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INTRODUCTION 
 
A decade ago, the first draft sequence of the human genome was published. 
Rather than being an endpoint to the human genome sequencing project, 
however, this event became a stepping stone for further refinement of biological 
information and for seeking the medically relevant implications of such data. In 
the earliest attempt to understand the role of the genomic sequence in biological 
characteristics, genetic variation was catalogued by single nucleotide poly-
morphisms (SNPs) by the international SNP Consortium. This initiative was 
followed by the International HapMap Project, which sought to determine the 
haplotype structure of the human genome. Comprehensive cataloging of DNA 
sequence variants, in turn, helped to further evolve the genome sequencing and 
bioinformatic technologies. Development of high-throughput genotyping arrays 
enabled cost-effective genotyping of millions of SNPs in a large number of 
samples. Advanced statistical methods and software tools opened the door for 
genome-wide association study (GWAS) to effectively seek the genetic variants 
that underlie the dynamic complexity of human phenotypes. 

All these advances made it possible to analyze the genome without any 
biological priors and enabled the discovery of new pathways and biological 
mechanisms, which not only provided insights into human traits but also into 
disease etiology. Most often, the former is achieved by GWAS of a continuous 
phenotype in a population-based sample, while the latter is achieved by GWAS 
comparison of genetic variant allele frequency between disease cases and 
matched healthy controls. Since genetic effect sizes are relatively small and 
diseases are often heterogeneous, extremely large sample sizes (up to tens and 
hundreds of thousands) are needed to attain the statistical power necessary to 
detect sequence variants affecting trait variance or disease susceptibility.  

Over the last five years, the number of validated complex human trait-
associated loci has exceeded 3,000 independent genetic variants related to more 
than 600 distinct traits and diseases. However, even after doubling the number 
of disease associated genes and discovering new underlying biological path-
ways of disease pathogenesis, the potential of genome-wide association studies 
has not yet been fully realized.  

The thesis work presented herein begins with a literature overview, which 
will address the important milestones that have been reached in understanding 
the genetic architecture of complex human phenotypes. First, an overview of the 
Estonian Biobank developed by the Estonian Genome Center of the University 
of Tartu will be presented. Then, a review will follow that outlines the value of 
appropriate statistical power and study design to GWAS and presents important 
findings from large-scale genome-wide association studies. Finally, the causes 
of hidden heritability in GWAS and the approaches used to demonstrate the full 
impact of human genetic variation on a phenotype will be discussed. The 
research portion of this thesis will focus on the following issues: 1) to fill in the 
gaps of the genetic structuring of northeastern European populations; 2) to 
evaluate the genetic structure of different European populations; 3) to identify 
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novel DNA sequence variants that confer phenotype variability and disease 
predisposition and 4) to investigate the problem of hidden heritability in the 
genetics of complex traits. 
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1. REVIEW OF LITERATURE 
 

1.1. The biobank of the Estonian Genome Center 
 

1.1.1. Population based biobanks 
 

After publishing of the draft sequence of human genome (Lander et al., 2001; 
Venter et al., 2001), the emphasis moved towards understanding the structure, 
organization and function of genomes and the biological basis of complex 
human traits. Genetics has been traditionally associated with rare hereditary 
Mendelian disorders and studies involving linkage analysis, positional cloning 
and search for mutations in single genes. The new knowledge obtained from the 
human sequencing project and new emerging technologies created an oppor-
tunity to study DNA sequence variation on a genome-wide scale and opened the 
field to studies on common complex diseases (Lander, 2011).  

The need to extend the genetic studies to the population-wide scale in order 
to conduct genetic research on common complex diseases was first recognized 
by Risch and Merikangas (Risch and Merikangas, 1996). A population-based 
cohort design would give several advantages over familial studies or case-
control design in discovering the DNA sequence variants that have an effect on 
normal phenotype variability or increased disease susceptibility. For example, a 
prospective population-based cohort would enable to design several nested 
case-control analyses and to study many different conditions and endpoints, as 
comprehensive phenotype data is available for all samples. Furthermore, these 
studies incorporate information about environmental exposure prior to 
development of the disease. Lastly, a population-based large-scale cohort would 
provide large enough sample sizes for achieving sufficient statistical power to 
find genetic variants even with subtle effects (Collins et al., 2003).  

In order to effectively conduct genetic research a population-wide data 
collection is needed with both collections of human biological samples and 
associated comprehensive clinical and lifestyle information. This and the 
opportunity to use new technologies, electronic health records and IT solutions 
lead to the establishment of new population based biobanks (Kohane, 2011). So 
far many of the traditional epidemiological cohorts did not collect DNA or did 
not have a proper informed consent. The governing ethics of such collections 
soon became a highly debated topic. The subsequent requirement of a new, 
rather broad informed consent (Knoppers, 2001; Deschênes et al., 2001) 
emerged as a challenge for biobanks. A large international consortia, named 
The Public Population Project in Genomics, was formed to lead, catalyze and 
coordinate the international efforts and expertise in developing and setting up 
the legal, ethical, and infrastructural frameworks for population-wide biobanks 
(www.p3gobservatory.org). The United Kingdom Biobank (UK Biobank, 
2011), Icelandic Biobank (deCODE Genetics, 2010) and the Estonian Biobank 
were established to become some of the first “new-generation” biobanks. Most 
of the European biobanks are part of Biobanking and Biomolecular Resources 
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Research Infrastructure consortium (www.bbmri.eu), which facilitates the pan-
European collaboration (Wichman et al., 2011).  

The biobanks have been recognized as a powerful platform for health 
innovation and knowledge generation, thus having a pivotal role in elucidating 
disease etiology, translation, and advancing public health (Harris et al., 2012). 
In a longer perspective the biobanks are seen as the cornerstones in leading the 
paradigm change in healthcare, mostly known as 4P medicine – Predictive, 
Preventive, Personalized and Participatory (Hood et al 2004; Bousquet et al., 
2011). 
 

1.1.2. Study design and sample collection 
 

The Estonian Biobank is part of the Estonian Genome Center, which is an 
institution of the University of Tartu and whose mission is to create a large 
biobank composed of a wide range of health information, biological samples, 
and high-resolution genomics data from the Estonian population 
(www.biobank.ee). The principal objectives of the Biobank are to advance ge-
netic knowledge through scientific research and to promote general public 
health through genome-based medicine (Metspalu et al., 2011). The epidemio-
logical and clinical sample collections gathered in Estonia prior to the Estonian 
Biobank were relatively small or did not meet the legal requirements that were 
borne from the genomic era. Unfortunately, creating an amalgamated collection 
of the different cohorts was not possible due to differences in the originating 
study design, the wide range of assessment methodologies used and for subjec-
tive reasons. These aspects would have limited the possibility to analyze diffe-
rent cohorts together and could have introduced a systematic bias into any 
results obtained (Metspalu, 2004). Yet, a large Estonian population-based 
sample collection was needed to effectively answer the genetics-driven ques-
tions about the common complex diseases that arose when the entire sequence 
of the human genome was determined.  

The Estonian Biobank was designed as a prospective, longitudinal, 
population-based database of large numbers of health records and accompa-
nying biological samples. It was established in 2001 and the legal, ethical, and 
infrastructural frameworks were carefully designed to meet the public require-
ments (Metspalu, 2004). The Estonian Biobank questionnaire was developed 
according to the framework of the European Prospective Investigation into 
Cancer and Nutrition (Riboli and Kaaks, 1997; Kaaks et al., 1997). The 320 
questions of the questionnaire are designed to obtain personal, genealogical and 
lifestyle data, as well as educational and occupational history. Medical history 
and current health status are recorded in accordance with the World Health 
Organization’s 10th release of the International Classification of Diseases 
(www.who.int/classifications/icd) together with diagnosis reliability scores 
(EGCUT, 2012). Figure 1 outlines the Estonian Biobank questionnaire modules. 
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Figure 1. Structure and content of the Estonian Biobank questionnaire. The question-
naire gathers information in five main categories (blue): personal data, genealogy, 
health behavior, diseases, and objective data (EGCUT, 2012). 

 
 

For the recruitment of the Biobank participants, a unique network of data 
collectors was established. This network consisted of family physicians (in-
volving around half of the general practitioners in Estonia) and other medical 
personnel in private practices, hospitals or recruitment offices. Engaging 
experienced medical professionals was expected to ensure the highest possible 
quality data and to allow for incorporation of pre-existing medical records, 
thereby further increasing the accuracy of the collected data.  

To date, the Biobank phenotype information is periodically updated by 
accessing various databases of healthcare institutions and registries, or by re-
contacting the participants directly. The broad informed consent for partici-
pation provides ethical and legal rights to verify and supplement the database in 
such a manner (EGCUT, 2012).  
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1.1.3. Brief description of the Estonian Biobank cohort 
  

The phase of active recruitment for the Biobank participants was completed by 
the end of 2010, and yielded more than 50,000 donors aged 18 years or older. 
While the Biobank represents the Estonian population quite well, the male-to-
female ratio is not reflecting that of the population and some age groups are 
under- or overrepresented (Figure 2). Altogether, there are currently a total of 
372,892 diagnoses, which translates to an average of 7.6 diagnoses per parti-
cipant. Almost all of the diagnosed diseases in biobank have approximately the 
same prevalences as reported for the general Estonian population.  
 

 
Figure 2. Age and sex distribution of the Estonian Biobank participants at recruitment, 
compared to the general Estonian adult population. Counts at the top of the graph 
indicate the number of individuals in the general Estonian adult population. Counts at 
the bottom indicate the number of biobank participants  (EGCUT, 2012). 
 
 
The 51,534 biobank participants of the Estonian Biobank encompass approxi-
mately 5% of the adult population of Estonia (EGCUT, 2012). The overall size 
of the study cohort is not exceptional compared to the other biobanks. The 
Biobank Japan Project is composed of ~200,000 participants, while the 
Californian Kaiser Permanente Study in the USA includes ~400,000, and both 
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the United Kingdom Biobank (Kohane, 2011) and the China Kadoorie Biobank 
each have ~500,000 (Chen et al., 2011). However, the Estonian Biobank is one 
of the few large-scale population-based collections, which is collected 
according to the same protocol. Several of the earlier population-based cohorts 
were collections of smaller studies with different protocols applied (Kohane, 
2011). The deCODE Genetics biobank (www.decode.com), which incorporates 
information for about 40% of the Iceland population (deCODE Genetics, 2010), 
is an excellent example how a comprehensively designed biobank enables 
important discoveries (>200 published papers), technological advances (product 
beta-tester for the sequencing-by-synthesis platform), and development of 
sophisticated analysis methods (Kong et al., 2010; Kong et al., 2012).  
 

 
1.2. Genome-wide association studies  

  

The ultimate goals of human genetics are to understand the genetic architecture 
of complex traits and to translate the genetic findings into the medical field in 
order to improve diagnosis and treatment. These data are also expected to aid in 
the development of more efficient drugs and optimal dosages, as well as to 
facilitate proactive measures based on risk prediction and prevention strategies. 
Using the sequence information of the human genome, large-scale and high-
throughput studies in human genetics are necessary to achieve these goals 
(Guttmacher and Collins, 2003). 
 Common diseases and complex traits, such as height, blood pressure, or 
plasma lipids levels, are difficult to study since they result from numerous 
genetic and environmental factors. Although these traits cluster in families and 
show considerable levels of heritability (Boomsma et al., 2002), they do not 
follow the typical Mendelian heritance patterns and are referred to as complex 
traits. The analyses of these traits are complicated further by the fact that many 
of them follow a polygenic model, in which tens, if not hundreds (or even 
thousands) of genes regulate the end phenotype (Gambaro et al., 2000). 
 Single nucleotide polymorphisms (SNPs) have proven useful for linking the 
genetic background with certain phenotypic conditions.  Unlike many other 
genetic markers (e.g. restriction fragment length polymorphisms, microsatellites 
and minisatellites, or structural variants), SNPs are the easiest to genotype and 
well suited to high-throughput detection methods (Wang et al., 1998). This is 
because SNPs are bi-allelic, occur approximately once per 300 base pair 
(Sachidanandam et al., 2001), and have a substantially low mutation rate (Jorde 
et al., 2000). These estimates have been verified by research studies over the 
past decade and specified by the latest high-throughput sequencing study (1000 
Genomes Project Consortium, 2010).  

Linkage mapping in families, as well as in genome-wide association analysis 
of unrelated samples, accounts for the fact that DNA is inherited in blocks of 
sequence, and that within a single block there exists a strong allelic association 
and linkage disequilibrium (LD) between the genetic variants (Chapman and 
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Wijsman, 1998). Analyses of chromosome-wide SNP genotype data confirmed 
that the genome has a block-like structure (Daly et al., 2001; Patil et al., 2001; 
Dawson et al., 2002). Detected haplotype blocks were characterized as sizable 
regions in the genome with low recombination rates, and in most cases a limited 
number of haplotypes was found to be present in a particular population 
(Gabriel et al., 2002). The haplotype block structure enabled selection and 
genotyping of only a fraction of the SNPs (known as tagSNPs) to identify 
haplotypes as representatives of all the underlying SNP genotypes, while 
several algorithms were developed to select the most appropriate tagSNPs to 
genotype (Gabriel et al., 2002; Carlson et al., 2004; de Bakker et al., 2005). 

Over the last decade the scientific community has invested heavily into 
describing the genetic landscape of the human genome. The HapMap Project 
(www.hapmap.com) genotyped 2.4 million SNPs in three large ethnic groups 
(International HapMap Consortium, 2005 and 2007). The ENCODE Project 
(www.genome.ucsc.edu/ENCODE) completed deep sequencing of approxi-
mately 1% of the human genome in an attempt to discover all functional 
elements present in those regions (ENCODE Project Consortium, 2007). Recent 
discoveries from the ENCODE Project highlight that up-to 80% of the non-
coding portion of human genome is full of functional elements and regulatory 
motifs (ENCODE Project Consortium, 2012 [and see references within]; 
Gerstein et al., 2012; Neph et al., 2012). Most recently, the 1000 Genomes 
Project (www.1000genomes.org) set forth to sequence the whole-genome of 
2500 samples from diverse populations, and the pilot phases have already been 
completed (1000 Genomes Project Consortium, 2010; Marth et al., 2011). The 
data from these projects represent rich sources from which to select the optimal 
panel of tagSNPs and manufacture high-throughput and cost-effective geno-
typing arrays, which effectively cover at least 80% of the genome (Barret and 
Cardon, 2006; Pe’er et al., 2006; Mägi et al., 2007).  

A genome-wide association study can be considered an extension of the 
classical candidate gene study, where the difference in allele frequency is being 
tested between cases and controls. While GWAS approaches the genome without 
any prior information, the classical approach relies on previous knowledge about 
underling biological pathways. Therefore, candidate gene studies of diseases and 
traits with poorly described or unknown biological mechanisms can be markedly 
biased (Reich and Lander, 2001). The GWAS approach of genotyping hundreds 
of thousands or even millions of SNPs in well-characterized, large cohorts 
overcomes this limitation and allows for the hypothesis-free discovery of genetic 
variants that modulate complex traits in humans.  

 

 
1.2.1. Sample size and power 

  

Commercial genotyping arrays remain cost-effective alternatives to traditional 
methods, but are still considerably expensive; therefore, it is crucial to generate 
an optimal study design (Spencer et al., 2009). Each experimental study should 
gain sufficient statistical power (usually 80%) to identify an association 
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between a SNP and the trait of interest. The power of a GWAS is influenced by 
a host of factors, including study sample size, the susceptibility locus, minor 
allele frequency of the effect variant, LD strength between the tagSNP and the 
causative variant, and the burden of multiple testing (Cardon and Bell, 2001). In 
allele frequency-based tests, a clear reverse correlation exists between the study 
sample size and LD (measured by r2) for a tagSNP and a causative variant that 
is required to achieve a certain level of power (Pritchard and Przeworski, 2001). 
When there is a perfect correlation (r2 =1.0) between the tested and causative 
SNP, a sample size of N is needed; however, perfect correlation is rarely found 
and the sample size required scales up exponentially (N/r2) (Wang et al., 2005). 
In case-control studies, the effect of the susceptibility variant is measured by the 
odds ratio (OR), which is defined as the odds of a case being exposed to the 
susceptible genetic variant compared with that in controls. Figure 3 illustrates 
the effects of allele frequency on the required sample size. Several software 
tools have been developed to estimate the required sample size for different 
analytical scenarios (Skol et al., 2006; Menashe et al., 2008). 
 
 

 
  
Figure 3. The number of cases required in an association study for ranges of allelic ORs 
with statistical power of 90%, 50% and 10% at a significance level of P = 1x10–8 
(adapted from Altshuler et al., 2008). The extremely low significance level is due to the 
multiple testing-burden of analyzing hundreds of thousands of markers. The signifi-
cance level of P = 1x10–8 represents a finding expected by chance once per 20 GWASs 
(Altshuler et al., 2008). f indicates the minor allele frequency for a tested DNA se-
quence variant. 
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It is important to note that a study’s power is mostly affected by the OR of the 
underling disease-susceptibility variant (Wang et al., 2005). There is much 
speculation as to the underlying allele frequency spectrum of causative alleles 
and the according effect size distribution (Reich and Lander, 2001; Terwilliger 
and Weiss, 2003). Functionally replicated candidate gene studies of common 
complex diseases have shown that the ORs are in the order of 1.1 to 1.5 and the 
distribution is biased towards smaller effects (Ionnadis et al., 2003; Lohmueller 
et al., 2003). Theoretical estimations and empirical data of GWASs have veri-
fied that tens and hundreds of thousands of samples are needed to robustly 
detect and replicate common disease susceptibility variants (Hindorff et al., 
2009; NHGRI GWAS Catalog, 2012). 

Finally, the required sample size can be further increased when several 
suboptimal study conditions are present, such as weak effects, rare alleles in 
incomplete LD with a tagSNP, ascertainment bias, improper selection of 
controls, and population stratification (Wang et al., 2005). 
 

 
1.2.2. Population stratification 

 

Very large sample sizes are required to detect SNPs with modest effects, and 
population-based cohorts have been used to scale up the sample size (Risch and 
Merikangas, 1996). In large cohorts, the presence of substructure, while un-
detected, can mimic the signal of association and lead to false positive asso-
ciations or masking of the real signals (Cardon and Bell, 2001; Freedman et al., 
2004). When a studied sample includes subpopulations that differ both gene-
tically and on the disease prevalence, then the proportions of cases and controls 
sampled from each of the subpopulations can be different and the allele fre-
quencies will be systematically different in any loci where the two sub-
populations differ (Marchini et al., 2004).  

The effect of stratification was demonstrated when analysis on height was 
carried out in samples of European ancestry and a lactose intolerance associated 
variant (Enattah et al., 2002) was showing a strong association (Campbell et al., 
2005). Both taller individuals and lactose tolerance are more frequent in 
Northern Europe (Bersaglieri et al. 2004). However, the association was lost 
when the potential confounding factor of grandparental ancestry was corrected 
for (Campbell et al., 2005). 

In many GWAS studies, the cases are systematically characterized but the 
controls are not, and may even be obtained from a public databases (Nelson et 
al., 2008). Even a small fraction of stratification (10% of controls) can cause 
bias (Marchini et al., 2004). This problem increases with lower minor allele 
frequencies (<5%) and is pronounced in rare-variant analyses (Morris and 
Zeggini, 2010; Mathieson and McVean, 2012).   

Stratification and presence of cryptic relatedness leads to inflated type I error 
(Voight and Pritchard, 2005). Several mathematical models and software tools 
have been developed to correct for hidden population structure; the most 
conservative of which is known as the genomic control method (Devlin and 
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Roeder, 1999). This method assumes that stratification changes the null distri-
bution of the test statistic by a multiplicative factor λ, and therefore all statistics 
are uniformly corrected. However, this approach can overcorrect any loci not 
affected by stratification (Price et al., 2006). The most used method to correct 
stratification in GWAS is principal component analysis (PCA), which enables 
systematic correction of only the loci with different allele frequencies between 
the subpopulations (Price et al., 2006; Patterson et al., 2006). In this method, the 
covariance due to past demographical events is captured by a few eigenvectors, 
so that all of the other covariates reflect sampling noise (Price et al., 2006; 
Roeder and Luca, 2009). Discriminant analyses of principal components (Jom-
bart et al., 2010) and spatial ancestry analyses (Yang et al., 2012) have recently 
been developed for fine scale population structure analyses. Finally, the non-
hierarchical cluster analysis (Pritchard et al., 2000) and unsupervised maximum 
likelihood-based clustering algorithms (Alexander et al., 2009) are used mostly 
to study population demographic history (Behar et al., 2010; Metspalu et al., 
2011) but less so for correcting stratification in association analyses. 

One of the requirements for GWAs studies has been a replication in an 
independent, equally powered sample (Cardon and Bell, 2000).  A population 
that is closest genetically to the test sample holds the highest probability to 
achieve a successful replication  (Marchini et al., 2004). Therefore, it is crucial 
to know the genetic structure of and genetic distance between the discovery and 
replication populations. The availability of high-density genotypes for many 
individuals sampled from geographically diverse populations has made it 
possible to precisely estimate such distances. PCA and unsupervised clustering-
based methods have unambiguously demonstrated a high correlation between 
the genetic clustering of studied populations and their respective geographical 
distances. The structure of the genetic variation has been analyzed on global 
(Jakobsson et al., 2008; Li et al., 2008) and continental scales (Novembre et al., 
2008; Lao et al., 2008; Heath et al., 2008; Tian et al., 2008; Tishkoff et al., 
2009), as well as among ethnic groups (such as Jewish (Behar et al., 2010)), in 
population isolates (Jakkula et al., 2008; Price et al., 2009) and general 
populations (O'Dushlaine et al., 2010). The genetic structure maps illustrate that 
under the spatial models in which migration and gene flow occur in a homo-
geneous manner over short distances, the similarity between estimated genetic 
distances and geography is high. This regularity is known already from the 
seminal studies using a limited number of genetic markers (Menozzi et al., 
1978; Cavalli-Sforza et al., 1994) but at the same time the genome-wide allele 
frequency data provides the necessary resolution for detecting the subtle 
structuring within a community or geographical region (Wang et al., 2012). 

Figure 4 illustrates the study with the most European populations (37) 
included to date (Novembre et al., 2008). This particular study has two limi-
tations: 1) many populations (18) were represented by fewer than 10 samples 
each; and 2) some northeastern European populations, such as Estonians and 
Lithuanians, were not presented at all, while others, such as Finns and Latvians 
were represented by only one sample. This has biased the spatial structuring 
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estimates in northeastern and central Europe (Jakkula et al., 2008; Lao et al., 
2008; Heath et al., 2008). Recent effort to systematically quantify the geo-
graphic structure of human genetic variation worldwide have shown that a 
larger dataset and more genetic markers are required to charactherize the 
relatively homogeneous population structure in Europe (Wang et al., 2012). 

 
 

 
 
Figure 4. PCA plot of European ancestry populations. The first two principle compo-
nents (PC1 and PC2) are plotted and demostrate a strong correlation between genetic 
and geographic distances. Small colored labels represent individuals, and large colored 
circles represent the median PC1 and PC2 values for each country. Colored circles with 
red line indicate populations that are represented with less than 6 samples. Label 
coloration corresponds to the geographic location on the map (inset). AL, Albania; AT, 
Austria; BA, Bosnia-Herzegovina; BE, Belgium; BG, Bulgaria; CH, Switzerland; CY, 
Cyprus; CZ, Czech Republic; DE, Germany; DK, Denmark; ES, Spain; FI, Finland; FR, 
France; GB, United Kingdom; GR, Greece; HR, Croatia; HU, Hungary; IE, Ireland; IT, 
Italy; KS, Kosovo; LV, Latvia; MK, Macedonia; NO, Norway; NL, Netherlands; PL, 
Poland; PT, Portugal; RO, Romania; RS, Serbia and Montenegro; RU, Russia; Sct, 
Scotland; SE, Sweden; SI, Slovenia; SK, Slovakia; TR, Turkey; UA, Ukraine; YG, 
Yugoslavia. Adapted from Novembre et al., 2008. 
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1.2.3. General findings from GWAS 
 

Over past 30 years, and before the “GWAS era”, the studies on complex human 
diseases had identified and irrefutably replicated only 50 of associated genes 
and respective allelic variants (Ioannidis et al., 2003; Lohmueller et al., 2003). 
During the first years of GWAS, the field was lead by the common disease/ 
common variant hypothesis, which supposed that common diseases are the 
result of a limited number of common alleles with moderate effect sizes that are 
shared among the cases (Reich and Lander, 2001). This hypothesis was partially 
proven by association analyses of age-related macular degradation (Klein et al., 
2005; Dewan et al., 2006). However, other disease studies, with very limited 
numbers of analyzed cases and controls, did not find such evidence (McCarthy 
et al., 2008; Altshuler et al., 2008).  

By the year 2007, all of the necessary theoretical models, analytical tools, 
and high-throughput genotyping technologies for analyzing thousands of DNA 
samples in a cost-effective manner were available. One of the seminal works, 
on which future gene discovery studies were modeled, was conducted by the 
Welcome Trust Case Control Consortium. This study comparatively analyzed 
14,000 cases drawn from seven common diseases with 3,000 healthy controls 
(WTCCC, 2007). This landmark study showed that with sufficient sample size 
the GWAS approach is a powerful tool to robustly replicate already known risk 
loci (Ioannidis et al., 2003; Lohmueller et al., 2003) and to discover new ones. 
For only two of the diseases, bipolar disorder and hypertension, no risk variants 
were found; these negative results may be explained by the presence of controls 
that were not well-characterized, possibly including unidentified cases (Burton 
et al., 2009), or different effect sizes and allele frequency spectrums of risk 
variants between diseases (Manolio et al., 2009; Gershon et al., 2011). 

The Welcome Trust Case Control Consortium study demonstrated that un-
realistically large sample sizes (retrodiction-based estimation taken from Wang et 
al., 2005) are needed to uncover disease genes. Combining the available datasets 
through meta-analysis was proposed as a solution to this problem (de Bakker et al., 
2008; Mägi et al., 2010). Since several commercial genotyping arrays with partially 
non-overlapping SNPs were used in the different studies, genotype prediction 
algorithms were developed that would be able to infer the missing genotypes, 
thereby making the different datasets comparable (Marchini et al., 2007; Willer et 
al., 2008; Browning and Browning, 2009). These bioinformatic methods rely on 
reference populations obtained from public databases (such as the HapMap Project 
and the 1000 Genomes Project) for imputation to infer the missing genotypes and 
relying upon the underling haplotype structure. This approach increased the power 
of meta-analyses because in many instances the tagSNPs are not the causative 
variants (Marchini et al., 2007). Although, the imputation accuracy depends upon 
SNP density as well as the similarity of LD patterns between the data used and the 
reference population (Marchini et al., 2007). Use of the HapMap European refe-
rence panel for imputation in Estonians (Montpetit et al., 2006) and other European 
populations (Marchini and Howie, 2010) is accepted as an appropriate strategy. 
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Familial linkage analysis studies have identified more than 2,700 genes and 
their respective genetic variants associated with human diseases and phenotypes 
(OMIM, 2012), and that number is steadily continuing to grow due to the ever-
advancing sequencing technologies (Bamshad et al., 2011). By April 2012, 
more than 1,200 successful GWAS have been published, accounting for the 
identification of more than 3,000 distinct SNPs for over 600 diseases and 
individual traits (such as height, blood pressure, and eye color) (NHGRI GWAS 
Catalog, 2012). 

The loci targeted by GWASs to date appear to be evenly distributed among 
the autosomes (Figure 5), with fewer involving the sex chromosomes (Voight et 
al., 2009). The sex chromosomes present unique methodological difficulties 
(Marchini et al., 2007), and the published studies of them lack power (Elks et 
al., 2010). In particular, the individual effect sizes of the associated variants are 
modest (OR = 1.1–1.5) and skewed towards the lower end (Hindorff et al., 
2009). Regardless, most of the associated variants discovered cluster outside of 
exons (Hindorff et al., 2009), are significantly enriched in functional elements 
(Ernst et al., 2011) and are concentrated in euchromatic non-coding regulatory 
regions of the human genome (Maurano et al., 2012), where they often act as 
expression quantitative trait loci (QTL) (Fehrmann et al., 2011) and show signs 
of recent positive selection (Casto and Feldman, 2011; Nicholson et al., 2011).  

 

 
 
Figure 5. Karyotype plot presenting the loci identified through GWAS. The 22 auto-
somal and two sex chromosomes are shown. Tick marks on the chromosomes indicate 
the location of trait-associated loci, and the linked colored circles refer to the respective 
trait. The extensive legend for the trait color-coding can be found on the National 
Human Genome Research Institute web page (www.genome.gov/gwastudies).  
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Over the last five years, there has been a constant endeavor to increase the 
sample sizes of meta-analyses. These efforts are based on the clear linear 
correlation that exists between sample size and the number of newly detected 
associated loci; for example, doubling the sample size can lead to at least twice 
as many hits (Visscher et al., 2012). Three initial GWASs on human height 
(Weedon et al., 2008; Lettre et al., 2008; Gudbjartsson et al., 2008) identified a 
total of 54 robustly associated loci, some of which were found by all three 
studies and others were unique to each study. However, when the study samples 
were combined (each having ~25,000) and newly genotyped cohorts added, 
then the discovery sample size of more than 130,000 samples yielded 180 new 
loci. All of these hits were robustly replicated in an independent sample of 
50,000 (Lango-Allen et al., 2010). The same tendency was found in meta-
analyses of plasma lipid levels (Teslovich et al., 2010), Crohn’s disease (Franke 
et al., 2010), and diabetes mellitus type 2  (Voight et al., 2010). Moreover, the 
GWASs carried out in populations of non-European ancestry have verified 
known loci and lead to discovery of new loci; the studies of diabetes mellitus 
type 2 are good examples of this (Cho et al., 2011; Saxena et al., 2012). Thus, 
adhering to a careful and strict study design and a stringent level for statistical 
significance is important to achieve robust and replicable findings (Cardon and 
Bell, 2000).  
 
 

1.2.4. Medical applicability of established GWAS loci 
 

The identification of disease-associated alleles may have two major impli-
cations for clinical medicine: 1) prediction of future outcomes or disease risks; 
or 2) revealing underlying biological pathways that may be used to develop 
therapeutic interventions (Hirschhorn and Gajdos, 2011). The large-scale 
GWASs have identified tens or even hundreds of loci for some diseases, such as 
Crohn’s disease (Franke et al., 2010) and diabetes mellitus type 2 (Voight et al., 
2010), or only a couple for others, such as schizophrenia (Ripke et al., 2011) 
and bipolar disorder (Sklar et al., 2011). The failures to pinpoint causal genes in 
neuropsychiatric disorders have been explained by differences in genetic 
architecture (Owen et al., 2009; Gershon et al., 2011).  

The predictive values of identified genetic variants for disease outcome are 
improving as more loci are found (Jostins and Barrett, 2011; Wray et al., 2010) 
(shown in Figure 5) and are already comparable to the traditional lifestyle-
driven models, such as the Framingham risk score for coronary artery disease 
(Kraft and Hunter, 2009). For example, in age-related macular degeneration 
only a limited number of variants with strong effects in complement factor H 
explain the majority of genetic risk (Maller et al., 2006). Although the predic-
tive power is strong this has not yet impacted clinical management of this 
disease, since an effective treatment remains to be developed (Hirschhorn and 
Gajdos, 2011). Genetic variants usually have only small individual effects 
(Hindorff et al., 2009), and thus explain less than 1% of the disease risk in most 
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cases (Altshuler et al., 2008). In the case of inflammatory bowel disease, where 
different treatment is applied according to different disease subtypes, the 
genetic risk scores generated from more than 100 common risk variants that 
each have relatively modest effect sizes, but which allow for effective 
distinction between ulcerative colitis and Crohn’s disease patients (Franke et al., 
2010) and even between subclasses of these two disorders (Inflammatory Bowel 
Disease Genetics Consortium, unpublished data). The latest GWASs of plasma 
lipid levels, a major risk factor for myocardial infarction, have identified 95 
phenotype-modulating loci, which in combination may explain ~25% of the 
genetic variance of lipid levels. When individuals were grouped according their 
genetic risk scores, the top quartile group showed a 44-fold increased risk of 
hypertriglyceridemia compared to the bottom quartile group (Teslovich et al., 
2010).  

 

 
 
Figure 6. Disease outcome prediction using all genetic variants identified by pre- and 
post-GWAS era studies. PD: Parkinson’s disease; AMD, age-related macular dege-
neration; T1D, type 1 diabetes; T2D, type 2 diabetes; UC, ulcerative colitis; CD, 
Crohn’s disease; RA, rheumatoid arthritis; CAD, coronary artery disease; BRCA, breast 
cancer; LOAD, late-onset Alzheimer’s disease; MS, multiple sclerosis; MDD, major 
depressive disorder; BP, bipolar disorder; SLE, systemic lupus erythematosus; SZ, 
schizophrenia; CRCA, colorectal cancer; PRCA, prostate cancer; OVCA, ovarian 
cancer. Adapted from Jostins and Barrett, 2011. 

 
 

Stratified medicine could be carried out in the field of pharmacogenomics to 
predict and avoid adverse reactions (Harrison, 2012) or for example to prevent 
the development of diabetes mellitus type 2 in a cost-effective manner by 
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treating only the group with elevated genetic risk (Hirschorn and Gajdos, 2011). 
Such prediction-based measures are expected to improve when the real causal 
variants are identified because current genotyping arrays were designed to 
capture the haplotype variability with tagSNPs and incomplete LD decreases 
the effect estimation (Cardon and Bell, 2000; Wang et al., 2005; Visscher et al., 
2012).  

The GWAS findings have widened the conception of a disease and shed 
light on the causal biological mechanisms (Altshuler et al., 2008). For example, 
diseases with similar clinical features, such as Crohn’s disease and ulcerative 
colitis, or autoimmune diseases, tend to share some associated risk variants, 
which make the effects pleiotropic. However, in many other cases, the as-
sociated variants originate from different haplotypes, suggesting different 
regulatory mechanisms that may mediate divergence in disease pathogenesis 
(Franke et al., 2010; Zhernakova et al., 2009). The regulatory balance of a gene 
can be interrupted in several ways, as has been indicated by some regions 
having allelic heterogeneity and some gene loci being affected by multiple 
independent signals (Voight et al., 2010; Elks et al., 2010, Lango-Allen et al., 
2010)  – up to seven in the case of human stature (GIANT Consortium Height 
Working Group, unpublished data). GWAS results have revealed that many of 
the genes for which rare variants cause familial forms of disease also harbor 
common alleles that modulate the normal variability of a trait (Lango-Allen et 
al., 2010; Teslovich et al., 2010). There are also opposite examples, where 
established GWAS loci (Teslovich et al., 2010) have guided the identification of 
mutations in the monogenic form of a common disease, such as in the case of 
hypolipidemia (Musunuru et al., 2010).  

The GWAS prioritizes the DNA sequence variants without any prior 
biological information, and this approach enables the identification of novel 
pathways not yet linked to a specific disorder or trait (Hirschhorn, 2009). The 
functions of some of the genes that have been associated with diabetes mellitus 
type 2 risk suggest involvement of many new mechanisms, including melatonin 
secretion and circadian rhythms, beta cell dysfunction and zinc transport, and 
regulation of cell proliferation by modifying the mass of the pancreatic 
Langerhans islets (Visscher et al., 2012). Genetic variants that have been 
associated with perturbed fasting glucose and fasting insulin levels in healthy 
non-diabetic individuals suggest several mechanisms that may be good 
therapeutic targets to regulate abnormal glucose homeostasis (Dupuis et al., 
2010). This idea is justified by the fact that several sites of action of known 
therapies have been highlighted through GWAS. A good example is the 3-
hydroxy-3-methylglutaryl-CoA reductase (HMGGR) gene, which represents the 
primary target for a class of cholesterol synthesis inhibitors, known as statins. 
The common variants in the HMGCR gene explain only a fraction of variance in 
low-density lipoprotein levels (~5%) for which statin-based treatment is highly 
efficient (30% of redaction) (Altshuler et al., 2008). 

Thus, it can be concluded that the variation explained on the population level 
by a common genetic variant is not an appropriate measure to evaluate the 
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relevance of a GWAS finding. It is important to remember, however, that the 
regions identified through GWASs are enriched for regulatory elements, which 
helps to make the design of new drugs easier since targeting a biologically 
buffered regulatory mechanism is more efficient, less laborious, and less 
dangerous than repairing a loss-of-function or gain-of-function mutation 
(Aartsma-Rus et al., 2010). 
 
 

1.3. Problems of hidden heritability 
 

Despite the fact that GWASs have doubled the number of known disease 
susceptibility associated DNA sequence variants and, therefore, have guided the 
initiation of numerous new functional and molecular biology studies to uncover 
the underlying biological pathways, broaden our understanding of disease 
etiology, and identify new potential drug targets, several concerns still exist about 
the relevance and feasibility these types of studies (Maher, 2008; McClellan and 
King, 2010; Crow, 2011). This general discontent with GWAS arises from the 
fact that even when tens and hundreds of thousands of samples have been pooled 
in GWAS meta-analyses and thousands of potential causal genetic variants have 
been described, only a small fraction (estimation ranges from less than 1% to 
more than 50%) of phenotypic variance or genetic predisposition of genes have 
been explained (Lander, 2011; Visscher et al., 2012).  

Follow-up experimental studies are necessary to understand why the current 
GWAS findings have only been able to explain so little, and to determine where 
the remaining hidden heritability lies. Several strategies, next to GWAS, have 
been proposed for finding the hidden heritability of complex traits but no 
consensus has been reached (Gilbert, 2012). 

It is important to note that the phenotypic variance due to genes can never be 
completely understood because of practical limitations in detecting common 
and rare variants with extremely low effects, in predicting de novo mutations, 
and in modeling all complex interactions between genes and environmental 
factors (Altshuler et al., 2011).  
 
 

1.3.1. Phenotypic variability and concept of heritability 
 

In quantitative genetics, the phenotype (P) is a function of both genetic 
regulation (G) and environmental exposure (E). Likewise, the variance seen at 
the population level in a phenotype (var[P]) is the sum of variance due to 
genotype (var[G]) and variance due to environment (var[E]). Heritability, the 
part of phenotypic variance due to genetic effects, is divided into broad-sense 
heritability (H2) and narrow-sense heritability (h2) (Strachan and Read, 2011). 
In the case of broad-sense heritability, all of the genetic contributions are 
considered, including the additive, dominant, epistatic and imprinting effects; 
such a measure is relevant for clinical risk assessment, as it gives the maximum 
estimation of how well a phenotype can be predicted from a genotype (Zuk et 
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al., 2012). The additive effects explain the majority of the phenotypic variance 
in a population. In contrast, the narrow-sense heritability indicates only the 
additive effects of genes, and represents the maximum variance that can be 
explained by a linear combination of the allelic counts. In GWAS, the explained 
heritability refers to the fraction of narrow-sense heritability accounted for by 
the associated genetic variants (Zuk et al., 2012).  

Twin studies have been used to quantify the contribution of genes, shared 
environment, individual-specific environment, and their interactions to complex 
human traits. The estimation improves when genetically identical (mono-
zygotic) twin pairs are raised in different environments and genetically 
discordant (dizygotic) pairs share an identical environment (Boomsma et al., 
2002). When a trait is assumed to be strictly additive the h2 can be calculated as 
twice the difference of the phenotype correlation between mono- (rMZ) and 
dizygotic (rDZ) twins, as follows: h2 = [2  (rMZ – rDZ)] (Strachan and Read, 
2011). Table 1 shows the heritability estimates for some of the human common 
diseases and complex traits. However, the heritability estimates derived from 
twin studies may be inaccurate due to limited sample sizes (Yang et al., 2010).  

 
 

Table 1. Proportion of explained additive variance in complex traits. For each pheno-
type three estimates are shown: 1) the proportion of phenotype variability in a popu-
lation due to additive genetic variants estimated from pedigree studies; 2) the proportion 
of phenotypic variance or variance in liability to a disease explained by significant and 
validated SNPs of GWAS; and 3) the proportion of phenotypic variance or variance in 
liability to a disease explained when all GWAS SNPs are considered simultaneously 
(those for diabetes mellitus type 2 are not yet available). Adapted from Visscher et al., 
2012.   

 

 
 
The hidden heritability is defined as the proportion between explained additive 
variance and the total additive variance, and is calculated as follows: [1 - 
(h2

explained / h
2
total)] (Zuk et al., 2012). The amount of additive variance explained 

for a complex trait or disease was reported to range between 1% and 25% when 

Trait or Disease Pedigree studies h2 GWAs Hits h2 All GWAs SNPs h2 

Height 0.80 0.10 0.50 
Obesity (BMI) 0.40-0.60 0.01-0.02 0.20 
QT interval 0.37-0.60 0.07 0.20 
Diabetes 
mellitus type 2 

0.30-0.60 0.05-0.10 NA 

Diabetes 
mellitus type 1 

0.90 0.60 0.30 

Crohn’s Disease 0.60-0.80 0.10 0.40 
Schizophrenia 0.70-0.80 0.01 0.30 
Bipolar 
disorder 

0.60-0.70 0.02 0.40 
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classical genetic variants in the human leukocyte antigen region are not 
considered (Lander, 2011). It has been proposed that the hidden heritability 
could lie in gene-gene and gene-environment interactions (Frazer et al., 2009), 
but according to the narrow-sense heritability definition, non-additive effects 
are not a relevant explanation (Yang et al., 2010). A substantial amount of 
additive genetic variance is explained when all of the GWAS SNPs are 
considered simultaneously (shown in Table 1) (Lee et al., 2011; Yang et al., 
2011). The explained heritability for GWAS loci and cumulative estimation can 
also be underestimated if either or both of the following conditions exist: 1) the 
GWASs have not identified the causal variant and instead only identified the 
LD block where the causal variant is expected to be located; and 2) inherent 
uncertainty in the imputation algorithms. If the real causative variant is not 
known, the effect of a certain variant is decreased by the factor of r2. The same 
holds true for imperfect genotype predictions (Visscher et al., 2012). For 
example, when both mentioned variables are taken into account, essentially the 
entire additive genetic heritability of height was explained by common variants 
in height but only half of the variability of body mass index was explained 
(Yang et al., 2010). This type of finding suggests the involvement of rare 
sequence variants (Gibson, 2012).  
 
 

1.3.2. Next steps in GWA studies 
 

Large-scale meta-analyses of continuous traits, such as height and obesity, have 
estimated that more than half a million samples are needed to double the 
currently explained heritability (Lango-Allen et al., 2010; Speliotes et al., 2010; 
Heid et al., 2010). Moreover, calculations indicate that approximately half of 
the additive heritability would be explained when all GWAS SNPs are 
considered simultaneously (Visscher et al., 2012) (Table 1). Two key para-
meters must be changed to improve the discovery yield of GWAS. First, even 
larger sample sizes are needed for common variants with weak effects to reach 
the genome-wide significance, and this is especially pronounced for neuro-
psychiatric disorders. Second, the imputation reference panels need to be 
improved to be able to pinpoint the real causal variants and to test the variants 
of lower allele frequencies (McCarthy et al., 2008; Manolio et al., 2009). DNA 
sequence variants of different scales on allele frequency and effect sizes are 
explained in Figure 7. 

Active genotyping with genome-wide arrays over the past years have 
increased the discovery sample size of human stature from 130,000 to 250,000 
(GIANT Consortium Height Working Group, unpublished data), and from more 
than 20,000 to 40,000 cases with twice as many controls for coronary artery 
disease. (CARDIoGRAMPlus Consortium, unpublished data). As predicted by 
Visscher et al. (2012), in both undertakings the number of trait-associated 
independent genetic variants was doubled. As the yet to be discovered signals 
lie in the GWAS “grey zone” (the P-value range from 10–5 to 10–8 (Naukkarinen 
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et al., 2010)), two custom-made arrays, Immunochip and Cardio-Metabochip, 
were designed to analyze these regions in large samples in a cost-effective 
manner. Both arrays contain roughly 250 loci (total of 200,000 SNPs) of 
nominal significance from immune-related (Immunochip) and metabolic or 
anthropometric (Cardio-Metabochip) traits (Voight et al., 2012). This has 
enabled to cost-effectively genotype more that 500,000 samples (CardioMeta-
bochip Consortium and ImmunoChip Consortium, unpublished data). The 
combined results from GWAS and the Immno- or Cardio-Metabochip studies 
explained more than 50% of the heritability in celiac disease (Trynka et al., 
2011) and increased sample size in GWASs of human stature to more than 
320,000, yielding 700 independent variants (GIANT Consortium Height 
Working Group, unpublished data). The custom-made arrays had been supple-
mented with new variants derived from the 1000 Genomes Project, which 
enabled fine mapping of the association signal in several previously validated 
loci (Trynka et al., 2011; Morris et al., 2012; Scott et al., 2012). Conditioning 
out the main-effect has shown that multiple independent variants are present for 
one-third of the loci (Altshuler et al., 2008; Trynka et al., 2011; Wood et al., 
2011). Only recently, step-wise conditioning of meta-analyses summary 
statistics was developed (Yang et al., 2012), which has enabled the discovery of 
up to seven independent variants in an associated loci (GIANT Consortium 
Height Working Group, unpublished data). The high level of allelic hetero-
geneity is ignored when calculating the narrow-sense heritability, but may 
improve the estimations when modeled in (Yang et al., 2012).  

 
 
Figure 7.  Feasibility of identifying a trait-associated genetic variant by allele frequency 
and strength of genetic effect (odds ratio). Most of the genetic variants discovered to 
date lie within the area between the dotted diagonal lines (Manolio et al., 2009). 
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The March 2012 release of the 1000 Genomes Project is composed of 40 
million genetic variants, which includes 2.4 million short insertions and 
deletions (1000 Genomes Project, 2012). Thus, the reference panel is now 16 
times denser than the previous HapMap panel. Moreover, the enriched reference 
panel is capable of analyzing markers with minor allele frequency, down to half 
a percent. The European subpanel contains 500 samples in total representing 
five geographically distant regions, which helps to account for the allele 
frequency changes in Europe. The entire reference panel currently contains 
more than 1,600 samples from 19 populations (www.1000genomes.org). Use of 
this combined sample increases power and enables more accurate prediction of 
haplotypes that are extremely rare in one population but relatively common in 
others (Howie et al., 2011).  

So far, the new panel has been used to verify the presence of non-syno-
nymous substitutions in GWAS loci (Heid et al., 2010; Speliotes et al., 2010), 
and very recently for imputation, which yielded new signals and fine-tuning of 
known loci (Huang et al., 2012). The true power of the 1000 Genomes Project 
reference panel will not be realized, however, until tens and hundreds of 
thousands of samples are imputed and pooled as was done in the previous 
HapMap imputation-based meta-analyses. Although it is computationally 
laborious, preliminary results from large consortia indicate that tens of new loci 
can be found with modest (40,000) sample sizes (ENGAGE Consortium, 
unpublished data). It is expected to take another year or two before such an 
approach is applied to all the existing GWAS data sets. 

 
 

1.3.3. Proposed approaches to find the hidden heritability 
 

The ongoing GWAS efforts of common variants and improved reference panels 
are expected to explain a substantial amount of narrow-sense heritability. Even 
then, it is likely that a fraction of the heritability will remain hidden (Gibson, 
2012). Several approaches have been proposed to help guide the process of 
finding hidden heritability. In the first, SNPs with frequencies lower than 1% 
are targeted, since the current GWASs are not designed to detect these types of 
variants (McCarthy et al., 2008). In the second, structural variants, such as 
deletions, duplications and inversions are targeted, that are not robustly 
detectable by the current SNP genotyping arrays (Altshuler et al., 2008). In the 
third, imprecise phenotypes and heterogeneous patient groups are targeted 
(Manolio et al., 2009). In the fourth and final proposed approach, the non-
sequence based heritability and complex interactions are targeted for study 
(Eichler et al., 2010).  

 
 

1.3.3.1. Low-frequency variants  
 

The common disease/common variant hypothesis, which states that a limited 
number of genetic variants with intermediate effects underlie common disease, 
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turned out to be not entirely true, as there are hundreds and most probably 
thousands of common and many less frequent genetic variants that contribute to 
the trait variability (Altshuler et al., 2008). If the common allele associations 
were solely caused by underlying low frequency and rare variants, then a 
greater percentage of heritability would have been explained than has been 
estimated from the pedigree studies to date (Visscher et al., 2012). The 
infinitesimal model of many variants, both common and rare, with small effects 
fits theoretically and empirically (Gibson, 2012). Since rare alleles with large 
effects have been implicated in many rare familial disorders, it is reasonable 
that many other rare alleles with modest or low effects exist (Gibson, 2012). 
This presumption is further supported by the fact that several GWAS loci 
harbor rare variants (Musunuru et al., 2010; Johansen et al., 2010; Rivas et al., 
2011). 

Advances in sequencing technology have made it possible to sequence 
whole genomes and exomes, but it still remains an expensive undertaking for 
large-scale studies, as extremely large sample sizes are needed to achieve the 
necessary statistical power (Figure 3; Manolio et al., 2009). The following 
options have been proposed to overcome these two limitations: 1) imputing rare 
alleles using existing GWAS datasets and the 1000 Genomes reference panel; 2) 
sequencing only a small sample from the extreme cases selected from a large 
population, since these individuals would be expected to be enriched for rare 
variants (Chan et al., 2011; Guey et al., 2011); 3) sequencing of isolated 
populations, since rare alleles may have drifted to higher frequencies; and 4) 
development of a cost-effective custom-made genotyping array to detect rare 
sequence variants in very large samples (Zeggini et al., 2011). By combining 
these strategies, a risk variant with allele frequency of 0.38% and OR of 12.5 
was found for sick sinus syndrome, a collection of hearth rhythm disorders, in 
the Icelandic population by analyzing 40,000 samples (Holm et al., 2011). The 
carriers of the non-synonymous mutation had a 50% chance of developing the 
disease, but since the variant was exclusive to Icelanders the finding could not 
be validated or used for prediction in non-Icelandic populations (Holm et al., 
2011). This study indicated that identification of a rare risk variant requires a 
large and homogeneous population due to the fact that rare variants have arisen 
recently and tend to cluster geographically. Recent population structure 
associated with rare variants can bias the results since current methods are not 
capable of correcting for this type of stratification (Mathieson and McVean, 
2012; Graves et al., 2011). Analyzing rare coding variants is complicated and 
even puzzling. Indeed, by estimation, every individual genome carries more 
than 100 protein truncating or stop loss-of-function variants, of which ~30 exist 
in the homozygous state (MacArthur et al., 2012), as well as numerous loss-of-
function compound heterozygotes (Gibson, 2012). 

To achieve the vast sample size that is needed for rare variant analysis, a 
custom-made array called the “Exomechip” has been developed. The Exome-
chip contains ~240,000 rare non-synonymous coding sequence variants that 
have been reported at least three times among the 12,000 exomes and whole-
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genomes sequenced to date (Exome Chip Design, 2012). Array-based geno-
typing is very accurate and cost-effective compared to next-generation 
sequencing. The product came to market in May 2012 and it is expected that at 
least 1.5 million samples will be genotyped (Illumina Inc., personal commu-
nication). As the effect sizes for non-synonymous variants are large (OR >2), a 
study composed of 5,000 cases and an equal number of genetically matched 
controls should have enough power to detect an association when the effect 
variant frequency is higher than 0.5% (Figure 3; Wang et al., 2005). When 
effect sizes are smaller or risk variant frequencies are lower, larger sample sizes 
are needed. Substantial power can be gained by analyzing only individuals 
selected from the tails of the phenotype distribution in a large (50,000) 
homogeneous population (Guey et al., 2011). It is expected that by the year 
2014, we will know how much of the heritability in complex traits is attribu-
table to less common (minor allele frequency > 0.5%) DNA sequence variants 
located both in protein-coding genes and flanking regulatory regions.  

 
 

1.3.3.2. Structural variants  
 

Structural variations, such as copy number variants (CNVs; duplications and 
deletions) and copy neutral variation (such as inversions and translocations), of 
~1000 base pairs in size are detectable by SNP genotyping arrays, although they 
are analytically challenging (Pinto et al., 2011). Common copy number 
polymorphisms have been associated with common diseases, but due to strong 
LD with flanking SNPs these associations were found through GWAS (Manolio 
et al., 2009).  Even using a high-density custom tiling array to genotype 19,000 
samples for eight common diseases did not reveal any new trait-associated 
CNVs (WTCCC, 2010). For neuropsychiatric disorders, ~5% of schizophrenia 
and autism cases are explained by a couple of associated structural variants 
(Gibson, 2012), while the unexplained case-population is highly enriched for 
rare copy number events (International Schizophrenia Consortium, 2008). 
Although trait-associated CNVs tend to have large effects, the effect is not 
sufficient to explain much of the hidden heritability on a population level since 
such events are extremely rare and in most cases occur de novo (Walters et al., 
2010; Gibson, 2012).  

 
 

1.3.3.3. Incomplete phenotype 
 

The ability to measure genotypes currently exceeds the quality of phenotyping. 
For example, a disorder diagnosis is usually made when the majority of the 
symptoms are present (Manolio et al., 2009). Recent GWAS findings have 
demonstrated that genetic risk scores enable dissection of a general diagnosis 
into smaller subclasses, which is complicated by clinical diagnosis (Franke et 
al., 2010). The same holds true for tumors, which can share a single 
dysfunctional mutation but vary significantly in their clinical presentation 
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according to the affected cell type (Stratton, 2011); the shared mutation, 
however, may facilitate a common response to anticancer therapies (Garnett et 
al., 2012). 

Most of the molecular mechanisms defined for complex traits analyzed to 
date, including height and blood pressure, are very distant from the causal effect 
of a primary DNA sequence variant, which complicates the efficiency of a 
method to detect an association (Figure 8). A GWAS using high-throughput 
profiling of serum metabolite levels can be used as a proof of principle, since 
only a thousand samples are needed to statistically robustly identify tens of new 
loci with sequence variants of strong effect (Gieger et al., 2010; Suhre et al., 
2011). The same concept has been shown for fractionated lipid compounds 
(Kettunen et al., 2012) and expression QTL mapping (Fehrmann et al., 2011; Fu 
et al., 2012). Likewise, GWASs with very accurate phenotypes for a limited 
number of samples can explain a large fraction of trait variability (up to 50%) 
(Fairfax et al., 2012). Finally, brain imaging was shown to aid in the discovery 
of sequence variants that regulate the normal anatomical variability, thereby 
providing insights into the biological cause of neurodevelopmental disorders 
(ENIGMA Network; www.enigma.loni.ucla.edu ). 

 
 

 
Figure 8. Expectation of phenotypic variation for different organismal levels. When the 
complexity in each system is taken as constant, the effect of a sequence variant declines 
when moving away from primary molecular effect and so the statistical power is smaller 
to find the association (adapted from Dermitzakis, 2012). 
 
 
It is important to understand the biological processes as a continuum. The 
systems biology approach enables such an endeavor by combining several “–
Omics” datasets (i.e. genomics, transcriptomics, proteomics, and metabolomics) 
(Ala-Korpela et al., 2011; Inouye et al., 2010). Furthermore, this type of 
comprehensive approach is expected to open the gateway to personalized 
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medicine by two strategies: 1) an individual is screened on many platforms over 
a long period of time and 2) “-omics” profiling on single cell level (Chen et al., 
2012). 
 

1.3.3.4. Epigenetic effects and complex interactions 
 

Narrow-sense heritability can be overestimated since dominance and inter-
actions are assumed to not exist (or at least to only account for a very minor 
fraction of genetic variance [var(G)] at the population level) and h2 is basically 
equal to H2  (Zuk et al., 2012). A large GWAS of 130,000 samples did not 
detect any deviation from additivity (Lango-Allen et al., 2010). It was later 
estimated that a sample of 500,000 is necessary to detect any underlying 
interactions between genetic variants (Zuk et al., 2012). In twin studies, narrow-
sense heritability can also be underestimated because the concordance of 
methylation patterns between monozygotic twins decreases over time in case of 
their different environmental exposures, which ultimately may make the 
individuals more phenotypically discordant  (Bell and Saffery, 2012).  

deCODE Genetics has shown that parent-of-origin and imprinting has an 
important effect in common disease, as genetic risk was found to be increased 
only when inherited from one parent but to have a neutral or protective effect 
when inherited from the other parent (Kong et al., 2009). It is well known that 
environmental factors can alter methylation patterns (Bell and Saffery, 2012). A 
good example of this effect is the obesity-associated FTO gene, for which a 
sequence variant generates a methylation site that can be differentially 
methylated according to a change in environment (Bell et al., 2010). 

Gene-gene interaction represents an important form of trans-regulation of 
gene expression. Through this mechanism, a regulatory sequence may mediate 
the transcription of a gene located several million base pairs away or even on a 
different chromosome. Approximately 10% of the genetic variants detected 
through GWASs appear to exert a trans effect on gene expression in different 
tissues (Ferhmann et al., 2011; Fu et al., 2012; Fairfax et al., 2012). Most recent 
studies indicate that up to 25% of the associated sequence variants map within 
euchromatic functional motifs and reveal the involvement of complex regula-
tory networks in disease etiology (Maurano et al., 2012). The underling 
mechanisms of trans-regulation, however, are so far largely unknown and 
require further research (Fairfax et al., 2012). 
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During my PhD studies I have co-authored approximately 40 research articles 
(full list is presented in the LIST OF PUBLICATIONS section), mostly in the 
field of GWAS but also on population genetics and analyses on lifestyle factors 
that shape the human health.  These papers reflect the trends in modern human 
genetics. Namely, the need to combine a single cohort association results 
through GWAS meta-analyses to reach the statistical power to robustly identify 
DNA sequence variants that increase the susceptibility to disease or modulate 
complex traits in humans. 

The current Ph.D thesis incorporates the results of five research articles that 
have been prioritized for the following reasons. I am the shared-first author in 
articles Ref I and Ref II and participated in the study design, performed in part 
the experiments, analyzed the data, participated in the preparation and writing 
of the papers. The results of the Ref I study were important in enabling to 
incorporate the Estonian Biobank samples to international large-scale 
association analyses. The work of Ref II confirmed the status of a genetc isolate 
for a set of Italian village communities, thus providing a powerful tool for 
genetic epidemiology studies. 

Articles Ref III, Ref IV and Ref V are presenting novel analytical strategies 
that lead to unsolving some of the hidden heritability in complex traits (height, 
sleep duration, and osteoarthritis respectively). The chosen papers are in many 
ways proof-of-principle studies and demonstrate that several of the proposed 
approaches to find the hidden heritability (discussed in detail in section 1.3.3) 
are justified and are going to explain at least in part the phenotypic variability of 
complex traits. 
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2. AIMS OF THE PRESENT STUDY 
 
1.  To fill in the gaps of the genetic structuring of northeastern European popu-

lations and more specifically to estimate the spatial positioning of Estonians, 
Latvians, Lithuanians and northwestern Russians using the whole-genome 
SNP allele frequency data.  

 
2.  To evaluate the effect of the sample size and the geographical range of 

sampling in assessing the genetic structuring within different European 
populations and isolated communities from northeastern region of Italy by 
utilizing the SNP array data. 

 
3.  To discover novel DNA sequence variants that modulate complex traits or 

affect the susceptibility to common diseases in the framework of large-scale 
collaborative studies. 

 
4.  To investigate the problem of hidden heritability in complex trait variability 

by applying novel analytical approaches. 
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3. RESULTS AND DISCUSSION 
 

3.1. Studied populations 
 

In the study I and II, the whole-genome genotype data for 1,090 the Estonian 
Biobank samples were used. Eighty samples (40 males and 40 females) were 
selected randomly by place of birth, and represented 13 Estonian counties 
(Harju, Ida-Viru, Jõgeva, Järva, Lääne-Viru, Põlva, Pärnu, Rapla, Saaremaa, 
Tartu, Valga, Viljandi, and Võru). Fifty samples (25 males and 25 females) 
were selected from the combined Hiiumaa and Läänemaa counties (Ref. I, 
Figure 1). While the Estonian territory is relatively small (~45,300 km2), it is 
located in a geopolitically important region of Northern Europe. Situated on the 
eastern coast of the Baltic Sea, Estonia has experienced several immigration 
waves from neighboring areas over the last 800 years. The current population 
size is estimated at 1.3 million, of which approximately 1 million are ethnic 
Estonians.  

In the study I, the whole-genome genotype data was supplemented with 
3,112 individuals analyzed by Illumina HumanHap 300K/370CNV chips. These 
samples represented a total of 19 cohorts from the following 16 countries: 
Austria (Vienna), Bulgaria (entire country), Czech Republic (Prague, Moravia, 
and Silesia), Estonia (entire country, detailed description in previous section), 
Finland (Helsinki, and a subisolate of Kuusamo), France (Paris), Germany (two 
cohorts: Schleswig-Holstein region (north) and the Augsburg region (south)), 
Hungary (entire country), Italy (two cohorts: Borbera Valley (north) and a 
region of Apulia (south)), Latvia (Riga), Lithuania (entire country), Poland 
(West-Pomerania), Russia (Andreapol district of the Tver region), Spain (entire 
country), Sweden (Stockholm) and Switzerland (Geneva) (Ref. I, Table 1). In 
addition, HapMap data was retrieved from public databases for the following 
four populations: –United States’ Utah residents with ancestry from Northern 
and Western Europe (CEU), Yoruban people of Ibadan, Nigeria (YRI), 
unrelated individuals from Beijing, China (CHB), and unrelated individuals 
from Tokyo, Japan (JPT). After quality control procedures, 273,464 SNPs were 
available for analysis. 

For the study II, data for all of the samples, except the CEU, YRI, CHB and 
JPT HapMap populations, from the study I were pooled along with the 
following three datasets: 1,310 Italians (collected from six small villages in 
northeastern Italy) analyzed with Illumina 370CNV chips, 96 Slovenians (entire 
country) genotyped with Illumina OmniExpress chip, and 2,421 international 
samples (publicly available data from across the globe) genotyped with Illumina 
arrays (Ref. II, Supplementary Table 1). After applying quality control 
procedures, 145,000 SNPs and 3,091 samples were available for analysis. 

Studies III, IV and V were designed as large, collaborative meta-analysis 
efforts, in which several single on-site analyzed cohorts were pooled to generate 
summary association statistics. The study III pooled results from 21 studies, 
which yielded a total sample size of 35,945 (the full list of cohorts and sample 
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sizes are given in Ref. III, Supplementary Table 1). In addition, a total of 2,395 
Estonian Biobank samples, genotyped with the Illumina 370CNV chip, were 
included in the final analysis. The study IV was divided into three stages: the 
discovery stage, (including 4,251 samples from seven cohorts, and 924 samples 
from the Estonian Biobank), the in silico validation stage (made up exclusively 
of 536 Estonian Biobank samples), the de novo validation stage (made up 
exclusively of three SNPs that had been genotyped in 5,949 Estonian Biobank 
samples) (the full list of cohorts and sample sizes are given in Ref. IV, 
Supplementary Table 1). The study V was similarly divided into three stages: 
the discovery phase (including 3,177 cases and 4,894 controls collected from 
British isles), the de novo validation stage (using 9,620 cases and 9,177 controls 
collected from the British isles), and the in silico or de novo validation stage 
(using 6,604 cases and 10,393 controls collected from four non-British cohorts, 
including 2,617 cases and 2,619 matched controls from the Estonian Biobank) 
(Ref. V, Table 1). 

For all the studies the Estonian Biobank genotype data was generated and 
analyzed by the Estonian Genome Center personnel. 
 
 

3.2. Genetic structure in Europe (Refs. I and II) 
  

Analyses of complex human traits have shown that the effects of common 
sequence variants are usually modest (see Review of literature, paragraph 1.2.3 
“General findings from GWAS”). Thus, a single population or sample 
collection cannot provide sufficient statistical power to detect these 
associations. The GWAS meta-analysis approach has emerged as an efficient 
way to combine large datasets, although differences in ancestry-derived hetero-
geneity in the association signal can decrease its statistical power. An as-
sociation found for a sequence variant may not be replicated because the 
haplotype structure and allele frequencies may occur with different properties. 
 
 

3.2.1. Genetic distances between European populations 
 

In the study I the European genetic structure were analyzed with a focus on 
Estonian and other Northeast European populations. Autosomal genotype data 
of more than 260,000 genetic markers was available for 3,112 samples from 19 
cohorts from 16 European populations (Ref. I, Table 1; Ref. II, Supplementary 
Table 1) with a wide geographical range, from South Italy to North Finland and 
from Spain to Northwest Russia. Three different parameters were used to 
describe the genetic structure, namely principle component loadings, pair-wise 
fixation index (Fst) and pair-wise inflation factor (λ). 

Principal component analysis is the most commonly applied method in 
GWAS to correct for hidden population structure, but is also applied to estimate 
spatial structure of the genetic variation of world populations. In the study I, the 
two first principal components of the genetic variability corresponded to the 
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northeast to southwest gradient. All of the populations positioned according to 
their geographical location. (Ref. I, Figure 2B). There was almost no overlap in 
the clustering between the populations of the northeastern region, whereas the 
populations of central and western Europe formed an unvarying continuum 
(Ref. I, Figure 2B). The results revealed that Finns position distantly from 
Swedes and other northeastern Europeans, while Estonians cluster next to their 
geographical neighbours (Latvians, Lithuanians and northwestern Russians). 

Fst is used to determine how much of the genetic variability between 
individuals from different populations is due to inter-, and not intra-, population 
variation. By correlating the genetic Fst with geographic distances (Ref. I, 
Supplementary Table 2), a barrier was revealed between Finns, Italians, and 
other populations. A barrier was also detected between Swedes and northeastern 
European populations (Estonians, Latvians, Lithuanians, northwestern Russians 
and Poles) (Ref. I, Supplementary Figure 4). In both cases, geographical 
obstacles, such as the Baltic Sea and the Alps mountain range, has interrupted 
the genetic continuum.  

Genomic control is used to estimate the deviation of the observed test-
statistic distribution from the expected under null hypothesis, for which λ 
represents the scaling factor. It is possible to estimate the similarity in minor 
allele frequency by modeling an allelic association test between two populations 
and estimating λ. The resultant value reflects the genetic similarity and can be 
taken as a proxy for selecting the best population for validating a genetic 
association with a phenotype. The λ values were smallest between populations 
in geographical proximity (Ref. I, Table 2). The within-group λ values were the 
smallest in the northeastern European region (λmean  = 1.23) and central and 
western European region (λmean  = 1.22). Moreover, the number of loci with 
statistically significant allele frequencies, which may have confounded the 
results of the association analyses, was also lower in the two population clusters 
(Ref. I, Table 2).  

The results of study I are in line with those of previous analyses of European 
population structure (Novembre et al., 2008; Lao et al., 2008; Heath et al., 
2008) and, for the first time, position the northeastern European populations on 
the high-density autosomal genetic structure map of Europe. The modeling 
results indicate that by carrying out genetic association study in populations of 
geographical proximity, the loss in statistical power is minimized and the 
probability to validate an association is maximized by the overall genetic 
similarity. This regularity is already known from seminal studies using limited 
number of genetic markers (Menozzi et al., 1978; Cavalli-Sforza et al., 1994), 
but the effect of population structure to GWAS studies was not studied in depth. 
Such knowledge about the genetic distances between different populations is 
crucial for designing an optimal GWAS that will be capable of evaluating the 
contribution of specific cohorts without the risk of generating false positive or 
false negative findings. 
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3.2.2. Genetic structure within single populations 
 

A structured population composed of subpopulations that differ both genetically 
and in disease prevalence have proportions of cases and controls that can differ 
in each subpopulation, thereby causing a systematic difference in allele 
frequencies in any loci where the genetic ancestry does not match and leading to 
spurious associations. Furthermore, a complex trait arises from new mutations 
as well as from the interplay between existing genetic variants and exposure to 
environmental conditions, thus it is desirable to study genetically homogeneous 
populations, such as isolated populations, as more power is gained for genetic 
association mapping studies. 

In the study II, six linguistically and culturally diverse village populations 
(Ref. II, Figure 1A; Supplementary Note) sampled from the northeastern part of 
Italy (region of Friuli-Venezia Giulia (FVG)) were analyzed. The FVG village 
samples were genetically compared with publicly available genomic datasets 
with the emphasis on well-known geographical and cultural population isolates 
in order to evaluate if any of the village populations represented a genuine 
population isolate.  

At first model-based structure-like analyses were applied to estimate the 
hypothetical ancestry proportion distributions among the FVG village samples 
that in general, were very similar to the other populations in the same geo-
graphical region. In contrast, for higher K values almost all of the FVG 
populations became dominated by a single component largely specific to that 
particular village (Ref. II, Figure 1C). The village-specific components were 
present in the background profile of all European populations, representing a 
fraction of the overall genetic variability and being an indication of a 
pronounced random genetic drift (Ref. II, Figure 1C). Furthermore, substantial 
levels of intra-population structure were revealed in the FVG populations in 
elevated variability in membership to the village-specific ancestry component 
(Figure 1C).  

For further analysis the FVG populations were split into subpopulations 
according to the ancestry estimations at K = 10: a) general set, when village-
specific ancestry loading was smaller than 30% and b) more isolated set, when 
loading exceeded 30%. The clustering of the FVG general set samples by both 
the principal component analysis (Ref. II, Supplementary Figure 2) and the 
spatial ancestry analysis (Ref, II, Figure 2) were roughly representative to their 
geographical location. At the same time, the FVG isolated set samples showed 
more extreme values for all considered measures of isolation, such as genomic 
homozygosity, inbreeding coefficient and the extent of LD, compared to the 
known population isolates (Ref II, Figure 4; Figure 5; Supplementary Figure 7; 
Supplementary Table 2). This indicates that the village-specific ancestral 
components arise from the increased genetic similarity within the specific 
subsets of samples from the respective villages and not from the differences in 
genetic origin. 
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Significant differences in haploblock structure and haplotype diversity were 
detected between populations of European ancestry in both the studies I and II 
(Ref. I, Figure 1; Ref II, Figure 4; Figure 5). Northern populations had longer 
haploblocks than the Southern populations. The genomic homozygosity was 
used as the proxy for haplotype diversity. A strong correlation between 
population haploblock length and level of genomic homozygosity was detected. 
Both of these features have been proposed as the cause of relatively small 
effects in ancestral population (Service et al., 2006; McQullian et al., 2008; 
Kirin et al., 2010). 

In the study I, several sample collections where recruited over the entire 
country and for some multiple cohorts were available from a single population. 
The inter-population variability was extremely elevated in the more isolated 
sub-population of Finns (Ref. I, Figure 2B), which was similar to the results for 
FVG village populations in the study II. The intra-population structure was also 
detectable in several general populations, such as Estonian, German and Czech 
(Ref. I, Supplementary Figure 3) when sample collections from multiple 
geographical regions were compared. Plotting the Estonians by county of birth 
produced sub-cohort clusters that were largely overlapping (Ref. I, Supple-
mentary Figure 1) whereas the median PC value per county showed an almost 
perfect resemblance to the regional map of Estonia (Ref. 1, Figure 2C and 
Supplementary Figure 1).  

The collective results from phases I and II of this thesis study illustrate that 
geographic proximity does not always translate to genetic similarity and that 
population structuring can be detected in small countries, such as Estonia, and 
even in a small but topographically variable region, as was demonstrated for 
Northeast Italy. Thus, analyses should always be corrected for population 
structure and both study I and II highlight the need to analyze a large and 
representative sample to precisely estimate the intragroup variability within a 
population as the random genetic drift may lead to elevated differences in allele 
frequencies.  

 
 

3.3. Search for hidden heritability in GWAS  
(Refs. III, IV, and V) 

 

Over the past five years, GWAS meta-analyses of complex human phenotypes 
have identified more than 3,000 sequence variants that associate with genetic 
predisposition to a disease or contribute to normal variability of a continuous 
phenotype. One limitation of these large-scale analyses is that only a small 
fraction of trait variability accounted for by genetic factors is explained. Several 
approaches have been proposed to find the hidden heritability and three of them 
were assessed in this thesis work. 
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3.3.1. Genomic homozygosity and recessive effects 
 

Rare sequence variants represent one source for finding the missing heritability. 
Rare variants are expected to have occurred recently or to have been selected 
against, when the mutation is deleterious or reduces fitness, which can explain 
their low allele frequency in the population. If these are not de novo events, a 
specific haplotypic background is linked to each variant in a population. 
Family-based linkage analyses have exploited this property of the genome to 
identify thousands of disease causing mutations. Since many mutations are 
recessive, the effect is only revealed when the variant is in a homozygous state. 
Recent GWAS meta-analyses that combined the results for more than 130,000 
samples increased the number of height variation-modulating loci to 250, but 
the sequence variants explained only 10% of the trait variance in population and 
focused only on additive effects (Lango-Allen et al., 2010). However, when all 
the SNPs were considered simultaneously, up to 50% of the heritability was 
explained.  

The study III aimed to estimate the effect of recessive genetic component on 
complex phenotypes and used human stature as a model to reveal the genetic 
architecture of the causative allele frequency spectrum. The recessive genetic 
component was estimated by genomic homozygosity, which was calculated as 
the fraction of the genome that is covered with long runs of only homozygous 
genotypes (designated as FROH). A cohort-specific linear regression between 
FROH and height was carried out while correcting for age, sex, and socio-
economical status, and the summary statistics were combined through meta-
analyses. A small but statistically strong (P = 1.23 x 10–11) inverse correlation 
was observed. The signal achieved even stronger statistical significance (P = 
1.23 x 10–88) when ancestral haplotype sharing was removed and only recent 
parental effect was considered. The 1% increase in genomic homozygosity was 
estimated to equal 0.6 cm decrease in body height, which translated to a 
reduction of 3 cm in offspring of first cousins. Interestingly, when adjusting the 
full results for recent parental effects, the observed inverse association remained 
significant, indicating that ancestral recessive variants also play an important 
role in this phenotype effect. 

Collectively, the results from the study III demonstrate that the effect is not 
associated with any specific or single genome region, but instead reflects the 
overall polygenic recessive component’s contribution to the genetic architecture 
of human height. Strong effects for rare variants were detected when explained 
variance of validated common SNPs were analyzed for the extreme cases drawn 
from a large population. The predicted mean height for extremely short stature 
was previously found to be smaller than expected and statistically different from 
the other height groups (Chen et al., 2011). This finding is in line with the 
results from the study III and with previously reported observations that 
indicated rare variants are enriched for coding variants (Li et al., 2010). The 
non-synonymous substitutions tend to have adverse or deleterious effects and 
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may cause deviation from the expected outcome only in cases of extremely 
short stature. 

 
3.3.2. Confounding by environment 

 

In the study IV, large-scale GWAS meta-analyses were performed to find 
genetic variants that affected the variability of human sleeping behavior. 
Disturbed normal sleep-patterns can lead to metabolic syndrome, cardiovascular 
disease, and psychiatric disorders. Individualized sleep requirements underlie 
the different experiences of “social” jetlag among a population, as each person’s 
inner circadian rhythm does not precisely match the generalized one that is 
socially dictated. 

To find sequence variants that affect sleep behavior, 4,251 samples from 
seven cohorts (Ref. IV, Supplementary Table 1) were tested for linear 
associations of SNPs and sleep duration (adjusted for age, sex, and body mass 
index). The results were combined through fixed-effect inverse variance-
weighted meta-analysis. One SNP (rs11046205), located in intron 27 of the 
ATP-binding cassette, sub-family C member 9 (ABCC9) gene achieved 
genome-wide significance (P = 3.68 x 10–8). The association was strongest in a 
directly genotyped cohort; therefore, de novo genotyping of the variant was 
carried out in the three largest cohorts (including the Estonian Biobank 
samples). After repeating the meta-analysis, the association remained 
significant (P = 3.99 x 10–8). The validation by independent in silico (536 
samples) and de novo genotyped (5949 samples) cohorts drawn from the 
Estonian Biobank did not show any statistically significant replication (P > 
0.05). When detailed phenotype modeling was performed in the de novo cohort, 
a systematic difference in sleep duration was observed between the samples 
recruited during winter and summer months, as well as between individuals 
with early and late chronotypes. The same was observed for two of the 
discovery cohorts (Ref. IV, Supplementary Table 7). As clear confounding by 
season and chronotype was detected (Ref. IV, Supplementary Table 8), the 
early half of winter collection was considered as a valid replication sample, 
considering that they would be less sleep deprived. After combining the 
discovery, in silico and de novo early winter cohorts, a borderline genome-wide 
significant association (P = 7.9 x 10–8) was detected for rs11046205 (Ref. IV, 
Figure 1a). This single variant explained 3% of trait variability, which translated 
to a sleep duration difference of 16 minutes (Ref. IV, Figure 1b). Since the 
heritability of sleep duration was estimated to be 40%, 12% of the variability 
due to the additive component was explained by rs11046205. 

The study IV demonstrated how important is to have uniform, precise and 
sophisticated phenotype information for a large set of samples in order to be 
able detect a stratifying effect of environmental exposure. The confounding 
effect was found to be higher in the Estonian Biobank samples, which is likely 
due to the fact that the difference in winter and summer photoperiods in Estonia 
is greater than eight hours. While SNP rs10046205 has an additive (allele 
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dosage) effect on sleep duration (Ref. IV, Figure 1b), the modulating effect can 
be reversed by differences in environmental exposure (length of the photo-
period) and, if not corrected for, the association signal is averaged out. 

 
 

3.3.3. Improved reference panel for imputation 
 

In the study V, large-scale GWAS meta-analyses were carried out to find 
unknown sequence variants that increase the susceptibility to osteoarthritis, a 
degenerative joint disease that affects articular cartilage and subchondral bone. 
Only a limited number of genetic associations have been previously reported for 
osteoarthritis. 

Imputation of the 1000 Genomes Project reference panel has been proposed 
as an approach that would increase the power to find new genetic associations 
of a given trait because the dataset includes several times more SNPs than the 
previous HapMap reference. Thus, the enriched reference panel is considered to 
have better resolution. In addition, it includes haplotypes that have not yet been 
tested for an association. A sample of 3,177 osteoarthritis cases and 4,894 
matched controls were imputed with the 1000 Genomes pilot 1 reference built 
from sequences of 60 CEU individuals. A total of 7.2 million variants were 
tested by logistic regression and the six most promising loci were selected for 
validation in UK and non-UK cohorts (study design shown in Ref. V, Figure 1). 
After several validation steps, a SNP on 13q34 achieved genome-wide 
significance under an inverse variance-weighted fixed effect meta-analysis with 
a P-value of 2.07 x 10–8 and an OR of 1.17. The effect direction was generally 
uniform, with the exception of one cohort, and the risk allele frequency was 
around 0.92 (Ref. V, Figure 2). The identified sequence variant is located in 
intron 4 of the MCF.2 cell-line-derived transforming sequence-like (MCF2L) 
gene, which encodes a guanine nucleotide exchange factor. The functional 
impact of the variant may lay in altering the splicing or changing a regulatory 
sequence motif, thus reducing the binding affinity of a protein, which in turn 
can influence gene expression.  In human cells, MCF2L regulates neurotrophin-
3 (a member of nerve growth factor family) induced cell migration in Schwann 
cells, and treatment of osteoarthritis patients with humanized MCF2L antibody 
that inhibits nerve growth factors reduces pain and improves joint function 
(Lane et al., 2010  

The detailed comparison of the regional association plots at chromosome 13-
associated loci showed that directly genotyped and HapMap imputed analyses 
identified only a singleton variant with borderline significance. Only after 1000 
Genomes imputation did the region show a broad pattern of association (Ref. V, 
Figure 3). Therefore, the results from this study demonstrate that an improved 
reference panel strengthens the power to detect novel susceptibility variants. As 
the reference panel grows larger over time (by March 2012 the panel consisted 
of 1,600 samples) it will become more feasible to impute and test for 
association. In addition, the increased amount of low-frequency variants will 
increase the fraction of explained variability for any given trait. 
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4. CONCLUSIONS 
 
The following conclusions can be drawn from the current Ph.D. thesis study: 
 
1.  By applying the principal component analysis on genotype data of more than 

270,000 SNPs of samples from 19 European populations the gaps in the 
genetic structuring of northeastern European populations were filled in. The 
analyses produced a genetic structure map, in which the populations were 
positioned according to their approximate geographic locations. The results 
revealed that Finns position distantly from Swedes and other northeastern 
Europeans, while Estonians cluster next to their geographical neighbours 
(Latvians, Lithuanians and northwestern Russians). The estimated Fst 
distances and λ values demonstrate, that the Estonian Biobank samples can 
be analyzed together with the other cohorts of European ancestry in large-
scale gene discovery studies. 

 

2.  The results from model-based structure-like analyses on a set of linguis-
tically and culturally diverse village communities sampled from the north-
eastern part of Italy demonstrated that substantial genetic structure can be 
found even in communities considered earlier as largely genetically 
homogeneous populations.  The genetic comparisions between well-known 
population isolates and an isolated fraction of the Italian village communities 
revealed (for the latter) more extreme values for all considered measures of 
isolation. The current findings emphasize that a representative sample must 
be analyzed in order to achive a substantial enough power to reveal the 
structuring within a population and to avoid false positive findings from 
genetic association studies. 

 
3.  Through the studies of this thesis two novel associations between a complex 

trait and a DNA sequence variant were established. Two genes, MCF2L for 
osteoarthritis and ABCC9 for normal variation in sleep duration, were 
prioritized for follow-up studies.  

 
4.  In this thesis, three different approaches were used to uncover the hidden 

heritably in complex phenotypes. First, using the human stature as an 
example it was demonstrated that recessive genetic effects on top of the 
additive play an important role in the phenotype variability. Second, by 
controlling for confounding factors by environment a sequence variant was 
revealed that explained 12% of the narrow-sense heritability in sleep 
duration. Last, by applying improved reference panels to genotype prediction 
the power to find novel complex trait associated sequence variants is going 
to be improved. These studies illustrate that the proposed sources of hidden 
heritability are justified and that the current genome-wide datasets will keep 
providing insights into the biological mechanisms behind complex human 
traits. 
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SUMMARY IN ESTONIAN 
 

Genotüpiseerimiskiibi andmete uudsed rakendused Euroopa 
geneetilise struktuuri analüüsil ning geneetilistes 

assotsiatsioonuuringutes  
 

Inimese genoomi täisjärjestuse avaldamine on viinud genotüpiseerimis- ja 
sekveneerimistehnoloogiate kiirele arengule ning teinud võimalikuks tuvastada 
sadades DNA proovides samaaegselt miljoneid järjestusvariatsioone ja määrata 
inimese genoomi täisjärjestus vähem kui kahe nädalaga. Laiapõhjaliste 
genoomiuuringute tulemusena on rohkem kui 3000 DNA järjestusvariatsiooni 
seostatud enam kui 600 erineva komplekstunnusega. Kuna üksikud järjestus-
variatsioonid kirjeldavad enamasti ära vähem kui 1% tunnuse pärilikust kom-
ponendist on ülegenoomsetes assotsiatsioonuuringutes vaja kombineerida palju-
de kohortide andmestikke, et oleks võimalik formuleerida statistiliselt usutavaid 
järeldusi.  

Käesolevas doktoritöös on käsitletud mitmeid ülegenoomsete assotsiatsioon-
uuringutega seonduvaid aspekte ning eksperimentaalne osa tugineb peamiselt 
Tartu Ülikooli Eesti Geenivaramu biopanga andmestikule.  

1) Hinnati Kirde-Euroopa populatsioonide paiknemist Euroopa alleeli-
sageduste geneetilise struktuuri kaardil. Doktoritöö raameis keskenduti eest-
laste, lätlaste, leedulaste ning loode-venelaste analüüsile. Kasutades peakom-
ponent analüüsi koostastati geneetilise struktuuri kaart, kus populatsioonide 
paiknemine oli selges korrelatsioonis geograafilise asendiga. Selgus, et soom-
lased distantseeruvad nii rootslastest kui ka teistest Loode-Euroopa populatsioo-
nidest, samas kui eestlased paiknevad lähestikku lätlaste, leedulaste ning loode-
venelastega. Hinnatud geneetilise distantsi parameetrite väärtused näitavad, et 
Tartu Ülikooli Eesti Geenivaramu andmete kaasamine suuremahulistesse  
assotsiatsioonuuringutesse koos teiste Euroopa päritolu kohortidega on 
õigustatud. 

2) Uuriti geneetilise struktureerituse olemasolu kuues nii keeleliselt kui 
kultuuriliselt eristuvas Loode-Itaalia külakogukonnas. Mudelipõhine struktuur-
analüüs näitas, et tugev geneetiline struktureeritus võib esineda isegi kogukon-
dades, mida eelnevalt on peetud geneetiliselt väga ühtseks populatsioonideks 
eelkõige nende geograafilise eraldatuse tõttu. Võrreldes tuntud populatsiooni 
isolaatidega, nagu näiteks sardiinlased, tuvastati Loode-Itaalia külakogukon-
dade suurem geneetilise islolatsiooni tase. Lisaks sellele rõhutavad antud 
uuringu tulemused selgelt suure ning esindusliku valimi olulisust geneetilise 
struktureerituse analüüsides.  

3) Antud doktoritöö raames viidi läbi kaks assostsiatsioonuuringut ning 
tuvastati uudsed DNA järjestusvariatsioonid vastavalt MCF2L geenis, mis suu-
rendavad riski haigestuda osteoartriiti, ning vastavalt ABCC9 geenis, mis 
reguleerivad une kestvust.  

4) Käesoleva doktoritöö raames rakendati kolme uutset meetodit, et suuren-
data kirjeledatud päriliku kompondi osakaalu komplekstunnuse varieeruvuses. 
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Esiteseks, demonstreeriti kehapikkuse näitel, et lisaks aditiivsele komponendile 
kirjeldavad olulise osa tunnuse varieeruvusest ära ka retsessiivsed alleelid. 
Teiseks, võttes arvesse uuritavate uneprofiili koostamise aastaega tuvastati 
DNA järjestusvariant, mis kirjeldas ära 12 % une kestvuse geneetilisest kom-
ponendist. Kolmandaks, täpsemate ning suurema katvusega järjestusvariatsioo-
nide andmestikke rakendamine genotüübiandmete parendamiseks võimaldab 
effektiivsemalt tuvastada uusi komplekstunnnusega seotud lookuseid. Tugi-
nedes antud uuringutele võib väita, et mitmed kirjanduses väljapakutud meeto-
did  komplekstunnuste veel väljaselgitamata pärilikkuse komponentide leid-
miseks on õigustatud.   
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