Равнобедренный треугольник

Треугольник называется равнобедренным, если две его стороны равны. Равные стороны называются боковыми сторонами, а третья сторона – основанием равнобедренного треугольника.

 

 

Треугольник, все стороны которого равны, называется равносторонним.

 

Теорема. В равнобедренном треугольнике углы при оcновании равны.

Доказательство.

Рассмотрим равнобедренный треугольник АВС с основанием ВС и докажем, что В = С. Пусть АD — биссектриса треугольника АВС.

 

 

Треугольники АВD и АСD равны по первому признаку равенства треугольников (АВ = АС по условию, АD — общая сторона, 1 = 2, так как AD — биссектриса). В равных треугольниках против равных сторон лежат равные углы, поэтому В = С. Теорема доказана.

 

Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

Доказательство.

Обратимся снова к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса.

Из равенства треугольников АВD и АСD следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.

 

Биссектриса, медиана и высота равнобедренного треугольника, проведенные к основанию, совпадают. Поэтому справедливы также утверждения:

  1. Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
  2. Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.

 

Теорема. Признак равнобедренного треугольника.

Если два угла треугольника равны, то треугольник равнобедренный.

Доказательство.

Докажем этот признак. Пусть в треугольнике два угла равны. Тогда равны и стороны, лежащие против этих углов. Действительно, если предположить, что одна из указанных сторон больше другой, то угол, лежащий против нее, будет больше угла, лежащего против другой стороны, а это противоречит условию (тому, что данные углы равны). Итак, в треугольнике две стороны равны, т.е. треугольник – равнобедренный.