 or in quasioptimality criterion, the first local minimizer is
too large, in this case often the first local minimum of the function
ϕ(α)αc with c ≈ 1/3 suits.

The climbing approach may also be used in TSVD method but here we
preferred an alternative approach, stopping the computations at some fixed
n = M with M ≤ N.

In [31] we present theoretical and numerical arguments in favor of the
approach that several heuristic rules can be viewed and new rules be for-
mulated as partners of order optimal rules. Namely, many previously con-
sidered rules choose the regularization parameter in methods (2.3) from
condition d(λ) ≈ δ. Under assumption x − x∗ = (A∗A)p/2w, ‖w‖ = ω

(and maybe, for example in case of rule R2 [80], under certain additional
assumptions) the inequalities

‖xλ − x∗‖ ≤ const (λp/2ω+ λ−1/2δ),
d(λ)√
λ
≤ const (λp/2ω+ λ−1/2δ)

(3.12)
hold true for 0 ≤ p ≤ 2p0 (except in discrepancy principle, for which
0 ≤ p ≤ 2p0 − 1). The same estimates for ‖xλ − x∗‖ and d(λ)/

√
λ mo-

tivate the following heuristic parameter choice rule. Let ϕ(λ) = d(λ)/
√
λ.

Choose the regularization parameter λ as the minimizer of the function
ϕ(λ). Thus, if in case of known δ a rule chooses the regularization param-
eter λ as the solution of the equation d(λ) = δ, then in case of unknown
δ the parameter λ that minimizes the function d(λ)/

√
λ may be a reason-

able choice. This approach was used already in [42], where on base of the
modified discrepancy principle (order optimal rule), the Hanke-Raus rule
(heuristic rule) was derived.

The estimates (3.12) are minimized by λ = (δ/ω)2/(p+1). It has been
proved in [31] (see Theorem 17) that under assumption (2.2) the approxi-
mate solution xλ in considered methods satisfies the error estimate

‖xλ − x∗‖ ≤ const

(
1+ ‖y −y∗‖

ϕ(λ0)
√
λ

)
ω1/(p+1)∆p/(p+1)

λ , (3.13)

where ∆λ = max{d(λ), C‖y − y∗‖}, ϕ(λ) = d(λ)/
√
λ with d(λ) from rules

D, MD, ME, R1, R2, and λ0 = (‖y − y∗‖/ω)2/(p+1). To minimize this error

estimate, d(λ)/λ
p+1
2p should be minimized in region d(λ) ≤ const‖y −y∗‖;

for large p the function to be minimized is close to ϕ(λ).
Also, if λ is the global minimizer of ϕ(λ), then a part of the error esti-

mate (3.13) can be further estimated as

‖y −y∗‖
ϕ(λ0)

√
λ
= ϕ(λ)

ϕ(λ0)

‖y −y∗‖
d(λ)

≤ ‖y −y∗‖
d(λ)

.

Therefore, for the global minimizer of ϕ(λ) the error estimate (3.13) is of
optimal order, if d(λ) is of the same order as ‖y − y∗‖. In practice often
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Figure 1. Typical behavior of functions ϕQ(α) and ϕHR(α) in Tikhonov method.

0

‖xα − x∗‖

ϕQ(α)

ϕHR(α)

α

the function d(λ) of an order optimal rule d(λ) ≈ δ stays near the level
δ ≈ ‖y − y∗‖ after reaching this level.

On the other hand, if in error estimate (3.13) the inequality d(λ) ≥ ‖y −
y∗‖ holds, then this estimate is of order d(λ)p/(p+1), which usually does
not cause problems, since d(λ) is a function that decreases to the level δ.
But if d(λ)≪ ‖y − y∗‖, then the error may be very large.

These arguments can also be applied to self-adjoint case, where we use
the function ϕ(λ) = d(λ)/λ.

For CGLS in [42] on base of estimates [68]

‖xn − x∗‖ ≤ const (̺
−p/2
n ω+ ̺1/2

n δ), ‖rn‖ ≤ const (̺
−p/2−1/2
n ω+ δ)

the stopping index argmin{max{1, ̺n}1/2‖rn‖} was proposed.
If two functions have different behaviors, then we can combine them to

make use of desirable properties of both functions to choose the regular-
ization parameter. For example, in (iterated) Tikhonov method the values
of functions ϕQ(α) and ϕR2(α) are sometimes very small, if α is small,
so the global minimum lies at too small α; on the other hand, the values
of functions ϕHR(α) and ϕBRS(α) are much larger at small α, though the
global minimizers of these function tend to be larger than the optimal α.
Typical behavior of the functions ϕQ(α) and ϕHR(α) in Tikhonov method
is illustrated by Figure 1. In rule QHR we choose the regularization pa-
rameter as the local minimum of ϕQ(α)κ(α) for which ϕHR(α) is minimal.
In rule HR2 we combine the functions ϕHR(α) and ϕR2(α) in such way
that in the region, where ϕR2(α) and ϕHR(α) have similar values, the func-
tionϕR2(α) dominates, and in region, whereϕR2(α) is significantly smaller
than ϕHR(α), the function ϕHR(α) dominates. More precisely, the regular-
ization parameter α = αHR2 is found as the global argmin of

ϕHR2,τ(α) = ϕR2(α)
(ϕR2(α)/ϕHR(α))

τ
ϕHR(α)

1−(ϕR2(α)/ϕHR(α))
τ
.
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In numerical tests the rule with this function gives good results but the
best results with this approach were obtained with the function ϕBR2,τ(α),
which is similar to ϕHR2,τ(α), except that it uses the function ϕBRS(α) in-
stead of ϕHR(α).

These functions can also be used to choose the regularization parameter
as a certain local minimizer of some other functions as in rules QHR2 and
QHR2 (see Chapter IV).

Choosing the proper local minimizer in Tikhonov method can be assisted
by the error estimate ‖xλ − x∗‖ ≤ (1+W(λ)) inf

λ>0
‖x̂λ − x∗‖, where

W(λ) = sup
λ1≤µ≤λ2

µ‖xλ − xµ‖
γ‖A∗B2

ξµrµ‖
and x̂λ is found by (2.3) with ŷ instead of y , where ŷ is an arbitrary element
satisfying ‖Qη(ŷ − y∗)‖ = ‖Qη(y − y∗)‖ and (QηA(x − x∗), ŷ − y∗) ≥ 0
(0 ≤ η ≤ ‖A∗A‖),Qη is the spectral family of the operatorAA∗, and [λ1, λ2]

is the interval containing the global minimizer of the function f(λ) = ‖x̂λ−
x∗‖ (see Theorem 18, also for values of ξ).

For Lavrentiev method an analog of W(λ) is

W(λ) = sup
λ1≤µ≤λ2

µ‖xλ − xµ‖
γ‖Bµrµ‖

,

for CGLS the function

W(n) = sup
m∈M

‖xm − xn‖
̺n+1‖rn‖

may be used, where M is either {1,2, . . . , nmax} or a subset of this set (for
computational reasons), for example M containing points 1, 2, . . . , 10 and
differences of other points form an arithmetic progression. Using this func-
tion could improve results in CGLS (Rule HRmWC in Chapter IV).

In TSVD method the function ϕQ(n) = ‖xn − xn+1‖ to be minimized
in quasioptimality criterion, is oscillating in some problems and then only
maximums of this function are near to the error of the approximate solu-

tion. We modified this function to ϕQa(n) =
( n+2∑

i=n−2

‖xn−xi‖2
)1/2

. The last

function does not oscillate but sometimes it is smaller than both ϕQ(n)

and the error. Therefore, instead of ϕQa(n) we minimized the maximum of
ϕQ(n) and ϕQa(n).

In Landweber method, in TSVD, and in CGLS the Hanke-Raus rule min-
imizes the functions

√
n‖rn‖, ‖rn‖/σn+1 and ̺n+1‖rn‖, respectively. In

these methods the Hanke-Raus rule tends to choose too small stopping
index. With this reason, we modified the Hanke-Raus rule, subtracting
the discrepancy at a later iteration step from the discrepancy at step n,
so in Landweber method we minimized

√
n(‖rn‖ − ‖r2n+100‖), in TSVD

(‖rn‖ − ‖r1.5n+8‖)/σn+1, and in CGLS ̺n+1(‖rn‖ − ‖r2n+10‖). In TSVD the
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value of ‖r1.5n+8‖ for odd n was found as
√
‖r1.5n+7.5‖‖r1.5n+8.5‖. Analo-

gous modifications were applied to BRS rule, which also tends to choose too
small stopping index. These ideas can be useful in other functions as well,
for example we modified the function ϕQN(n) = ‖xn − x2n‖ in Landweber
method to ϕQNm(n) = ‖xn − x2n+100‖.

Besides minimization of some function one may use the observation that
several monotone functions attain a certain level (“plateau”) around the op-
timal stopping index λ∗ and after that do not change much. This approach
gave good results in conjugate gradient type methods. Examples of such
functions are

( n∑

i=0

‖xi‖−2)−1/2
, dDH(n) =

( n∑

i=0

‖ri‖−2)−1/2
,

(n−1∑

i=0

‖ri−ri+1‖−2)−1/2
,

which are monotonically decreasing even if ‖xn‖ (in CGLS) and ‖rn‖ (in
CGME) may not be. In rule DHP, used in CGME, we choose the stopping
index nDHP as the first n for which the function dDH(n) decreases in next
10 steps by no more than 1.5 times.

3.3. Parameter choice rules for approximate noise level

Up to now we have considered cases, where the exact upper bound of the
noise level is given or no information about the noise level is known at all.
In some situations the noise level may be known approximately: instead of
‖y − y∗‖ ≤ δ it holds ‖y − y∗‖/δ ≤ const as δ → 0. Here the constant
on the right hand side may be greater than 1, so the actual noise level may
be underestimated. In this case usual rules for choosing the regularization
parameter lead to divergence of approximate solutions.

The first rules (analogs of R1, where the largest λ is taken as the regu-
larization parameter, instead of the smallest) for choice of the regulariza-
tion parameter λ, guaranteeing xλ → x∗ as δ → 0 under assumption that
‖y − y∗‖/δ remains bounded, were proposed in [75, 76]. The same con-
vergence is valid also for the analog of the balancing principle, proposed
in [34] (see the end of the Section 3.1.6).

The rules of [75, 76] guarantee convergence but better error estimates
can be obtained, adding the second step. The corresponding rule was pro-
posed in [33].

We now formulate a rule for many methods that minimizes a certain
function in interval [λ, λ], where the lower endpoint λ is found from an-
other parameter choice rule that uses the supposed noise level δ. These
rules use two-step strategy: 1) using approximate noise level δ, find λ; 2)
minimize certain function in [λ, λ]. We denote this rule by DM, where D
refers to δ and M refers to minimization.

Rule DM for Tikhonov method finds the parameter α = αDM according
to the following two-step strategy. 1) Find α as the maximal solution of
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dR1,1/2(α) = c1δ. 2) Find α = αDM as the minimizer of ϕR2(α)α
c2 on [α,1].

This rule can be generalized to extrapolated Tikhonov approximation
with fixed number m of terms and with parameters αn = qnα (q fixed;
n = 1, . . . , m). To this end replace dR1,1/2(α) by deR1,1/2(α) in 1) and
ϕR2(α) by ϕeR2(α) in 2).

For ordinary (m = 1) and extrapolated (m> 1) Tikhonov approximation
xα the choice of α from the rule DM guarantees convergence ‖xα−x∗‖ → 0,
as δ → 0, if lim‖y − y∗‖/δ ≤ C. In case of source-like solutions (2.2) the
error estimate (3.1) holds with p ≤ 2m, if c1 is large enough (theoretical
bound 0.24).

Practical values of constants c1, c2 can be determined by computation
and they are much smaller: we found that c1 = 0.001 . . .0.02 and c2 =
0.03 . . .0.14 give the smallest error.

Rule DM form-iterated Tikhonov method (m> 1). Find α as the maximal
solution of dR1,1/2(α) = c1δ with c1 = (m + 1)m+1/mm. 2) Fix c2 ∈ (0,1),
q ∈ (0,1) and find αDM as the minimizer of ϕQq(α)κ(α)

1/(2m)/αc2/2 in
[α,0.4m + 0.6]. If the equation in 1) has no solutions, then let α be the
largest local minimum of dR1,1/2(α).

Rule DM for m-iterated Lavrentiev method (m ≥ 1). 1) Find α as the
minimal solution of (rα,1,Arα,2)/

√
α = c1δ. 2) Fix c2 ∈ (0,1), q ∈ (0,1) and

find α = αDM as the minimizer of ϕQq(α)κ(α)
0.005αc2 on [α,m]. We used

c1 = 2.5 · 10−6, c2 = 0.25.
Rule DM for Landweber method. 1) Find N as the first n ≥ 1, for which√
n‖A∗rn‖ ≤ c1δ with c1 = 1/

√
2µe. 2) Fix c2 ∈ [0,1/2] and choose n =

nDM as the minimizer of nc2‖rn‖ on [1, N]. In self-adjoint problems the rule
DM is as follows. 1) Find N as the first n ≥ 1 for which

√
n(Arn, rn) ≤ c1δ

with c1 = 1/
√

2µe. 2) Fix c2 ∈ [0,1] and choose n = nDM as the minimizer
of nc2‖rn‖ on [1, N].

Rule DM for CGLS. 1) Find N as the firstn for which
√
̺n+1 ‖A∗rn‖ ≤ c1δ.

2) Fix c2 ∈ (0,1/2) and find n = nDM as the minimizer of ̺
c2
n+1(‖rn‖ −

‖r2n+1‖) on [1, N] (we suggest c1 = 0.25, c2 = 0.4).

3.4. Theoretical results

Here we review some theoretical results concerning the choice of the regu-
larization parameter λ in methods of the forms (2.3) and (2.9). Theorems 1–
10 are known results, Theorems 11–18 are proved in our papers; for longer
proofs we refer to corresponding papers.

From (2.4), (2.6) follows the error estimate ‖xλ − x∗‖ ≤ Ψ(λ) with

Ψ(λ) =



‖Kλ(A∗A)(x − x∗)‖ + γ∗δ/λ1/2 for method (2.3),

‖Kλ(A)(x − x∗)‖ + γδ/λ for method (2.9).

In this estimate the first term dominates for large λ and the second term
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for small λ. The quality of a parameter choice rule can be characterized by
the following quasioptimality property.

Definition 1. [78] A rule R for a posteriori choice of the regularization pa-

rameter λ = λR is called quasioptimal (or weakly quasioptimal) if there exists

a constant C (which does not depend on A, x∗, y) such that for each y ∈ Y ,

‖y −y∗‖ ≤ δ there holds the error estimate

‖xλR − x∗‖ ≤ C inf
λ≥0

Ψ(λ)+O(δ). (3.14)

The error estimate (3.14) is satisfied, if the following stronger error esti-
mate holds:

‖xλR − x∗‖ ≤ C′ inf
λ≥0

Ψ(λ). (3.15)

Theorem 1. [78] Let y ∈ R(A), ‖y − y∗‖ ≤ δ. Let the generating function

gλ(t) in approximation (2.3) satisfy the conditions (2.5) with p0 = ∞, γ0 = 1,

(2.6), and sup
0≤λ≤‖A∗A‖

tgλ(t) ≤ 1 with lim
λ→0

tgλ(t) = 1 (0 ≤ t ≤ ‖A∗A‖). Assume

further that the function λ→ gλ(t) is continuous, nonnegative and monoton-

ically increasing, the function λ → gλ(t)/λ is monotonically decreasing and
d

dλ
gλ(t) ≤ γγ̂(1− tgλ(t)), γ̂ = const (0 ≤ t ≤ ‖A∗A‖, λ ≥ 0). Then the rule

D in method (2.3) is quasioptimal. If the generating function gλ(t) in ap-

proximation (2.9) satisfies the self-adjoint analogs of above conditions (with

(2.4) instead of (2.6) and A instead of A∗A), then the rule D in method (2.9)
is quasioptimal.

Theorem 2. [78] Let y ∈ R(A), ‖y − y∗‖ ≤ δ. Let the generating func-

tion gλ(t) in approximation (2.3) satisfy the conditions (2.5) with γ0 = 1,

(2.6). Assume further that the function λ→ gλ(t) is continuous, nonnegative

and monotonically increasing, and satisfies the conditions lim
λ→0

tgλ(t) = 1,
d

dλ
gλ(t) ≤ γγ̂βλ(t)(1− tgλ(t)), γ̂ = const, where βλ(t) = (1 − tgλ(t))1/p0

for methods with p0 < ∞ and βλ(t) = 1 for methods with p0 = ∞, and

sup
0≤t≤‖A∗A‖

(tβλ1(t))
p(1− tgλ1(t))(1− tgλ2(t))

−1 ≤ γ̃p−1
p (λ−1

1 − λ−1
2 )−p, 0 <

λ1 < λ2, p ≥ 0, where γ̃sp = (γp/τ(s))τ(s), τ(s) = 1 + (s + 1)/p0 for meth-

ods with p0 < ∞, τ(s) = 1 for methods with p0 = ∞ (0 ≤ t ≤ ‖A∗A‖,

λ ≥ 0). Then the rules MD, ME, R1, B1, B2 in method (2.3) are quasiopti-

mal. If the generating function gλ(t) in approximation (2.9) satisfies the self-

adjoint analogs of above conditions (with (2.4) instead of (2.6) and A instead

of A∗A), then the rules MD, ME, R1, B1, B2 in method (2.9) are quasioptimal.

The following four theorems give the convergence results and error esti-
mates for a priori parameter choice and for rules D, MD, ME, R1, R2.

Theorem 3. [74,76,84,88,89] Let y ∈ R(A), ‖y−y∗‖ ≤ δ. If in approxima-

tion (2.3) the regularization parameter λ = λ(δ) is chosen by a priori rule

λ ∼ δ
2
p+1 , then ‖xλ(δ) − x∗‖ → 0 as δ → 0 and for source-like solutions (2.2)

the error estimate (3.1) holds with p ≤ 2p0. If in approximation (2.3) the
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regularization parameter λ = λ(δ) is chosen by one of rules D, MD, ME, R1,

then ‖xλ(δ) − x∗‖ → 0 as δ → 0 and for source-like solutions (2.2) the error

estimate (3.1) holds true with p ≤ 2p0 − 1 in case of rule D or with p ≤ 2p0

in case of rules MD, ME, R1.

Theorem 4. [73, 75, 87–89] Let y ∈ R(A), ‖y − y∗‖ ≤ δ. If in approxima-

tion (2.9) the regularization parameter λ = λ(δ) is chosen by a priori rule

λ ∼ δ
1
p+1 , then ‖xλ(δ) − x∗‖ → 0 as δ → 0 and for source-like solutions (2.2)

the error estimate (3.1) holds with p ≤ p0. If in approximation (2.9) the reg-

ularization parameter λ = λ(δ) is chosen by one of rules D (with assumption

p0 > 1), MD, R1, then ‖xλ(δ)−x∗‖ → 0 as δ → 0 and for source-like solutions

(2.2) the error estimate (3.1) holds true with p ≤ p0 − 1 in case of rule D or

with p ≤ p0 in case of rules MD, R1.

Theorem 5. [80] Let Qy ∈ R(A), ‖y − y∗‖ ≤ δ. If the regularization

parameter α = α(δ) inm-iterated Tikhonov method is chosen as the smallest

solution of the equation dR2(α) = Cδ with C > 1, then ‖xα(δ) − x∗‖ → 0 as

δ → 0 and for source-like solutions (2.2) the error estimate (3.1) holds true

with p ≤ 2m− 1.

Theorem 6. [80] Let Qy ∈ R(A), ‖y − y∗‖ ≤ δ. If the regularization

parameter α = α(δ) in m-iterated Tikhonov method is the unique solution

of equation dR2(α) = Cδ with C > 2 and the inequality
∥∥|A∗|B3+2m

α r
∥∥ ≥∥∥|A∗|B3+2m

α (y−y∗)
∥∥ is valid for all α ≥ α(δ), then the error estimate (3.15)

holds true with C′ = 2
√
m(C + γ̃1/2,2m+1)+max

( m

C/2− 1
,
C/2− 1

m

)1/2
.

Next three theorems concern the balancing principle (Section 3.1.6). The
first two of them show that the two forms (3.9), (3.10) of the balancing
principle are quasioptimal, the third establishes a monotonous dependence
of error on the constant c in these two variants of balancing principle.

Theorem 7. [34, 79] Let Qy ∈ R(A), ‖y − y∗‖ ≤ δ. If the regularization

parameter α = α(δ) is chosen according to the balancing principle (3.9) with

c > (1 − q)γγ̃1/2/(γ∗
√
q), then for methods (2.11), (2.18), (2.20), (2.21) the

error estimate (3.15) holds true.

Theorem 8. [34,79] Let y ∈ R(A), ‖y − y∗‖ ≤ δ. If the regularization pa-

rameter α = α(δ) is chosen according to the balancing principle (3.10) with

c > γγ
1/2
1 /γ∗, then for methods (2.11), (2.18), (2.20), (2.21) the quasioptimal

error estimate (3.15) holds true.

Theorem 9. [34] Let y ∈ R(A), ‖y − y∗‖ ≤ δ. If the regularization param-

eter α = α(c) in m-iterated Tikhonov method is chosen from the condition

(3.9) with c > (q−m −1) or from the condition (3.10) with c > (q−m − 1)(1−
qi+1−j)(1 − q)−1 then the error ‖xα(c) − x∗‖ is a monotonically increasing

function of parameter c; particularly ‖xα(c) − x∗‖ > ‖xαME − x∗‖.

For approximately given noise level we can say the following.

Theorem 10. [32, 33] Let y ∈ R(A). Consider choice of the regularization

parameter λ = λ(δ) according to the following rule.
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Rule P. Let s ∈ (0,1). Let σ = 2 for approximation (2.3) and

σ = 1 for approximation (2.9). If dR1,1/2(1) ≤ Cδ, then choose

λ(δ) = 1. Otherwise choose λ(δ) as the global minimizer of the

function f(λ) = λ−s/σ‖Bλrλ‖ on the interval [λR1,1/2,1].

If ‖y − y∗‖/δ ≤ const as δ → 0, then in methods (2.11), (2.18), (2.20), (2.21)
and in self-adjoint variants of these methods the rule P guarantees conver-

gence ‖xλ(δ) − x∗‖ → 0 as δ → 0 and for approximations (2.3), (2.9) the

following error estimates hold true. 1) If ‖y − y∗‖ ≤ max{δ,δ0}, where

δ0 =
1

2
‖Bλ(δ)rλ(δ)‖, then (3.15) holds with C′ = 1/(1−σs). 2) If max(δ, δ0) <

‖y −y∗‖ ≤
1

2
‖B1r1‖, then (3.15) holds with C′ = const(‖y −y∗‖/δ0)

1/(σs).

The proofs of the following Theorems 11–19 can be found in our papers.
Next Theorem 11 shows that the rule MEa (Section 3.1.3) for Lavrentiev

method is quasioptimal.

Theorem 11. [35] Let y ∈ R(A), ‖y − y∗‖ ≤ δ. If the regularization pa-

rameter α = α(δ) in m-iterated Lavrentiev method is chosen by Rule MEa

with C > 2 and the inequality ‖Bm+2
α r‖ ≥ ‖Bm+2

α (y − y∗)‖ is satisfied for

all α ≥ α(δ), then the quasioptimal error estimate (3.15) holds true with

C′ = C + 1+max
( m

C/2− 1
,
C/2− 1

m

)1/2
.

The following three theorems concern parameter choice in extrapolated
Tikhonov and extrapolated Lavrentiev approximations.

Theorem 12. [28, 30] Let y ∈ R(A), ‖y − y∗‖ ≤ δ. Let m be fixed and let

αn = qnα with qn fixed (n = 1, . . . , m, m + 1). Let xα = xα1,...,αm be an

extrapolated Tikhonov approximation or an extrapolated Lavrentiev approx-

imation. Then the functions dD(α), deMD(α) are monotonically decreasing.

Let C > 1. If α is chosen from the discrepancy principle dD(α) = Cδ, then

‖xα − x∗‖ → 0 as δ → 0 and for source-like solutions (2.2) the error esti-

mate (3.1) holds true with p ≤ 2m−1 in extrapolated Tikhonov method and

with p ≤ m − 1 in extrapolated Lavrentiev method. If α is chosen from the

modified discrepancy principle deMD(α) = Cδ, then ‖xα − x∗‖ → 0 as δ → 0
and for source-like solutions (2.2) the error estimate (3.1) holds true with

p ≤ 2m in extrapolated Tikhonov method and with p ≤ m in extrapolated

Lavrentiev method.

Theorem 13. [28] Let y ∈ R(A), ‖y − y∗‖ ≤ δ. Let the sequence α1 ≥
α2 ≥ . . . be given and let xn = xα1,...,αn be an extrapolated Tikhonov ap-

proximation. Then the functions dD(n), dME(n) are monotonically decreas-

ing and dD(n + 1) < dME(n) < dD(n) for all n. Let nD, nME be the first

numbers with dD(n) ≤ Cδ, dME(n) ≤ Cδ respectively, with C > 1. Then

nD − 1 ≤ nME ≤ nD and ‖xn − x∗‖ < ‖xn−1 − x∗‖ (n = 1, 2, . . . , nME). If

a monotonically decreasing infinite sequence α1, α2, . . . satisfies conditions
∞∑

i=1

α−1
i = ∞, α−1

n ≤ const

n−1∑

i=1

α−1
i , then the existence of finite nD and nME is
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guaranteed and for n ∈ {nD, nME} ‖xn − x∗‖ → 0 as δ → 0; for source-like

solutions (2.2) also the error estimate (3.1) holds true for all p > 0.

Theorem 14. [28,30] Let y ∈ R(A), ‖y−y∗‖ ≤ δ. Letm,Mn be fixed and let

αn = qnα with fixed qn (n = 1, . . . , m). Let xα = xα1,...,α1︸ ︷︷ ︸
M1

,α2,...,α2︸ ︷︷ ︸
M2

,...,αm,...,αm︸ ︷︷ ︸
Mm

be an extrapolated Tikhonov approximation or an extrapolated Lavrentiev

approximation. If the regularization parameter α = α(δ) is chosen by the

discrepancy principle dD(α) = Cδ with C > 1, then ‖xα − x∗‖ → 0 as δ → 0
and for source-like solutions (2.2) the error estimate (3.1) holds true with

p ≤ 2(M1 +M2 + . . . +Mn) − 1 in extrapolated Tikhonov method and with

p ≤ M1 +M2 + . . .+Mn − 1 in extrapolated Lavrentiev method.

Next two theorems deal with the approach, where in rules MD and ME the
discrepancy of additionally iterated approximation is replaced by a proper
linear combination (cf. rules eMD and eME in Sections 3.1.2, 3.1.3, respec-
tively).

Theorem 15. [28] Let y ∈ R(A), ‖y − y∗‖ ≤ δ. Let xm;α and xm;qα be

approximations found bym-iterated Tikhonov method (by Tikhonov method,

if m = 1) and let

vm;α = (1− q−m)−1
xm;α + (1− qm)−1

xm;qα. (3.16)

Denote sm;α = Avm;α−y . If the regularization parameter α = α(δ) is chosen

by rules (rm;α, sm;α)
1/2 = Cδ with C > 1 or (rm;α, sm;α)/‖sm;α‖ = Cδ with

C > (q−m−1)/(m(1−q)), then ‖xm;α−x∗‖ → 0 as δ→ 0 and for source-like

solutions (2.2) the error estimate (3.1) holds true with p ≤ 2m.

Theorem 16. [28] Let y ∈ R(A), ‖y − y∗‖ ≤ δ. Let xm;α and xm;qα

be approximations found by m-iterated Lavrentiev method (by Lavrentiev

method, if m = 1) and let vm;α be their linear combination (3.16). Denote

sm;α = Avm;α − y . If the regularization parameter α = α(δ) is chosen by

the rule ‖sm;α‖ = Cδ with C > 1, then ‖xm;α − x∗‖ → 0 as δ → 0 and for

source-like solutions (2.2) the error estimate (3.1) holds true with p ≤m.

For theoretical justification of the minimization strategy (Section 3.2.2)
the following results can be used.

Theorem 17. [31] Let y ∈ R(A). Let the function gλ(t) in method (2.3) be

continuous, non-negative and monotonically increasing for each t ≥ 0 and

satisfy conditions (2.5), (2.6) and
d

dλ
gλ(t) ≤ γγ̂βλ(t)(1− tgλ(t)), γ̂ = const,

where βλ(t) = (1 − tgλ(t))1/p0 for methods with p0 < ∞ and βλ(t) = 1 for

methods with p0 = ∞ (0 ≤ t ≤ ‖A∗A‖, λ ≥ 0). Then for source-like solutions

x∗ = x + (A∗A)p/2w, ‖w‖ =ω the error estimate

‖xλ−x∗‖≤c
(
1+ ‖y −y∗‖

ϕ(λ0)
√
λ

)
ω1/(p+1)∆p/(p+1)

λ , ∆λ=max{d(λ), C‖y−y∗‖}

holds for all λ > 0, where ϕ(λ) = d(λ)/
√
λ, λ0 = (‖y − y∗‖/ω)2/(p+1) and

0 < p ≤ 2p0 − 1 in case d(λ) = dD(λ) or d(λ) = dME(λ) or d(λ) = dR2(λ),
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and 0 < p ≤ 2p0 in case d(λ) = dMD(λ) or d(λ) = dR1,k(λ), and C = 1 for

rules D, MD, ME, C = γ̃0
1/2 for rule R2, C = γ̃k−1/2

k for rule R1,k.

Theorem 18. [31] Let y ∈ R(A). Let x̂λ be an approximate solution of

Ax = ŷ , found by m-iterated Tikhonov method, where ŷ is an element for

which ‖Qµ(ŷ − y0)‖ = ‖Qµ(y −y0)‖, (QµA(x − x∗), ŷ −y0) ≥ 0 (0 ≤ µ ≤
‖A∗A‖),Qµ is the spectral family of operator AA∗. If the global minimizer of

the function f(λ) = ‖x̂λ−x∗‖ lies in the interval [λ1, λ2], then ‖xλ−x∗‖ ≤
(1+W(λ)) inf

λ>0
‖x̂λ − x∗‖, where

W(λ) = sup
λ1≤µ≤λ2

µ‖xλ − xµ‖
γ‖A∗B2

ξµrµ‖
,

ξ = 1 for m = 1, ξ = (1+ (m/(m+ 1))m+1)−1 for m ≥ 2.

The proofs of the following two theorems are short and we present these
proofs.

Theorem 19. [36] Let y ∈ R(A), ‖y − y∗‖ ≤ δ. If dME(n) ≥ δ in iterative

regularization methods of the form (3.3), then ‖xn+1 − x∗‖ ≤ ‖xn − x∗‖.

Proof.

‖xn − x∗‖2 − ‖xn+1 − x∗‖2

= (xn + xn+1 − 2x∗, xn − xn+1) = (xn + xn+1 − 2x∗,A∗zn)

= (Axn +Axn+1 − 2Ax∗, zn) = (rn + rn+1 + 2(y − y∗), zn)
≥ (rn + rn+1, zn)− 2‖y −y∗‖‖zn‖ ≥ (rn + rn+1, zn)− 2δ‖zn‖

Therefore, if dME(n) ≥ δ, then ‖xn − x∗‖ ≥ ‖xn+1 − x∗‖.

Theorem 20. [84] Let y ∈ R(A), ‖y −y∗‖ ≤ δ. If dME(α) ≥ δ in continuous

regularization methods of the form (2.3), then the function e(α) = ‖xα−x∗‖
is increasing at α.

Proof.

d

dα
‖xα − x∗‖2 = 2(xα − x∗,

d

dα
xα)

= 2(xα − x∗,−
d

dα
gα(A

∗A)A∗r) = 2(xα − x∗,−A∗
d

dα
gα(AA

∗)r)

= 2(Axα −Ax∗,−
d

dα
gα(AA

∗)r) = 2(rα + y − y∗,−
d

dα
gα(AA

∗)r)

≥ 2
[
(rα,−

d

dα
gα(AA

∗)r)− ‖y −y∗‖‖
d

dα
gα(AA

∗)r‖
]

≥ 2
[
(rα,−

d

dα
gα(AA

∗)r)− δ‖ d

dα
gα(AA

∗)r‖
]
.

Hence, if dME(α) ≥ δ, then
d

dα
‖xα − x∗‖ ≥ 0.
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IV. NUMERICAL RESULTS

4.1. Test problems, noise generation, and general remarks

Numerical computations, the results of which we present here, are made
with parametrized test problems that allow to form the matrix, exact so-
lution vector, and corresponding right hand side of prescribed dimension.
Most tests are performed with the set of test problems by Hansen [43, 45,
46], which is becoming a de facto standard in studying numerics of ill-posed
problems. Table 1 describes the problems used in experiments, showing the
problems’ names, descriptions and condition numbers at discretization pa-
rameter 100. Other parameters, if existent, had default values that can be
considered being appropriate for ill-posed problems.

We have made an attempt to computationally estimate the smoothness
parameter p in (2.2) for default solutions of these problems. For this we
solved the problems 100 times at every noise level 10−1, 10−1.01, . . . , 10−6,
using discretization parameter 1000: these values should as much as possi-
ble minimize distortive effects caused by discretization and particular noise
vectors. At each noise level δ we computed the average over all noise vec-
tors of errors of approximate solutions found by Tikhonov method with
monotone error rule and by Landweber method with discrepancy princi-
ple. Assuming that the error e(δ) is of the form e(δ) ≈ cδp/(p+1) with c
constant, we calculated the best p by method of least squares (taking log-
arithms of both sides before). In Table 1 these results are in the column
Est p. The column Maxerr shows maximal relative errors of cδp/(p+1) with
respect to e(δ). It turned out in calculations that perturbations in e(δ),
compared to the function cδp/(p+1) were quite large even for such small δ
as 10−6. This shows that theoretical convergence results about rules should
be used with caution at least in region δ ∈ [10−6,10−1].

In addition, we used some more or less artificial test problems from
[13], whose matrices are described in Table 2. As in [13], we combined
these matrices with 6 solution vectors of Table 3. In the following, the
cases, where some other set of test problems (except Hansen’s) was used,
are specially noted.

The discretization parameter (number of rows/columns of resulting ma-
trix) is typically 100. On one hand, this value is large enough to reveal
the characteristic properties of problems, methods and rules; on the other
hand it is small enough, so that the computer could generate sufficiently
large amount of data to make various comparisons. We have also experi-
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Table 1. Hansen’s test problems [43,45,46] used in numerical tests, together with
smoothness estimations of default solutions.

Nr Problem cond100 selfadj Est p Maxerr Description

1 baart 5e+17 no 0.17 20% (Artificial) Fredholm integral equation of

the first kind
2 deriv2 1e+4 yes 0.20 1% Computation of the second derivative
3 foxgood 1e+19 yes 0.63 25% A problem that does not satisfy the dis-

crete Picard condition
4 gravity 3e+19 yes 0.51 4% A gravity surveying problem
5 heat 2e+38 no 0.52 32% Inverse heat equation

6 ilaplace 9e+32 no 0.04 6% Inverse Laplace transform
7 phillips 2e+6 yes 0.69 21% An example problem by Phillips
8 shaw 5e+18 yes 0.22 31% An image reconstruction problem

9 spikes 3e+19 no 0.00 1% Test problem whose solution is a pulse
train of spikes

10 wing 1e+20 no 0.06 11% Fredholm integral equation with discon-

tinuous solution

Table 2. Test problems from [13].

Nr Problem cond100 selfadj Description

11 gauss 6e+18 yes Test problem with Gauss matrix aij =
√
π

2σ
e
− σ

2(i−j)2

with σ = 0.01

12 hilbert 4e+19 yes Test problem with Hilbert matrix aij =
1

i+ j − 1
13 lotkin 2e+21 no Test problem with Lotkin matrix (same as Hilbert ma-

trix, except a1j = 1)
14 moler 2e+4 yes Test problem with Moler matrix A = BTB, where bii =

1, bi,i+1 = 1, and bij = 0 otherwise

15 pascal 1e+60 yes Test problem with Pascal matrix aij =
(
i+ j − 2

i− 1

)

16 prolate 1e+17 yes Test problem with a symmetric, ill-conditioned Toe-
plitz matrix

Table 3. Solution vectors for test problems of [13]. Here N is discretization
parameter of the problem (usually 100) and i = 1, . . . , N.

Description xi Description xi

constant 1 sinusoidal sin
2π(i− 1)

N

linear
i

N
linear+sinusoidal

i

N
+ 1

4
sin

2π(i− 1)

N

quadratic

(
i−

⌊
N
2

⌋

⌈
N
2

⌉
)2

step function





0, if i ≤
⌊
N

2

⌋

1, if i >

⌊
N

2

⌋
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mented with other values of the discretization parameter but for example
the results with parameter 1000 were quite similar to the results with pa-
rameter 100.

Since the performance of methods and rules generally depends on the
smoothness p of exact solution in (2.2), we complemented the standard
solutions x∗ of (now discrete) test problems with smoothened solutions
|A|px∗ with p = 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 4, 8. In the following ta-
bles p always means this additional smoothness and is not related to initial
smoothness in Table 1. The right hand side of the equation was computed
as y∗ = A|A|px∗. After discretization all problems were scaled (normal-
ized) in such way that the Euclidian norms of the operator and right-hand
side were 1.

On base of exact data y∗ we formed the noisy data y , where ‖y−y∗‖ =
δ for δ = 0.5, 10−1, . . . , 10−6. In most cases the noise y − y∗ added to y∗
had uniform distribution (we preferred this to normal distribution since it is
more consistent with the usual assumption ‖y −y∗‖ ≤ δ made in studying
ill-posed problems). Besides this we used correlated noise, where the com-
ponents of noise vector had nonzero correlation. The amount of correla-
tion was determined by randomly choosing the parameter ω ∈ [−0.5,0.5],
where ω = 0 corresponds to white noise, ω = −0.5 corresponds to noise,
which has dominantly high frequencies in frequency domain (blue noise),
and ω = 0.5 corresponds to noise with dominantly lower frequencies (red
noise). If correlated noise was used, it is mentioned in heading of the cor-
responding table.

To enlarge the common base of comparisons, we generated 10 noise vec-
tors and saved them beforehand, so that at different runs the same 10 noise
vectors were used in all problems. Then the problems were regularized us-
ing different methods, choosing the regularization parameters by rules that
we wanted to compare. In experiments we also took into account the pos-
sibility of over- or underestimation of the noise level: although the actual
noise level was δ, we applied the rules as if the noise level was dδ, where
d ∈ [0.01,100]. Thus, if d > 1, then the noise level was overestimated.

To speed up the computations, the discrete problem of the form Ax = y
was further transformed in the following way. Using a fast-working stan-
dard function of the programming language, the singular value decompo-
sition of A was calculated as A = UÃVT , where Ã is a diagonal matrix,
U , V are orthogonal matrices and T means transposition. Then the prob-
lem UÃVTx = y was replaced by the problem Ãx̃ = ỹ with x̃ = VTx

and ỹ = UTy . This, however, brought a small decrease in computational
stability but its influence was noticeable only at very small values of the
regularization parameter (close to machine precision).

As Table 1 shows, half of Hansen’s problems are self-adjoint. Meth-
ods, which are also applicable in non-self-adjoint problems, were used in
all problems 1–10. Methods for self-adjoint problems were used only in
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problems 2, 3, 4, 7, 8 of Hansen (exception is Table 33).
Taking into account normalization of problems, the interval of regular-

ization parameters was taken to be [10−30,1] for methods of Tikhonov and
Lavrentiev, or [α,1] with α > 10−30 if numerical instabilities occurred in
the interval [10−30, α) in these methods, for example, if a theoretically pos-
itive expression turned out to be numerically negative. If in Landweber
method a parameter choice rule did not stop the iterations earlier, itera-
tions were stopped at 260. In CGLS and CGME maximal number of iterations
was 4000. This upper bound of iterations was, however, not necessary in
most problems.

In the following sections we present several rules with particular numer-
ical constants. These constants are always in some sense optimal: either
they have been optimized on data set considered here or on some larger
data set (additional problems (mainly artificial), additional δ’s, larger num-
ber of noise vectors), or they have been selected with the aim to balance the
behavior of rules between different smoothness indices (with smoothness
p = 0 having the largest weight) or different noise level ill-estimation in-
dices (with indices close to d = 1 having the largest weight). The constants
were optimized mainly for uncorrelated noise.

Since in model equations the exact solution is known, it is possible to
find the regularization parameter λ = λ∗, which gives the smallest error:
‖xλ∗ −x∗‖ = min

λ>0
{‖xλ −x∗‖}. For every rule R the error ratio ‖xλR −x∗‖/

‖xλ∗ −x∗‖ describes the performance of rule R on this particular problem.
To compare the rules or to present their properties, the following tables
show the averages of these error ratios over various parameters of data set
(problems, smoothness indices p, noise levels δ, runs). Besides averages
of error ratios we also computed root-mean-squares of error ratios for our
numerical experiments but the better-worse relationships of methods and
rules remained mostly the same.

Numerical tests were made with GNU Octave, a freeware analog of Mat-
lab, primarily intended for numerical computations.

4.2. Comparison of potential of methods

Tables 4 and 5 compare the potential of methods at noise level δ = 10−4,
showing the averages of minimal relative errors ‖xλ∗ − x∗‖/‖x∗‖ over 10
runs for p = 0 in case of uncorrelated noise and correlated noise, respec-
tively. Tables 6 and 7 contain analogous results for p = 2. The best results
for every problem are shown in bold. For other δ’s the better-worse rela-
tionships of methods remained the same. Typically the best results were
produced by methods of Landweber, TSVD, and CGLS. If p = 0, then the
results of Tikhonov method were close to the best.

Note different typical behavior of error in methods CGLS and CGME (Fig-
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Table 4. 103 times the averages of minimal relative errors in methods for δ =
10−4, p = 0. Self-adjoint variants of methods are marked with *.

Probl. Tikh *Lavr Landw *Landw TSVD CGLS CGME *CG

1 62.7 – 61.9 – 89.6 89.3 116 –

2 107 123 107 115 117 109 129 115
3 4.95 26.0 4.51 17.2 5.61 5.54 8.27 16.4
4 7.12 21.5 6.79 14.9 6.71 7.01 14.8 14.4

5 18.0 – 16.9 – 17.3 17.0 20.9 –
6 70.7 – 69.7 – 70.8 69.5 96.3 –
7 5.12 17.1 4.69 9.73 4.38 4.74 8.44 8.04

8 31.1 61.5 30.9 50.4 35.8 35.2 47.4 48.6
9 788 – 788 – 802 796 823 –

10 364 – 363 – 446 445 595 –

Table 5. 103 times the averages of minimal relative errors in methods for δ =
10−4, p = 0 (correlated noise).

Probl. Tikh *Lavr Landw *Landw TSVD CGLS CGME *CG

1 54.7 – 53.9 – 67.2 67.0 116 –

2 98.0 117 96.3 110 99.1 96.5 119 110
3 3.42 25.7 2.91 16.9 4.45 4.12 8.35 15.9
4 5.48 21.1 5.33 14.6 5.75 5.60 14.6 14.2

5 16.3 – 15.7 – 16.1 15.7 20.8 –
6 55.9 – 55.9 – 61.1 59.6 96.2 –
7 4.15 16.8 3.77 9.60 3.37 3.96 8.25 7.85

8 30.7 61.5 30.2 50.5 34.7 34.4 47.5 48.6
9 781 – 781 – 793 789 822 –

10 357 – 356 – 451 451 595 –

Figure 2. Errors of approximate solutions computed by TSVD on truncation steps
0, 1, . . . , 60, by CGLS, CGME on iteration steps 0, 1, . . . , 60 and by Landweber
method on iteration steps 20, 21, . . . , 260 in problem baart at δ = 10−4, p = 0;

TSVD, CGLS, CGME, Landweber.
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Table 6. 103 times the averages of minimal relative errors in methods for δ =
10−4, p = 2.

Probl. Tikh *Lavr Landw *Landw TSVD CGLS CGME *CG

1 0.35 – 0.12 – 0.20 0.20 0.22 –
2 0.80 13.4 0.30 1.73 0.25 0.24 0.73 1.61
3 0.30 14.0 0.04 1.51 0.08 0.08 0.19 1.00

4 0.55 13.9 0.17 1.22 0.15 0.18 0.60 1.03
5 1.19 – 0.59 – 0.40 0.55 1.13 –
6 0.51 – 0.19 – 0.17 0.19 0.59 –

7 0.71 13.6 0.12 1.13 0.07 0.09 0.22 1.26
8 0.51 14.1 0.10 1.57 0.10 0.10 0.12 1.38
9 0.48 – 0.19 – 0.25 0.24 0.91 –

10 0.24 – 0.08 – 0.12 0.12 0.29 –

Table 7. 103 times the averages of minimal relative errors in methods for δ =
10−4, p = 2 (correlated noise).

Probl. Tikh *Lavr Landw *Landw TSVD CGLS CGME *CG

1 0.35 – 0.15 – 0.16 0.18 0.22 –
2 0.84 12.9 0.36 1.72 0.25 0.37 0.73 1.60
3 0.32 13.9 0.05 1.50 0.07 0.10 0.21 1.00

4 0.59 13.7 0.14 1.20 0.15 0.16 0.59 1.01
5 1.13 – 0.52 – 0.41 0.49 1.15 –
6 0.56 – 0.23 – 0.17 0.21 0.61 –

7 0.72 13.2 0.14 1.11 0.09 0.10 0.19 1.22
8 0.54 13.9 0.09 1.53 0.08 0.10 0.17 1.37
9 0.60 – 0.31 – 0.27 0.35 0.93 –

10 0.28 – 0.12 – 0.11 0.15 0.24 –

ure 2): in both methods the error of approximate solution decreases quickly
before the optimal stopping index but in CGME it begins to increase very
quickly afterwards, whereas in CGLS it begins to increase with some delay.

In CGLS the number of iterations was much smaller than in Landweber
method: in our tests the mean and median of optimal stopping indices
were 14 and 5 in CGLS, versus 1.4 · 1013 and 1038 in Landweber method.
But since we implemented the Landweber method using operator iterations
(2.19) with m = 2, the overall computing time was the shortest in Landwe-
ber method, followed by Lavrentiev and Tikhonov method; somewhat more
time was needed in CGLS and CGME.

4.3. Results in Tikhonov method

Now we compare rules in each method separately. Adding the letters e or m
to the name of some rule means post-estimation or modification of the cor-
responding rule, respectively. Adding the letters C or 1 to the name of some
rule means climbing approach or first local minimum (see Section 3.2.2).
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4.3.1. Comparison of refinements of known rules.

Table 8 presents the results for known and modified rules that use full
information about noise level.

T1) Discrepancy principle: αD is the solution of the equation dD(α) = δ.
T2) Monotone error rule: αME is the solution of the equation dME(α) = δ.
T3) Rule MEe: using αME from T2, take αMEe = min(0.53αME,0.6α

1.06
ME ).

T4) Rule R2: αR2 is the largest solution of the equation dR2(α) = 0.3δ.
T5) Rule R2e: using αR2 from T4, take αR2e = 0.5αR2.
T6) Rule Me: using αMEe, αR2e from T3, T5, take αMe = min(αMEe, αR2e).
Here and in the following, the column R in tables, where R is a name of a

rule, shows the average (over all free parameters: runs, δ’s, problems 1–10
unless noted otherwise, p’s) of error ratios ‖xλR−x∗‖/‖xλ∗−x∗‖ for regu-
larization parameter λR in method under consideration. Recall that here the
denominator is the error of regularized solution at optimal regularization
parameter. The column heading R,2 means that the results in this column
are computed with 2 times overestimated noise level 2δ = 2‖y − y∗‖, in-
stead of δ = ‖y − y∗‖.

Table 8 confirms the disadvantages of discrepancy principle: saturation
(large values of D for p ≥ 1) and sensitivity to inexact noise level (results in
column D,2 are much larger than in column D for p ≤ 1). We also see that
the estimated parameters from rules MEe and R2e give better results than
the parameters from ME and R2, respectively. However, if the error level
used in rules was 2 times larger than the actual, the results of rules ME and
MEe were not so good.

Note also that the column Me almost coincides with column MEe and
the column Me,2 with column R2e,2 (this also holds in single problems, see
Tables 16 and 17). For p ≥ 1.5 the rules MEe, R2e, and Me gave remark-
ably small averages. Although the results of MEe and Me were similar, the
maximums of Me were smaller, especially at larger p (for example, 2.53 and
2.18, respectively, for p = 2).

Table 8. Means of error ratios for rules in case of exact noise level and in case of
2 times overestimated noise level at various smoothness indices p.

p D D,2 ME ME,2 MEe MEe,2 R2 R2,2 R2e R2e,2 Me Me,2

0 1.19 2.23 1.33 2.54 1.15 2.01 1.54 1.84 1.39 1.59 1.16 1.58

0.25 1.64 3.82 1.91 4.58 1.56 3.37 2.93 3.50 2.63 3.04 1.57 2.55
0.5 1.69 4.09 2.02 5.65 1.56 3.92 2.46 3.33 2.02 2.59 1.58 2.59
0.75 1.61 3.65 1.79 5.93 1.35 3.66 2.03 2.92 1.57 2.08 1.36 2.08

1 1.81 3.14 1.59 5.94 1.18 3.34 1.75 2.46 1.33 1.65 1.19 1.65
1.5 2.50 2.77 1.45 5.66 1.13 2.93 1.38 1.94 1.14 1.28 1.14 1.28
2 2.83 2.76 1.39 5.45 1.12 2.75 1.26 1.68 1.11 1.17 1.13 1.17
4 3.01 2.80 1.38 5.43 1.12 2.72 1.22 1.59 1.11 1.14 1.13 1.14

8 3.03 2.79 1.38 5.37 1.12 2.69 1.22 1.58 1.11 1.14 1.13 1.14

mean 2.14 3.12 1.58 5.17 1.26 3.04 1.75 2.32 1.49 1.74 1.26 1.69
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Table 9. Means of error ratios for rules in case of exact noise level and in case
of 2 times overestimated noise level at various smoothness indices p (positively
correlated noise).

p D D,2 ME ME,2 MEe MEe,2 R2 R2,2 R2e R2e,2 Me Me,2

0 1.28 2.16 1.45 2.44 1.19 1.86 1.44 1.72 1.32 1.49 1.20 1.48
0.25 1.63 3.20 1.93 3.88 1.54 2.82 2.38 2.88 2.16 2.49 1.55 2.12

0.5 1.65 3.31 1.97 4.54 1.48 3.17 2.07 2.70 1.80 2.14 1.50 2.14
0.75 1.54 2.81 1.73 4.56 1.32 2.80 1.64 2.25 1.46 1.67 1.40 1.67
1 1.68 2.34 1.54 4.35 1.17 2.42 1.38 1.84 1.25 1.33 1.23 1.33

1.5 2.19 2.21 1.43 4.02 1.13 2.11 1.18 1.47 1.20 1.13 1.22 1.13
2 2.45 2.45 1.43 4.02 1.16 2.06 1.20 1.33 1.32 1.18 1.34 1.18
4 2.65 2.34 1.39 4.02 1.12 2.02 1.16 1.30 1.23 1.13 1.25 1.13

8 2.64 2.28 1.38 3.85 1.12 1.94 1.15 1.27 1.24 1.12 1.26 1.12

mean 1.97 2.57 1.58 3.96 1.25 2.36 1.51 1.86 1.44 1.52 1.33 1.48

Table 10. Means of error ratios for rules in case of exact noise level and in case
of 2 times overestimated noise level at various smoothness indices p (correlated
noise).

p D D,2 ME ME,2 MEe MEe,2 R2 R2,2 R2e R2e,2 Me Me,2

0 1.23 2.43 1.38 2.78 1.17 2.16 1.64 1.97 1.46 1.69 1.17 1.69
0.25 1.69 4.98 1.99 6.09 1.59 4.42 3.71 4.46 3.23 3.81 1.59 3.28
0.5 1.82 7.49 2.17 9.71 1.56 7.16 4.90 6.19 4.16 5.03 1.58 5.03

0.75 1.69 6.52 1.88 10.9 1.36 6.75 3.76 5.37 2.86 3.80 1.41 3.80
1 1.96 5.02 1.60 10.5 1.18 5.79 3.09 4.41 2.26 2.92 1.21 2.92
1.5 2.73 4.78 1.44 11.0 1.13 5.64 2.25 3.30 1.79 2.05 1.18 2.05

2 3.02 3.94 1.41 8.68 1.16 4.27 1.67 2.21 1.61 1.56 1.31 1.56
4 3.59 5.44 1.35 13.4 1.14 6.59 2.00 2.86 1.87 1.82 1.23 1.82
8 3.27 3.65 1.39 9.86 1.14 4.70 1.55 2.02 1.53 1.39 1.23 1.39

mean 2.33 4.92 1.62 9.22 1.27 5.27 2.73 3.64 2.31 2.67 1.32 2.61

Table 11. Means of error ratios for rules in case of exact noise level and in case
of 2 times overestimated noise level at various smoothness indices p (negatively
correlated noise).

p D D,2 ME ME,2 MEe MEe,2 R2 R2,2 R2e R2e,2 Me Me,2

0 1.18 3.39 1.32 3.87 1.17 3.02 2.25 2.72 1.95 2.30 1.18 2.29

0.25 1.74 6.48 2.02 8.03 1.61 5.83 4.80 5.76 4.19 4.89 1.67 4.23
0.5 1.70 9.11 1.96 12.9 1.46 8.89 5.41 7.44 4.24 5.66 1.50 5.66
0.75 1.85 9.76 1.97 16.7 1.41 10.3 5.58 8.14 4.01 5.73 1.41 5.73

1 2.22 9.17 1.75 19.1 1.23 10.5 5.19 7.72 3.39 4.92 1.23 4.92
1.5 3.15 6.93 1.44 16.5 1.15 8.50 3.16 4.87 1.95 2.84 1.15 2.84
2 3.58 5.84 1.42 13.8 1.14 6.85 2.16 3.33 1.45 1.93 1.17 1.93
4 4.25 7.19 1.37 19.3 1.14 9.39 2.41 3.71 1.51 2.11 1.16 2.11

8 4.27 7.58 1.40 19.1 1.14 9.41 2.54 3.98 1.58 2.27 1.15 2.27

mean 2.66 7.27 1.63 14.4 1.27 8.08 3.72 5.30 2.70 3.63 1.29 3.55
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Table 10 is an analog of Table 8 for correlated noise of data (correlation
parameter ω is chosen randomly from [−0.5,0.5] with uniform distribu-
tion). The columns D, ME, MEe, Me in Table 10 are approximately 10% larger
than in Table 8 but other columns are 50%–80% larger. Tables 9, 11 are
analogs of Table 10 for correlated noise of data with positive correlation
(ω ∈ [0,0.5]) and negative correlation (ω ∈ [−0.5,0]), respectively. In case
of correlated noise with exactly known noise level (especially in case of pos-
itively correlated noise) the rule MEe turned out to perform better than the
rule Me. Since the mutual relationships of rules remained the same for var-
ious types of correlations, we present only one table for correlated noise
(ω ∈ [−0.5,0.5]) in the following.

Tables 12, 13 show analogous results for different variants of balanc-
ing principle in Tikhonov method (λ = α). Here we formed an increasing
sequence α0, α1, . . . , αN , where α0 = δ2, αi = αi−1/q with q = 0.9, and
αN is the first αi, which is greater than or equal to 1. Parameters αB1

and αB1* were chosen as the first αi, for which (3.9) holds with c = 2
and c = 3

√
3(1 − q)/(16

√
q), respectively; αB2 and αB2* were chosen as

the first αm, for which (3.10) holds with c = 2 and c = (1 − qi+1−j)/q,
respectively; αB3 was chosen as the first αi, for which (3.11) holds with
c = 0.3(1− qi+1−j)q(j−i−1)/2.

Table 12. Means of error ratios for balancing principle.

p B1 B1,2 B1* B1*,2 B2 B2,2 B2* B2*,2 B3 B3,2

0 6.27 7.48 1.90 2.35 3.82 4.58 2.71 3.34 1.85 2.29
0.25 12.6 15.7 3.19 4.13 7.46 9.05 4.96 6.48 3.08 4.01
0.5 20.4 27.0 3.67 5.07 10.4 13.8 6.12 8.24 3.51 4.87

0.75 25.9 36.3 3.52 5.21 12.2 16.8 6.48 9.25 3.37 4.96
1 29.9 41.9 3.38 5.08 13.5 18.9 6.56 9.76 3.21 4.83
1.5 33.0 48.1 3.11 4.84 14.2 20.8 6.33 9.66 2.96 4.56
2 33.0 48.8 2.99 4.67 14.1 20.9 6.09 9.44 2.82 4.40

4 33.6 49.6 3.01 4.70 14.4 21.2 6.07 9.33 2.80 4.36
8 33.8 49.4 3.02 4.68 14.5 21.1 6.01 9.31 2.79 4.32

mean 25.4 36.0 3.09 4.53 11.6 16.3 5.70 8.31 2.93 4.29

Table 13. Means of error ratios for balancing principle (correlated noise).

p B1 B1,2 B1* B1*,2 B2 B2,2 B2* B2*,2 B3 B3,2

0 7.17 8.59 2.05 2.57 4.26 5.16 2.99 3.72 2.00 2.49

0.25 17.4 21.9 4.24 5.53 9.87 12.2 6.58 8.46 4.16 5.34
0.5 30.2 39.8 6.83 8.92 16.3 21.1 10.4 13.3 6.76 8.62
0.75 48.9 68.2 6.56 9.58 22.5 31.3 11.9 17.0 6.64 9.11

1 56.3 80.2 6.23 9.17 24.1 34.8 11.7 17.0 6.81 8.76
1.5 67.8 95.8 6.07 9.32 28.6 42.0 12.4 19.5 7.95 8.78
2 50.0 74.5 4.63 7.38 22.3 32.4 9.70 15.2 8.69 6.97

4 85.6 126 7.42 11.6 35.9 53.5 15.0 23.1 18.6 10.7
8 69.1 102 5.50 8.53 28.1 42.4 11.1 17.3 16.5 7.82

mean 48.1 68.5 5.50 8.07 21.3 30.5 10.2 14.9 8.68 7.63
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As can be seen from Tables 12, 13, the balancing principle with original
large constants c = 2 gives significantly larger error in rules B1, B2 than
the rule B3 and rules B1*, B2* with smaller constants. However, the results
for balancing principle were worse than results for rules MEe, R2e, Me in
Table 8, especially when the noise is correlated (Table 13). We also exper-
imented with constant 0.25 instead of 0.3 and obtained better results with
rule (3.11) in case of uncorrelated noise but in case of correlated noise the
results were significantly worse. As the last two columns of Table 13 show,
in case of larger p even larger constant would be better.

Table 14 shows the results of the same rules as in Table 8 with the dif-
ference that the approximate solution is computed by 2-iterated Tikhonov
method. Here, the proper constants in rules are somewhat different than
those in ordinary Tikhonov method.

T1-2) Discrepancy principle: αD is the solution of dD(α) = δ.
T2-2) Monotone error rule: αME is the solution of dME(α) = δ.
T3-2) Rule MEe: using αME from T2-2, take αMEe = min(0.8αME,0.7α

1.04
ME ).

T4-2) Rule R2: αR2 is the largest solution of dR2(α) = 0.22δ.
T5-2) Rule R2e: using αR2 from T4-2, take αR2e = 0.9αR2.
T6-2) Rule Me: usingαMEe,αR2e from T3-2,T5-2, take αMe=min(αMEe,αR2e).

Table 14. Means of error ratios in 2-iterated Tikhonov method, compared to
minimums of ordinary Tikhonov method.

p D D,2 ME ME,2 MEe MEe,2 R2 R2,2 R2e R2e,2 Me Me,2

0 1.26 2.34 1.29 2.39 1.16 2.05 1.56 1.81 1.53 1.77 1.16 1.77
0.25 1.74 4.15 1.81 4.28 1.55 3.48 2.99 3.45 2.95 3.37 1.55 2.89
0.5 1.72 4.82 1.84 5.11 1.54 4.09 2.39 3.39 2.31 3.28 1.54 3.27

0.75 1.39 4.67 1.53 4.99 1.25 3.68 1.94 2.80 1.85 2.66 1.26 2.66
1 1.08 4.24 1.23 4.73 0.98 3.20 1.64 2.26 1.56 2.11 0.98 2.11
1.5 0.76 3.34 0.91 4.02 0.74 2.51 1.06 1.66 0.99 1.52 0.74 1.52

2 0.59 2.54 0.70 3.26 0.59 1.90 0.79 1.16 0.74 1.04 0.59 1.04
4 0.46 1.64 0.48 2.33 0.45 1.24 0.48 0.66 0.46 0.59 0.45 0.59
8 0.46 1.58 0.47 2.27 0.44 1.21 0.47 0.64 0.45 0.57 0.44 0.57

mean 1.05 3.26 1.14 3.71 0.97 2.59 1.48 1.98 1.43 1.88 0.97 1.82

Table 15. Means of error ratios in 2-iterated Tikhonov method, compared to
minimums of ordinary Tikhonov method (correlated noise).

p D D,2 ME ME,2 MEe MEe,2 R2 R2,2 R2e R2e,2 Me Me,2

0 1.31 2.57 1.34 2.63 1.19 2.21 1.66 1.94 1.63 1.90 1.18 1.89

0.25 1.81 5.40 1.89 5.59 1.63 4.51 3.76 4.37 3.69 4.27 1.63 3.74
0.5 1.87 8.21 1.99 8.63 1.61 7.14 4.82 6.17 4.69 5.99 1.63 5.98
0.75 1.46 8.58 1.59 9.19 1.30 6.88 3.91 5.32 3.75 5.07 1.32 5.07
1 1.09 7.25 1.24 8.08 0.98 5.38 3.11 4.16 2.95 3.90 0.99 3.90

1.5 0.77 6.49 0.90 7.85 0.73 4.84 2.00 3.07 1.85 2.80 0.73 2.80
2 0.61 4.03 0.69 5.09 0.64 2.95 1.27 1.75 1.19 1.59 0.73 1.59
4 0.44 3.89 0.44 5.69 0.43 3.01 0.97 1.54 0.88 1.35 0.48 1.35

8 0.46 2.34 0.46 3.86 0.45 1.94 0.66 0.91 0.62 0.82 0.50 0.82

mean 1.09 5.42 1.17 6.29 1.00 4.32 2.46 3.25 2.36 3.08 1.02 3.02
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Again, the error ratios are computed as the error of 2-iterated Tikho-
nov method with chosen parameter divided by the error of ordinary Tikho-
nov method with best parameter. The results in Table 14 show that if
x∗ ∈ R(A∗), then in most cases the error of 2-iterated approximation by
rules MEe and Me was smaller than the error of the best single Tikhonov
approximations. For rules R2, R2e, and Me at large p this holds even when
the noise level is 2 times overestimated. Table 15 is an analog of Table 14
for correlated noise. The differences of Tables 14 and 15 are the same as
the differences of Tables 8 and 10.

4.3.2. Minimization strategy.

Tables 16–20 compare means of error ratios by problems for rules that
choose the regularization parameter by the minimization strategy of Sec-
tion 3.2. In Tables 16, 17 the results for rules D, MEe, R2e, Me by problems
are provided for reference (here and in the following tables the columns us-
ing δ and columns not using δ are separated by |). To test the performance
of rules on other problems, we have added the results on test problems [13]
of Table 2. The first row labeled ’mean’ presents arithmetic means of error
ratios over problems 1–10, the second row ’mean’ gives the same means
over problems 11–16.

T7) Rules HR and BRS: αHR and αBRS are the global minimizers of the
functions ϕHR(α) and ϕBRS(α), respectively.

T8) Rule QN (rule of Neubauer [69]): αQN is the minimizer of the function
ϕQN(α) on the interval [mσmin,1], where σmin is the smallest eigenvalue of

Table 16. Means of error ratios for p = 0 by problems. Problems 1–10 are from
[43,45,46], problems 11–16 are from [13] (see Tables 1 and 2).

Probl. D D,2 MEe MEe,2 R2e R2e,2 Me Me,2 HR QN BRS QHR

1 1.41 2.37 1.38 2.26 1.67 2.00 1.38 2.00 2.76 1.56 2.61 2.79
2 1.19 1.74 1.02 1.33 1.09 1.16 1.05 1.16 960 1.95 960 1.20
3 1.35 5.88 1.38 5.15 2.75 3.48 1.37 3.48 8.18 2.18 5.23 9.54

4 1.14 2.38 1.08 2.11 1.18 1.47 1.08 1.47 2.82 1.13 2.08 1.10
5 1.06 1.53 1.03 1.37 1.05 1.15 1.04 1.15 1.70 1e+4 1.35 1.80
6 1.25 1.89 1.16 1.70 1.27 1.45 1.16 1.45 2.05 1.20 1.87 1.27

7 1.03 1.98 1.04 1.82 1.05 1.19 1.04 1.19 1e+5 1.08 1e+5 1.09
8 1.30 2.25 1.25 2.06 1.45 1.65 1.25 1.65 2.58 1.44 2.25 2.43
9 1.02 1.05 1.02 1.05 1.03 1.04 1.02 1.04 1.07 1.04 1.06 1.06

10 1.19 1.38 1.18 1.36 1.39 1.40 1.18 1.34 1.56 1.43 1.55 1.55

mean 1.19 2.25 1.15 2.02 1.39 1.60 1.16 1.59 1e+4 1e+3 1e+4 2.38

11 1.19 2.12 1.13 1.91 1.21 1.43 1.13 1.43 2.44 1.18 1.87 1.43
12 1.39 2.16 1.26 1.94 1.54 1.73 1.26 1.73 3.04 1.80 2.45 2.64

13 1.59 2.44 1.29 2.28 1.60 1.85 1.29 1.84 4.79 3.21 2.90 3.35
14 1.06 1.77 1.08 1.52 1.26 1.25 1.19 1.25 3e+3 1.60 3e+3 17.2
15 1.02 1.04 1.02 1.03 1.03 1.04 1.02 1.03 1.06 1.05 1.06 1.06
16 1.50 2.07 1.57 2.08 1.36 1.52 1.36 1.52 2.62 1.35 1.56 2.21

mean 1.29 1.93 1.23 1.79 1.33 1.47 1.21 1.47 502 1.70 502 4.65
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Table 17. Means of error ratios for p = 2 by problems.

Probl. D D,2 MEe MEe,2 R2e R2e,2 Me Me,2 HR QN BRS QHR

1 2.93 3.21 1.11 4.08 1.09 1.31 1.08 1.31 7.22 1.72 2.69 1.30
2 3.38 2.64 1.20 1.83 1.16 1.10 1.22 1.10 7e+3 1.04 7e+3 1.05
3 3.59 3.96 1.12 4.12 1.12 1.36 1.12 1.36 7.03 1.26 3.42 1.15

4 2.83 2.27 1.07 2.13 1.06 1.05 1.07 1.05 3.69 1.12 2.23 1.12
5 2.44 2.04 1.12 1.47 1.18 1.06 1.20 1.06 2.18 7e+4 2.40 1.05
6 2.28 2.15 1.06 2.28 1.05 1.07 1.06 1.07 3.91 1.12 2.00 1.13

7 3.03 2.28 1.09 1.74 1.12 1.05 1.13 1.05 2e+5 1.06 2e+5 1.06
8 2.48 2.40 1.05 2.55 1.04 1.08 1.05 1.08 4.42 1.27 2.17 1.15
9 2.39 2.92 1.07 3.10 1.05 1.25 1.06 1.25 5.30 1.18 2.55 1.18

10 2.36 4.05 1.19 4.92 1.18 1.55 1.16 1.55 8.54 1.75 3.25 1.29

mean 2.77 2.79 1.11 2.82 1.11 1.19 1.12 1.19 2e+4 7e+3 2e+4 1.15

11 2.53 2.06 1.06 2.06 1.05 1.03 1.06 1.03 3.53 1.10 2.03 1.10
12 2.26 2.62 1.10 3.07 1.07 1.22 1.08 1.22 5.32 1.25 2.26 1.16

13 2.72 3.04 1.14 3.21 1.15 1.37 1.14 1.37 5.44 1.27 2.70 2.33
14 3.84 3.29 1.23 2.54 1.12 1.18 1.23 1.18 2e+4 1.05 2e+4 1.05
15 3.56 34.4 2.08 27.3 2.50 6.24 1.86 6.24 43.0 5.43 27.6 4.09

16 1.61 1.58 1.35 1.97 1.03 1.02 1.03 1.02 2.90 1.14 1.63 1.09

mean 2.75 7.83 1.33 6.69 1.32 2.01 1.23 2.01 3e+3 1.87 3e+3 1.81

the matrix A∗A.
T9) Rule QHR: αQHR is the local minimizer of the function ϕQ(α)κ(α)

such that the function ϕHR(α) is minimal.
T10) The rules QC, R2C, BRSC choose the parameter by the climbing

approach in the functions ϕR2(α), ϕQ(α), and ϕBRS(α) with C = 4.
T11) Rules QC’ and R2C’ choose the parameter by the climbing approach

in the functions ϕQ(α) and ϕR2(α) with C = 4 but unlike the rules of T10,
here the choice is made only from local minimizers of the corresponding
functions on the interval (αmin,1); endpoints are excluded.

T12) Rules Q1, D1, R21, DR21 and BRS1 choose the parameter as the first
(the largest) local minimum of the functions ϕQ(α)α

0.36, ϕD(α)κ(α)α
0.3,

ϕR2(α)α
0.42, ϕD(α)

0.2ϕR2(α)
0.8α0.36, and ϕBRS(α)α

0.56, respectively.
T13) Rules HR2 and BR2 choose the parameter as the global minimizer

of the functions ϕHR2,τ(α) and ϕBR2,τ(α) with τ = 0.07.
T14) Rules QHR2 and QBR2 choose the local minimizer of the function

ϕQ(α)κ(α) for which the functionsϕHR2,τ(α) andϕBR2,τ(α) with τ = 0.04
are minimal.

The best heuristic rules not using δ were comparable to rules using δ:
the results were worse in case of exact δ but even better in case of 2 times
overestimated noise level.

The biggest challenge to all rules turned out to be the problem 15 in case
p = 2; the problem 14 was hard to heuristic rules Q1, R21, QHR2, QBR2 in
case p = 0.

Note that in case of smooth solution (Table 17) the rule QHR, containing
neither noise level information nor any parameters, gave very good results.
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Table 18. Means of errors by problems for rules of minimization strategy, p = 0.

Probl. QC R2C BRSC QC’ R2C’ Q1 D1 R21 DR21 BRS1 HR2 BR2 QHR2QBR2

1 1.56 1.84 2.61 1.55 1.83 2.24 2.05 2.20 1.75 2.02 1.85 1.95 1.75 1.73
2 1.55 1.41 1.35 1.55 1.40 1.06 1.61 1.17 1.94 1.59 1.61 1.25 1.20 1.20
3 2.18 2.11 5.23 2.15 2.09 1.89 3.75 2.13 2.48 3.60 2.70 2.80 2.08 2.89

4 1.13 1.11 2.08 1.12 1.11 1.45 1.54 1.78 1.06 1.47 1.11 1.08 1.10 1.11
5 1.34 1.19 1.35 1.30 1.19 1.30 1.20 1.78 1.28 1.14 1.14 1.26 1.16 1.17
6 1.20 1.18 1.87 1.19 1.17 1.22 1.55 1.34 1.21 1.46 1.31 1.17 1.23 1.20

7 1.08 1.08 1.61 1.07 1.09 1.19 1.25 1.46 1.10 1.17 1.08 1.12 1.09 1.08
8 1.44 1.45 2.25 1.43 1.44 1.71 1.78 1.68 1.43 1.70 1.60 1.45 1.49 1.42
9 1.04 1.05 1.06 1.04 1.05 1.06 1.05 1.06 1.03 1.04 1.05 1.05 1.05 1.04

10 1.43 1.42 1.55 1.43 1.42 1.83 1.48 1.81 1.47 1.48 1.47 1.47 1.47 1.48

mean 1.39 1.38 2.10 1.38 1.38 1.49 1.72 1.64 1.47 1.67 1.49 1.46 1.36 1.43

11 1.18 1.16 1.87 1.17 1.16 1.36 1.45 1.50 1.14 1.41 1.20 1.13 1.18 1.16
12 2.01 1.92 2.45 1.94 1.91 2.27 1.81 2.26 1.51 1.77 2.19 2.10 2.07 1.97

13 3.25 3.24 2.90 3.25 3.24 4.15 3.42 4.17 3.14 1.92 3.39 2.71 2.05 2.05
14 1.85 1.76 2.07 1.84 1.76 19.8 1.87 19.6 1.86 1.74 2.06 1.58 16.7 16.7
15 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06

16 1.35 1.34 1.56 1.35 1.34 1.59 1.32 1.62 1.27 1.33 1.50 1.29 1.41 1.31

mean 1.78 1.75 1.99 1.77 1.75 5.04 1.82 5.04 1.66 1.54 1.90 1.65 4.08 4.04

Table 19. Means of errors by problems for rules of minimization strategy, p = 0
(correlated noise).

Probl. R2C QC BRSC R2C’ QC’ Q1 D1 R21 DR21 BRS1 HR2 BR2 QHR2QBR2

1 1.52 1.80 2.51 1.52 1.80 2.23 2.00 2.20 1.74 1.96 1.82 1.91 1.65 1.71
2 1.22 1.18 1.32 1.21 1.17 1.15 1.46 1.28 1.77 1.44 1.78 1.30 1.16 1.16

3 2.31 2.05 5.85 2.28 2.06 1.93 4.11 2.19 2.62 3.97 2.78 2.88 2.35 2.77
4 1.16 1.15 2.29 1.15 1.15 1.54 1.71 2.26 1.16 1.63 1.20 1.15 1.14 1.14
5 1.39 1.32 1.51 1.35 1.32 1.37 2.43 1.98 3.87 1.60 1.26 1.60 1.23 1.31

6 1.22 1.18 1.94 1.21 1.18 1.25 1.61 1.31 1.28 1.54 1.40 1.26 1.26 1.24
7 1.08 1.06 1.79 1.06 1.07 1.26 2.27 2.05 4.18 1.85 1.90 1.09 1.07 1.06
8 1.35 1.32 2.29 1.33 1.32 1.57 1.80 1.57 1.40 1.70 1.52 1.48 1.49 1.41

9 1.04 1.05 1.06 1.04 1.05 1.06 1.05 1.06 1.03 1.04 1.05 1.05 1.05 1.04
10 1.44 1.44 1.56 1.44 1.44 1.84 1.49 1.82 1.48 1.49 1.48 1.48 1.47 1.48

mean 1.37 1.36 2.21 1.36 1.36 1.52 1.99 1.77 2.05 1.82 1.62 1.52 1.39 1.43

11 1.17 1.17 2.21 1.17 1.17 1.45 1.72 1.69 1.28 1.66 1.30 1.20 1.22 1.19

12 2.40 2.28 3.13 2.33 2.27 2.65 2.26 2.61 1.88 2.22 2.71 2.53 2.46 2.39
13 3.07 3.06 2.78 3.07 3.07 3.96 3.32 4.01 3.04 1.87 3.29 2.60 2.04 2.02
14 2.02 1.89 2.23 2.01 1.88 23.1 2.05 22.9 2.00 1.81 2.44 1.80 21.3 21.3
15 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05

16 1.47 1.44 1.87 1.46 1.44 1.72 1.53 1.76 1.38 1.54 1.65 1.36 1.51 1.41

mean 1.86 1.82 2.21 1.85 1.81 5.66 1.99 5.67 1.77 1.69 2.07 1.76 4.93 4.89
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Table 20. Means of errors by problems for rules of minimization strategy, p = 2.

Probl. R2C QC BRSC R2C’ QC’ Q1 D1 R21 DR21 BRS1 HR2 BR2 QHR2QBR2

1 1.72 1.90 2.69 1.76 1.95 1.75 2.20 1.90 1.77 1.95 1.23 1.34 1.30 1.34
2 1.04 1.17 4.46 1.08 1.23 1.23 11.3 1.52 16.1 6.64 1.11 1.10 1.05 1.05
3 1.26 1.38 3.42 1.29 1.44 1.64 2.94 1.83 2.12 2.58 1.13 1.13 1.17 1.15

4 1.12 1.25 2.23 1.15 1.30 1.56 2.46 2.03 2.47 2.26 1.14 1.15 1.12 1.12
5 1.04 1.17 2.40 1.07 1.22 1.32 3.13 1.67 3.25 2.92 1.12 1.11 1.05 1.05
6 1.12 1.25 2.00 1.16 1.30 1.70 1.98 1.97 1.95 1.84 1.14 1.15 1.13 1.13

7 1.06 1.17 2.54 1.09 1.23 1.26 3.23 1.49 3.20 3.03 1.12 1.11 1.06 1.06
8 1.27 1.40 2.17 1.31 1.45 1.84 2.09 2.04 1.99 1.90 1.17 1.24 1.21 1.21
9 1.18 1.33 2.55 1.22 1.38 1.60 2.26 1.92 1.93 1.97 1.20 1.20 1.18 1.18

10 1.75 1.86 3.25 1.78 1.91 1.87 2.38 2.00 1.72 2.00 1.26 1.46 1.29 1.48

mean 1.26 1.39 2.77 1.29 1.44 1.58 3.39 1.84 3.65 2.71 1.16 1.20 1.16 1.18

11 1.10 1.22 2.03 1.13 1.27 1.59 2.25 1.97 2.34 2.10 1.12 1.15 1.10 1.10
12 1.25 1.39 2.26 1.28 1.44 1.65 1.99 1.87 1.74 1.78 1.16 1.24 1.17 1.21

13 1.27 1.36 2.70 1.29 1.41 1.60 2.42 1.83 1.99 2.19 1.31 1.38 1.31 1.38
14 1.05 1.17 3.41 1.08 1.24 1.29 4.05 1.55 5.54 3.65 1.11 1.11 1.05 1.05
15 4.94 5.10 27.6 5.00 5.17 4.38 16.0 4.58 5.03 11.4 4.05 3.23 4.17 4.82

16 1.14 1.22 1.63 1.16 1.25 1.32 2.03 1.47 2.20 1.98 1.10 1.17 1.12 1.12

mean 1.79 1.91 6.61 1.82 1.96 1.97 4.79 2.21 3.14 3.85 1.64 1.55 1.65 1.78

4.3.3. Rule R2e.

Tables 21, 22 compare the error ratios of rules D and R2e for different
values of noise level uncertainty coefficient d. In case of overestimated
noise level (d > 1) the rule R2e is significantly better than the discrepancy
principle. In contrast to the discrepancy principle and other rules, the rule
R2e also allows moderate underestimation of the noise level. The same
conclusions can be made about rule R2e in 2-extrapolated Tikhonov method
(see Table 59).

Comparison of Tables 21 and 22 shows that for rule R2e the error ra-
tios in case of correlated noise are larger than the error ratios in case of
uncorrelated noise but the advantage over discrepancy principle still holds.

4.3.4. Rule DM.

Tables 23, 24 show the results for rule DM with parameters c1 = 0.002,
c2 = 0.03 in Tikhonov method at various coefficients d of noise level ill-
estimation. It can be seen that the means of error ratios do not change with
d as much as in rule R2e, allowing wider range of over- or underestimation
of the noise level. Table 25 compares some particular sets of parameters
c1, c2 in rule DM for p = 0 and p = 2. If we have more information about
the noise level, parameters of the first row may be used, since they give
smaller error ratios for d close to 1. If we do not have much information,
parameters for which the rule is less sensitive to ill-estimation of the noise
level should be preferred.
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Table 21. Means of error ratios for rules D (upper part) and R2e (lower part) in
case, where the estimated noise level is d times larger than the actual noise level.

R
u

le
R

2
e

R
u

le
D

p \ d 0.5 0.6 0.8 1 1.3 1.6 2 3 5 10

0 1.19 1.82 2.05 2.23 2.56 3.06 3.69
0.25 1.64 2.91 3.41 3.82 4.62 5.67 6.75

0.5 1.69 3.01 3.62 4.09 5.00 6.44 8.42
0.75 1.61 2.61 3.19 3.65 4.57 6.26 8.44
1 ≫ 1 1.81 2.28 2.76 3.14 4.01 5.69 7.80

1.5 2.50 2.25 2.56 2.77 3.38 4.78 6.54
2 2.83 2.37 2.61 2.76 3.27 4.52 6.08
4 3.01 2.45 2.70 2.80 3.26 4.49 5.95

8 3.03 2.46 2.69 2.79 3.24 4.45 5.89

mean 2.14 2.46 2.84 3.12 3.77 5.04 6.62

0 3.84 1.75 1.36 1.39 1.46 1.52 1.59 1.76 2.09 2.49
0.25 4.77 2.38 2.58 2.63 2.80 2.91 3.04 3.34 3.88 4.67

0.5 5.17 2.49 1.98 2.02 2.19 2.37 2.59 3.11 3.79 4.81
0.75 4.50 2.29 1.54 1.57 1.70 1.87 2.08 2.55 3.28 4.46
1 4.73 1.93 1.29 1.33 1.41 1.51 1.65 2.01 2.74 4.00

1.5 4.64 1.70 1.16 1.14 1.16 1.21 1.28 1.53 2.05 2.90
2 4.43 1.53 1.14 1.11 1.11 1.13 1.17 1.35 1.75 2.37
4 4.07 1.54 1.14 1.11 1.10 1.11 1.14 1.29 1.64 2.13

8 4.08 1.54 1.14 1.11 1.10 1.11 1.14 1.28 1.63 2.10

mean 4.47 1.91 1.48 1.49 1.56 1.63 1.74 2.02 2.54 3.32

Table 22. Means of error ratios for rules D (upper part) and R2e (lower part) in
case, where the estimated noise level is d times larger than the actual noise level
(correlated noise).

R
u

le
R

2
e

R
u

le
D

p \ d 0.5 0.6 0.8 1 1.3 1.6 2 3 5 10

0 1.23 1.97 2.22 2.43 2.80 3.38 4.11

0.25 1.69 3.83 4.49 4.98 5.95 7.22 8.69
0.5 1.82 5.89 6.86 7.49 8.73 10.7 13.4
0.75 1.69 4.59 5.65 6.52 8.25 11.4 15.4

1 ≫ 1 1.96 3.59 4.45 5.02 6.24 8.46 12.0
1.5 2.73 3.24 4.08 4.78 6.50 10.0 14.3
2 3.02 2.93 3.54 3.94 4.97 7.25 9.29

4 3.59 3.92 4.88 5.44 6.96 10.2 14.5
8 3.27 2.83 3.36 3.65 4.61 6.70 9.97

mean 2.33 3.64 4.39 4.92 6.11 8.37 11.3

0 5.46 1.99 1.49 1.47 1.55 1.61 1.69 1.89 2.27 2.75

0.25 4.72 2.85 3.22 3.29 3.47 3.61 3.81 4.22 5.00 6.01
0.5 5.23 4.30 4.07 4.17 4.43 4.69 5.03 5.77 6.88 8.21
0.75 4.84 3.07 2.69 2.84 3.14 3.40 3.80 4.68 6.00 8.03

1 3.39 2.39 2.02 2.20 2.39 2.61 2.92 3.57 4.84 6.79
1.5 5.48 2.19 1.57 1.61 1.73 1.85 2.05 2.57 3.58 5.48
2 4.89 1.82 1.44 1.42 1.43 1.47 1.56 1.78 2.43 3.59

4 3.66 1.97 1.43 1.47 1.54 1.63 1.82 2.21 3.19 4.40
8 3.88 1.68 1.29 1.27 1.28 1.31 1.39 1.58 2.11 2.87

mean 4.62 2.47 2.14 2.19 2.33 2.47 2.67 3.14 4.03 5.35
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Table 23. Means of error ratios in Tikhonov method with Rule DM, c1 = 0.002,
c2 = 0.03 for p = 0 (left), p = 2 (right), where the used noise level is d times the
actual noise level.

Case p = 0, values of d Case p = 2, values of d
Probl. 0.01 0.1 0.5 1 2 10 100 0.01 0.1 0.5 1 2 10 100

1 1.46 1.46 1.46 1.46 1.49 1.69 2.51 1.93 1.93 1.93 1.84 1.74 1.33 3.33
2 1.56 1.56 1.34 1.08 1.08 1.07 1.25 1.22 1.22 1.22 1.22 1.22 1.22 1.43
3 2.02 2.02 2.02 2.02 2.02 1.84 5.88 1.55 1.55 1.55 1.55 1.55 1.26 3.23

4 1.12 1.12 1.12 1.12 1.12 1.11 1.62 1.33 1.33 1.33 1.33 1.33 1.25 1.75
5 1.66 1.16 1.16 1.10 1.10 1.10 1.17 1.21 1.21 1.21 1.21 1.21 1.21 1.15
6 1.16 1.16 1.16 1.16 1.16 1.16 1.44 1.33 1.33 1.33 1.33 1.33 1.29 1.82

7 1.11 1.11 1.11 1.11 1.11 1.11 1.36 1.21 1.21 1.21 1.21 1.21 1.21 1.37
8 1.39 1.39 1.39 1.39 1.39 1.46 2.06 1.49 1.49 1.49 1.49 1.49 1.26 2.02
9 1.03 1.03 1.03 1.03 1.03 1.03 1.05 1.42 1.42 1.42 1.42 1.42 1.26 2.38

10 1.42 1.42 1.42 1.42 1.42 1.47 1.54 2.20 2.20 2.20 1.85 1.62 1.28 3.85

mean 1.39 1.34 1.32 1.29 1.29 1.30 1.99 1.49 1.49 1.49 1.44 1.41 1.26 2.23

11 1.16 1.16 1.16 1.16 1.16 1.16 1.56 1.30 1.30 1.30 1.30 1.30 1.25 1.69
12 1.43 1.43 1.43 1.43 1.43 1.47 2.13 1.50 1.50 1.50 1.50 1.50 1.26 2.46
13 2.41 2.41 2.41 2.41 2.41 2.42 3.80 1.46 1.46 1.46 1.46 1.46 1.33 2.81

14 3.28 1.83 1.66 1.56 1.45 1.36 1.70 1.23 1.23 1.23 1.23 1.23 1.21 1.92
15 1.05 1.05 1.05 1.05 1.06 1.06 1.06 6.04 6.04 5.22 4.38 3.60 3.04 18.3
16 1.36 1.36 1.36 1.36 1.33 1.35 2.21 1.32 1.32 1.32 1.32 1.32 1.16 1.81

mean 1.78 1.54 1.51 1.50 1.47 1.47 2.08 2.14 2.14 2.01 1.87 1.74 1.54 4.83

Table 24. Means of error ratios in Tikhonov method with Rule DM, c1 = 0.002,
c2 = 0.03 for p = 0 (left), p = 2 (right), where the used noise level is d times the
actual noise level (correlated noise).

values of d for p = 0 values of d for p = 2
Probl. 0.01 0.1 0.5 1 2 10 100 0.01 0.1 0.5 1 2 10 100

1 1.44 1.44 1.44 1.48 1.50 1.75 2.62 1.82 1.81 1.79 1.72 1.72 1.93 5.69
2 2.09 1.32 1.12 1.08 1.08 1.10 1.57 2.10 1.51 1.33 1.22 1.22 1.26 2.25
3 2.03 2.03 2.03 1.98 1.98 2.33 7.29 1.78 1.78 1.78 1.79 1.80 1.79 5.12

4 1.16 1.16 1.16 1.16 1.16 1.18 1.97 1.30 1.30 1.30 1.29 1.29 1.42 3.11
5 1.83 1.32 1.18 1.17 1.20 1.20 1.44 1.27 1.27 1.27 1.27 1.26 1.28 1.92
6 1.17 1.17 1.17 1.17 1.17 1.22 1.59 1.29 1.29 1.29 1.28 1.29 1.44 3.40

7 1.10 1.10 1.10 1.10 1.10 1.11 1.66 1.24 1.24 1.24 1.23 1.23 1.32 2.49
8 1.29 1.29 1.29 1.29 1.30 1.45 2.13 1.52 1.48 1.48 1.47 1.47 1.59 4.17
9 1.03 1.03 1.03 1.03 1.03 1.03 1.06 1.30 1.30 1.28 1.29 1.29 1.45 3.73

10 1.44 1.44 1.44 1.44 1.44 1.49 1.60 3.46 3.46 3.48 3.34 3.39 3.22 8.07

mean 1.46 1.33 1.30 1.29 1.30 1.39 2.29 1.71 1.64 1.62 1.59 1.60 1.67 4.00

11 1.19 1.19 1.19 1.19 1.18 1.26 2.01 1.28 1.28 1.28 1.27 1.27 1.40 3.23
12 1.70 1.70 1.71 1.72 1.72 1.93 2.92 1.47 1.47 1.44 1.45 1.45 1.59 4.61
13 2.04 2.04 2.08 2.09 2.09 2.43 3.87 1.60 1.60 1.57 1.58 1.58 2.03 5.09

14 3.21 2.03 1.74 1.57 1.51 1.43 1.93 2.04 1.30 1.30 1.29 1.30 1.38 2.79
15 1.05 1.05 1.05 1.05 1.05 1.05 1.05 19.5 19.5 18.9 17.5 16.9 15.2 23.4
16 1.48 1.48 1.48 1.47 1.46 1.58 3.07 1.35 1.35 1.30 1.27 1.21 1.18 3.20

mean 1.78 1.58 1.54 1.52 1.50 1.61 2.48 4.54 4.42 4.30 4.06 3.95 3.80 7.05
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Table 25. Averages of error ratios over problems of Hansen for rule DM with
different c1, c2; p = 0 (upper) and p = 2 (lower).

values of d
p Nr c1 c2 0.01 0.03 0.1 0.3 0.5 1 2 4 10 30 100

0 I 0.02 0.14 1.87 1.45 1.41 1.36 1.32 1.28 1.28 1.45 1.78 2.51 3.49
0 II 0.002 0.07 1.85 1.42 1.38 1.34 1.34 1.33 1.29 1.30 1.28 1.43 1.85
0 III 0.002 0.03 1.39 1.37 1.34 1.34 1.32 1.29 1.29 1.30 1.30 1.46 1.99

0 IV 0.001 0.03 1.44 1.39 1.36 1.34 1.34 1.32 1.29 1.29 1.31 1.37 1.58

2 I 0.02 0.14 1.81 1.81 1.75 1.59 1.49 1.32 1.26 1.40 2.23 4.61 9.38

2 II 0.002 0.07 1.59 1.59 1.59 1.59 1.59 1.53 1.49 1.43 1.28 1.30 2.23
2 III 0.002 0.03 1.49 1.49 1.49 1.49 1.49 1.44 1.41 1.36 1.26 1.29 2.23
2 IV 0.001 0.03 1.49 1.49 1.49 1.49 1.49 1.49 1.44 1.41 1.34 1.24 1.52

The rule DM differs from the rule R2C essentially only by the strategy of
choosing the endpoint of minimization interval: rule DM uses noise level
information and solves the equation dR1,1/2(α) = Cδ, rule R2C determines
the endpoint by increase condition of ϕR2(α), not using δ. Figure 3 com-
pares the rule DM with rule R2C, illustrating dependence of error on d. In
practice this comparison may help to decide, whether additional efforts to
more precisely estimate the actual noise level will be worth of increased ac-
curacy. In Tables 18 and 20 the rule R2C gives averages 1.38 for p = 0 and
1.39 for p = 2, hence DM is superior over R2C, if d ∈ [0.1,10] in case p = 0
or if d ∈ [3,30] in case p = 2.

For analogous results in extrapolated Tikhonov approximation, see Sec-
tion 4.8.4.

Figure 3. Error ratios in Tikhonov method for rules R2C and DM: p = 0 (left) and
p = 2 (right); DM I, DM II, DM III, DM IV, R2C.
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In practice we may have an approximate knowledge about how much
the supposed noise level dδ differs from the actual noise level δ. This
knowledge may be used to choose the constants c1 and c2 in rule DM. In
Table 26 each cell contains constants c1 and c2 that give the smallest maxi-
mum of averages over all Hansen’s problems with p = 0, if we assume that
d ∈ [dmin, dmax]. Table 27 shows the corresponding minimums and maxi-
mums of these averages. Computations were made on discrete set of values
c1 = 10−4, 10−3.8, . . . , 10−1 and c2 = 10−1, 10−1.1, . . . , 10−3.
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Table 26. Values of constants c1 (lower left) and c2 (upper right) in rule DM, giving
the smallest maximum of averages over range [dmin, dmax] of noise ill-estimation
coefficient d over problems of Hansen with p = 0.

dmin

dmax 1 2 4 10 30 100

0.01 2.5e-2
5.0e-2

1.0e-2
1.0e-2

6.3e-3
1.0e-2

2.5e-3
1.0e-2

1.0e-3
1.0e-2

4.0e-4
2.0e-3

0.03 2.5e-2
2.0e-2

1.0e-2
5.0e-2

6.3e-3
3.2e-2

2.5e-3
1.0e-2

1.0e-3
1.0e-2

4.0e-4
1.3e-2

0.1 2.5e-2
5.0e-2

1.0e-2
2.5e-2

6.3e-3
2.0e-2

2.5e-3
5.0e-2

1.0e-3
1.0e-2

2.5e-4
1.0e-2

0.3 4.0e-3
1.0e-2

1.0e-2
5.0e-2

6.3e-3
4.0e-2

2.5e-3
2.0e-2

1.0e-3
5.0e-2

2.5e-4
1.0e-2

0.5 6.3e-3
5.0e-2

2.5e-3
1.0e-2

6.3e-3
5.0e-2

2.5e-3
2.5e-2

1.0e-3
5.0e-2

2.5e-4
1.0e-2

1 2.5e-2
1.0e-1

2.5e-3
5.0e-2

1.0e-3
1.0e-2

2.5e-3
5.0e-2

1.0e-3
2.5e-2

2.5e-4
5.0e-2

Table 27. Minimal and maximal averages in rule DM over all problems of Hansen,
corresponding to c1 and c2 in Table 26, p = 0.

dmin

dmax 1 2 4 10 30 100

0.01 1.28 . . 1.34 1.29 . . 1.34 1.29 . . 1.36 1.29 . . 1.39 1.29 . . 1.41 1.31 . . 1.44
0.03 1.29 . . 1.33 1.28 . . 1.34 1.29 . . 1.34 1.29 . . 1.36 1.29 . . 1.39 1.29 . . 1.42

0.1 1.28 . . 1.30 1.29 . . 1.31 1.29 . . 1.33 1.28 . . 1.34 1.29 . . 1.34 1.29 . . 1.39
0.3 1.29 . . 1.29 1.28 . . 1.30 1.29 . . 1.30 1.29 . . 1.33 1.28 . . 1.34 1.29 . . 1.36
0.5 1.29 . . 1.29 1.29 . . 1.30 1.28 . . 1.30 1.29 . . 1.31 1.28 . . 1.34 1.29 . . 1.34

1 1.28 . . 1.28 1.29 . . 1.29 1.29 . . 1.29 1.28 . . 1.30 1.29 . . 1.31 1.28 . . 1.34

We also made computations with the variant of rule DM, which mini-
mizes ϕQ(α)α

c2 instead of ϕR2(α)α
c2 on the second step but in case of

very small or very large d the results were essentially worse.

4.4. Results in Lavrentiev method

For studying rules in Lavrentiev method we limit our test set to self-adjoint
problems of Hansen, problems of [13] are included only in Table 33.

4.4.1. Analogs of monotone error rule.

Tables 28–30 show the results of analogs of the monotone error rule in
Lavrentiev method, where the regularization parameter is chosen as the
solution αR of equation dR(α) = Cδ, where R is GN, MD, MEa, MEn, MEk,
MEke, MEaq, MEaql. Values of additional parameters in functions dR(α) are
given in the first column of every table, the parameter q was always 1/1.2.
For comparison the tables also contain the results for iterated Lavrentiev
method: 2-iterated with the modified discrepancy principle and 3-iterated
Lavrentiev method with the discrepancy principle (both with x = 0).
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Table 28. Averages and maximums of error ratios in Lavrentiev method for vari-
ous analogs of the monotone error rule, p = 0 (uncorrelated noise left, correlated
noise right).

Rule Opt C Avg Max Monind Avg Max Monind

GN 1.059 1.19 6.31 0.145 1.34 28.6 0.135
MD 1.143 1.19 6.31 0.172 1.33 28.6 0.154

MEa 1.364 1.07 2.26 0.145 1.14 10.1 0.138
MEn, ν = 0.17 1.096 1.05 1.97 0.096 1.11 8.59 0.094
MEk, k = 2 1.251 1.10 2.14 0.235 1.15 8.59 0.221

MEke, k = 1 1.421 1.05 2.26 0.046 1.12 10.1 0.042
MEke, k = 2 1.280 1.05 2.26 0.026 1.12 10.1 0.023
MEaq 1.209 1.08 2.26 0.159 1.14 10.1 0.150

MEaql, l = 5 1.004 1.01 1.25 0.036 1.05 5.21 0.042
2-Lavr w/ MD 1.187 0.98 4.30 0.000 1.08 19.6 0.000
3-Lavr w/ D 1.530 0.94 2.68 0.000 1.00 12.1 0.000

Table 29. Averages and maximums of error ratios in Lavrentiev method for vari-
ous analogs of the monotone error rule, p = 1 (uncorrelated noise left, correlated
noise right).

Rule Opt C Avg Max Monind Avg Max Monind

GN 1.021 1.20 2.29 0.158 1.23 3.46 0.099

MD 1.263 1.02 1.08 0.105 1.08 1.70 0.209
MEa 1.583 1.03 1.09 0.135 1.07 1.17 0.209
MEn, ν = 0.4 1.287 1.01 1.05 0.096 1.02 1.16 0.086

MEk, k = 2 1.365 1.07 1.16 0.222 1.11 1.26 0.278
MEke, k = 1 1.661 1.02 1.15 0.025 1.02 1.16 0.087
MEke, k = 2 1.416 1.01 1.08 0.005 1.01 1.27 0.041

MEaq 1.430 1.05 1.13 0.164 1.08 1.20 0.220
MEaql, l = 4 1.041 1.01 1.05 0.097 1.02 1.14 0.092
2-Lavr w/ MD 1.352 0.58 1.00 0.000 0.61 1.02 0.000

3-Lavr w/ D 1.856 0.63 1.23 0.000 0.65 0.98 0.000

Table 30. Averages and maximums of error ratios in Lavrentiev method for vari-
ous analogs of the monotone error rule in case of rough δ, p = 0.

d = 2 d = 3 d = 10 d = 100
Rule Avg Max Avg Max Avg Max Avg Max

GN 1.46 8.18 1.66 10.4 2.49 18.1 4.97 33.6
MD 1.38 8.18 1.56 10.4 2.34 16.7 4.80 33.6
MEa 1.19 4.11 1.29 5.50 1.83 12.8 3.57 28.6

MEn, ν = 0.17 1.27 3.54 1.41 4.76 2.00 12.8 3.74 30.2
MEk, k = 2 1.17 3.59 1.27 5.50 1.81 12.8 3.53 28.6
MEke, k = 1 1.22 4.11 1.36 6.31 1.93 14.0 3.75 30.2
MEke, k = 2 1.27 4.11 1.40 5.50 2.02 14.0 3.76 30.2

MEaq 1.18 4.11 1.27 5.50 1.81 12.8 3.54 28.6
MEaql, l = 5 1.20 1.79 1.32 2.61 1.86 8.18 3.46 27.0
2-Lavr w/ MD 1.14 6.19 1.30 8.46 1.99 15.1 4.07 31.7

3-Lavr w/ D 1.01 4.25 1.14 6.31 1.71 12.8 3.53 29.1
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The optimal constants C in these rules were found by optimization on
self-adjoint problems of Hansen at uncorrelated noise, over all δ’s and 10
runs. Tables 28 and 29 correspond to cases p = 0, and p = 1, respectively
(in the latter case the original solution x∗ of each problem was replaced
by Ax∗, and the right-hand side was computed as A(Ax∗)). In addition
to averages and maximums of error ratios over self-adjoint problems of
Hansen, averages of the monotonicity indicators max(αmon − αR,0)/αmon,

where αmon = min{α′ :
d

dα
‖uα − u∗‖ ≥ 0, α ≥ α′}, are given in additional

columns. The smaller this indicator is, the larger is the number of cases,
where the error is a monotonically increasing function of α for α ≥ αR.
Four zeros in monotonicity indicators show that in corresponding approxi-
mations the chosen parameterαR was always larger than αmon in Lavrentiev
method.

In Table 28 the rules GN and MD gave the largest averages and max-
imums of error ratios, in Table 29 the rule GN gave large averages and
maximums, the modified discrepancy principle gave large maximum of er-
ror ratios. As expected, the methods with higher qualification (2 or 3 times
iterated Lavrentiev methods and extrapolated Lavrentiev methods with 2 or
3 terms have the qualification 2 or 3, respectively) had small averages of
error ratios in smooth case.

Rules MEa and MEaq were good in Lavrentiev method but their modifi-
cations were even slightly better. Note that in smooth case the modified
discrepancy principle in 3-extrapolated Lavrentiev approximation gave 20%
smaller averages and maximums of error ratios than the discrepancy prin-
ciple (these results are not included in tables).

In Table 30 we provide results for non-smooth case (p = 0), if the sup-
posed noise level is dδ and the rules are applied with the optimal constant
C. Again, two first rules gave the largest numbers. Setting aside the first
two rules, other rules gave smaller maximums of error ratios than 2-iterated
Lavrentiev method in case of all d and 3-iterated Lavrentiev method in case
d = 1, 2. The smallest values of averages and maximums of error ratios in
Lavrentiev method were obtained by rules MEaql, MEn with ν = 0.17 and
MEke with k = 2; the rule MEaql had especially good performance in non-
smooth case. However, the set of problems was not large enough for more
far-reaching conclusions.

Note that for choosing the parameter α in m-iterated Lavrentiev method
many rules require additional iterations for computation of iterated Lavren-
tiev approximationsxn;α with n >m. But then xn;α itself can be considered
to be an approximate solution of (2.1). Our rule MEa requires computation
of xm+2;α but if xm+2;α has been computed, one can take the approximate
solution to be xm+1;α with choice of α from the modified discrepancy prin-
ciple

‖Axm+2;α −y‖ = Cδ, C ≥ 1. (4.1)

63



or xm+2;α with choice of α from the discrepancy principle ‖Axm+2;α−y‖ =
Cδ, giving the same α as (4.1). The corresponding means of error ratios are
shown in two last rows of Tables 28–30. If the solution has source-like
representation (2.2), then for xm+1;α and for xm+2;α with α from (4.1) the
error estimate (3.1) holds with p ≤ m + 1, for xm;α with the proper α
the error estimate (3.1) holds with p ≤ m (but remind large maximums in
Table 30).

Instead of iterated approximations, one can also use extrapolated ap-
proximations. Note that the rule MEk needs computing of xm+k+1;α but
rules MEaq, MEaql use xm+1;α with different α and the rule MEke uses xm;α

with differentα. Actually, if xm;α with different α’s are available and the so-
lution is smooth, then using extrapolated iterated Lavrentiev approximation
xm;α1,...,αn instead of xm;α is strongly recommended due to much higher
qualification (the qualification is nm, see [28]).

4.4.2. Rule DM.

Tables 31 and 32 show the results for the rule DM with parameters c1 =
2.5 · 10−6, c2 = 0.25 at various levels d of noise level ill-estimation. The
results were very good both in case of correlated and uncorrelated noise.

Table 31. Means of error ratios in Lavrentiev method with Rule DM, c1 = 2.5·10−6,
c2 = 0.25 for p = 0 (left), p = 1 (right), where the used noise level is d times the
actual noise level.

Case p = 0, values of d Case p = 1, values of d
Probl. 0.01 0.1 0.5 1 2 10 100 0.01 0.1 0.5 1 2 10 100

2 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.03 1.03 1.03 1.03 1.03 1.03 1.03
3 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02
4 1.05 1.05 1.05 1.05 1.05 1.05 1.06 1.04 1.04 1.04 1.04 1.04 1.04 1.04
7 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03

8 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02

mean 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03

Table 32. Means of error ratios in Lavrentiev method with Rule DM, c1 = 2.5·10−6,
c2 = 0.25 for p = 0 (left), p = 1 (right), where the used noise level is d times the
actual noise level (correlated noise).

Case p = 0, values of d Case p = 1, values of d

Probl. 0.01 0.1 0.5 1 2 10 100 0.01 0.1 0.5 1 2 10 100

2 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.03 1.03 1.03 1.03 1.03 1.03 1.03

3 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.03 1.03 1.03 1.03 1.03 1.03 1.03
4 1.08 1.08 1.08 1.08 1.09 1.10 1.12 1.08 1.08 1.08 1.08 1.08 1.06 1.04
7 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03

8 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02

mean 1.03 1.03 1.03 1.03 1.03 1.03 1.04 1.04 1.04 1.04 1.04 1.04 1.03 1.03
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4.4.3. General comparison of rules.

Table 33 contains the means of error ratios in Lavrentiev method by prob-
lems. The following rules are included.

Lv1) Rule MD: αMD is the solution of the equation dMD(α) = 1.143δ.
Lv2) Rules MEa, MEn, MEaql: αMEa is the solution of dMEa(α) = 1.364δ;

αMEn is the solution of dMEn(α) = 1.096δ with ν = 0.17, and αMEaql is the
solution of dMEaql(α) = 1.004δ with l = 5 and q = 1/1.2.

Lv3) Rules QC and QmC choose the parameters αQC and αQmC as the
global minimizers of the functionsϕQq(α)(1+α‖A‖−1) and α−1‖rm+1;α‖ ·
(rm+1;α, rm+2;α)

1/2/(rm+2;α, rm+3;α)
1/2(1+α‖A‖−1), respectively, with q =

1/1.2, using the climbing approach with C = 1.5 and C = 2.5.
In general, the error ratios given by Lavrentiev method are better than

those found by Tikhonov method but note that Tables 4–7 show somewhat
lower overall potential of this method. Also Lavrentiev method is applicable
only to self-adjoint problems.

Table 33. Means of error ratios in Lavrentiev method by problems, p = 0.

Probl. MD MD,2 MEa MEa,2 MEn MEn,2 MEaql MEaql,2 QC QmC

2 1.76 2.17 1.21 1.59 1.18 1.56 1.04 1.29 1.07 1.05
3 1.07 1.16 1.05 1.09 1.03 1.20 1.00 1.18 1.01 1.00
4 1.04 1.19 1.04 1.08 1.01 1.20 1.00 1.19 1.01 1.00

7 1.03 1.21 1.04 1.08 1.01 1.21 1.01 1.20 1.00 1.00
8 1.02 1.15 1.01 1.09 1.01 1.16 1.00 1.15 1.03 1.02

mean 1.19 1.38 1.07 1.19 1.05 1.27 1.01 1.20 1.03 1.01

11 1.03 1.16 1.03 1.09 1.01 1.19 1.00 1.17 1.01 1.00

12 1.01 1.11 1.01 1.07 1.00 1.12 1.00 1.10 1.39 1.15
14 1.20 1.46 1.05 1.20 1.04 1.26 1.01 1.17 1.31 1.14
15 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.02 1.02

16 1.03 1.31 1.01 1.14 1.06 1.30 1.05 1.29 1.01 1.00

mean 1.05 1.21 1.02 1.10 1.02 1.17 1.01 1.15 1.15 1.07

4.5. Results in Landweber method

Tables 34–36 contain the averages of error ratios for the Landweber method
with µ = 1, using the following stopping rules. We implemented Landweber
method by operator iterations with m = 2. The stopping index in rules
was computed exactly, by gradually refining the mesh n = 2k, taking the
closest previously found approximation as a new initial approximation on
each refinement step.

Ln1) Discrepancy principle: nD is the first index n≥1 for which dD(n)≤δ.
Ln2) Rule De: find nD from Ln1 and take nDe = round(2.3nD).
Ln3) Rule MEe: find nME as the first n ≥ 1 for which dME(n) ≤ δ and take

nMEe = round(2.3nME).
Ln4) Hanke-Raus rule: nHR = argmin{√n ‖rn‖, n ≥ 1}.
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Table 34. Means of error ratios in Landweber method for p = 0.

Probl. D D,2 De De,2 MEe MEe,2 HR HRmC QN QNmC BRS BRSC

1 1.46 2.47 1.40 2.36 1.40 2.36 2.71 2.50 1.80 1.75 2.60 2.03

2 1.30 1.91 1.05 1.43 1.05 1.43 976 1.95 976 1.59 976 1.62
3 1.92 6.36 1.76 5.00 1.75 5.01 7.75 2.98 5.01 3.63 6.29 3.61
4 1.42 2.84 1.16 2.13 1.17 2.30 2.70 1.83 1.27 1.61 2.90 1.40

5 1.22 1.89 1.05 1.53 1.05 1.54 1.67 7.39 1e+4 2.37 1.84 2.17
6 1.34 1.96 1.24 1.72 1.24 1.73 2.00 1.39 1.24 1.30 2.11 1.27
7 1.33 2.79 1.08 1.96 1.08 1.97 2e+5 1.44 2e+5 1.49 2e+5 1.39

8 1.40 2.36 1.29 2.03 1.29 2.06 2.58 2.11 1.60 1.56 2.51 1.55
9 1.02 1.05 1.02 1.05 1.02 1.05 1.07 1.07 1.05 1.04 1.07 1.05
10 1.19 1.37 1.18 1.35 1.18 1.35 1.55 1.41 1.48 1.41 1.49 1.41

mean 1.36 2.50 1.22 2.06 1.23 2.08 2e+4 2.41 2e+4 1.77 2e+4 1.75

Table 35. Means of error ratios in Landweber method for p = 0 (correlated noise).

Probl. D D,2 De De,2 MEe MEe,2 HR HRmC QN QNmC BRS BRSC

1 1.46 2.39 1.37 2.27 1.38 2.28 2.63 3.39 1.71 3.06 2.53 1.90
2 1.64 2.47 1.19 1.67 1.20 1.67 911 2.44 911 2.69 911 2.16
3 2.10 7.88 1.90 5.98 1.89 5.99 10.0 3.13 5.91 3.44 7.84 3.67

4 1.47 3.23 1.20 2.45 1.21 2.60 3.01 1.88 1.32 1.33 3.34 1.36
5 1.34 2.20 1.16 1.79 1.16 1.79 1.86 7.97 1e+4 2.87 2.03 2.29
6 1.31 2.01 1.20 1.78 1.20 1.78 2.04 1.57 1.24 1.26 2.14 1.25

7 1.28 3.04 1.10 2.10 1.11 2.11 3e+5 2.48 3e+5 2.49 3e+5 1.82
8 1.36 2.41 1.24 2.07 1.24 2.09 2.64 2.32 1.67 1.47 2.51 1.48
9 1.02 1.05 1.02 1.05 1.02 1.05 1.07 1.09 1.05 1.04 1.07 1.05

10 1.20 1.38 1.18 1.36 1.18 1.36 1.56 1.41 1.49 1.41 1.49 1.41

mean 1.42 2.81 1.26 2.25 1.26 2.27 3e+4 2.77 3e+4 2.11 3e+4 1.84

Table 36. Means of error ratios in Landweber method for p = 2.

Probl. D D,2 De De,2 MEe MEe,2 HR HRmC QN QNmC BRS BRSC

1 2.78 27.5 2.96 11.8 2.92 11.9 52.5 24.2 6.05 7.84 19.3 6.55

2 1.22 4.03 1.23 2.21 1.23 2.22 2e+4 1.29 2e+4 1.64 2e+4 1.39
3 1.71 28.3 2.91 8.25 2.91 8.28 38.6 8.04 6.67 8.25 18.2 7.94
4 1.50 6.22 1.26 2.29 1.22 2.33 3.38 2.99 1.49 3.02 4.88 1.48

5 1.19 3.56 1.18 1.83 1.15 1.83 2.34 1.26 1e+5 1.49 2.89 1.16
6 1.64 6.82 1.22 3.00 1.20 3.02 4.11 3.55 1.37 2.34 6.59 1.56
7 1.44 5.95 1.25 2.04 1.23 2.06 5e+5 1.59 5e+5 1.81 5e+5 1.32

8 1.60 7.55 1.27 3.01 1.26 3.20 3.89 8.20 1.93 2.47 5.50 2.22
9 1.78 10.4 1.38 3.94 1.36 4.14 6.76 5.59 1.57 1.76 7.92 1.65
10 2.39 31.0 2.74 8.34 2.74 8.36 33.9 11.9 9.62 9.15 19.4 8.99

mean 1.73 13.1 1.74 4.67 1.72 4.73 5e+4 6.86 6e+4 3.98 5e+4 3.43
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Ln5) Rule HRmC (modification of the Hanke-Raus rule) chooses nHRmC

as the index n ≥ 1, which minimizes the function
√
n
(‖rn‖ − ‖r2n+100‖

)
,

using the climbing approach with C = 50.
Ln6) Rule QN (rule of Neubauer): nQN = argmin{‖xn − x2n‖, n ≥ 1}.
Ln7) Rule QNmC (modification of Neubauer’s rule) chooses nQNmC as

n ≥ 1, which minimizes ‖xn − x2n+100‖, using the climbing approach with
C = 20.

L8) Rule BRS (rule of Brezinski-Rodriguez-Seatzu): nBRS is the global min-
imizer of ϕBRS(n).

L9) Rule BRSC (modification of rule BRS) chooses nBRSC as the index n ≥
1, which minimizes the function ‖rn‖(‖rn‖−‖r2n+100‖)/‖A∗rn‖, using the
climbing approach with C = 15.

Since the stopping index of the monotone error rule differs from the
stopping index of the discrepancy principle by at most 1, the columns De
and MEe in Table 34 almost coincide.

In case of smooth solution with p = 2 the average in column D,2 in Table
36 is 7.5 times larger than the average in column D but the ratio of averages
in columns De,2 and De is only 2.7.

For the rule DM we found by varying parameters c1 and c2 that the best
values were c1 = 0.35 and c2 = 0.49 but the results were worse than for
rule QNmC that does not use δ.

4.6. Results in TSVD

Tables 37–39 contain the averages of error ratios in the method of trun-
cated singular value decomposition, using the following truncation rules. If

m + 1/2 ∈ N, then the expression ‖rm‖ means
√
‖rm−0.5‖‖rm+0.5‖. Some

rules contain an a priori upper bound of the truncation level: if the dimen-
sions of the discrete problem are N ×N, then make computations only for
n ≤ M(N, k), whereM(N, k) =max(max(round((1.02−k)N−2,1),N−k)).

SP1) Discrepancy principle: nD is the first index n for which dD(n) ≤ δ.
SP2) Rule Q: nQ = argmin{‖xn − xn+1‖} = argmin{σ−1

n+1|(y, vn+1)|}.
SP3) Rule Qm chooses nQm as the global minimizer of the function

max
(( ∑

n−2≤i≤n+2

‖xn − xi‖2
)1/2

,‖xn − xn+1‖
)
.

SP4) Rule HR’: in a discrete N ×N problem choose nHR’ as n ≤ M(N,10)
for which ϕHR(n) = ‖rn‖/σn+1 is minimal.

SP5) Rule HRm: nHRm = argmin{(‖rn‖ − ‖r1.5n+8‖)/σn+1}.
SP6) Rule HRL’: in a discreteN×N problem choose nHRL’ as n ≤ M(N,10)

for which ‖rn‖
√
‖xn‖/σn+1 is minimal (geometric mean of functions mini-

mized in rules HR and L).
SP7) Rule HRLm’: in a discrete N × N problem choose nHRLm’ as n ≤

M(N,5) for which (‖rn‖ − ‖r1.5n+10‖)
√
‖xn‖/σn+1 is minimal.
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Table 37. Means of error ratios in TSVD for p = 0.

Probl. D D,2 Q Qm HR’ HRm HRL’ HRLm’ BRS’ BRSm

1 1.35 1.72 1.43 1.95 2.44 1.63 1.91 1.29 2.75 1.78

2 1.28 1.83 3.50 1.17 2.41 4.03 2.43 3.81 3.00 4.27
3 1.31 2.82 2.51 1.97 4.64 2.16 3.66 2.16 8.37 2.99
4 1.33 2.63 2.03 1.23 2.75 1.57 2.42 1.48 3.65 1.93

5 1.24 1.95 2.82 1.17 1.81 1.36 1.57 1.29 2.07 1.48
6 1.21 1.86 1.40 1.24 1.96 1.32 1.80 1.24 2.10 1.38
7 1.27 3.01 161 1.41 3.99 1.56 1.88 1.43 3.42 1.49

8 1.19 1.79 1.98 1.82 2.60 1.69 1.84 1.29 2.86 1.79
9 1.02 1.04 1.04 1.07 1.09 1.03 1.05 1.02 1.09 1.03

10 1.06 1.20 1.32 1.40 1.38 1.33 1.33 1.23 1.47 1.32

mean 1.23 1.98 17.9 1.44 2.51 1.77 1.99 1.62 3.08 1.95

11 1.31 2.32 9.78 1.29 2.60 1.65 2.53 1.45 3.51 1.88
12 1.22 1.74 3.16 1.97 2.96 1.75 1.82 1.43 2.98 1.69
13 1.34 2.02 2.07 1.81 3.07 1.69 2.18 1.39 3.87 1.99

14 1.35 2.11 37.6 1.42 1.97 1.62 2.03 1.65 2.23 1.78
15 1.25 1.01 1.02 1.03 1.03 1.02 1.02 1.02 1.03 1.02
16 1.55 2.26 55.3 7.15 2.81 3.03 1.82 2.33 3.22 11.0

mean 1.34 1.91 18.2 2.45 2.41 1.79 1.90 1.55 2.81 3.22

Table 38. Means of error ratios in TSVD for p = 0 (correlated noise).

Probl. D D,2 Q Qm HR’ HRm HRL’ HRLm’ BRS’ BRSm

1 1.19 1.80 1.49 2.06 2.57 1.66 2.02 1.41 2.83 1.86

2 1.66 2.41 37.7 1.29 3.22 6.10 4.73 5.69 4.22 6.48
3 1.32 2.98 2.00 1.61 5.46 1.91 3.99 1.61 8.75 2.98
4 1.36 2.95 3.24 1.21 3.01 1.65 2.68 1.46 3.91 1.93

5 1.34 2.17 4.56 1.31 1.93 1.51 2.77 1.44 2.20 1.72
6 1.20 1.90 1.32 1.24 2.05 1.34 1.80 1.22 2.20 1.51
7 1.31 3.40 215 2.04 4.59 1.34 8.41 1.45 3.91 1.92

8 1.17 1.89 1.74 1.87 2.72 1.62 1.92 1.32 3.01 1.75
9 1.01 1.05 1.04 1.07 1.09 1.03 1.05 1.02 1.09 1.03

10 1.04 1.20 1.32 1.41 1.38 1.32 1.33 1.20 1.47 1.30

mean 1.26 2.18 27.0 1.51 2.80 1.95 3.07 1.78 3.36 2.25

11 1.27 2.58 12.2 1.25 2.90 1.62 2.77 1.47 3.81 1.88

12 1.22 1.85 1.87 2.04 3.13 1.73 1.91 1.42 3.14 1.74
13 1.31 2.38 2.22 1.79 3.61 1.76 2.55 1.44 4.55 2.02
14 1.29 2.32 96.3 4.27 2.32 1.71 8.03 1.82 2.54 1.89

15 1.10 1.01 1.02 1.04 1.03 1.02 1.02 1.01 1.03 1.02
16 1.71 2.64 51.9 11.2 3.05 3.28 2.20 2.89 3.68 14.3

mean 1.32 2.13 27.6 3.60 2.67 1.85 3.08 1.68 3.13 3.80
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Table 39. Means of error ratios in TSVD for p = 2.

Probl. D D,2 Q Qm HR’ HRm HRL’ HRLm’ BRS’ BRSm

1 1.37 5.48 3.39 2.05 28.8 5.38 5.48 2.60 50.8 10.8
2 1.54 4.38 21.2 2.23 3.49 1.56 3.48 1.66 4.38 2.71
3 2.27 5.02 2.41 10.3 36.8 5.02 5.02 4.34 181 5.02

4 1.55 8.26 1.62 1.73 7.33 1.81 1.94 1.76 8.26 2.12
5 1.31 4.89 23.2 1.58 3.18 1.51 2.27 1.38 5.71 1.96
6 1.51 4.39 2.45 1.64 5.83 2.13 2.95 1.88 12.5 2.89

7 1.25 2.49 1e+4 2.38 2.49 2.08 2.49 1.86 19.8 2.28
8 1.25 3.51 4.58 3.13 3.51 2.31 3.21 1.71 22.8 3.00
9 1.27 5.79 1.64 2.10 5.79 2.02 5.79 1.84 22.6 5.54

10 1.39 2.92 2.92 1.95 22.3 2.92 22.3 2.92 1e+3 19.7

mean 1.47 4.71 1e+3 2.91 12.0 2.67 5.50 2.20 163 5.60

11 1.30 4.57 871 1.51 4.77 2.15 4.14 1.69 13.5 3.08
12 1.36 4.43 2.56 2.22 8.17 2.38 4.43 2.02 25.3 4.25

13 1.44 4.11 2.27 3.92 6.44 1.95 4.29 1.64 22.2 3.66
14 1.59 4.15 1e+3 2.88 4.30 1.86 2.55 1.97 7.59 2.40
15 2.02 1.02 1.02 4.68 1.02 1.02 1.02 1.02 1.02 1.02

16 1.49 2.74 1e+3 2.52 2.70 2.41 1.67 1.82 8.09 6.96

mean 1.53 3.50 520 2.95 4.57 1.96 3.02 1.69 12.9 3.56

SP8) Rule BRS’: in a discrete N×N problem choose nBRS’ as n ≤ M(N,20)
for which ‖rn‖2/‖A∗rn‖ is minimal.

SP9) Rule BRSm: nBRSm = argmin{(‖rn‖ − ‖r1.5n+15‖)2/‖A∗xn‖}.
The upper bound of the truncation level was needed because some func-

tions started to decrease very quickly, attaining their minimums at n = N,
where the error of approximate solution was large. The length of the inter-
val, where this behavior occurred, depended weakly on the discretization
level N.

4.7. Results in conjugate gradient type methods

The following tables present the averages of error ratios ‖xnR − x∗‖/
‖xn∗ − x∗‖ for rules in methods CGLS and CGME. The denominator
‖xn∗ − x∗‖ refers to the minimal error in the corresponding method
(CGLS or CGME).

4.7.1. Rules for CGLS.

For CGLS the following rules were compared. Rules CL1–CL5 use noise level
information, rules CL6–CL9 do not.

CL1) Discrepancy principle: nD is the first index n for which dD(n) ≤ δ.
CL2) Rule De. Using nD from CL1, find nDe = round(1.02n1.05

D ).
CL3) Rule ME: nME is the first index n for which dME(n) ≤ δ.
CL4) Rule MEe: using nME from CL3, find nMEe = round(0.99n1.13

ME ).
CL5) Rule Me: using nD and nME from CL1 and CL3, respectively, find

nMe = round(max(n1.043
D , n1.07

ME )).
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Table 40. Means of error ratios in CGLS for p = 0.

Probl. D D,2 De De,2 ME ME,2 MEe MEe,2 Me Me,2 HR QNmC HRmC HRmWC

1 1.40 1.86 1.42 1.86 1.66 2.27 1.66 2.27 1.40 1.86 2.52 2.28 1.87 1.52

2 1.20 1.74 1.06 1.43 1.38 2.09 1.08 1.47 1.07 1.46 912 3.05 1.62 1.62
3 1.29 2.82 1.43 2.75 2.15 4.88 1.96 4.81 1.29 2.75 5.29 27.8 2.34 2.34
4 1.22 2.24 1.20 2.13 1.71 3.61 1.27 3.03 1.19 2.09 2.22 1.59 1.45 1.45

5 1.13 1.81 1.05 1.62 1.31 2.04 1.07 1.65 1.06 1.63 1.60 1.33 1.45 1.12
6 1.23 1.79 1.21 1.74 1.54 2.39 1.34 2.20 1.21 1.76 2.12 1.46 1.42 1.42
7 1.17 2.39 1.16 2.36 1.74 3.49 1.48 3.15 1.17 2.29 2.34 27.4 1.41 1.41

8 1.19 1.87 1.19 1.72 1.49 2.62 1.38 2.34 1.17 1.79 2.12 1.95 1.74 1.49
9 1.02 1.04 1.03 1.04 1.03 1.06 1.03 1.06 1.02 1.04 1.07 1.06 1.04 1.02

10 1.06 1.20 1.06 1.20 1.16 1.25 1.13 1.24 1.06 1.20 1.48 1.72 1.38 1.38

mean 1.19 1.88 1.18 1.78 1.52 2.57 1.34 2.32 1.16 1.79 93.3 6.96 1.57 1.48

Table 41. Means of error ratios in CGLS for p = 0 (correlated noise).

Probl. D D,2 De De,2 ME ME,2 MEe MEe,2 Me Me,2 HR QNmC HRmC HRmWC

1 1.23 1.89 1.23 1.89 1.71 2.35 1.71 2.35 1.23 1.89 2.58 2.44 1.97 1.60
2 1.49 2.25 1.24 1.71 1.75 2.73 1.24 1.66 1.23 1.75 875 3.31 1.49 3.65
3 1.35 3.12 1.40 2.95 2.20 5.19 1.78 5.01 1.33 2.95 5.97 42.6 2.07 2.07

4 1.26 2.60 1.19 2.46 1.94 4.00 1.46 3.33 1.23 2.37 2.50 1.64 1.43 1.43
5 1.27 2.07 1.22 1.84 1.44 2.33 1.18 1.87 1.21 1.85 1.79 1.41 1.94 1.30
6 1.18 1.82 1.14 1.76 1.57 2.39 1.35 2.18 1.18 1.79 2.12 1.36 1.47 1.36

7 1.16 2.63 1.15 2.56 2.03 3.80 1.58 3.40 1.16 2.47 2.72 32.0 1.38 1.39
8 1.18 1.96 1.18 1.80 1.55 2.75 1.34 2.46 1.18 1.86 2.18 1.99 1.61 1.30
9 1.01 1.05 1.01 1.05 1.03 1.06 1.02 1.06 1.01 1.05 1.07 1.06 1.04 1.02

10 1.05 1.21 1.05 1.21 1.15 1.25 1.13 1.24 1.05 1.21 1.47 1.74 1.35 1.35

mean 1.22 2.06 1.18 1.92 1.64 2.78 1.38 2.46 1.18 1.92 89.8 8.96 1.57 1.65

Table 42. Means of error ratios in CGLS for p = 2.

Probl. D D,2 De De,2 ME ME,2 MEe MEe,2 Me Me,2 HR QNmC HRmC HRmWC

1 1.29 4.58 1.29 4.58 1.95 8.31 1.95 8.31 1.29 4.58 20.5 118 2.33 2.33

2 1.18 2.92 1.26 2.92 1.88 5.94 1.75 5.67 1.26 2.92 2e+4 18.4 2.54 2.54
3 1.46 4.56 1.46 4.56 1.64 13.9 1.64 13.9 1.46 4.56 52.9 573 6.83 6.83
4 1.16 4.76 1.36 3.47 1.96 6.32 1.69 4.63 1.32 3.47 4.48 3.22 1.55 1.55

5 1.16 3.09 1.12 2.63 1.54 4.69 1.23 3.74 1.13 2.54 2.69 2.14 1.24 1.24
6 1.42 4.00 1.55 2.88 1.99 9.46 1.59 6.76 1.24 3.01 4.48 4.58 1.85 1.85
7 1.22 4.00 1.20 4.00 1.97 5.58 1.38 5.18 1.23 4.00 2.24 5.01 1.55 1.55

8 1.13 2.70 1.13 2.70 1.70 5.51 3.32 6.31 1.13 2.70 10.3 59.1 3.68 3.68
9 1.35 6.68 1.45 4.95 2.36 10.2 1.64 8.47 1.31 4.95 5.94 7.21 1.50 1.50

10 1.42 2.88 1.42 2.88 2.18 9.87 2.18 9.87 1.42 2.88 55.3 2e+3 24.9 24.9

mean 1.28 4.02 1.32 3.56 1.92 7.98 1.84 7.29 1.28 3.56 2e+3 312 4.79 4.79
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CL6) Hanke-Raus rule: nHR = argmin{ϕHR(n)}.
CL7) Rule QNmC (analog of Neubauer’s rule): nQNmC is the minimizer

of the function ϕQNm(n) = ‖xn − xn‖, using the climbing strategy with
C = 20, where xn is the solution of Axn = Axn found after n+ 1 steps in
CGLS method.

CL8) Rule HRmC: nHRmC is the minimizer of the function ϕHRm(n) =√
̺n+1 (‖rn‖ − ‖r2n+10‖), using the climbing strategy with C = 10.

CL9) Rule HRmWC: nHRmWC is the minimizer of the function, which coin-
cides with ϕHRm(n) at indices n ≤ 3 and with W for n ≥ 500, with smooth
transition fromϕHRm toW on steps from 3 to 500. Computations are made
on the interval [0, N], where N is determined using the climbing strategy
with C = 20.

From Tables 40–42 we see that the rule Me with the estimated parameter
gives slightly better results than rules D and ME in case p = 0 both for
exact and 2 times overestimated noise level and both for uncorrelated and
correlated noise. Also note that our modifications to the rule HR were able
to improve the results in most problems in case p = 0. Adding the function
W was justified in many problems, if p = 0 (rules HRmC and HRmWC) but
if p was 2, then the results remained unchanged.

4.7.2. Rules for CGME.

Tables 43–45 compare the following rules in CGME.
CM1) Rule DH: nDH is the first index for which dDH(n) ≤ 1.2δ.
CM2) Rule ME: nME is the first index n for which dME(n) ≤ δ.
CM3) Rule MEe: using nME from CM2, find nMEe = round(0.85n1.06

ME ).
CM4) Hanke-Raus rule: nHR = argmin{ϕHR(n)}.
CM5) Rule HRC: nHRC is the minimizer of the functionϕHR(n), using the

climbing strategy with C = 100.
CM6) Rule DHP: nDHP is the first index n for which the function dDH(n)

decreases in next 10 steps by no more than C = 1.5 times (plateau strategy).
CM7) Rule RMC: nRMC is the minimizer of dD(n) on [0, N], where N

minimizes ̺1/2
n−2dDH(n− 3) using the climbing strategy with C = 3.

The error ratios for CGME are better than for CGLS but as Tables 4–7
show, the method CGLS itself generally has smaller minimal errors. Note-
worthy is remarkably good performance of the discrepancy principle (DH in
Tables 43–45, also D in Tables 40–42) that is hard to beat by solely refining
D and ME. In case p = 0 the heuristic delta-free rules RMC and DHP gave
similar results than the discrepancy principle in most problems but surpris-
ingly in case p = 2 they gave best possible results in 90% of runs (Table 45).
The rule DHP was not so good in case of correlated noise (Table 44).

Note that some other stopping rules for CGLS and CGME methods are
proposed and numerically tested in [27].
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Table 43. Means of error ratios in CGME for p = 0.

Probl. DH DH,2 ME ME,2 MEe MEe,2 HR HRC DHP RMC

1 1.02 1.17 1.10 1.23 1.10 1.23 1.74 1.74 1.01 1.01

2 1.14 1.55 1.36 1.92 1.23 1.70 686 1.27 4.03 1.04
3 1.07 1.24 1.00 2.55 1.00 2.55 4.19 4.19 1.00 1.00
4 1.05 1.51 1.07 1.68 1.08 1.68 1.61 1.61 1.00 1.04

5 1.05 1.24 1.14 1.39 1.11 1.36 1.38 1.38 1.21 1.09
6 1.11 1.16 1.08 1.40 1.07 1.40 1.48 1.48 1.00 1.10
7 1.05 1.41 1.14 1.52 1.14 1.50 1.64 1.66 1.00 1.16

8 1.02 1.20 1.09 1.52 1.09 1.52 1.51 1.50 1.00 1.13
9 1.00 1.02 1.01 1.02 1.01 1.02 1.04 1.04 1.00 1.02

10 1.03 1.03 1.00 1.07 1.00 1.07 1.27 1.32 1.00 1.00

mean 1.06 1.25 1.10 1.53 1.08 1.50 70.2 1.72 1.33 1.06

Table 44. Means of error ratios in CGME for p = 0 (correlated noise).

Probl. DH DH,2 ME ME,2 MEe MEe,2 HR HRC DHP RMC

1 1.01 1.16 1.09 1.24 1.09 1.24 1.72 1.70 1.01 1.00
2 1.40 2.00 1.79 2.60 1.54 2.25 613 1.08 9.72 1.04
3 1.07 1.26 1.04 2.52 1.04 2.52 3.95 3.95 1.00 1.00

4 1.06 1.50 1.10 1.69 1.10 1.69 1.58 1.57 1.42 1.04
5 1.16 1.34 1.24 1.51 1.21 1.48 1.39 1.13 1.59 1.12
6 1.08 1.16 1.09 1.40 1.09 1.40 1.46 1.42 1.66 1.08

7 1.10 1.43 1.17 1.58 1.19 1.56 1.65 1.69 1.71 1.17
8 1.02 1.22 1.11 1.54 1.11 1.54 1.50 1.47 1.51 1.13
9 1.00 1.02 1.01 1.02 1.01 1.02 1.04 1.04 1.06 1.02

10 1.02 1.02 1.00 1.07 1.00 1.07 1.25 1.29 1.00 1.00

mean 1.09 1.31 1.16 1.62 1.14 1.58 62.8 1.64 2.17 1.06

Table 45. Means of error ratios in CGME for p = 2.

Probl. DH DH,2 ME ME,2 MEe MEe,2 HR HRC DHP RMC

1 1.09 1.43 1.00 1.43 1.00 1.43 31.3 31.3 1.00 1.00

2 1.17 1.56 1.11 2.09 1.11 2.09 5e+3 74.5 1.02 1.00
3 1.00 1.43 1.00 1.43 1.00 1.43 170 170 1.00 1.00
4 1.41 1.34 1.00 1.37 1.00 1.37 1.37 1.37 1.00 1.00

5 1.05 1.78 1.31 2.37 1.31 2.37 1.59 1.59 1.01 1.01
6 1.01 1.75 1.22 2.99 1.22 2.99 2.85 2.85 1.00 1.01
7 1.00 1.77 1.43 3.20 1.43 3.20 1.75 1.75 1.00 1.00

8 1.03 1.71 1.00 1.71 1.00 1.71 12.6 12.6 1.00 1.00
9 1.10 1.43 1.25 2.05 1.25 2.05 2.27 2.27 1.00 1.00

10 1.00 1.40 1.00 1.43 1.00 1.43 1e+3 1e+3 1.00 1.00

mean 1.09 1.56 1.13 2.01 1.13 2.01 699 178 1.00 1.00
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4.7.3. Rule DM.

If the noise level is known approximately, then for CGLS, we propose the
two-step rule DM with constants c1 = 0.25, c2 = 0.4.

Tables 46, 47 illustrate behavior of this rule at various degrees of noise
level over- or underestimation. Comparing with Table 40, we see that at
d = 1, p = 0 this rule gives an average that is worse than the average of
best rules that use noise level but better than the best average of a δ-free
rule. The right hand sides of Tables 46, 47 show that if p = 2, then the rule
DM looses its forgiveness of coarse estimation of noise level more quickly
than in case p = 0.

Comparing Tables 46 and 47 with each other, we see that in case of
correlated noise the usable domain of DM is essentially narrower. If p = 2,
then middle columns (d close to 1) are better in case of uncorrelated noise
but at 100 times underestimated noise level (d = 0.01) the results are better
in case of correlated noise.

Table 46. Rule DM in CGLS for p = 0 (left), p = 2 (right), where the supposed
noise level is d times the actual noise level.

Case p = 0, values of d Case p = 2, values of d
Probl. 0.01 0.1 0.5 1 2 10 100 0.01 0.1 0.5 1 2 10 100

1 5.94 3.46 2.95 1.43 1.51 2.25 3.20 15.6 15.2 8.82 1.28 1.88 8.31 41.2
2 29.5 4.70 1.58 1.30 1.14 1.60 4.50 395 1.59 1.59 1.56 1.61 5.94 18.8
3 3.27 3.27 2.07 2.18 2.70 4.39 8.14 1.77 1.77 1.48 1.44 2.15 13.9 72.2

4 1.49 1.49 1.36 1.33 1.60 3.66 8.15 2.78 2.78 2.33 1.21 1.19 6.32 28.5
5 14.3 14.3 2.26 1.29 1.12 1.83 3.98 35.1 35.1 1.39 1.26 1.24 3.79 15.9
6 1.63 1.63 1.23 1.33 1.45 2.20 3.28 2.44 2.44 1.76 1.55 1.97 6.17 25.1

7 1.29 1.29 1.29 1.37 1.42 3.60 8.99 1.46 1.46 1.44 1.46 1.67 4.60 25.4
8 1.71 1.70 1.31 1.36 1.62 2.41 4.11 5.56 5.56 2.56 1.27 1.48 5.51 27.5
9 1.51 1.35 1.02 1.02 1.03 1.06 1.12 5.35 2.53 1.51 1.40 1.74 7.68 34.4

10 26.4 1.55 1.21 1.22 1.23 1.36 1.46 3e+3 109 1.57 1.57 2.87 9.87 45.4

mean 8.70 3.47 1.63 1.38 1.48 2.44 4.69 316 17.8 2.45 1.40 1.78 7.21 33.4

Table 47. Rule DM in CGLS for p = 0 (left), p = 2 (right), where the supposed
noise level is d times the actual noise level (correlated noise).

values of d for p = 0 values of d for p = 2

Probl. 0.01 0.1 0.5 1 2 10 100 0.01 0.1 0.5 1 2 10 100

1 5.29 5.24 1.61 1.54 1.62 2.32 3.27 16.1 13.0 6.40 1.75 5.42 9.42 65.9

2 19.0 3.16 1.59 1.16 1.19 1.85 6.20 154 2.29 1.81 1.78 2.11 6.72 28.2
3 4.98 4.41 1.88 2.33 2.79 4.73 8.97 10.0 10.2 3.88 2.67 2.47 11.6 50.1
4 1.94 1.92 1.59 1.70 1.90 4.08 8.86 1.76 1.60 2.24 2.09 1.98 10.2 52.8
5 7.82 7.43 2.16 1.57 1.29 2.07 4.50 13.2 1.42 1.51 1.74 1.97 6.43 27.4

6 1.64 1.47 1.34 1.36 1.43 2.21 3.25 1.74 1.76 2.05 2.49 2.94 12.4 44.1
7 1.48 1.26 1.35 1.52 1.67 4.07 9.63 1.36 1.38 2.06 2.67 3.49 8.79 49.9
8 1.74 1.72 1.54 1.46 1.64 2.53 4.30 6.30 5.55 4.85 3.65 3.62 12.9 63.4

9 310 1.03 1.03 1.02 1.03 1.06 1.11 1.31 1.41 1.47 2.16 2.78 8.05 50.0
10 2.32 1.87 1.41 1.23 1.23 1.33 1.46 413 134 120 9.43 2.74 9.38 40.9

mean 35.7 2.95 1.55 1.49 1.58 2.63 5.16 61.9 17.3 14.6 3.04 2.95 9.59 47.3
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4.8. Results in extrapolated Tikhonov method

Since extrapolation forms the approximate solution on base of several sin-
gle Tikhonov approximations, in numerical experiments of this section we
searched the regularization parameter from the sequence Ω = (αn), where
αn = qn (q = 0.9; n = 0, 1, . . . ). The task of finding the solution of an
equation d(α) = Cδ was thus replaced by the task of finding the first α in
this sequence for which the inequality d(α) ≤ Cδ holds. The extrapolated
approximation with m terms, corresponding to regularization parameter

α, was constructed using Tikhonov approximations xqiα with i = −
⌊m

2

⌋
,

−
⌊m

2

⌋
+ 1, . . . ,

⌈m
2

⌉
− 1. Then α lies exactly in the middle of the sequence

qiα of parameters, if m is odd.
To maintain a common base of comparison, all error ratios were com-

puted by dividing the error of computed approximation by the minimal
error of single Tikhonov approximation. In this sense the results are com-
parable with the results of Section 4.3.

4.8.1. Rules using noise level.

Tables 48–55 show the results for the following rules using noise level in-
formation.

Te1) Rule De. Let αD be the first αn with dD(αn) ≤ δ in ordinary Tikho-
nov method and αmD be the first αn with dD(αn) ≤ δ in m-extrapolated
Tikhonov method. Take αDe = αmDe to be the nearest α ∈ Ω to α

cm,1
mD α

cm,2
D ,

where (c2,1, c2,2) = (1.22,−0.12), (c3,1, c3,2) = (1.16,−0.04). We also rec-
ommend (c4,1, c4,2) = (1.11,−0.01), (c5,1, c5,2) = (1.1,0). The exponent
less than 1 of αD was good only for p ≥ 1.

Te2) Rule MEe. Let αME be the first αn with deME(αn) ≤ δ in m-extra-
polated Tikhonov method (see (3.6)). Take αMEe = αmME to be the nearest
α ∈ Ω to min(0.5αME,0.6α

1.08
ME ).

Te3) Rule MEs. Let αME be the first αn for which dME(n) ≤ δ on se-
quence (xn) (see (3.5)), where xn is an m-extrapolated approximation cor-
responding to parameter αn. Take αMEs = αmMEs to be the nearest α ∈ Ω
to min(0.5αME,0.6α

1.08
ME ).

Te4) Rule R2e. Let αR2 be the first α with dR2(α) ≤ Cδ in m-iterated
Tikhonov method, where C = 0.2 in case m = 2 and C = 0.13 in case
m = 3. Take αR2e = αmR2e to be the nearest α ∈ Ω to 0.5αR2.

Te5) Rule Me. Using αMEe, αR2e from Te2, Te4, respectively, take αMe =
min(αMEe, αR2e).

Te6) Rule maxD. Take αmaxD to be the first αn for which dD(n) ≤ δ on
sequence (xn), where xn is an n-extrapolated approximation formed using
single Tikhonov approximations xα1 , . . . , xαn .

Te7) Rule maxDe. Using αmaxD from Te6, take αmaxDe to be the nearest
α ∈ Ω to α1.1

maxD.
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Table 48. Means of error ratios for 2-extrapolated Tikhonov approximation.

p De De,2 MEe MEe,2 MEs MEs,2 R2e R2e,2 Me Me,2

0 1.16 2.15 1.15 1.87 1.15 1.88 1.43 1.52 1.24 1.51

0.25 1.59 3.65 1.58 3.12 1.58 3.15 2.78 2.92 1.79 2.40
0.5 1.55 4.44 1.55 3.64 1.55 3.67 2.11 2.42 1.74 2.42
0.75 1.25 4.25 1.27 3.12 1.26 3.16 1.56 1.83 1.41 1.83

1 1.00 3.92 1.02 2.54 1.01 2.59 1.30 1.41 1.15 1.41
1.5 0.74 3.31 0.79 1.91 0.78 1.95 0.85 0.88 0.83 0.88
2 0.59 2.70 0.65 1.37 0.64 1.40 0.69 0.67 0.69 0.67

4 0.45 1.87 0.50 0.85 0.50 0.86 0.54 0.48 0.55 0.48
8 0.45 1.80 0.49 0.83 0.49 0.83 0.53 0.47 0.54 0.47

mean 0.98 3.12 1.00 2.14 0.99 2.16 1.31 1.40 1.10 1.34

Table 49. Means of error ratios for 2-extrapolated Tikhonov approximation (cor-
related noise).

p De De,2 MEe MEe,2 MEs MEs,2 R2e R2e,2 Me Me,2

0 1.18 2.31 1.17 2.00 1.17 2.02 1.54 1.61 1.28 1.61
0.25 1.61 4.76 1.61 4.04 1.61 4.07 3.32 3.63 1.77 3.06
0.5 1.54 7.78 1.53 6.46 1.52 6.50 4.21 4.64 1.75 4.64

0.75 1.31 7.89 1.32 5.91 1.32 5.96 2.73 3.65 1.49 3.65
1 0.99 6.39 1.01 4.31 1.00 4.39 2.14 2.61 1.13 2.61
1.5 0.74 6.49 0.77 3.64 0.77 3.72 1.35 1.57 0.87 1.57

2 0.59 4.25 0.72 2.17 0.72 2.22 1.00 1.04 0.90 1.04
4 0.42 4.48 0.49 2.07 0.49 2.09 0.69 0.71 0.63 0.71
8 0.44 2.74 0.51 1.35 0.50 1.35 0.61 0.58 0.62 0.58

mean 0.98 5.23 1.02 3.55 1.01 3.59 1.95 2.23 1.16 2.16

Table 50. Means of error ratios for 3-extrapolated Tikhonov approximation.

p De De,2 MEe MEe,2 MEs MEs,2 R2e R2e,2 Me Me,2

0 1.17 2.05 1.16 1.83 1.16 1.82 1.43 1.59 1.16 1.58

0.25 1.64 3.49 1.60 3.07 1.61 3.04 2.80 3.04 1.61 2.50
0.5 1.57 4.22 1.58 3.57 1.58 3.54 2.27 2.83 1.58 2.82
0.75 1.26 3.88 1.28 3.01 1.28 2.96 1.59 2.34 1.28 2.31

1 0.99 3.46 1.01 2.40 1.02 2.35 1.36 1.51 1.02 1.51
1.5 0.72 2.87 0.77 1.73 0.78 1.69 0.84 1.02 0.78 1.02
2 0.54 2.25 0.61 1.11 0.62 1.07 0.68 0.67 0.63 0.67

4 0.34 1.40 0.44 0.48 0.44 0.48 0.46 0.40 0.47 0.40
8 0.33 1.28 0.41 0.42 0.42 0.42 0.44 0.39 0.45 0.39

mean 0.95 2.77 0.98 1.96 0.99 1.93 1.32 1.53 1.00 1.47
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Table 51. Means of error ratios for 3-extrapolated Tikhonov approximation (cor-
related noise).

p De De,2 MEe MEe,2 MEs MEs,2 R2e R2e,2 Me Me,2

0 1.18 2.20 1.17 1.96 1.17 1.95 1.53 1.70 1.18 1.69

0.25 1.63 4.48 1.63 3.96 1.63 3.92 3.46 3.77 1.64 3.20
0.5 1.53 7.31 1.56 6.27 1.56 6.22 4.31 5.21 1.58 5.19
0.75 1.32 7.29 1.35 5.78 1.36 5.69 3.17 4.65 1.39 4.58

1 0.99 5.53 1.01 4.02 1.02 3.97 2.41 2.81 1.04 2.81
1.5 0.71 5.74 0.74 3.24 0.75 3.11 1.37 1.75 0.78 1.75
2 0.59 3.54 0.75 1.78 0.75 1.75 0.96 1.03 0.81 1.03

4 0.34 3.48 0.45 1.13 0.46 1.11 0.53 0.57 0.50 0.57
8 0.35 2.07 0.46 0.66 0.46 0.66 0.49 0.46 0.50 0.46

mean 0.96 4.63 1.01 3.20 1.02 3.15 2.03 2.44 1.05 2.36

Table 52. Means of error ratios for extrapolated approximation, n = max (uncor-
related noise left, correlated noise right).

p maxD maxD,2 maxDe maxDe,2 maxD maxD,2 maxDe maxDe,2

0 1.29 2.49 1.17 2.25 1.34 2.73 1.19 2.42
0.25 1.80 4.45 1.63 3.82 1.88 5.97 1.66 5.14

0.5 1.81 5.25 1.60 4.65 1.96 9.09 1.60 8.31
0.75 1.48 5.22 1.28 4.47 1.56 9.52 1.36 8.27
1 1.15 4.84 0.99 4.00 1.16 8.52 1.00 6.80
1.5 0.81 4.03 0.71 3.34 0.81 7.29 0.70 5.97

2 0.58 3.18 0.52 2.67 0.66 4.85 0.60 3.97
4 0.31 1.93 0.30 1.78 0.31 4.70 0.31 4.34
8 0.26 1.55 0.26 1.47 0.28 2.21 0.29 2.02

mean 1.06 3.66 0.94 3.16 1.11 6.10 0.97 5.25

Rules Te1–Te5 are intended for choosing the parameter in m-extrapo-
lated approximation (m fixed), rules Te6, Te7 can be used in extrapolated
approximation with maximum number of single Tikhonov approximations
with parameters α1, α2, . . . , αmaxD (resp. αmaxDe).

The rules MEe and MEs always gave similar results. At exact δ the rules
MEe and MEs are somewhat better than ME but in case of 2 times overesti-
mated noise level the rule Me is better.

As Tables 48–52 show, if x∗ ∈ R(A∗), then in most cases the error of
extrapolated approximation with a posteriori parameter choice was smaller
than the error of the best single Tikhonov approximation. Table 52 shows
the advantage of the approximation with maximum number of terms for
large p.

In Tables 53, 54 the error ratios of 3-extrapolated approximation with
rule R2e and max-extrapolated approximation with rule maxDe are given for
every problem (also including the problems from [13]). In most problems
the error ratios decreased with increasing p, especially if p ≥ 1.

Table 55 shows the averages of error ratios for problem ’heat’.
We do not present the results for the discrepancy principle and mono-

tone error rule since the refined rules De and MEe were somewhat better.
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Table 53. Means of error ratios in 3-extrapolated Tikhonov approximation with
rule MEe by problems.
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0 1.42 1.02 1.54 1.04 1.00 1.13 0.98 1.26 1.02 1.18 1.10 1.23 1.22 1.07 1.02 1.49

0.25 2.49 1.02 1.61 1.01 0.98 1.13 0.95 1.42 1.39 4.01 1.07 1.33 1.26 1.08 2.07 1.66
0.5 4.09 1.03 1.44 0.94 0.96 1.07 0.88 1.30 1.56 2.49 1.02 1.28 1.21 1.06 4.34 1.41
0.75 1.74 1.03 1.37 0.89 0.93 1.01 0.82 1.18 1.52 2.27 0.94 1.21 1.11 1.02 7.37 1.19
1 1.53 0.99 0.96 0.80 0.89 0.94 0.71 0.92 1.16 1.19 0.84 1.11 1.02 0.96 13.4 0.99

1.5 0.96 0.84 0.66 0.63 0.82 0.74 0.54 0.75 0.93 0.80 0.65 0.91 0.79 0.78 3.85 0.71
2 0.65 0.65 0.49 0.53 0.73 0.58 0.47 0.59 0.69 0.73 0.53 0.73 0.64 0.59 2.90 0.58
4 0.42 0.37 0.40 0.42 0.46 0.44 0.41 0.41 0.48 0.55 0.45 0.47 0.43 0.34 2.52 0.52

8 0.40 0.36 0.40 0.41 0.41 0.42 0.40 0.40 0.42 0.53 0.44 0.43 0.38 0.33 2.52 0.52

mean 1.52 0.81 0.99 0.74 0.80 0.83 0.68 0.91 1.02 1.53 0.78 0.97 0.90 0.80 4.44 1.01

Table 54. Means of error ratios for extrapolated Tikhonov approximation with
rule maxDe.
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0 1.43 1.03 1.47 1.12 1.01 1.18 1.01 1.30 1.02 1.19 1.18 1.29 1.24 1.01 1.02 1.60
0.25 2.54 1.02 1.55 1.10 0.97 1.21 0.96 1.55 1.43 3.97 1.18 1.45 1.33 0.98 1.99 1.92

0.5 4.23 0.99 1.38 1.00 0.90 1.18 0.87 1.43 1.64 2.36 1.12 1.42 1.27 0.94 4.00 1.67
0.75 1.82 0.94 1.26 0.92 0.84 1.11 0.81 1.27 1.67 2.19 1.04 1.38 1.13 0.87 6.53 1.46
1 1.58 0.87 0.84 0.81 0.78 1.02 0.68 0.93 1.21 1.19 0.93 1.25 1.03 0.80 11.9 1.26

1.5 0.92 0.68 0.58 0.59 0.69 0.74 0.50 0.73 0.98 0.69 0.66 1.01 0.74 0.62 3.06 0.92
2 0.56 0.49 0.37 0.45 0.57 0.54 0.42 0.55 0.63 0.63 0.52 0.76 0.55 0.43 1.74 0.71
4 0.27 0.25 0.24 0.30 0.30 0.33 0.33 0.30 0.35 0.37 0.35 0.36 0.28 0.20 1.49 0.55

8 0.24 0.22 0.23 0.27 0.24 0.28 0.29 0.26 0.28 0.30 0.31 0.28 0.21 0.18 1.49 0.53

mean 1.51 0.72 0.88 0.73 0.70 0.84 0.65 0.93 1.02 1.43 0.81 1.02 0.86 0.67 3.69 1.18

Table 55. Means (over all p) of error ratios and errors for problem heat.

δ D D,2 Me Me,2 2MEe 2MEe,2 3De 3De,2 ‖xλ∗−x∗‖
0.5 1.06 2.49 1.07 1.92 0.99 1.12 0.87 1.19 3.91e-1
10−1 1.12 2.17 1.06 1.88 0.93 1.52 0.83 2.33 2.10e-1
10−2 1.26 1.55 1.07 1.57 0.85 1.28 0.77 1.72 7.14e-2

10−3 1.48 1.28 1.08 1.28 0.80 1.01 0.71 1.26 2.15e-2
10−4 1.81 1.26 1.10 1.13 0.78 0.78 0.68 0.92 7.19e-3
10−5 2.51 1.47 1.13 1.06 0.77 0.70 0.67 0.74 3.18e-3

10−3 3.45 2.19 1.15 1.04 0.75 0.67 0.66 0.68 1.51e-3

mean 1.81 1.77 1.09 1.41 0.84 1.01 0.74 1.26

77



4.8.2. Rules not using noise level.

Tables 56–58 contain the results for rules using minimization strategy in
extrapolated Tikhonov method with 2 or 3 terms (for analogous results in
single Tikhonov approximation see Tables 18–20). The lower part shows
the means of error ratios in problems of Table 2 with all solution vectors
of Table 3. The rules were selected as the best rules for single Tikhonov
approximation.

Te8) Rules QC, R2C, BRSC choose the parameter by the climbing ap-
proach in the functions ϕeQ(α), ϕeR2(α), and ϕBRS(α), respectively, where
C = 7 in 2-extrapolated Tikhonov approximation and C = 7.5 in 3-extrapo-
lated Tikhonov approximation.

Te9) Rules DR21 and BRS1 choose the parameter as the largest local
minimum of the functions ϕD(α)

0.9ϕeR2(α)
0.1α0.4 and ϕBRS(α)α

c , where
c = 0.58 or c = 0.61 in 2- or 3-extrapolated approximation, respectively.

Rules Te8 require a somewhat larger constant C in conjunction with the
climbing approach than their analogs T10 of Section 4.3.2. Note also the
difference in weighted geometric averages in rules DR21 in Te9 and T12.

In most cases the results remained good. The rule DR21 was good in
case p = 0 and essentially worse in case p = 2. Note also that the problem
14 was hard to most rules in case p = 0 and the problem 15 in case p = 2.
The error in problem 15 has a very sharp minimum, if p = 2, while the
functions used in our rules are quite smooth.

Table 56. Means of error ratios for 2-extrapolated and 3-extrapolated Tikhonov
approximation, p = 0.

2-extrapolated Tikhonov 3-extrapolated Tikhonov
Probl. QC R2C BRSC DR21 BRS1 QC R2C BRSC DR21 BRS1

1 1.56 1.61 2.63 2.18 2.69 1.91 1.86 2.63 2.62 2.72
2 1.62 1.58 1.47 1.59 1.36 1.62 1.52 1.47 1.59 1.52

3 2.43 2.37 7.08 2.99 4.14 2.79 2.85 7.18 3.19 14.5
4 1.11 1.09 2.23 1.15 1.67 1.10 1.16 2.20 1.16 1.69
5 1.71 1.69 1.42 1.83 1.17 1.70 1.67 1.43 1.75 1.18

6 1.19 1.18 1.85 1.28 1.50 1.19 1.19 1.82 1.28 1.49
7 1.09 1.08 1.78 1.07 1.33 1.09 1.06 1.79 1.08 1.35
8 1.52 1.51 2.30 1.48 1.94 1.52 1.45 2.27 1.58 2.25

9 1.04 1.04 1.06 1.05 1.07 1.04 1.04 1.06 1.05 1.07
10 1.42 1.42 1.55 1.51 1.86 1.42 1.44 1.54 1.85 1.87

mean 1.47 1.46 2.34 1.61 1.87 1.54 1.52 2.34 1.72 2.96

11 1.18 1.17 2.01 1.20 1.58 1.19 1.22 2.03 1.25 1.59

12 1.99 1.95 2.83 2.05 2.30 1.98 2.33 2.84 2.06 2.30
13 3.26 3.25 3.32 3.14 3.52 3.27 3.06 3.33 3.20 3.54
14 1.99 1.93 2.22 1.91 20.3 2.07 2.22 5.67 5.37 20.5

15 1.06 1.06 1.06 1.06 1.06 1.06 1.05 1.06 1.06 1.06
16 1.66 1.65 2.27 1.74 1.84 1.70 1.92 2.34 2.76 4.18

mean 1.86 1.84 2.28 1.85 5.10 1.88 1.97 2.88 2.62 5.52
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Table 57. Means of error ratios for 2-extrapolated and 3-extrapolated Tikhonov
approximation, p = 0 (correlated noise).

2-extrapolated Tikhonov 3-extrapolated Tikhonov
Probl. QC R2C BRSC DR21 BRS1 QC R2C BRSC DR21 BRS1

1 1.55 1.56 2.54 2.12 2.64 1.90 1.86 2.53 2.59 2.67
2 1.47 1.44 1.33 1.88 1.27 1.65 1.52 1.32 1.88 1.31

3 2.62 2.61 8.38 3.24 4.60 2.89 2.85 8.55 3.43 15.5
4 1.16 1.15 2.49 1.31 1.87 1.16 1.16 2.45 1.33 1.89
5 1.72 1.67 1.59 13.4 1.55 1.70 1.67 1.60 13.4 2.09

6 1.21 1.20 1.94 1.34 1.57 1.20 1.19 1.91 1.34 1.56
7 1.04 1.05 1.95 4.21 1.46 1.04 1.06 2.34 4.27 1.48
8 1.41 1.41 2.32 1.46 1.91 1.45 1.45 2.29 1.54 2.21

9 1.04 1.04 1.06 1.05 1.06 1.04 1.04 1.06 1.05 1.06
10 1.44 1.44 1.55 1.52 1.87 1.45 1.44 1.55 1.86 1.88

mean 1.47 1.46 2.52 3.15 1.98 1.55 1.52 2.56 3.27 3.17

11 1.20 1.20 2.40 1.42 1.86 1.21 1.22 2.39 1.47 1.87
12 2.37 2.33 3.57 2.54 2.86 2.35 2.33 3.59 2.56 2.87

13 3.07 3.06 3.33 3.04 3.44 3.10 3.06 3.35 3.12 3.48
14 2.28 2.13 2.35 2.15 23.7 2.38 2.22 6.95 6.66 23.9
15 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05

16 1.86 1.88 2.77 2.00 2.23 1.92 1.92 3.02 3.59 5.21

mean 1.97 1.94 2.58 2.03 5.86 2.00 1.97 3.39 3.08 6.40

Table 58. Means of error ratios for 2-extrapolated and 3-extrapolated Tikhonov
approximation, p = 2.

2-extrapolated Tikhonov 3-extrapolated Tikhonov
Probl. QC R2C BRSC DR21 BRS1 QC R2C BRSC DR21 BRS1

1 1.10 1.17 2.42 0.68 1.51 1.07 1.17 2.43 0.89 1.69
2 0.61 0.67 1.06 0.62 0.74 0.59 0.65 0.99 0.57 0.73
3 0.82 0.86 1.88 0.53 1.11 0.64 0.81 1.59 0.62 1.11

4 0.65 0.69 0.90 0.60 0.61 0.63 0.67 0.86 0.56 0.63
5 0.72 0.79 0.97 0.74 0.73 0.70 0.78 0.92 0.71 0.71
6 0.70 0.76 1.12 0.65 0.75 0.67 0.75 1.15 0.62 0.81

7 0.54 0.58 0.74 0.54 0.54 0.51 0.55 0.67 0.48 0.51
8 0.81 0.87 1.29 0.66 0.83 0.81 0.90 1.30 0.64 0.96
9 0.82 0.87 2.02 0.75 1.21 0.81 0.87 1.99 0.74 1.30

10 1.19 1.28 3.04 1.02 1.87 0.93 1.02 2.57 1.22 1.83

mean 0.79 0.85 1.54 0.68 0.99 0.74 0.82 1.45 0.71 1.03

11 0.63 0.69 0.85 0.60 0.61 0.61 0.67 0.86 0.57 0.64
12 0.91 0.97 2.06 0.79 1.34 0.94 1.00 2.20 0.80 1.43

13 0.89 0.89 1.89 0.83 1.30 0.87 0.87 1.83 0.83 1.36
14 0.57 0.62 1.42 0.59 0.90 0.55 0.59 1.30 0.59 0.87
15 3.62 3.64 14.5 3.63 6.72 3.62 3.63 6.88 3.62 5.11

16 0.66 0.68 0.62 0.64 0.60 0.63 0.65 0.63 0.59 0.59

mean 1.21 1.25 3.55 1.18 1.91 1.20 1.23 2.28 1.17 1.67
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4.8.3. Rule R2e.

Table 59 shows the means of error ratios for rule R2e in 2-extrapolated
Tikhonov method at various p and d. Comparison of Table 59 with 21,
where results for ordinary Tikhonov method are given, shows that in 2-ex-
trapolated Tikhonov method, the rule R2e is much more sensitive to under-
estimation of the noise level.

Table 59. Means of error ratios in 2-extrapolated Tikhonov method with the rule
R2e, using the noise level that is d times the actual noise level.

p \ d 0.5 0.6 0.8 1 1.3 1.6 2 3 5 10

0 205 25.9 1.90 1.43 1.42 1.46 1.52 1.63 1.90 2.26
0.25 306 34.0 3.16 2.78 2.74 2.83 2.92 3.11 3.56 4.28

0.5 404 46.9 2.63 2.11 2.01 2.14 2.42 2.87 3.50 4.11
0.75 321 38.8 2.37 1.56 1.55 1.64 1.83 2.19 2.83 3.65
1 390 33.0 2.09 1.30 1.29 1.35 1.41 1.61 2.13 3.20

1.5 488 27.1 1.22 0.85 0.83 0.85 0.88 1.09 1.45 2.02
2 388 23.2 0.83 0.69 0.67 0.67 0.67 0.73 0.92 1.38
4 397 6.24 0.57 0.54 0.52 0.50 0.48 0.48 0.53 0.64

8 395 5.52 0.56 0.53 0.51 0.49 0.47 0.47 0.52 0.61

mean 366 26.7 1.70 1.31 1.28 1.32 1.40 1.57 1.93 2.46

4.8.4. Rule DM.

Tables 60, 61 present the results for the rule DM in 2-extrapolated Tikhonov
method at various levels of noise level ill-estimations d. These tables are
analogs of Tables 23, 24 of ordinary Tikhonov method. If p = 2, then the
rule DM is able to choose the regularization parameter in such way that the
2-extrapolated Tikhonov approximation is better, on average, than the best
single Tikhonov approximation even in wider range of d than [0.1,10] for
uncorrelated noise (Table 60). For correlated noise the results are not so
good but for d close to 1 the error still depends only weakly on d.

Table 62 compares some sets of parameters c1, c2 in rule DM.
Figure 4 compares the rule DM with the rule R2C, illustrating the depen-

dence of the error on d.
In Tables 56 and 58 the rule R2C gives averages 1.46 for p = 0 and 0.85

for p = 2, in 2-extrapolated Tikhonov method, hence DM is superior over
R2C, if d ∈ [0.3,20] in case p = 0 or d ∈ [1,50] in case p = 2.
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Table 60. Means of error ratios in 2-extrapolated Tikhonov method with the rule
DM, c1 = 0.002, c2 = 0.03 for p = 0 (left), p = 2 (right), where the used noise level
is d times the actual noise level.

Case p = 0, values of d Case p = 2, values of d
Probl. 0.01 0.1 0.5 1 2 10 100 0.01 0.1 0.5 1 2 10 100

1 1.53 1.53 1.53 1.54 1.56 1.71 2.55 1.24 1.24 1.24 1.17 1.08 0.87 2.13
2 7.93 5.04 1.57 1.57 1.56 1.09 1.20 15.9 0.68 0.68 0.68 0.68 0.67 0.94
3 2.55 2.55 2.55 2.55 2.55 2.27 6.26 0.88 0.88 0.88 0.88 0.89 0.60 1.77

4 1.11 1.11 1.11 1.11 1.11 1.08 1.62 0.70 0.70 0.70 0.70 0.70 0.65 0.87
5 6.42 2.37 1.15 1.15 1.10 1.10 1.17 0.79 0.79 0.79 0.79 0.79 0.79 0.82
6 1.19 1.19 1.19 1.19 1.19 1.19 1.44 0.77 0.77 0.77 0.77 0.77 0.74 1.05

7 1.08 1.08 1.08 1.08 1.08 1.08 1.34 0.58 0.58 0.58 0.58 0.58 0.58 0.72
8 1.45 1.45 1.45 1.45 1.46 1.49 2.12 0.92 0.92 0.92 0.92 0.86 0.76 1.20
9 1.04 1.04 1.04 1.04 1.04 1.04 1.06 0.89 0.89 0.89 0.89 0.89 0.79 1.58

10 1.42 1.42 1.42 1.42 1.43 1.48 1.54 1.34 1.34 1.34 1.13 1.05 0.77 2.59

mean 2.57 1.88 1.41 1.41 1.41 1.35 2.03 2.40 0.88 0.88 0.85 0.83 0.72 1.37

11 1.17 1.17 1.17 1.17 1.17 1.16 1.58 0.70 0.70 0.70 0.70 0.70 0.68 0.86
12 1.56 1.56 1.56 1.56 1.56 1.64 2.32 1.03 1.03 1.03 1.03 1.03 0.87 1.72

13 1.79 1.79 1.79 1.79 1.79 1.77 2.63 0.95 0.95 0.95 0.95 0.95 0.80 1.71
14 18.3 4.73 2.92 2.08 1.84 1.56 1.61 7.61 0.62 0.62 0.62 0.62 0.60 1.23
15 1.05 1.05 1.05 1.06 1.06 1.06 1.06 3.71 3.69 3.54 3.42 3.25 2.63 11.1

16 1.46 1.46 1.46 1.46 1.44 1.57 2.33 0.71 0.71 0.71 0.71 0.71 0.64 0.78

mean 4.22 1.96 1.66 1.52 1.48 1.46 1.92 2.45 1.28 1.26 1.24 1.21 1.04 2.90

Table 61. Means of error ratios in 2-extrapolated Tikhonov method with the rule
DM, c1 = 0.002, c2 = 0.03 for p = 0 (left), p = 2 (right), where the used noise level
is d times the actual noise level (correlated noise).

values of d for p = 0 values of d for p = 2
Probl. 0.01 0.1 0.5 1 2 10 100 0.01 0.1 0.5 1 2 10 100

1 2.72 1.50 1.52 1.52 1.54 1.69 2.48 1.40 1.35 1.33 1.21 1.12 1.18 3.70
2 6.56 2.34 1.88 1.69 1.17 1.09 1.45 12.4 1.00 0.81 0.68 0.68 0.73 1.55
3 2.59 2.59 2.59 2.53 2.54 3.01 8.13 1.12 1.12 1.11 1.10 1.11 0.92 2.67

4 1.16 1.16 1.16 1.16 1.16 1.19 1.97 0.67 0.67 0.67 0.67 0.66 0.71 1.64
5 4.34 2.10 1.49 1.17 1.20 1.20 1.45 0.80 0.80 0.80 0.80 0.80 0.81 1.41
6 1.18 1.18 1.18 1.18 1.18 1.23 1.60 0.74 0.74 0.73 0.73 0.74 0.81 2.01

7 1.45 1.05 1.05 1.05 1.05 1.07 1.62 0.59 0.59 0.59 0.59 0.59 0.63 1.39
8 1.32 1.32 1.32 1.32 1.33 1.48 2.18 0.83 0.83 0.81 0.82 0.82 0.91 2.57
9 1.03 1.03 1.03 1.03 1.03 1.04 1.06 0.80 0.80 0.80 0.81 0.81 0.90 2.56

10 1.44 1.44 1.44 1.45 1.45 1.49 1.55 2.87 2.86 2.84 2.72 2.50 2.25 4.50

mean 2.38 1.57 1.47 1.41 1.37 1.45 2.35 2.22 1.07 1.05 1.01 0.98 0.99 2.40

11 1.21 1.21 1.21 1.21 1.21 1.29 2.04 0.66 0.66 0.66 0.65 0.65 0.69 1.63
12 1.87 1.87 1.87 1.88 1.88 2.14 3.26 1.09 1.09 1.07 1.07 1.07 1.09 3.25
13 1.60 1.60 1.61 1.62 1.63 1.77 2.75 1.08 1.08 1.08 1.07 1.01 1.11 3.13

14 20.4 5.02 2.90 2.11 1.96 1.55 1.84 9.15 0.87 0.70 0.70 0.70 0.77 1.82
15 1.05 1.05 1.05 1.05 1.05 1.05 1.05 17.1 17.4 17.2 17.0 16.8 15.2 12.6
16 1.62 1.62 1.64 1.63 1.62 1.93 3.17 0.75 0.75 0.75 0.74 0.74 0.68 1.32

mean 4.63 2.06 1.71 1.58 1.56 1.62 2.35 4.97 3.64 3.58 3.54 3.50 3.26 3.96
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Table 62. Averages of error ratios over problems of Hansen for the rule DM for
different c1, c2; p = 0 (upper) and p = 2 (lower).

d

p Nr c1 c2 0.01 0.03 0.1 0.3 0.5 1 2 4 10 30 100

0 I 0.02 0.14 3.45 2.11 1.61 1.42 1.42 1.39 1.34 1.49 1.89 2.47 3.53
0 II 0.002 0.07 5.28 2.78 1.94 1.58 1.44 1.40 1.39 1.40 1.34 1.48 1.90
0 III 0.002 0.03 2.57 1.96 1.88 1.45 1.41 1.41 1.41 1.39 1.35 1.53 2.03

0 IV 0.001 0.03 4.99 2.13 1.96 1.61 1.45 1.41 1.41 1.41 1.37 1.42 1.69

2 I 0.02 0.14 3.04 1.18 1.09 0.96 0.87 0.78 0.69 0.77 1.37 2.76 5.86

2 II 0.002 0.07 5.99 2.50 0.98 0.98 0.96 0.93 0.87 0.84 0.74 0.70 1.37
2 III 0.002 0.03 2.40 0.88 0.88 0.88 0.88 0.85 0.83 0.79 0.72 0.70 1.37
2 IV 0.001 0.03 4.95 2.19 0.88 0.88 0.88 0.88 0.85 0.83 0.78 0.69 0.87

Figure 4. Error ratios in 2-extrapolated Tikhonov method for rules R2C and DM:
p = 0 (left) and p = 2 (right); DM I, DM II, DM III, DM IV,
R2C.
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V. CONCLUSIONS AND DISCUSSION

5.1. Recommendation of methods

In most test problems for both p = 0 and p = 2 the Landweber method
and TSVD had the highest potential to give the best accuracy of regularized
solution, in other problems their results lied close to the best (Tables 4,
5, 6, 7). To harness the potential of the Landweber method, however, one
has to use additional techniques such as operator iterations (2.19), since
in its original form (2.18) the Landweber method converges quite slowly.
This sets certain restrictions on the matrix of the linear system. If using
operator iterations (2.19) is not computationally feasible, and the size of
the problem is small or moderate, we recommend TSVD. If the size is large,
then we recommend either CGLS or Tikhonov method. The CGLS method
works faster in conjunction with rules that find the regularization parame-
ter as the first index for which a certain condition is satisfied, as opposed
to rules which minimize expressions. In Tikhonov method both solving of
an equation and minimizing a function in an interval can be implemented
efficiently, using, for example, method of chords or Newton’s method but
the Tikhonov method has quite low qualification p0 = 1. In case of smooth
solution the advantage of Landweber method, TSVD and CGLS over other
methods is more pronounced (Tables 6, 7).

Remaining methods performed not so good in our tests: in Tables 4–
7 the method CGME was always beaten by the method CGLS. The Lavren-
tiev method gave more or less acceptable results in limited number of self-
adjoint problems with low smoothness index p.

If a sequence of Tikhonov approximations arises during computations
and we have a ground to assume that the smoothness index p of the solu-
tion is large (p > 1), then we strongly recommend to use extrapolation. As
Tables 48, 49 show, in this case even an extrapolated approximation with
2 terms, where the regularization parameter is chosen from an a posteriori

rule using noise level, has an accuracy that is better than the accuracy of
the best single Tikhonov approximation. For rules R2e and Me this holds
even when the noise level is overestimated 2 times, if the noise is uncorre-
lated (or if p > 2 in case of correlated noise). Also the best heuristic rules
of Table 58 gave averages below 1, if p = 2. The results for larger p were
quite uniform over problems, see Table 53, except for problems, in which
the error had a very sharp minimum.

83



Similar conclusions can be made in case of iterated Tikhonov method,
see Tables 14, 15, but compared to extrapolated Tikhonov approximation,
parameter choice in iterated Tikhonov method may require more compu-
tational work. For example, if parameters are chosen from the sequence
αn = qn, then transition from αn to αn+1 requires solving m equations in
m-iterated Tikhonov approximations but only one equation in extrapolated
Tikhonov approximations with m terms (since Tikhonov approximations
with parameters αn, αn−1, . . . , αn−m+1 are computed earlier).

5.2. Recommendation of rules

5.2.1. Case of exactly known noise level.

If the bound of the noise level is known (‖y−y∗‖ ≤ δwith δ known), then in
Tikhonov method and its iterated and extrapolated variants we recommend
the rule Me. Tables 8, 9, 10, 11, 14, 15, 48, 49, 50, 51 show that although
in case of exactly known noise level the rules MEe and MEs gave somewhat
better results than the rule Me, in case of 2 times overestimated noise level
the rule Me was clearly better. This did not depend on whether the noise
was correlated or uncorrelated.

In Lavrentiev method we recommend the rule MEaql with l = 5 for p = 0
and with l = 4 for p = 1, since in Tables 28, 29, it gave the smallest av-
erages and the smallest maximums. In addition, Table 30 shows that the
rule MEaql was also reasonably insensitive to moderate overestimation of
the noise level. The rule MEaql requires computing Lavrentiev approxima-
tions at different values of the regularization parameter, so we may form
extrapolated approximations that give smaller averages of error but as Ta-
ble 28 shows, maximums of error can be quite large at p = 0. Also, it can
be seen from Table 30 that the extrapolated approximation can lose its ad-
vantage over single Lavrentiev approximation with rule MEaql the more we
overestimate the actual noise level. Extrapolated approximations may be
useful for larger p, see Table 29, where both averages and maximums of
2-extrapolated Lavrentiev approximation with the rule MD are small among
rules compared.

In Landweber method the estimated parameters from rules De and MEe
show clear advantage over discrepancy principle both for uncorrelated and
correlated noise (Tables 34, 35, 36). At overestimated noise level the rule
De seems to be slightly better than MEe.

In TSVD method the discrepancy principle works well, post-estimation
of the truncation level did not improve it essentially.

In conjugate gradient type methods CGLS and CGME the discrepancy
principle D and its variant DH work very well (Tables 40, 41, 42, 43, 44,
45). In CGLS the accuracy of the discrepancy principle can be somewhat
improved by using post-estimation as in rules De and Me (Tables 40, 41).
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In extrapolated Tikhonov approximation the best results at exact noise
level were produced by the rule De (Tables 48, 49, 50, 51) but it is very
sensible to overestimation of the noise level. In this respect the two similar
rules MEe and MEs may be preferred. Even better stability is provided by
the rule Me but its results at exact noise level were not so good, compared
with others, especially for large p. For small p the rule Me in 3-extrapolated
Tikhonov method gave very good results: its averages of error ratios were
among the smallest both in case of uncorrelated noise and correlated noise
and both at exact noise level and 2 times overestimated noise level.

The difference in performance of rules under uncorrelated noise or cor-
related noise reveals itself most prominently in case of 2 times overesti-
mated noise level. Comparing the performance of rules under different
noise models, we see from Tables 8, 9, 10, 11, 14, 15, 48, 49, 50, 51 about
Tikhonov method and its extrapolated variant that while in case of exactly
known noise level the averages of error ratios for correlated noise were
somewhat larger that the same averages for uncorrelated noise, in case of
2 times overestimated noise level the averages of error ratios for correlated
noise were much larger. For iteration methods this dependence on preci-
sion of noise level estimation is not so emphasized (Tables 34, 35, 40, 41,
43, 44).

5.2.2. Case of unknown noise level.

If the noise level is unknown, then, in the Tikhonov method, we recommend
to use the climbing strategy. Comparing the columns QC and BRSC of Table
18 with columns QN and BRS of Table 16, respectively, we see that the
results in corresponding columns in Tables 18 and 16 are almost the same
in most problems but in some problems rules QN and BRS fail. This holds
for both p = 0 and p = 2 (Tables 20 and 17). Stopping at the first local
minimum can avoid large errors in many problems and is therefore also
an option but as the columns Q1 and BRS1 of Tables 18, 19, 20 show, the
results were not so good compared with columns QC and BRSC of these
tables.

For Tikhonov method in case p = 0 we can recommend the rules R2C
and R2C’, which gave the smallest overall averages in our tests both for
correlated and uncorrelated noise (Tables 18, 19). Also rules QC and QC’
can be recommended. The rules R2C and QC gave the best results also in
extrapolated variants of Tikhonov method (Tables 56, 57, 58).

The rules QHR2 and QBR2 gave very good results in problems 1–10 in
Tables 18, 19, 20 but they needed considerably more computation time
than rules that did not minimize a function unconditionally in the whole
computation interval (in our case [10−30,1]).

Of special interest is the rule QHR, which, not using any parameters,
gave a very small average at p = 2 in Table 17.
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For Landweber method the rules HRmC and QNmC can be preferred to
their unmodified counterparts HR and QN, since in most problems they had
better accuracy and, in particular, avoided large errors (Tables 34, 35, 36).
The rule QNmC is notable for its quite good overall average that is smaller
than the average of rules D, De, and MEe (rules that use δ) in case of 2 times
overestimated noise level.

For TSVD we recommend the rule HRLm’.
For CGLS the rule HRmC can be recommended (Tables 40, 41, 42). In

some problems the rule HRmWC gave better averages but computing with
this rule was very time-consuming and in many cases the results were the
same as with rule HRmC.

In CGME the rule RMC gave the best overall averages for both uncorre-
lated and correlated noise (Tables 43, 44, 45). The rule DHP gave very good
(even optimal) results in most test problems.

For extrapolated Tikhonov method the above-mentioned rules QC and
R2C are recommended. The rule DR21 for 2-extrapolated Tikhonov method
was close to the best in many test problems (Tables 56, 57) but in some
problems the errors were intolerably large. For p = 2 this rule gave the best
results among rules compared (Table 58), so it can be used, if we know that
the solution is sufficiently smooth.

If the noise level is unknown, then the results by most of our rules in all
methods depend only a little on whether noise is correlated or not (Tables
18, 19, 34, 35, 40, 41, 43, 44, 56, 57).

5.2.3. Case of approximately known noise level.

For Tikhonov method the rule DM gave results that were very good at ex-
actly known noise level and still acceptable, when the noise level was up to
100 times over- or underestimated (Tables 23, 24).

If the probable bounds of over- or underestimation are known, then Ta-
ble 26 gives the best values of constants c1 and c2 in our tests with Table 27
showing the corresponding minimums and maximums of averages of error
ratios over the supposed interval of noise ill-estimation coefficient d (for
uncorrelated noise).

For Landweber method we could not find the rule that works better than
the best heuristic rule QNmC (Table 34) in our numerical tests. There also
remains the task of formulating and testing the DM rule for TSVD.

For CGLS the rule DM gave the results that were intermediate between
the results of best rules that use full noise level information and best rules
that do not use this information at all (Tables 46, 47). This rule works best,
if p = 0 and the noise is uncorrelated. If p > 0, then this rule requires more
precise estimation of noise level, especially in case of correlated noise.

In extrapolated Tikhonov method the rule DM can be applied with the
same constants c1, c2 as in ordinary Tikhonov method (Tables 60, 61), in
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case of smooth solution the rule DM can give the extrapolated approxima-
tion that is more accurate than single Tikhonov approximation with optimal
parameter. In extrapolated Tikhonov method the rule DM may be more sen-
sitive to values of parameters c1, c2, if the noise level is severely over- or
underestimated (Table 62).

5.3. About the set of test problems

We are aware of the limitations that are associated with our set of test
problems. However, some points can be made to assume that the results
remain valid also for other problems.

• Many rules that we propose are based on theoretical foundation (see
Section 3.4). Theoretical explanation of many heuristic rules that
we propose is given in Section 3.2.2: for many rules the theoretical
ground is Theorem 17.

• The set of test problems of Hansen is very diverse, containing prob-
lems with quite different characteristics. Still, in many rules we can
choose the constants in such way that these rules work uniformly well
in all test problems, in whole range of noise levels δ and smoothness
indices p, and both for uncorrelated and correlated noise.

• On a later stage of this work in many methods experiments were made
on additional very different artificial problems (11–16). The heuristic
rules worked well in problems 11–16 with the constants optimized
for problems 1–10 or with slightly changed constants.

The representativeness of the set of test problems is essential and if
there were a wider representative set of test problems available, then it
would be essential to use it. Very important is the representativeness of the
set of test problems for heuristic parameter choice rules that do not use
noise level. It would also be interesting to test the non-heuristic rules on
additional problem sets.

In addition, it is essential to consider other possibilities of noise gener-
ation. Namely from papers [49, 69] it is known that some heuristic rules
(quasioptimality criterion and its modification by Neubauer) guarantee the
convergence of regularized solutions (despite Bakushinskii’s result [1]), if
the noise distribution satisfies certain conditions.

The exact formulations of rules are not considered final, especially in
case of unknown noise level. The results presented in previous tables indi-
cate that there may be more resources for improvement in case of iteration
methods and TSVD.
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APPENDIX

A.1. A systematics of parameter choice rules in Tikhonov method

Many expressions of functions in stopping rules for m-iterated Tikhonov
method contain scalar products of type

(
(AA∗)i1rm+j1;α, (AA

∗)i2rm+j2;α
)
,

where i1, j1, i2, j2 are some nonnegative integers. Since this scalar product
is equal to
(
(AA∗)i1Km+j1;α(AA

∗)r , (AA∗)i2Km+j2;α(AA
∗)r

)

=
(
(AA∗)i1+i2Km;α(AA

∗)r ,Km+j1+j2;α(AA
∗)r

)
,

only two of four indices are independent. Therefore we can define quanti-
ties

Ψi,j = α−i/2
(
(AA∗)irm;α, rm+j;α

)1/2
(i, j = 0, 1, . . . ). (1.1)

Proposition. For all positive integers i, j holds

Ψ2
i,j = Ψ2

i−1,j−1 − Ψ2
i−1,j . (1.2)

Proof. Using (2.17), we have

Ψ2
i,j = α−i

(
(AA∗)i−1rm;α, (AA

∗)rm+j;α
)

= α−i
(
(AA∗)i−1rm;α, αA(xm+j−1;α − xm+j;α)

)

= α−(i−1)
(
(AA∗)i−1rm;α, rm+j−1;α − rm+j;α

)
= Ψ2

i−1,j−1 − Ψ2
i−1,j .

Corollary. If i ≤ j, then

Ψ2
i,j =

i∑

k=0

(−1)i−k
(
i

k

)
Ψ2

0,j−k.

Proof. Induction on i, using (1.2).

Using the last corollary, it is possible to calculate Ψi,j in such way that
no application of AA∗ to rm;α is needed. Computational experience shows
that this is numerically more stable than applying the direct formula (1.1).
Hereby one needs to compute additional discrepancies rm+1;α, . . . , rm+j−1;α

but they have to be computed also in (1.1) to get rm+j;α.

Note that dD(α) = Ψ0,0, dME(α) = Ψ2
0,1/Ψ0,2, dR1,k(α) = Ψ2k,2k+1, and

dR2(α) = κ(α)Ψ2
1,2/Ψ1,3.
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A.2. Index of rules for choice of the regularization parameter

In the following table, iTikh, eTikh, iLavr, eLavr mean iterated and extrapo-
lated variants of Tikhonov and Lavrentiev method.

Rule Method Def page Table no
B1 Tikh 30, 52 12, 13
B1* Tikh 52 12, 13
B2 Tikh 30, 52 12, 13
B2* Tikh 52 12, 13
B3 Tikh 30, 52 12, 13
BR2 Tikh 36, 55 18, 19, 20
BRS Tikh 32, 54 16, 17
BRS’ TSVD 67 37, 38, 39
BRS1 eTikh 78 56, 57, 58
BRS1 Tikh 55 18, 19, 20
BRSC eTikh 78 56, 57, 58
BRSC Tikh 55 18, 19, 20
BRSm TSVD 69 37, 38, 39
D CGLS 20, 69 40, 41, 42
D eLavr 21
D eTikh 21 55
D iLavr 20 28, 29, 30
D iTikh 20, 53 14, 15
D Land 20, 65 34, 35, 36
D Tikh 20, 50 8, 9, 10,

11, 16,
17, 21, 22

D TSVD 20, 67 37, 38, 39
D1 Tikh 55 18, 19, 20
De CGLS 69 40, 41, 42
De eTikh 74 48, 49,

50, 51, 55
De Land 31, 65 34, 35, 36
DH CGME 20, 71 43, 44, 45
DHP CGME 37, 71 43, 44, 45
DM CGLS 38 46, 47
DM eTikh 38 60, 61, 62
DM iTikh 38
DM Land 38
DM Lavr 38 31, 32
DM Tikh 37 23, 24,

25, 26, 27

Rule Method Def page Table no
DR21 eTikh 78 56, 57, 58
DR21 Tikh 55 18, 19, 20
eMD eLavr 22
eMD eTikh 22
eMD Tikh 22
eME eTikh 24
eME Tikh 24
eQ Tikh 32
GN Lavr 27 28, 29, 30
HR CGLS 32, 69 40, 41, 42
HR CGME 32, 71 43, 44, 45
HR iTikh 32
HR Land 32, 65 34, 35, 36
HR Tikh 32, 54 16, 17
HR TSVD 32
HR’ TSVD 67 37, 38, 39
HR2 Tikh 35, 55 18, 19, 20
HRC CGME 71 43, 44, 45
HRL’ TSVD 33, 67 37, 38, 39
HRLm’ TSVD 33, 67 37, 38, 39
HRm TSVD 67 37, 38, 39
HRmC CGLS 71 40, 41, 42
HRmC Land 65 34, 35, 36
HRmWC CGLS 71 40, 41, 42
L CGLS 32
L CGME 32
L Land 32
L Tikh 32
L TSVD 32
maxD eTikh 74 52
maxDe eTikh 74 52, 54
MD iLavr 21 28, 29, 30
MD iTikh 21
MD Lavr 21, 65 28, 29,

30, 33
ME CGLS 23, 69 40, 41, 42
ME CGME 23, 71 43, 44, 45
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Rule Method Def page Table no
ME eTikh 23
ME iTikh 22, 53 14, 15
ME Land 23
ME Tikh 22, 50 8, 9, 10,

11
Me CGLS 69 40, 41, 42
Me eTikh 74 48, 49,

50, 51, 55
Me iTikh 53 14, 15
Me Tikh 31, 50 8, 9, 10,

11, 16, 17
MEa Lavr 24, 65 28, 29,

30, 33
MEaq Lavr 25 28, 29, 30
MEaql Lavr 27, 65 28, 29,

30, 33
MEe CGLS 31, 69 40, 41, 42
MEe CGME 71 43, 44, 45
MEe eTikh 74 48, 49,

50, 51,
53, 55

MEe iTikh 53 14, 15
MEe Land 65 34, 35, 36
MEe Tikh 31, 50 8, 9, 10,

11, 16, 17
MEk Lavr 26 28, 29, 30
MEke Lavr 26 28, 29, 30
MEn Lavr 26, 65 28, 29,

30, 33
MEs eTikh 74 48, 49,

50, 51
Q iLavr 32
Q iTikh 32
Q Lavr 32
Q Tikh 32
Q TSVD 36, 67 37, 38, 39
Q1 Tikh 55 18, 19, 20

Rule Method Def page Table no

Qa TSVD 36

QBR2 Tikh 55 18, 19, 20

QC eTikh 78 56, 57, 58

QC Lavr 65 33

QC Tikh 55 18, 19, 20

QC’ Tikh 55 18, 19, 20

QHR Tikh 35, 55 16, 17

QHR2 Tikh 55 18, 19, 20

Qm TSVD 67 37, 38, 39

QmC Lavr 65 33

QN iTikh 32, 54 16, 17

QN Land 32, 67 34, 35, 36

QNmC CGLS 71 40, 41, 42

QNmC Land 37, 67 34, 35, 36

Qq iLavr 32

Qq iTikh 32

Qq Lavr 32

Qq Tikh 32

R1 iTikh 27

R1 Tikh 27

R2 eTikh 31

R2 iTikh 28, 53 14, 15

R2 Tikh 28, 50 8, 9, 10,
11

R21 Tikh 55 18, 19, 20

R2C eTikh 78 56, 57, 58

R2C Tikh 55 18, 19, 20

R2C’ Tikh 55 18, 19, 20

R2e eTikh 74 48, 49,
50, 51, 59

R2e iTikh 53 14, 15

R2e Tikh 31, 50 8, 9, 10,
11, 16,
17, 21, 22

RMC CGME 71 43, 44, 45
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SISUKOKKUVÕTE

Mittekorrektsete ülesannete regulariseerimisalgoritmide
numbriline võrdlus

Töö on pühendatud mittekorrektsete ülesannete regulariseerimismeetodite
parameetrivalikureeglite numbrilisele analüüsile täpsuse seisukohalt.

Töö sisu peatükkide kaupa on järgmine.
Esimeses peatükis (sissejuhatuses) kirjeldatakse probleeme ja nendele

töös pakutud lahendusi.
Teises peatükis antakse ülevaade mittekorrektsete ülesannete lahendus-

meetoditest, mida töös vaadeldakse. Need meetodid on Tihhonovi meetod
koos itereeritud kujuga, Lavrentjevi meetod, Landweberi meetod, spektraal-
lõike meetod, kaasgradientide tüüpi meetodid CGLS ja CGME ning Tihhono-
vi ja Lavrentjevi meetodi ekstrapoleeritud variandid.

Kolmandas peatükis kirjeldatakse mitmesuguseid regulariseerimispara-
meetri valikureegleid nende meetodite jaoks, sealhulgas tuuakse välja reeg-
lite need teoreetilised omadused, mis on olulised arvutuste tegemise juures.
Ühtlasi pakutakse välja mitmed strateegiad uute reeglite konstrueerimiseks
nii teadaoleva kui ka mitteteadaoleva veataseme korral.

Neljandas peatükis on esitatud arvutuseksperimentide tulemused eel-
mises peatükis formuleeritud reeglite ning eelmises peatükis esitatud stra-
teegiate realiseeringutena saadud mitmesuguste uute reeglite kohta ülal-
pool nimetatud meetodites nii teadaoleva, mitteteadaoleva kui ka ligikaud-
selt teadaoleva veataseme korral. Tulemused näitatavad, et uued reeglid
annavad paremaid tulemusi kui senised.

Viies peatükk sisaldab kokkuvõtet saadud tulemustest ja nendel põhi-
nevaid soovitusi, millist regulariseerimismeetodi ja parameetrivalikureegli
kombinatsiooni on otstarbekas kasutada.
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