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Information sheet 

The anthropogenic CO2 gas emissions lead to enhanced CO2 concentration in the atmosphere 

and are expected further increase. As CO2 concentrations rise in the atmosphere it equilibrates 

with the surface ocean, resulting in lower pH values. The changes in ocean chemistry (higher 

CO2/low pH values) are expected to affect primary producers. However, the responses to 

combined effects are still poorly understood. The aim of this study was to determine the 

potential effects of CO2 (620, 840 and 1640 µatm) and nitrate availability (7 and 13 µmol l
-1

), 

on the cosmopolitan colony forming diatom Asterionellopsis glacialis. The effect of CO2 on 

growth rate didn‟t depend of the nitrate availability. Still, the cell buildup, growth rates and 

colony size increased significantly under elevated CO2. Also, higher nitrate treatment showed 

enhanced cell buildup and growth rates. Chain length didn‟t differ between nitrate treatments. 

Thus, this study suggests that A. glacialis could benefit from ocean acidification, by enhanced 

carbon availability for growth. Moreover, it is likely that larger colonies sink faster and as a 

result, the carbon is removed more efficiently from the biological cycle and exported to the 

depth where it is stored for 100 years or more. Thus, A.glacialis is expected to a give a 

negative feedback to the ongoing increase in atmospheric CO2. 

Key words: climate change, CO2, ocean acidification, phytoplankton, diatoms, growth rate, nitrate 

availability, colony size 

CERS: B260 Hydrobiology 

Infoleht 

Inimtegevuse poolt õhku paisatud süsihappegaas (CO2) on põhjustanud kiiresti tõusva CO2 

taseme atmosfääris. Heitkoguste praeguse kasvutempo jätkudes, võib aastaks 2100 CO2 tase 

kahekordistuda. Süsihappegaasi kontsentratsioon atmosfääris on tasakaalus ookeani pindmise 

kihi CO2 tasemega, põhjustades seeläbi pH alanemist. On leitud, et muutused vee keemilistes 

omadustes (suurenev CO2/alanev pH tase) võivad avaldada mõju primaarprodutsentidele. 

Tänaseks on vähe teada millised on erinevate faktorite koosmõjud. Käesoleva töö eesmärgiks 

oli välja selgitada millised on CO2 (620, 840, 1640 µatm) ja nitraadi (7 and 13 µmol l
-1

) mõjud 

kolooniaid moodustavale kosmopoliitsele ränivetikale Asterionellopsis glacialis.   



3 
 

Vastupidiselt eeldusele, CO2 mõju kasvule ei sõltunud nitraadi kontsentratsioonist. Leiti, et 

CO2 suurenedes tõusis saagikus ning suurenes kasvukiirus. Samuti suurenesid kolooniad. Leiti 

ka, et kasv oli oluliselt suurem kõrgemal nitraadi kontsentratsioonil, aga see ei mõjutanud 

kolooniate suurust. Töö tulemustest järeldub, et suurenev süsiniku kättesaadavus mõjutab 

positiivselt A. glacialise kasvu ning kolooniate moodustamist. Eeldustekohaselt vajuvad 

suuremad kolooniad kiiremini ning seeläbi kiireneb orgaanilise aine settimine, mis eemaldab 

süsiniku aktiivsest bioloogiliselt ringest. Tänu sellele on võimalik anda negatiivset tagasisidet 

inimtekkelisele CO2 hulga tõusule Maa atmosfääris.  

Märksõnad: kliimamuutused, CO2, ookeani hapestumine, fütoplankton, ränivetikad, kasvukiirus, 

nitraadi kontsentratsioon, koloonia suurus 

CERS: B260 Hüdrobioloogia 
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1. INTRODUCTION 

1.1 Global change 

1.1.1 The changes in the atmosphere and ocean 

Atmospheric CO2 levels have been rapidly increasing since the 280 ppm (ppm-parts per 

million) found previous to the industrial revolution (IPCC 2014). In 2010 the atmospheric 

CO2 was ~380 ppm (IPCC 2014). In May 2018 the Mauna Loa Observatory in Hawaii 

reported 411.21 ppm of CO2 at the surface ocean (Mooney 2018). These rapid changes in the 

atmosphere also affect ocean chemistry. Surface ocean pH has been rather stable before 

industrialization over the last 800 000 years, averaging 8.2 at the surface water. Since the 

industrial revolution, the pH has dropped ~0.1 units, so the present day value is ~8.1 (Gattuso, 

Hansson 2011; Riebesell et al. 2010). Based on business as-usual scenario, atmospheric CO2 

levels are expected to approach 800 ppm by the end of the century, which means that pH 

would drop further 0.3 to 0.5 units and reach 7.8 pH units (Feely et al. 2009, IPCC report 

2014). Finally, the changes in ocean chemistry are not happening everywhere at the same 

pace. For example, in areas where the water temperature is lower, like the Arctic Ocean, CO2 

levels and concomitant acidification is increasing more rapidly (CO2 dissolves better in colder 

water). This makes the Arctic one of the most efficient areas for the sink of anthropogenic 

CO2 in the global ocean (Slagstad et al. 2011).  

1.1.2 Ocean chemistry 

Ocean acidification refers to the pH drop of the ocean, caused by the uptake of CO2 from the 

atmosphere. When CO2 dissolves in seawater it forms carbonic acid CO2 + H2O ↔ H2CO3
-
. 

Carbonic acid rapidly dissociates (splits apart) to produce bicarbonate ions: H2CO3 ↔ HCO3
-
 

+ H+. Bicarbonate ions can also dissociate into carbonate ions: HCO3
-
 ↔ CO3

2- 
+ H+. Both of 

these reactions produce protons (hydrogen ions H
+
) which decrease pH. As a result, the 

balance between the carbonate species of DIC (dissolved inorganic carbon) will change, with 

[CO2] and [HCO3
-
] increasing and [CO3

2-
], decreasing (Figure 1). In the present day HCO3

-
 is 

the dominating species, representing about 90% of DIC, followed by CO3
2-

 (~10% of DIC) 

and finally CO2, which represents less than 1% of DIC (Feely et al. 2009; Barker, Ridgwell 

2012).  
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Figure 1. pH scale illustrating DIC species (Barker, Ridgwell 2012) 

 

However, there is a natural capacity of seawater to buffer against changes in pH, called 

alkalinity. Seawater total alkalinity (TA) is commonly defined as “the excess base” in 

seawater, and its components ions are illustrated in the cloud of alkalinity (Figure 2). Seawater 

TA slows down, or buffers changes in ocean pH because it includes many different acid-base 

pairs. In other words, alkalinity reflects the ability of seawater to resist acidification. TA stays 

constant even when CO2 is added to seawater because the charge balance of the solution stays 

unaltered, meaning that the number of positive ions generated equals the number of negative 

ions generated by this reaction (Holmes-Farely 2002). 

AT = [HCO3
−
]T + 2[CO3

2−
]T + [B(OH)4

−
]T + [OH

−
]T + 2[PO4

3−
]T + [HPO4

2−
]T + 

[SiO(OH)3
−
]T − [H

+
]sws − [HSO4

−
]  
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Figure 2. Total alkalinity as a buffer against changes in pH. Source:(http://www.whoi.edu) 

 

1.2 Phytoplankton 

1.2.1 An overview 

Phytoplankton are microscopic single-celled protists, which live in oceans, seas, rivers or 

lakes. Their size can vary from < 1 μm
3
 to over 109 μm

3
 (Courties et al. 1994; Moore, 

Villareal 1996; Villareal et al. 1999). As primary producers they are at the base of the ocean 

food chain. Phytoplankton produce organic material from inorganic material, which they use 

for food and to make their cells. This process is called photosynthesis. For photosynthesis, 

they need water, light, carbon dioxide (CO2) and nutrients. They live in the euphotic zone, 

which is the upper part of the water column where sunlight can penetrate. Below the euphotic 

zone light becomes a limiting factor. Allover, sunlight and nutrients are the hardest to obtain 

for phytoplankton (Reynolds 2006).  

http://www.whoi.edu/
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Phytoplankton can be organized according to different parameters, for example some have 

calcium carbonate shells (e.g., coccolithophores), some have silicate shells (e.g., diatoms), and 

some have no hard shells at all and have the ability to swim (e.g., dinoflagellates). The largest 

groups of phytoplankton are diatoms, cyanobacteria, and dinoflagellates (Pal, Choudhury 

2014). Phytoplankton can be single-celled or colonial. Single cells attach to each other and 

thereby form colonies. Every cell in a colony has its own cell wall and no direct exchange of 

substances or information between the cells in a colony is taking place. Larger cells or 

colonies have smaller surface area to volume ratio and smaller cells/colonies have more 

surface area compared to cell volume. Smaller cells tend to have higher reproductive rate than 

larger cells, and larger cells or colonies tend to sink faster (Chisholm 1992; Gemmell 2016; 

Reynolds 2006). Also, larger size could be advantageous because there are fewer losses in the 

populations due to bigger zooplankton grazers (Strom et al. 2007; Gemmell 2016).  

1.3 Parameters affecting phytoplankton growth 

1.3.1 Light 

The depth to which phytoplankton grows depends on how deeply the sunlight can enter into 

the water. The light environment for phytoplankton can vary enormously, due to absorbtion, 

scattering and shading by pigments and other material, variation in intensity and angle of 

insolation and many other factors. Natural water bodies are almost never still. Movement is 

often generated by warming or cooling, wind and Earth‟s rotation (Coriolis‟ force). This is 

causing phytoplankton to drift vertically and horizontally. Most of them don‟t have the ability 

to move so they drift with surface ocean currents.  

There are large differences among species in what concerns their light utilization and 

photoprotective capacity. For example, diatoms are thought to perform relatively well under 

both limiting light and excessive light (Richardson et al. 1983) or fluctuating light (Litchman 

1998). Smaller cells are thought to maintain higher photosynthetic rates under light limitation 

(Raven et al. 2000; Finkel 2001) while larger cells may be less susceptible to photoinhibition 

under excessive light. In general, growth increases with irradiance because of the light 

limitation. When photosynthesis is no longer light limiting growth saturates. Growth can also 
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decrease at higher irradiances due to photodamage from excess light and/or the costs of 

photoprotection (Key et al. 2010).  

To get optimal light, phytoplankton has to avoid sinking out of the surface layer, due to their 

cells being slightly heavier than water. Many have different strategies to minimize the rate of 

sinking, such as 1) different body shapes 2) large surface area and small volume 3) gas filled 

vesicles and 4) oil droplets, retaining less dense ions etc. (Pal, Choudhury 2014). Generally, it 

is known that accumulated lipids are lighter than water and their presence in cells reduce 

excess density. Also, oil accumulation is responsible for the ability of colonies, like green alga 

Botryococcus, to float to the surface in small lakes (Reynolds 2006; Beardall et al. 2008). 

Although, there is a general agreement that sinking rates increase with a particle size (Sournia 

1982; Kriest, Evans 1999) and by Stoke´s law the sinking rate of a spherical particle is related 

to the square of its radius (Reynolds 2006). 

1.3.2 Nutrients 

Along with light, phytoplankton also needs nutrients. In the ocean phytoplankton growth is 

mainly supported by either the recycling of nutrients or by reintroduction of nutrients from 

deeper waters by mixing or upwelling (Voss et al. 2013). Nitrogen and phosphorous are the 

nutrients needed in larger amounts and, both are essential to survival and reproduction. 

Nutrients are used to make proteins, nucleic acids and other cell parts that phytoplankton need 

to survive and reproduce. All phytoplankton have a requirement for the small amounts of 

silicon involved in protein synthesis, but diatoms need silicate the most, to build up their cell 

walls (Reynolds 2006). Phytoplankton has different systems to capture and assimilate 

nutrients. They have membrane transport systems for transporting nutrients from the boundary 

layer into the cell. Furthermore, different species have different physiological adaptions. Some 

are adapted to live in places with low nutrient concentrations, others with higher 

concentrations (Reynolds 2006).   

Also, there are two acknowledged models describing the growth of phytoplankton in relation 

to limiting nutrient. Monod model (1942) states that the growth rate is related to the 

concentration of a single growth-limiting substrate. Phytoplankton cannot continue to grow 

when one or the other has been used up.  Monod equation only takes account of the ambient 
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concentrations whereas the Droop model (1983) takes account of the level of nutrient already 

in the cells. The cells have the ability to store nutrients when they are available, so when 

nutrients become limiting in the environment, the cells are still able to divide by using those 

reserves. The actual growth rate of the phytoplankton depends on the nutrients in the cell (the 

cell quota), while the uptake rate depends on the ambient nutrient (Leadbeater 2006). 

Phytoplankton take up nutrients at a certain ratio, (also defined as the average of chemical 

elements in phytoplankton biomass or the stoichiometry, of photosynthesis and 

remineralization reactions) that varies between different species and environmental 

conditions, but on average occurs at 106 C: 16 N: 1 P (carbon: nitrogen: phosphorus) 

throughout the ocean, which is commonly referred to as the Redfield ratio (Redfield 2006). 

The stoichiometry of phytoplankton determines the nutritional quality for the secondary 

producers and the energy flow within next levels of the food chain (Basu, Mackey 2018).  

The limiting nutrients differ within the ocean region. For example, Eastern Mediterranean Sea 

is phosphorous limited and growth stops when phytoplankton have used up all the 

phosphorous, even though there is still nitrogen in the water (Krom et al. 1991). Phosphorus is 

responsible for making new DNA and therefore the second most important growth limiting 

element. Phosphate is also important for synthesizing phospholipids. Bioavailable phosphorus 

forms occur in combination with oxygen in the ions of orthophosphoric acid. Many species 

can take up freely available phosphorus at very rapid rates (Reynolds 2006). For 

photoautotrophs, the available nitrogen forms are nitrate, nitrite and ammonium ions (NO3
-
, 

NO2
-
 and NH

+4
). Nitrogen fixers also use molecular N2. Nitrate accounts approximately 88% 

of the dissolved inorganic nitrogen pool. Nitrogen is required for the biosynthesis of proteins 

and other macromolecules, including chlorophyll (Zhan et al. 2018).  

Micronutrients (e.g., iron, zinc) occur naturally at low concentrations and are used in small 

quantities. In certain regions of the ocean, micronutrients are known to limit the growth of 

phytoplankton. An important trace component for algal cells is iron. One of the most energy-

demanding processes in the cell is nitrogen reduction, which involves the participation of iron. 

Also, one of the most known symptoms of iron deficiency is the blockage of chlorophyll 

synthesis. The result of iron limitation is poor photosynthetic yields of fixed carbon and 

impaired growth potential (Pal, Choudhury 2014).  
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1.3.3 CO2 

Ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) is involved in the carbon 

fixation, a process by which atmospheric carbon dioxide is converted by photosynthetic organisms 

to energy-rich molecules (sugars) such as glucose (John, Wang et al. 2007). However, 

Rubisco is considered inefficient due to low affinity towards CO2. Also, CO2 diffuses easily 

through biological membranes and leaks out of the cell (John, Wang et al. 2007). For 

compensating Rubisco inefficiency, most phytoplankton species possess carbon concentrating 

mechanism (CCMs). CCMs elevate intracellular CO2 levels to a concentration that nearly 

saturates Rubisco, but it´s energetically costly to operate, because first bicarbonate (HCO3
-
) 

has to be transformed to CO2, so Rubisco could be able to fix carbon (Young, Morel 2015; 

Gattuso, Hansson 2011).  

1.4 Diatoms 

1.4.1 Biology 

Diatoms are single celled or colonial algae with cell wall made of silica called frustule, and 

which has a characteristic species specific pattern. Their shapes and sizes vary widely. The 

frustule is made of two overlapping parts. The smaller inner part is called hypotheca and outer 

larger part epitheca. Diatoms have spread around the globe (oceans, lakes, rivers, streams, 

soils, wetlands) and diversified into hundreds of genera and around 100, 000 – 200, 000 

species, which makes them the most species rich groups of phytoplankton. Most diatoms 

are non-motile and their relatively dense cell walls cause them to sink (Gemmell et al. 2016). 

It has been hypothesized that some diatoms resist sinking by exchanging ions with the 

seawater (Gemmell et al. 2016), but most species rely on turbulence to keep them suspended 

in the surface waters (Reynolds 2006). Often, marine diatoms form blooms during the spring 

and early summer and are dominant in upwelling areas. Diatoms are able to reproduce 

sexually and asexually, but they reproduce more frequently asexually by cell divison. In 

asexual reproduction each daughter cell receives one half of the parent cell's frustule, while 

the other missing part is regenerated. The generated half always becomes hypotheca. This 

leads to a decrease of the population average size after every cell division. By forming 

auxospore, diatoms are able to restore their original size (Round 2007).  

https://en.wikipedia.org/wiki/Carbon_dioxide
https://en.wikipedia.org/wiki/Photosynthesis
https://en.wikipedia.org/wiki/Fuel
https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Glucose
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1.4.2 Importance  

Diatoms date back more than 200 million years when climate was much warmer and 

atmospheric CO2 concentration was much higher than today. First, the planet was dominated 

by phytoplankton groups who´s cell were smaller. Approximately 150 million years ago 

diatoms and other groups with larger cells started to evolve. This lead to more rapid 

sedimentation of the cells (carbon burial) and caused carbon dioxide reduction in atmosphere 

and the increase of oxygen, which stayed rather stable in the next tens of millions years 

(Bhanu 2008). Diatoms are important for the export and burial of organic carbon for a number 

of reasons (Heureux, Rickaby 2015). They fix as much carbon dioxide as all the rainforests of 

the world combined, contributing for up to 25% of global primary production and about half 

of the marine primary production (Tréguer et al. 1995; Uitz et al. 2010). Their silica shells 

provide ballast material for sinking aggregates, and diatom blooms typically terminate in 

aggregation and mass settling of cells (Buesseler 1998; Baines et al. 2010; Heureux, Rickaby 

2015).  

1.4.2.1 Biological pump 

CO2 diffuses into the ocean from the atmosphere, and dissolved CO2 taken up by 

phytoplankton becomes particulate organic carbon (POC) through photosynthesis. Organic 

matter is either remineralized by microbes, or consumed by zooplankton and their predators  

into fecal pellets, organic aggregates (“marine snow”), and other forms of POC are exported 

to the mesopelagic and bathypelagic zones by sinking and vertical migration. This process is 

called “biological pump”, but it is relatively inefficient. It is estimated that the biological 

pump removes 11 Gt of carbon yr-
1
,
 
from the ocean‟s epipelagic waters (Buesseler, Boyd 

2009; Turner 2015), but only about 10% of that flux reaches the bottom of the ocean (Martin 

et al. 1987) were carbon is stored for 100 years or more. Approximately 97% of net primary 

production that does not reach the deep sea, it is consumed or respired by bacteria (Ducklow 

2000; Turner 2015), and zooplankton (Calbet, Landry 2004; Turner 2015) in the epipelagic 

zone (upper 100–200 m) or upper layers of the mesopelagic zone (100–200 to 1000 m) (De La 

Rocha, Passow 2007; Turner 2015). It has been hypothesized that when CO2 increases it could 

potentially lead to higher primary production and as a result, increased carbon export 

(biological carbon pump) to the depth and thus give a negative feedback to the ongoing 

https://www.sciencedirect.com/science/article/pii/S0012821X13002185#bib63
https://www.sciencedirect.com/science/article/pii/S0079661114001281#b0545
https://www.sciencedirect.com/science/article/pii/S0079661114001281#b0545
https://www.sciencedirect.com/science/article/pii/S0079661114001281#b2420
https://www.sciencedirect.com/science/article/pii/S0079661114001281#b2420
https://www.sciencedirect.com/science/article/pii/S0079661114001281#b0890
https://www.sciencedirect.com/science/article/pii/S0079661114001281#b0890
https://www.sciencedirect.com/science/article/pii/S0079661114001281#b0630
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increase in atmospheric CO2. However, the export of carbon is determined by the C:N ratio of 

the sinking particles and the input of “new production” of nitrate to the euphotic zone 

(Haizheng et al. 2017).  

1.5 CO2 effect on diatoms and current study approach 

Under present day carbonate chemistry the availability of CO2 can limit the growth of diatoms 

(Riebesell et al. 1993; Barcelos e Ramos et al. 2014; Gallo et al. 2018, Haizheng  et al. 2017). 

It has been found that the growth response of phytoplankton to increasing CO2 levels range 

from positive (Haizheng et al. 2017; Barcelos e Ramos et al. 2014; Gallo et al. 2018; Low-

Décarie et al. 2011; King, Jenkins et al. 2015) to negative (Gallo et al. 2018; Torstensson 

et al. 2012; von Dassow, Diaz-Rosas et al. 2018) or absent (Wei et al. 2012; Haizheng et al. 

2017;  King, Jenkins et al. 2015; Wynn-Edwards et al. 2014; Yang, Gao 2012), even under 

comparable experimental conditions. Most of the studies investigating the effect of ocean 

acidification on phytoplankton have been carried out in a narrow range ~400 ppm (present 

day) compared with ~800 ppm (estimated by year 2100) (Haizheng et al. 2017; Wei, 

Schippers et al. 2004; Wynn-Edwards 2004; Yang, Gao 2012; Low-Décarie et al. 2011; 

Torstensson et al. 2012; von Dassow, Diaz-Rosas et al. 2018; Hoppe et al. 2018).  

Marine organisms are already exposed to higher CO2 levels (lower pH) than present day 

atmospheric concentration – in upwelling areas where along with nutrients the water carries 

high load of CO2 rich water (Norman et al. 2013; Lachkar 2014; Lauderdale et al. 2017; Feely 

et al. 2016; von Dassow, Diaz-Rosas et al. 2018). In these areas the pH is estimated to drop 

even below 7.8 by the year 2100 (von Dassow, Díaz-Rosas et al. 2018). CO2 concentrations 

are also much higher near hydrothermal vents throughout the world. In the Azores shallow 

vents occur offshore the islands and in the seamounts. The characteristics of Azores shallow 

water (10-45 m) hydrothermal vents is their singularity, the major gas component of these 

vents is CO2 (90%) (Cuoto et al. 2015; Cerqueira et al. 2017). The concentrations in these 

vents vary (shallow vent off Sao Miguel have ~577 µatm CO2 J. Barcelos e Ramos personal 

communication), but it is much higher than surface ocean present average. Along with ocean 

acidification there are multiple effects which impact diatoms, like nutrient availability, light 

conditions, temperature, turbulence and community structure (Pardew, Blanco Pimentel et al. 

https://www.sciencedirect.com/science/article/pii/S0141113612001134?via%3Dihub#bib61
https://www.sciencedirect.com/science/article/pii/S0141113612001134?via%3Dihub#bib61
https://www.sciencedirect.com/science/article/pii/S0141113612001134?via%3Dihub#bib61
https://www.ncbi.nlm.nih.gov/pubmed/?term=Cerqueira%20T%5BAuthor%5D&cauthor=true&cauthor_uid=28144700
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2018; Hoppe et al. 2018, Sampaio et al. 2017; Tatters et al. 2018, Gallo et al. 2018; Heizheng 

et al. 2017). An important factor is enhanced nitrate concentrations in upwelling and coastal 

areas, as a result of the atmospheric deposition and agriculture runoff (Tae-Wook et al. 2011; 

Loughner et al. 2016). Therefore, it is important to address several factors and wider CO2 

range to better predict the response of the less studied colony-forming diatoms, since they 

influence global biogeochemical cycles and climate.  

The goal of this work was to determine the potential effects of CO2 and nitrate availability on 

the cosmopolitan chain-forming diatom species Asterionellopsis glacialis cell buildup, growth 

rate, cellular contents and colony formation. The following hypothesis were tested: 

Hyp 1. Elevated CO2 availability affects the cell buildup, growth rate and colony size of A. 

galcialis.  

Hyp 2. Increased nitrate availability affects the cell buildup, growth rate and colony size of A. 

galcialis. 

Hyp 3. The effect of CO2 on A. glacialis growth performance is affected by the availability of 

nitrate.  
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2. MATERIAL AND METHODS  

2.1 Preparation of the experiment  

Experimental work was conducted in the year 2017, September to December at the University 

of the Azores (UAc), Terceira Island. We investigated the response of the cosmopolitan 

diatom Asterionellopsis glacialis to three CO2 levels and 2 nitrate concentrations. All work 

was made under controlled laboratory conditions. First, stocks culture of Asterionellopsis 

glacialis were cultivated until stable exponential growth conditions, at which point growth 

rates were determined for each condition. This enabled the calculation of the starting number 

of cells and corresponding inoculum additions to achieve optimal conditions during the 

experiment.  

North Atlantic water collected from south of Terceira was filtered through a 0.2 µm Polycap 

filter (Figure 3) in autoclaved bottles. After filtering, the water was enriched with 

approximately 4.5 µmol l
−1

 of phosphate, 130 µmol l
−1

 of silicate (the increase of total 

alkalinity upon addition of Na2SiO3 was compensated by HCl addition) and trace metals and 

vitamins as specified in the f medium (Guillard, Ryther 1962). Samples of pH, salinity and TA 

(total alkalinity) were taken and their analysis used to determine the carbonate system of the 

seawater and it´s manipulation which was achieved by combined additions of HCl and 

NaHCO3
-
 (Gattuso, Hansson 2011), to maintain total alkalinity constant while increasing 

dissolved inorganic carbon in a closed system following Schulz et al. (2009). Two nitrate 

treatments were prepared for the experiment with initial concentrations of ~7 µmol l
−1 

and 13 

µmol l
−1

. Also, three CO2 concentrations were chosen for the experiment: 600, 800 and 1600 

µatm, to investigate the response of the diatom under predicted CO2 concentrations of the 

future (IPCC report 2014). Moreover, higher CO2 values are already present today – 

upwelling areas and hydrothermal vents.  

2.2 Experimental setup 

The experimental design is depicted in Figure 4. First, three (5 L) bottles were filled with 

growth medium, enriched with 7 µmol l
−1 

of nitrate and CO2 was adjusted in each bottle 

according to the treatments. After mixing, temperature and salinity was measured and aliquots 

for pH, TA, nutrients were taken to calculate the initial values of the carbonate system of the 7 
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µmol l
-1

 nitrate treatment. Then 500 ml bottles that would be used for the pre-culture I, II and 

the experiment of the first nitrate treatment (7 µmol l
-1

) were carefully filled. After that, the 

same three (5 L) bottles were further enhanced with 6 µmol l
−1

 of nitrate and mixed. Again, 

samples of pH, TA and nutrients were taken to calculate the initial carbonate system chemistry 

of the second nitrate treatment (13 µmol l
−1

). The corresponding 500 ml bottles of pre-cultures 

and experiment were carefully filled (Figure 4). All bottles were filled without headspace (to 

avoid equilibration with the gaseous phase) and stored in refrigerator at 4°C, until needed. At 

the beginning of each step (pre-culture I, II and the experiment) the bottles were placed inside 

the climate chamber for temperature equilibration. Cultures were grown at 20°C under 120 

µmol m
-2

 s
-1 

light intensity and 14/10 h light/dark cycle. All cultures were gently rotated 

vertically (20 times) daily at the beginning of the light phase (10 times) and in the afternoon 

(10 times) to avoid aggregation, sedimentation and self-shading during the light phase.  

 

 

Figure 3. Seawater filtration with 0.2 µm Polycap filter. 
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Figure 4. Design of the experiment. On top it is represented the setting of the carbonate 

system, followed by two acclimation phases (pre-culture I and II), and the final experiment.   
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2.3 Carbonate chemistry measurements and calculations  

Total alkalinity was measured by potentiometric titration using a Metrohm 848 Titrino Plus 

equipped with Metrohm 869 Compact Sample changer. Total alkalinity measurements were 

corrected with certified reference material (Dickson 2010) at about 20 µmol kg
−1

 accuracy and 

2 µmol kg
−1

 precision. Since the precision is important for calculating the carbonate system, 

two methods were used to measure pH 1) using a glass electrode (WTW 340i pH meter) and 

calibrated with a TRIS seawater buffer, supplied by A. Dickson 2) using the indicator dye m-

cresol by (Gattuso, Hansson 2011). For the calculation of the carbonate chemistry (initial and 

final values), TA (total alkalinity), pH, temperature, salinity, phosphate and silicate were 

measured using the equilibrium constants determined by Mehrbach et al. (1973) as refitted by 

Dickson & Millero (1987), was calculated using CO2SYS software. The pCO2 levels referred 

in the graphs correspond to the average of the initial pCO2 values shown in Table 1.   

 2.4 Cell numbers and growth rates 

Cultures were grown 4 days (4-5 generations) at each step (pre-cultures and final experiment) 

before dilution or harvesting. To keep the carbonate system as constant as possible (with less 

than 5% change of the dissolved inorganic carbon (DIC)) the cultures were kept at low cell 

density (Gattuso, Hansson 2011). 

A. glacialis cells were fixed with lugol (2% of final concentration) and cell abundance and the 

number of cells within a given colony was determined by counting, under the light microscope 

(Nikon Eclipse TS100, 200× magnification). On average, 800 cells were counted per sample. 

For determination of the colony size the weighted average was calculated.  

Cell growth rate was calculated according to the equation:  

μ = ln (Cf/Ci)/Δt (1) 

Where Cf and Ci represent the final and the initial cell concentrations, respectively, and Δt 

corresponds to the growth period in days. 
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2.5 Nutrients 

Samples for the determination of nutrients were taken at the beginning and at the end of the 

experiment. All samples were filtered through 0.2 µm polyethersulfone syringe filters and 

stored at -20°C until analysis. Following Sharp (1974) reagents and standards were prepared 

for calibration and for determination of the concentrations of dissolved inorganic nitrate 

(NO3), nitrite (NO2), silicate (SiO3) and phosphate (PO4
3-

). All nutrients were measured 

spectrophotometrically (Agilent Cary 60 UV-Vis) and concentrations were calculated 

according to the corresponding calibration curves.  

2.6 Author role 

All described work was accomplished by the author under supervisory guidance, except the 

measurements of pH m-cresol which were done by Joana Barcelos e Ramos and samples of 

POC/N will be analyzed in the Southern University by the collaborator Kai George Schulz.  

2.7 Statistical analysis  

Statistical analysis was done using R and STATISTICA 12 64-bit. Statistical significance of 

the data was tested by Two-way ANOVA and One-way ANOVA (significance determined as 

95%, p-value ˂ 0.05). 
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3. RESULTS 

3.1 Carbonate system 
During the incubation, drawdown of dissolved inorganic carbon (DIC) was less than 5%. 

Moreover, the manipulation of the carbonate system kept TA (total alkalinity) stable, with 

differences between treatments below 1% (Table 1). The comparison of pH electrode and 

spectrophotometric measurement (indicator dye m-cresol) at the beginning and end (Figure 5) 

of the experiment showed statistically significant correlation (r= 0.96, N=6, p= 0.006) and (r= 

0.93, N=6, p= 0.006). 

 

Table 1. Carbonate chemistry at the beginning and end of the experiment. Final values are 

expressed as average (± SE) of the replicates and pCO2 is calculated based on the 

measurements of pH, TA (total alkalinity), nutrients (P, Si) and temperature. pH values 

correspond to method m-cresol.   
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Figure 5. Comparison of two methods for measuring pH at the beginning and end of the 

experiment, with pH electrode and spectrophotometric measurement using indicator dye m-

cresol.  

  

3.2 Nutrients  

Nitrate drawdown during the experiment was ~6.3 µmol l
-1

 in the lower nitrate treatment (7 

µmol l
-1

), decreasing on average 96%  and 11 µmol l
-1

 in the higher nitrate treatment (13 µmol 

l
-1

), decreasing 87%. At the same time the initial concentrations of phosphate decreased on 

average 22% in the lower nitrate treatment (7 µmol l
-1

) and 23% in the higher nitrate treatment 

(13 µmol l
-1

). Finally, the initial concentrations of silicate decreased on average 4% under 

lower nitrate treatment (7 µmol l
-1

) and 8% under higher nitrate treatment (Table 2).  
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Table 2. Nutrient concentrations at the beginning and end of the experiment. Final values are 

expressed as the average (± SE) of the replicates. 

 

 

3.3 Response of the biomass buildup  

CO2 (two-way ANOVA: F=9.9, p=0.002) and nitrate treatments (two-way ANOVA: F=23.6, p 

p˂0.001) had a significant effect on cell buildup, which increased with elevated CO2 and were 

always higher under the higher nitrate concentration (13 µmol l
-1

). From 620 to 840 µatm of 

CO2 the mean cell buildup increased 222% (nitrate 7 µmol l
-1

) and 72% (nitrate 13 µmol l
-1

). 

The difference between two nitrate concentrations was 94%. Between 840 and 1640 µatm of 

CO2 no significant difference (p˂0.001) was found. The two-way ANOVA showed no 

significant interaction between the two tested factors (CO2 and nitrate concentration) on cell 

buildup (F=0.08, p˃0.05) (Figure 6). 
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Figure 6. Cell buildup of Asterionellopsis glacialis at increasing pCO2 levels and two nitrate 

treatments 7 µmol l
-1

 (grey triangles) and 13 µmol l
-1

 (black squares). The black squares and 

grey triangles express the mean values and with standard the errors (SE).   

 

3.4 Growth rate 

CO2 (two-way ANOVA: F=5.7, p=0.018) and nitrate treatments (two-way ANOVA: F=25.6, 

p˂0.001) had a significant effect on growth rate, which increased with elevated CO2 and was 

always higher under the highest concentration (13 µmol l
-1

). From 620 to 840 µatm of CO2 the 

mean growth rate increased 20% (nitrate 7 µmol l
-1

) and 14% (nitrate 13 µmol l
-1

) and the 

difference between two nitrate concentrations was 34%. Between 820 and 1640 µatm of CO2 

no significant difference (p˂0.001) was found in both nitrate treatments. The two-way 

ANOVA showed no significant interaction between the two tested factors (CO2 and nitrate 

concentration) on growth rate (F=0.7, p˃0.05) (Figure 7).  



25 
 

 

Figure 7. Growth rate of Asterionellopsis glacialis at increasing pCO2 levels and two nitrate 

treatments 7 µmol l
-1

 (grey triangles) and 13 µmol l
-1

 (black squares). The black squares and 

grey triangles express the mean values with standard errors (SE).   
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3.5 Nitrate cell quota 

Nitrate treatments didn‟t have a significant effect on nitrate cell quota (Two-Way ANOVA: 

F=1.49, p˃0.05). However, CO2 had a significant effect on nitrate cell quota (Two-Way 

ANOVA: F=16.02, p˂0.001), which decreased 72% (nitrate 7 µmol l
-1

) and 46% (nitrate 13 

µmol l
-1

) from 620 to 840 µatm of CO2. Between 840 and 1640 µatm of CO2 no significant 

difference (p˂0.001) was found. The two-way ANOVA test showed no significant interaction 

between the two tested factors (CO2 and nitrate concentration) on nitrate cell quota (F=3.43, 

p˃0.05) (Figure 8).  

 

Figure 8. Nitrate drawdown of Asterionellopsis glacialis at increasing pCO2 levels and two 

nitrate treatments 7 µmol l
-1

 (grey triangles) and 13 µmol l
-1

 (black squares). The black 

squares and grey triangles express the mean with standard errors (SE).  
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3.6 Nitrate concentrations at the end of the experiment  

The one-way ANOVA showed a significant difference (82%) between the two nitrate 

treatments (7 µmol l
-1

 and 13 µmol l
-1

)
 
in relation to the nitrate concentrations at the end of the 

experiment (F=14.2, p˂0.001). The average concentration left in the first treatment was 0.3 

µmol l
-1

 and the second treatment had 1.7 µmol l
-1

 (Figure 9). 

 

 

Figure 9. Nitrate concentration at the end of the experiment. The black squares express the 

mean values with standard errors (SE).  
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3.7 Average colony size 

Nitrate treatments didn‟t have a significant effect on the average colony size (Two-Way 

ANOVA: F=0.004, p˃0.05). However, CO2 had a significant effect on colony size, which 

increased with elevated CO2 (Two-Way ANOVA: F=13.3, p˂0.001). From 620 to 840 µatm 

of CO2 the average colony size increased 26% (nitrate 7 µmol l
-1

) and 37% (nitrate 13 µmol l
-

1
). Between 820 and 1640 µatm of CO2 the increase was 5% (nitrate 7 µmol l

-1
) and 7% 

(nitrate 13 µmol l
-1

). The two-way ANOVA showed no significant interaction between the two 

tested factors (CO2 and nitrate concentration) on average colony size (F=0.1, p˃0.05) (Figure 

10). 

 

 

Figure 10. The (weighted) average colony size (cells per chain) of Asterionellopsis glacialis 

at increasing pCO2 levels and two nitrate treatments. The black squares express the mean 

values with standard errors (SE).  
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4. DISCUSSION 

4.1 Influence of elevated CO2 on Asterinellopsis glacialis 

The increasing CO2 availability enhanced Asterionellopsis glacialis cell numbers and growth 

rate. Similarly, earlier studies with diatoms have shown increased growth rate under elevated 

CO2 as expected for the year 2100 (Sampaio et al. (2017); Barcelos e Ramos et al. 2014; Gallo 

et al. 2018; Low-Décarie et al. 2011; King, Jenkins et al. 2015). It is taught that due to higher 

CO2 availability carbon concentrating mechanisms (CCMs) might be down-regulated, and the 

saved energy used for other growth processes (Raven 2003; Rost et al. 2008; Reinfelder 2012; 

Hu et al. 2017; Gallo et al. 2018; Deppeler et al. 2018).  

As CO2 concentrations became higher (~1640 µatm) the growth rate was no longer enhanced. 

This is most likely related to the concomitant decrease in pH – which might be negatively 

affecting cell physiology (Barcelos e Ramos et al. 2014; Thoisen et al. 2015; von Dassow, 

Diaz-Rosas et al. 2018; Gallo et al. 2018) – and reaching carbon saturation point under the 

conditions tested. In other words, findings from this work indicate that CO2 concentrations 

(e.g. 620 µatm) are limiting the growth of Asterionellopsis glacialis at concentrations higher 

than present. In previous work with A. glacialis and optimum was observed (Barcelos e 

Ramos et al. 2014; Gallo et al. 2018). However, in this work there was not decrease found in 

growth, due to the interval tested.  

The increasing CO2 availability enhanced the colony size of Asterinellopsis glacialis. As with 

the growth rate, the colony size increased from 620 to 840 µatm, and leveled thereafter. 

Larger colonies have been related to increased growth rate (Takabayashi et al. 2006; Thoisen 

et al. 2015). Like many diatoms, also A. glacialis cells are sticky, because of the exudation of 

polysaccharides (Barcelos e Ramos et al. 2014). When more carbon is available then the 

exudation is higher. Therefore, with increased growth rate and carbon availability there is also 

a higher possibility of adjacent cells to bind.  

In previous work with Asterionellopsis glacialis under increasing CO2 concentrations, Gallo et 

al. (2018) and Barcelos e Ramos et al. (2014) found also a positive correlation between 

increasing CO2 and colony size. Furthermore, they found that even when growth rates 
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decreased at very high CO2 values (~1300-3500 µatm) the number of cells per chain still 

increased. They related the increasing colony size with low pH values. When cells were 

exposed to more “extreme” pH values then larger colonies could be a strategy to increase pH 

near the cells (inner cells in chain are less exposed to bulk seawater) and thus protect the cells 

from acidification (Barcelos e Ramos et al. 2014; Gallo et al. 2018). In this work there was no 

decrease found in growth rate. Also, there was no significant increase in chain length at very 

at very high CO2/low pH, therefore it is likely that longer chains are in positive correlation 

with growth rate.  

The effect on colony size might have implications to the biological pump of the future ocean. 

According to Stoke´s law, sinking rates increase with a particle size (Sournia 1982; Kriest, 

Evans 1999). This implies that larger colonies sink faster and as a result, the carbon is 

removed more efficiently from the biological cycle and exported to the bottom of the sea for 

long term storage. This would give a negative feedback to the ongoing increase in atmospheric 

CO2 (Riebesell, Wolf-Gladrow 1992; Kriest, Evans 1999; Riebesell 2004).  

Finally, CO2 had a significant effect on nitrate cell quota. Under the lowest CO2 concentration 

(620 µatm) the nitrate cell quota was significantly higher and the growth rate was significantly 

lower. When one of the nutrients is limiting (C, N, P) the growth of phytoplankton is 

suppressed (Leonardos, Geider 2004). Nitrate accumulated in the cell, since CO2 was limiting 

the growth. Hence, as CO2 increased the growth rate increased, and the nitrate cell quota 

decreased.  

4.2 Influence of nitrate availability on Asterionellopsis glacialis 

The increasing nitrate availability enhanced Asterionellopsis glacialis cell buildup and growth 

rate, which is in agreement with earlier studies (Justić et al. 1996; Haizheng et al. 2017). At 

the end of the experiment, there was significantly less nitrate in the lower nitrate treatment (7 

µmol l
-1

) than in the higher nitrate treatment (13 µmol l
-1

). The growth rate of the nitrate 

treatment 7 µmol l
-1

 was lower due to the limitation of nitrate. Decreased nitrogen availability 

leads to decreased synthesis of proteins in algae, therefore the growth is suppressed (Li et al. 

2013). When looking at nitrate cell quota, the difference between the two nitrate treatments 

was insignificant, suggesting that nutrient uptake was independent of nitrate concentrations.  
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It was also expected that increased nitrate availability affects positively the colony size, but 

the hypothesized wasn‟t confirmed. From previous work, it has been found that higher nitrate 

and phosphate availability increases the number of cell per chain (Takabayashi et al. 2006; Ma 

et al. 2014), but it was more related with phosphate concentration than nitrate. In this work the 

growth rate was significantly higher when there was more nitrate. But the colony size didn‟t 

differ between the nitrate treatments. Indicating that colony size is more dependent on carbon 

availability than growth rate. Different studies indicate that colony formation is a complex 

process and in nature probably affected by different factors and their combinations (e.g. light, 

grazing, buoyancy regulation, CO2, pH). There is very little information about increasing CO2 

on colony formation. Therefore, it needs further investigation to better understand feedback 

effects of diatoms on climate change. 

4.3 Combined CO2 and nitrate availability on Asterinellopsis glacialis 

Unexpectedly, we found no clear interaction between CO2 and nitrate availability on 

Asterionellopsis glacialis growth. Fu et al. (2010) described the effect of increasing CO2 and 

phosphate availability on Karlodinium. They found that Karlodinium may benefit from future 

increases in CO2, but possibly only when nutrients are in excess. Growth is limited by the 

nutrient in least supply (Fu et al. 2010). Although, we found that even when nitrate was 

limiting (7 µmol l
-1

), increasing CO2 had a significant effect on growth. When CO2 increases, 

the energy saved by a down-regulated CCM operation could be reallocated in nutrient 

transporters (Reinfelder 2012), which results higher nitrate drawdown from the environment. 

Therefore support higher growth under elevated CO2. Even if the saved energy from CCM 

was reallocated into nutrient transporters, the effect applied to both nitrate treatments. 

Therefore, the differences in growth between the nitrate treatments (7 and 13 µmol l
-1

) are 

similar under each CO2 (620, 840 and 1640 µatm).  
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SUMMARY 

Atmospheric CO2 levels have been rapidly increasing since the industrial revolution. Based on 

business as-usual scenarios, atmospheric CO2 levels are expected to further increase. Changes 

in the atmosphere also affect ocean chemistry (higher CO2/lower pH values), and thereby 

different organisms. It has been found that the growth response of phytoplankton to increasing 

CO2 levels range from positive to negative or absent. Along with ocean acidification, there are 

multiple effects which impact phytoplankton, such as nutrient availability, changes light 

conditions, temperature and turbulence. Since diatoms play a major role in carbon fixation, 

they influence global biogeochemical cycles and climate. Therefore, the goal of this work was 

to determine the potential effects of CO2 and nitrate availability on of the cosmopolitan chain-

forming diatom species Asterionellopsis glacialis. We investigated the response of three CO2 

(620, 840 and 1640 µatm CO2) levels and 2 nitrate concentrations (7 and 13 µmol l
-1

). 

Experimental work was conducted under controlled laboratory conditions at the University of 

Azores, Terceira Island. As was hypothesized, the increasing CO2 and nitrate availability 

affected Asterinellopsis glacialis cell buildup, growth rate and colony size. 

The cell buildup and growth rate of A. glacialis increased significantly from 620 to 840 µatm 

of CO2, but leveled thereafter. This suggests that A. glacialis benefited from increasing CO2, 

in terms of improved carbon supply. This is likely related to down-regulation of cellular 

carbon concentration mechanism (CCM) operation, which allowed to reallocate the saved 

energy for growth. As CO2 concentrations became higher (~1640 µatm) the growth rate was 

no longer enhanced. This is most likely related to the concomitant decrease in pH, which 

might be negatively affecting cell physiology. Furthermore, findings from this work indicate 

that CO2 concentrations are limiting the growth of A. glacialis at concentrations higher than 

present.  

The colony size of A.glacialis increased significantly from 620 to 840 µtam of CO2, and 

leveled thereafter in parallel with growth rate. Furthermore, the cell buildup and growth rate 

were significantly higher under the higher nitrate treatment. However, the colony size didn‟t 

differ between nitrate treatments, suggesting, that colony size is more dependent on carbon 

availability that growth rate. When more carbon is available the exudation of polysaccharides 
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is higher, thus the cells are more sticky and the possibility of adjacent cells to form larger 

colonies is higher.  

 

In conclusion, the growth rate of Asterinellopsis glacialis increased significantly with elevated 

CO2, until 840 µatm of CO2. Therefore, if the CO2 concentrations increase – until ~800 ppm, 

like it is expected by the year 2100 – A. glacialis could benefit from ocean acidification, by 

enhanced carbon availability for growth. It is likely that larger colonies sink faster and as a 

result, the carbon is removed more efficiently from the biological cycle and exported to the 

depth where it is stored for 100 years or more. Thus, A.glacialis is expected to give a negative 

feedback to the ongoing increase in atmospheric CO2. 
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KOKKUVÕTE 

Alates tööstusrevolutsioonist on CO2 tase atmosfääris kiiresti tõusnud. Heitkoguste praeguse 

kasvutempo jätkudes suureneb CO2 kontsentratsioon üha enam. Lisaks muutustele atmosfääris 

muutub ka ookean keemia (suurenev CO2/madalam pH tase), mõjutades seeläbi mitmeid 

erinevaid organisme. On leitud, et suureneva CO2 mõju fütoplanktonile võib olla nii 

positiivne, negatiivne kui puudulik. Lisaks ookeani hapestumisele mõjutavad fütoplanktonit 

mitmed teised faktorid (e.g. valgustingimused, temperatuur, turbulents ning toitainete 

kontsentratsioonid). Ränivetikatel on oluline roll süsiniku fikseerimisel, mõjutades seeläbi 

globaalseid biogeokeemilisi tsükleid ning Maa kliimat. Käesoleva töö eesmärk oli uurida 

millised on CO2 (tasemetel 620, 840, 1640 µatm) ja nitraadi (7 ja 13 µmol l
-1

) mõjud  

kolooniaid moodustavale kosmopoliitsele ränivetikale Asterionellopsis glacialis. 

Eksperimentaalne töö teostati Assooride Ülikoolis laboritingimustes.  

Leiti, et A.glacialise saagikus ning kasvukiirus tõusid oluliselt, kui CO2 tase tõusis tasemelt 

620 µatm tasemele 840 µatm. Tänu suurenenud süsiniku kättesaadavusele, võis väheneda 

süsiniku kontsentreerimise mehhanismi (CCM) tähtsus A.glacialise metabolismis ning ülejääv 

energia oli võimalik suunata kasvu. Leiti veel, et süsihappegaasi suurenedes (kuni 1640 µatm) 

jäi kasv samale tasemele. Põhjuseks võib olla CO2 tõusuga samaaegselt langenud pH tase, mis 

võis raku füsioloogiat negatiivselt mõjutada. Antud tulemustest järeldub, et tänasest paljud 

kõrgemad CO2 kontsentratsioonid (e.g. 620 µatm CO2) ei pruugi küllastada A.glacialise 

süsiniku vajadust.  

Lisaks leiti, et A.glacialise kolooniad oli oluliselt suuremad, kui CO2 tase tõusis tasemelt 620 

µatm tasemele 840 µatm. Sarnaselt kasvukiirusega, kõrgemal süsihappegaasi 

kontsentratsioonil (1640 µatm) kolooniate suuruses olulisi muutuseid ei olnud. Lisaks 

süsihappegaasile oli oluline mõju nitraadil. Kõrgemal nitraadi kontsentratsioonil (13 µmol l
-1

) 

oli A. glacialise saagikus ning kasvukiirus oluliselt suurem. Nitraadi manipulatsioon aga 

kolooniate suurust ei mõjutanud. Seega järeldub, et kolooniate suurused sõltuvad rohkem 

süsiniku kättesaadavusest kui kasvukiirusest. Süsiniku kättesaadavuse suurenedes on 

polüsahhariidide eksudatsioon suurem, seega on rakud rohkem kleepuvamad ning tõenäosus 

suuremate kolooniate moodustamiseks tõuseb. 
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Kokkuvõtvalt võib öelda, et Asterinellopsis glacialise kasv tõusis oluliselt, kui CO2 tase 

tõusis. Seega, jätkuv CO2 kontsentratsiooni tõus atmosfääris – eelduste kohastelt ~800 ppm 

aastaks 2100 – mõjutab positiivselt A. glacialise kasvu. Lisaks suurenevad kolooniad ning 

eelduste kohaselt vajuvad suuremad kolooniad kiiremini ning seeläbi kiireneb orgaanilise aine 

settimine, mis eemaldab süsiniku aktiivsest bioloogiliselt ringest. Tänu sellele on võimalik 

anda negatiivset tagasisidet inimtekkelisele CO2 hulga tõusule Maa atmosfääris.  
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