
1
Tartu 2020

ISSN 2613-5906
ISBN 978-9949-03-434-5

DISSERTATIONES
INFORMATICAE
UNIVERSITATIS

TARTUENSIS
20

O
R

LEN
Y

S LÓ
PEZ PIN

TA
D

O
	

C
ollaborative B

usiness Process Execution on the Blockchain: The C
aterpillar System

ORLENYS LÓPEZ PINTADO

Collaborative Business Process
Execution on the Blockchain:
The Caterpillar System

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS

20

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS

20

ORLENYS LÓPEZ PINTADO

Collaborative Business Process
Execution on the Blockchain:

The Caterpillar System

Institute of Computer Science, Faculty of Science and Technology, University of
Tartu, Estonia.

Dissertation has been accepted for the commencement of the degree of Doctor
of Philosophy (PhD) in informatics on August 12, 2020 by the Council of the
Institute of Computer Science, University of Tartu.

Supervisors

Prof. Marlon Dumas
University of Tartu
Estonia

Prof. Luciano García Bañuelos
Tecnologico de Monterrey
Mexico

Opponents

Prof. Dr. Dimka Karastoyanova
University of Groningen
The Netherlands

Prof. Pierluigi Plebani, Ph.D.
Politecnico di Milano
Italy

The public defense will take place on September 25, 2020 at 12:15 at Delta Build-
ing, Narva mnt 18, Room 1021.

The publication of this dissertation was financed by the Institute of Computer
Science, University of Tartu.

Copyright c© 2020 by Orlenys López Pintado

ISSN 2613-5906
ISBN 978-9949-03-434-5 (print)
ISBN 978-9949-03-435-2 (pdf)

University of Tartu Press
http://www.tyk.ee/

To my parents Olga and Orestes

ABSTRACT

Nowadays, organizations are pressed to collaborate in order to take advantage
of their complementary capabilities and to provide best-of-breed products and
services to their customers. To do so, organizations need to manage business
processes that span beyond their organizational boundaries. Such processes are
called collaborative business processes.

One of the main roadblocks to implementing collaborative business processes
is the lack of trust between the participants. In the past decade, blockchain tech-
nology has emerged as a generic solution to enable a set of parties to collabo-
rate in the absence of mutual trust. Blockchain technology allows a set of par-
ties to maintain an immutable, distributed ledger of transactions and to deploy
programs, called smart contracts, that are executed whenever certain transactions
occur. These features can be used as essential building blocks for running collab-
orative business processes between mutually untrusted parties. However, imple-
menting business processes using the low-level primitives provided by blockchain
platforms is cumbersome and error-prone. In contrast, established Business Pro-
cess Management Systems (BPMSs), such as those based on the standard Busi-
ness Process Model and Notation (BPMN), provide convenient abstractions for
rapid development of process-oriented applications.

This thesis addresses the problem of automating the execution of collaborative
business processes on top of blockchain technology in a way that takes advantage
of the trust-enhancing capabilities of this technology while offering the develop-
ment convenience of traditional BPMSs. The thesis also addresses the question
of how to support scenarios where new parties may be onboarded at runtime, and
parties need to have the flexibility to change the default routing logic of the busi-
ness process, while at the same time ensuring that the execution of the process
abides by its basic specification.

The thesis formulates a set of principles and requirements for executing col-
laborative business processes on the blockchain. It then proposes and evaluates
architectural approaches and process modelling concepts to fulfil these principles
and requirements. These architectural approaches and modelling concepts are em-
bodied in a novel blockchain-based BPMS that we named CATERPILLAR. Like
any process execution engine, CATERPILLAR supports the creation of instances
of a process model and allows users to monitor the state of process instances and
to execute tasks thereof. The specificity of CATERPILLAR is that the state of each
process instance is maintained on the (Ethereum) blockchain and the workflow
routing is performed by smart contracts.

The CATERPILLAR system supports two approaches to implement, execute
and monitor blockchain-based processes: a compiled approach and an interpreted
approach. The compiled approach relies on a compiler from the BPMN modelling
notation to the Solidity programming language. The compiler supports an exten-
sive array of BPMN constructs, including sub-processes, multi-instance activities

6

and event handlers. It also supports processes enhanced with data constraints,
which guide the process execution.

This compiled approach takes full advantage of the immutability properties of
blockchain platforms: Once deployed, the business logic of a process cannot be
altered. On the other hand, this approach is not suitable in dynamic collaboration
scenarios where flexibility is a requirement. To handle dynamic collaboration sce-
narios, CATERPILLAR also supports an interpreted approach to business process
execution. It relies on an interpreter of BPMN models, based on dynamic data
structures, that is embedded in a business process execution system with a modu-
lar multi-layered architecture, supporting the creation, execution, monitoring and
dynamic update of process instances. For efficiency purposes, the interpreter re-
lies on compact bitmap-based encodings of process models. An experimental
evaluation shows that the proposed interpreted approach achieves comparable or
lower costs relative to existing compiled solutions.

Although flexibility is a desirable property, it needs to be restricted in order
to avoid participants from steering the process in a direction that is detrimental
to others. In order to address this concern, this thesis proposes two models for
controlled flexibility in collaborative processes. First, the thesis presents a model
for dynamic binding of actors to roles in collaborative processes and an associ-
ated binding policy specification language. The proposed language is endowed
with a Petri net semantics, thus enabling policy consistency verification. Second,
the thesis introduces a model for consensus-based control-flow flexibility, wherein
participants in a process can collectively agree on how to steer the business pro-
cess within the boundaries defined by control-flow agreement policies. The thesis
also outlines an approach to compile policy specifications into smart contracts
for enforcement. An experimental evaluation shows that the cost of policy en-
forcement increases linearly with the number of roles, control-flow elements, and
policy constraints.

7

CONTENTS

List of Figures 11

List of Tables 13

List of Abbreviations 14

1. Introduction 15
1.1. Problem Area: Blockchain-based Business Process Management

Systems . 15
1.1.1. Collaborative Business Processes 16
1.1.2. Business Process Execution: Compiled versus Interpreted . 17
1.1.3. Access Control, Flexibility and Dynamic Process Execution 19

1.2. Problem Statement . 20
1.3. Overview of the Contributions and Outline of the Thesis 25

2. Background 30
2.1. Business Process Management 30
2.2. Business Process Model and Notation 30
2.3. Blockchain Technology . 36

2.3.1. Types of Blockchains and Consensus Protocols 36
2.3.2. Ethereum Blockchain and Smart Contracts 38

3. State of the Art 41
3.1. Architectures of Business Process Management Systems 41
3.2. Blockchain-Based Collaborative Business Processes: Implementa-

tion and Execution . 43
3.3. Flexibility in Collaborative Processes 46

3.3.1. Resource Perspective: Access Control, Binding and Delega-
tion Models . 46

3.3.2. Control-flow Perspective: Variability, Adaptation, Evolution
and Looseness . 48

4. Caterpillar: A Blockchain-based Business Process Execution Engine 51
4.1. Running Example . 51
4.2. Architecture of the Caterpillar System 53

4.2.1. On-Chain Runtime and Storage 54
4.2.2. Off-chain Runtime . 59
4.2.3. Web Portal . 65

4.3. Compiling BPMN into Solidity Smart Contracts 66
4.3.1. Process variables and external resources 66
4.3.2. Control-flow Perspective 70
4.3.3. Sub-processes and Reusable Elements 75

8

4.3.4. Event Handling . 78
4.4. Implementation and Evaluation 82

4.4.1. REST API . 82
4.4.2. Experimental Setup . 85
4.4.3. Experimental Results and Discussion 87

4.5. Summary . 89

5. Interpreted Execution of Blockchain-Based Business Process Models 90
5.1. Extending the Architecture of the Caterpillar System with the

Interpretation-based Engine . 90
5.1.1. On-Chain and Storage Layer 92
5.1.2. Off-Chain Access and Process-Aware Layers 94

5.2. Control-Flow and Data Representation 98
5.3. BPMN Interpreter Operation . 101
5.4. Implementation and Evaluation 106
5.5. Summary . 109

6. Controlled Flexibility in Blockchain-Based Business Processes 110
6.1. Dynamic Role Binding . 110

6.1.1. Binding Policy Specification Language 111
6.1.2. Runtime Role-Binding Operations 113

6.2. Control-Flow Flexibility and Agreement Policies 116
6.2.1. Agreement Policies on Control-Flow 117
6.2.2. Runtime Agreement Operations 119

6.3. Policy Consistency Verification 120
6.4. Implementation and Evaluation 124

6.4.1. Compiling Role-Binding Policies into Smart Contracts . . . 125
6.4.2. Compiling Agreement Policies into Smart Contracts 128
6.4.3. Experimental Setup . 129
6.4.4. Experimental Results and Discussion 131

6.5. Summary . 137

7. Conclusion and Future Work 138
7.1. Summary of contributions . 138
7.2. Future work . 139

Bibliography 141

Appendix A. Code Repositories 160

Acknowledgement 161

Summary in Estonian 162

Curriculum Vitae 164

9

Elulookirjeldus (Curriculum Vitae in Estonian) 165

List of original publications 166

10

LIST OF FIGURES

1. Relations between tasks, roles, blockchain accounts, and actors
(blockchain case vs. conventional case). 19

2. Overview of the process execution on CATERPILLAR 27
3. Example of the activities supported by CATERPILLAR. 31
4. Events supported by CATERPILLAR: (a) Start top-level process,

(b) Start event-sub-process interrupting, (c) Start event-sub-process
non-interrupting, (d) Intermediate catching, (e) Intermediate bound-
ary interrupting, (f) Intermediate boundary non-interrupting, (g) In-
termediate throwing, (h) End. 33

5. Example of the gateways and flow as supported by CATERPILLAR. 35
6. Blockchain: Blocks and Transactions (adapted from [181]). 36
7. Untrusted peer-to-peer network representing the blockchain. . . . 37
8. Basic architecture of BPMSs (from [45]). 41
9. Running example: An order-to-cash process (1), with a shipment

sub-process (2) . 52
10. The architecture of CATERPILLAR: the compilation-based engine. 55
11. Interfaces with their operations in the smart contracts managed by

the compilation-based engine of CATERPILLAR. 57
12. Caterpillar’s compilation process 60
13. Process Instantiation through Caterpillar’s compilation-based en-

gine. 62
14. BPMN elements supported by CATERPILLAR. 66
15. Life-cycle of BPMN elements in CATERPILLAR: (4) exter-

nal/reusable (3) internal . 71
16. Nested subprocesses with propagation of error events. 76
17. Simple BPMN model. 91
18. Extended architecture of the CATERPILLAR system: the

interpretation-based engine. 92
19. Graphical representation of the the control-flow and data perspec-

tives smart contracts deployed to execute two cases of the process in
Figure 17. 94

20. Parsing of BPMN models on the CATERPILLAR’s interpretation-
based engine . 96

21. Process set-up and instantiation on the CATERPILLAR’s
interpretation-based engine. 97

22. Bit associated to each element/characteristic when encoding the el-
ement description as typeInfo. 99

23. Running example: (1) An Order-to-cash process linked, via call ac-
tivities, to two reusable sub-processes; (2) Shipment and (3) Invoicing. 111

24. BNF grammar describing the basic statement syntax of a binding
policy. 112

11

25. Life-cycle of a role within a case. 114
26. A more flexible variant of the sub-process GOODS SHIPMENT dis-

played in Figure 23. 116
27. BNF grammar describing the basic statement syntax of an agree-

ment policy. 117
28. Life-cycle of an action to be performed at runtime. 119
29. Sample binding policy . 122
30. Symbolic representation of the binding policy in Figure 29 122
31. Nomination net for binding policy in Figure 29 122
32. Net encoding condition (A∧B)∨ (B∧C) 123
33. Binding policy with circular dependency and its nomination net . . 123
34. Class diagram of the smart contracts derived from the role-binding

policies. 126
35. Class diagram of the smart contracts derived from the agreement

policies. 128
36. Growth of deployment costs with size of a role-binding policy. . . 132
37. Growth of deployment costs with size of an agreement policy. . . . 132
38. Variation of the amortized deployment and execution costs of role-

binding policies by reusing them across different process cases. . . 137

12

LIST OF TABLES

1. CATERPILLAR’s compilation-based engine REST API. 83
2. Datasets used in the evaluation. 86
3. CATERPILLAR’s compilation-based engine: process instantiation

and execution costs. 88
4. CATERPILLAR’s interpretation-based engine REST API. 107
5. CATERPILLAR’s interpretation-based engine: setting-up costs. . . 107
6. CATERPILLAR’s interpretation-based engine: process instantiation

and execution costs. 108
7. Relationships between experiments and research questions (RQ). . 131
8. Cost of the nomination and vote operations on the role-binding poli-

cies. 133
9. Cost of the request and vote operations on the agreement policies. . 133

10. Comparison of deployment and execution costs between role-
binding policies and business process models. 136

13

LIST OF ABBREVIATIONS

ABI Application Binary Interface . 56–58
API Application Programming Interface . . 36, 66, 79, 80, 83, 100, 101,

123
BNF Backus Naur form . 105, 110
BPM Business Process Management . 27, 38, 41
BPMN Business Process Model and Notation . . 16, 19–23, 25, 27, 28, 30,

31, 40–43, 47, 49, 51, 52, 54–56, 59–61, 63, 65, 66, 68, 69, 71, 72,
74, 79, 80, 82, 83, 85–87, 89–93, 95, 100, 101, 103, 104, 110, 111,
117, 122, 128

BPMS Business Process Management System. . 15, 16, 19–23, 27, 28, 38,
39, 41, 42, 47, 83, 85, 128

CIO Chief Information Officer . 15
dapp Decentralized Application . 24, 35
DMN Decision Model and Notation . 41
ETH Ether . 125, 126
EVM Ethereum Virtual Machine . 35, 36, 56, 69
HTTP HyperText Transfer Protocol . 80–82
IoT Internet of Things . 19, 43, 91
IPFS InterPlanetary File System . 51, 52
JSON JavaScript Object Notation . 56, 80–83
JSON-RPC Remote Procedure Call protocol encoded in JSON 36
MDE Model-driven Engineering . 40, 41
RBAC Role-Based Access Control . 19, 43
REST Representational State Transfer . 39, 79, 80, 83, 100, 101, 117, 123
RPC Remote Procedure Call . 36
SOA Service-Oriented Architectures . 38
URI Uniform Resource Identifier . 80, 101
URL Uniform Resource Locator . 80–82
WfMC Workflow Management Coalition . 38
WS-BPEL Web Service Business Process Execution Language 39, 44
XML Extensible Markup Language . 80

14

1. INTRODUCTION

Business processes are a core asset of organizations. They integrate systems, data,
and resources to accomplish organizational goals by delivering a service or prod-
uct to a client [45]. While traditional intra-organizational processes focus on one
organization, collaborative inter-organizational processes, on the other hand, span
multiple organizations. Nowadays, increasing pressures on organizations to be
competitive and comply with the growing demands coming from globalization
have heightened the importance of collaborative processes. However, lack of trust
among organizations is a significant roadblock to implementing and executing col-
laborative processes, which typically leads to companies relying on trusted third
parties to serve as mediators [34].

Blockchain technology allows mutually untrusted parties to execute collab-
orative business processes without relying on a central authority [99]. Specifi-
cally, blockchain platforms allow the parties in a collaborative business process to
record the state of the process on a tamper-proof and decentralized ledger, which
also stores and executes programs (called smart contracts) that implement trans-
actions on top of the ledger. The combination of a tamper-proof and decentralized
ledger with smart contracts provides the basic building blocks to implement col-
laborative (inter-organizational) business processes involving mutually untrusting
parties [99, 163]. Not in vain, several existing blockchain applications implement
business processes involving multiple independent participants, such as supply
chain management processes [75, 146, 152].

This thesis addresses the problem of automating the execution of collaborative
business processes, with emphasis on exploiting blockchain capabilities to pro-
vide a tamper-proof execution under the dynamic scenarios existing in collabora-
tive processes. The specific problem areas addressed in this thesis are described
in Section 1.1. Next, Section 1.2 introduces the scope, research questions, and
principles that guide the construction of CATERPILLAR, a prototype of a busi-
ness process management system that we created to demonstrate the execution of
blockchain-based collaborative processes. Finally, Section 1.3 provides the con-
tributions and outline of the thesis.

1.1. Problem Area: Blockchain-based Business Process
Management Systems

Implementing collaborative business processes using the low-level primitives pro-
vided by blockchain platforms is cumbersome, error-prone, and requires special-
ized skills. According to a survey by Gartner [129], around one-fifth of relevant
surveyed Chief Information Officers (CIOs) stated that one of the major road-
blocks for the adoption of blockchain technology in their companies is that it re-
quires highly specialized teams that are difficult to put together. In contrast, estab-
lished Business Process Management Systems (BPMSs) provide convenient ab-

15

stractions for the rapid implementation of intra-organizational business processes
by taking as a starting point a business process model represented, for example, in
the Business Process Model and Notation (BPMN) [58] standard. These abstrac-
tions make it possible to implement and maintain process-oriented applications
based on process models without requiring low-level or specialized development
skills.

Business Process Management Systems (BPMSs) are information systems that
automate the execution of business processes typically described by a model.
They coordinate the interactions of human actors with machine operations, pro-
viding organizations with a flexible way to manage their processes [155]. Nowa-
days, a wide variety of BPMSs cover some of the traditional steps of the busi-
ness process life-cycle, i.e., identification, discovery, analysis, redesign, imple-
mentation, execution, monitoring, adaptation and evolution [45]. However, typ-
ical issues like interoperability, dynamic interactions, trust, and security are fre-
quently ignored or not adequately addressed in inter-organizational collaborations
between mutually untrusted parties; e.g., a recent survey found that only 30% of
the BPMSs analyzed handle collaborative processes [123].

1.1.1. Collaborative Business Processes

Several challenges exist in the field of collaborative business processes. One
comes from the autonomy of organizations and a lack of trust, e.g., which part-
ner performs a given task, what data each participant can access, and so forth.
Besides, the visibility of a party regarding the activities performed by the other
participants is often limited. Although some agreements are possible, choosing a
reliable enforcement mechanism or a mediator can be a problem even more sig-
nificant than the process automation itself [123]. Another challenge is to have the
flexibility to allow changes in the process requirements in real time [122, 128],
such as dynamic onboarding and replacement of business parties. In the logistics
field, some collaborative processes require dynamic binding and re-binding. For
example, in a buyer-supplier-carrier process, the carrier might sometimes be ap-
pointed (selected) by the supplier and other times by the buyer. Also, sometimes
the seller might have the right to change the carrier after the initial appointment,
e.g., if the initially appointed carrier is not able to pick up the merchandise on
time. In other words, the responsibility for a given task can change across cases.

Blockchain provides a suitable platform to execute collaborative processes in
a trusted manner [69, 152]. Overall, blockchains offer a transparent and tamper-
proof platform which allows parties to track the actions of the others. Two main
concepts of blockchain technology support the above. First, no central authority
is required, but instead, a peer-to-peer network stores a copy of the information as
a linked sequence of blocks, and each block contains a set of valid transactions.
Second, the inclusion of smart contracts provides support to implement business
rules and update the process status as programmable scripts [12]. By executing

16

collaborative processes as smart contracts, blockchain will serve as an immutable
and trusted ledger that records and validates every operation during the process ex-
ecution. Transactions can be restricted to a set of roles; i.e., they can be executed
only by a participant with an authorized signature. Participants may access the
transactions generated by the process, which enables the monitoring of its execu-
tion [35, 101]. Besides, with encryption, it is possible to restrict access to data that
is public but only readable by participants with the corresponding privilege [99].

Blockchain offers a transparent and cryptographically-secured environment
built on consensus within a distributed peer-to-peer network. Such a closed and
complex ecosystem opens a broad range of opportunities to perform collabora-
tive processes, but it also introduces some crucial challenges. Among those, the
amount of computational power and data storage capabilities are limited. Thus,
when implementing blockchain-based processes, a critical decision relies on
which data/operations must be stored/performed in the blockchain (i.e., on-chain
for short) and which outside of the blockchain (i.e., off-chain) [46, 172, 174]. As
such, several operations on collaborative processes rely on data stored off-chain.
However, there is no guarantee about the integrity of off-chain transactions, e.g.,
they can be compromised in the presence of unknown or untrusted sources. There-
fore, the participants would need to collaboratively assert the off-chain decisions
before proceeding with the execution of the process on-chain.

1.1.2. Business Process Execution: Compiled versus Interpreted

Existing approaches to blockchain-based business process execution are mostly
based on the idea of compiling each process model into a set of smart con-
tracts [99]. Once deployed on a blockchain platform, these smart contracts control
the instantiation of the process as well as every change to the state of a process
instance [99, 163]. In this way, this approach ensures that every process execution
abides by its corresponding process model.

In these compiled approaches, the deployed smart contracts are model-
dependent. More specifically, each element in the process model is statically
encoded as a set of instructions embedded into the smart contract. For example,
consider a simple process model with one start event followed by a task whose
execution enables an end event. In a compiled approach, the code of the derived
smart contract would contain three blocks of fixed instructions, i.e., implement-
ing the execution logic of each element. This approach exploits immutability as a
source of trust. Once deployed in the blockchain, the code of the smart contract
is immutable. Thus no participant can modify the process execution in their ben-
efit. However, it comes at the cost of inflexibility. Even a minor change to the
process model requires a full recompilation of the model and the deployment of a
new set of smart contracts. Subsequently, new instances of the process are created
using the new set of smart contracts, while pre-existing process instances remain
tied to the old version of the model. This lack of flexibility is problematic in the

17

context of business processes that are subject to constant evolution as well as pro-
cesses with a large number of pathways and exceptions, which typically cannot
be captured upfront via a single process model [128].

In addition to a lack of flexibility, another drawback of compiled approaches
is the inefficiency induced by deployment costs. Indeed, each model (or ver-
sion thereof) is encoded via separate smart contracts, and in contemporary public
blockchain platforms, such as Ethereum,1 every smart contract deployment entails
costs proportional to the contract’s size. Similarly, compiled approaches are often
redundant as they repeat instructions in the smart contracts derived from different
models sharing a similar structure, and duplicating code of elements of the same
type. For example, a process model with two script tasks may lead to two simi-
lar blocks of instructions to the fact that both activities share the same execution
logic. However, these efficiency limitations mainly apply to blockchain platforms
in which participants must pay for deploying a transaction. In blockchain plat-
forms not tied to cryptocurrencies such as Hyperledger [27], deploying the smart
contracts incurs no fee. Besides, the increase in the size of the contract due to
repeated instructions is not a significant issue.

In contrast, an interpreted execution of processes relying on data can prevent
the issues related to the flexibility and deployment costs. For example, instead of
being encoded as fixed blocks of instructions, the information about each element
in a process model can be stored in a generic data structure. Indeed, each pro-
cess perspective, i.e., control-flow, data and resource, would require different data
structures. Then, participants may add, update or remove elements at any time
during the process execution, supporting a more flexible implementation.

A singleton smart contract (the interpreter) encodes the semantics of the mod-
elling language from the corresponding process data and is capable of executing
a given process model. Hence, the combination of the interpreter with the data
structures approach reduces the deployment costs, i.e., an update on the process
model would require a local update of the data structure and not a redeployment
of the entire smart contract. Note that, contrary to traditional programming lan-
guages in which interpreted solutions are less efficient, in public blockchain plat-
forms, the size of the code and deployment costs play a predominant role in the
total costs of executing smart contracts, and thus efficiency largely depends on
these parameters. In this setting, an interpreted approach reduces both the size of
the code and the deployment costs compared to compiled solutions.

However, the flexibility of interpreted approaches may lead to trust issues or
inconsistencies on the process during the execution. For example, if a partici-
pant tries to take advantage of updating the process at runtime (not possible in
compiled approaches), the other participants require a more sophisticated control
mechanism to prevent that behaviour. Besides, adding, updating or removing ele-
ments at runtime may lead to deadlocks if it is not performed correctly. None of

1https://ethereum.org/

18

these two issues above is present in compiled approaches.
In summary, compiled approaches are more suitable in scenarios in which flex-

ibility is not a requirement, or in blockchain platforms in which the participants
pay no fee for the deployment of the contracts. In contrast, interpreted solutions
fit better for processes which are subject to changes at runtime, or to be executed
on public blockchains in which the participants must pay a transaction fee for the
deployment.

1.1.3. Access Control, Flexibility and Dynamic Process Execution

Access control is an essential aspect of the design and execution of business pro-
cesses. Mainstream BPMSs rely on static Role-Based Access Control (RBAC)
models. In these models, any worker who plays a role is allowed to perform
any task associated with this role in any instance of the process, plus additional
constraints such as separation of duties [16, 136]. However, this approach is un-
suitable for collaborative processes involving untrusted actors.

The characteristics of blockchain technology shift the role-binding problem in
two ways. First, rather than groups or individual users being bound to roles, it is
required to link blockchain accounts (or identities) to roles, as shown in Figure 1.
These accounts, in turn, are controlled by users, groups, systems, or Internet of
Things (IoT) devices. Second, and more significantly, in open blockchain net-
works, instances of a collaborative process are created by different actors, and
each of these actors trusts one subset of actors but not others.

System

IoT

Dynamic binding
(blockchain)

Conventional
role binding

 User / Group

Blockchain
account / identity

Task

R
o

le

Figure 1: Relations between tasks, roles, blockchain accounts, and actors
(blockchain case vs. conventional case).

Existing blockchain approaches execute and monitor collaborative processes
using high-level process specifications, such as process models captured in
BPMN [82, 125, 148, 163]. These approaches, however, suffer from two limi-
tations that hinder their applicability in dynamic environments:

1. They either do not provide a mechanism to bind actors to roles or, when
they do, they do not allow actors to be bound to roles dynamically. In
other words, they commonly do not support access control or adopt a static
role-binding approach wherein all actors are bound to roles upon process
instantiation.

2. They assume that the schema of the business process is fixed, and do not

19

provide flexibility mechanisms to enable actors to steer a process instance
to fit their collective requirements.

To illustrate the need for the first of the flexibility features described above, we
consider a business-to-business purchasing process involving a buyer, a supplier,
and a carrier. A buyer may trust a given carrier but not others, even though they
all play the same role. Additionally, trust relations may change dynamically. For
example, a buyer may initially trust a carrier and agree to its appointment with
the endorsement of the supplier. However, later, the buyer may lose this trust
(e.g., if the carrier misses a deadline). After that, the buyer may wish to re-bind
the transportation task to another carrier in consultation with the supplier. This
example illustrates the need to support dynamic binding and un-binding of actors
to roles and collaborative binding of actors to roles (the buyer and supplier both
need to agree on the carrier).

Meanwhile, to illustrate the need for the second flexibility feature, we con-
sider a case in which some buyers require that a carrier uses a specific type of
customs declaration system. Other buyers, however, need a different method. The
choice of customs declaration system depends on the carrier’s and the supplier’s
capabilities and constraints, which vary from one carrier or supplier to another.
Hence, the decision on which system to use needs to be made dynamically by
joint agreement between the buyer, the seller, and the carrier. This example illus-
trates the need for participants to collectively make choices regarding alternative
sub-processes or branches in the process model in an environment where new
participants may join, and the capabilities and constraints of the participants may
change over time.

The above examples illustrate the need for flexible execution mechanisms in
collaborative processes. These flexibility mechanisms, however, need to be de-
signed in a way that takes into account the lack of mutual trust between partic-
ipants. In other words, flexibility in such environments needs to be accompa-
nied by control mechanisms allowing the participants to collectively decide on
the course of execution of each process instance. In the above example, it should
not be possible for the buyer alone to appoint a carrier, as this appointment also af-
fects the supplier. Similarly, it should not be possible for the buyer alone to decide
on the customs declaration system to be used, as this choice imposes requirements
on the seller and the carrier.

1.2. Problem Statement

This thesis describes CATERPILLAR, an open-source BPMS designed from the
ground up to combine the development convenience of a BPMS with the tamper-
proof design of a blockchain platform. Like most contemporary BPMSs, CATER-
PILLAR supports the creation of instances of a BPMN process model and allows
managers and process workers to track the state of process instances and to exe-
cute tasks thereof. To the best of our knowledge, CATERPILLAR is the first proto-

20

type to demonstrate how a full-fledged business process execution engine can be
deployed entirely on a blockchain platform. Specifically, no off-chain component
is required to execute and monitor instances of a process after its deployment.

On the construction of CATERPILLAR, this thesis addresses the problems de-
scribed by the following research questions:
RQ1 How can the high-level abstractions of BPMSs be combined with the capa-

bilities of blockchain technology to support the execution of collaborative
business processes between mutually untrusted parties?

RQ2 How can collaborative processes involving mutually untrusted parties be
flexibly and cost-efficiently executed on a blockchain platform?

RQ3 Which access control mechanisms would allow us to capture the wide range
of dynamic binding and rebinding scenarios found for collaborative pro-
cesses between mutually untrusted parties?

In the context of collaborative business processes, blockchain technology al-
lows us to ensure that the parties involved in a collaboration comply with an
agreed-upon collaborative process model. Besides, with CATERPILLAR, we aim
to reduce the effort of the process participants on their interactions with the
blockchain. For example, in a collaborative process involving a purchasing com-
pany, a supplier, and a carrier, blockchain technology allows us to ensure that the
carrier does not submit the invoice to the supplier before the purchasing com-
pany has acknowledged the delivery. To that end, both the supplier and the carrier
needs to agree in a BPMN model describing the tasks that they (as well as other
possible participants) can perform on the process. Then, one of the participants
should submit the corresponding model through the user interface of CATERPIL-
LAR which in turn produces (and later deploys) a set of smart contracts encoding
the execution logic of the process. Note that, none of the participants needs to run
a blockchain node. Instead, they will connect/interact with a blockchain network
through CATERPILLAR, i.e., participants can also decide to which network they
want to deploy the contracts. Once deployed, the smart contracts would enforce
the process execution as defined in the model. Indeed, participants can verify at
any time the state of the process, and execute their tasks only when enabled in the
control flow. Also, on the execution of a task, a party can retrieve and send data
to the blockchain, i.e., check-out and check-in operations from user tasks in the
BPMN model [45]. Note that, participants can directly interact with contracts de-
ployed by CATERPILLAR in the blockchain, i.e., they do not need to use the user
interface of CATERPILLAR. Also, they can implement their off-chain components
to handle the blockchain interactions if they prefer.

On the design of CATERPILLAR, we considered how compliance concern-
ing a (collaborative) process model could be ensured using one of two ap-
proaches [138]. The first approach is compliance by monitoring, which means
that the parties record their transactions on a blockchain so that all other parties
can check that the process has been executed as agreed. When a party deviates

21

regarding the agreed-upon process, other parties can detect it and trigger a con-
flict resolution procedure. This approach is taken by several commercial BPMSs
such as Bizagi2 and Camunda,3 which offer adapters to record the transactions
produced by a process in a blockchain. The second approach is compliance by
design. In this latter approach, the parties execute each step of the business pro-
cess by invoking a transaction on the blockchain. When a transaction is invoked,
the blockchain platform checks the current state of the process and the inputs/out-
puts of the transaction. The transaction is accepted if and only if it complies
with the process model. This approach requires that the full specification of the
collaborative process is encoded as smart contracts running on the blockchain.
CATERPILLAR is an embodiment of this compliance by design approach.

The compliance by design approach is suitable when the level of trust between
parties is low, the impact of non-compliance is high, and the cost of conflict res-
olution is high (e.g., if the parties are in multiple jurisdictions). The latter is the
scenario addressed by CATERPILLAR. Conversely, when the parties have some
minimum level of trust, the impact of non-compliance is limited, and conflict res-
olution is straightforward, then an approach based on compliance by monitoring is
more suitable. Hence a BPMS that uses the blockchain purely as a secure logging
mechanism is sufficient.

In the blockchain setting, BPMN collaboration diagrams could be used with
message exchanges between parties (represented as pools). That would be suit-
able if blockchain was primarily used in its function as a data store (for messages)
and communication mechanism (transaction and block broadcast) – but it would
keep the process execution logic and business rules off-chain, which may incur
security/trust issues, as they could then be tampered with. Alternatively, a smart
contract on the blockchain could be represented as another pool, which would be
the orchestrator. In that case, all messages from participants would be relayed by
the smart contract, possibly with computation by it (such as script tasks). How-
ever, that notation would be clumsy and more of a pure implementation artefact
rather than a business process model that serves as a notational bridge between
business experts and developers.

Choreography diagrams are another alternative to capture a process collabo-
ration [51]. A choreography diagram captures how the participants in a collabo-
rative process interact, i.e. the possible sequences of interactions. Choreography
diagrams are intended to capture situations where “there is no central controller,
responsible entity, or observer” [58, p. 23], but in our setting, the blockchain and
the smart contracts it hosts conceptually play the role of a coordination mecha-
nism. The focus of choreography is not the orchestration of a process, but to cap-
ture the behaviour of the participants based on the messages they sent and receive.
In blockchain environments, participants share a common infrastructure, i.e., the

2https://www.bizagi.com/en
3https://camunda.com/

22

blockchain, which acts as an orchestrator. Indeed, the blockchain specificity hides
the organizational separation modelled as BPMN pools in the standard, typically
implemented through different systems.

A drawback of the blockchain platforms comes from their isolation insofar
as smart contracts cannot invoke operations executed off-chain [172]. The latter
hinders the notion of message exchanges when implementing collaborative pro-
cesses. For example, a participant sending a message to another means that they
write a transaction in the blockchain. The receiver can read the message, but
also the other participants with access to a node in the network, i.e., everyone in
public blockchains. Therefore, in practice, interactions between participants in
blockchain environments do not necessarily materialize as message exchanges,
but rather as transactions executed on the blockchain.

Aligned with the above, we decided to use process diagrams with a single
pool for CATERPILLAR: it can represent the business process, and it makes use of
blockchain for data storage, computation, and communication. This decision does
not contradict the standard definition of collaboration and choreography diagrams.
Over time, both single-pool models and collaborative/choreography models have
been used to capture collaborative processes. For example, two of the earlier ap-
proaches to collaborative process modelling and execution were the Mentor and
the Self-Serv systems, which relied on single-pool models, represented as state-
charts (Mentor in the context of independent organizational units in an enterprise,
and Self-Serv in an inter-organizational setting) [15, 166]. Indeed, choreographies
can be translated into executable processes shared by all the parties [118, 161].
Also, in our approach, each organization still maintains its internal processes run-
ning off-chain, sharing on-chain only the parts of the process relevant to the col-
laboration as for choreography diagrams. The critical difference in our proposal
is that, as the participants must write transactions in the blockchain, we replace
the message exchanges by the execution of tasks, which in our opinion, are more
convenient on the blockchain settings.

Due to one primary goal of CATERPILLAR is to automate the execution of
business processes, it fits better to model the process as a set of flow elements in-
stead of a collaboration or choreography diagrams whose goal is to represent the
interactions between processes. Also, by representing the collaboration as a single
process, we can include constructions like sub-processes and event propagation,
which increases the process reusability and offer a broader range of options to the
participants on the execution. Accordingly, the choice of single-pool models to
capture blockchain-based collaborative processes was purely a matter of conve-
nience, and it was not intended to exclude the use of choreography models (where
the concept of interaction could potentially also be mapped to a transaction). In
other words, we acknowledge that the modelling could start from a choreography
model that can then be mapped into a single-pool model for execution.

In line with the above, the design of CATERPILLAR is driven by the following
principles:

23

1. The collaborative process is modelled in the same way as an intra-
organizational business process executed on top of a traditional BPMS. In
other words, the collaborative process is modelled as if all the parties shared
the same process execution infrastructure (the blockchain). Accordingly,
the starting point for implementing a collaborative business process is a
single-pool BPMN process model (not a collaborative process or a chore-
ography in which parties communicate via messages). Each independent
party in the process is represented as a lane. Hand-offs between parties are
represented via sequence flows that go from one lane to another (and not
via messages).

2. A collaborative process model may comprise sub-processes. Accordingly,
an instance of a process may be linked to instances of sub-processes and
vice-versa.

3. The full state of the process instance is recorded on the blockchain, and all
the metadata required to retrieve the links between a given process instance
and its related sub-process instances is also recorded in the blockchain.

4. All the execution logic captured in the process model is translated into smart
contract functions, which can run independently of any other runtime com-
ponent. In other words, the execution of process instances can proceed even
if no instance of the off-chain runtime component is running. Also, several
instances of the runtime component can be running at a given point in time
(e.g., one instance per participant).

In our opinion, by representing the actors of a process as pools or lanes in the
model, we do not capture the fact that these actors may be appointed or replaced at
runtime. Also, in some cases, the participants need to update the control-flow of
a process for a given instance at runtime, e.g., to handle exceptions or including
paths not known at the design time (cf. see Section 1.1.3). Accordingly, apart
from the the design principles outlined above CATERPILLAR considers a flexibility
requirement. Specifically, we focus on two significant cases: (i) the system would
allow dynamic binding and unbinding of actors to roles, and (ii) the parties may
change the default routing logic of the business process at runtime.

Another primary requirement considered in CATERPILLAR comes from the
space limitations existing on the blockchain platforms. This so-called efficiency
requirement aims to reduce the size and reusability of the smart contracts pro-
duced from the process models (cf. see Section 1.1.2). Accordingly, the design of
the system demands a modular architecture such that only the minimal set of com-
ponents required for a full-fledged execution (cf. design principle 3) is handled
on-chain. Similarly, the implementation of a process on-chain should take into
consideration (when possible) compact data structures to cope with the storage
limitations inherent to blockchain platforms. Besides, the computational com-
plexity of the functions in the smart contracts implementing the process models
may be constant or linear in the worst cases [39].

24

To recap, the goal of CATERPILLAR is to enable a set of parties to develop,
deploy, and execute process-centric decentralized applications, or process-centric
dapps, on a blockchain platform in a way that ensures compliance by design,
meaning that no party is able to execute a transaction that does not abide with the
collaborative process model. Indeed, CATERPILLAR also seeks to make the de-
velopment and deployment of the process-centric dapp as seamless as possible by
starting from a high-level specification of the collaborative process and automat-
ing the compilation and deployment of this specification into the blockchain.

1.3. Overview of the Contributions and Outline of the Thesis

Regarding the steps of the business process life-cycle [45], CATERPILLAR spans
the implementation, execution, and monitoring, with support for adaptation and
evolution of the process at runtime. Accordingly, and aligned with the research
questions, design principles and requirements outlined in Section 1.2, the thesis
makes three contributions as described below.

The first contribution addresses research question RQ1. We propose a
compilation-based engine implemented by the CATERPILLAR system that trans-
lates hierarchical BPMN process models enhanced with data and resource con-
straints into smart contracts written in the Solidity language. Specifically, our
compiler allows an extensive array of BPMN constructs, including sub-processes,
multi-instance activities, event handlers and specialized activities. Addition-
ally, our engine supports the deployment of smart contracts in the Ethereum
blockchain, as well as the execution and monitoring of collaborative processes
through a set of on-chain and off-chain components designed in a system archi-
tecture that requires no trust among the participants. Finally, an evaluation of
the compilation-based engine demonstrates the trade-off between efficiency (con-
sumption of the cryptocurrency Ether) and the ability to run inter-linked business
processes entirely on the blockchain (without requiring external runtime compo-
nents).

The second contribution focus on research question RQ2. We put forward
a new approach to blockchain-based business process execution based on an in-
terpreter of BPMN process models. Unlike compiled approaches, the interpreter
encodes the semantics of the BPMN language in a singleton smart contract. As
such, the interpreter needs to be deployed only once on the blockchain. Besides,
the interpreter may be attached to multiple process models, each of which is repre-
sented using dynamically updatable and space-optimized data structures. Like the
compilation-based engine, the interpreter supports the instantiation of any of its
associated process models and allows participants to monitor the state of process
instances and to execute tasks thereof. A modular architectural design, combined
with the use of dynamic data structures, provides flexibility for the participants
in the process to react to unexpected situations during its execution. Specifically,
the interpretation-based engine allows participants to maintain different variants

25

of the same process model or to permanently modify a process model so that all
running and future process instances follow the new version of the model. The
proposed interpreter has been implemented as an extension of the CATERPILLAR

system that comprises two process execution engines: a compilation-based and an
interpretation-based engine. An experimental evaluation assesses the costs of the
interpreted execution approach compared to existing compiled approaches.

The rationale behind the first two contributions above deserves some further
explanation. As discussed in Section 1.1.2, there is a trade-off between whether
to use compiled or interpreted approaches on the process execution. On the one
hand, compiled approaches exploit the immutability of the smart contracts, pro-
viding a more secure execution as participants cannot tamper the agreement made
when designing the process model. This approach may be costly under scenarios
in which flexibility is a requirement due to the need to redeploy the contracts af-
ter updating a model. On the other hand, interpreted approaches support a more
flexible execution and are less costly as they reduce the size of the code and in-
creases the reusability of the contracts. However, as the participants may update
the process on their behalf, it may lead to trust issues or deadlocks if the updates
are not performed correctly. Accordingly, the CATERPILLAR system provides two
engines, i.e., a compilation-based and an interpretation-based engine, so the par-
ticipants can decide based on their requirements which approach fits better based
on the process and the blockchain in which the contracts will be deployed.

The third contribution responds to research question RQ3 and addresses the
lack of flexible control mechanisms in existing blockchain-based approaches for
collaborative business process execution. We propose three types of controlled
flexibility mechanisms: (i) dynamic binding of actors to roles in a collaborative
process; (ii) dynamic selection of sub-processes; and (iii) dynamic selection of al-
ternative pathways in a given execution state of a process. In order to enable par-
ticipants to retain control, these flexibility mechanisms are associated with poli-
cies that determine which participants can initiate or have a say in a runtime deci-
sion and what level of consensus needs to be achieved in such decisions. We also
propose an approach to analyse policy specifications for dynamic role-binding in
order to prevent circular dependencies that may prevent one or more roles from
being bound to an actor under some circumstances. Finally, we show how the
proposed policy specifications can be compiled into smart contracts that, once
deployed on a blockchain platform, ensure that the actors exercise the flexibility
captured in a collaborative process model within the boundaries set by the poli-
cies. Besides, we implement the proposal in the CATERPILLAR system and show
the cost to deploy and execute the smart contracts on the Ethereum blockchain via
an empirical evaluation.

The BPMN model in Figure 2, provides an overview of how the contributions
of this thesis are integrated into the CATERPILLAR system. First, any of the par-
ticipants of the collaborative process design the joint BPMN model, serving as an
agreement among the participants (as shown Figure 2 (1)). Then, also any of the

26

Design
Model

Check Blockchain
and Process
Repository

Model
Transformation

Process
Instantiation

All Instances
Created?

Process
Discarded

New Process
Requested

N
o

Yes

(1) Overview of a Process Execution on CATERPILLAR

Model Transformation
Requested

What Engine?

Translate Process
Model into

Smart Contracts

Parse Process
Model into

Compacted Data
Setup Dynamic
Data Structures

Produce
Deployment

Metadata from
Smart Contracts

Update Process
Repository

Model
Transformed

Compiled-based

Interpreted-based

(2) Sub-process: Model Transformation, from BPMN models to smart con-
tracts

Create
Process
Instance

Dynamic
Role-Binding

Process
Runtime

Adaptation

Execute
Task

Process Instantiation
Requested Is Interpreted

-Based?

Update
Dynamic

Data
Structures

Is Execution
Completed?

Execution
Completed

What
action?

What
Action?

Ye
s

No Yes

N
o

Dynamic
Role-Allocation

Executing
Allocated Task

Controlled
Flexibility

Unsupervised
Flexibility

(3) Sub-process: Process Instantiation, creation and execution of process instances

Nominate
Actor

Release
Actor

Endorse
Actor

Endorsement
Required?

Is Actor
Rejected?

Operation
Accepted

Operation
Rejected

What
Operation?

Dynamic Role-Binding
Requested

Yes

N
o

Yes

Nomination

Release

N
o

(4) Sub-process: Dynamic Role-Binding, allocating actors to roles at runtime

Request
process
update

Endorse
process
update

Update
Process

Endorsement
Required?

Is Operation
Rejected?

Runtime Adaptation
Requested

Operation
Rejected

Process
Updated

Yes

N
o

Yes

N
o

(5) Sub-process: Process Runtime Adaptation, controlled flex-
ibility on updating the control-flow

Figure 2: Overview of the process execution on CATERPILLAR

27

participants use CATERPILLAR to transform the corresponding model into smart
contracts which later will enforce the execution of the process instances. On the
transformation of the process, Figure 2 (1), the participant can choose either the
compilation-based or interpretation-based engine for the process execution (see
Chapters 4 and 5 for further details). Then, CATERPILLAR stores all the meta-
data regarding the process transformation in a decentralized process repository
(off-chain) which is shared by all the participants. Note that, each participant can
check the information from the process repository and the blockchain at any time.
Besides, once transformed, the generated artefacts can be used on the creation of
as many process instances as required (Figure 2 (1)).

Once the process model is transformed, any of the participants may create
one or many instances of the process (Figure 2 (3)). To that end, the participant,
named case creator, may use the CATERPILLAR’s user interfaces or may create the
instances directly through the blockchain, i.e., using the metadata produced either
from the compilation or the parsing of the model. Accordingly, the blockchain
address produced when the transaction is appended will serve as the identifier
of the corresponding process instance. Then, during the execution of a process
instance, the participants have different options: bind actors to roles dynamically,
update the control-flow of the current process instance, or to execute their tasks
which are allocated as work-items.

As discussed in Section 1.1.2, compilation-based solutions face flexibility is-
sues compared to interpretation-based ones. Notwithstanding this, CATERPILLAR

supports some flexibility for compilation-based approaches, which is achieved
through late-binding and late modelling of processes [141] and the factory pat-
tern [54], i.e. flexibility by looseness [128]. For example, both engines of CATER-
PILLAR relates call-activities to instances of smart contracts implementing the cor-
responding sub-processes, which can be linked at any time during the execution.
Accordingly, in this thesis, we propose agreement policies to handle flexibility
by looseness mechanisms, which works for both the interpretation-based and the
compilation-based engines, and which do not introduce deadlocks and therefore
do not require additional verification techniques to be put into place. These mech-
anisms, referred to as controlled flexibility in Figure 2 (3) are further discussed in
Chapter 6.

Other flexibility mechanisms, such as adding, skipping or removing elements
in the process model, are possible only on the interpretation-based execution. For
example, according to the taxonomy presented by Reichert and Weber [128], there
are four major control-flow based flexibility requirements: adaptation, evolution,
variability and looseness. In that regard, the interpretation-based engine supports
those four requirements. However, the variability, adaptation and evolution re-
quirements, labelled as unsupervised flexibility in Figure 2 (3), may lead to dead-
locks on the interpretation-based engine. Thus, such updates on the dynamic data
structure of the interpreter can be performed for a given process instance at run-
time if and only if all the participants agree on it as they entail a higher risk to

28

deviate the process execution. More specifically, process participants are respon-
sible for verifying off-chain whether those unsupervised changes are consistent
before propagating them to the blockchain. To that end, participants can either
perform the consistency validation automatically (by using private-owned tools)
or manually.

Figures 2 (4)-(5) outlines how participants can enforce the flexibility mecha-
nisms by consensus (see Chapter 6). First, participants can nominate or release
actors into roles during the process execution, subject to the endorsement of other
participants. For example, after creating a process instance, the case creator can
appoint and actor to play a role in that instance, and accordingly execute the tasks
granted to that role. The dynamic role-binding schema is described by polices,
which restricts how the actors can be nominated or released, and who must en-
dorse that binding. Similarly, agreement policies restrict the control-flow flex-
ibility mechanisms (Figure 2 (5)). Accordingly, the participants can decide by
consensus whether to update a process at runtime, e.g., to enforce the late-binding
of a sub-process. In other words, CATERPILLAR promotes an approach of flexi-
bility by underspecification [141] or looseness [128].

The contributions of this thesis have been previously documented in publica-
tions I-V, referenced at the end of the thesis (see “List of original publications”).
In addition, the code of the CATERPILLAR system is open-source and can be ac-
cessed from a public GitHub repository (see Appendix A).

The rest of this thesis is structured as follows. Chapter 2 introduces the rele-
vant concepts and principles from business process management and blockchain.
Chapter 3 reviews the state of the art of existing methods and tools related to this
thesis. Chapter 4 provides a detailed description of the architecture design, imple-
mentation and evaluation of CATERPILLAR’s compilation-based engine. Chap-
ter 5 proposes and evaluates CATERPILLAR’s interpretation-based engine, also
including the functioning of dynamic data structures and the space-optimized rep-
resentation of business processes. Chapter 6 describes and assesses the controlled
flexibility mechanisms for blockchain-based execution of collaborative business
processes. Finally, Chapter 7 concludes the thesis, summarizing the core contri-
butions and providing future work directions.

29

2. BACKGROUND

In this chapter, we outline some relevant concepts of the research domain covered
by this thesis. First, Section 2.1 introduces the fundamentals of Business Process
Management (BPM) described by the process life-cycle. Next, Section 2.2 dives
into the representation of process models written following the BPMN standard
that is supported by CATERPILLAR. Finally, Section 2.3 introduces key elements
like consensus protocols and smart contracts to illustrate blockchain functioning
and characteristics. We emphasize the Ethereum blockchain as the platform that
supports the current version of CATERPILLAR.

2.1. Business Process Management

Business Process Management (BPM) is a discipline encompassing the princi-
ples, methods, and tools which allow organizations to analyze, execute, and mon-
itor business processes [45]. Specifically, BPM guides how stakeholders interact
and collaborate to fulfil organizational goals across the entire process life-cycle:
identification, discovery, analysis, redesign, implementation, execution, monitor-
ing, and adaptation. At the identification stage, organizations extract high-level
descriptions and relations that are relevant to a problem within a given scope from
a process-oriented perspective. Next, in the discovery phase, analysts collect in-
formation about how the actual process operates into a graphical representation,
which is called the as-is model. Then the analysis phase aims to identify issues in
the process and opportunities for improvement. As a result, in the redesign stage,
the as-is model is translated into a to-be model, which eventually is ready to be
implemented and executed.

After redesigning the process, the implementation phase deals with transform-
ing the to-be model into software components to execute the process. The last
may entail configuration/implementation tasks required to automate the process
as an information system and changes in the way that participants interact with
it. Process execution includes the creation and handling of individual process in-
stances, usually referred to as process cases. Often, business processes are imple-
mented by BPMSs, which also facilitate process monitoring, i.e., collecting and
displaying events during the execution and notifying participants about undesired
behaviours. In CATERPILLAR, we focus on these three phases: implementation,
execution, and monitoring. We also support the adaptation and evolution of the
process at runtime; i.e., the participants can change a process during its execution.

2.2. Business Process Model and Notation

Process models are an essential element of BPM. They provide high-level ab-
stractions that simplify the understanding of the process among the participants
involved. Additionally, the standardization of processes as to-be models is crucial

30

Call-activity

Sub-process
Parallel Multi-instance

Event-Sub-processSub-process
Sequential Multi-instance

Sub-process
Expanded

Sub-process
Collapsed

User Task Service Task Script Task Receive Task None Task

Figure 3: Example of the activities supported by CATERPILLAR.

to automate their execution by process-aware information systems. In the this sec-
tion, we introduce the process modelling language that is most widely accepted by
practitioners in the industry, which we also adopted in CATERPILLAR: Business
Process Model and Notation (BPMN) [58].

BPMN is a graphical standardization of business processes that creates a bridge
between process design and implementation. It includes activities, events, gate-
ways, and arcs, which are called sequence flows. BPMS also supports data objects
and resources, e.g., represented as pools/lanes. However, in this section, we will
refer only to the control-flow related elements, as in CATERPILLAR, we use other
representations for data and resources that, in our opinion, are more suitable in
a blockchain-based execution. The remaining of this section describes some of
the core control-flow elements handled by CATERPILLAR. For further details, we
refer readers to the BPMN 2.0 specifications [58].

Activities represent work to be performed within a process by a resource,
which can be either human or an information system. Activities can be atomic, re-
ferred to as tasks, or non-atomic, which refers to sub-processes and call-activities.
Non-atomic activities allow the inclusion of other activities. Thus they enclose the
set of graphical elements that conform to a process hierarchy. Figure 3 illustrates
the types of activities we handle in CATERPILLAR1:
− TASKS are atomic activities that, based on their inherent behaviour, can

be classified in different types. (i) User Tasks are typical units of work
performed by humans as work-items managed by a workflow system. (ii)
Service tasks are executed by services, e.g., web services or automated ap-
plications. In CATERPILLAR, those services are running off-chain. Thus
the interaction is managed via oracles [64]. (iii) Script tasks are performed
internally by the workflow system; i.e., they execute on-chain scripts em-

1Modelling an activity also follows naming conventions, e.g., the label of a task represents its
goal in the form of an imperative verb followed by a noun. Figure 3 does not obey the naming
conventions as its purpose is illustrating the types of activities.

31

bedded in smart contracts on blockchain-based applications. (iv) Receive
tasks are designed to wait for messages arriving from an external partici-
pant. In our solution, as we avoid message exchanges among participants,
receive tasks offer a syntax sugar which allows participants to select an out-
going path in event-based gateways (see the receive task outgoing from the
event-based gateway in Figure 5). (v) None or Default tasks are mainly
used with design purposes, e.g., in as-is models. As they have no execution
semantics, when they are used in to-be models, they should be transformed
during the implementation stage. Otherwise, they will be skipped when
reached in the control-flow.

− SUB-PROCESSES are activities containing other activities, events, gate-
ways, and flow arcs that conform to a process embedded as part of a bigger
one. Sub-processes allow us to organize a process as a hierarchy and to
restrict the scope of the process variables and events. Sub-processes can
either be expanded, i.e., if all steps of the process are displayed, or col-
lapsed to show a high-level overview of the process, i.e., only the name and
a plus-sign are displayed.

− CALL-ACTIVITIES serve as a wrapper for invoking a process that is exter-
nal to the current one. Precisely, call-activity points to a sub-process; thus,
when the execution arrives at the call-activity, it creates a new instance of
the linked sub-process which runs in parallel as a child of the current pro-
cess. Then the parent process instance waits to continue its execution until
the sub-process ends. Call-activities are an essential tool as they allow the
reusability of processes. Note that, conceptually, the only difference be-
tween sub-process and call-activity is that the former one is embedded and
the other refers to an external definition.

− EVENT-SUB-PROCESSES are specialized sub-processes that are triggered
by a start event. An event-sub-process has no incoming/outgoing sequence
flows. It is scoped into a process/sub-process in the hierarchy. Thus it can
be triggered at any time within an active instance of its parent process/sub-
process. There are two types of event-sub-processes. An interrupting
event-sub-process stops the execution of the process/sub-process where it
is scoped. In contrast, a non-interrupting event-sub-process runs in parallel
to its parent sub-processes. Event-sub-processes are often used to handle
exceptions. For example, the occurrence of a problem during the execution
of a process can propagate an error event. Then, this error can trigger an
event-sub-process to cancel the execution in the current scope and to react
accordingly to the problem.

− MULTI-INSTANCE ACTIVITIES allow repeating a given task/sub-process
sequentially or in parallel during the process execution. Parallel multi-
instance activities contain three short vertical lines in the bottom, while
three horizontal lines represent sequential multi-instances. When the exe-

32

None

Signal

Message

Escalation

Error

Terminate

Start Intermediate End

Terminate

Error

Escalation

Signal

Message

None

(b) (c)(a) (h)(d) (e) (f) (g)

Figure 4: Events supported by CATERPILLAR: (a) Start top-level process, (b)
Start event-sub-process interrupting, (c) Start event-sub-process non-interrupting,
(d) Intermediate catching, (e) Intermediate boundary interrupting, (f) Intermediate
boundary non-interrupting, (g) Intermediate throwing, (h) End.

cution arrives at a parallel multi-instance activity, it creates a certain number
of concurrent instances of the activity. Sequential multi-instance activities
function as a loop where the next instance of the activity is created after
the completion of the previous one. A multi-instance activity ends after the
completion of all its instances.

Events, which are modelled as circles in BPMN, describe something that hap-
pens during the execution of a process. They may change the execution flow of
a process, and they often have a cause and an impact. There are three types of
events: (i) START EVENTS, which trigger the instantiation of a (sub-)process, (ii)
INTERMEDIATE EVENTS, which occur during the process execution, and (iii) END

EVENTS, which end a path or an entire (sub-)process. Within these three types,
events can throw a result or catch a trigger. Those so-called triggers are repre-
sented by a symbol that identifies the cause/effect of the event, e.g., message,
escalation, signal, error, etc. (see Figure 4).

Start events always catch a trigger, and they have no incoming sequence flows.
Indeed, each (sub)-process in the hierarchy starts when its corresponding start
event is triggered. There are some differences regarding whether the events start a
top-process, a sub-process, or an event-sub-process. The standard allows top-level
processes to have multiple starting events; however, in CATERPILLAR, we con-
sider only processes with a single start event. In addition, top-level processes and
sub-processes are always started by a none event, i.e., with no trigger defined. On
the contrary, event-sub-processes allow several triggers (see Figure 4). Also, the
start events can be interrupting, i.e., triggering the event terminates the instance
of the (sub-)process containing the event-sub-process, or non-interrupting, which

33

instantiates the event-sub-process in parallel with its parent.
We adopt the idea of tokens traversing sequence flows to illustrate the pro-

cess execution. After triggering a start event, it generates a token on its outgoing
sequence flows. Then the execution proceeds such that an element can be exe-
cuted (is enabled) if its incoming sequence flows contain the required tokens; e.g.,
an activity is enabled if its incoming sequence flow contains a token. Executing
an activity consumes/produces tokens in its incoming/outgoing sequence flows.
Finally, a process is completed if no token exists in any of the sequence flows.

Intermediate events can be either throwing or catching. They can be placed ei-
ther as part of a flow path, i.e., containing incoming and outgoing sequence flows,
or as a boundary of an activity, having only an outgoing sequence flow. Interme-
diate events affect the execution flow, e.g., changing the normal flow to handle
exceptions, but they do not directly start/end the process execution. Also, bound-
ary events have no incoming sequence flows and can only catch triggers, and as a
result, they can interrupt or not the activities to which they are attached. Like the
activities, intermediate events consume/produce tokens on their incoming/outgo-
ing edges when they are thrown/caught.

End events always throw a result, and they have no outgoing sequence flows.
An end event always consumes the token from its incoming sequence flow, but it
never generates new ones. Commonly a process has multiple end events. Thus,
the throwing of an end event does not necessarily terminate a process instance,
unless the event consumes the last token. However, the triggers of some end
events explicitly finish the process, i.e., removing the remaining tokens.

The strategy to forward an event depends on the type of trigger. (i) MES-
SAGES, as the name suggest, are used to send (throw) or receive (catch) messages
to/from process participants. 2 (ii) ERRORS represent an anomaly during the exe-
cution. After throwing an error event, it propagates to the ancestors of the origin
sub-process until either catching the event or reaching the top-level process. In
case the event is caught on the boundary of an activity (sub-process), it termi-
nates the corresponding activity instance. If the error triggers the starting of an
event-sub-process, it terminates the current instance of the (sub-)process contain-
ing the event-sub-process. Finally, if the trigger arrives at the top-level process
(without being caught), it terminates the entire process. (iii) ESCALATIONS, also
propagates the trigger to the parent sub-processes. This trigger works like error
events, with the difference that catching an escalation not necessarily terminates
the corresponding sub-process, i.e., the catching event can be either interrupting
or non-interrupting. (iv) SIGNALS broadcast the trigger to the entire process hier-
archy, i.e., not just to the ancestors of the origin sub-process. Like the escalation,
catching a signal may or may not interrupt the enclosed sub-process. (v) NONE

2CATERPILLAR avoids the exchange of messages between participants. However, the system
allows attaching message events to activities (to interrupt them), or as an output of event-based
gateways (to allow participants to choose a path). For completeness, this section introduces all the
messages events described in the BPMN standard.

34

Exclusive (XOR) Gateway

Parallel (AND) Gateway

Event Based Gateway

Complex Gateway

XOR-Split

Event-Based
Gateway

XOR-Join

AND-Split AND-Join

Figure 5: Example of the gateways and flow as supported by CATERPILLAR.

events have no trigger. They mainly serve either to start (sub-)processes or to no-
tify a parent sub-process about the termination of a child. They cannot be used
to trigger event-sub-processes or for catching intermediate events. However, they
can be throwing intermediate throwing events in the normal flow, e.g., to indicate
some change in the state of the process. (vi) TERMINATE can be used as end
events only. They force the ending of all the activities, thus terminating the entire
(sub-)process. See Figure 4 for the full list of events that CATERPILLAR supports.

Gateways control how sequence flows converge and diverge in a process, e.g.,
to model decisions based on data and events. Regarding the number of incoming
and outgoing sequence flows, gateways can be divided into splits and joins. Split
gateways have one incoming and multiple outgoing sequence flows. In contrast,
join gateways have multiple incoming and one outgoing sequence flow. The type
of a gateway determines when tokens arrive, their consumption and the generation
of new ones in the outgoing sequence flows. Figure 5 illustrates the types of
gateways supported by CATERPILLAR, which are represented by a symbol within
a diamond shape, and how they process the tokens during the process execution.
− EXCLUSIVE (XOR) GATEWAYS model alternative paths within the process

flow. The XOR-split expresses that for a given process instance, only one
path (one outgoing sequence flow) can be activated. The decision relies
on data conditions, which are typically modelled by a question as to the
label of the gateway and the possible answers as condition expressions on
the outgoing sequence flows. Thus, when a token arrives at the XOR-split,
the execution moves to the outgoing sequence flow that fulfils the condition
expression based on the process data. Indeed, XOR-joins merge alternative
paths. Thus, XOR-join gateways consume an incoming token, generating
a new token in the outgoing sequence flow, without synchronization; i.e.,
only one incoming token is required to activate the XOR-join gateway.

− PARALLEL (AND) GATEWAYS create and synchronize parallel sequence
flows, i.e., they model concurrent behaviour. When a token arrives at an
AND-split gateway, the execution continues in parallel through all the out-
going sequence flows. The AND-join synchronizes parallel paths; thus,

35

they are activated when all incoming sequence flows have a token.
− EVENT-BASED GATEWAYS model alternative paths which are activated by

an event. Specifically, when one a token arrives at the gateway, it remains
active until one event is caught, moving the execution to the corresponding
outgoing sequence flow. Unlike XOR-splits, in which the decision relies
on data, event-based gateways rely on actions triggered by events, e.g., a
message received by a process participant.

− COMPLEX GATEWAYS, as the name suggests, model complex synchroniza-
tions not captured by the other gateways in the process flow. This type of
gateway allows rules to specify how the tokens are consumed/produced. For
example, it is possible to determine at runtime, which incoming sequence
flows activate the gateway or how to proceed with the execution by follow-
ing one or many sequence flows.

2.3. Blockchain Technology

A blockchain is an immutable append-only ledger replicated across a network of
untrusted peer nodes. The ledger is represented as a linked sequence of blocks
which contains an ordered set of transactions, as shown in Figure 6. Each block
is chained to the previous one by its hash value. Thus, the only way to alter/delete
a transaction is by reconstructing the entire chain. Some nodes, called miners,
are responsible for validating and grouping transactions submitted by the users
into blocks appended to the blockchain. As no central authority exists, the miners
must reach consensus in a distributed manner [173].

Figure 6: Blockchain: Blocks and Transactions (adapted from [181]).

Clients use a blockchain system (a concrete network, as shown in Figure 7)
by reading data from and submitting transactions to it. Submitted transactions
are grouped into blocks, which are broadcast across the network to be appended
to the blockchain. To be accepted, a transaction must be adequately formed and
signed by its creator. No trust in individual clients or nodes is required, as the
transactions are cryptographically signed and validated and are broadcast widely.
A consensus mechanism ensures that the transactions are tamper-proof without
assuming mutual trust between participants [40].

2.3.1. Types of Blockchains and Consensus Protocols

Existing blockchains are typically included in one of the following three cate-
gories. (i) Public blockchain networks allow open access to anyone in the world.

36

Figure 7: Untrusted peer-to-peer network representing the blockchain.

In other words, anyone can submit and access the transactions and participate in
the consensus protocols. (ii) Consortium blockchains restrict the consensus pro-
tocols to a pre-selected set of nodes, i.e., across multiple organizations. However,
submission of and access to the transactions can be either public or limited to a set
of participants. (iii) Private blockchains are governed by a single organization that
decides about permissions of the participants to submit/read transactions [174].

Public blockchains are also known as “permissionless” because they are open
and decentralized. In addition, there is no central party that manages the mem-
bership or which can remove members from the network. The full distribution
of the transactions among untrusted nodes guarantees that it is almost impossible
to tamper with the system. Characteristics like public verifiability, transparency,
and integrity to prevent unauthorized modifications make these blockchains very
powerful in the presence of untrusted participants. However, these networks have
performance problems, as the transaction throughput is limited, and the latency is
high as a result of the mining process [168, 181]. Bitcoin [107] and Ethereum [23]
are two of the most prominent examples of public blockchains.

Consortium and private blockchains are also called “permissioned” because a
central authority decides on the rights of the participants in the network. These
blockchains are more efficient than the permissionless ones as they require fewer
validators. Similarly, permissioned blockchains offer more privacy and reduce re-
dundancy as they have less data replication. However, these blockchains may be
susceptible to trust issues, given that they are partially centralized. For example,
the network can be tampered with if the majority of the organizations in a consor-
tium agree to it [168, 181]. Hyperledger Fabric [27] and R3 Corda [19] are among
the most relevant permissioned blockchains.

Most public blockchains, e.g., Bitcoin and Ethereum, use proof-of-work [55]
as a consensus mechanism, whereby the creation of a new block, which is referred
to as mining, requires solving a computationally difficult cryptographic puzzle. A

37

node uses its computational power for mining blocks. Mining the next valid block
requires solving the puzzle before any other miner and is rewarded financially.
Each block contains the hash value of the previous block, thus linking the blocks
in the database. Moreover, any attempt to alter a block would incur high compu-
tational costs: preserving the links established by the cryptographic hashes would
require the recreation of the whole set of subsequent blocks from the altered block.
The economic factor of block rewards and the resulting computational difficulty
in altering a block makes tampering virtually impossible.

The main drawback of proof-of-work is that it incurs a very high consump-
tion of resources and energy due to a lot of calculations being performed by the
miners. Accordingly, other energy-saving protocols have been emerging. For ex-
ample, Ethereum aims to overlay proof-of-work with a new proof-of-stake system
named Casper [24]. Proof-of-stake algorithms [74] rely on the amount of crypto-
currency the miners own instead of investing in computational resources. Mainly,
miners run a process which randomly chooses one miner proportionally to the
amount of stake they own. The protocol promotes the idea that participants with
more currency have less probability of attacking the network. However, this strat-
egy may lead to the wealthiest miner dominating the system, and it can be more
vulnerable to attacks because the mining cost is almost zero [181].

2.3.2. Ethereum Blockchain and Smart Contracts

Smart contracts are one of the novelties that the Ethereum blockchain introduced.
A smart contract is a computer program deployed on the blockchain which may
be invoked via a transaction [173]. When a new block is mined and broadcast,
each full node in the peer-to-peer network is required to locally execute the trans-
actions, including the ones executing the smart contracts, and perform the respec-
tive calculations to derive the state after the execution of the transactions included
in that block. Applications that are designed to provide their main functionality
through smart contracts are called dapps [173].

Smart contracts are executed over the Ethereum Virtual Machine (EVM),
which is bundled within each peer node. The EVM is a runtime component which
provides a stack-based computing platform with a small set of operations, and that
is sufficient to support the definition of Turing-complete programming language.
The size of the EVM word is 256-bits. For each contract, the EVM allocates a per-
sistent memory, referred to as storage, which is organized as a key-value store that
maps 256-bit words to 256-bit words. The persistent memory is private, and it can-
not be directly accessed by another contract or transaction. Moreover, a contract
gets access to volatile memory with each function call, which can be expanded by
one word at a time, and that serves to store intermediate values. The EVM uses a
stack and no registers to execute the instructions of the contracts. The stack has a
limit of 1024 words, and only the topmost 16 words are accessible at a given mo-
ment in the execution; hence the need for volatile memory. Finally, each contract

38

can write data into a log which is visible to external applications.
Several contract-oriented programming languages and compilers thereof have

been developed that produce bytecode for the EVM. Among them, we have se-
lected Solidity for our development, because it is the most widely used and sup-
ported. Solidity is a strongly typed language, and its syntax resembles JavaScript.
A contract in Solidity is defined in a similar way as classes in Java-like object-
oriented languages. Thus, the definition of contracts usually includes persistent
properties (i.e., the contract’s state) and functions to query and manipulate them.

Each peer in the network communicates with other peers using the Ethereum
wire protocol [167]. The details of this protocol are outside of the scope of this
thesis. In addition to the internal interactions, each peer exposes a number of
methods over an RPC-style endpoint, which is known as the Ethereum’s JSON-
RPC API,3 because it uses data exchanges formatted according to JSON-RPC
specifications.4 It is this RPC endpoint that external applications (e.g. wallets and
other software) use for interacting with the Ethereum blockchain.

From a technical point of view, a (smart) contract corresponds to the code
that is deployed to the Ethereum blockchain. The cost to deploy a contract in
Ethereum, which is proportional to its bytecode size, is measured in a unit called
gas. Once deployed (or instantiated), the smart contract is related to a unique hash
address that can be used by external applications to invoke the public functions of
the smart contract. Such invocations generate transactions whose cost (also mea-
sured in gas) depends on the number and type of the executed instructions [167].

Generally speaking, the interaction between an external application and a con-
tract can happen in two ways:

1. An external application requests the execution of a transaction by calling on
a contract’s function. The transaction is then forwarded to the network of
peers. A transaction is seen as executed only if a block includes the trans-
action in the chain. Since this type of interaction requires block mining, on
public blockchains, the requester typically pays a transaction fee.

2. An external application can request the execution of a contract’s function
on a single Ethereum node, that is, without forwarding a transaction to the
network of peers. Since no block mining is required, this type of interac-
tion incurs no fee. This type of interaction can be used for querying the
current contract’s working memory state or for previewing the outcome of
executing a contract’s function given the current state. Moreover, external
applications cannot access the contract’s working memory state unless the
contract provides public functions permitting it.

In contrast, smart contracts cannot to call external programs. However, as men-
tioned before, a contract can write information in a log that is visible to external
applications. Moreover, the JSON-RPC API provides some operations that can be

3https://github.com/ethereum/wiki/wiki/JSON-RPC
4https://www.jsonrpc.org/specification

39

used to install log-filters on a local peer that can be repeatedly polled to retrieve
the entries added to the contract’s log. This way of interaction is widely used to
implement a sort of push-oriented interaction with external applications and to
forward requests to so-called blockchain oracles [22, 64].

40

3. STATE OF THE ART

Blockchain is an emerging technology for software applications in cross-
organizational settings. The current efforts on integrating blockchain into BPM
are still nascent at this stage [99, 131, 156]. However, some early works are start-
ing to exploit the potential of blockchain as a tamper-proof platform for business
process execution. This chapter discusses the existing solutions in the domain
of application of CATERPILLAR. First, Section 3.1 explores the traditional ar-
chitectures of BPMSs and their limitations on blockchain environments. Next,
Section 3.2 explores existing solutions for implementing and executing collabo-
rative business processes on the blockchain. In CATERPILLAR, we integrate the
modelling/visualization tools provided by Camunda;1 thus, the solutions in those
areas are outside of the scope of this thesis. Finally, Section 3.3 analyses existing
solutions that address the problem of flexibility in collaborative processes.

3.1. Architectures of Business Process Management Systems

BPMSs have been traditionally built upon the architecture described in Figure 8.
An execution engine (core component) creates and handles the process instances,
providing functionalities to store/retrieve data required by the process execution
automatically, and to distribute work among participants, i.e., work-items which
are offered/committed to/by the participants via the worklist handler. Indeed,
BPMSs also provide functionalities to create and modify process models, to man-
age and monitor operational matters, to interact with external services [45], etc.

Figure 8: Basic architecture of BPMSs (from [45]).

The first reference architecture providing high-level principles and standards
for BPMSs was presented by the Workflow Management Coalition (WfMC) in
1995 [66]. Since then, the WfMC model has been a well-established standard,
although the arrival of new technologies has introduced updates to the origi-
nal design [31, 165]. In the last decade, Service-Oriented Architectures (SOA)

1https://camunda.com/

41

emerged as a solution to develop more flexible and agile process-aware informa-
tion systems [5, 14, 111, 134]. More recently, several cloud computing architec-
tures [32, 117, 179] have been proposed, which reduce costs while maintaining
high levels of efficiency [33]. The most recent reference architecture we found in
the literature presented by Pourmirza et al. [124] is BPMS-RA. The authors rely
on an extensive study [123] of existing commercial and academic BPMSs archi-
tectures to come up with a new proposal that spans more than 400 components,
which was implemented by the GET service platform [13].

Classic approaches usually orchestrate business processes through a central-
ized BPMS, which poses several challenges in collaborative processes given or-
ganizational boundaries [18]. Recent solutions show the advantages of using
distributed peer-to-peer architectures in inter-organizational processes. Among
those, Martin et al. enact the control-flow of the Web Service Business Process
Execution Language (WS-BPEL) in a decentralized manner [98]. Also using a
distributed architecture in WS-BPEL, Li et al. demonstrate that an agent-based
execution scales better than a non-distributed approach [85]. Other solutions con-
sider distributed workflow-management systems to deal with the performance bot-
tlenecks existing in traditional client/server architectures [151] and to improve the
scalability and flexibility inherent in the strong coupling between process man-
agement and business application in centralized systems [61]. Similarly, Lei et
al. propose a distributed artefact-centric BPM framework based on Representa-
tional State Transfer (REST) principles [84] to tackle scalability issues. These
systems use the decentralization of components with optimization purposes, e.g.,
to improve parameters like scalability and throughput [172]. On the contrary, in
blockchain platforms, throughput is a permanent issue due to the latency caused
by mining. Note that blockchain-based systems use decentralization as a source
of trust, which requires a different architectural design.

A recent survey [123] found that only 30% of the BPMSs analyzed support
inter-organizational processes. The authors highlight the lack of trust between par-
ticipants as one of the main challenges. At the same time, collaborative processes
need to satisfy competing demands coming from their participants and hence need
to incorporate some execution flexibility [57]. The latter is particularly the case
in open and dynamic environments where the actors may switch from one pro-
cess instance to another and may even change during the execution of one pro-
cess instance. Unlike existing approaches, CATERPILLAR is a BPMS focused
on the dynamism of collaborative processes with an architecture that combines
the blockchain and external components to support flexible process execution in
untrusting environments.

42

3.2. Blockchain-Based Collaborative Business Processes:
Implementation and Execution

The first work addressing the problem of lack of trust in collaborative business
processes using blockchain was reported by Weber et al. [163]. The authors
present an approach for model-driven engineering (MDE) of collaborative busi-
ness processes on top of the Ethereum blockchain platform. Specifically, the au-
thors propose to compile a BPMN choreography diagram into Solidity contracts
that ensures that the parties can only record their message exchanges in a way
that is compatible with the ordering relations captured in the BPMN choreogra-
phy diagram. The solution also introduces additional tasks for payments and data
transformation, in extension of the BPMN standard.

Prybila et al. [125] present an alternative approach to monitor business pro-
cesses executed on top of the Bitcoin blockchain via specialized tokens. Like
in Weber et al. [163], the authors assume that the collaborative process is mod-
elled as a choreography. In other words, both of these approaches assume that the
parties in a collaborative business process interact via message exchanges, and
they use the blockchain platform to record the message exchanges and to check
or enforce that these exchanges occur in a specific order. This effectively means
that the blockchain platform serves as one execution component of a collabora-
tive process. However, many of the components are off-chain, and the interactions
between parties occur via message exchanges.

Garcia et al. [56], propose an approach to transform BPMN process diagrams
into Solidity smart contracts. This latter work does not assume that the parties
communicate via message exchanges – but instead, the parties use the blockchain
party as a coordination mechanism to maintain the state of the process and to
determine what tasks or events may occur next, given the current state. The em-
phasis of this latter work is on optimizing the generated Solidity code in order to
reduce the costs related to the deployment and execution of smart contracts. How-
ever, this work is restricted to flat BPMN process models consisting only of tasks
and essential gateways (AND and XOR gateways). This previous approach does not
support sub-processes, boundary events, or multi-instance activities.

Hull et al. [70] discuss a vision of how business process modelling and, more
specifically, the Artefact-centric paradigm [38, 109] would be a suitable approach
to model collaborative business processes executed on top of blockchain technol-
ogy. Similarly, Norta et al. [110, 112] advocate the use of blockchain and smart
contracts to coordinate collaborative business processes based on so-called chore-
ography models, which are similar to collaboration diagrams in that they rely
on the assumption that parties interact via message exchanges. Another related
work [53] proposes mapping from a domain-specific language for “institutions”
to Solidity. These previous research efforts only outline a possible architecture
for modelling and executing blockchain-based business processes, but they do not
provide any suggestions for implementation or evaluation. In contrast, Sturm et

43

al. [148] provide a model for implementation. However, their approach expresses
control-flow solely via “requires” relationships, i.e., specifying which tasks are re-
quired to be completed before a given task can be executed. This allows express-
ing AND and OR gateways, but it does not disable alternative, un-executed tasks
when executing an OR join.2 By comparison, CATERPILLAR follows a different
approach and supports a much wider range of BPMN elements, including sub-
processes, multi-instance activities, boundary events, and several types of BPMN
tasks.

Lorikeet [150] is a MDE tool that implements the approach of Weber et
al. [163] and the translation algorithm from Garcia et al. [56]. The process com-
ponents are supplemented with asset registries (e.g., tokens representing coins
or titles). Lorikeet has been successfully applied in some projects with indus-
try [150], demonstrating the value of process-oriented smart contract generation.
The emphasis of Lorikeet is on the MDE approach, in which the generated code
can be used as a basis for implementation; Lorikeet is not a BPMS.

Ladleif et al. extend the BPMN choreographies to provide a more suitable op-
erational semantic relying on the blockchain capabilities [82]. The authors also
provide critical analysis of the limitations of choreographies regarding the shared
logic and on-chain data storage existing in blockchain platforms. This approach
promoting message exchanges among participants (typical of choreographies) op-
poses our solution, which considers the blockchain as a shared execution infras-
tructure. Also their with focus on BPMN choreographies, Haarmann et al. gener-
ate smart contracts from Decision Model and Notation (DMN) models for imple-
menting collaborative business decisions [59, 60]. Their proposal only considers
the execution of decisions, putting aside other elements of the process execution.

Industry practitioners and BPMS vendors have also considered the idea of ex-
ecuting business processes using blockchain technology and smart contracts. For
example, Rikken [130] discusses some perceived advantages of executing busi-
ness processes via smart contracts. Bonitasoft [119] provides a software con-
nector that enables process instances running on the Bonita BPMS to execute
transactions on a blockchain. With this connector, a task in a BPMN process
model can be configured in such a way that its execution generates a transaction
on a blockchain. Similarly, [6] shows how to use IBM’s BPM system to exe-
cute business processes on top of the Hyperledger blockchain platform. In this
latter approach, data objects are kept in a (permissioned) blockchain, and tasks
in the process read and write into these objects. This approach is suitable when
one or a handful of tasks in a process needs to execute transactions involving un-
trusting parties or need to leave a tamper-proof trace of their execution. When
permissioned blockchains are used (which are more scalable than public ones),
it becomes practical to use this approach to record every execution event (e.g.,

2https://github.com/Jonasmpi/PExSCo/blob/master/contracts/

ContractCollaborationManager.sol, commit a26274c9d564f8a2cc2477eaa26f633b485323ca,
lines 107-122; accessed 2020-02-26

44

https://github.com/Jonasmpi/PExSCo/blob/master/contracts/ContractCollaborationManager.sol
https://github.com/Jonasmpi/PExSCo/blob/master/contracts/ContractCollaborationManager.sol

events indicating the start and end of each task) on a blockchain. However, in this
approach, the blockchain stores the execution trace of tasks and possibly also the
data produced by these tasks, in a process, but it does not ensure that the execu-
tion of the collaborative process abides by a given process model. The process
is executed within the (off-chain) BPMSs of the actors involved in the process,
and these systems may perform tasks even if the current state of the collaborative
process does not allow them to do so. Hence, this approach is not suitable when
the goal is to implement an end-to-end collaborative business process in a way
that benefits from the integrity of blockchain technology.

We observe that, except for [56], existing approaches for executing collabo-
rative business processes on top of blockchain technology use the blockchain to
record message exchanges or transactions. In addition, they use smart contracts to
check or enforce that messages are exchanged in a way that is compatible with a
collaborative process model. In other words, most parts of a business process are
still executed in the BPMSs or other process-aware information systems of each
business party, and the blockchain is used to record, monitor, and occasionally
control interactions between the processes executed by each party. Also, existing
approaches focus on a highly restricted subset of BPMN, comprising tasks, events,
and XOR and AND gateways. In particular, these approaches do not support the ex-
ecution of hierarchical process models (i.e., processes linked with sub-processes).
Therefore, CATERPILLAR advances the state-of-the-art in the field by proposing a
process execution engine with broad support for BPMN elements. Our approach
enables the implementation and execution of collaborative business processes in
which all critical components of the BPMS are hosted on the blockchain.

We also observe that existing approaches to blockchain-based business process
execution mostly compile high-level process models into smart contracts that are
deployed and executed on a blockchain platform [49, 56, 82, 94, 108, 150, 163].
These approaches, however, suffer from three limitations. First, they mostly fo-
cus on the control-flow perspective of process models. In other words, they do
not handle process instance data (data perspective) nor the association between
resources and tasks (resource perspective). The second limitation is that, due to
their reliance on a compilation phase, these approaches do not support the adap-
tation of a process at runtime. In other words, a change in the model requires
the generation and deployment of a new set of smart contracts (which is a costly
operation), and existing process instances remain bound to the old version of the
model. Third, compiled approaches often produce a significant amount of code
(sometimes redundant) from the process models, leading to performance issues in
blockchain environments in which the size of the code is limited. In CATERPIL-
LAR, we tackle these limitations by adopting an interpreted approach as opposed
to a compiled one. The key idea is to deploy a smart contract that can interpret
BPMN models represented through a space-optimized data structure that can be
modified at any time.

The work presented in [148] also adopts an interpreted approach. How-

45

ever, [148] focuses on the control-flow perspective (no case variables) and is lim-
ited to a small subset of BPMN elements (tasks and gateways with simplified exe-
cution semantics for join gateways). In particular, it cannot handle sub-processes,
error events, and boundary events. In addition, this latter approach bundles to-
gether the interpreter with the data structures representing the process model into
a singleton smart contract. Therefore, it suffers from the same flexibility issues as
compiled approaches: Any change to the process model requires the deployment
of a new smart contract (which is a costly operation), and existing instances re-
main tied to the previous smart contract. Finally, the approach in [148] requires
that updates to the tasks in the process are performed by a central process owner,
which is not suitable in scenarios in which there is no central trusted authority.

3.3. Flexibility in Collaborative Processes

In this thesis, we consider flexibility from two different viewpoints: resource and
control-flow perspectives. Subsection 3.3.1 dives into existing works on the re-
source perspective and access control mechanisms to handle dynamic bindings
of actors at runtime. Next, Subsection 3.3.2 focuses on the control-flow and the
solutions regarding process variability, adaptability, evolution and looseness.

3.3.1. Resource Perspective: Access Control, Binding and
Delegation Models

Traditional centralized access control systems are not suitable in collaborative
processes in which trust is an issue. Typically, centralized systems require a third
party in charge, which introduces risks of privacy leakage and constitutes a sin-
gle point of failure [71, 135]. Blockchain and smart contracts are emerging as a
solution to the problems of centralized systems in collaborative scenarios [135].
However, once deployed, a smart contract has no owner; i.e., undesired partic-
ipants can access and call functions of it. Thus, blockchain-based systems re-
quire an embedded permission control mechanism to restrict who can perform
each operation [91]. Existing blockchain-based access control solutions span
different domains of application including general attribute-based auditable sys-
tems [95, 96], IoT devices [43, 93, 113, 116], data and resource sharing with
emphasis in medical records [10, 41, 159, 169] and big data [48, 142]. These
works use well-known access control methods existing in centralized systems,
e.g., attribute-based, attribute-based encryption, RBAC, and fine-grained [135],
to mitigate limitations regarding privacy, security, scalability, and performance.
However, these existing solutions are either static or allow some dynamic opera-
tions that are mostly performed by administrators [28]. In addition, they do not
consider the dynamic scenarios existing in collaborative processes in which the
participants can be appointed/changed at runtime across different instances of a
process.

46

In the domain of collaborative business processes, existing blockchain-based
tools mainly focus on the control-flow perspective, as we discussed in Section 3.2.
However, some early efforts are starting to consider the resource perspective too.
Lorikeet [150] and the Blockchain Studio [100] tools implement static access con-
trol mechanisms in which roles are bound to accounts upon process instantiation.
The tool presented in [147] supports three workflow resource patterns: direct al-
location, role-based allocation, and separation of duties [16, 136], which are spec-
ified at design time. A method proposed in [125] by Prybila et al. allows dynamic
handoffs of process instances between actors but does not support the specifica-
tion and enforcement of permitted handoffs.

Existing rule-based automated resource allocation mechanisms [25, 26, 176]
are not suitable in dynamic-collaborative processes, as these mechanisms assume
that the rules for determining which resource will perform a given task can be
determined upfront, at design-time. Similarly, other resource allocation solutions
that use different techniques like process mining and social network analysis [83],
machine learning [67, 68], and data mining [143], among others, rely on data
which are not always accessible by all the participants in a collaborative process,
thus making it subject to trust issues. In CATERPILLAR, we follow an alternative
approach wherein the allocation of resources (actors in our context) to roles is
determined entirely at runtime based on consensus between actors. In other words,
we adopt a dynamic role binding approach.

The idea of dynamic role binding has previously been considered in the con-
text of Web service composition. For example, in WS-BPEL [4], role binding
is supported via partner links [11, 73]. A partner link is a variable that holds a
reference to a service endpoint. This variable can be modified at any time during
the execution of a process. This approach assumes that a single actor orchestrates
the whole process and that this actor unilaterally decides which actor (i.e., end-
point) should be bound to each role (i.e., partner link). This assumption is also
made in [78, 120]. A task-activity-based access control (TBAC) model, presented
in [92], combines activities and dynamic permissions related to tasks in a business
process. However, these approaches are not applicable in settings where a single
actor does not determine the binding of actors to roles. Similarly, in [122], the
parties can be replaced at runtime, but this always requires a central party serving
as an intermediary.

Other studies have considered the problem of dynamic role binding in pro-
cesses that are not orchestrated by a single actor. Robinson [132] extracts dynamic
authorization policies from service choreographies, which are enforced locally by
each party, but a central authority specifies all role bindings. BPEL4Chor [42]
allows an actor to bind other actors to the roles it has control over. However, each
role is controlled by a single actor. In other words, collaborative role binding
is not supported; e.g., this approach does not support a scenario in which both
the buyer and seller must agree on the actor who plays the role of the carrier.
Also, BPEL4Chor does not support role re-binding. In [21, 157], dynamic role

47

bindings in decentralized processes are captured via delegations and revocations.
This approach supports un-binding (revocation) but does not support collaborative
binding (each actor decides on the roles it has control over).

In summary, none of the above studies has addressed the problem of dynamic
role binding and un-binding in decentralized and dynamic processes in which
multiple actors must collaboratively agree on each decision.

3.3.2. Control-flow Perspective: Variability, Adaptation, Evolution
and Looseness

Flexibility in the domain of process-aware information systems has been the focus
of multiple research efforts. The latter is confirmed by many surveys published in
recent years [9, 37, 106, 133, 144]. According to the taxonomy presented by Re-
ichert and Weber [128], there are four major flexibility requirements: variability,
adaptation, evolution and looseness. In the following, we discuss some relevant
works related to each of those requirements.

Many works address the flexibility by variability, i.e., support for different
variants of the same business process. The Provop approach discusses concepts
on the design, modelling and management of process variants [62]. Ognjanovic et
al. [115] consider stakeholder requirements, and Ayora et al. [8] propose a set of
change patterns to configure and manage process families, respectively. Ellouze
et al. present a version-based approach to model inter-organizational processes
to deal with variability, adaptation and evolution [47]. Other empirical studies
compare existing approaches for process variants, outlining their strengths and
weaknesses [44], and providing criteria for selecting among the existing solu-
tions [133].

No less attention has received the flexibility by adaptation, i.e., the possibility
to deviate the execution flow for a given process instance temporarily. Among
those, Nunes et al. [114] address the problem of runtime adaptation under the
assumption that some known contextual elements can characterize unexpected
situations. Klingemann [76] introduces flexible elements into the workflow spec-
ification to fulfil goals restricted by a controlled set of runtime conditions. Xiao
et al. rely on re-usable process fragments which are dynamically related based on
constraints and adaptation policies [170]. Pufahl et al. focus on the adaptation of
batch activities [126]. On the automatic adaptation of workflows, the proposals
in [102, 177] follows case-based reasoning approaches, and [104] relies on rules
to specify exceptions and workflow adaptations. Others use planning strategies
to automate business process reconfiguration at runtime [153] or to automate the
construction of exclusive choices considering multiple paths under a set of specific
variable conditions [63]. On service-oriented processes, the solutions described
in [20, 127] automatically detects and solves adaptation issues, while [72] de-
scribes mechanisms to exchange web services in a Web service flow instance dy-
namically by extending WS-BPEL. Other solutions advocate for ad-hoc changes

48

to running instances on data-centric and data-aware [3], artefact centric [171] and
activity-centric [65] processes, respectively.

Several other works focus on the flexibility by evolution, i.e., the permanent
modification of a business process, which includes its active instances. Already
in the ’90s, two relevant research works envisioned that keeping the running in-
stances consistency is one of the most challenging issues related to the workflow
evolution [30, 80]. Those works also proposed a set of primitives to modify the
workflow schema and migrate the running instances consistently. In this regard,
Zhang et al. focus on the efficient migration of the running instances after the
model modification [178]. Further, the solutions presented in [145, 180] provides
insights about the management of different process model versions as a result
of the workflow evolution. On service-oriented architectures, the work in [17]
uses the case-transfer pattern on the evolution of inter-organizational workflows,
while [149] considers change patterns on the evolution of event-driven processes.
A more recent research in [81] transforms BPMN models into LNT process alge-
bra and LTS formal models to check process changes and correct evolution errors.

Looseness is another of the flexibility requirements described by Reichert
and Weber [128]. It refers to the ability to execute a business process whose
control-flow is not fully specified or undefined at design time. Among the works
addressing looseness, [2, 97] exploit the notion of worklets, i.e., self-contained
sub-processes aligned to process tasks, which also support process evolution and
adaptation at runtime. Worklets allows late-binding and late modelling, which
are a typical implementation for flexibility by looseness. As such, other solu-
tions also rely on the late-binding and late-modelling, e.g., on service chore-
ographies and their orchestrations [164], to enforce patterns for executing col-
laborative tasks [36] and to handle temporal constraints to bind services [52].
The Declare language constitutes another significant contribution, which supports
constraint-based representations of process models describing loosely-structured
processes [121]. Similarly, Sadiq et al. introduced the concept of pockets of flex-
ibility which allows execution of a process described by a loosely or partially
specified model, whose full specification occurs at runtime [137].

However, these existing solutions, mostly focus on aspects like configuring,
modelling, automation, validation and management of the flexibility require-
ments, putting aside scenarios in which trust is an issue, which is a crucial require-
ment for many inter-organizational processes. In other words, existing solutions
mainly focus on how to update the process model consistently. However, partners
in a collaborative setting may be suspicious about changes during process execu-
tion. Indeed, a partner may gain an unfair advantage by arbitrarily changing the
model [99]. In that regard, the question of how untrusting participants can handle
the updates of a collaborative process in a trusted way requires further research.
In CATERPILLAR, we focus on flexibility in such scenarios that involve untrusting
parties by using the blockchain technology.

In the blockchain setting, Prybila et al. [125] addresses the question of adapt-

49

ability. This approach caters to runtime adaptation, but it assumes that the process
is not executed on the blockchain. The blockchain is used as a recording mecha-
nism (recording the execution of tasks), as opposed to an enforcement mechanism
(determining which tasks can be executed), as we do in CATERPILLAR. However,
to the best of our knowledge, no other solutions have addressed the problem of
control-flow flexibility on the blockchain.

Existing blockchain-based approaches commonly use immutability to enforce
conformance with a fixed implementation of the process, avoiding all kinds of
flexibility during the process execution [163]. Collaborative processes unavoid-
ably involve tasks performed privately or requested by some party outside of the
blockchain, and these are thus subject to trust issues. The latter introduces the
need for using off-chain consensus among the participants of the collaboration,
e.g., to approve a process update. Then the execution of the process can continue
on-chain where the transactions are also enforced by consensus among computers
in the blockchain network.

This thesis, unlike existing approaches, introduces the concept of flexibility by
consensus, such that untrusting participants can accept or reject requested updates
to the process at runtime. To that end, we exploit the notion of late-binding [141]
and worklets [2] in our role-binding and agreement policies to prevent inconsis-
tencies that may result from process updates (see Chapter 6). More precisely, we
follow an approach of flexibility by underspecification [141] or looseness [128], in
which the specification occurs at runtime and may vary with each instance [137].
However, the interpretation-based engine additionally supports the variability,
adaptability and evolution requirements. The later three flexibility requirements
are unsupervised, i.e., the participants of the process are responsible to keep the
updated model consistent (see Section 5.1.2)

50

4. CATERPILLAR: A BLOCKCHAIN-BASED
BUSINESS PROCESS EXECUTION ENGINE

In this chapter, we focus on the research question RQ1: How can the high-level
abstractions of BPMSs be combined with the capabilities of blockchain technol-
ogy to support the execution of collaborative business processes between mutually
untrusted parties? To that end, this chapter focuses on the design and implemen-
tation of the CATERPILLAR system. Specifically, in this chapter, we follow a
compiled approach to execute blockchain-based processes. As disused in Sec-
tion 1.1.2, compiled approaches are suitable in scenarios in which the flexibility
is not a requirement, or in blockchain platforms which required no fee payment
for the deployment of the contracts, e.g., consortium blockchains like Hyperledger
Fabric. Also, these approaches promoting the immutability of smart contracts as
a source of trust remains among the most widely used [99].

The chapter is structured as follows. Section 4.1 introduces a business process
model written on the BPMN standard that we use as a running example. Next,
Section 4.2 describes the architecture of the CATERPILLAR system following a
compiled approach, i.e., the process models are translated into immutable smart
contracts. Section 4.3 delves into details of the compilation from BPMN into
solidity. Then we describe the implementation and evaluation of the system in
Section 4.4 before Section 4.5 concludes the chapter.

4.1. Running Example

In the following, we introduce a running example that will be used throughout
the chapter. As discussed in the introduction of the thesis, CATERPILLAR takes
as input single pool process models, and not choreographies nor collaboration
diagrams. Accordingly, the participants must agree in the set of flow elements
describing a joint a process model [58, p. 143]. Figure 9 presents the business
process to illustrate concepts and CATERPILLAR’s components. For convenience,
the business process is modelled into two separate diagrams: an ORDER TO CASH

root process model and a reusable GOODS SHIPMENT sub-process, which is called
from the root process model. The model includes three participants, Customer,
Supplier and Carrier, represented by the three lanes in the model, instead of pools
as for collaboration diagrams. Similarly, traditional message exchanges are re-
placed by user tasks; through them, participants can check-in and check-out in-
formation.

The process starts with a none start event. The latest is a requirement as
CATERPILLAR only supports so-called explicit instantiation, i.e., it does not sup-
port implicit instantiation via start timer events or start message events.

The process execution starts with the user task Submit PO.1 A user task adds

1We are using PO as an abbreviated form of purchase order.

51

O
rd

er
 to

 C
as

h

C
us

to
m

er
S

up
pl

ie
r

C
ar

rie
r

PO cancelled

PO created

Issue invoice for
supplier

Approve invoice
from supplier

Resend invoice
to supplier

Invoice paid by
customer

Submit PO

Validate PO

Aprove invoice
from carrier

Invoice paid by
supplier

Issue invoice
for customer

Resend invoice
to customer

Goods
Shipment

PO rejected

PO cancelation
received

Invoice accepted

PO accepted

Invoice accepted

(1) Root process: Order-to-Cash

G
oo

ds
 S

hi
p

m
en

t

S
hi

pp
er

C
ar

rie
r

Carrier Selection

Carrier selection
requested

Request quote

Carrier selection
completed

Submit quote

Good shipment
requested

Ship goods

Good shipment
completed

Appoint carrier

(2) Sub-process: Goods-Shipment

Figure 9: Running example: An order-to-cash process (1), with a shipment sub-
process (2)

a work-item into a stakeholder’s worklist. Therefore, the user task Submit PO is
intended to let a stakeholder enter the details of the purchase order. Next, the case
continues with the user task Validate PO. This task intends to allow a stake-
holder to check the validity of the PO, the existence of the goods in the ware-
house, to later submit a decision over the PO (e.g., PO is accepted or rejected).
Next, the execution of the process proceeds reaching an exclusive gateway, which
selects one out of the two possible execution paths based on a predicate formu-
lated over the process data, i.e., the decision taken by the stakeholder in regards
of the validity of the PO. When the PO is rejected, the execution flow will reach
the end event PO rejected, ending the execution of the process instance. On
the other hand, if the PO is accepted, the execution flow will reach the call ac-
tivity Goods Shipment. Executing a call activity implies the instantiation of the
GOODS SHIPMENT sub-process. The boundary event attached to the call activity
GOODS SHIPMENT indicates that the supplier has the right to cancel the order so
long as the goods have not yet been dispatched.

The execution of the sub-process GOODS SHIPMENT eventually reaches a

52

point where multiple instances of the sub-process CARRIER SELECTION are cre-
ated. The intuition behind is that each instance of the sub-process implements
the interaction between supplier and carrier companies to get a quote.2 When the
carrier companies submit all the quotes, a clerk on the supplier company selects
one carrier based on the quotes and organizes the shipment. Then, when the user
task SHIP GOODS finishes, the execution flow passes back to the root process.
The process instance proceeds by activating the two parallel paths to process the
payment of the shipment by the supplier and the payment by the customer. At
this point, the process includes two script tasks, i.e., rounded rectangles with a
folded paper-like icon, which represent Solidity scripts to issue invoices. Once
the invoices are issued, the customer and supplier should pay their corresponding
invoices. Note that the process considers the possibility of reissuing the invoices,
e.g., when one invoice is wrong. The overall process ends when the parallel paths
reach their corresponding end events.

4.2. Architecture of the Caterpillar System

The principles described in the introduction of this thesis (Section 1.2) guided the
design of CATERPILLAR’s architecture, which is organized into three layers as
shown in Figure 10. The layer at the bottom will be referred to as the “On-chain
Runtime and Storage” layer. Specifically, the “On-chain Runtime” refers to a set
of smart contracts that includes housekeeping support code, e.g., process instan-
tiation, as well as process-specific code, e.g., control-flow, process data, etcetera.
The on-chain parts are replicated across all full nodes of the blockchain network,
e.g., the public Ethereum network. “Storage” refers to the “Ethereum log”, which
serves to externalize process events and data, and the “Process repository”, which
keeps compilation artefacts and the like.

In the middle, the “Off-chain Runtime” layer includes a set of tools to compile,
deploy and monitor business processes on the On-chain layer. Specifically, the
Off-chain runtime includes a BPMN compiler, a deployment mediator, an execu-
tion monitor and an event monitor. Note that these Off-chain runtime components
can be hosted by each actor in a collaborative process separately. In particular, all
actors do not need to use the same event monitor or execution monitor. Following
our design principles, the state of all process instances is stored on-chain, and all
the decision points are evaluated on-chain. Hence, if one of the event monitors
tries to execute an event at the wrong moment, it would be rejected by the corre-
sponding smart contract. Similarly, each actor can host its own BPMN Compiler
to generate the smart contracts implementing a process model – and in this way,
they can cross-check the contracts deployed on the blockchain. Also, each actor

2The demonstration process included in CATERPILLAR’s code repository creates a fixed number
instances of the CARRIER SELECTION sub-process. The number is specified with a process variable
and is set to two by default.

53

can use their own deployment mediator, though, on end, only one of them should
deploy a given process (the others can check the deployed contracts).

Finally, the top-most layer comprises a set of components for editing
executable process models, packaging process configurations (e.g., adapting
control-flow code with components implementing different resource management
schemes, etcetera.), and to monitor the execution of process instances/cases.

Compared to the WfMC and to the more recent BPMS-RA reference archi-
tectures [66, 124], the component in the CATERPILLAR architecture can be clas-
sified as follows. (i) Process Definition comprehends the “Modeling Panel” and
“Process Repository”, as they serve to define and to store all the information re-
garding the high-level process models. (ii) Workflow Enactment Service encloses
the “BPMN Compiler”, “Deployment Mediator”, “Runtime Registry”, “Contract
Factories”, “Workflow Handler”. They are responsible for the compilation, cre-
ation, management and execution of the workflow instances. (iii) Administration
and Monitoring Tools relates to the “Execution Monitor” and ‘Worklist Handler”.
They handle resource and user access control management as well as the execu-
tion of enabled tasks. (iv) Workflow Interoperability includes “Event Monitor”,
“Service Bridge” and “Ethereum Log”, as they support the interactions between
the on-chain components with external systems. Specifically, to request an ex-
ternal interaction and event is placed in the “Ethereum Log”, and later processed
by the “Event Monitor” (off-chain). (v) Workflow Client Functions comprises the
“Modeling Panel”, “Configuration Panel” and “Execution Panel”, which enable
the interaction of the end-users with the CATERPILLAR’s off-chain and on-chain
components. Due to the separation between on-chain and off-chain components
in CATERPILLAR, some of the components may fall into several classifications.
Note that, in CATERPILLAR, the participants always share the on-chain compo-
nents. However, they may either implement a different or share the same off-chain
components, i.e., the top layers REST API and Web Portal in the architecture. Ac-
cording to that, the interactions among components may vary. Below, we provide
a more detailed description of the components in each one of these layers.

4.2.1. On-Chain Runtime and Storage

The dashed rectangles in Figure 10 divide the bottom layer of the architecture
into two parts. On the right, the “On-chain Runtime” components running on the
Ethereum blockchain platform store and support the execution of smart contracts
that fully encode a set of process models. The events generated by these smart
contracts are recorded in the blockchain platform’s log, which is accessible from
outside the blockchain. On the left, a “Process Repository” is used to keep data
received, produced, and required by CATERPILLAR to execute the process models
deployed on the blockchain. Below we discuss these two parts in turn.

Process Repository and Ethereum Log
A smart contract has no way of calling an external resource directly. To cope

54

Ethereum client node(e.g. Geth, Parity)Ethereum client node(e.g. Geth, Parity)
 Decentralized storage

(e.g. IPFS, Swarm)
 Decentralized storage

(e.g. IPFS, Swarm)

R
ES

T
 A

P
I

R
ES

T
 A

P
I

Runtime
Registry

Service
Bridge

Workflow
Handler

Worklist
Handler

Contract
Factories

BPMN
Compiler

Deployment
Mediator

Execution
Monitor

Event
 Monitor

Modeling
Panel

Execution
Panel

Process
Repository

Ethereum
Log

Configuration
Panel

Solidity
Compiler

Figure 10: The architecture of CATERPILLAR: the compilation-based engine.

with this limitation, CATERPILLAR publishes Solidity events on a log that is stored
inside each full blockchain node, which external programs can read. Thus, exter-
nal programs and users can react to the events and submit responses in the form
of transactions to the blockchain. Software that follows this style of interaction
is often referred to as an oracle [22]. An oracle serves as a proxy to mediate
between smart contracts and external applications and often includes another con-
tract dedicated to it. In CATERPILLAR, the “Ethereum log” (right-hand side of 10)
provides the medium for communication between off-chain and on-chain compo-
nents. Specifically, when a transaction is included in the blockchain, CATERPIL-
LAR emits and write an event in the log to notify external components that some
updates took place, e.g., to announce that some task became enabled; thus par-
ticipant can execute it. This mechanism is used to manage interactions between
the process-related smart contracts generated by CATERPILLAR, and external re-
sources such as software services, as discussed in Section 4.3.

The “Process Repository” (bottom, left-hand side of Figure 10) stores and pro-
vides access to compilation artefacts, including the BPMN process models, the
Solidity code generated from them, and additional metadata to link the generated
Solidity code to elements of the BPMN models. This metadata is used during
the deployment of the Solidity smart contracts (when creating a new process in-
stance) and also to link the state of a running process instance to the correspond-
ing model. The Process Repository can be implemented, for example, on top

55

distributed storage platforms like the InterPlanetary File System (IPFS).3 We note
that the compilation artefacts in the process repository could be stored directly on
the blockchain as a stream of bytes inside a smart contract. However, this alterna-
tive approach would entail a high storage cost, given that the storage is immutable
for the lifetime of the blockchain. IPFS provides an alternative decentralized ap-
proach to storing the compilation artefacts at a lower cost while producing an
immutable and unique cryptographic hash key that uniquely identifies each of the
compilation artefacts, and ensures the absence of manipulation (albeit without
guaranteeing availability).

The process-related smart contracts generated by CATERPILLAR store the fol-
lowing data on-chain for each process instance: (i) the state of the process instance
from a control-flow perspective, in order to determine which tasks are enabled/s-
tarted; 4 (ii) the data that needs to be given as input to the tasks of the process;
and (iii) the data required to evaluate the conditions in the decision gateways.
Beyond these minimum requirements, a developer may specify additional vari-
ables in the BPMN model, in which case these variables are also stored on-chain,
but this is optional. As an alternative and in order to strike a trade-off between
costs and being tamper-proof; it is possible to store a link to the full data objects
on-chain (and possibly also a hash code for verification) and keep the full data
off-chain, or to keep the full data objects in IPFS, for example by appending it to
the CATERPILLAR’s process repository. This latter approach can also be applied
when the volume of data that needs to be given as input to user tasks and service
tasks is too large. In other words, the full data objects required by these tasks can
be stored off-chain or in IPFS, so that only a link and a hash code need to be stored
on-chain. A discussion on the performance, availability, and security properties
of these alternative design decisions for data storage can be found in [173].

On-Chain Runtime Components
The “On-chain Runtime” consists of five components as shown in Figure 10.

First, the “Workflow Handler” comprises the set of smart contracts generated by
CATERPILLAR from the input BPMN models to handle the control-flow of the
process models. The next two components named “Worklist Handler” and “Ser-
vices Bridge” consist of smart contracts that enable the interaction with external
applications and to validate any data checked-in into to the process instances, thus
managing the interactions with external applications and users as specified by user
tasks and service tasks in the BPMN model. The Worklist handler is responsible
for managing user tasks (i.e., tasks to be performed by end-users in BPMN). At the
same time, the Service Bridge handles service tasks in BPMN, i.e., programmatic
interactions with external applications exposed as services. The Worklist Handler

3https://ipfs.io/
4The life-cycle of an element in CATERPILLAR is further discussed in Section 4.3.2 (Figure 15).

Overall, enabled activities to be executed by a participant, through an oracle, are marked as started.
Then, when the corresponding transaction is included in the blockchain, the activity is marked as
completed. Thus, an activity transits from the states enabled, started and completed.

56

Runtime RegistryRuntime Registry

1- registerFactory (process-hash, factory-hash, factory-address) -> ()
2- registerResource (process-hash, resurce-hash, resource-address) -> ()
3- relateProcesses (parent-hash, child-index, child-hash) -> ()
4- newInstanceFor (process-index, parent-address) -> (process-address)
5- newInstanceFor (process-hash, parent-address) -> (process-address)
6- findHashFor (instance-address, element-type) -> (element-hash)
7- findAllAddresses (element-type) -> (instance-address-list)

Factory InterfaceFactory Interface

1- newInstance (parent-address, registry-address) -> (process-address)
2- startInstanceExecution (process-address) -> ()

Worklist InterfaceWorklist Interface

1- workitemsFor (element-index, process-address) -> (workitem-index-list)

Workflow InterfaceWorkflow Interface

1- step (process-state) -> ()

3- propagateEvent (event-info) -> (process-state)
4- handleEvent (event-info) -> ()
5- killProcess (process-index) -> (process-state)
6- findWorklist () -> (worklist-address)
7- findSartedInstances () -> (address-list)
8- findStartedInstancesFor (element-index) -> (address-list)

2- processInstanceFor (workitem-index) -> (process-address)

2- startExecution () -> ()

3- elementIndexFor (workitem-index) -> (element-index)

(a) (c)

(b) (d)

Figure 11: Interfaces with their operations in the smart contracts managed by the
compilation-based engine of CATERPILLAR.

and Service Bridges are implemented similarly: they consist of a smart contract
that acts as the mediator for forwarding a request (via Solidity events) and re-
ceiving the corresponding response (via a contract function call). CATERPILLAR

provides a simple and generic implementation of the Worklist Handler, which
keeps track of work items that are enabled, started, or completed. In contrast,
the “Service Bridge” is a set of smart contracts that must be provided together
with the BPMN process model, because CATERPILLAR cannot generate it as the
details of these contracts are dependent on the services to which the bridging is
made. The bridge contracts need to implement a program interface specified by
CATERPILLAR.

The component “Contract Factory” includes a set of contracts that serve to
instantiate the smart contracts associated with a BPMN model as required: it in-
stantiates the smart contracts implementing the “Workflow handler” and “Worklist
handler” of the root process, binds them and then fires the execution of the process
instance.

The fifth on-chain runtime component, namely the “Runtime Registry”, is a
smart contract that keeps track of process instances (addresses of deployed “Work-
flow handler” smart contracts) and their relation with other smart contracts in
CATERPILLAR’s on-chain runtime. The main functionalities of the “Runtime
Registry” are shown in Figure 11(a). The suffixes on the name of the parame-
ters hint at the location of the underlying artefact. When the artefact refers to
metadata stored in IPFS, then a hash is used as an identifier. When the artefact
refers to smart contracts, then the identifier corresponds to the address of the de-
ployed contract. When parameter name uses an index as the identifier, then a level
of indirection (e.g., a Solidity mapping) is used.

Figure 11(b)-(d) also introduce the interfaces implemented by the three typical
contracts produced by the “BPMN Compiler”. The functions in Workflow Inter-
face can start the execution of an instance, perform internal steps updating the
process status, throwing and catching events, finish running instances, as well as

57

finding information of related resources and contracts, e.g., invoked through call
activities. On the other hand, the Worklist Interface provides functions to access
the information of work-items. A work-item, identified by an integer index, in-
cludes the address of the related control-flow contract and the index of the activity
to be performed by a process participant. Also, contracts implementing both in-
terfaces above include a set of functions relying on the elements extracted from
process models (see Section 4.3 for further details). Finally, factories must im-
plement two methods. The first function instantiates the corresponding process,
taking as input the addresses of the “Runtime registry” and the contract which
is responsible for creating the new instance (zero if an off-chain component exe-
cutes the operation). The second function forces that process executions must be
explicitly started, not when creating the new instance in the blockchain. CATER-
PILLAR automatically executes some elements internally at the moment they are
enabled as explained in Section 4.3. Therefore, any contract instantiated from an
element, e.g., a call activity, must be deployed before starting the execution when
the corresponding element has been reached.

Before creating new instances of a process, the corresponding factory contract
must be deployed on Ethereum. The address of the corresponding process factory
must be stored/associated with an identifier to a process model in the repository.
The factory of this model-factory mapping can be updated at any time using the
function registerFactory, which allows a process model to be implemented us-
ing different strategies. Besides, as interfaces offer no information about the con-
crete implementation of the factory, an identifier to recover such information from
the repository must be provided. A similar approach applies to link a process with
the contracts supporting the interaction of participants, i.e., worklist for humans or
services for information systems, using the function registerResource in both
cases. Relations of processes activities and other BPMN elements linked/mapped
into smart contracts are also stored, using the function relateProcess. In this
case, the parent refers to the process containing the element with the link. Un-
like previous relations, here the parent will instantiate a child given its index, but
beforehand the referred contract must be deployed. Thus the corresponding iden-
tifier is required for the registration.

CATERPILLAR forces the process instantiation to be made through the “Run-
time Registry”. To that end, two alternatives are available described by the func-
tions newInstanceFor. An off-chain component must provide the identifier of
the process as shown for the first variant of the function. In this case, the par-
ent address is zero because CATERPILLAR prevents external actors from creating
process instances linked to other process instances – this mechanism is internal to
CATERPILLAR. In other words, external actors only can instantiate root processes,
never sub-processes directly. Indeed, a parent process has to create instances of
a child given the integer index of the BPMN element linked to the corresponding
contract. In both cases, the “Runtime Registry” verifies if the required contracts
were deployed and instantiated (e.g., factory, worklist, service), and then chooses

58

the factory accordingly. Once created the instance, its address is published in the
event log of Ethereum to notify external actors the sub-process instance creation
and how it can be reached. Besides, the “Runtime Registry” keeps a record of this
new address that is associated with the process identifier.

The “Runtime registry” also provides methods to retrieve the identifier of a
process running at a given address. Note that this identifier serves to find and
check the information related to the process and its compilation metadata from
the repository. Besides, the list of all the addresses created for any category
of contracts can be recovered from the registry. In Figure 11 (a) the parameter
element-type refers generically to the different categories of contracts, e.g., fac-
tories, worklist, service and process models. In summary, the “Runtime registry”
provides full control of the processes deployed by CATERPILLAR; the history of
process executions, active instances, relations between contracts, and the metadata
required to create new instances can be retrieved.

4.2.2. Off-chain Runtime

The off-chain runtime component of CATERPILLAR provides a service-oriented
layer that allows external applications to interact with the on-chain components
and the repository. The off-chain components enable external applications to com-
pile process models into Solidity smart contracts, to deploy the smart contracts, to
query the status of process instances, and to register the execution of tasks asso-
ciated with active process instances. Accordingly, the off-chain runtime consists
of three modules: a BPMN compiler (which uses a Solidity compiler), a deploy-
ment mediator, and an execution monitor. The latter component relies on a fourth
component, namely the Event Monitor, which listens for relevant execution events
from the Ethereum log.

The runtime off-chain components are optional, i.e., the parties can directly
invoke the smart contract transactions without going through CATERPILLAR’s
off-chain components, or they can implement their private runtime. The CATER-
PILLAR on-chain components ensure that, should an off-chain component be tam-
pered, this would not affect the integrity of the process execution recorded on the
blockchain, since the transaction corresponding to a task is executed if and only
if the current state of the corresponding process instance allows so.

However, the tampering of an off-chain component may affect what the par-
ties observe (e.g., the notifications they receive). For example, if a fake carrier
tampers the “Event Monitor” to notify that the goods can be shipped when the
actual task has not been performed in the blockchain. Then, that carrier may be
able to pick up the products, i.e., if the supplier did not check the actual event in
the blockchain. Note that dispatching a product happens in the real-life and not in
the on-chain environment. The involved parties can mitigate this vulnerability by
introducing an additional secured software component that queries the blockchain
to check that a task is enabled before executing it. Then, if a supplier receives a

59

BPMN model
with solidity
extensions

Smart contracts
(generated)

Compilation
dictionary

Smart contracts
(base)

EVM
bytecode

Contract
interfaces

(ABI)

Parse BPMN model
(BPMN2Sol)

Parse smart
contracts

(solc)

Figure 12: Caterpillar’s compilation process

notification from the off-chain component indicating that the products should be
shipped, the additional secured layer should check that the corresponding task is
enabled via the on-chain components before performing this task. In this way, the
potential tampering of the off-chain components would be detected, and the goods
would not be shipped.

The Compiler
The first off-chain component, the BPMN compiler, is responsible for compil-

ing BPMN process models into smart contracts. This compilation is done in two
steps (cf. Figure 12). First, the BPMN process model is compiled into a set of
Solidity smart contracts plus additional metadata, called the compilation dictio-
nary, which is used later for monitoring purposes. The compilation dictionary is a
data structure that includes information to map the elements in the BPMN model
to the generated code. This information includes the name of the contract method
associated with any activity, a unique integer index assigned to each element, as
well as the respective element type.

In the second step of the compilation process, CATERPILLAR puts together the
set of smart contracts produced in the first step and, if applicable, the set of already
existing contracts such as the ones corresponding to the interfaces of service tasks
and call activities. These Solidity smart contracts are passed to the solidity com-
piler which produces EVM bytecode and ABI5 definitions that are used for de-
ploying the smart contracts to Ethereum. The ABI definitions are further used by
CATERPILLAR’s off-chain runtime or any other third-party applications to interact
with the deployed contracts. Artefacts involved in the compilation process, that

5ABI (Application Binary Interface) is a JSON-based description of the list of the public meth-
ods implemented by a Solidity smart contract as well as their signature. Several language bindings
use the ABI definition, e.g., web3js in the case of JavaScript, to enable the interaction with smart
contracts deployed into Ethereum.

60

is, input BPMN models, solidity contracts, compilation dictionary, EVM bytecode
and ABI definitions are stored in the “Process Repository”.

The CATERPILLAR’s compiler produces three smart contracts from an input
model if it is flat (i.e., contains no sub-processes): the workflow, worklist, and
factory contracts. The first one implements the data and control-flow perspectives;
the data perspective is embedded as part of the control-flow implementation, al-
though. The second contract, the worklist, handles the execution of work-items
by stakeholders named and serves to send/receive the process data. The third
contract, the factory, provides a default mechanism to create instances of the pro-
cess. As stated above, service tasks involve interactions with information systems
running outside of the blockchain, and require other smart contracts similar to
worklists. Additionally, some modelling elements, such as multi-instance activ-
ities and call activities, are implemented in separate contracts. Note that, if a
process contains at least one sub-process (i.e., embedded or linked to some call
activity), then a relation parent-child is implicitly established. Considering that
each sub-process can, in turn, have a set of children, then the sub-processes define
a hierarchy.

Deploying Smart Contracts
Once the compilation process finishes with the resulting metadata stored in

the repository, the root contract can be instantiated from the “Deployment Medi-
ator”. From this point, the contracts’ identifiers are the hashes produced by the
repository. Such hashes also serve as the key to access the compilation metadata.
Figure 13 shows the steps performed by CATERPILLAR when deploying a con-
tract, i.e., before creating the first instance. Initially, any parent-child relations
are updated in the registry. Next, for any contract in the process hierarchy, the
corresponding factories and resources (i.e., worklists and services) are instanti-
ated and associated accordingly in the registry. Note that instantiating a contract
off-chain requires the bytecode produced by the solidity compiler. On the other
hand, calling or invoking a function requires the contract ABI in conjunction with
the address of a running instance. Finally, the root process is instantiated and sub-
sequently started. In contrast to factories and resources that must be explicitly in-
stantiated,6 the workflow contract is instantiated through the “Runtime Registry”
which also updates itself with the newly-created addresses.

As hinted in Figure 13, most of the steps are optional as CATERPILLAR allows
lazy operations. In other words, registrations must be performed before elements
involving an interaction are reached in the control-flow, but there is no specific
moment to register such information. For example, in the process model pre-
sented in Figure 9 it is mandatory to register the contract produced for the process
ORDER TO CASH as root to allow the execution of any of its tasks by an off-chain
component. Besides, the factory is required to create the instance and starting the

6There is also possible to register instances of factories/resources created by another runtime
component.

61

Compilation
Sucessfully
Completed

Factories'
bytecodes

Register
Factories

Factories'
addresses

Instantiate
Resource
Contracts

Register
Resource
Contracts

Resources'
bytecodes

Instantiate Root
Process

Process Instance
Started

Start Process
Execution

Relate Control-
flow Contracts

Runtime Registry
ABI

Runtime Registry
address

Instantiate
Factories

Processes'
hashes &

elements' indexes

Processes'
hashes &

Factories' hashes

Processes'
hashes &

Resources'
hashes

Runtime Registry
address

Runtime Registry
ABI

Resources'
addresses

Runtime Registry
address

Runtime Registry
ABI

Root Process
address

Figure 13: Process Instantiation through Caterpillar’s compilation-based engine.

execution, upon which the user task Submit PO is reached in the control-flow. In
order to execute that task, the corresponding worklist is also required. The con-
tracts related to the call activity GOODS SHIPMENT as well as the multi-instance
CARRIER SELECTION can be registered at any moment before reaching the re-
spective elements in the control-flow. However, it is advisable to register any
involved interaction before instantiating a contract to avoid unexpected runtime
errors resulting from reaching unlinked elements during the execution.

Querying Process State and Executing Tasks
In order to inform a user which activities she can perform, we need to query

the process state. More specifically, we need to derive the set of started user
tasks from the information in the smart contracts. Once a process model has been
deployed into CATERPILLAR’s runtime for execution, any instance of it evolves
from its initial state, executing a subset of the underlying activities until no activity
is found to be a candidate for execution or currently being executed. Following
this intuition, the relevant part of the state of a process instance at a given point
in time can be identified with the subset of activities that are in the state started.
Note that any activity that is enabled during the execution is automatically started
by CATERPILLAR, thus simplifying the querying task. Furthermore, a process
instance may give rise to more than one contract instance, e.g., from a multi-
instance activity or a call activity. Nonetheless, it is the address of the instance
contract related to the root process, which would be used for querying the state
of the process instance as a whole. To that end, CATERPILLAR traverses the
hierarchy of smart contracts implementing the behaviour of a process instance
and collects the set of started activities therein. It is easy to see that the hierarchy
always corresponds to a tree. Henceforth, querying process instance state can be
done via traversal of such a tree of contracts.

At any time, an external entity can query the state of a given process instance,
i.e., the set of activities that are currently active (or executing) for that particular
instance, through the “Execution Monitor”. Algorithm 1 illustrates CATERPIL-
LAR’s off-chain runtime approach for querying the state of a process instance.

62

Given the address associated with a process instance, the algorithm performs a
depth-first traversal over the tree representing the hierarchy of contracts, collect-
ing the information of the started elements.

Algorithm 1 Querying a process instance state
1: function INSTANCESTATEFOR(process_address, registry_address, registry_ABI)
2: runtime_registry = Contract.at(registry_address, registry_ABI)
3: work-items, service_tasks, PENDING← /0, /0, /0
4: PUSH(PENDING, process_address)
5: while PENDING 6= /0 do
6: instance_address← POP(PENDING)
7: process_hash = runtime_registry.findHashFor(instance_address, ’PROCESS-CONTRACT’)
8: dictionary← FINDDICTIONARY(Repository, process_hash)
9: instance_contract ← FINDCONTRACTFOR(runtime_registry, instance_address, ’PROCESS-

CONTRACT’)
10: worklist_address← instance_contract.findWorklist()
11: worklist_contract ← FINDCONTRACTFOR(runtime_registry, worklist_address, ’WORKLIST-

CONTRACT’)
12: for element_index ∈ instance_contract.startedActivities() do
13: case dictionary.type_of(element_index) of
14: work-item:

15: work-items ← work-items ∪ worklist_contract.work-itemsFor(element_index, in-
stance_address)

16: SERVICE:

17: service_tasks← service_tasks ∪ {(instance_address, element_index) }
18: SEPARATE_INSTANCE:

19: for subinstance_address ∈ instance_contract.findStartedInstances(element_index) do
20: PUSH(PENDING, subinstance_address)
21: end case
22: return (work-items, service_tasks)

23: function FINDCONTRACTFOR(runtime_registry, instance_address, contract_type)
24: element_hash← runtime_registry.findHashFor(instance_address, contract_type)
25: contract_abi← FINDABI(Repository, element_hash)
26: return Contract.at(instance_address, contract_abi)

Initially, the input address, i.e., process_address, is pushed into the stack repre-
sented by the variable PENDING (line 3) before entering the while loop. Besides,
the address where running the “Runtime Registry”, as well as its ABI, are required
to invoke some functions. So, they are provided as input. In line 2, the algo-
rithm calls the function Contract.at to instantiate a contract wrapper (e.g., con-
tract object for solidity contracts according to the vocabulary used by the web3.js
JavaScript library), which will be later used to call functions of the solidity con-
tract running in the blockchain. Note that a similar approach is used to recover
wrappers from processes and worklists, in the function named findContractFor

in lines 27-31. However, in this case, firstly, it is necessary to recover the hash
and ABI from the registry and repository, respectively.

The traversal is implemented as a while loop (lines 5-24). At each iteration,
one contract address is processed. In lines 7-8, the algorithm retrieves the com-
pilation dictionary, which will be later used for determining the type of process
element being processed. The address of the associated worklist is retrieved (line
10) and used later to obtain the worklist wrapper. The for loop in lines 12-24 iter-
ates over the set of started elements that CATERPILLAR on-chain runtime reports

63

Algorithm 2 Executing a task by an external actor
1: function EXECUTETASK(worklist_address, work-item_identifier, input_parameters, runtime_registry)
2: worklist_contract ← FINDCONTRACTFOR(runtime_registry, worklist_address, ’WORKLIST-

CONTRACT’)
3: element_index = worklist_contract.elementIndexFor(work-item_identifier)

4: worklist_hash← runtime_registry.findHashFor(worklist_address, ’WORKLIST-CONTRACT’)
5: dictionary← FINDDICTIONARY(Repository, worklist_hash)
6: function_name← dictionary[element_index].function_name

7: EXECUTEFUNCTION(worklist_contract, function_name, input_parameters)

for a given address, using the corresponding contract wrapper.7

In the CATERPILLAR’s off-chain runtime, there are two types of activities for
which the "started" state is externally visible: those associated with work-items
(i.e., user tasks, receive tasks and message events) and the service tasks. Lines
18-21 will be executed when a BPMN element is associated with a separate con-
tract instance, e.g., if the element found in the started state is a call activity. In
such cases, the for loop in lines 19-21 iterates over the set of contract instances
associated with the BPMN element at hand, pushing their corresponding contract
addresses into PENDING for further processing. The algorithm returns two lists,
one with the indexes of the work-items of the started user tasks and a second list
with the started service tasks which are represented by a pair enclosing the task
index and the corresponding instance address. Also, determining which function
is associated with an element requires to query the dictionary.

Querying other useful information, such as the deployed process models or
the addresses of running instances, is relatively trivial. Such queries are made
by the “Execution Monitor” either by calling the corresponding functions in the
“Runtime Registry” or by checking the process repository.

The “Execution Monitor” also allows executing the started activities by ex-
ternal actors with the required access authorization. Nevertheless, such execu-
tion must start from the worklist contract, that validates the interaction before
redirecting the call into the workflow contract. Algorithm 2 illustrates the steps
needed to perform user tasks. To that end, the address of the corresponding work-
list, the work-item index, as well as the values of the input parameters, must be
provided. Note that, although it is not explicit in the Algorithm 1, the informa-
tion about worklists and parameters, required to execute started tasks, is provided
when querying the process status.

Initially, in Algorithm 1 the function findContractFor in lines 27-31 re-
trieves the interface for the worklist contract used later to find the index associated
with the corresponding BPMN element, i.e., the user task. Next, the compilation
dictionary provides the name of the function to be executed in the worklist, as it

7As described later in Section 4.3, the set of started activities is represented with an integer,
manipulated as a bit set and the line 12 in the algorithm conceptually captures the iteration over
such set. Henceforth, each BPMN element in that set is represented by a bitmask, which we refer
to as element_index in the algorithm.

64

shows the line 7. In this case, as the function name is just a String, the execu-
tion occurs without invoking the function on the contract wrapper. Instead, a sort
of interface, e.g., provided by web3.js JavaScript library, is used to resolve such
execution.

Finally, given that the interactions with Ethereum occur asynchronously, the
“Event Monitor” listens for low-level events. This component processes the
Ethereum event log to determine when to push notifications either to the “Exe-
cution Monitor” or to any external application, e.g., when a task has completed or
after executing a new work-item.

4.2.3. Web Portal

The CATERPILLAR’s Web Portal exposes the functionality of the off-chain run-
time component to end users (e.g., process administrators and process workers)
via a form-based user interface. The Web portal is structured into three panels:
“Modeling”, “Configuration” and “Execution” (cf. Figure 10).

The “Modeling panel” allows the user to draw the BPMN models that are de-
ployed later into the blockchain. Besides, it is possible to import and edit models
produced by another tool if they comply with the BPMN standard. In both cases,
the models are typically enriched with the Solidity snippets which later are em-
bedded into the smart contracts produced. Note that, in case of errors in such
Solidity code, the compilation fails; after fixing the errors, the modeller can try to
recompile the model. As indicated in Figure 10, the models created in the “Mod-
eling panel” are deployed to the blockchain through the “Deployment mediator”
if the compilation succeeds.

The “Configuration panel” supports introducing new relations or updating the
links defined for process models already deployed on the blockchain. For exam-
ple, it is possible to import and instantiate a smart contract of a worklist produced
not by CATERPILLAR (but following the structure expected by the tool) that are
associated later with a deployed process. This component is also the entry point
to deploy and instantiate the contracts which implement the interactions with the
service tasks. Besides, changing the links of a process to another, e.g., through a
call activity, is also supported. In other words, the “Configuration panel” provides
a set of functionalities to introduce and update the information in the “Runtime
Registry” at any time during the process execution.

The “Execution Panel” interacts with the “Execution monitor” to retrieve all
the information about deployed models, running instances and also allow execut-
ing tasks by stakeholders. For example, a user can access the list of deployed
processes to choose the desired one. Then, all the information stored in the “Pro-
cess repository” can be checked as well as the list of running instances can be re-
trieved, in this case from the “Runtime Registry”. Besides, given one instance of a
selected process, a user can visualize its state. Moreover, the started user tasks can
be executed, more specifically, the “Execution Panel” will generate a Web form

65

ACTIVITIES
Embedded Subprocess

(Expanded)

Call Activity

Event Subprocess
(Expanded)

Task

Default

User

Script

Service

Multi-instance

Parallel Sequential

GATEWAYS

Exclusive

Parallel

Event-based

EVENTS

Type Start Intermediate End
 Normal Event Subprocess

interrupting
Event Subprocess
non-interrupting

Catch Boundary
interrupting

Boundary non-
interrupting

Throw

None
Message
Signal
Error
Escalation
Terminate

Figure 14: BPMN elements supported by CATERPILLAR.

to let users provide input data to a process instance which will be validated by the
corresponding worklist. Finally, the “Execution panel” receives notifications from
the “Event Monitor” to keep track of the transactions included in the blockchain
and update the visualization accordingly.

4.3. Compiling BPMN into Solidity Smart Contracts

The CATERPILLAR’s compiler takes as input a BPMN process model annotated
with Solidity code snippets. The input BPMN model may contain user tasks,
service tasks, script tasks (with Solidity scripts), gateways (exclusive, parallel,
event-based and complex), events (none, terminate, message, signal, error and es-
calation), call-activities, embedded sub-processes, event-sub-processes and multi-
instance activities (parallel and sequential), as summarized in Figure 14. It also
supports message events attached to the boundary of an activity (i.e., interrupting
and non-interrupting message boundary events).8

Below, we discuss how CATERPILLAR generates smart contacts from a BPMN
process model. We start by discussing the handling of variables and interac-
tions with external resources via user and service tasks. We then discuss how
the control-flow (sequence flows and gateways), sub-processes, and events are
encoded in the generated smart contracts.

4.3.1. Process variables and external resources

Listing 1 shows an excerpt of the smart contract that CATERPILLAR generates
from the ORDER-TO-CASH process in Figure 9. This contract is called the main

8For a detailed explanation of the BPMN elements handled by CATERPILLAR, we refer the
readers to Section 2.2 of this thesis.

66

1 contract OrderToCashProcess {

2 // == RESOURCE MANAGEMENT ==

3 address worklist;

4
5 // == DATA -FLOW PERSPECTIVE ==

6 enum POStatus {PENDING , ACCEPTED , REJECTED , CANCELED , CLOSED}

7 bytes32 sku;

8 uint quantity;

9 uint price;

10 POStatus status;

11 ...

12
13 function ValidatePO_Complete(POStatus decision) external {

14 require(msg.sender == address(worklist) && /* control -flow

validations */);

15 require(decision == POStatus.ACCEPTED || decision == POStatus.

REJECTED);

16 status = decision;

17 // Continues with the execution of next elements in the process

flow

18 }

19
20 ...

21 }

Listing 1: Example of data flow and resource management in the solidity contract
of the process Order-to-cash.

contract or the process contract. Lines 6-10 define the variables of the process.
These variables are defined in the global documentation of the model, from where
CATERPILLAR copies them into the smart contract.

Lines 13-18 outline the function ValidatePO_Complete, which is gen-
erated by CATERPILLAR from the Validate PO user task in the run-
ning example. Tasks designed to interact with external resources (user
and service tasks) may read and write from/to the variables in the pro-
cess contract. This data mapping is specified in the task’s spec-
ification using the syntax <Data_to_export> : <Data_to_import> �>

<Operations_to_perform>. The <Data_to_export> section defines which
variables are read by the task from the process contract (i.e., input parame-
ters of the task). The <Data_to_import> specifies the output parameters of
the task, i.e., the data that the task obtains from the external resource. The
Operations_to_perform section contains a set of Solidity operations to map
the output parameters to the variables of the process. For example, the Validate
PO task takes as input the stock keeping unit (sku), the quantity and the price per
unit. It returns the decision that the user makes on the PO (to accept it or reject it).
This output parameter is type-checked and then copied to the “status” variable.
The corresponding task specification is the following9:

9The Solidity statement require is used as a precondition at the beginning of a function to
check if the underlying transaction would fail or not.

67

(bytes32 sku , uint quantity , uint price) : (POStatus decision)

->

{ require(decision == POStatus.ACCEPTED

|| decision == POStatus.REJECTED);

status = decision; }

Listing 2 sketches the contract OrderToCashWorklist, which acts as a proxy
to handle the interactions generated by user tasks in the ORDER-TO-CASH pro-
cess. Although any BPMN element that can be triggered by a user generates the
corresponding functions in the contract, below, we only discuss the methods of
task Validate PO to illustrate the approach.

1 contract OrderToCashWorklist {

2 struct Workitem {

3 address instanceAddress;

4 uint elementIndex;

5 }

6
7 Workitem [] public workitems;

8
9 event ValidatePO_Requested(uint workitemId , bytes32 sku , uint

quantity , uint price);

10
11 function ValidatePO_Start(bytes32 sku , uint quantity , uint price)

external {

12 workitems.push(Workitem(msg.sender , 2));

13 ValidatePO_Requested(workitems.length - 1, sku , quantity , price);

14 }

15
16 function ValidatePO(uint workitemId , uint decision) external {

17 require(workitemId < workitems.length);

18 require(workitems[workitemId]. elementIndex == uint (2));

19 require(workitems[workitemId]. instanceAddress != address (0));

20 WorklistInterface(workitems[workitemId]. instanceAddress).

ValidatePO_Complete(decision);

21 workitems[workitemId]. instanceAddress = address (0);

22 }

23 ...

24 }

25
26 contract WorklistInterface {

27 // == FUNCTIONS IN WORKLIST CONTRACT ==

28 function ValidatePO_Start(bytes32 sku , uint quantity , uint price)

external;

29 function ValidatePO(uint workitemId , uint decision) external;

30 // == FUNCTION IN MAIN CONTRACT ==

31 function ValidatePO_Complete(POStatus decision) external;

32 ...

33 }

Listing 2: Example Worklist and interaction interface of the process Order to cash
contract.

For every user task, CATERPILLAR generates two methods in the worklist
contract, i.e, ValidatePO_Start and ValidatePO in OrderToCashWorklist.
In the process contract, the task is implemented as one function,
ValidatePO_Complete in Listing 1. To generate these functions, CATER-

68

PILLAR uses the following approach:
• <element name>_Start(<Data_to_export>). This function must be

triggered internally when the corresponding element is reached during the
execution flow in the process contract (see control-flow Section 4.3.2 for
further details). The method includes as parameters the set of variables
annotated as Data_to_export in the corresponding BPMN element in the
process model. The worklist contract includes the corresponding work-item
that is stored in a dynamic array, called work-items. A work-item contains
the address of the process contract that made the requests and the index that
identifies the element in the process contract. Work-items would be ac-
cessible by the external resource and would be retrieved from an external
application when required. The input parameters and the index of the work-
item in the dynamic array that works as the work-item identifier are stored
in a Solidity event on the Ethereum log, which is also visible to external
applications.
• <element name>(<Data_to_import>). This function should be called

by the external resource to provide the information required to continue
with the execution of the element. Then, the worklist sends the data to
the process contract and marks the work-item as completed, by setting the
address to 0. The external resource must fulfil any access control policies
defined for the process. In the example displayed in Listing 2, any user is
allowed to access any function.
• <element name>_Complete(<Data_to_import>). This function, im-

plemented by the process contract, is invoked by the associated work-
list. The function first checks that the blockchain address performing
the call matches the worklist’s address, which is stored as a global vari-
able in the process contract (line 3 in Listing 1). Next, the function calls
<Operations_to_perform> to update the process variables. The task is
then marked as “completed” and the state of the process instance is updated.
If a second call arrives from the worklist, it is rejected.

In the presence of duplicate names on elements interacting with exter-
nal resources, the previous three functions include an extra parameter uint

elementIndex. Solidity allows the overhead of methods if they have a different
definition of parameters. Therefore, CATERPILLAR merges the elements with the
same name and same amount and type of parameters in a single function. Next,
the three methods are generated with the particularity of executing the actions re-
lying on the value of the parameter elementIndex. Note that this parameter is
also an attribute of the work-item.

To achieve modularity, CATERPILLAR generates an interface to han-
dle the function calls between the worklist contract and the process-
related contracts. Thanks to this interface, we avoid direct interac-
tion between Solidity contracts, which would lead to higher gas con-

69

sumption during deployment.10 Instead, we create a third contract
(WorklistInterface in lines 27-34 of Listing 2), which mediates all calls
to the worklist contract. Accordingly, all the function calls are of the form
Contract_Interface(contract_address).function_name(parameters)

(cf. line 21 of Listing 2)).
Service tasks are handled in a similar way as user tasks. The main difference

is that for service tasks, the API of the oracle contract is specified in the process
model. In contrast, for user tasks, the oracle is implemented by the predefined
worklist contract.

4.3.2. Control-flow Perspective

To encode the execution status of each element in a BPMN model, we rely on the
following classification of BPMN elements:
External: Elements involving external resources, i.e., user tasks, receive tasks,

message catching events and service tasks.
Reusable: Elements whose execution instantiates a process represented by an

external process model (not necessarily provided) or which trigger a sub-
routine specified within the current process model. This class includes call
activities, multi-instance activities, non-interrupting boundary events, and
event sub-processes.

Internal: All other elements: script tasks, gateways (exclusive, parallel and
event-based), intermediate and end events (default, terminate, message, sig-
nal, error, and escalation). We also put embedded (single-instance) sub-
processes in this category since they can be in-lined into the parent process
and hence do not trigger a separate sub-routine.

The life-cycle of a BPMN element in CATERPILLAR depends on its class as
depicted in Figure 15. Commonly, a BPMN element becomes enabled when a
token is present on its incoming edges (one of them in the case of exclusive join
gateways, all of them otherwise). Boundary events are enabled if they are attached
to a started activity. Finally, an event sub-process becomes enabled if it is included
in a process/sub-process which contains, at least, one element enabled or started.
The execution of an enabled element consumes the incoming tokens, generating
new ones on its outgoing edges as described further below.

The life-cycle of internal elements is the simplest. As there are no external in-
teractions, the element is automatically executed the moment it becomes enabled.
This automatic execution happens when a previous element has been executed,
and within the scope of the transaction that executed the previous element. For
an example, consider the process model in Figure 9 and the contracts in Listing 1
and Listing 2. When a transaction calls the function ValidatePO, the transaction
executes the respective work-item function, which calls the workflow function

10https://medium.com/daox/avoiding-out-of-gas-error-in-large-ethereum-smart-contracts-
18961b1fc0c6

70

enabled completing completed

starting tx
submitted

starting tx
rejected

starting tx
accepted

(3) Life-cycle of internal elements

enabled completing completed

starting started

starting tx
submitted

starting tx
rejected

starting tx
accepted

check-in tx
submitted

check-in tx
rejected

check-in tx
accepted

(4) Life-cycle of external/reusable elements

Figure 15: Life-cycle of BPMN elements in CATERPILLAR: (4) external/reusable
(3) internal

ValidatePO_complete; this function, in turn, executes the token flow and calls
the function corresponding to the data-based XOR split, cf. Figure 9, and de-
pending on the decision, further functions will be called, all within the scope of
the single transaction to ValidatePO. In the life-cycle, we refer to this transac-
tion as the “starting tx”. The state “completing” is used to capture the validation
and inclusion (or not) of transactions on the blockchain (since transactions can
be rejected). The state becomes “completed” when this transaction is included
in the blockchain. Note that, CATERPILLAR performs every internal operation in
a single transaction until reaching a step where only calls to functions in other
contracts are pending.

The execution of an external element requires interaction with an oracle, as
discussed in Section 4.3.1. When an external element is enabled during the exe-
cution from a “starting tx” as above, the oracle contract (e.g., worklist) is invoked,
and the element is in state starting/started. Unlike internal elements, an external
element requires a separate transaction, called “check-in tx” in the life-cycle, to
proceed. Eventually, the oracle makes the corresponding response call, and the
element is then marked as “completed”.

In the running example, once the task ValidatePO is enabled, the
contract OrderToCashProcess invokes function ValidatePO_Start of
OrderToCashWorklist, which corresponds to the “start” transaction in the life-
cycle. Consequently, the task is checked-in when an authorized user triggers the
function ValidatePO in OrderToCashWorklist. Then, the worklist invokes

71

ValidatePO_Complete in OrderToCashContract, which in turn generates a
new token in the outgoing sequence flow of the task, and the execution continues
as outlined above.

Reusable elements also involve interactions with external contracts encapsu-
lating the behaviour of another process. Therefore, the life-cycle is similar to
external entities. Once a reusable element is enabled, it creates as many new in-
stances as specified in the corresponding contract. In this case, the element is
considered started while any of the instances of the external contracts are running.
Intuitively, the element completes when no entity is enabled or started in any of
the instances. The simplest case of a reusable element is the call activity. Here,
the metadata required to instantiate the contracts of the process associated with
the call activity must be provided. Otherwise, an execution error occurs when the
call activity becomes enabled. CATERPILLAR creates the contracts of the other
reusable elements as described in Section 4.3.3.

The occurrence of an interaction with an external/reusable entity triggers
changes in the state of the process instance. Such updates correspond to recom-
puting the new distribution of tokens over the set of elements in the model and,
as a consequence of this, executing internal elements or starting some others that
also require interaction with other external entities.

The control-flow perspective of a process is implemented by simulating a token
game as specified in the BPMN standard. When a process instance is created, a
token is generated by the start event, which traverses sequence flows in the model
until reaching the end event(s). To simulate the token game, we assign sequential
indexes (starting from 1) to each node in the BPMN model. We use index 0 as
the identifier of the process. For the flow arcs, we follow the same approach but
starting with zero. Like the work presented in [56], we assume that the model is
1-safe, meaning that it is designed in a way that at most one token is present on
a sequence flow at any time. This property allows us to use a bit array, to encode
the distribution of tokens in a given state of a process instance. These bit arrays
are encoded as 256-bits unsigned integers, which is the default word size in the
Ethereum Virtual Machine.

Each process contract generated by CATERPILLAR contains two integer vari-
ables called marking and startedActivities to encode the current state of a
process instance. Variable marking is a bit-array encoding the distribution of to-
kens across the sequence flows of the process model. Each sequence flow is asso-
ciated with one bit in this variable: 1 if the sequence flow has a token, 0 otherwise.
Variable startedActivities encodes the set of triggered external/reusable el-
ements. Each bit in startedActivities corresponds to an external/reusable
element. Moreover, a dynamic array named subInstanceAddresses stores
the addresses of every instance created by each reusable element. Variable
subInstanceStartedIndexes is a bit array that tracks which of these reusable
elements are started. Finally, attribute worklist keeps the address of the contract

72

that handles user tasks.11

We use bit-wise operations to handle all the queries/updates on the process
state. To check if an element is enabled or started, the bit-wise AND allows testing
set inclusion. The bit-wise OR provides a method to encode the set union as an
integer. This operator is used to append tokens in the marking, to group the
indexes of the incoming edges of an exclusive gateway or the elements contained
in a sub-process, among others. Finally, the combination of NOT and AND serves
to remove tokens/elements from the variables marking/startedActivities.

The control-flow implementation is illustrated in Listing 3, which comple-
ments Listing 1 with other attributes and operations required to manage the
control-flow perspective. Consider the function ValidatePO_Complete shown in
lines 14-18. This function is called by the worklist when a user performs the task
ValidatePO. Line 15 requires startedActivities & uint(4) != 0, mean-
ing that the activity corresponding to 4, i.e., ValidatePO_Complete, is started.
Here, 4 is the decimal representation of the binary number 100, i.e., the bit in the
third-last position of the bit array, or index position 2. Note that, as part of a previ-
ous transaction, the if statement in lines 24-29 must start the interaction with the
worklist when the task became enabled (i.e., condition tmpMarking & uint(2)

!= 0 is true). As result, the token on the incoming arc is removed, tmpMarking
&= uint(2), and the task is started, tmpStartedActivities |= uint(4).
The numbers are the indexes assigned to the corresponding arcs and tasks, respec-
tively, when compiling the model into Solidity. Note that we need to cast every
bit-mask to avoid overflows in the operations because an integer literal is mapped
in Solidity to uint8 instead of uint256.

The computation of the new process state happens inside a function called
step shown in lines 20-55 of Listing 3. The function step is internal, which
means that external actors cannot call it. However, when an external entity’s func-
tion call updates the state of the process contract, the function step is invoked.

To illustrate how the step function works, consider again function
ValidatePO_Complete shown in lines 14-18. In line 17, the function step is
called to update the process state. When making this call, the outgoing edge is
activated by changing the marking, and ValidatePO is marked as completed
by changing startedActivites. The function step receives as input a copy
of these changed values of marking and startedActivities. It is a common
practice in Solidity to copy the values of contract variables into local ones, as
a way to reduce the number of write operations over contract variables which
are costly.12 Later, function step identifies the set of BPMN elements that are en-

11In the current implementation, all bit vectors limit the respective content to 256 (e.g., sequence
flows). While this limit could easily be lifted, doing so would likely increase the gas cost.

12The EVM has three areas to store items. (1) The storage, where all the contract state variables
are located, and it is costly to use. (2) The memory to hold temporary values, which is cheaper.
(3) The stack to hold small local variables, which is almost free, but it allows a limited amount of
values.

73

1 contract OrderToCashProcess {

2 ...

3 RuntimeRegistry private registry;

4
5 uint private marking = 1;

6 uint private startedActivities = 0;

7
8 address private parent = 0;

9 uint private instanceIndex;

10
11 address [] private subInstanceAddresses;

12 mapping(uint => uint) private subInstanceStartedIndexes;

13
14 function ValidatePO_Complete(POStatus decision) external {

15 require(/* Resource validations */ && startedActivities & uint

(4) != 0);

16 // <Operations_to_perform > --> Data perspective updates

17 step(marking | uint (4), startedActivities & uint(∼4));
18 }

19
20 function step(uint tmpMarking , uint tmpStartedActivities)

internal {

21 while (true) {

22 ...

23 // User Task (external resource interaction)

24 if (tmpMarking & uint (2) != 0) {

25 WorklistInterface(worklist).ValidatePO_Start(sku , quantity ,

price);

26 tmpMarking &= uint(∼2);
27 tmpStartedActivities |= uint (4);

28 continue;

29 }

30 // XOR Gateway (internal element)

31 if (tmpMarking & uint (4) != 0) {

32 tmpMarking &= uint(∼4);
33 if (poStatus == POStatus.ACCEPTED)

34 tmpMarking |= uint (16);

35 else

36 tmpMarking |= uint (8);

37 continue;

38 }

39 // Call Activity (reusable element)

40 if (tmpMarking & uint (16) != 0) {

41 tmpMarking &= uint(∼16);
42 address child = registry.newInstanceFor(uint (3), this);

43 uint index = subInstanceAddresses.length;

44 subInstanceAddresses.push(child);

45 subInstanceStartedIndexes[uint (3)] |= (uint (1) << index);

46 AbstractProcess(child).setInstanceIndex(index);

47 tmpStartedActivities |= uint (8);

48 continue;

49 }

50 ...

51 break;

52 }

53 marking = tmpMarking;

54 startedActivities = tmpStartedActivities;

55 }

56 ...

57 }

Listing 3: Example of a Solidity contract implementing the control-flow
perspective.

74

abled based on the current marking. Indeed, the function step repeatedly executes
a sequence of if statements to determine whether the current marking enables a
given BPMN element. If that is the case, the step function starts the execution
of the corresponding element. Due to concurrency, more than one element may
get enabled in a given state. For this reason, the function step has to restart the
while loop until no more enabled elements are found. It is only at this moment
that the newly computed instance state is stored in the contract variables marking
and startedActivities.

Coming back to the execution of ValidatePO in Listing 3, when calling step

from ValidatePO_Complete, the task is completed after updating the corre-
sponding bit from tmpStartedActivities, which adds a new token on the arc
with index 2. Then, the next exclusive gateway is enabled and executed internally
(see lines 31-38). The conditions of an exclusive gateway must be boolean expres-
sions encoded in Solidity; they are attached to the outgoing arcs of the gateway in
the model, and embedded in the generated code as shows the line 33.

Finally, we describe how to execute a reusable element. Let us consider that
the call activity GoodsShipment is enabled, which is handled by the if state-
ment in lines 40-49. Checking if the element is enabled and updating the process
state is handled analogously to external tasks. However, in this case, a new in-
stance of a related smart contract is created (lines 42-46). The new instance is
created through the registry, which requires: (i) the address of the parent, (ii)
the index assigned to the child when compiling the model. Accordingly, the reg-
istry chooses the factory to create a new instance of the child from the index
provided, which requires that a parent-child-factory relation exists in the registry
and a factory instance is running on the blockchain. Otherwise, it throws an ex-
ecution error. Then, the parent updates the variables subInstanceAddresses

and subInstanceStartedIndexes with the new child address and status (lines
41-42). Also, the child updates the attributes parent and instanceIndex. The
former one is the address of the parent and is set during deployment through the
factory. The latter one keeps the position where the children address was added in
the dynamic array of the parent. Finally, the call activity is marked as “started”.

4.3.3. Sub-processes and Reusable Elements

CATERPILLAR implements three of five types of sub-processes in the BPMN
standard: (1) call activity, which invokes a process defined in a separate pro-
cess model; (2) embedded sub-process, which invokes a process model embedded
inside its parent process; (3) event-sub-process, which is like an embedded sub-
process, but that is triggered by an event.

Embedded sub-processes can be inlined in their parent process (and hence are
internal elements), except when they have a multi-instance marker. In the latter
case, CATERPILLAR generates a separate Solidity contract to encode the multi-
instance sub-process. This contract will be instantiated once for each instance of

75

S_1

M

S_2

S_3

P

e_1

...

e_2

...

 e_2

 e_1 ...

...

...

Figure 16: Nested subprocesses with propagation of error events.

the sub-process. In the absence of a multi-instance marker, a nested embedded
sub-process is inlined either inside its closest parent (reusable) sub-process or
inside the root process. For example, consider the simplified process hierarchy
represented in Figure 16.13 As a result, CATERPILLAR generates two contracts,
one for the root process P, including all the atomic elements in P and S_1. The
other contract encodes the multi-instance sub-process M. Accordingly, it includes
the atomic elements in S_2 and S_3, even when S_3 is not a direct child of M in
the hierarchy.

Listing 4 provides a pseudo-code illustrating possible blocks of instructions
in the function step to handle embedded sub-processes and multi-instance sub-
processes(see Figure 16). Lines 6-9 refers how to start the execution of an internal
sub-process, i.e, S_1 in P. When the sub-process is enabled in the execution flow,
the function step automatically executes the start event of the sub-process adding
tokens on its outgoing edges. As the elements in S_1 are part of P, the execution
continues as described in Section 4.3.2. Note that the functions ending with mask
refer to the integer encoding arcs/elements into a bit-array.

Although the elements in M are not encoded as functions in the contract of
P, the instances of M must be started by P when M is enabled in the execution
flow. Listing 4 shows the two possible cases handled by CATERPILLAR. As illus-
trated in lines 11-19, if M is a parallel multi-instance, the approach differs from
instantiating a call activity only in the for loop to create several instances. The
sub-process remains started in P while at least one instance of M is running (i.e.,
at least one instance with marking or startedActivities different from zero).
A default event is propagated to P when any instance of M is finished. Thus the
marking in P must be updated accordingly. As shown in lines 21-29, sequential
multi-instances involve the creation of one instance. Then, the spots required for
the next ones are reserved in the dynamic array subInstanceAddresses. The
next instance is created when the previous one propagates an event notifying its

13Note that, the model in Figure 16 is very simplistic outlining only the sub-processes involved
in the hierarchy with some error events to handle which are described later in Section 4.3.4, and
omitting other possible BPMN elements and sequence flows.

76

1 contract P {

2 ...

3 function step(uint tmpMarking , uint tmpStartedActivities)

internal {

4 while (true) {

5 ...

6 if (tmpMarking & incomingEdgesMask(S_1) != 0) {

7 tmpMarking & uint(∼incomingEdgeMask(S_1)) |

outgoingEdgeMask(startEvent(S_1));

8 continue;

9 }

10 // Parallel Multi -instance of M

11 if(tmpMarking & incomingEdgesMask(M) != 0) {

12 tmpMarking & uint(∼incomingEdgesMask(S_1))
13 for (uint i = 0; i < number_of_instances; i++) {

14 // Create a single instance of the contract M.

15 // Same as call activities , see∼\ref{lst:step}, lines

42-46

16 }

17 tmpStartedActivities |= nodeIndexMask(M)

18 continue;

19 }

20 // Sequential multi -instance of M

21 if(tmpMarking & incomingEdgesMask(M) != 0) {

22 tmpMarking & uint(∼incomingEdgesMask(S_1))
23 // Create a single instance of the contract M.

24 // Same as call activities , see∼\ref{lst:step}, lines 42-46

25 for (uint i = 0; i < number_of_instances - 1; i++)

26 subInstanceAddresses.push (0);

27 tmpStartedActivities |= nodeIndexMask(M)

28 continue;

29 }

30 ...

31 break;

32 }

33 marking = tmpMarking;

34 startedActivities = tmpStartedActivities;

35 }

36 ...

37 }

Listing 4: Subprocess execution through the step function.

ending. The sub-process remains started until the last instance notifies that it fin-
ished. For further details, we fully describe the event propagation among contracts
in Section 4.3.4.

An event-sub-process is treated as internal when triggered by an interrupting
event. Otherwise, it would work as reusable, and hence a separate contract is gen-
erated for it. The rationale behind is that non-interrupting events may be triggered
several times during the execution of a process. Thus, they are similar to multi-
instance sub-processes. Non-interrupting boundary events are particular cases of
reusable elements. Here, CATERPILLAR creates a separate contract including the
sub-graph of elements reachable from the event. As a result, we obtain a new node
in the process hierarchy with the same behaviour of a non-interrupting event-sub-
process.

77

4.3.4. Event Handling

Event handling in BPMN refers to the actions of throwing and catching events and
the state changes arising thereof. Some events change the state of the process triv-
ially: They merely move a token from their input to their output sequence flow(s).
However, other events lead to terminate their enclosing process instance and may
need to be propagated upwards through the process hierarchy. The latter include
end events in event-sub-processes terminate and error events, and boundary events
attached to an activity. Below we discuss how CATERPILLAR handles the event
propagation engendered by such events.

CATERPILLAR distinguishes four cases of event propagation, when an event e
is thrown in a sub-process S:
Upward: S propagates e to its parent P in the hierarchy. If P contains a catching

event that matches e, then it is handled, and the propagation stops. Other-
wise, P propagates e to its parent and so on. If P has no parent (root) and no
sub-process could catch e on the path from S to P, the propagation finishes
and, depending on the event type, the running instances are stopped or not.

Single upward: S propagates the event to its parent that shall handle it.
Broadcast: S propagates e to the root process. Then, the event flows to any

started child sub-process that is reachable by traversing the hierarchy from
the root. Accordingly, any enabled catching event with the same type of e
must handle it when reaching the corresponding sub-process.

Outside: S pushes the result of the event to a resource interacting with the process
from outside of the hierarchy.

The propagation always starts when a throwing event is enabled. These type
of events are internal, thus executed in the function step. If the propagation does
not traverse any reusable sub-processes, the token distribution resulting from the
propagation is computed at compilation-time and encoded in the step function.
If, on the other hand, the propagation traverses reusable elements, the resulting
token distribution cannot be computed at compilation-time. The pseudo-code in
Listing 5 illustrates how the propagation of throwing events is handled in the step
function. The pseudo-code includes, as comments, the operations/analysis to per-
form when compiling the model, as well as the generated Solidity code. For con-
ciseness, parameters tmpMarking and tmpStartedArtivities are shortened as
tM and tS, respectively. The instructions to check if an event e is enabled and for
removing tokens from its incoming edges is common to all cases (cf. lines 4-5).
The rest of the generated Solidity code is case-dependent.

The handling of error or escalation events follows the upward pattern, referred
to as Case 1 in Listing 5. At compilation time, we search for the corresponding
catching event. This search is local to a reusable sub-process, i.e. only embed-
ded sub-processes implemented in the contract of the reusable sub-process are
traversed. If required, i.e. unsuccessful local search, the event is propagated to
the parent contract by calling function propagateEvent as shown in lines 7-9.

78

1 function step(uint tM, uint tA) internal {

2 while(true) {

3 ...

4 if (tM & /* incomingEdgesMask(e)*/ != 0) {

5 tM &= uint(∼/* incomingEdgesMask(e)*/);
6 /* (1) Case: Upward --> Error or Escalation

-- */

7 /* e' = closestLocalCatchingEvent(e) */

8 /* (1.1) IF NOT exist e' */

9 (tM , tA) = propagateEvent(/*type(e)*/, /*code(e)*/, /*index

(e)*/, tM , tA);

10 /* (1.2) ELSE IF isInterrupting(e') AND isStartEvent(e')

11 C = subprocessEnclosing(e') */

12 (tM , tA) = killProcess(/* index(parent(C))*/, tM, tS);

13 tM |= /* initialMarkingMask(C) */

14 /* (1.3) ELSE IF isInterrupting(e') AND isBoundaryEvent(e')

15 C = subprocessWhereAttached(e ') */

16 (tM , tA) = killProcess(/* index(C)*/, tM, tS);

17 tM |= /* outgoingEdgesMask(e ')*/;

18 /* (1.4) ELSE IF isNotInterrupting(e ') */

19 createNewSubprocessInstance(/* index(e ')*/);

20 tS |= /*index(e')*/;

21 /* (2) Case: Single upward --> Default End Event

----------------------------------- */

22 /* S = subprocessEnclosing(e) */

23 if((tM & /* fullEdgesMask(S)*/) | (tA & /* fullNodesMask(S)*/

) != 0)

24 /* (2.1) IF S IS Internal */

25 tM |= /* outgoingEdgesMask(S)*/;

26 /* (2.2) ELSE */

27 (tM , tA) = propagateEvent("Default", /*code(e)*/, /*index

(e)*/, tM, tA);

28 /* (3) Case: Single upward --> Terminate , given S =

subprocessEnclosing(e) ---------- */

29 /* IF S IS Reusable FROM Non -Interrupting Boundary Event */

30 (tM, tA) = propagateEvent("Terminate", /*code(e)*/, /*index

(e)*/, tM , tA);

31 /* ELSE IF S IS Reusable */

32 (tM, tA) = killProcess (0, tM , tA);

33 (tM , tA) = propagateEvent("Default", /*code(e)*/, /* index(e

)*/, tM, tA);

34 /* ELSE */

35 (tM , tA) = killProcess(/*index(S)*/, tM , tA);

36 tM |= /* outgoingEdgesMask(S)*/;

37 /* (4) Case: Broadcast --> Signal

-- */

38 (tM , tA) = propagateEvent(/*type(e)*/, /*code(e)*/, /*index

(e)*/, tM, tA);

39 }

40 ...

Listing 5: Event propagation.

The effect of this function depends on the type of event. For example, a ter-
minate event finishes the current process instance. An error event may be caught
by the process scope under which it occurs (which may lead to terminating the
current instance), but it may also need to be propagated upwards to the parent
process instance. Meanwhile, a signal event is broadcast down to any reachable

79

children. In order to handle uncaught events, every process contract implements
a function handleEvent, which allows a sub-process instance to indicate that an
uncaught event has been generated under their scope.

Each process contract implements a function killProcess, which terminates
an instance of a subprocess given its index. In other words, it removes tokens
on the arcs enclosed in the input subprocess and terminates any enabled child
recursively. Generating the function killProcess in a contract involves roughly
the following steps. (i) Find the activities that, in addition to the root process
(with index 0), can be interrupted in the contract, e.g., those with an interrupting
boundary event attached. (ii) For any possible activity to terminate, generate a
block of instructions that validates if the index of the input subprocess matches to
update the token marking accordingly. (iii) If the activity is reusable, then update
startedActivities and recursively terminate the related active instances, and
later update the global field subInstanceStartedIndexes.

Continuing with the upward propagation, lines 10-20 in Listing 5 show how to
handle an event caught internally. If the catching event is interrupting, two cases
are distinguished: either the event starts an event-sub-process, or it is attached to
the boundary of an activity. The former one terminates the current instance of the
sub-process enclosing the event-sub-process, which is later restarted and enabled
by adding a token in the outgoing arc of its start event. The second case termi-
nates the sub-process where it is attached to the boundary event, which redirects
the execution flow through its outgoing edge. Catching a non-interrupting event
creates a new instance of the contract generated from that event in the same way
described in Listing 3 lines 42-46. In such a case, any related sub-process con-
tinues the execution unaltered. Besides, several catching events can be triggered
as a result of one propagation. The standard keeps open the behaviour to follow
if no sub-process catches a propagated event. Hence, CATERPILLAR interrupts
any involved sub-processes in case of error propagation. Otherwise, the execution
stays unchanged.

Cases 2 and 3 in Listing 5 illustrate the single upward propagation. It oc-
curs when a sub-process finishes by reaching a default end event or a termi-
nate event. A default event is thrown if no token exists in the marking and no
child sub-process is active, as checked in line 23. Here, fullEdgesMask and
fullNodesMask represent the bit-masks of every edge/node in the sub-process
containing the event e to throw. Two cases are distinguished here: (2.1) e is en-
closed in an internal sub-process, i.e., embedded and (2.2) e is enclosed in the
reusable sub-process that defines the current a contract from which the event will
be propagated to another contract. Case 3 handles the terminate event, which ter-
minates the sub-process instance in which it occurs and, in the case of a reusable
sub-process, it propagates a “Default” event to its parent.

Case 4 in Listing 5 deals with signal events. This case involves calling function
propagateEvent repeatedly until reaching the root process. Once in the root,
the event is disseminated to all subprocesses in the hierarchy by calling function

80

broadcastSignal. Every contract implements this function, which triggers any
catching signal events and propagates the call to any reusable child recursively.
Unlike upward propagation which comes from a child, catching/propagating a sig-
nal requires checking if the corresponding element is enabled. Note that boundary
events and event-sub-processes do not fit in the typical token game because they
have no incoming edges. Therefore, checking if they are enabled relies on veri-
fying the element to/in which they are attached/included depending on the case.
Handling the signal when it is caught follows the same approach described above
for error/escalation, depending on whether the event is interrupting or not.

To illustrate the approach, consider the example in Figure 16. Error event e_2
enclosed in sub-process S_2 is thrown in the step function of the contract gener-
ated from M. This event is caught at the boundary of S_2, which is embedded in
M. Thus, handled by the step function which already started the propagation as
outlined in Case 1.3 of Listing 5. Consequently, the sub-processes S_2 and S_3
are terminated in the current instance of M, and the execution continues through
the outgoing sequence flow of the boundary event with the same label (e_2). On
the other hand, the propagation of e_1 starts in M but is handled by the contract
defined from P. To this end, the step function calls propagateEvent in M,
which terminates the current instance and propagates the event by invoking func-
tion handleEvent defined in P, which handles the event at the boundary of M. As
a result, the remaining running instances of M are terminated, and the execution
continues via the outgoing flow of the boundary event.

A smart contract generated from a non-root process always calls the function
handleEvent to propagate an event to its parent. This function checks the data
received about the event (e.g., type, code, which child/instance is the source) to
handle it accordingly. Indeed, the approach is similar to the one described in List-
ing 5, i.e., trying to catch the event locally, if not possible, then propagating it to
the parent. However, a particular scenario must be solved when receiving a de-
fault event from a contract encoding a multi-instance sub-process. Here, dealing
with a sequential multi-instance involves checking if any reserved spot is empty
(see Listing 4) to create a new instance. When no running instance exists, in both
the parallel and sequential case, the execution continues by calling the function
step to add a token on the outgoing edge of the sub-process. For example, in Fig-
ure 16, if P receives a default event from M, then the source instance is marked as
finished. If there are no other running instances of M, then the function step in P
is executed to add a token in the outgoing edge of M (not included in Figure 16)
and continuing the execution.

81

4.4. Implementation and Evaluation

The Off-chain Runtime of CATERPILLAR and the web-based user interface are
implemented in Node.js14 and rely on the standard Solidity compiler solc-js15

to compile the smart contracts. Interactions with running instances of the smart
contracts are supported via the Ethereum client geth.16 The functionality of the
CATERPILLAR’s Off-chain Runtime is exposed via a REST API described in the
following. Subsequently we describe the evaluation, which is focused on feasibil-
ity, correctness, and cost of our approach and implementation.

4.4.1. REST API

CATERPILLAR’s REST API is built around four types of resources summarized in
Table 1: (i) models, including BPMN models, the associated compilation artefacts
and their instantiation, (ii) processes, which refers to process instances deployed,
running or completed on the blockchain, and (iii- iv) worklists and services which
involves interactions of user and external services with the running instances of
a process. The component named “Deployment Mediator” in the architecture in
Figure 10 exposes its functionalities through the resource models, while the “Exe-
cution Monitor” responds to the REST actions involving the resources processes,
worklists and services. The component “BPMN Compiler” involves no REST
interaction, but is invoked from the “Deployment Mediator” when a request to
register a new model is received. Note that CATERPILLAR assumes the models
created by the “Modeling Panel” are aimed to be deployed into the blockchain.
Thus, the “Deployment Mediator” triggers the compilation of such models before
deploying them.

As making changes in the process at runtime is not recommended in compiled
approaches, we are not exposing such kind of functionalities in the compilation-
based engine. Therefore, the compiled version of CATERPILLAR requires that the
addresses where the running smart contracts linked to call activities and service
tasks must be annotated in the corresponding process model. However, extend-
ing the REST API and user interface to allow updates in the “Runtime Registry”
regarding the links/relations is straightforward given that the on-chain function-
alities are implemented in the “Runtime Registry”. In this direction, the “De-
ployment Mediator” will also serve as the entry point to register and link process
contracts, factories, worklists, and services, that are not necessarily produced by
CATERPILLAR but relying on the structure outlined by its interfaces. Besides,
the smart contracts encoding worklists and factories are generated with a default
policy which allows any external resource to instantiate a process and execute a

14https://nodejs.org/en/
15https://github.com/ethereum/solc-js
16https://github.com/ethereum/go-ethereum/wiki/geth

82

Table 1: CATERPILLAR’s compilation-based engine REST API.
Verb URI Description
POST /models Registers a BPMN model (triggers also code generation,

compilation and updates the registry with a default config-
uration for the given model, i.e., after this operation the
process model is ready to be instantiated, unless the opera-
tor incurred errors)

GET /models Retrieves the list of registered BPMN models

GET /models/:m-hash Retrieves a BPMN model and its compilation artefacts

POST /models/:m-hash Creates a new process instance from a given model

GET /models/:m-hash/instances Retrieves all the instances created from a given process
model

GET /processes/:p-address Retrieves the current state of a process instance

PUT /worklists/:wl-address/workitems/:wi-index Checks-in a work item (i.e. user task)

PUT /services/:s-address/tasks/:t-index Executes a service task

started task.17

The compilation-based version of CATERPILLAR requires that the addresses
where the running smart contracts linked to call activities and service tasks must
be annotated in the corresponding process model. The smart contracts encoding
worklists and factories are generated with a default policy which allows any exter-
nal resource to instantiate a process and execute a started task. However, extend-
ing the REST API and user interface to allow updates in the “Runtime Registry”
regarding the links/relations is straightforward given that the on-chain function-
alities were implemented already. In this direction, the “Deployment Mediator”
will also serve as the entry point to register and link process contracts, factories,
worklists, and services, that are not necessarily produced by CATERPILLAR but
relying on the structure outlined by its interfaces.

A user can submit a BPMN model to be compiled and deployed using an HTTP
POST request on the URL /models which is also the approach followed by
CATERPILLAR’s “Modeling Panel”. The request is made with a JSON mes-
sage which includes the model serialized in the BPMN 2.0 XML standard for-
mat. Querying the process model metadata from the “Distributed Repository”
uses HTTP GET requests, as shown in Table 1. An HTTP GET request on
the URL /models returns the information of all the models stored in CATER-
PILLAR’s repository. Since this data can be voluminous, CATERPILLAR yields
only a list containing the name and hash reference for each model stored in the
repository. Then a user can retrieve all the information associated with a particular
model (i.e., serialized BPMN model, Solidity code, etcetera) using an HTTP GET
with the model’s corresponding hash.

Given the identifier of a process, i.e., hash produced when stored in the repos-
itory, a user can use an HTTP POST to request the creation of an instance. After
submitting the transactions to create and start the instance, CATERPILLAR re-

17For a further description of what kind of access control mechanism implements CATERPILLAR,
we refer the reader to the Chapter 6 of this thesis.

83

1 {

2 "process -identifier": "o2c -hash",

3 "href": "/ processes/o2c -address",

4 "workitems": [

5 {

6 "elementId": "Request_Quote_Id",

7 "name": "Request_Quote",

8 "importParameters": [

9 { "type": "uint", "name": "quote" }

10],

11 "instances": [

12 {

13 "exportParameters": [],

14 "href": "/ worklists/wl_address/workitems/wi_1",

15 }

16]

17 },

18 {

19 "elementId": "Submit_Quote_Id",

20 "name": "Submit_Quote",

21 "importParameters": [],

22 "instances": [

23 {

24 "exportParameters": ["type": "uint", "name": "quote", "

value": "100"],

25 "href": "/ worklists/wl_address/workitems/wi_3"

26 }

27]

28 }

29]

30 "services": []

31 }

Listing 6: Sample process instance’s state (model from Figure 9).

trieves the URL where the status of the newly created instance can be accessed.
In the implementation of the compilation-based engine, the URL associated with
a process instance includes the address of the underlying contract. Moreover,
once the corresponding transactions are included in the blockchain, the “Runtime
Registry” publishes a Solidity event with the address of the new instance in the
Ethereum Log. Thus, the “Event Monitor” accordingly sends notifications with
this address to the “Execution Monitor” and “Execution Panel”.

At any time, a user can query the state of a process instance by using an HTTP
GET request on the URL associated with the instance of interest. In response,
a JSON message is sent, with the information required to visualize and execute
any started user/service task. By way of example, consider the ORDER TO CASH

process model presented in Figure 9 and assume the execution of a process in-
stance has progressed up to the point where two instances of the sub-process CAR-
RIER SELECTION have started (Figure 9(b)). Moreover, consider that a participant
executed the task Request quote in one instance of the sub-process CARRIER

SELECTION. Listing 6 shows the JSON message sent responding to the HTTP
GET request on the URL /processes/o2c-address, where the acronym “o2c”
references in a compact way the root process ORDER TO CASH.

84

First, the JSON message in Listing 6 provides the hash identifier and the URL
to access the process instance. Next, two lists named workitems and services con-
tain the information of started user and service tasks, respectively. For each ele-
ment, its identifier and name in the BPMN model are retrieved. For the workitems,
the import parameters are listed, which must be provided by a participant when
executing the task. Note that the type and name of such parameters are used by
the “Execution Panel” to generate web forms that the user must fill. Finally, there
is a list with the URLs to execute the task through an HTTP PUT and the param-
eters to export, whose values must be displayed when visualizing the task. Note
that the export parameters are derived from information stored in the smart con-
tract, which varies among instances. For example, the quote provided by a ship-
per when executing the task Submit quote – which also starts the task Request

quote – is sent to the carrier who can decide whether to submit such a quote or
not. The addresses where the instances of the sub-processes GOODS SHIPMENT

and CARRIER SELECTION are running are not needed (and not returned), because
CATERPILLAR forces user tasks to be executed through the corresponding work-
list.

As indicated above, the execution of a user task requires an HTTP
PUT to a URL provided to that end when querying the process state, e.g.,
/worklists/wl_address/workitems/wi-_1 in line 14 of Listing 6. Such URL
contains as parameters the address when running the worklist and the index of the
corresponding work-item. Furthermore, the request needs to include a JSON mes-
sage with the expected values for the task.

4.4.2. Experimental Setup

Our experimental evaluation aims at assessing the cost of executing business pro-
cesses using CATERPILLAR, relative to other baselines that either only record the
execution of the process (without enforcing it) or that do not fulfil the design prin-
ciples outlined in the introduction of this thesis(cf. Section 1.2).

In line with existing works on blockchain-based collaborative process execu-
tion [56], we used four datasets for the evaluation, each of them consisting of
a BPMN process model and corresponding event log. Table 2 presents the statis-
tics of the datasets. The first dataset referred to as Invoicing, is an event log of a
real-world business process, used and distributed by Minit18 for demonstrating its
process mining tool. The BPMN model for this dataset was derived from the event
log, using a state-of-the-art process discovery tool [7]. Since the BPMN model
is automatically discovered, some traces (< 1%) were non-conforming. Thus, we
discarded them since they represent a limited subset of all traces.

The other three datasets, i.e., supply chain, incident management and insur-
ance claim, are process models extracted from the literature, and were used in the
experiments reported in [163]. In this case, the event logs for the experiments

18http://www.minitlabs.com/ - last accessed 17/05/2018

85

Table 2: Datasets used in the evaluation.

Process Tasks Gateways Trace Type Traces
Invoicing 40 18 Conforming 5,317
Supply
chain

10 2
Conforming 5
Not conforming 57

Incident
Management

9 6
Conforming 4
Not conforming 120

Insurance
claim

13 8
Conforming 17
Not conforming 262

were generated after the BPMN models using a simulation tool. In order to assess
CATERPILLAR’s ability to differentiate between conforming and non-conforming
inputs, we inserted noise into these event logs with non-conforming traces, by
randomly changing events over some of the traces also selected at random.

We replayed the distinct log traces and interacting with CATERPILLAR using
its REST API. To that end, we implemented a replayer component, which com-
piles, configures and deploys each one of the four process models in the input
datasets. After compiling and deploying the process models, the replayer reads
the corresponding event log and sequentially feeds each the events in the log into
the CATERPILLAR system through its REST API. In order to execute a task, the
replayer queries the state of the process instance, formats a JSON message with
the required data, and submits the request to CATERPILLAR. Then, the replayer
waits for a notification from CATERPILLAR’s “Event Monitor”, indicating that the
block containing the underlying transaction has been completed, and additional
information that includes the transaction hash and gas consumption.

The replayer queries CATERPILLAR that in turn checks the on-chain runtime
to determine if there is a work-item matching the next event in the event log. If the
response to the replayer indicates that there is no such work-item (meaning that
the on-chain runtime rejects the event in question), the replayer marks the trace as
non-conforming, skips the event, and continues reading the next event in the log.

For comparison, we run the same experiments using three baselines. The first
baseline, namely Basic is designed to reflect the approach where the process is ex-
ecuted in one or more off-chain BPMSs, and the blockchain is only used to leave
tamper-proof execution traces of the process via a connector between the BPMS
and a blockchain platform [6, 119]. In this baseline, the smart contract of a process
instance records a reference to each event executed in this process instance, using
a dynamic array of bytes32. Here, we assume the data generated by each event
is stored off-chain. The second baseline, namely Default corresponds to a smart
contract that enforces the control-flow of the process and stores the data required
to evaluate the conditions in the decision gateways of the BPMN model, but with-
out any work-item management (i.e., no handling of user and service tasks) and
with all runtime components left off-chain. In other words, this approach does not

86

satisfy design principle # 4 in Section 1.2 – the smart contracts generated from
the process model rely on other off-chain runtime components. This approach is
used in [56]. The third baseline, namely Optimized, is the same as Default with
some code optimizations to reduce the number of bits required to store the state
of process instances, as outlined in [56].

The experiments were run on a personal computer with an Intel i5-5200 dual-
core CPU. Moreover, we run them over testrpc,19 which is a NodeJS-based im-
plementation of Ethereum client used for development purposes. In this way, both
CATERPILLAR’s runtime and log replayer ran over the same computer.

4.4.3. Experimental Results and Discussion

Given that gas consumption is deterministic, the traces were grouped together
such that only one execution was performed for each distinct trace in the event
log. The same approach was taken in an existing work [56]. As expected, all
non-conforming behaviour was handled correctly by CATERPILLAR: the request
corresponding to a non-conforming event was ignored by CATERPILLAR because
the underlying task was not enabled (life-cycle state: “executing”).

The measurements of gas consumption are shown in Table 3. The table reports
the cost of instantiation of the process (in gas) and the runtime cost, which means
the cost of handling all the events related to a given process instance. The costs
reported in this table are adjusted such that they reflect the average overall gas
consumption. The last two columns of the table report the relative overhead of
CATERPILLAR regarding each of the baselines. For example, an overhead of 3.51
for the instantiation cost implies that the compilation-based engine of CATERPIL-
LAR consumes 3.51 times more gas than the baseline in question.

As expected, Table 3 shows that the cost of instantiation of the Basic approach
is considerably lower than all other approaches. The latest is because the smart
contract generated by this approach is relatively small: it the contract exposes a
function that takes an event as input and records it on-chain. On the other hand,
the execution costs of this contract are comparable to that of CATERPILLAR since
the Basic contract has to make a write operation on a dynamic array, for each
event. In contrast, the Default and Optimized approaches do not store each event,
but instead, they store the state of the process instance in a bit-set, which is a
less costly operation. CATERPILLAR does the same, but it also performs other
operations in addition to updating the state of the process instance.

Table 3 also shows that, on average, the smart contracts generated by CATER-
PILLAR consume two to three times more gas than that required by the solidity
code generated by Default and Optimized. This trend was expected, as the code
generated by Default and Optimized is encapsulated in a single smart contract and
deals only with basic control-flow and data-flow perspectives. In contrast, due to
more advanced architectural design, CATERPILLAR produces several smart con-

19https://github.com/0xProject/testrpc

87

Table 3: CATERPILLAR’s compilation-based engine: process instantiation and
execution costs.

Process Tested
Traces

Translator W. Avg. Cost Relative Overhead
Instant. Exec. Instant. Exec.

Invoicing 5316

Basic 123,625 589,228 22.9 1.8
Default 1,089,000 383,109 2.60 2.84
Optimized 807,123 297,351 3.51 3.66
CATERPILLAR 2,830,063 1,088,315 – –

Supply chain 62

Basic 123,625 570,444 8.9 0.99
Default 304,084 281,206 3.62 2.02
Optimized 298,564 272,186 3.69 2.08
CATERPILLAR 1,100,590 566,861 – –

Incident mgmt. 124

Basic 123,625 375,929 9.0 0.86
Default 365,207 185,680 3.07 1.75
Optimized 345,743 166,345 3.24 1.95
CATERPILLAR 1,119,803 324,420 – –

Insurance
claim

279

Basic 123,625 1,008,840 10.8 1.23
Default 439,143 552,274 3.05 2.24
Optimized 391,510 514,712 3.42 2.40
CATERPILLAR 1,338,152 1,235,617 – –

tracts to support concerns such as work-item handling and runtime housekeeping
among other things. One single interaction between CATERPILLAR’s off-chain
and on-chain components may involve chains of interactions between up to four
solidity smart contracts, e.g., workflow, worklist, factory and registry.

Therefore, it is worth noting that the comparison between the costs reported
for CATERPILLAR and those reported for Default and Optimized is not straightfor-
ward, because the functionality provided by CATERPILLAR is more sophisticated
than that provided by the other two options. Moreover, the costs associated with
CATERPILLAR’s code can still be reduced by applying the techniques described
in [56], which are those that are associated with Optimized. The latter is left as a
venue for future research.

Another drawback to consider in blockchain-based systems is the latency, i.e.,
the time required for a transaction to be appended into the blockchain. We did
not perform any experiment to measure the latency as it is an issue related more
to the blockchain platform than the CATERPILLAR system itself. For example, at
the moment of writing this thesis, the average time between blocks in the public
Ethereum blockchain is 13.35s, however in January 2020, that value was around
17.0s, and in October 2015 it reached a peak of around 30.0s. 20 Other parame-
ters, like the gas price in Ethereum, impact the time a transaction is mined. Two
studies [163, 175] which estimated the latency on blockchain-based systems, also
considered private Ethereum networks in which they restricted the complexity, so
the inter-block times ranged from 2.3s and 6.3s. The studies showed that latency

20https://etherscan.io/chart/blocktime

88

is low in private and customized blockchains. However, on the public blockchain,
it may be high for scenarios like fast trading, and acceptable in supply chain sce-
narios in which seconds of latency is not an issue [163]. Accordingly, as shown in
the works [163, 175], the processes executed by CATERPILLAR may face latency
issues depending on the blockchain platform selected.

4.5. Summary

This chapter addressed our first research question, How can the high-level ab-
stractions of BPMSs be combined with the capabilities of blockchain technology
to support the execution of collaborative business processes between mutually un-
trusted parties? To that end, we presented the design and implementation of the
CATERPILLAR system for blockchain-based execution of collaborative business
processes captured in the BPMN notation. Specifically, this chapter focused on a
compiled approach which exploits the immutability of the generated smart con-
tracts as a source of trust, thus once deployed, the smart contracts cannot tamper.
These compiled approaches prevent changes in the process at runtime. Thus they
are suitable for processes where the tasks and their relationships would remain
unchanged during the entire execution.

Furthermore in this chapter, we discussed the architectural components of the
compilation-based engine of CATERPILLAR, including either on-chain and off-
chain components, that supports an approach of compliance-by-design, i.e., the
execution controlled by transactions which are accepted if and only they com-
ply with the collaborative process model. Specifically, the execution engine re-
lies on a novel BPMN-to-Solidity compiler which translates BPMN models into
smart contracts in the Solidity language. The BPMN-to-Solidity compiler sup-
ports hierarchical processes models, which includes complex constructions like
sub-processes, multi-instance activities, event handling and specialized tasks. The
engine supports process models enhanced with data constraints. Besides, it also
provides a generic worklist handler to allocate tasks to the process participants,
among other components.

Finally, we performed an empirical evaluation to asses the cost of executing
business processes using CATERPILLAR. As expected, the experimental evalua-
tion shows that CATERPILLAR can handle realistic process models. However, it
also suggests that the approach would not scale to extensive process models with
hundreds or thousands of elements. However, this scalability limitation is inherent
to public blockchains, and not to the CATERPILLAR system itself. Thus it can be
mitigated by the migration of the system to consortium blockchain technologies,
such as Hyperledger.

89

5. INTERPRETED EXECUTION OF
BLOCKCHAIN-BASED BUSINESS PROCESS

MODELS

In Chapter 4 we introduced the CATERPILLAR system with the focus on an ex-
ecution engine that follows a compiled approach. These compiled approaches
certainly address the problem of lack of trust by generating smart contracts that
are immutable but keeping aside other essential properties like flexibility and ef-
ficiency. To fill this gap, in this chapter, we focus on the research question RQ2:
How can collaborative processes involving mutually untrusted parties be flexibly
and cost-efficiently executed on a blockchain platform? As a solution, we propose
a BPMN interpreter, which is also integrated into the CATERPILLAR system. As
disused in Section 1.1.2, interpreted approaches fit better for processes which are
subject to changes at runtime, or to be executed on public blockchains in which
the participants must pay a transaction fee for the deployment.

The chapter is structured as follows. First, Section 5.1 describes the new ar-
chitecture of the system to support an interpreted execution. Next, Section 5.2
presents the dynamic data structures to store the control-flow and data perspec-
tives. Then, Section 5.3 delves into the inner workings of the interpreter. Finally,
Section 5.4 discusses the implementation and evaluation, while Section 5.5 sum-
marises the key aspects of our proposal.

5.1. Extending the Architecture of the Caterpillar System with
the Interpretation-based Engine

The proposed blockchain-based interpreted execution engine follows the same
design principles and principles as the compilation-based version of CATER-
PILLAR(cf. Section 1.2). Specifically, the system is designed to enable a set
of untrusting parties to develop, deploy and execute collaborative processes on
blockchain in a tamper-proof manner. To that end, the full state of the pro-
cess execution, as well as the process execution logic itself, are recorded on the
blockchain, so that no party is able to execute a transaction that does not abide to
the agreed-upon process model.

To illustrate our proposal, we use the BPMN model in Figure 17, where a num-
ber identifies each element. The model contains two user tasks (T1 and T2) to be
performed by process participants, and which also serve to check-out/in process
data. The remaining elements require no interactions with external actors (i.e.,
they are performed internally). Event E1 triggers the instantiation of the pro-
cess, while events E2 and E3 end the execution. Gateway G1 checks conditions,
based on the process data, to split the flow into two exclusive paths (joined later
via G2). Script task T3 updates the process data by executing internal scripts.
Call-activities S1 and S2 reference two sub-processes which are modelled sepa-

90

E1
(1)

T2
(4)

T3
(5)

T1
(2)

G2
(6)

E2
(10)

S1
(8)

(7)

E3
(11)

S2
(9)

G1
(3)

[1] [2]

[6]

[5]

[4]

[3]

[7]

[8]

[9]

[10]

Figure 17: Simple BPMN model.

rately. An error event may interrupt sub-process S1. This error event is caught
by the boundary event attached to S1 and re-directs the flow of control into the
exception flow leading to S2.

Figure 18 illustrates the architecture of the system that is organized into three
layers. In the bottom, the “On-Chain and Storage Layer” encloses the set of
smart contracts that control the process execution, namely “On-chain Compo-
nents”, which are replicated across all the nodes of a blockchain network, e.g., the
public Ethereum network. Besides, only the data relevant to the process execution
is stored on-chain, while compilation/parsing artefacts are stored off-chain in the
“Process Repository”. In the middle, the “Off-chain Access Layer” includes a set
of tools to parse, compile, deploy, execute and monitor business processes in the
“On-Chain and Storage Layer”. Finally, the “Process-Aware Layer” comprises a
set of components to model/execute the process guided by high-level and model-
driven interfaces. Note that the components in the “Off-chain Access Layer” and
“Process-Aware Layer” run outside of the blockchain. Thus they can be tampered.
However, the state of each process instances is stored on-chain, and all the deci-
sion points are evaluated on-chain. Besides, each actor in a collaborative process
can host the off-chain components separately. Thus, each actor can check directly
from the blockchain which actions were performed by others.

From a high-level perspective, several components in the “Process-Aware
Layer” and “Off-Chain Access Layer” in the interpretation-based engine exposes
similar functionalities as the “Web portal” and the “Off-Chain Runtime” in the
compilation-based engine. However, the architectures of both engines are differ-
ent, i.e., they share no component. We avoid mixing the components because both
engines follow different approaches, so the participants may decide which one is
more convenient based on the specificities of the process they want to execute.

Compared to the WfMC and BPMS-RA reference architectures [66, 124], the
component in the architecture of the CATERPILLAR interpretation-based engine
can be classified as follows. (i) Process Definition comprehends the “Modeling
Panel” and “Process Repository”, as they serve to define and to store all the infor-
mation regarding the high-level process models. (ii) Workflow Enactment Service
encloses the “BPMN Compiler”, “BPMN Parser”, “Registration Mediator”, “De-
ployment Mediator”, “Runtime Handler”, “BPMN Interpreter”, “Control Flow”,

91

Worklist Handler Worklist Handler Process Setup HandlerProcess Setup HandlerProcess Analyser Process Analyser

Process RepositoryProcess Repository

Modelling PanelModelling Panel Setup PanelSetup Panel Execution PanelExecution Panel

Execution Mediator

Event Monitor

Process Info Collector

Registration Mediator

Deployment Mediator

BPMN Compiler

BPMN Parser

Solidity Compiler

 O
ff

-C
h

ai
n

A

cc
e

ss
 L

a
ye

r

Runtime Handler Data & Scripts

O
n

-C
h

ai
n

 C
o

m
p

o
n

en
ts

Control Flow

Process Case Factories
Event Log

Resource Access ControlBPMN Interpreter
 Decentralized storage

(e.g. IPFS, Swarm)

O
n

-C
h

ai
n

 a
n

d

St
o

ra
ge

 L
a

ye
r

P
ro

ce
ss

-
A

w
ar

e
 L

ay
er

Figure 18: Extended architecture of the CATERPILLAR system: the interpretation-
based engine.

“Process Case Factories” and “Data & Scripts”. They are responsible for the
parsing, creation, management and execution of the workflow instances. (iii) Ad-
ministration and Monitoring Tools relates to the “Execution Mediator” and ‘Pro-
cess Info Collector” and “Resource Access Control”. They handle resource and
user access control management as well as the execution of enabled tasks. (iv)
Workflow Interoperability includes “Event Monitor” and “Ethereum Log”, as they
support the interactions between the on-chain components with external systems.
Specifically, to request an external interaction and event is placed in the “Ethereum
Log”, and later processed by the “Event Monitor” (off-chain). (v) Workflow Client
Functions comprises the “Modeling Panel”, “Setup Panel” and “Execution Panel”,
which enable the interaction of the end-users with the CATERPILLAR’s off-chain
and on-chain components. Below, we provide a more detailed description of the
components in each one of these layers.

5.1.1. On-Chain and Storage Layer

The “On-Chain Components” are the core that handles the process execution.
In the sake of reusability, the process perspectives, i.e., control-flow, data man-
agement, and resource allocation, are decoupled into different components. The
smart contracts in the components on the left (i.e., “Runtime Handler”, “BPMN
Interpreter”, “Control Flow” and “Process Case Factories”) implement the set of
general operations to any process model. Thus, they are hard-coded only once
based on the BPMN standard and the system requirements. In contrast, the smart
contracts in the component named “Data & Scripts” contain the model-specific
data and operations that need to be extracted from each process model. The com-

92

ponent “Resource Access Control” handles the user access control and resource
allocation. Finally, the event log is provided by some blockchains, like Ethereum,
giving to off-chain components convenient access to events generated on-chain.

The component “Control Flow” stores the information about the structure of
the process models, their elements and relations. Given that a process model may
include sub-processes, the data structure is a tree where each node, named IFLOW,
represents a sub-process that keeps references to its children (if exist). Besides,
the nodes map for each enclosed BPMN element the model-related information to
be used by the “BPMN Interpreter” to handle the execution. For example, some of
the information to store can be the type of element (task, event, gateway, etcetera),
the incoming/outgoing arcs, to what sub-process an event is attached, and so on.
Accordingly, each node needs to be deployed once per sub-process in the model,
and the corresponding blockchain address identifies it. The address of the root
node would identify the full process model. Unlike compiled approaches, the
control-flow perspective is not statically encoded as a smart contract. Instead, the
information is collected off-chain from the model and added to the corresponding
nodes dynamically.

The “Process Case Factory” includes the set of contracts to instantiate and start
the execution of a process. Thus, when a sub-process is linked as a child in the
IFLOW hierarchy, the parent has to store the address of the corresponding factory
to instantiate the sub-process during the execution. In the following, we will refer
to process instances as process cases, to differentiate them from smart contract
instances.

As the name suggests, the smart contracts in the component “Data & Scripts”
implement the data perspective. Data requirements are process-dependent,
strongly typed, and their values are conditioned and scoped by the process cases,
e.g., a variable defined in a sub-process may store different values in each sub-
process case. Accordingly, smart contracts must be compiled from the process
model. The scripts related to user/service/script tasks and the conditions to decide
the paths in exclusive gateways mostly interact with the process data. Thus, such
instructions are also compiled from the model into the contract implementing the
data perspective. The interactions of external actors via user/service tasks also
requires two operations per task: check-out to request data from the process case,
and check-in to send data to the process and to proceed with the execution. The
smart contracts in this component form a hierarchy with a node per (sub-)process
case which we will refer to as IDATA. Each IDATA node stores the sub-process
state and keeps a reference to the related IFLOW node. Indeed, the factories linked
to a sub-process, in the IFLOW hierarchy, must define how to instantiate the smart
contract of the corresponding IDATA node.

Figure 19 illustrates some of the relations among the smart contracts deployed
to execute two cases of the process modelled in Figure 17. In Figure 19, each node
represents one smart contract instance, while the background colours differentiate
the four smart contracts involved. The control-flow perspective requires a single

93

R
addr1

S1
addr2

S2
addr3

IFlow

R
addr4

S1
addr5

S2
addr6

IData

Case 1

R
addr7

S1
addr8

S2
addr9

Case 2

Figure 19: Graphical representation of the the control-flow and data perspectives
smart contracts deployed to execute two cases of the process in Figure 17.

IFLOW data structure, that is instantiated once per sub-process in the model. On
the other hand, three different smarts contracts (one per sub-process) are required
on the data perspective to encode general operations of the IDATA structure plus
the data/scripts compiled from each sub-process. Each IDATA node keeps a ref-
erence to the corresponding IFLOW node that is used by the “BPMN Interpreter”
to check the control-flow information of the process case, e.g., to update, after
executing an element, to verify which others can be executed. Although not in
the figure, only one factory is required per sub-process, e.g., both instances addr4
and addr7 of R are started by the same factory.

The “Data & Scripts” component serves as the entry point for external actors
to access data and execute tasks. Nevertheless, the access would be restricted by a
set of smart contracts in the component “Resource Access Control” derived from
binding policies as presented in Chapter 6.

The “BPMN Interpreter” is a single smart contract that implements the pro-
cess execution logic defined by the BPMN standard. This component keeps no
information about any of the process perspectives, but queries/updates such data
from/into the IFLOW and IDATA structures.

The “Runtime Handler” keeps tracks of the process instances, binding poli-
cies and their relation with other smart contracts. The “Event Log” provides a
source for communication between off-chain and on-chain components. Out of
the “On-Chain Components”, the “Process Repository” stores and provides ac-
cess to compilation artefacts and metadata to link the Solidity code to elements of
the BPMN models. The operation of the “Runtime Handler”, “Event Log” and the
“Process Repository” is similar to the equivalent components in the architecture
of the compilation-based version of CATERPILLAR (cf. Chapter 4, Section 4.2 for
a complete description).

5.1.2. Off-Chain Access and Process-Aware Layers

The “Off-Chain Access Layer”, in the middle of Figure 18, provides a service-
oriented entry point for external applications to interact with the “On-Chain and

94

Storage Layer”.
The “Process Analyser” (on the left) extends the CATERPILLAR’s “BPMN

Compiler” to generate the IDATA structure from a BPMN model. The “BPMN
Compiler” uses a standard SOLIDITY COMPILER to produce the metadata and
interfaces that are used to deploy and execute the smart contracts. Additionally,
the “BPMN Parser” extracts the control-flow information from the model that is
structured to be inserted in the IFLOW hierarchy (see Section 5.2).

The “Process Setup Handler” (in the middle) serves as the entry point to de-
ploy smart contracts (e.g., produced by the “BPMN Compiler”), and to update the
IFLOW structure. The “Deployment Mediator” provides the set of operations to
deploy the IFLOW and IDATA hierarchies, as well as the factories and the resource
access control contracts. On the other hand, the “Registration Mediator” sup-
ports the operations to update the IFLOW structure (e.g., insert BPMN elements
into nodes). Besides, the “Registration Mediator” allows to change the relations
among the smart contracts in the “On-Chain Components”, e.g., to link/unlink
sub-process as nodes into IFLOW, update the access control policies, etcetera.

On the right of the “Off-Chain Access Layer”, the “Worklist Handler” enables
external actors to query the process state and data, as well as to execute tasks
on a given process case. The compilation-based engine of CATERPILLAR imple-
mented the “Worklist Handler” as smart contracts, i.e., on-chain. Besides, the
worklist allowed only interaction of human actors, while non-human actors (e.g.,
information systems, IoT devices) are handled via another on-chain component
named “Service Bridge”. In the current approach, we restrict the resource allo-
cation and access control by policies that support dynamic bindings of actors to
roles (see Chapter 6) implemented by the “Resource Access Control” component.
The latter removes the need to use static worklist contracts generated per pro-
cess model to validate any data checked-in into the process instances. Thus, the
“Worklist handler” is implemented off-chain what is less costly. Besides, the bind-
ing policies would verify blockchain accounts that are controlled indistinctly by
users, groups, systems, or (IoT) devices. Thus the “Service Bridge” is joined into
the “Worklist Handler” off-chain. Accordingly, an actor to check-in a task via the
“Execution Mediator” provides the process case (i.e., address of the correspond-
ing IDATA node) and the identifier of the task. Then, the “Execution Mediator”
interacts with the “Data & Scripts” component, that in turn verifies the actor rights
via the “Resource Access Control” component. If the actor can perform the task,
the process data and state is updated. For that, the corresponding IDATA node in-
vokes the “BPMN Interpreter” that in turn interacts with the related IFLOW nodes.
The “Process Info Collector” interacts with the “Runtime handler” and “Data &
Scripts” to query the active process cases, control-flow addresses, the state of a
given process case, and to check-out data from user/service tasks. Finally, the
“Event Monitor” listens for events generated from the smart contracts, e.g., to
notify that the state in some process case was updated.

On top of the architecture, the “Process-Aware Layer” exposes the function-

95

Create BPMN
model

Parse BPMN
Model

Parse IData
Smart Contracts

IFlow
bit-sets

IData EVM
bytecode

BPMN model with
Solidity

extensions

IData
smart contracts

IData contract
interfaces ABI

Figure 20: Parsing of BPMN models on the CATERPILLAR’s interpretation-based
engine

ality of the “Off-Chain Access Layer” to end users (e.g., process administrators
and workers) via a form-based user interface. The rationale of this layer is the
same as the “Web Portal” described in Chapter 4, Section 4.2. The “Modelling
Panel” allows the user to draw the BPMN models. The “Setup Panel” supports
the updates of the data structures of different perspectives and their relations. Fi-
nally, the “Execution Panel” interacts with the “Worklist Handler” to retrieve all
the information about deployed models, running instances, and to allow executing
tasks by stakeholders.

Figure 20 illustrates how the interpretation-based engine parses a BPMN
model. First, a process participants should agree in the process model. To that end,
they can use the “Modelling Panel” or any other modelling tool. Then, the “Pro-
cess Analyser” produces the set of smart contracts related to the IDATA structure
(including the factories to create process instances), and transforms the process
control-flow into bit-sets as required by the IFLOW data structure. In a second
step, CATERPILLAR passes the smart contracts generated from IDATA to the “So-
lidity Compiler” which produces the EVM bytecode and ABI, required to deploy
the smart contracts in the blockchain. Note that, all the metadata generated from
transforming the model is stored in the process repository, so all the participants
may check them at any time.

Figure 21 shows how to perform the set-up of the process after completing the
parsing of the model. Furthermore, it illustrates how to create process instances.
Note that, all the tasks starting with the verb “Instantiate” take as input the ABI
and EVM bytecode from the corresponding smart contracts, and retrieving the
address where the smart contract instance is running. In a first step, one instance of
the “Runtime Handler” and the “BPMN Interpreter” must be created respectively.
These contracts are independent of any model so that they can be instantiated at
any time before the process execution (through the “Deployment Mediator”) and
then reused.

Before creating the first process instance, some components need to be setted-
up. First, a participant should create an instance of the data structure IFLOW

(initially empty), and later updated with the control-flow related bit-sets produced

96

Instantiate
BPMN

Interpreter

Instantiate
Runtime
Handler

Process Setup

Instantiate
IData - Factories

Instantiate
Resource

Access Control

Instantiate
IFlow

Setup IFlow
(bit-sets)

Update BPMN
element into

IFlow

Process Instantiation & Execution

Instantiate
IData

Execute
Process Case

Figure 21: Process set-up and instantiation on the CATERPILLAR’s interpretation-
based engine.

from parsing the model. Also, a participant should instantiate the factory contract,
used to create the process instances by instantiating the IDATA structure. Simi-
larly, an instance of the contract “Resource Access Control” is required to handle
the dynamic binding of actors into roles (see Chapter 6). As for the compilation-
based engine, the “Runtime Handler” tracks the relations between the on-chain
components, i.e., factories, control-flow, resources, data, once a participant sets-
up a process though the “Deployment Mediator” (for creating new instances) and
the “Registration Mediator” (to update the data structures).

On the creation of a process instance, the participant acting as case-creator in-
teracts with the “Deployment Mediator”, which in turns invokes the correspond-
ing factory contracts. During the execution, the “Resource Access Control” allows
participants to nominate or release actors dynamically (enforced by policies), and
accordingly restricts the execution of the tasks. On the other hand, the IFLOW

data structure provides the control-flow information to update the process state
after executing a task. Off-chain, the components in the “Worklist Handler” mon-
itor the process execution by listening if new events are written in the “Event Log”,
and recovering the process state, i.e., which tasks are enabled to be executed from
the corresponding work-item.

Note that, in Figure 21 the Process Setup and Process Instantiation

& Execution are represented as parallel multi-instance sub-processes, as a way
to illustrate how the components can be reused. Also, the task sequential multi-
instance Update BPMN element into IFlow shows how the IFLOW structure
can be updated at any time, even after the instantiation of several process cases.
The later, as discussed in Section 1.3 may lead to inconsistencies, especially if
multiple instances points the same IFLOW structure. Therefore, CATERPILLAR

allows such updates if all the participants of the corresponding cases agree on it.
The flexibility mechanisms allowed through the task Update BPMN element

into IFlow deserves further explanations. More specifically, the interpretation-
based engine supports, the flexibility requirements variability, adaptability, evo-
lution and looseness [128]. For example, participants may handle different vari-
ants to the same process represented as separate instances of the data structure

97

IFLOW (i.e., support for variability requirement). Note that the three main pro-
cess perspectives, i.e., control-flow, data and resources, are decoupled, then the
participants can agree on how to couple them for each process case. Similarly, the
support for the adaptability and evolution requirements on the control-flow relies
on the fact that participants can temporarily or permanently deviate the process
execution by modifying the IFLOW data structure, e.g., by adding or removing
tasks. However, as discussed in Section 1.3, those modifications may lead to
deadlocks. Because of that, each participant must privately validate and agree on
the updates. In the case of looseness, the compilation-based and interpretation-
based engine support late-binding and late modelling of sub-processes, restricted
by agreement policies (see Chapter 6). Therefore, a venue of future work is to
extend the agreement policies to support also the mechanisms related to the vari-
ability, adaptability and evolution requirements automatically.

5.2. Control-Flow and Data Representation

As hinted in Section 5.1, the IFLOW structure is the tree that captures the hierar-
chical representation of a process model with each node enclosing the control-flow
information of the corresponding sub-process. During the parsing of the model,
each BPMN element is associated with an integer index that is unique per sub-
process. Similarly, arcs are enumerated as well. The mapping element-index can
be accessed from the “Process Repository” that also provides tamper-proof stor-
age. Figure 17 shows a possible numeration for both arcs and elements in the
represented process model. Such indexes serve later to encode the elements into
bit-sets to implement the operations effieciently using bit-wise operators.

An IFLOW node can be updated via three operations. First, the operation
setElement updates or inserts an element depending on whether it is already
contained. The operation requires as input the element index eInd, the incom-
ing preC and outgoing postC arcs, and the element description typeInfo. The
preC and postC are bit-sets with 1s in the bits corresponding to the indexes of
the arcs contained in the set, and 0s on the remaining. The element description
typeInfo is also encoded as a bit-set such that each characteristic is identified by
a bit (see Figure 22). The second operation linkSubprocess add a child into a
IFLOW node. Here, the index of the sub-process/call-activity in the parent must
be provided and the address when running the child IFLOW node. Besides, the
number of sub-process instances to create, and the list (can be empty) with the
indexes of the attached events are required. Note that the indexes provided must
correspond to elements already added in the parent node; otherwise, the operation
will be rejected. For example, to link a sub-process to the call-activity labelled as
S1 in Figure 17, we have to provide the call-activity index, i.e., 8, the blockchain
address of the IFLOW node created for S1, the index of the attached error event,
i.e., 7, and 1 as the number of instances to create. As the factories are related to the
IDATA smart contracts, they are updated separately, but before the corresponding

98

Activity [0]

Task [3]

Sub-

Process [5]

Call-

Activity [4]

Multi-Instance

Parallel [6]

Multi-Instance

Sequential [7]

Default [10]

User [11]

Script [12]

Service [13]

Receive [14]

Expanded [11]

Collapsed [12]

Event-

SubProcess [13]

Gateway [1]

Join / Split [3]

Exclusive (XOR) [4]

Parallel (AND) [5]

Event-Based [6]

Event [2]

Throw/Catch

[3]

Non-Interrupt /

Interrupt [4]

Start [5]

Start Event-

SubProcess [6]

Intermediate [7]

Boundary [8]

End [9]

Default [10]

Message [12]

Error [13]

Escalation [14]

Signal [15]

Terminate [11]

Figure 22: Bit associated to each element/characteristic when encoding the ele-
ment description as typeInfo.

element is reached during the execution of a process case. The operations to query
the IFLOW structure are straightforward, thus omitted in this document.1

Figure 22 shows how to encode the element description as typeInfo from the
bits associated (in brackets) with the elements supported by the interpreter. For
example, user and service tasks are identified by the bits 11 and 13 respectively,
but as they are also activities and tasks, then they must share those bits (0 and
3) too. Besides, to verify if an element is a user task, the bits 0 and 11 must be
checked because the terminate event is also identified by the bit 11, but the bit 2
points it as an event. Some bits can encode two characteristics. For example, in
the gateways the value 1 in the third bit represents a join; otherwise, it is a split.
Similarly, bits 3 and 4 of an event identify whether it is throwing/catching and
interrupting/non-interrupting, respectively.

Listing 7 illustrates a sample of the IDATA smart contract generated from the
root process in Figure 17. To generate the IDATA structure we use the same anno-
tations in the BPMN models defined in Chapter 4, Section 4.3. First, the process
variables in lines 3-4 are copied from the global documentation of the model.
When compiling a sub-process, the variables are extracted from the documenta-
tion of the corresponding element. A single function execScript manages the
execution of scripts. It takes as input an element index, executes the scripts asso-
ciated to the corresponding element, and returns the bit-set with the outgoing arcs
to proceed with the process execution, or zero if the element index is not found.
Lines 6-15 shows the body of the execScript that encodes the exclusive gateway
G1 and the script task T3. The outgoing arcs of the exclusive and inclusive gate-
ways contain boolean expressions encoded in Solidity which verifies the process
variables. Then, based on the evaluation of the expression, the execution should
be redirected to the corresponding outgoing arc, (cf. lines 7-9). Similarly, the
documentation of script tasks includes Solidity instructions to update the process
data (cf. lines 10-13).

The functions checkIn, and chekOut are generated from the documenta-

1The full definition and implementation of the IFLOW and IDATA can be accessed from http:

//git.io/caterpillar.

99

http://git.io/caterpillar
http://git.io/caterpillar

1 contract ProcessIData is IData {

2 // == PROCESS VARIABLES ==

3 bool t1Field;

4 bool t2Field;

5 // == SCRIPTS TO EXECUTE ==

6 function execScript(uint eInd) public returns(uint) {

7 if(eInd == 3) { // Gateway G1

8 if(t1Field) return 8; // 1 << 3

9 else return 16; // 1 << 4

10 } else if(eInd == 5) { // Script Task T3

11 // Execute script defined by the task

12 return 64; // 1 << 6

13 }

14 return 0;

15 }

16 // == CHECK IN/OUT FUNCTIONS ==

17 function checkIn(uint eInd , bool _input1) public {

18 if(eInd == 2) // User Task T1

19 t1Field = _input1;

20 else if(eInd == 4) // User Task T2

21 t2Field = _input1;

22 revert("Not Found");

23 }

24 function checkOut(uint eInd) public view returns(bool) {

25 if(eInd == 4) // User Task T2

26 return t1Field;

27 revert("Not Found");

28 }

29 }

Listing 7: Example of the Root IData node produced from model in Figure 17.

tion of the tasks supporting external interactions in the model. Accordingly,
each task should be annotated with expressions of the form (Data_to_Export) :
(Data_to_Import)→ {Operations_to_Per f orm}, to restrict what data must be
read/written from/to the process and the operations to perform when executing
the task. Intuitively, Data_to_Export is returned by the corresponding chekOut

function, and Data_to_Import serves as input in the checkIn function that also
execute Operations_to_Per f orm. Besides, elements with the same combination
of parameter types are grouped into the same function. For example, consider the
user tasks T1 and T2 in Figure 17 are annotated respectively with:

() : (bool _t1Field)→{t1Field = _t1Field;},

(bool t1Field) : (bool _t2Field)→{t2Field = _t2Field;}.

As both tasks import a boolean variable, they are encoded in the same checkIn

function as shown in lines 17-23 of the Listing 7. The generation of the chekOut
function (cf. lines 24-28) only includes T2 because T1 contains no data to ex-
port. Listing 7 only illustrates the compiled part of the IDATA nodes. Common
operations to query/update the IDATA structure are straightforward, thus omitted.

Each sub-process in the model will produce a IDATA smart contract which is
instantiated via a factory that is mapped to the corresponding sub-process in the

100

IFLOW structure. The hierarchical relationships among the IDATA nodes are built
internally during the execution when the corresponding sub-processes are reached
in the control-flow. Indeed, the IDATA contracts will produce several hierarchy
instances, one per process case. Besides, external actors are only allowed to create
instances of IDATA contracts related to the root process.

5.3. BPMN Interpreter Operation

The “BPMN Interpreter” uses six operations to execute process cases based on
the BPMN standard. In the following, the notation IDATA/IFLOW(address) refers
to a node in the corresponding hierarchy (i.e., a smart contract instance) identified
by its blockchain address (i.e., variables ending with Addr). Besides, the variable
pState represents the process state, i.e., two bit-sets comprising the token distri-
bution on edges and the indexes of sub-processes under execution, respectively.
For the sake of clarity, the bitwise operations are replaced by functions with names
remarked in bold. For example, the functions with suffix Tokens would update
a bit-set representing the edges containing tokens. The keyword this is used to
invoke the functions implemented by the interpreter. Besides, the types of BPMN
elements are written with capital letters.

Pseudocode in Listing 8 illustrates the function executeElements. It receives
as input the blockchain address iDataAddr of an IDATA node, and the index eInd
of the element to be executed. Due to security requirements, external actors do
not interact directly with the “BPMN Interpreter”. Instead, an actor checks-in
tasks via an IDATA node, that in turn (after verifying the actor privileges) calls
executeElements to proceed with the process execution. Indeed, lines 2-3 in
Listing 8 would reject any call from addresses distinct to the input IDATA node
or the interpreter itself referred as this. Elements like gateways, script tasks,
throwing events, etcetera, which not require interaction with external resources,
are executed internally.

Before executing an element, the interpreter requests the related IFLOW node
and the process state from the input IDATA node (see lines 4-5 in Listing 8). The
candidate elements, starting by the input eInd, are added into a queue in the same
order they are reached in the control-flow. The execution follows a Breadth-First
Search on the process model until no candidates are available in the queue. In each
iteration, the element on the top of the queue is extracted and processed based on
its control-flow information. First, lines 10-11 check if the element is enabled,
i.e., based on typeInfo and checking whether the required tokens are placed on
the incoming arcs to enable the element. Such verification uses bitwise operations
on the bit-sets postC and pState. If the element is enabled, the tokens on the
incoming arcs are removed, i.e., it is not enabled anymore, and the element is
executed based on its typeInfo (lines 13-36).

Multi-instance activities are split into two cases, both invokes a function
createInstance implemented by the interpreter (Listing 9) to create the new

101

1 function executeElements(iDataAddr , eInd) public

2 if (msg.sender != (iDataAddr or this))

3 throw 'REJECTED '

4 iFlowAddr = IData(iDataAddr).getIFlowNode ();

5 pState = IData(iDataAddr).getSubProcessState ();

6 queue = new Queue(eInd);

7 while(!queue.isEmpty ())

8 eInd = queue.pop();

9 (preC , postC , typeInfo) = IFlow(iFlowAddr).find(eInd);

10 if (! isEnabled(preC , typeInfo , pState))

11 continue;

12 removeTokens(pState , preC);

13 switch (typeInfo)

14 case PARALLEL_MULTI_INST:

15 for(i = 1 to IFlow(iFlowAddr).getCountInst(eInd))

16 this.createInst(eInd , iDataAddr);

17 addSubProcess(pState , eInd);

18 case SEQ_MULT_INST || SUB_PROCESS || CALL_ACTIVITY:

19 this.createInst(eInd , iDataAddr);

20 addSubProcess(pState , eInd);

21 case SCRIPT_TASK || EXCLUSIVE_GATEWAY_SPLIT:

22 postC = IData(iDataAddr).execScript(eInd);

23 addTokens(pState , postC);

24 case TASKS and GATEWAYS /* Remaining */:

25 addTokens(pState , postC);

26 case THROW_EVENT:

27 IData(iDataAddr).updateProcessState(pState);

28 evtCode = IFlow(iFlowAddr).getEventCode(eInd);

29 this.throwEvent(iDataAddr , evtCode , typeInfo);

30 pState = IData(iDataAddr).getSubProcessState ();

31 if(isCompleted(pState))

32 return;

33 if(INTERMEDIATE_EVENT in typeInfo)

34 addTokens(pState , postC);

35 default:

36 continue;

37 foreach (outEInd in IData(iDataAddr).outElements(eInd))

38 outInfo = IFlow(iFlowAddr).getTypeInfo(outEInd);

39 if(!(EXTERNAL_ELEMENT_INTERACTION in outInfo))

40 queue.push(outEInd);

41 IData(iDataAddr).updateProcessState(pState);

Listing 8: Pseudocode of executeElements in “BPMN Interpreter”.

IDATA nodes and to update the pState with the index of the corresponding sub-
process (lines 14-20 in Listing 8). Parallel multi-instances produces as many
nodes as specified by the model. Sequential multi-instances generate only the
first node because the other nodes require the completion of the process case rep-
resented by the previous node, which involves the catching of an end event. Thus,
they are instantiated by another function called tryCatchEvent (See Listing 11).

Script tasks and exclusive split gateways in lines 21-23 of Listing 8 execute
scripts compiled from the process model into the IDATA node, which also returns
the outgoing arc to update the process state. The remaining tasks and gateways,
not involving scripts, are executed by adding the tokens in postC to the process
state, as shown in lines 24-25. Note that tasks checked-in by external actors may

102

1 function createInstance(iDataAddr , eInd)

2 iFlowAddr = IData(iDataAddr).getIFlowNode ();

3 chIFlowAddr = IFlow(iFlowAddr).getChildIFlow(eInd);

4 factoryAddr = IFlow(chIFlowAddr).getFactory ();

5 if(factoryAddr == address (0))

6 throw 'REJECTED '

7 chIDataAddr = IFactory(factoryAddr).newInstance ();

8 IData(chIDataAddr).setParent(iDataAddr , chIFlowAddr);

9 IData(iDataAddr).addChild(eInd , chIDataAddr);

10 eInd = IFlow(chIFlowAddr).getInitElement ();

11 this.executeElements(chIDataAddr , eInd);

Listing 9: Pseudocode of createInstance in “BPMN Interpreter”.

also include scripts, but they are executed by the corresponding check-in function
in the IDATA node. Accordingly, only the external task received as input in the
executeElements is added into the queue, i.e., they are never added/executed
internally by the interpreter during the execution (see lines 39-40).

Continuing with Listing 8, lines 26-34 handle the throwing of events by call-
ing the function throwEvent. The propagation of the event across the IDATA

hierarchy may provoke the interruption of the sub-process represented by the cor-
responding node, e.g., as a result of handling an error event. Thus, the execution
continues only if the process state contains some element enabled after the prop-
agation (lines 31-32). In the case of intermediate throwing events, their outgoing
arcs must be added to the process state (lines 33-34). Finally, the loop in lines
37-40 adds each adjacent element (reached via an outgoing arc) as a candidate
into the execution queue.

Listing 9 illustrates the sequence of steps required to create a node in the
IDATA hierarchy in a given process case. The input is the IDATA node to be
the parent and the index associated the child sub-process in the IFLOW structure.
First, the factory mapped to the corresponding sub-process is requested, throwing
an error if no factory exists (lines 3-6). Next, the new child IDATA node is created
via the factory, and the relation parent-child is updated (lines 7-9). Finally, the
function executeElements is performed in the new child, to ensure that only el-
ements that require external interaction remain enabled. A particular case occurs
when an external actor instantiates a root node. There, the root IFLOW node must
be provided, and no relation parent-child is added.

Listing 10 illustrates some validations to perform before propagating a thrown
event to the parent. The input is the IDATA where the event is thrown, the event
code (required for it to be caught) and its typeInfo. First, if the event is a mes-
sage, a blockchain event will be written in the event log to notify that a certain
point of the process execution was reached (lines 3-4). Default and Message end
events are propagated to the parent only if the execution in the current node (sub-
process) is finished (lines 5-7). Remaining events, i.e., error, escalation, terminate,
always propagate to the parent. The terminate event must stop the current node
before the propagation performed by the function killSubProcess.

103

1 function throwEvent(iDataAddr , evtCode , typeInfo)

2 pState = IData(iDataAddr).getSubProcessState ();

3 if(MESSAGE in typeInfo)

4 emit MessageSent(evtCode);

5 if(DEFAULT or MESSAGE in typeInfo)

6 if(isCompleted(pState))

7 this.tryCatchEvent(iDataAddr , evtCode , typeInfo);

8 else

9 if(TERMINATE in typeInfo))

10 this.killSubProcess(iDataAddr);

11 this.tryCatchEvent(iDataAddr , evtCode , typeInfo);

Listing 10: Pseudocode of throwEvent in “BPMN Interpreter”.

Listing 11 describes how an event thrown from a node is handled in the parent.
The input is the IDATA node where the event is thrown, the event code and its
typeInfo. The propagation is stopped in lines 3-6 if no parent exists, also fin-
ishing the process execution if the received event is an error. Lines 7-10 queries
the information about parent and child stored into variables with prefixes catch
and subP respectively. Then, if the execution in the child is completed, the parent
updates the state by removing the sub-process and adding a token on its outgoing
arc (lines 11-17). In the case of sequential multi-instance activities, lines 18-19,
if any instance is pending to be created, then the next IDATA node is created (cf.
note that function executeElements creates the first node).

Events like terminate, message and default propagate to the parent to notify
that a child is finished. Thus, they are not caught by another event as for sig-
nals, errors, and escalations. Lines 21-27 in Listing 11 shows how signal events
propagate to the root and later broadcast to each running sub-process. Errors and
escalations are handled by the parent if exist a catching event matching the code
of the event propagated (lines 28-29). If the event is caught, two cases may oc-
cur. First, in lines 32-39, if the event is starting an event-sub-process, then the
parent is killed if the catching event is interrupting, and a new instance of the
event-sub-process is created as the only child. Otherwise, the event-sub-process
runs in parallel with the enabled elements in the parent. The second case occurs
if the event is caught in the boundary of the sub-process that is throwing it (lines
40-49). Then, the sub-process is ended if the catching event is marked as inter-
rupting. Also, a token is added on the outgoing arc of the boundary event, and the
execution proceeds by calling the function executeElements. Finally, in line 50,
the event is propagated if it cannot be caught in the current node.

104

1 function tryCatchEvent(iDataAddr , evtCode , typeInfo)

2 catchIDataAddr = IData(iDataAddr).getParent ();

3 if(catchIDataAddr == address (0))

4 if(ERROR in typeInfo)

5 this.killSubProcess(iDataAddr);

6 return;

7 catchIFlowAddr = IData(catchIDataAddr).getIFlowNode ();

8 pState = IData(iDataAddr).getSubProcessState ();

9 subPInd = IData(iDataAddr).getIndexInParent ();

10 subPInfo = IFlow(catchIFlowAddr).getTypeInfo(subPInd);

11 if(isCompleted(IData(iDataAddr).getSubProcessState ()))

12 IData(catchIDataAddr).decreaseInstCount(subPInd);

13 subPCount = IData(catchIDataAddr).getCountInst(subPInd);

14 if(subPCount == 0)

15 removeSubProcess(catchIDataAddr , subPInd);

16 postC = IFlow(catchIFlowAddr).getPostC(subPInd);

17 addTokens(catchIDataAddr , postC);

18 else if(SEQ_MULTI_INST in subPInfo)

19 this.createInstance(catchIDataAddr , subPInd);

20 if(!(MESSAGE or DEFAULT or TERMINATE) in typeInfo)

21 if(SIGNAL in typeInfo)

22 while(catchIDataAddr != address (0))

23 iDataAddr = catchIDataAddr;

24 catchIDataAddr = IData(iDataAddr).getParent ();

25 IData(iDataAddr).updateProcessState(pState);

26 this.broadcastSignal(iDataAddr);

27 return;

28 foreach(ev in IFlow(catchIFlowAddr).getEventList ())

29 if(IFlow(catchIFlowAddr).getEvtCode(ev) == evtCode)

30 evInfo = IFlow(catchIFlowAddr).getTypeInfo(ev);

31 attchTo = IFlow(catchIFlowAddr).getAttachedTo(ev);

32 if(EVENT_SUB_PROCESS_START in evInfo)

33 if(INTERRUPTING in evInfo)

34 this.killSubProcess(catchIDataAddr);

35 pState = EMPTY;

36 this.createInstance(catchIDataAddr , attchTo);

37 addSubProcess(pState , attchTo);

38 IData(catchIDataAddr).updateProcessState(pState);

39 return;

40 else if(BOUNDARY in evInfo && attchTo == subPInd)

41 if(INTERRUPTING in evInfo)

42 this.killSubProcess(iDataAddr);

43 removeSubProcess(pState , subPInd);

44 postC = IFlow(catchIFlowAddr).getPostC(ev);

45 addTokens(pState , posC);

46 IData(catchIDataAddr).updateProcessState(pState);

47 next = IFlow(catchIFlowAddr).getOutElement(ev);

48 this.executeElements(catchIDataAddr , next);

49 return;

50 this.throwEvent(catchIDataAddr , evtCode , typeInfo)

Listing 11: Pseudocode of tryCatchEvent in “BPMN Interpreter”.

The remaining two functions, killElements and broadcastSignal, tra-
verse each descendant reachable from a source node. The function killElement

takes a IDATA node as input and updates the process state in such node as empty
(all bits are set to 0), repeating recursively the same procedure for each child that
remains running. The function broadastSignal performs a strategy similar as

105

in lines 28-49 of Listing 11, but catching only signal events, for each running
sub-process from the root IDATA node. As the only difference, signals do not
require to match the evtCode, i.e., each catching signal attached/contained to/in
an enabled sub-process must be handled.

5.4. Implementation and Evaluation

The “Off-Chain Access Layer” and “Process-Aware Layer” are implemented in
Node.js.2 The smart contracts are compiled using the standard Solidity com-
piler solc-js.3 The deployment and interaction with running instances of the
smart contracts are supported via the Ethereum client Geth.4 The full imple-
mentation of the system proposed in this paper can be downloaded under the
BSD 3-clause “New” or “Revised” License from the Caterpillar’s repository at
https://github.com/orlenyslp/Caterpillar, version V3.0.

The functionality of the “Process-Aware Layer” is exposed via the REST API
described in Table 4. The REST API is built around three types of resources: (i)
interpreter which manages the deployment of the “BPMN Interpreter” and the
operations derived from the parsing of the models, (ii) i-flow which involves the
deployment and interactions with IFLOW nodes, e.g., to update BPMN elements,
link sub-processes and factories, create new process instances, etcetera and (iii)
i-data which refers to the interactions with IDATA nodes, e.g., to verify the
process state, and check-in/out tasks. The full documentation of the REST API,
including the format of the messages used in the requests/responses of each oper-
ation, can be found in the CATERPILLAR’s repository.

In the following, we describe an experimental evaluation aimed at assessing
the costs of executing business processes using the interpreted approach presented
in this paper, relative to existing compiled solutions on blockchain-based process
execution [56, 90, 163]. Accordingly, we used the same four datasets, consist-
ing of a BPMN model and the corresponding event log. The first dataset, named
Invoicing, corresponds to a real-world business process, used and distributed by
Minit.5 The other datasets referred to as Supply chain, Incident mgmt. and In-
surance claim were extracted from the literature and used on the experiments
reported in [163]. These datasets were used on the evaluation of the CATERPIL-
LAR’s compilation-based engine, thus described in Chapter 4, Section 4.4.2.

Like in the compilation-based engine of CATERPILLAR (cf. Chapter 4), we
implemented a component which replays the distinct log traces interacting with
the REST API described in Table 1. The replayer parses each of the four BPMN
models in the datasets, deploys the contracts of the “BPMN Interpreter” and

2https://nodejs.org/en/
3https://github.com/ethereum/solc-js
4https://github.com/ethereum/go-ethereum/wiki/geth
5http://www.minitlabs.com/

106

https://github.com/orlenyslp/Caterpillar

Table 4: CATERPILLAR’s interpretation-based engine REST API.
Verb URI Description
POST /interpreter Creates a new instance of the “BPMN Interpreter”
POST /interpreter/models Parses a BPMN model. This operation may update the re-

quired ON-CHAIN COMPONENTS and PROCESS REPOSI-
TORY (if specified), thus the process would be ready to be
executed.

GET /interpreter/models/ Retrieves the list of parsed BPMN models
GET /interpreter/models/:m-hash Retrieves a BPMN model, its compilation artefacts and

IFLOW root node instances
POST /i-flow Creates a empty IFLOW node
PATCH /i-flow/element/:cf-address Updates a BPMN element into a given IFLOW node
PATCH /i-flow/child/:cf-address Links a child node (i.e., associated to a sub-process) in a

given IFLOW node
PATCH /i-flow/factory/:cf-address Relates a factory with a sub-process in a given IFLOW node

(i.e. a related IDATA smart contract must exist)
GET /i-flow/:cf-address/ Retrieves the information (i.e., elements, child sub-process

and factories addresses) from a given IFLOW node
POST /i-flow/p-cases/:cf-address Creates a new process case from a given IFLOW root node.
GET /i-flow/p-cases/:cf-address Retrieves all the process cases created (i.e. IDATA in-

stances) from a given IFLOW root node.
GET /i-data/:pc-address Retrieves the current state of a given process case
GET /i-data/:pc-address/i-flow/:e-index Checks-out a task in a given process case
PATCH /i-data/:pc-address/i-flow/:e-index Checks-in a task in a given process case

Table 5: CATERPILLAR’s interpretation-based engine: setting-up costs.

Process BPMN Elements Avg. Reg. Cost.
Invoicing 60 110,760
Supply chain 15 105,516
Incident mgmt. 18 114,671
Insurance claim 24 112,850

IFLOW nodes, and updates each IFLOW node with the corresponding BPMN el-
ements and factories. Once the configuration of the models is completed, the re-
player reads the corresponding log, and sequentially instantiates each process case
(IDATA node) and executes the corresponding events in the log via the REST API.
Besides, the replayer collects and assesses the gas consumed by each operation
once the corresponding transaction is included in the blockchain. The experi-
ments were performed on a Node.js based Ethereum client named ganache-cli,6

which simulates a full client for developing and testing purposes on Ethereum.
Table 5 presents the costs in gas derived from setting-up the IFLOW structure

at runtime (not required by the compiled approaches). The column labelled as
Avg. Reg. Cost shows the average costs of registering a BPMN element into
the corresponding IFLOW node. Besides, the deployment of the interpreter costs
3,365,098 gas, while deploying a single IFLOW node costs 721,049 gas.

6https://github.com/trufflesuite/ganache-cli

107

Table 6: CATERPILLAR’s interpretation-based engine: process instantiation and
execution costs.

Process Traces Approach Average Cost
Instant. Exec.

Invoicing 5316

Default 1,089,000 383,109
Opt- CF 807,123 297,351
C- Caterp 2,830,063 1,088,315
I- Caterp 543,503 652,784

Supply
chain

62

Default 304,084 281,206
Opt- CF 298,564 272,186
C- Caterp 1,100,590 566,861
I- Caterp 434,891 418,259

Incident
mgmt.

124

Default 365,207 185,680
Opt- CF 345,743 166,345
C- Caterp 1,119,803 324,420
I- Caterp 496,038 273,811

Insurance
claim

279

Default 439,143 552,274
Opt- CF 391,510 514,712
C- Caterp 1,338,152 1,235,617
I- Caterp 500,614 992,461

Table 6 shows the gas consumption observed in the experiments. For compar-
ison, we used three baselines, in addition to the approach described by this paper
(labelled as I- Caterp in Table 6). The first baseline (labelled Default) corresponds
to the approach presented in [163] which compiles the control-flow perspective
into a smart contract that also stores one boolean variable per (binary) decision
gateway in order to determine which conditional flow should be selected. The sec-
ond baseline (labelled Opt- CF) is similar to Default but it uses reduction rules to
simplify the control-flow structure of the process model prior to compilation [56].7

These baselines focus on the control-flow perspective. They do not handle the data
and resource perspective (i.e. storing data attributes and managing work-items).
The fourth baseline, named C- Caterp corresponds to the compilation-based ver-
sion of CATERPILLAR described in the previous chapter, which provides a more
advanced architecture, capable of handling the data and resource perspectives. In
all the cases, Table 6 shows the average costs to instantiate the processes and to
execute a trace in the event log.

7In the Default and Opt- CF approaches, one smart contract is deployed per process instance.
In [56], a second optimized approach (Opt-Full) is proposed wherein all instances of a process
are executed by a single smart contract, thus leading to lower instantiation costs. However, this
approach cannot be extended to deal with data and resources because, when data is involved, one
contract per process instance is needed to hold the instance data. Given this fundamental limitation,
we exclude this approach from this comparison.

108

Table 6 shows that, in all the cases, the interpreter consumes significantly less
gas than the compilation-based engine of CATERPILLAR. This result was ex-
pected given that: (1) the deployment costs are amortized as the number of process
instances grows, given that the interpreter and the IFLOW structure are reused,
and (2) redundancies in the code generation, present in compiled approaches, are
eliminated, resulting in the reduction of the size of the smart contracts. Table 6
also shows the costs of the interpreter are relatively close to the approaches rep-
resented by Default and Opt- CF. Although in most of the cases the interpreter
consumed more gas, it is worth noting that the comparison is not straightforward
as Default and Opt- CF mainly focus on the control-flow perspective. In contrast,
the interpreter implements a more advanced and flexible architecture which han-
dles the three process perspectives, and also more advanced control-flow elements
like sub-processes, multi-instances, and event propagation.

Like in the compilation-based engine, the process execution on the interpreter
may face latency issues. However, these issues come from the blockchain plat-
form (see Section 4.4.3).

5.5. Summary

This chapter addressed our second research question: How can collaborative
processes involving mutually untrusted parties be flexibly and cost-efficiently ex-
ecuted on a blockchain platform? Accordingly, we presented an interpreted
blockchain-based execution engine for collaborative business processes. Unlike
previous approaches that rely on compilation of BPMN models into smart con-
tracts, the proposed engine relies on a BPMN interpreter that takes as input a
space-optimized representation of process models. This design reduces the costs
of deployment since the smart contract encoding the interpreter only needs to be
deployed once. It also allows participants to make changes to the process model
in a way that these changes can be applied both to new process instances and to
already running instances.

The interpreter has been integrated into the CATERPILLAR system, such that
CATERPILLAR supports both a compiled and an interpreted execution approach.
An empirical evaluation shows that the interpreted approach is more cost-efficient
than the compiled one. Besides, despite supporting all three process modelling
perspectives (control-flow, data, and resources), the costs of the CATERPILLAR

interpreter are comparable to those of existing baselines that only support the
control-flow perspective.

109

6. CONTROLLED FLEXIBILITY IN
BLOCKCHAIN-BASED BUSINESS PROCESSES

Chapter 5 presented a BPMN interpreter, which allows a flexible execution of
processes such that they can be updated at runtime. However, flexibility may
introduce trust issues if no adequate access control mechanism to restrict how a
participant alters the process execution. Accordingly, in this chapter, we focus
on the research question RQ3: Which access control mechanisms would allow
us to capture the wide range of dynamic binding and rebinding scenarios found
for collaborative processes between mutually untrusted parties? As a solution,
we propose two mechanisms for controlled flexibility on collaborative processes:
(i) to bind actors to roles dynamically, and (ii) for consensus-based control-flow
flexibility.

The chapter is structured as follows. Section 6.1 describes the role-binding
model and its associated policy language. Next, Section 6.2 presents the control-
flow flexibility mechanisms and the associated agreement model and policy lan-
guage. Section 6.3 discusses the semantics of the proposed policy languages and
presents a verification approach to detect circular dependencies in role binding
policies. Finally, Section 6.4 discusses the implementation and experimental eval-
uation, while Section 6.5 summarises the key aspects of our proposal.

6.1. Dynamic Role Binding

The starting point of the proposed approach is a (collaborative) business process
model where each task is associated with a role. For a given process instance
(herein called a case), each role may be assigned to at most one actor. An ac-
tor has an identity (e.g. a blockchain account) and may represent a user, a group,
an organization, a system or a device. As a running example, Figure 23 shows
a BPMN model of another ORDER-TO-CASH process. There are six roles repre-
sented by numbers below each task label: (1) Customer, (2) Supplier, (3) Carrier-
Candidate, (4) Carrier, (5) Invoicer and (6) Invoicee. Initially, a customer submits
a purchase order (PO) to a supplier. If the PO is rejected the process terminates.
Otherwise, the execution continues with the SHIPMENT sub-process, where a sup-
plier requests quotes from multiple carrier candidates (cf. the multi-instance task).
Once the shipment completes, two parallel paths are taken to handle the payments.
These payments are encapsulated in sub-process INVOICING. This sub-process is
called twice: for the supplier’s and the carrier’s invoices respectively.

The act of assigning an actor to a role within a case is called binding. When
a role is not assigned to an actor in a case, we say that the role is unbound. The
binding of an actor to a role may happen anytime during a case. Actors may also
be unbound from a role – an operation called release. A task is performed by
the actor bound to the task’s role. If a task is enabled when its associated role is

110

Submit PO
(1)

PO Created

Validate PO
(2)

Is PO
Accepted?

Shipment

PO Rejected

PO Fulfilled
Supplier
Invoicing

Carrier
Invoicing

N
o

Yes

(1) Root process: Order-to-Cash

Shipment
Started

Request
Quotes
(2)

Submit
Quotes
(3)

Ship
Goods
(4)

Shipment
Completed

(2) Sub-process: Shipment

Handling
Started

Issue Invoice
(5)

Validate
Invoice

(6)
Is Invoice
Accepted?

Correct
Invoice

(5)

Handling
Completed

N
o

Yes

(3) Sub-process: Invoicing

Figure 23: Running example: (1) An Order-to-cash process linked, via call ac-
tivities, to two reusable sub-processes; (2) Shipment and (3) Invoicing.

unbound, the task waits until the role is bound. Actors may nominate themselves
or other actors to play a role in a case, or they may request to release themselves
or other actors from a role. Given the lack of trust, the nomination/release of an
actor to/from a role may require the endorsement of actors playing other roles. If
an actor is nominated to a role in a case, this nomination only leads to a binding if
the required endorsements are granted. The binding policy of a process determines
which role(s) are allowed to nominate an actor to a role, to request an actor’s
release from a role, and to endorse a nomination/release request.

6.1.1. Binding Policy Specification Language

A policy consists of a set of roles and a set of statements restricting how an actor
may be nominated/released to/from a role. A statement is formed by a nominator,
a nominee, and optionally a binding and/or an endorsement constraint. The nomi-
nator is a role that nominates/releases the actors of another role, namely the nom-
inee. A binding constraint is a boolean expression stipulating that the nominee
must be bound (or not) to an actor who is also bound to some other role(s). Bind-
ing constraints allow us to implement common resource allocation patterns such
as segregation of duties and binding of duties [136]. An endorsement constraint
is an expression that determines which roles need to endorse a nomination/release
request. A role may be associated with the case-creator, implying that the role
is bound upon case creation and does not need a nomination or endorsement. A
policy statement applies by default to the root process, but it can be scoped to a
sub-process call activity. Figure 24 shows an extract of the grammar of the policy
language in Backus Naur form (BNF).1

Listing 12 shows a policy for the model in Figure 23. The policy states that

1For conciseness, some general details (e.g., path expressions to refer to nested sub-processes)
are omitted and can be found at http://git.io/caterpillar.

111

http://git.io/caterpillar

〈statement〉 ::= [Under 〈subprocess〉 ‘,’] 〈role〉 〈binding_expr〉 [〈endorse_constraint〉] ‘;’ 〈role〉 is
‘case-creator’ ‘;’

〈binding_expr〉 ::= (‘nominates’ | ‘releases’) 〈role〉 [〈binding_constraint〉]

〈binding_constraint〉 ::= (‘in’ | ‘not in’) 〈set_expr〉

〈endorse_constraint〉 ::= ‘endorsed-by’ 〈set_expr〉 ‘with’ 〈vote_ratio〉 ‘votes’ [‘by’ 〈role_list〉]

〈set_exp〉 ::= 〈role〉 〈role〉 (‘and’ | ‘or’) 〈set_expr〉] ‘(’ 〈set_exp〉 ‘)’

〈vote_ratio〉 ::= 〈floating_number〉

〈role_list〉 ::= 〈role〉 〈role〉 ‘,’ 〈role_list〉

Figure 24: BNF grammar describing the basic statement syntax of a binding
policy.

{
Customer i s case−c r e a t o r ;
Customer nominates S u p p l i e r ;
Under Shipment , S u p p l i e r nominates C a n d i d a t e ;
Under Shipment , S u p p l i e r nominates C a r r i e r in C a n d i d a t e endorsed−by

Customer ;
Under C a r r i e r _ I n v o i c i n g , C a r r i e r nominates I n v o i c e r endorsed−by S u p p l i e r

and Customer ;
Under C a r r i e r _ I n v o i c i n g , Customer nominates I n v o i c e e endorsed−by C a r r i e r ;
Under S u p p l i e r _ I n v o i c i n g , S u p p l i e r nominates I n v o i c e r endorsed−by

Customer ;
Under S u p p l i e r _ I n v o i c i n g , S u p p l i e r nominates I n v o i c e e endorsed−by

Customer ;
}

Listing 12: Binding Policy to control the execution of the processes modelled in
Figure 23.

the case creator is automatically bound to the Customer role. The Customer nom-
inates the Supplier (no endorsement needed here). The Supplier, in turn, nomi-
nates the Candidate (i.e., the carrier candidate) and the Carrier. The Carrier must
be among the actors bound to the Candidate role (cf. binding constraint “Carrier
in Candidate”). Note that Candidate is a role associated with a multi-instance task
(Submit Quotes), implying that multiple actors may be bound to this role. The
Customer must endorse the nomination of the Carrier. Under the Carrier Invoicing
call activity, the Invoicer is nominated by the Carrier with the endorsement of the
Supplier and Customer, and reciprocally for the Invoicee. Meanwhile, under the
Supplier Invoicing activity, the Supplier nominates the Invoicer with Customer
endorsement, and reciprocally for the Invoicee.

This example illustrates the possibilities offered by the policy language to deal
with lack of trust. For example, dishonest suppliers could try to derive benefits
by not selecting the best carrier candidate but their preferred one. However, the
customer would be able to reject such nominations. Also, the policy prevents the
supplier from selecting a carrier that has not been a carrier candidate before.

112

The policy language also allows us to state that the set of actors who endorse
a nomination request must fulfil a boolean expression. For instance, the above
policy requires that both the Buyer and the Supplier must endorse the Invoicer
of the carrier services. This scenario is relevant in the context of international
trade, where both buyers and suppliers need to ensure that they do not deal with
black-listed entities or entities in countries banned from trading. The boolean
expressions in the endorsement constraint may contain arbitrary combinations of
conjunctions and disjunctions. They may not, however, contain negation, e.g., it
is not possible to state that the nomination is approved if a given actor refuses to
endorse it. Such scenarios are not applicable in this setting.

Endorsement constraints can also be written as a ratio expression, which de-
fines the percentage of votes needed for the statement to be accepted, and which
roles can vote. The voting ratio (see grammar) is a float number between 0 and
1, i.e., from no votes needed to everyone must accept. The percentage is calcu-
lated based on the set of voters included in the statement. If no voter is specified,
all participants that are currently assigned to a role are voters. Ratio expressions
are less restrictive than boolean expressions as they rely on the amount instead
of who is casting the votes. An example using ratio expressions can be found in
Section 6.2.

6.1.2. Runtime Role-Binding Operations

The role binding model relies on three operations. The nominate operation al-
lows an actor to request that another actor (or itself) be bound to a role within a
process instance (herein called a case). Inversely, a release operation allows an
actor to request that another actor (or itself) be unbound from a role. The vote

operation allows an actor to accept/reject a nomination or release request.
These operations trigger transitions in the role lifecycle depicted in Figure 25.

Within a case, a role is initially UNBOUND. After a nominate operation, the
role changes to NOMINATED if it requires to be endorsed, otherwise is considered
BOUND. A role in NOMINATED state, can transition to the BOUND state after
a vote operation where the endorser accepts the nomination if, as a result of
it, the endorsement constraint of this role is satisfied. On the contrary, a vote

operation where the endorser rejects the nomination and by doing so makes the
role’s endorsement constraint unsatisfiable, triggers a transition to the UNBOUND

state. If after a vote operation, the endorsement constraint remains satisfiable,
then the role remains in the NOMINATED state. Symmetrically, a role can transit
from BOUND to UNBOUND as a result of a release operation, via a RELEASING

state, which is specular to the NOMINATED state. If the endorsement constraint
associated to a release request becomes unsatisfiable, the role goes back to the
BOUND state, and if it becomes satisfied, the role moves to the UNBOUND state.

Every binding of an actor to a role is made within a certain case scope, which
is defined by a pair (role, p-case, where p-case is the identifier of an instance of

113

UNBOUND NOMINATED

BOUNDRELEASING

Nominate(endorsement-required)

Vote(satisfiable-endorsement)Vote(unsatisfied-endorsement)

Vote(satisfied-endorsement)
Release(no-endorsement-required)

Vote(satisfied-endorsement)

Release(endorsement-required)

Vote(unsatisfied-endorsement)

Nominate(no-endorsement-required)

Vote(satisfiable-endorsement)

Text

Text

Figure 25: Life-cycle of a role within a case.

the root process, a sub-process, or an activity.
At any given point in time, a role can be bound to at most one actor within

a case scope. Binding an actor to a role within a child sub-process (i.e., a child
case scope) hides nominations made for this role within any ancestor of the sub-
process. For example, consider in Figure 9 that p-case[O2C] is an instance of the
root process ORDER TO CASH, and that the execution flow has reached the point in
which one instance p-case[GS] of the sub-process GOODS SHIPMENT has already
been created. Binding an actor A1 to the case scope (Supplier, p-case[O2C]),
implies that A1 can perform the tasks Validate PO and Request Quotes in p-
case[O2C] and p-case[GS] respectively. However, binding a new actor A2 in
the case scope (Supplier, p-case[GS]) allows A2 to perform Request Quotes,
and restricting A1 to perform only Validate PO. Importantly, case scopes are
defined with respect to identifiers of process, sub-process, or task instances. In
the context of a multi-instance sub-process or a multi-instance task, each instance
of this sub-process or task defines a new case scope for each role. Within each of
these instances, an actor may be bound to a role, and the actor bound to a given
role R may differ from one instance to another.

Note that the ability to bind an actor to a role within a given case scope may be
restricted by a binding policy. In this respect, the keyword Under in the binding
policy specification language allows one to restrict how an actor may be bound to
a role within a given sub-process of the process hierarchy. Case scopes apply to
the execution of tasks. In the case of binding and endorsement constraints, all the
actors bound to a role across the whole process hierarchy are eligible, no matter
in which case scope they were bound.

The binding of an actor into a role follows the rules in Definition 1. Subse-
quently, Definition 2 describes how to assert if an actor can perform a task.
Definition 1 (Runtime Rules). Consider the actors nominator, nominee and
endorser can respectively play the roles r-nominator, r-nominee and
r-endorser in a process instance p-case.

1. nominator can nominate nominee in p-case iff2:

(a) An actor is BOUND as case-creator in the hierarchy containing

2if an only if

114

p-case,
(b) the state of r-nominee in p-case is UNBOUND,
(c) the policy asserts that r-nominator nominates r-nominee, and

nominator is BOUND as r-nominator in some case scope in the
hierarchy containing p-case.3 Besides, if a biding constraint is de-
fined in the statement, it must be fulfilled based on the roles held by
nominee at the moment of nominating.

(d) The nomination of the case-creator is independent of the previ-
ous rules, but p-case must be root in the process hierarchy. Besides,
no actor could be bound to any case scope in hierarchy containing
p-case before. The nomination of a case creator requires no endorse-
ment and cannot be released. Accordingly, the state is updated as
BOUND after the operation.

2. nominator can release nominee in p-case iff:

(a) nominee is BOUND as r-nominee in p-case.
(b) nominator is BOUND as r-nominator in some case scope in the

hierarchy containing p-case.
(c) The policy asserts that r-nominator releases r-nominee. Be-

sides, if a biding constraint is defined in the statement, it must be
fulfilled given the roles held by nominee at the moment of releasing.

3. endorser can vote a nomination/release of nominee in p-case iff:

(a) nominee is NOMINATED as r-nominee in p-case if voting a nomi-
nation, or RELEASING if voting a release operation.

(b) endorser is BOUND as r-endorser in some case scope in the hier-
archy containing p-case.

(c) endorser can accept or reject the operation once. Besides,
r-endorser is included in an endorsement constraint of the statement
of the operation.

Definition 2 (Access Control to Perform Tasks). A task T enabled in a process
instance p-case can be performed by an actor A iff:

1. One role, namely R, is related to T in the process model.
2. Then, find the closest case scope, namely S, from p-case to any ancestor

in the process hierarchy, such that R is BOUND. It must hold that S exists,
and A is the actor appointed in S.

3Case scopes are defined to restrict the execution of tasks. Thus, checking that nominator is
BOUND as r-nominator should consider not only the ancestors of p-case but the full hierarchy.
The same logic applies to the endorsers

115

Shipment
Started

Request
Quotes

(2)

Submit
Quotes

(3)

Ship
Goods

(4)
Shipment

Completed

Error Handler

Verify Goods?
(1)

Fix
Goods

Figure 26: A more flexible variant of the sub-process GOODS SHIPMENT dis-
played in Figure 23.

6.2. Control-Flow Flexibility and Agreement Policies

Role-binding policies offer a dynamic schema on the resource perspective but do
not address how to manage updates on the control-flow perspective at runtime.
Accordingly, the actors who are bound to a role must collectively decide how to
proceed, which leads to an extension of the role-binding schema with agreement
policies.

We propose agreement policies that define, in a specific scope, which actors
can participate, and reach consensus to update the control-flow perspective at run-
time. For example, consider that, during the execution of a case of the process
modelled in Figure 23, one of the candidates made a mistake when submitting
the quotes. Accordingly, the supplier would like to allow him to fix it before
making the final decision, but no task exists to that end in the control-flow, and
allowing to roll back the process state could introduce inconsistencies. However,
a late-binding of a non-interrupting event sub-process (see Figure 26), running in
parallel with the current process case [58], allows the supplier to decide, for the
current instance, which tasks are required to fix the issue before proceeding with
the execution. A first approach to allow the late-binding can require that all the
participants agree on it. However, such action in the example mainly involves the
supplier and the candidates so that it will introduce some extra and unnecessary
responsibilities to the other participants. Instead, an agreement policy can include
a statement granting that in the sub-process SHIPMENT, a candidate can link a
sub-process if the supplier agrees.

Overall, our initial proposal for the agreements policies supports flexibility by
underspecification. Specifically, the process definition may be incomplete. How-
ever, at runtime, the participants provide the concrete realization of a process
instance relaying on the late modelling and late-binding of sub-processes, e.g., on
call-activities and event-sub-processes [140]. Accordingly, regarding the taxon-
omy of flexibility presented by Reichert and Weber [128], the agreement policies
advocates for looseness and adaptation. Thus, in addition to allowing incomplete
processes at design time, they may be adapted to handle exceptions at runtime,
and the participants can decide alternative paths dynamically.

116

6.2.1. Agreement Policies on Control-Flow

An agreement policy consists of a set of statements restricting how an actor, bound
to a role in a given process instance, can act to update control-flow elements, e.g.,
sub-processes, tasks, gateways, on the corresponding process model at runtime. A
statement is formed by a requester, an action constraint, and optionally an endorse-
ment constraint. The requester is a role that requests/executes an action to perform
on a control-flow element at runtime represented by an action constraint. Endorse-
ment constraints work like in the role-binding policies and determine which roles
can endorse the request. Besides, a policy statement applies by default to the root
process, but it can be scoped to a sub-process call activity. Figure 27 illustrates an
extract of the BNF grammar of the policy language.4

〈statement〉 ::= [Under 〈subprocess〉 ‘,’] 〈role〉 ’can’ 〈action_constraint〉 〈endorsement_constraint〉
;

〈action_constraint〉 ::= 〈action〉 ‘on’ 〈control-flow_element〉

〈action〉 ::= (‘link-process’ | ‘link-role’ | ‘choose-path’)

Figure 27: BNF grammar describing the basic statement syntax of an agreement
policy.

The agreement policies provide controlled flexibility relying on three actions.
The first two actions supported are the late-binding of sub-processes and roles
via the actions link-process performed on call-activities and collapsed sub-
processes, and link-role targeting user and service tasks. Besides, we use dy-
namic gateways (i.e., complex gateways in BPMN) to allow actors deciding on
which outgoing flow arcs to move during the process execution via the action
choose-path. Accordingly, the activation conditions in the dynamic gateways
are driven by agreement policies that rely on user decisions instead of internal
conditions that verify the process data.

The rationale for selecting the three flexibility mechanisms proposed in this
paper is the following:
• link-process exploits concepts extensively addressed in the literature on

flexibility in workflow systems, such as worklets [1, 2], pockets of flexi-
bility [137, 139], late binding and late modelling [140, 154, 160]. In these
approaches, participants can define or reuse parts of the process at runtime.
In the blockchain setting, every sub-process, or process fragment, is mapped
into a smart contract derived from a process model. Then, the agreement
policies offer the set of rules for the participants to decide by consensus
which smart contract to bind at runtime.
• link-role naturally enhances role-binding policies. This operation removes

the need for tagging every task of the process model with a role at design

4Some details (e.g., path expressions to refer to nested sub-processes) are omitted for concise-
ness and can be found at http://git.io/caterpillar.

117

http://git.io/caterpillar

{
S u p p l i e r can l i n k−p r o c e s s on Goods_shipment with 1 . 0 v o t e s ;
Under Shipment , C a n d i d a t e can l i n k−p r o c e s s on E r r o r _ H a n d l e r endorsed by

S u p p l i e r ;
Under Shipment , Customer can choose−p a t h on Ver i fy_Goods with 0 . 5 v o t e s

by S u p p l i e r , C a r r i e r ;
Under Shipment , Customer can l i n k−r o l e on Fix_Goods with 0 . 5 v o t e s by

S u p p l i e r , C a r r i e r ;
}

Listing 13: Agreement Policy to support the execution of the processes modeled
in Figures 23 and 26.

time. Instead, the process participants can dynamically decide by consensus
not only which actors can play a role but also the association of roles to tasks
at runtime.
• choose-path complements the decision rules on the gateways. Traditional

approaches use decision rules based on case data to choose among the out-
going flow arcs. However, in collaborative processes, the data required to
make a collective decision is not always accessible, as parties do not wish
to disclose the data to each other, and they often have conflicting inter-
ests. Thus, oftentimes, the decisions on how to proceed must collectively
be agreed by the participants, rather than being taken based on data avail-
able to all parties.

The proposed approach could be extended with other flexibility mechanisms,
such as adding, skipping or removing elements in the process model. We note,
however, that these latter flexibility mechanisms may lead to deadlocks. In this
paper, we focus on the above three flexibility mechanisms, which do not introduce
deadlocks and therefore do not require additional verification techniques to be put
into place.

Listing 13 illustrates an agreement policy extending the role-binding policy
in Listing 12, and related to the models in Figures 23 and 26. The first state-
ment describes how the supplier can perform a late-binding of the call activity
SHIPMENT in the root process ORDER TO CASH if all the bound roles agree on
it. Here, the supplier could decide, for example, between the sub-process in Fig-
ure 23 (2), or the one in Figure 26 which offers a more flexible execution. Besides,
if we assume that only the customer should be bound at the moment of linking the
sub-process, only his/her vote is required. The second statement is scoped to the
sub-process SHIPMENT to allow a candidate to link the event sub-process ERROR

HANDLER if the supplier agrees. This statement is aligned with the example we
presented above if a candidate makes a mistake when submitting the quotes. From
the BPMN standard, non-interrupting event sub-processes are enabled and can
run in parallel to the (sub-)process where they are enclosed. Thus, late-binding of
event sub-processes can be exploited to handle exceptions at runtime, e.g., for the
candidate to fix the wrong quotes. The last two statements scoped to the SHIP-

118

Figure 28: Life-cycle of an action to be performed at runtime.

MENT sub-process in Figure 26, allows the verification of the goods and solving
possible issues after the delivery in the off-chain world. Specifically, the dynamic
gateway allows the customer to decide how to proceed after the delivery based
on the quality of the goods received. Note that the responsibility for an eventual
problem may be either at the supplier or the carrier. Thus, one of them must ac-
cept/respond to the decision of the customer. Besides, the late-binding of a role
to the task FIX GOODS allows appointing at runtime the party responsible for the
problem to solve it.

6.2.2. Runtime Agreement Operations

The agreement policies rely on three operations. The request operation allows
an actor to ask for an action to enforce a process case. A request includes the
action, the target smart contract instance, i.e., the process case, and the metadata
of the element to update. For example, to link a sub-process in a process case
(cf. Chapters 4 and 5), the request must include the action link-process, the
blockchain address of the process case, and the information required to update
the element, e.g., a factory contract to instantiate the sub-process and the hash
identifying the compilation artefacts of the sub-process to link. The vote oper-
ation allows an actor to accept/reject a request. Finally, the execute operation
enforces an (accepted) action as described in the request. Note that these runtime
operations affect only the process case where they are triggered.

These change operations trigger transitions in the action life-cycle depicted in
Figure 28. Within a case, an action is initially UNGRANTED. After a request

operation, the state changes to REQUESTED if it requires to be accepted by agree-
ment, otherwise is considered GRANTED. An action in REQUESTED state can
transit to the GRANTED state after a positive vote if, as a result of the vote, the
agreement policy is satisfied. On the contrary, a negative vote might make the
agreement policy unsatisfiable, and if so triggers a transition to the UNGRANTED

state. Finally, if after a vote operation the agreement policy remains satisfiable,
then the action remains in the REQUESTED state. An action in GRANTED state can
be performed only once in the life-cycle. Thus, the execute operation moves the
action state from GRANTED to UNGRANTED, i.e., re-executing the action in the
future starts a new iteration of the life-cycle.

119

6.3. Policy Consistency Verification

Binding policies have the potential to be inconsistent with a process model, and
the majority of this section is focused on such interdependencies. At the end of the
section, we discuss the consistency of role-binding policies, agreement policies,
and process models.

Nomination and release statements in a role-binding policy implicitly induce
precedence dependencies in the binding of roles. A statement R1 nominates R2

endorsed-by R3 implies that for R2 to be bound, R1 and R3 must be bound
before. Circular and unresolvable dependencies induced in this way may lead to
deadlocks. Accordingly, we define a notion of policy consistency as follows. A
policy is consistent if, starting from the state where only the roles associated with
case-creator are BOUND and after executing any allowed sequence of nomination,
release and endorse operations, we always reach a state where all roles will reach
the BOUND state via some (other) sequence of nomination, release and endorse
operations.

To verify policy consistency, we define a mapping from a policy to a Petri
net [105], herein called a nomination net. A Petri net (P,T,F) consists of a set
P of places (circles), a set T of transitions (squares) disjoint from P and a set of
directed arcs F ⊆ (P×T)∪ (T ×P). Transitions represent activities in the model,
while places allow us to model the state of a process. As such, places may contain
tokens (black dots) that determine the state of the process. Transitions are enabled
if at least one token exists in each of the incoming places, i.e., connected (via
an outgoing arc) to the transition. Enabled transitions can be fired (executed),
thus consuming the tokens in their incoming places, and producing new tokens
in the outgoing places, i.e., those connected to the transition via incoming arcs.
Accordingly, to guarantee that a role-binding policy is consistent, we only need to
verify that all the transactions in the nomination net can be fired.

Given the nomination net of a binding policy, we map the problem of checking
policy consistency to a problem of reachability analysis over Petri nets [158]. Al-
gorithm 3 maps a policy to a nomination net. For the sake of conciseness, this al-
gorithm focuses on nomination statements, leaving aside release statements. The
mapping of release statements follows a similar structure. For the same reason,
the algorithm leaves aside binding constraints.

To illustrate the algorithm, we consider the binding policy in Figure 29. The
algorithm takes as input a symbolic representation of a policy consisting of a
set of roles and a set of tuples of the form (nominator, nominee, endorsement-
constraint), with ⊥ denoting an empty constraint. For example, the symbolic
representation of the policy in Figure 29 is given in Figure 30. Given this input,
the algorithm will produce as output the nomination net in Figure 31.

The algorithm proceeds as follows. After initializing variable RNets in line 2,
the algorithm builds a Petri net for each node in lines 3-4 (Step 1). Let us consider
that we are building the Petri net for role A, which is shown in colour blue in Fig-

120

Algorithm 3 Construction of the Nomination Net for a given Binding Policy
1: function CONSTRUCTNOMINATIONNET(R, BP)
2: RNets← /0

. Step 1: Build a Petri net for each role
3: for each role r ∈ R do

4: RNets← RNets
⋃

r 7→

〈 {ur,nr,br} . Pr
{nmr,enr} . Tr
{(ur,nmr),(nmr,nr),(nr,enr),(enr,br)} . Fr

〉
. Step 2: Merge all role nets to form the nomination net

5: let NNet = 〈P,T,F,M0〉 in
6: P ←

⋃
r∈R

P(RNets[r])

7: T ←
⋃
r∈R

T (RNets[r])

8: F ←
⋃
r∈R

F (RNets[r])

9: M0 ← /0
10:

. Step 3: Wire up operation NOMINATE
11: for each 〈rnr,rne,_〉 ∈ BP do
12: select bnr ∈P(RNets[nr])
13: select nmrne ∈T (RNets[ne])
14: F (NNet)←F (NNet)∪{(brnr ,nmrne),(nmrne ,brnr)}

. Step 4: Wire up operation ENDORSE
15: for each 〈rnr,rne,eex〉 ∈ BP such that eex 6=⊥ do
16: P(NNet)←P(NNet)∪{dis jrne ,eexrne}
17: F (NNet)←F (NNet)∪{(nmrne ,dis jrne),(eexrne ,enrne)}
18: for each conj ∈ eex do
19: T (NNet)←T (NNet)∪{eexcon j}

20: F (NNet)←F (NNet)
⋃

r∈con j∧br∈P(RNets[r])

{
(br,eexcon j),(eexcon j,br),
(dis jrne ,eexcon j)

}
. Step 5: Update NNet’s initial marking

21: let rcc ∈ R: rcc be case creator in
22: Ps←{ur | r ∈ R\{rcc}∧ur ∈P(NNet[r])}∪{brcc | brcc ∈P(NNet[rcc])}

23: M0(NNet)(p) =
{

1 if p ∈ Ps
0 Otherwise

24:
25: return NNet

ure 31. In line 4, the algorithm creates such a Petri net with three places, namely
uA, nA and bA, which represent the states of the role’s life-cycle UNBOUND, NOM-
INATED and BOUND, respectively. Similarly, two transitions are added to the Petri
net, namely nmA and enA, representing the operations ’nominate’ and ’endorse’.
Finally, four arcs added to complete the Petri net by connecting the places and
transitions. The Petri nets for all the other nodes are created similarly. Every Petri
net thus created is added to RNets that serves as a map that associates a role to its
corresponding Petri net.

In lines 5-9 (Step 2), all the role (Petri) nets are merged to form the initial
nomination net, which is held in variable NNet. This is done by taking the union
of the elements in the role nets. Also, the initial marking is set to the empty set.

In lines 11-14 (Step 3), the algorithm adds double-headed arcs to the Petri net
to synchronize the transition that represents the nomination of roles. To illustrate
the idea of nomination, consider the double-headed arc connecting the place bA

121

{ A is case-creator;

A nominates B;

A nominates C;

C nominates D, endorsed-by A and B;

}
Figure 29: Sample binding policy

R = {A,B,C,D}
BP = {〈A,B,⊥〉 ,〈A,C,⊥〉 ,〈C,D,A∧B〉}

Figure 30: Symbolic representation
of the binding policy in Figure 29

nmA enA

nmB enB

nmC enC

nmD enD

uA

uB

uC

uD

nC

nD bD

bC

bA

bBnB

nA

eexA^B

disjD

eexD

Figure 31: Nomination net for binding policy in Figure 29

and the transition nmB in Figure 31, highlighted in red. Simply put, role A will be
able to nominate role B when role B is UNBOUND and role A is BOUND (bA must
hold a token). The firing of transition nmB, that is "nominate B", will change the
state of role B from UNBOUND to NOMINATED. The double-headed arc will keep
a token in bA after the nomination of role B.

The encoding of endorsement conditions is handled in lines 15-20 (Step 4).
Without loss of generality, we assume that the endorsement conditions are ex-
pressed in disjunctive normal form, meaning that there is only one disjunction that
relates several conjunctions. Besides, ratio expressions are considered as a single
conjunction set. We consider two additional cases: (1) no endorsement condition
is specified (represented by ⊥), meaning that no endorsement is required, and (2)
only one conjunction is specified. To illustrate this step of the construction of the
nomination net, consider the binding policy:

D nominates E, endorsed-by (A and B) or (B and C);

The Petri net in Figure 32 encodes the endorsement condition in the above policy:
(A∧B)∨ (B∧C). The latter is bound to variable eex in line 15.

In line 16, the algorithm adds two new places: dis jE which encodes the dis-
junction, and eexE , which collects the outcome of the endorsement (i.e. it holds
a token when one of the endorsement conditions is met). In line 17, these are
connected to the transitions of the role: from the nomination nmE to dis jE , and
from the outcome eexE to the endorsement enE (not shown in Figure 32). Then,
in line 18, the algorithm iterates over each one of the conjunctions. In line 19,
a new transition, representing the underlying conjunction is added to the net and
the corresponding arc in line 20. For instance, the net in Figure 32 has transi-
tion eexA∧B representing conjunction A∧B, and eexB∧C representing B∧C. Only
eexA∧B or eexB∧C will be able to consume the token held by dis jE , which prevents

122

bB

eexA^B

disjE

eexE

eexB^C

bCbA

Figure 32: Net encoding condition (A∧B)∨ (B∧C)

{

J is case-creator;

J nominates K, endorsed-by L;

J nominates L, endorsed-by K;

}
nmJ enJ

nmK enK

nmL enL

uJ

uK

uL nL bL

bJ

bK

nK

nJ

disjL

eexK

eexL

eexL

disjK eexK

Figure 33: Binding policy with circular dependency and its nomination net

the generation of an arbitrary number of tokens in NNet. dis jE receives a token
when nmE fires, i.e., when D nominates E. The disjunction expressed in this way
means that role E can be endorsed if at least one of the conjunctions holds true,
which corresponds to the firing of one of the transitions eexA∧B and eexB∧C. Re-
turning to the example in Figures 29-31, we observe that role D is endorsed if and
only if both roles A and B are BOUND. The subnet implementing the endorsement
condition is shown in green in Figure 31.

Finally, lines 21-23 set the initial marking for the nomination net. Briefly, line
21 will add a token to the place representing the state UNBOUND of every single
role, except for the “case creator”. In the latter case, we add a token to the place
representing the state BOUND.

To verify policy consistency, we use reachability analysis to check if the mark-
ing where all roles are bound is always reachable starting from the initial marking
where only the roles associated to the case-creator are bound. In other words,
there is no deadlock preventing a role from being bound. Figure 33 shows a bind-
ing policy with a circular dependency, leading to a deadlock in the corresponding
nomination net. Figure 33 shows the marking where the deadlock occurs. Both
roles K and L have been nominated by role J. Hence, dis jK has a token, but tran-
sition eexL cannot fire until bL has also a token. In order for bL to have a token,
however, transition eexK needs to fire because it requires bK to have a token.

In the discussion above, we focused on the verification of the consistency of

123

role binding policies, which as we saw above, may contain circular dependencies
that lead to deadlocks. Below, we argue that the proposed control-flow flexibility
mechanisms and agreement policies are designed in such a way that they do not
lead to deadlocks.

Each statement in an agreement policy is composed of a requester, an action
constraint, and endorsement constraint. An agreement policy is consistent if each
statement fulfils the following criteria:
• Requester If the role of the requester is defined within a consistent role-

binding policy, then it will always be possible to reach a state where an actor
is bound to this role. Once this happens, this actor may act as the requester.
• Action constraint An action constraint on link-process relates a call-

activity to an instance of a smart contract implementing a sub-process. As-
suming that the BPMN process model is semantically correct, there will be
at least one execution path leading to the enablement of the call-activity. If
every role associated to a task in the sub-process is defined within a consis-
tent role-binding policy, these roles will eventually be bound to actors, and
the sub-process will have all the required actors to be executed. Similarly,
a dynamic gateway is consistent if the roles involved in the evaluation of its
associated conditions are part of a consistent role binding policy.
• Endorsement constraint An endorsement constraint is consistent if ev-

ery role it involves is defined within a consistent role binding policy. If this
is the case, the corresponding roles will eventually be bound to actors and
these actors will be able to provide their endorsement.

Summarizing, so long as the roles that need to participate in a control-flow
decision have been bound to corresponding actors, it is always possible for these
actors to reach agreement on which sub-process to execute or which branch of a
dynamic gateway to choose. Hence, if the role-binding policy is consistent, and
the control-flow agreement policy only refers to roles defined in the role binding
policy, then the control-flow agreement policy is consistent as well.

6.4. Implementation and Evaluation

To demonstrate the proposal’s feasibility, we developed a compiler that takes as
input a policy specification (i.e., role-binding or agreement) and produces So-
lidity smart contracts to enforce the policy. This policy compiler is designed to
be used in conjunction with the CATERPILLAR BPMN-to-Solidity compiler (cf.
Chapters 4 and 5). The smart contracts generated by the policy compiler manage
the association between roles, actors (represented as blockchain accounts) and
the requests of late-binding and dynamic gateways at runtime, while the smart
contracts generated by the BPMN-to-Solidity compiler enforce the control-flow
constraints in the process model. When a task is enabled, the worklist handler
smart contract of CATERPILLAR checks if the corresponding role is bound to an

124

actor within the current case, and ensures that only this actor can execute the task.
The prototype allows, via REST interactions, the validation of binding policies
that are compiled later into smart contracts. Besides, it supports to perform the
runtime operations, i.e., nomination, release, request and vote, as well as execut-
ing process models restricted by our access control approach, and with the added
flexibility of the agreement policies. The source code of CATERPILLAR, includ-
ing the binding policy compiler and the examples used in this paper, are available
at http://git.io/caterpillar. Below we discuss the generation of smart
contracts and evaluate the costs generated by these contracts.

6.4.1. Compiling Role-Binding Policies into Smart Contracts

From a process model and a policy specification, the policy compiler generates a
smart contract (named BINDINGPOLICY) to encode the role-binding policy and a
smart contract (TASKROLEMAP) to encode the task-role relations in the process
model. The BINDINGPOLICY contract encodes the logic of who can nominate and
release each role and the binding and endorsement constraints for each role. A
third contract (BINDINGACCESSCONTROL) implements the runtime operations
sketched in Section 6.1. BINDINGPOLICY, TASKROLEMAP and BINDINGAC-
CESSCONTROL are singleton contracts – only one instance of each of them is
created since these contracts only maintain schema-level data. The BINDINGAC-
CESSCONTROL contract maintains the state of each role in each process case, as
per the life-cycle in Figure 25. When a nomination, release, or vote operation is
invoked, the BINDINGACCESSCONTROL contract invokes the BINDINGPOLICY

contract. The latter checks if this operation is allowed in the current state and
computes the new state.

The class diagram in Figure 34 captures the functionality of the generated
smart contracts. Input parameters with no type specification are by default uint.
As stated above, contract BINDINGACCESSCONTROL implements the runtime
operations for nomination, release and voting. Since this contract does not en-
code anything about a particular policy, it is not generated by the policy com-
piler. However, instead, it is hard-coded and deployed once on the target Ethereum
blockchain. This contract maintains the state of the role bindings for a given case
in a variable called ROLEBINDINGSTATE. Given that the cost of a smart contract
depends on the amount of data it maintains, we encode the ROLEBINDINGSTATE

using bitmaps. Similarly, the endorsement constraints are represented as bit ar-
rays. Specifically, we first put these constraints in disjunctive normal form, e.g.,
(A and B and ...) or (D and ...). Then, we implement each conjunc-
tion set as a bit array and encode it as a 256-bits unsigned integer – the default
word size in Ethereum.5 Besides, the contract BINDINGACCESSCONTROL pro-
vides the functions findState, findRole and linkTaskToRole to query the

5Note that implementing the bit-sets as 256-bits integer is not a limitation, because if the number
of roles/elements is greater than 256, we can use a list of integers instead.

125

http://git.io/caterpillar

<<interface>>
 BindingPolicy

+ isCaseCreator () : bool
+ canNominate (rNominator, rNominee) : bool
+ assertNConstraint (rNominator, rNominee, nomineeRoles) : bool
+ assertNVote (rNominator, rNominee, rEndorser, endorsedBy, rejectedBy, isAccepted :bool) : uint
+ canRelease (rNominator, rNominee) : bool
+ assertRConstraint (rNominator, rNominee, nomineeRoles) : bool
+ assertRVote (rNominator, rNominee, rEndorser, endorsedBy, rejectedBy, nAgree, nDisagree, isAccepted :bool) : uint

<<interface>>
 TaskRoleMap

+ getRoleFromTask (processIndex, taskIndex,) :uint

BindingPolicy

TaskRoleMap

 BindingAccessControl

 - roleBindingState

+ nominateCaseCreator (rNominee, nominee :address, pCase :address)
+ nominate (rNominator, rNominee, nominator :address, nominee :address, pCase :address)
+ voteN (rNominator, rNominee, rEndorser, endorser :address, pCase :address, isAccepted :bool)
+ release (rNominator, rNominee, nominator :address, nominee :address, pCase :address)
+ voteR (rNominator, rNominee, rEndorser, endorser :address, pCase :address, isAccepted :bool)
+ canPerform (actor :address, pCase :address, processIndex, taskIndex) : bool
+ findState(rActor, pCase : address) : uint
+ findRole(rActor, actor : address, pCase : address) : bool
+ linkRoleToTask(role, task, pCase : address)

Figure 34: Class diagram of the smart contracts derived from the role-binding
policies.

state of a role, to check if a given actor is bound to a role and to link a role to a
task (via an agreement policy), respectively.

Contract TASKROLEMAP is generated from the process model. This con-
tract is straightforward (it maps tasks to roles), so we do not discuss it further.
The role-binding policy specification is compiled into the BINDINGPOLICY con-
tract. These contracts, BINDINGPOLICY and TASKROLEMAP, were compiled
statically, i.e., they do not store any dynamic information on the blockchain stor-
age, what makes the policies immutable (once deployed), and avoids high costs
derived from accessing the storage during the process execution. Below we
discuss how the role-binding functions are generated (functions canNominate,
assertNConstraint and assertNVote). The generation of the release func-
tions (canRelease, assertRConstraint and asserRVote) is done similarly.

To generate function canNominate, for each distinct nominator in the policy a
conditional and bit array, namely nMask, is created with one bit per role such that
the presence of a nominee is represented with a one and the absence with a zero.
For example, a nominator with index 3 and nMask = 6 is translated into:

126

function canNominate(uint rNominator , uint rNominee) returns(

bool) {

...

if (rNominator == 3)

return 6 & (1 << rNominee) != 0;

...

}

Function assertNConstraint verifies if the roles held by a nominee do not
contradict the binding constraint. Thus, a conditional instruction is added per
nomination statement that includes a binding constraint. A statement is identi-
fied by the union of nominator and nominee, i.e., (1 � rNominator) | (1 �

rNominee). Variable nomineeRoles is the bit array encoding the nominee’s cur-
rent roles. A constraint of the form (A and B) or (C) or ... is satisfied if at
least one conjunction set is fully included in nomineeRoles. The latter is encoded
as follows:

if ((1 << rNominator) | (1 << rNominee))

return nomineeRoles & ((1 << A) | (1 << B)) == ((1 << A) | (1

<< B))

|| nomineeRoles & (1 << C) == (1 << C) || ...;

Function assertNVote checks if an endorser can vote for a nomination and
determines the state after this vote. In endorsement constraints written as boolean
expressions, given the input parameters endorsedBy and rejectedBy, which are
bit arrays encoding the roles that already accepted and rejected the nomination,
this function determines the resulting state as follows:

1. BOUND if all the roles in at least a conjunction set, namely CS, endorsed
the nomination, i.e., (endorsedBy | endorserRole) & CS == CS,

2. UNBOUND if at least one role rejected the nomination in each conjunction
set, i.e., for each CS, (rejectedBy | endorserRole) & CS != 0,

3. NOMINATED if none of the conditions 1. and 2. are satisfied yet, i.e., at
least one conjunction set with no rejections and with roles pending to vote
exists.

In endorsement constraints written as a ratio expression, given the input pa-
rameters nAgree and nDisagree, which counts the number of roles that accepted
or rejected the request, the function determines the resulting states as follows:

if(isAccepted && nAgree + 1 >= vRequired)

return BOUND;

else if(! isAccepted && rTotal + rAgreed - nDisagree - 1 <

vRequired)

return UNBOUND;

return NOMINATED;

Where rTotal and vRequired are compiled from the agreement policy, and
represent the total of roles allowed to vote and the number of votes required to
accept the request.

127

<<interface>>
AreementPolicy

+ canRequest(rRequester, action, element) : uint
+ requirePEndorsement(reqId) : bool
+ assertPEndorsement(reqId, rEndorser, endorsedBy, rejectedBy, nAgree, nDisagree, isAccepted : bool) : uint

AgreementPolicy

DynamicProcessManager

-requestState

+ findState(requester : address, action, element, pCase : address) : uint
+ requestAction(rRequester, action, element, pCase : address, pData : bytes32, pFactory : address)
+ requestAction(rRequester, action, element, pCase : address, dataInteger)
+ voteRequest(rRequester, action, element, pCase : address, requester : address, isAccepted : bool)
+ executeRequest(requester: address, action, element, pCase : address)

BindingAccessControl RuntimeRegistry

Figure 35: Class diagram of the smart contracts derived from the agreement
policies.

6.4.2. Compiling Agreement Policies into Smart Contracts

Figure 35 captures the functionality of the smart contracts generated from agree-
ment policies. Input parameters with no type specification are by default uint.
Contract DYNAMICPROCESSMANAGER implements the runtime operations for
request and voting as described in Section 6.2. This contract maps the state of the
requests for each process case in a variable called REQUESTSTATE. Here, we fol-
low the same principles as in the BINDINGACCESSCONTROL, thus the DYNAM-
ICPROCESSMANAGER contract is hard-coded, deployed once to the blockchain
and when possible the data is compressed into bit-sets.

The overloaded functions requestAction in the DYNAMICPROCESSMAN-
AGER support the different types of data to be updated at runtime, i.e., hashes
and addresses of a process to link, and integer indexes related to roles and dy-
namic gateways. These functions interact with the BINDINGACCESSCONTROL

contract to retrieve the roles of the actor starting the requests, whose rights are
verified later. Once in the state GRANTED, a request must be explicitly executed
by the actor who started it, via the function executeRequest, which enforces
the action using the data provided in the request, and changes the request state to
UNGRANTED (implementing the once-only execution constraint). We avoid the
automatic execution of the granted requests because, in that case, the actor who
voted the last would have to pay the fees incurred by this execution, which should
be covered by the requester instead. The function executeRequest requires an
interaction with other components/contracts, i.e., BINDINGACCESSCONTROL or
RUNTIMEREGISTRY (cf. Chapters 4 and 5), to update the control-flow. The re-
maining functions findState and voteRequest follow the same logic as in the
BINDINGACCESSCONTROL contract, but concerning the request states.

The agreement policy specification is compiled into the AGREEMENTPOLICY

contract. Below we discuss how the compiler generates the function canRequest.
The generation of the function assertPEndorsement is done in a similar way to
the function assertNEndorsement in the BINDINGPOLICY contract.

128

Function canRequest consists of nested conditional (if/else-if) blocks.
The outermost conditional blocks check which action is being triggered
(link-process, link-role or choose-path). The second-level blocks check
which role is triggering this action. Finally, the third-level conditional blocks
check to which control-flow element the action is applied in order to determine
whether or not the role in question has the right to trigger the action on this
control-flow element according to the policy.

For example, the statement “2 (actor) requests 1 (action) on 3 (control-flow
element)” is translated into:

function canRequest(uint rRequester , uint action , uint element)

returns(uint) {

if (action == 1) {

if(rRequester == 3) {

if(element == 2) {

return requestID;

} else if /* remaining elements s.t. role 3 can

request action 1 */

...

} else if /* remaining roles that can request action 1 */

...

} else if /* remaining actions defined by the agreement */

...

return 0;

}

6.4.3. Experimental Setup

We conducted an empirical evaluation to answer the following question: How
does the cost (in gas/ether) of enforcing role-binding and agreement policies in-
crease depending on the size and complexity of the policy statements?6 We de-
compose this question into three: (Q1) How do the costs of deploying the gener-
ated smart contracts vary with the size of the policy? (Q2) How do the costs of
executing the runtime operations vary with the size of the policy? (Q3) How does
the combined cost of enforcing a process model and policy vary with the size of
the policy?

It follows from Section 6.4.1 that the costs derived from a role-binding policy
depend on the number of roles to nominate and the number of conjunction sets
in the binding/endorsement constraints. Thus, we designed the following experi-
ments. In (E1), we varied the number of nomination statements in a policy from 1
to 40, without any binding or endorsement constraints. (E2): we fixed the number
of statements to 40, selected one statement, and gradually increased the size of its
conjunction set in binding constraint from 1 to 40. (E3) fixes the number of state-
ments to 40, and gradually added a binding constraint with one conjunction set
to each of the 40 statements. (E4,E5): the experiments E3 and E4 were repeated

6In Ethereum, gas is linearly related to throughput, see Section 2.3. So by answering this ques-
tion we also indirectly answer the related throughput question.

129

for the endorsement constraint (instead of the binding constraint). For (E6), we
generated a policy with 40 roles such that each statement includes a binding con-
straint stipulating that the nominated actor must belong to the role in the previous
statement and that the nomination must be endorsed by all actors nominated in
previous statements. (E7): starting from a BPMN model with only one task, we
iteratively expanded it, one task at a time (up to 40), and assigned each task to
a different role. In addition, from a BPMN model with 40 tasks we iteratively
increased the number of roles executing them (up to 40). In this last experiment,
once a role was bound to an actor, we checked that the corresponding task could
be performed. Note that the evaluation focuses on nomination statements, but the
release statements are symmetric.

It also follows from Section 6.4.1 that the costs derived from an agreement
policy depend on the number and structure of the triplets in the statements, i.e.,
role, action and control-flow element, and the endorsement constraints. Thus,
we designed three experiments (E8-E10), each of which increases the number of
statements from 1 to 40, to check the cost derived from different possible com-
binations of triplets (with indexes between 1 and 40) without any endorsement
constraint. (E8) fixes actor and action, and ranges the control-flow element from
1 to 40. (E9) fixes action, and gradually increment the pair actor control-flow
element from 1 to 40. This experiment is equivalent to fixing action and control-
flow element, from the code generation perspective, but grants a full execution of
each statement (without rejection) because it avoids the case that once the request
is GRANTED, it invalidates the remaining requests to the same control-flow ele-
ment. (E10) fixes the actor and control-flow elements, and varies the number of
actions from 1 to 40. Although this paper focuses on three actions only, exper-
iment E10 illustrates the costs of an eventual extension of the policies with new
actions. Note that smart contracts implementing and enforcing agreement policies
are independent of the smart contracts derived from the process models. Thus, the
experiment randomizes the generation of generic actions, i.e., adding a random la-
bel to control-flow elements. Then, we can generate the corresponding agreement
policy, including mock actions, and perform the operations to make the actions
granted. However, we cannot perform executeRequest because even when the
mock action is in state GRANTED, it is not linked to an existing action to update
the control-flow element in the DYNAMICPROCESSMANAGER contract. Finally,
in (E11), we assess the voting by ratio; to this end, experiment (E8) is repeated
but including an endorsement constraint, such that the i-th iteration contains a
ratio expression where 100% out of i roles must accept the request. Here, we
did not consider boolean expressions on the endorsement constraints as they were
assessed in experiments E4-E5.

Table 7 resumes how the experiments designed contribute to answering the
proposed research questions.

We implemented a replayer in Java that generates the (role-binding and agree-
ment) policies, triggers their compilation and deployment, and executes the run-

130

Table 7: Relationships between experiments and research questions (RQ).

RQ Exp. Relationship

Q1 E1 - E5 Retrieves the deployment costs of smart contracts generated from
role-binding policies, illustrating how they vary with the size.

E8 - E11 Retrieves the deployment costs of smart contracts generated from
agreement policies, illustrating how they vary with the size.

Q2 E1 - E6 Executes and retrieves the costs of the operations nominate and
vote in the smart contracts generated from role-binding policies.

E8 - E11 Executes and retrieves the costs of the operations request and
vote in the smart contracts generated from agreement policies.

Q3 E6 Estimates the upper bound on the deployment costs for role-
binding policies and process models up to 40 roles and tasks,
respectively.

E7 Retrieves the deployment costs of the contracts relating policies
and process models, and the costs of executing the operation
canPerform, illustrating how they vary with the size.

time operations via CATERPILLAR’s REST API. For each transaction included in
the blockchain, CATERPILLAR sends metadata that includes block number, con-
sumed gas, transaction hash which is collected and assessed by the replayer. For
the experimentation, we run the Node.js based Ethereum client named ganache-
cli7 which simulates a full client for developing and testing purposes on Ethereum.

6.4.4. Experimental Results and Discussion

In order to answer the question Q1, deployment costs of the role-binding policies
in the experiments E1-E5 are plotted in Figure 36. It shows that deployment costs
increase quasi-linearly with the size and complexity of the policy8. The most
straightforward role-binding contract (with a single role bound to case-creator)
costs 154,167 gas. As expected, the most pronounced growth in cost occurs for
endorsement constraints (E4-E5) as they produce more instructions during code
generation. We observe an increase of around 16.0− 19.0% when adding a new
endorsement constraint and 5.0−6.5% when adding one conjunction set to a con-
straint. Experiments E2-E3 show that adding a binding constraint increases the
cost by 4.0−5.7% while adding one conjunction to a constraint adds 2.4−3.5%
overhead. E1 shows that adding one unrestricted statement to nominate a role
adds 4.0−4.5% overhead.

Continuing with experimental question Q1, Figure 37 plots the deployment
costs of the agreement policies in experiments E8-E11. Like in the role-binding
policies, the deployment costs increase quasi-linearly with the size and complex-

7https://github.com/trufflesuite/ganache-cli
8Note that figures 36 and 37 displays not the entire cost of the policies, but the growth costs

derived from the instructions assessed in each experiment.

131

https://github.com/trufflesuite/ganache-cli

0

200000

400000

600000

800000

1000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

G
as

 C
o

st
 G

ro
w

th

Number of statements/conjunction sets

E1

E2

E3

E4

E5

Figure 36: Growth of deployment costs with size of a role-binding policy.

0

100000

200000

300000

400000

500000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

G
as

 C
o

st
 G

ro
w

th

Number of Statements

E8

E9

E10

E11

Figure 37: Growth of deployment costs with size of an agreement policy.

ity of the agreement policy. The most straightforward agreement contract (with
a single role proposing one action on a control-flow element) costs 142,293 gas.
Like in the role-binding policies, the most pronounced growth in cost occurs for
ratio expressions in the endorsement constraints (E11). We observed an increase
of 8.0% on average when adding a new ratio expression. As expected, the number
of roles allowed to vote in a ratio expression does not affect/increase the deploy-
ment costs as they are always encoded in one bit-set, i.e., a single integer number.
Accordingly, using ratio expressions, instead of boolean expressions, leads to a
reduction in the deployment costs. Besides, ratio expressions are less restrictive
as they rely on the amount instead of who is casting the votes. Although endorse-
ment constraints with boolean expressions entail a higher cost, they allow finer
restrictions regarding the specific sets of roles that are required to achieve a given
outcome; i.e., at least one entire set must accept one operation for it to become
active.

Finally, regarding question Q1, we observed an increase of about 3.0%, 5.0%,
and 7.0% on the deployment costs in experiments E8, E9, and E10, respectively.
It shows how agreement policies are less costly when only a role is allowed to per-
form a single action on a set of control-flow elements. On the contrary, agreement
policies cost more if the number of actions increases. The latter is convenient be-

132

Table 8: Cost of the nomination and vote operations on the role-binding policies.

E1 E2 E3 E4 E5

N
om

. Min. 151,586 112,476 111,407 132,417 131,493
Max. 152,638 152,790 113,447 152,746 153,800
Ave. 151,948 151,270 112,277 151,738 142,660

Vo
te

Min. - - - 76,845 77,184
Max. - - - 78,136 78,184
Ave. - - - 77,463 77,541

Table 9: Cost of the request and vote operations on the agreement policies.

E8 E9 E10 E11

R
eq

. Min. 168,075 168,075 183,049 168,135
Max. 183,049 183,049 183,049 183,112
Ave. 169,118 169,118 183,049 169,178

Vo
te

Min. - - - 50,397
Max. - - - 81,399
Ave. - - - 51,889

cause our proposal focuses only on three actions, i.e., link-process, link-role
and choose-path. Overall, we observed that adding a nested condition lead to
an increase in the cost of about 2.0%.

In order to answer the experimental question Q2, we observed that costs of the
runtime operations vary slightly with the number and the order of statements and
conjunction sets in the constraints. The cost to nominate a role is higher when the
corresponding policy statement is at the end of the policy. Similar behaviour exists
for binding and endorsement constraints. From the perspective of the algorithmic
computational complexity [39], the functions generated from the policies run in
constant time. However, the cost variations are due to the specificity of Ethereum
in which gas costs are affected by the number of bytecode instructions executed.
Hence, in a function with if-else-if instructions, the cost increases with the
number of evaluated conditions.

Also related to question Q2, Table 8 shows the min, max, and average costs
to perform the nominate and vote operations in experiments E1-E5. Similarly,
Table 9 shows the costs related to perform the request and vote operations in
experiments E8-E11. Note that voting is less costly than nominating, and that
nomination costs are lower when restricted by binding constraints compared to
endorsement constraints. Requesting an action in an agreement policy is slightly
more costly than nominating in a role-binding policy. The later is an expected
result because while nomination statements involve two entities, nominator and
nominee, request statements contain three of them, action, role, and control-flow
element, which indeed leads to more instructions in the smart contract. Finally,
the voting operations derived from ratio expressions (cf. experiment E11) are less
costly as they require a more straightforward encoding than voting from boolean
sets.

A critical remark when answering the experimental question Q3 constitutes

133

that smart contracts derived from process models, role-binding and agreement
policies work independently. In other words, the deployment and execution costs
of the smart contract generated from a process model are not directly increased
by the policies. However, instead, they depend on the size and structure of the
process and the control-flow generation strategy. The overhead introduced by
the policies on the process execution comes from the deployment costs of smart
contracts derived from the policies. Another source of overhead comes from the
execution costs of the operations canPerform, whose costs rely on policies and
not on the process model. Accordingly, our experimentation mainly focuses on
the costs derived from the policies. However, we design the experiments E6 and
E7 to approximate an upper bound from adding the deployment and execution
costs of the policies aligned to the research question Q3. Specifically, assessing
the combined cost of executing a process model with an associated role-binding
policy (experiments E6 and E7) has several components.
RB1 Deployment of the smart contract BINDINGACCESSCONTROL at a fixed

cost of 1,340,098 gas.
RB2 Deployment of the smart contract BINDINGPOLICY generated from the

role-binding policy, with costs ranging from 154,167 (simplest with only
one role) to 1,803,898 gas (largest with 40 roles in E6).

RB3 Deployment of the smart contract TASKROLEMAP to relate roles in the
policy to tasks in the process model. In experiment E7, we observed a linear
growth in the deployment cost of this contract as the number of relations
task-role increased, from 129,539 to 241,114 gas units.

BP4 The costs of executing one nominate operation range from 111,407 to
168,270 gas units, while one vote operation costs between 50,397 and
78,184 gas units.

RB5 Verifying the right of an actor to execute one task of the process requires in-
voking the function canPerform in the BINDINGACCESSCONTROL. This
function, in turn, invokes the TASKROLEMAP contract to retrieve the task-
role relation. The costs of executing the function canPerform also grew
linearly from 31,693 to 33,066 gas units.

On average, deploying agreement policies is less costly than role-binding poli-
cies. However, agreement policies rely on a role-binding policy to verify at run-
time whether the actor proposing the action on the control-flow is bound to a role
with the right to perform it. In numbers from the experiments E8-E11, the costs
of the components derived from agreement policies are the following:

A1 Deployment of the smart contract DYNAMICPROCESSMANAGER at a fixed
cost of 1,055,851 gas.

A2 Deployment of the smart contract AGREEMENTPOLICY generated from the
agreement policy, with costs ranging from 142,293 (simplest with only one
request) to 674,851 gas (largest with 40 requests). We excluded here the

134

costs derived from endorsement constraints as they are proportional to those
in the role-binding policies.

A3 The costs of executing one propose operation range from 168,075 to
183,112 gas units, while one vote operation costs between 50,397and
78,184 gas units.

A4 The cost of the function executeRequest in the DYNAMICPROCESS-
MANAGER contract depends on the process model, as it triggers operations
defined as part of the control-flow, e.g., linking a process involves its in-
stantiation and possible execution of enabled elements. Therefore, the costs
depend on the control-flow implementation, and not on the structure or size
of the agreement policy.

There is essential to consider that the smart contracts derived from the role-
binding and agreement policies can be reused (deployed only once). In contrast,
the contracts handling the process models typically requires a new deployment
for each process case. Accordingly, several executions of a process model lead to
amortize the deployment costs of the policies (if reused).

Estimating the overhead added by the policies to the process execution is not
straightforward due to the many combinations and scenarios coming from the
design choices when creating and putting together process models and policies.
To that end, we considered a BPMN model and the corresponding event log of a
real-world business process, named Invoicing, used in the experiments in [88, 90].
The process model has 60 BPMN elements, and 40 of them involve the interaction
of an external actor. The event log contains 5317 traces and 55260 events.

To estimate the overhead, We collected the deployment and execution costs
(without any policy) of the process from the two engines implemented by CATER-
PILLAR; i.e., following compiled [90] and interpreted [88] approaches, respec-
tively. We also calculated minimum and maximum deployment and execution
bound for the role-binding policies putting together the data collected in the ex-
periments E1-E11. Specifically, the minimum cost comes from a policy, including
a unique role, which in turn executes all the tasks in the process model (no voting
required). In contrast, the maximum cost corresponds to a policy with 40 roles
(one role per task) in which the nomination of an actor requires the endorsement
of all the previously nominated actors. Also, we calculated the costs under two
possible scenarios: (i) the policies are deployed and the operations performed for
each process case, (ii) they are deployed/executed once and then reused in all the
process cases to estimate the amortized costs.

Table 10 illustrates the values in which deployment and execution are ex-
pected to range. Besides, the letters C and I, following the process models label,
corresponding to the variants compiled and interpreted, respectively. The total

135

Table 10: Comparison of deployment and execution costs between role-binding
policies and business process models.

Smart Contract Depl. Exec. Depl. (A) Exec. (A)

BINDINGACCESSCONTROL 1,340,098 343,657 252 343,657
TASKROLEMAP 241,114 - 45 -
BINDINGPOLICY (min) 154,167 111,407 28 20
BINDINGPOLICY (max) 1,803,898 67,714,320 339 12,735

PROCESS MODEL (C) 2,830,063 1,088,315 2,830,063 1,088,315
PROCESS MODEL (I) 543,503 652,784 543,503 652,78

costs9 without reusing the policies would add an overhead between 1,735,379 to
3,385,110 gas units for deployment, and between 455,064 to 68,057,977 gas units
for execution. However, the calculation of the upper bound assumes the extreme
scenario with 40 nominations and 780 endorsements to provide a full picture of the
worst scenario. Instead, for example, the traces in the event log of the invoicing
process includes between 4 and 27 events, meaning that many nomination/voting
operations are not required. In contrast, these costs significantly amortize when
reusing one single policy with the same actors in all the process cases (labelled
with A in Table 10). Then, the total costs range from 325 to 636 gas units for
deployment, and from 343,677 to 356,392 gas units for execution. Note that, only
the operation canPerform needs to be executed for each event in each process
trace (i.e., to verify the actor rights). The remaining policy operations are not
dependant to a specific process case, thus performed only once and reused.

Figure 38 illustrates how the total deployment and execution costs amortize
when reusing the policy in multiple process cases. The deployment costs for
the max bound (in yellow) falls below deployment cost of the compiled and in-
terpreted process execution approaches after reusing the policy 2 and 7 times,
respectively. The execution is more costly, thus requiring reusability of 91 and
220 times for the costs to fall below of those obtained from the compiled and
interpreted approaches, respectively. However, considering the lower bound, the
deployment and execution costs are always smaller than the compiled version
and falling below the interpreted method after being used 4 times. Note that, the
numbers offer a rough estimation of the overhead when combining role-binding
policies to control the process execution. A similar analysis can be applied to
agreement policies. We observed in the experiments that agreement policies are
less costly than role-binding policies. Thus, the upper bound for role-binding
policies offer a suitable approximation for agreement policies as well.

9The total costs include the fixed cost contracts BINDINGACCESSCONTROL and
TASKROLEMAP, and the corresponding BINDINGPOLICY (min or max accordingly). Besides, the
execution costs of the smart contract TASKROLEMAP are included in BINDINGACCESSCONTROL,
i.e., from the execution of the function canPerform.

136

Figure 38: Variation of the amortized deployment and execution costs of role-
binding policies by reusing them across different process cases.

6.5. Summary

In this chapter, we addressed our third, and last, research question: Which access
control mechanisms would allow us to capture the wide range of dynamic bind-
ing and rebinding scenarios found for collaborative processes between mutually
untrusted parties? As a solution, we presented an approach to extend blockchain-
based collaborative process execution platforms with controlled flexibility mech-
anisms. Specifically, our contributions are:

1. A role-binding model and an associated binding policy language to allow
collaborative binding and unbinding of actors to roles at runtime.

2. An approach for late binding of sub-processes and dynamic selection of
execution branches in a process model, together with an associated control-
flow agreement policy language, allowing actors to collectively steer the
execution of a process instance according to their requirements.

3. A method to verify the consistency of policies defined in the proposed pol-
icy specification languages.

4. An approach to compile role binding and control-flow agreement policies
into smart contracts for runtime enforcement.

The proposed flexibility mechanisms and associated policy specification lan-
guages have been implemented and integrated into the CATERPILLAR blockchain-
based collaborative process execution tool. We evaluated the costs (and therefore,
throughput) of deploying and executing smart contracts generated from the policy
statements on the Ethereum platform. The evaluation shows that the deployment
and runtime policy enforcement costs grow linearly with the number of roles,
control-flow elements and the complexity of the constraints.

137

7. CONCLUSION AND FUTURE WORK

7.1. Summary of contributions

This thesis demonstrates how to combine the high-level abstractions of business
process management systems with the trust-enhancing capabilities of blockchain
technology in order to support the execution of collaborative business processes
involving untrusted parties. To that end, we developed an open-source blockchain-
based BPMN execution engine named CATERPILLAR.

To the best of our knowledge, CATERPILLAR is the first blockchain-based pro-
cess execution engine capable of handling process models with sub-processes, as
well as advanced BPMN constructs such as boundary events and multi-instance
activities. Also, CATERPILLAR is the first system that executes the entire col-
laborative process on the blockchain in the sense that all the state of the process
instances and their links are maintained on-chain, thus encoding all the control-
flow, data-flow and resource logic in smart contracts. Similarly, CATERPILLAR is
the first system that does not assume that the parties in the process use message
exchanges for coordination. However, instead, the parties use the blockchain as
the only coordination mechanism.

Specifically, this thesis makes three contributions to the field of automated
execution of collaborative business processes on the blockchain. The first contri-
bution of the thesis is an engine which compiles hierarchical business processes
enhanced with data and resource constraints into smart contracts. The engine
supports deployment of the smart contracts in the (Ethereum) blockchain and
monitoring the process execution through a set of on-chain and off-chain com-
ponents. Accordingly, we discussed the rationale behind each component of the
architecture of CATERPILLAR’s compilation-based engine, and how they interact
as a whole BPMS which require no trust among the participants. In addition, we
described how to translate a wide set of BPMN elements into smart contracts in
Solidity as implemented by the CATERPILLAR’s compiler. Finally, we measured
the costs to deploy the smart contracts and to execute the process tasks. As a
result, the empirical evaluation showed the feasibility of the compilation-based
engine to handle realistic process models.

Compiled approaches to blockchain-based process execution use the im-
mutability of the smart contracts to enforce trust in the process execution, i.e., par-
ticipants cannot change the process execution on their own behalf. However, this
immutability constitutes a limitation for processes that may be subject to changes
at runtime. Indeed, when following a compiled approach, even a minimal change
to a process model requires the redeployment of all the smart contracts, which
leads to efficiency issues.

In this context, our second contribution proposes an interpreted execution to
mitigate the inflexibility and efficiency issues inherent in compiled approaches.
Our interpreter supports the same BPMN constructions as the CATERPILLAR’s

138

compilation-based engine. However, the proposed interpreter relies on space-
optimized representations of process models using bitmap-based encodings that
are stored and handled by dynamic data structures. The interpreter is embedded
in a modular multi-layered architecture integrated into the CATERPILLAR sys-
tem. This design reduces the costs of deployment since the smart contract en-
coding the interpreter only needs to be deployed once. It also allows participants
to make changes to the process model at runtime. An experimental evaluation
shows that the CATERPILLAR interpretation-engine achieves comparable or lower
costs relative to existing compiled solutions. We compared the throughput of the
CATERPILLAR interpreter with several baselines which focus only on the control
flow-perspective. Thus, although the comparison is not straightforward, as the
functionality provided by CATERPILLAR is more sophisticated, i.e., it includes
data-flow and resources, it exposes the efficiency improvements introduced by the
interpreter.

The interpreted approach to collaborative business processes execution conve-
niently allows us to deploy and change processes dynamically. However, it may
lead to trust issues without an adequate control mechanism to update the process
at runtime. To address this limitation, our third contribution proposes two mech-
anisms for controlled flexibility on collaborative processes. First, we designed a
model for dynamic binding of actors to roles in collaborative processes and an as-
sociated binding policy specification language. This binding-model offers a mech-
anism to dynamically control the access of process participants, which is suitable
for both compiled and interpreted approaches. The proposed model is endowed
with a Petri net semantics that enables consistency verification of the policies.
The second is a model for consensus-based control-flow flexibility, which is more
suitable for interpreted approaches as it focuses on controlling the updating of the
process at runtime. Expressly, participants in a process can collectively agree on
how to steer the business process within the boundaries defined by control-flow
agreement policies. For both models, we proposed approaches that translate pol-
icy specifications into smart contracts for enforcement. Finally, the experimental
evaluation shows that the cost of policy enforcement increases linearly with the
number of roles, control-flow elements, and policy constraints.

All the contributions discussed in this thesis are implemented in the CATER-
PILLAR system. The source code of CATERPILLAR is available in a public repos-
itory under the SD 3-clause “New" or “Revised" (see Appendix A).

7.2. Future work

The contributions described in this thesis open up multiple possibilities for future
work outlined in the following paragraphs.

In this thesis, we represented process data code snippets written in the Solid-
ity language, which are embedded in the process models. Further research needs
to focus on high-level representations of the data and conditions for blockchain-

139

based collaborative processes. Among the challenges regarding data access and
representation, for example, encrypted data provides confidentiality [29], but it
reduces enforceability of the process as no operation can be performed with such
data [79]. This trade-off between confidentiality and enforceability becomes even
more critical in the presence of dynamic scenarios. In such cases, the process
participants must reach consensus at runtime about how and by whom the pro-
cess data can be accessed/updated. Other challenges come when deciding how
to selectively share data among participants, as well as when performing trusted
operations on secret data, under the performance and scalability limitations of the
blockchains. In addition, the immutability of the transactions in the blockchain
may introduce issues when revoking privileges. For example, process participants
may have access to encrypted data forever once they own the decryption key, even
after leaving the organization. Designing models for shared data to overcome the
latest challenges is a venue for future work.

The flexibility mechanisms proposed in this thesis allow actors in a collabo-
rative process to dynamically adapt the resource and control-flow perspectives of
a business process. However, the proposal does not take into account the data
perspective. In particular, the proposal does not consider the implications of dy-
namic role binding and unbinding on the way data is stored and shared between
participants. When a participant is bound to a role, to perform specific tasks of the
process, one expects this participant to have access to the data required to fulfil
the role in question. On the other hand, when an actor is unbound from a role,
one expects this participant to stop having access to the data associated with this
role. One direction for future work is to develop a role-based data access layer
on top of a blockchain platform, which would take into account these interactions
between dynamic role binding and data access.

The fact that our approach for flexibility allows participants to dynamically
update a process model raises the question of how to ensure that the already-
running instances do not end up in an inconsistent state after a process model
change. For example, replacing a pair of XOR gateways with AND gateways
may put some instances in an inconsistent state, possibly leading to a deadlock.
A direction for future work is to adapt existing approaches for consistency verifi-
cation of dynamic process model changes to this setting [128]. In this setting, the
verification and monitoring of blockchain-based processes and the applicability
of process mining techniques mostly remains as an unexplored research area. Al-
though some nascent works already extract event logs for process mining from the
blockchain [77, 103], they are mainly platform dependent; thus, further research
is still required.

Finally, while the experimental evaluation shows that the CATERPILLAR com-
piler can handle realistic process models, it also suggests that the approach would
not scale to extensive process models with hundreds or thousands of elements
when running on a public blockchain. Higher scalability could be achieved
by using consortium blockchain technology, such as Hyperledger or Ethereum

140

Proof-of-Authority consensus, as well as exploring other blockchains architec-
tures which support much higher throughput [162]. Investigating the performance
of the CATERPILLAR approach on different blockchain platforms and configura-
tions is a direction for future work. Another would focus on the portability of
the CATERPILLAR system, enhancing it to allow collaborative processes to be
executed across multiple blockchains platforms [50].

141

BIBLIOGRAPHY

[1] Michael Adams, Arthur H. M. ter Hofstede, Wil M. P. van der Aalst, and
David Edmond. Dynamic, extensible and context-aware exception han-
dling for workflows. In On the Move to Meaningful Internet Systems 2007:
CoopIS, DOA, ODBASE, GADA, and IS, OTM Confederated International
Conferences CoopIS, DOA, ODBASE, GADA, and IS 2007, Vilamoura,
Portugal, November 25-30, 2007, Proceedings, Part I, pages 95–112, 2007.

[2] Michael Adams, Arthur H.M. ter Hofstede, David Edmond, and Wil M.P.
van der Aalst. Worklets: A service-oriented implementation of dynamic
flexibility in workflows. In On the Move to Meaningful Internet Systems
2006: CoopIS, DOA, GADA, and ODBASE, OTM Confederated Interna-
tional Conferences, CoopIS, DOA, GADA, and ODBASE 2006, Montpel-
lier, France, October 29 - November 3, 2006. Proceedings, Part I, pages
291–308, 2006.

[3] Kevin Andrews, Sebastian Steinau, and Manfred Reichert. Enabling run-
time flexibility in data-centric and data-driven process execution engines.
Information Systems, page 101447, 2019.

[4] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Jo-
hannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith,
Satish Thatte, Ivana Trickovic, and Sanjiva Weerawarana. Business pro-
cess execution language for web services, 2003. http://cliplab.

org/Projects/S-CUBE/papers/andrews03:BPELWS-1.1.pdf – last
accessed 2020-03-15.

[5] Ali Arsanjani, Liang-Jie Zhang, Michael Ellis, Abdul Allam, and Kishore
Channabasavaiah. S3: A service-oriented reference architecture. IT Pro-
fessional, 9(3):10–17, 2007.

[6] Larissa Auberger and Matthias Kloppmann. Digital process automation
with BPM and blockchain, part 1: Combine business process manage-
ment and blockchain, 2017. https://www.ibm.com/developerworks/

library/mw-1705-auberger-bluemix/1705-auberger.html – last
accessed 2020-03-15.

[7] Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa,
and Giorgio Bruno. Automated discovery of structured process models:
Discover structured vs. discover and structure. In Conceptual Modeling
- 35th International Conference, ER 2016, Gifu, Japan, November 14-17,
2016, Proceedings, pages 313–329, 2016.

[8] Clara Ayora, Victoria Torres, Jose Luis de la Vara, and Vicente Pelechano.
Variability management in process families through change patterns. Inf.
Softw. Technol., 74:86–104, 2016.

[9] Clara Ayora, Victoria Torres, Barbara Weber, Manfred Reichert, and Vi-
cente Pelechano. VIVACE: A framework for the systematic evaluation of

142

http://cliplab.org/Projects/S-CUBE/papers/andrews03:BPELWS-1.1.pdf
http://cliplab.org/Projects/S-CUBE/papers/andrews03:BPELWS-1.1.pdf
https://www.ibm.com/developerworks/library/mw-1705-auberger-bluemix/1705-auberger.html
https://www.ibm.com/developerworks/library/mw-1705-auberger-bluemix/1705-auberger.html

variability support in process-aware information systems. Inf. Softw. Tech-
nol., 57:248–276, 2015.

[10] Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman.
Medrec: Using blockchain for medical data access and permission man-
agement. In 2nd International Conference on Open and Big Data, OBD
2016, Vienna, Austria, August 22-24, 2016, pages 25–30, 2016.

[11] Alistair P. Barros, Marlon Dumas, and Arthur H.M. ter Hofstede. Service
interaction patterns. In Business Process Management, 3rd International
Conference, BPM 2005, Nancy, France, September 5-8, 2005, Proceedings,
pages 302–318, 2005.

[12] Massimo Bartoletti and Livio Pompianu. An empirical analysis of smart
contracts: Platforms, applications, and design patterns. In Financial Cryp-
tography and Data Security - FC 2017 International Workshops, WAHC,
BITCOIN, VOTING, WTSC, and TA, Sliema, Malta, April 7, 2017, Revised
Selected Papers, pages 494–509, 2017.

[13] Anne Baumgrass, Claudio Di Ciccio, Remco M. Dijkman, Marcin Hewelt,
Jan Mendling, Andreas Meyer, Shaya Pourmirza, Mathias Weske, and
Tsun Yin Wong. GET controller and UNICORN: event-driven process ex-
ecution and monitoring in logistics. In Proceedings of the BPM Demo Ses-
sion 2015 Co-located with the 13th International Conference on Business
Process Management (BPM 2015), Innsbruck, Austria, September 2, 2015,
pages 75–79, 2015.

[14] Daniel Beimborn and Nils Joachim. The joint impact of service-oriented
architectures and business process management on business process qual-
ity: an empirical evaluation and comparison. Inf. Syst. E-Business Man-
agement, 9(3):333–362, 2011.

[15] Boualem Benatallah, Quan Z. Sheng, Anne H. H. Ngu, and Marlon Du-
mas. Declarative composition and peer-to-peer provisioning of dynamic
web services. In Proceedings of the 18th International Conference on Data
Engineering, San Jose, CA, USA, February 26 - March 1, 2002, pages 297–
308, 2002.

[16] Elisa Bertino, Elena Ferrari, and Vijayalakshmi Atluri. The specification
and enforcement of authorization constraints in workflow management sys-
tems. ACM Trans. Inf. Syst. Secur., 2(1):65–104, 1999.

[17] Saïda Boukhedouma, Zaia Alimazighi, and Mourad Chabane Oussalah.
Evolution of inter-organizational workflows: The case-transfer pattern. In
4th IEEE International Colloquium on Information Science and Technol-
ogy, CiSt 2016, Tangier, Morocco, October 24-26, 2016, pages 235–242,
2016.

[18] Ruth Breu, Schahram Dustdar, Johann Eder, Christian Huemer, Gerti Kap-
pel, Julius Köpke, Philip Langer, Jürgen Mangler, Jan Mendling, Gustaf
Neumann, Stefanie Rinderle-Ma, Stefan Schulte, Stefan Sobernig, and Bar-

143

bara Weber. Towards living inter-organizational processes. In IEEE 15th
Conference on Business Informatics, CBI 2013, Vienna, Austria, July 15-
18, 2013, pages 363–366, 2013.

[19] Richard Gendal Brown, James Carlyle, Ian Grigg, and Mike Hearn. Corda:
an introduction. R3 CEV, August, 1:15, 2016.

[20] Antonio Bucchiarone, Marco Pistore, Heorhi Raik, and Raman Kazhami-
akin. Adaptation of service-based business processes by context-aware
replanning. In 2011 IEEE International Conference on Service-Oriented
Computing and Applications, SOCA 2011, Irvine, CA, USA, December 12-
14, 2011, pages 1–8, 2011.

[21] Laurent Bussard, Anna Nano, and Ulrich Pinsdorf. Delegation of access
rights in multi-domain service compositions. Identity in the Information
Society, 2(2):137–154, 2009.

[22] Vitalik Buterin. Ethereum and Oracles, 2014. https://blog.ethereum.
org/2014/07/22/ethereum-and-oracles/ – last accessed 2020-03-15.

[23] Vitalik Buterin. A next-generation smart contract and decentralized appli-
cation platform. white paper, 3(37), 2014.

[24] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget.
CoRR, abs/1710.09437, 2017.

[25] Cristina Cabanillas, Manuel Resinas, Adela del-Río-Ortega, and Anto-
nio Ruiz Cortés. Specification and automated design-time analysis of the
business process human resource perspective. Inf. Syst., 52:55–82, 2015.

[26] Cristina Cabanillas, Manuel Resinas, Jan Mendling, and Antonio Ruiz
Cortés. Automated team selection and compliance checking in business
processes. In Proceedings of the 2015 International Conference on Soft-
ware and System Process, ICSSP 2015, Tallinn, Estonia, August 24 - 26,
2015, pages 42–51, 2015.

[27] Christian Cachin. Architecture of the hyperledger blockchain fabric. In
Workshop on distributed cryptocurrencies and consensus ledgers, volume
310, page 4, 2016.

[28] Seraphin B. Calo, Dinesh C. Verma, Supriyo Chakraborty, Elisa Bertino,
Emil Lupu, and Gregory H. Cirincione. Self-generation of access control
policies. In Proceedings of the 23nd ACM on Symposium on Access Control
Models and Technologies, SACMAT 2018, Indianapolis, IN, USA, June 13-
15, 2018, pages 39–47, 2018.

[29] Barbara Carminati, Christian Rondanini, and Elena Ferrari. Confidential
business process execution on blockchain. In 2018 IEEE International
Conference on Web Services, ICWS 2018, San Francisco, CA, USA, July
2-7, 2018, pages 58–65, 2018.

[30] Fabio Casati, Stefano Ceri, Barbara Pernici, and Giuseppe Pozzi. Workflow
evolution. Data Knowl. Eng., 24(3):211–238, 1998.

144

https://blog.ethereum.org/2014/07/22/ethereum-and-oracles/
https://blog.ethereum.org/2014/07/22/ethereum-and-oracles/

[31] James F. Chang. Business process management systems: strategy and im-
plementation. Auerbach Publications, 2016.

[32] Victor Chang, Yen-Hung Kuo, and Muthu Ramachandran. Cloud comput-
ing adoption framework: A security framework for business clouds. Future
Generation Comp. Syst., 57:24–41, 2016.

[33] Victor Chang, Robert John Walters, and Gary Wills. The development
that leads to the cloud computing business framework. Int J. Information
Management, 33(3):524–538, 2013.

[34] Claudio Di Ciccio, Alessio Cecconi, Marlon Dumas, Luciano García-
Bañuelos, Orlenys López-Pintado, Qinghua Lu, Jan Mendling, Alexander
Ponomarev, An Binh Tran, and Ingo Weber. Blockchain support for col-
laborative business processes. Informatik Spektrum, 42(3):182–190, 2019.

[35] Claudio Di Ciccio, Alessio Cecconi, Jan Mendling, Dominik Felix, Do-
minik Haas, Daniel Lilek, Florian Riel, Andreas Rumpl, and Philipp Uhlig.
Blockchain-based traceability of inter-organisational business processes. In
Business Modeling and Software Design - 8th International Symposium,
BMSD 2018, Vienna, Austria, July 2-4, 2018, Proceedings, pages 56–68,
2018.

[36] Mamadou Lakhassane Cisse, Hanh Nhi Tran, Samba Diaw, Bernard
Coulette, and Alassane Bah. Using patterns to parameterize the execution
of collaborative tasks. In 28th IEEE International Conference on Enabling
Technologies: Infrastructure for Collaborative Enterprises, WETICE 2019,
Naples, Italy, June 12-14, 2019, pages 106–111, 2019.

[37] Riccardo Cognini, Flavio Corradini, Stefania Gnesi, Andrea Polini, and
Barbara Re. Business process flexibility - a systematic literature re-
view with a software systems perspective. Information Systems Frontiers,
20(2):343–371, 2018.

[38] David Cohn and Richard Hull. Business artifacts: A data-centric approach
to modeling business operations and processes. IEEE Data Eng. Bull.,
32(3):3–9, 2009.

[39] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, 3rd Edition. MIT Press, 2009.

[40] Michael Crosby, Pradan Pattanayak, Sanjeev Verma, and Vignesh Kalya-
naraman. Blockchain technology: Beyond bitcoin. Applied Innovation
Review, 2, 2016.

[41] Gaby Dagher, Jordan Mohler, Matea Milojkovic, and Praneeth Babu
Marella. Ancile: Privacy-preserving framework for access control and
interoperability of electronic health records using blockchain technology.
Sustainable cities and society, 39:283–297, 2018.

[42] Gero Decker, Oliver Kopp, Frank Leymann, and Mathias Weske.
Bpel4chor: Extending BPEL for modeling choreographies. In 2007 IEEE

145

International Conference on Web Services (ICWS 2007), July 9-13, 2007,
Salt Lake City, Utah, USA, pages 296–303, 2007.

[43] Sheng Ding, Jin Cao, Chen Li, Kai Fan, and Hui Li. A novel attribute-based
access control scheme using blockchain for IoT. IEEE Access, 7:38431–
38441, 2019.

[44] Markus Döhring, Hajo A. Reijers, and Sergey Smirnov. Configuration vs.
adaptation for business process variant maintenance: An empirical study.
Inf. Syst., 39:108–133, 2014.

[45] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers.
Fundamentals of Business Process Management, Second Edition. Springer,
2018.

[46] Jacob Eberhardt and Stefan Tai. On or off the blockchain? insights on off-
chaining computation and data. In Service-Oriented and Cloud Computing
- 6th IFIP WG 2.14 European Conference, ESOCC 2017, Oslo, Norway,
September 27-29, 2017, Proceedings, pages 3–15, 2017.

[47] Fatma Ellouze, Mohamed Amine Chaâbane, Rafik Bouaziz, and Eric An-
donoff. Addressing inter-organisational process flexibility using versions:
The VP2M approach. In Tenth IEEE International Conference on Research
Challenges in Information Science, RCIS 2016, Grenoble, France, June 1-
3, 2016, pages 1–12, 2016.

[48] Hamza Es-Samaali, Aissam Outchakoucht, and Jean Philippe Leroy. A
blockchain-based access control for big data. International Journal of
Computer Networks and Communications Security, 5(7):137–147, 2017.

[49] Ghareeb Falazi, Michael Hahn, Uwe Breitenbücher, and Frank Leymann.
Modeling and execution of blockchain-aware business processes. SICS
Softw.-Intensive Cyber Phys. Syst., 34(2-3):105–116, 2019.

[50] Ghareeb Falazi, Michael Hahn, Uwe Breitenbücher, Frank Leymann, and
Vladimir Yussupov. Process-based composition of permissioned and per-
missionless blockchain smart contracts. In 23rd IEEE International En-
terprise Distributed Object Computing Conference, EDOC 2019, Paris,
France, October 28-31, 2019, pages 77–87, 2019.

[51] Walid Fdhila, Conrad Indiono, Stefanie Rinderle-Ma, and Manfred Re-
ichert. Dealing with change in process choreographies: Design and im-
plementation of propagation algorithms. Inf. Syst., 49:1–24, 2015.

[52] Marco Franceschetti and Johann Eder. Dynamic service binding for time-
aware service compositions. In 23rd IEEE International Enterprise Dis-
tributed Object Computing Workshop, EDOC Workshops 2019, Paris,
France, October 28-31, 2019, pages 146–151, 2019.

[53] Christopher Frantz and Mariusz Nowostawski. From institutions to code:
Towards automated generation of smart contracts. In 2016 IEEE 1st In-
ternational Workshops on Foundations and Applications of Self* Systems

146

(FAS*W), Augsburg, Germany, September 12-16, 2016, pages 210–215,
2016.

[54] Erich Gamma. Helm. r., johnson, r., vlissides, j.: Design patterns: ele-
ments of reusable object-oriented software. Addison Wesley Longman, Inc,
January, 1(5):1, 1995.

[55] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin back-
bone protocol with chains of variable difficulty. In Advances in Cryptology
- CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I, pages 291–
323, 2017.

[56] Luciano García-Bañuelos, Alexander Ponomarev, Marlon Dumas, and Ingo
Weber. Optimized execution of business processes on blockchain. In Busi-
ness Process Management - 15th International Conference, BPM 2017,
Barcelona, Spain, September 10-15, 2017, Proceedings, pages 130–146,
2017.

[57] Paul Grefen and Stefanie Rinderle-Ma. Dynamism in inter-organizational
service orchestration -an analysis of the state of the art. Technical report,
Eindhoven University of Technology, 2016.

[58] Object Management Group. Business Process Model and Notation
(BPMN), Version 2.0.2, 2014. http://www.omg.org/spec/BPMN/2.0.

2/ – last accessed 2020-03-15.
[59] Stephan Haarmann, Kimon Batoulis, Adriatik Nikaj, and Mathias Weske.

DMN decision execution on the ethereum blockchain. In Advanced Infor-
mation Systems Engineering - 30th International Conference, CAiSE 2018,
Tallinn, Estonia, June 11-15, 2018, Proceedings, pages 327–341, 2018.

[60] Stephan Haarmann, Kimon Batoulis, Adriatik Nikaj, and Mathias Weske.
Executing collaborative decisions confidentially on blockchains. In Busi-
ness Process Management: Blockchain and Central and Eastern Europe
Forum - BPM 2019 Blockchain and CEE Forum, Vienna, Austria, Septem-
ber 1-6, 2019, Proceedings, pages 119–135, 2019.

[61] Zheng Haibei and Yin Xu. The architecture design of a distributed work-
flow system. In 2012 11th International Symposium on Distributed Com-
puting and Applications to Business, Engineering Science, pages 9–12,
2012.

[62] Alena Hallerbach, Thomas Bauer, and Manfred Reichert. Capturing vari-
ability in business process models: the provop approach. J. Softw. Mainte-
nance Res. Pract., 22(6-7):519–546, 2010.

[63] Bernd Heinrich, Mathias Klier, and Steffen Zimmermann. Automated plan-
ning of process models: Design of a novel approach to construct exclusive
choices. Decision Support Systems, 78:1–14, 2015.

[64] Jonathan Heiss, Jacob Eberhardt, and Stefan Tai. From oracles to trust-

147

http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/BPMN/2.0.2/

worthy data on-chaining systems. In IEEE International Conference on
Blockchain, Blockchain 2019, Atlanta, GA, USA, July 14-17, 2019, pages
496–503, 2019.

[65] Thomas T. Hildebrandt. Flexible, adaptable, and compliant business sys-
tems with dynamic condition response graphs. In Proceedings of the Inter-
national Workshop on Formal Methods for Analysis of Business Systems,
ForMABS@ASE 2016, Singapore, Singapore, September 4, 2016, page 1,
2016.

[66] David Hollingsworth and UK Hampshire. Workflow management coali-
tion: The workflow reference model. Document Number TC00-1003,
19:16, 1995.

[67] Zhengxing Huang, Xudong Lu, and Huilong Duan. Mining association
rules to support resource allocation in business process management. Ex-
pert Syst. Appl., 38(8):9483–9490, 2011.

[68] Zhengxing Huang, Wil M.P. van der Aalst, Xudong Lu, and Huilong Duan.
Reinforcement learning based resource allocation in business process man-
agement. Data Knowl. Eng., 70(1):127–145, 2011.

[69] Richard Hull. Blockchain: Distributed event-based processing in a data-
centric world: Extended abstract. In Proceedings of the 11th ACM Inter-
national Conference on Distributed and Event-based Systems, DEBS 2017,
Barcelona, Spain, June 19-23, 2017, pages 2–4, 2017.

[70] Richard Hull, Vishal S. Batra, Yi-Min Chen, Alin Deutsch, Fenno F.
Terry Heath III, and Victor Vianu. Towards a shared ledger business collab-
oration language based on data- aware processes. In Service-Oriented Com-
puting - 14th International Conference, ICSOC 2016, Banff, AB, Canada,
October 10-13, 2016, Proceedings, pages 18–36, 2016.

[71] Mayssa Jemel and Ahmed Serhrouchni. Decentralized access control
mechanism with temporal dimension based on blockchain. In 14th IEEE
International Conference on e-Business Engineering, ICEBE 2017, Shang-
hai, China, November 4-6, 2017, pages 177–182, 2017.

[72] Dimka Karastoyanova, Alejandro Houspanossian, Mariano Cilia, Frank
Leymann, and Alejandro P. Buchmann. Extending BPEL for run time
adaptability. In Ninth IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2005), 19-23 September 2005, Enschede,
The Netherlands, pages 15–26, 2005.

[73] Dimka Karastoyanova, Frank Leymann, Jörg Nitzsche, Branimir Wet-
zstein, and Daniel Wutke. Parameterized BPEL processes: Concepts and
implementation. In Business Process Management, 4th International Con-
ference, BPM 2006, Vienna, Austria, September 5-7, 2006, Proceedings,
pages 471–476, 2006.

[74] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman
Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain pro-

148

tocol. In Advances in Cryptology - CRYPTO 2017 - 37th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 20-24,
2017, Proceedings, Part I, pages 357–388, 2017.

[75] Henry M. Kim and Marek Laskowski. Toward an ontology-driven
blockchain design for supply-chain provenance. Int. Syst. in Accounting,
Finance and Management, 25(1):18–27, 2018.

[76] Justus Klingemann. Controlled flexibility in workflow management. In Ad-
vanced Information Systems Engineering, 12th International Conference
CAiSE 2000, Stockholm, Sweden, June 5-9, 2000, Proceedings, pages 126–
141, 2000.

[77] Christopher Klinkmüller, Alexander Ponomarev, An Binh Tran, Ingo We-
ber, and Wil M.P. van der Aalst. Mining blockchain processes: Extracting
process mining data from blockchain applications. In Business Process
Management: Blockchain and Central and Eastern Europe Forum - BPM
2019 Blockchain and CEE Forum, Vienna, Austria, September 1-6, 2019,
Proceedings, pages 71–86, 2019.

[78] Matthias Kloppmann, Dieter Koenig, Frank Leymann, Gerhard Pfau, Alan
Rickayzen, Claus von Riegen, Patrick Schmidt, and Ivana Trickovic. WS-
BPEL extension for people - BPEL4People. Joint white paper, IBM and
SAP, 183:184, 2005.

[79] Julius Köpke, Marco Franceschetti, and Johann Eder. Balancing privity and
enforceability of bpm-based smart contracts on blockchains. In Business
Process Management: Blockchain and Central and Eastern Europe Forum
- BPM 2019 Blockchain and CEE Forum, Vienna, Austria, September 1-6,
2019, Proceedings, pages 87–102, 2019.

[80] Markus Kradolfer and Andreas Geppert. Dynamic workflow schema evo-
lution based on workflow type versioning and workflow migration. In Pro-
ceedings of the Fourth IFCIS International Conference on Cooperative In-
formation Systems, Edinburgh, Scotland, USA, September 2-4, 1999, pages
104–114, 1999.

[81] Ajay Krishna, Pascal Poizat, and Gwen Salaün. Checking business process
evolution. Science of Computer Programming, 170:1 – 26, 2019.

[82] Jan Ladleif, Mathias Weske, and Ingo Weber. Modeling and enforcing
blockchain-based choreographies. In Business Process Management - 17th
International Conference, BPM 2019, Vienna, Austria, September 1-6,
2019, Proceedings, pages 69–85, 2019.

[83] Jooseok Lee, Seunghoon Lee, Jinwoo Kim, and Injun Choi. Dynamic hu-
man resource selection for business process exceptions. Knowledge and
Process Management, 26(1):23–31, 2019.

[84] Jiankun Lei, Rufan Bai, Lipeng Guo, and Liang Zhang. Towards a scalable
framework for artifact-centric business process management systems. In
Web Information Systems Engineering - WISE 2016 - 17th International

149

Conference, Shanghai, China, November 8-10, 2016, Proceedings, Part II,
pages 309–323, 2016.

[85] Guoli Li, Vinod Muthusamy, and Hans-Arno Jacobsen. A distributed
service-oriented architecture for business process execution. TWEB,
4(1):2:1–2:33, 2010.

[86] Orlenys López-Pintado. Business process execution on blockchain. In Pro-
ceedings of the Doctoral Consortium at the 30th International Conference
on Advanced Information Systems Engineering (CAiSE 2018), Tallinn, Es-
tonia, June 11-15, 2018, volume 2114 of CEUR Workshop Proceedings,
pages 10–18, 2018.

[87] Orlenys López-Pintado, Marlon Dumas, Luciano García-Bañuelos, and
Ingo Weber. Dynamic role binding in blockchain-based collaborative busi-
ness processes. In Advanced Information Systems Engineering - 31st Inter-
national Conference, CAiSE 2019, Rome, Italy, June 3-7, 2019, Proceed-
ings, pages 399–414, 2019.

[88] Orlenys López-Pintado, Marlon Dumas, Luciano García-Bañuelos, and
Ingo Weber. Interpreted execution of business process models on
blockchain. In 23rd IEEE International Enterprise Distributed Object
Computing Conference, EDOC 2019, Paris, France, October 28-31, 2019,
pages 206–215, 2019.

[89] Orlenys López-Pintado, Luciano García-Bañuelos, Marlon Dumas, and
Ingo Weber. Caterpillar: A blockchain-based business process manage-
ment system. In Proceedings of the Demo Track and Dissertation Award of
the 15th International Conference on Business Process Management (BPM
2017), Barcelona, Spain, September 13, 2017, 2017.

[90] Orlenys López-Pintado, Luciano García-Bañuelos, Marlon Dumas, Ingo
Weber, and Alexander Ponomarev. Caterpillar: A business process execu-
tion engine on the ethereum blockchain. Softw., Pract. Exper., 49(7):1162–
1193, 2019.

[91] Qinghua Lu and Xiwei Xu. Adaptable blockchain-based systems: A case
study for product traceability. IEEE Software, 34(6):21–27, 2017.

[92] Yahui Lu, Li Zhang, and Jiaguang Sun. Task-activity based access con-
trol for process collaboration environments. Comput. Ind., 60(6):403–415,
2009.

[93] Mingxin Ma, Guozhen Shi, and Fenghua Li. Privacy-oriented blockchain-
based distributed key management architecture for hierarchical access con-
trol in the iot scenario. IEEE Access, 7:34045–34059, 2019.

[94] Mads Frederik Madsen, Mikkel Gaub, Tróndur Høgnason, Malthe Ettrup
Kirkbro, Tijs Slaats, and Søren Debois. Collaboration among adversaries:
distributed workflow execution on a blockchain. In Symposium on Founda-
tions and Applications of Blockchain, Proceedings, pages 8–15, 2018.

150

[95] Damiano Di Francesco Maesa, Paolo Mori, and Laura Ricci. Blockchain
based access control. In Distributed Applications and Interoperable Sys-
tems - 17th IFIP WG 6.1 International Conference, DAIS 2017, Held as
Part of the 12th International Federated Conference on Distributed Com-
puting Techniques, DisCoTec 2017, Neuchâtel, Switzerland, June 19-22,
2017, Proceedings, pages 206–220, 2017.

[96] Damiano Di Francesco Maesa, Paolo Mori, and Laura Ricci. A blockchain
based approach for the definition of auditable access control systems. Com-
puters & Security, 84:93–119, 2019.

[97] Andrea Marrella, Alessandro Russo, and Massimo Mecella. Planlets: Au-
tomatically recovering dynamic processes in YAWL. In On the Move to
Meaningful Internet Systems: OTM 2012, Confederated International Con-
ferences: CoopIS, DOA-SVI, and ODBASE 2012, Rome, Italy, September
10-14, 2012. Proceedings, Part I, pages 268–286, 2012.

[98] Daniel Martin, Daniel Wutke, and Frank Leymann. A novel approach to
decentralized workflow enactment. In 12th International IEEE Enterprise
Distributed Object Computing Conference, ECOC 2008, 15-19 September
2008, Munich, Germany, pages 127–136, 2008.

[99] Jan Mendling, Ingo Weber, Wil M.P. van der Aalst, Jan vom Brocke,
Cristina Cabanillas, Florian Daniel, Søren Debois, Claudio Di Ciccio, Mar-
lon Dumas, Schahram Dustdar, Avigdor Gal, Luciano García-Bañuelos,
Guido Governatori, Richard Hull, Marcello La Rosa, Henrik Leopold,
Frank Leymann, Jan Recker, Manfred Reichert, Hajo A. Reijers, Stefanie
Rinderle-Ma, Andreas Solti, Michael Rosemann, Stefan Schulte, Munin-
dar P. Singh, Tijs Slaats, Mark Staples, Barbara Weber, Matthias Weidlich,
Mathias Weske, Xiwei Xu, and Liming Zhu. Blockchains for business pro-
cess management - challenges and opportunities. ACM Trans. Management
Inf. Syst., 9(1):4:1–4:16, 2018.

[100] Lucie Mercenne, Kei-Leo Brousmiche, and Elyes Ben Hamida. Blockchain
studio: A role-based business workflows management system. In 2018
IEEE 9th Annual Information Technology, Electronics and Mobile Com-
munication Conference (IEMCON), pages 1215–1220, 2018.

[101] Giovanni Meroni, Pierluigi Plebani, and Francesco Vona. Trusted
artifact-driven process monitoring of multi-party business processes with
blockchain. In Business Process Management: Blockchain and Central
and Eastern Europe Forum - BPM 2019 Blockchain and CEE Forum, Vi-
enna, Austria, September 1-6, 2019, Proceedings, pages 55–70, 2019.

[102] Mirjam Minor, Ralph Bergmann, and Sebastian Görg. Case-based adapta-
tion of workflows. Inf. Syst., 40:142–152, 2014.

[103] Roman Mühlberger, Stefan Bachhofner, Claudio Di Ciccio, Luciano
García-Bañuelos, and Orlenys López-Pintado. Extracting event logs for
process mining from data stored on the blockchain. In Business Process

151

Management Workshops - BPM 2019 International Workshops, Vienna,
Austria, September 1-6, 2019, Revised Selected Papers, pages 690–703,
2019.

[104] Robert Müller, Ulrike Greiner, and Erhard Rahm. Agentwork: a work-
flow system supporting rule-based workflow adaptation. Data Knowl. Eng.,
51(2):223–256, 2004.

[105] Tadao Murata. Petri nets: Properties, analysis and applications. Proceed-
ings of the IEEE, 77(4):541–580, 1989.

[106] Aitor Murguzur, Karmele Intxausti, Aitor Urbieta, Salvador Trujillo, and
Goiuria Sagardui. Process flexibility in service orchestration: A systematic
literature review. Int. J. Cooperative Inf. Syst., 23(3), 2014.

[107] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Tech-
nical report, Manubot, 2019.

[108] Hiroaki Nakamura, Kohtaroh Miyamoto, and Michiharu Kudo. Inter-
organizational business processes managed by blockchain. In Web Infor-
mation Systems Engineering - WISE 2018 - 19th International Conference,
Dubai, United Arab Emirates, November 12-15, 2018, Proceedings, Part I,
pages 3–17, 2018.

[109] Anil Nigam and Nathan S. Caswell. Business artifacts: An approach to
operational specification. IBM Syst. J., 42(3):428–445, 2003.

[110] Alex Norta. Creation of smart-contracting collaborations for decentralized
autonomous organizations. In Perspectives in Business Informatics Re-
search - 14th International Conference, BIR 2015, Tartu, Estonia, August
26-28, 2015, Proceedings, pages 3–17, 2015.

[111] Alex Norta, Paul Grefen, and Nanjangud C. Narendra. A reference ar-
chitecture for managing dynamic inter-organizational business processes.
Data Knowl. Eng., 91:52–89, 2014.

[112] Alex Norta, Lixin Ma, Yucong Duan, Addi Rull, Merit Kõlvart, and Kuldar
Taveter. eContractual choreography-language properties towards cross- or-
ganizational business collaboration. J. Internet Services and Applications,
6(1):8:1–8:23, 2015.

[113] Oscar Novo. Blockchain meets iot: An architecture for scalable access
management in iot. IEEE Internet of Things Journal, 5(2):1184–1195,
2018.

[114] Vanessa Tavares Nunes, Flávia Maria Santoro, Cláudia Maria Lima Werner,
and Célia Ghedini Ralha. Real-time process adaptation: A context-aware
replanning approach. IEEE Trans. Systems, Man, and Cybernetics: Sys-
tems, 48(1):99–118, 2018.

[115] Ivana Ognjanovic, Bardia Mohabbati, Dragan Gasevic, Ebrahim Bagheri,
and Marko Boskovic. A metaheuristic approach for the configuration of
business process families. In 2012 IEEE Ninth International Conference

152

on Services Computing, Honolulu, HI, USA, June 24-29, 2012, pages 25–
32, 2012.

[116] Aafaf Ouaddah, Anas Abou El Kalam, and Abdellah Ait Ouahman. Fairac-
cess: a new blockchain-based access control framework for the internet of
things. Security and Communication Networks, 9(18):5943–5964, 2016.

[117] Chun Ouyang, Michael Adams, Arthur H.M. ter Hofstede, and Yang Yu.
Towards the design of a scalable business process management system ar-
chitecture in the cloud. In Conceptual Modeling - 37th International Con-
ference, ER 2018, Xi’an, China, October 22-25, 2018, Proceedings, pages
334–348, 2018.

[118] Chun Ouyang, Marlon Dumas, Wil M. P. van der Aalst, Arthur H. M. ter
Hofstede, and Jan Mendling. From business process models to process-
oriented software systems. ACM Trans. Softw. Eng. Methodol., 19(1):2:1–
2:37, 2009.

[119] Lionel Palacin. Accelerate blockchain technology adoption with Bonita
BPM and Chain Core, 2017. https://www.bonitasoft.com/videos/

secure-distributed-database-digital-assets-blockchain-

and-bpm – last accessed 2020-03-15.
[120] Cesare Pautasso and Gustavo Alonso. Flexible binding for reusable compo-

sition of web services. In Software Composition, 4th International Work-
shop, SC 2005, Edinburgh, UK, April 9, 2005, Revised Selected Papers,
pages 151–166, 2005.

[121] Maja Pesic, Helen Schonenberg, and Wil M. P. van der Aalst. DECLARE:
full support for loosely-structured processes. In 11th IEEE International
Enterprise Distributed Object Computing Conference (EDOC 2007), 15-
19 October 2007, Annapolis, Maryland, USA, pages 287–300, 2007.

[122] Shaya Pourmirza, Remco Dijkman, and Paul Grefen. Switching parties
in a collaboration at run-time. In 18th IEEE International Enterprise
Distributed Object Computing Conference, EDOC 2014, Ulm, Germany,
September 1-5, 2014, pages 136–141, 2014.

[123] Shaya Pourmirza, Sander Peters, Remco M. Dijkman, and Paul Grefen. A
systematic literature review on the architecture of business process man-
agement systems. Inf. Syst., 66:43–58, 2017.

[124] Shaya Pourmirza, Sander Peters, Remco M. Dijkman, and Paul Grefen.
BPMS-RA: A novel reference architecture for business process manage-
ment systems. ACM Trans. Internet Techn., 19(1):13:1–13:23, 2019.

[125] Christoph Prybila, Stefan Schulte, Christoph Hochreiner, and Ingo We-
ber. Runtime verification for business processes utilizing the Bitcoin
blockchain. Future Generation Computer Systems (FGCS), 107:816–831,
2020.

[126] Luise Pufahl and Dimka Karastoyanova. Enhancing business process flex-

153

https://www.bonitasoft.com/videos/secure-distributed-database-digital-assets-blockchain-and-bpm
https://www.bonitasoft.com/videos/secure-distributed-database-digital-assets-blockchain-and-bpm
https://www.bonitasoft.com/videos/secure-distributed-database-digital-assets-blockchain-and-bpm

ibility by flexible batch processing. In On the Move to Meaningful Inter-
net Systems. OTM 2018 Conferences - Confederated International Con-
ferences: CoopIS, C&TC, and ODBASE 2018, Valletta, Malta, October
22-26, 2018, Proceedings, Part I, pages 426–444, 2018.

[127] Heorhi Raik, Antonio Bucchiarone, Nawaz Khurshid, Annapaola Marconi,
and Marco Pistore. Astro-captevo: Dynamic context-aware adaptation for
service-based systems. In Eighth IEEE World Congress on Services, SER-
VICES 2012, Honolulu, HI, USA, June 24-29, 2012, pages 385–392. IEEE
Computer Society, 2012.

[128] Manfred Reichert and Barbara Weber. Enabling Flexibility in Process-
Aware Information Systems - Challenges, Methods, Technologies. Springer,
2012.

[129] Gartner Press Release. Gartner survey reveals the scarcity of cur-
rent blockchain deployments, 2018. https://www.gartner.com/

en/newsroom/press-releases/2018-05-03-gartner-survey-

reveals-the-scarcity-of-current-blockchain-developments –
last accessed 2020-03-15.

[130] Olivier Rikken. BPM and blockchain, miles apart or closer than you think?,
2015. https://www.bpmleader.com/2015/11/17/bpm-blockchain-

miles-apart-closer-think/ – last accessed 2020-03-15.
[131] Paul Rimba, An Binh Tran, Ingo Weber, Mark Staples, Alexander Pono-

marev, and Xiwei Xu. Comparing blockchain and cloud services for busi-
ness process execution. In 2017 IEEE International Conference on Soft-
ware Architecture, ICSA 2017, Gothenburg, Sweden, April 3-7, 2017, pages
257–260, 2017.

[132] Philip Robinson, Florian Kerschbaum, and Andreas Schaad. From business
process choreography to authorization policies. In Data and Applications
Security XX, 20th Annual IFIP WG 11.3 Working Conference on Data and
Applications Security, Sophia Antipolis, France, July 31-August 2, 2006,
Proceedings, pages 297–309, 2006.

[133] Marcello La Rosa, Wil M. P. van der Aalst, Marlon Dumas, and Fredrik
Milani. Business process variability modeling: A survey. ACM Comput.
Surv., 50(1):2:1–2:45, 2017.

[134] Stephan Roser, Jörg P. Müller, and Bernhard Bauer. An evaluation and deci-
sion method for ICT architectures for cross-organizational business process
coordination. Inf. Syst. E-Business Management, 9(1):51–88, 2011.

[135] Sara Rouhani and Ralph Deters. Blockchain based access control systems:
State of the art and challenges. In 2019 IEEE/WIC/ACM International
Conference on Web Intelligence, WI 2019, Thessaloniki, Greece, October
14-17, 2019, pages 423–428, 2019.

[136] Nick Russell, Wil M.P. van der Aalst, Arthur H.M. ter Hofstede, and David
Edmond. Workflow resource patterns: Identification, representation and

154

https://www.gartner.com/en/newsroom/press-releases/2018-05-03-gartner-survey-reveals-the-scarcity-of-current-blockchain-developments
https://www.gartner.com/en/newsroom/press-releases/2018-05-03-gartner-survey-reveals-the-scarcity-of-current-blockchain-developments
https://www.gartner.com/en/newsroom/press-releases/2018-05-03-gartner-survey-reveals-the-scarcity-of-current-blockchain-developments
https://www.bpmleader.com/2015/11/17/bpm-blockchain-miles-apart-closer-think/
https://www.bpmleader.com/2015/11/17/bpm-blockchain-miles-apart-closer-think/

tool support. In Advanced Information Systems Engineering, 17th Interna-
tional Conference, CAiSE 2005, Porto, Portugal, June 13-17, 2005, Pro-
ceedings, pages 216–232, 2005.

[137] Shazia W. Sadiq, Wasim Sadiq, and Maria E. Orlowska. Pockets of flex-
ibility in workflow specification. In Conceptual Modeling - ER 2001,
20th International Conference on Conceptual Modeling, Yokohama, Japan,
November 27-30, 2001, Proceedings, pages 513–526, 2001.

[138] Shazia Wasim Sadiq, Guido Governatori, and Kioumars Namiri. Model-
ing control objectives for business process compliance. In Proceedings of
the 5th International Conference on Business Process Management (BPM),
volume 4714 of Lecture Notes in Computer Science, pages 149–164, 2007.

[139] Shazia Wasim Sadiq, Maria E. Orlowska, and Wasim Sadiq. Specifica-
tion and validation of process constraints for flexible workflows. Inf. Syst.,
30(5):349–378, 2005.

[140] Helen Schonenberg, Ronny Mans, Nick Russell, Nataliya Mulyar, and Wil
M. P. van der Aalst. Process flexibility: A survey of contemporary ap-
proaches. In Advances in Enterprise Engineering I, 4th International Work-
shop CIAO! and 4th International Workshop EOMAS, held at CAiSE 2008,
Montpellier, France, June 16-17, 2008. Proceedings, pages 16–30, 2008.

[141] Helen Schonenberg, Ronny Mans, Nick Russell, Nataliya Mulyar, and
Wil M.P. van der Aalst. Towards a taxonomy of process flexibility. In Pro-
ceedings of the Forum at the CAiSE’08 Conference, Montpellier, France,
June 18-20, 2008, pages 81–84, 2008.

[142] Emmanuel Boateng Sifah, Qi Xia, Kwame Opuni-Boachie Obour
Agyekum, Sandro Amofa, Jianbin Gao, Ruidong Chen, Hu Xia, James C.
Gee, Xiaojiang Du, and Mohsen Guizani. Chain-based big data access
control infrastructure. The Journal of Supercomputing, 74(10):4945–4964,
2018.

[143] Renuka Sindhgatta, Aditya K. Ghose, and Hoa Khanh Dam. Context-aware
analysis of past process executions to aid resource allocation decisions. In
Advanced Information Systems Engineering - 28th International Confer-
ence, CAiSE 2016, Ljubljana, Slovenia, June 13-17, 2016. Proceedings,
pages 575–589, 2016.

[144] Wei Song and Hans-Arno Jacobsen. Static and dynamic process change.
IEEE Trans. Serv. Comput., 11(1):215–231, 2018.

[145] Mirko Sonntag and Dimka Karastoyanova. Concurrent workflow evolution.
ECEASST, 37, 2011.

[146] Mark Staples, Shiping Chen, Sara Falamaki, Alex Ponomarev, Paul Rimba,
An Binh Tran, Ingo Weber, Xiwei Xu, and John Zhu. Risks and opportu-
nities for systems using blockchain and smart contracts. Technical report,
Data61(CSIRO), Sydney, 2017.

155

[147] Christian Sturm, Jonas Scalanczi, Stefan Schönig, and Stefan Jablonski.
A blockchain-based and resource-aware process execution engine. Future
Gener. Comput. Syst., 100:19–34, 2019.

[148] Christian Sturm, Jonas Szalanczi, Stefan Schönig, and Stefan Jablonski.
A lean architecture for blockchain based decentralized process execution.
In Business Process Management Workshops - BPM 2018 International
Workshops, Sydney, NSW, Australia, September 9-14, 2018, Revised Pa-
pers, pages 361–373, 2018.

[149] Simon Tragatschnig, Srdjan Stevanetic, and Uwe Zdun. Supporting the
evolution of event-driven service-oriented architectures using change pat-
terns. Inf. Softw. Technol., 100:133–146, 2018.

[150] An Binh Tran, Qinghua Lu, and Ingo Weber. Lorikeet: A model-driven
engineering tool for blockchain-based business process execution and asset
management. In Proceedings of the Dissertation Award, Demonstration,
and Industrial Track at BPM 2018 co-located with 16th International Con-
ference on Business Process Management (BPM 2018), Sydney, Australia,
September 9-14, 2018., pages 56–60, 2018.

[151] Ching-Hong Tsai, Kuo-Chan Huang, Feng-Jian Wang, and Chun-Hao
Chen. A distributed server architecture supporting dynamic resource provi-
sioning for bpm-oriented workflow management systems. Journal of Sys-
tems and Software, 83(8):1538–1552, 2010.

[152] UK Government Chief Scientific Adviser. Distributed ledger technology:
Beyond block chain. Technical Report 19, UK Government Office of Sci-
ence, 2016.

[153] Nick R.T.P. van Beest, Eirini Kaldeli, Pavel Bulanov, Johan C. Wortmann,
and Alexander Lazovik. Automated runtime repair of business processes.
Inf. Syst., 39:45–79, 2014.

[154] Wil M. P. van der Aalst. Business process management: a comprehensive
survey. ISRN Software Engineering, 2013, 2013.

[155] Wil M.P. van der Aalst, Arthur H.M. ter Hofstede, and Mathias Weske.
Business process management: A survey. In Business Process Manage-
ment, International Conference, BPM 2003, Eindhoven, The Netherlands,
June 26-27, 2003, Proceedings, pages 1–12, 2003.

[156] Wattana Viriyasitavat and Danupol Hoonsopon. Blockchain characteristics
and consensus in modern business processes. Journal of Industrial Infor-
mation Integration, 13:32–39, 2019.

[157] Jacques Wainer, Akhil Kumar, and Paulo Barthelmess. DW-RBAC: A for-
mal security model of delegation and revocation in workflow systems. Inf.
Syst., 32(3):365–384, 2007.

[158] Jiacun Wang, Yi Deng, and Gang Xu. Reachability analysis of real-time

156

systems using time petri nets. IEEE Trans. Systems, Man, and Cybernetics,
Part B, 30(5):725–736, 2000.

[159] Shangping Wang, Yinglong Zhang, and Yaling Zhang. A blockchain-based
framework for data sharing with fine-grained access control in decentral-
ized storage systems. IEEE Access, 6:38437–38450, 2018.

[160] Barbara Weber, Shazia Wasim Sadiq, and Manfred Reichert. Beyond rigid-
ity - dynamic process lifecycle support. Comput. Sci. Res. Dev., 23(2):47–
65, 2009.

[161] Ingo Weber, Jochen Haller, and Jutta A. Mülle. Automated derivation of
executable business processes from choreographies in virtual organisations.
Int. J. Bus. Process. Integr. Manag., 3(2):85–95, 2008.

[162] Ingo Weber, Qinghua Lu, An Binh Tran, Amit Deshmukh, Marek Górski,
and Markus Strazds. A platform architecture for multi-tenant blockchain-
based systems. In IEEE International Conference on Software Architecture,
ICSA 2019, Hamburg, Germany, March 25-29, 2019, pages 101–110, 2019.

[163] Ingo Weber, Xiwei Xu, Régis Riveret, Guido Governatori, Alexander
Ponomarev, and Jan Mendling. Untrusted business process monitoring and
execution using blockchain. In Business Process Management - 14th Inter-
national Conference, BPM 2016, Rio de Janeiro, Brazil, September 18-22,
2016. Proceedings, pages 329–347, 2016.

[164] Andreas Weiß, Santiago Gómez Sáez, Michael Hahn, and Dimka Karastoy-
anova. Approach and refinement strategies for flexible choreography en-
actment. In On the Move to Meaningful Internet Systems: OTM 2014 Con-
ferences - Confederated International Conferences: CoopIS, and ODBASE
2014, Amantea, Italy, October 27-31, 2014, Proceedings, pages 93–111,
2014.

[165] Mathias Weske. Business Process Management - Concepts, Languages,
Architectures, Third Edition. Springer, 2019.

[166] Dirk Wodtke, Jeanine Weißenfels, Gerhard Weikum, and Angelika Kotz
Dittrich. The mentor project: Steps toward enterprise-wide workflow man-
agement. In Proceedings of the Twelfth International Conference on Data
Engineering, February 26 - March 1, 1996, New Orleans, Louisiana, USA,
pages 556–565, 1996.

[167] Gavin Wood. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.

[168] Karl Wüst and Arthur Gervais. Do you need a blockchain? In Crypto Valley
Conference on Blockchain Technology, CVCBT 2018, Zug, Switzerland,
June 20-22, 2018, pages 45–54, 2018.

[169] Qi Xia, Emmanuel Boateng Sifah, Kwame Omono Asamoah, Jianbin Gao,
Xiaojiang Du, and Mohsen Guizani. Medshare: Trust-less medical data

157

sharing among cloud service providers via blockchain. IEEE Access,
5:14757–14767, 2017.

[170] Zan Xiao, Donggang Cao, Chao You, and Hong Mei. Towards a constraint-
based framework for dynamic business process adaptation. In IEEE Inter-
national Conference on Services Computing, SCC 2011, Washington, DC,
USA, 4-9 July, 2011, pages 685–692, 2011.

[171] Wei Xu, Jianwen Su, Zhimin Yan, Jian Yang, and Liang Zhang. An artifact-
centric approach to dynamic modification of workflow execution. In On the
Move to Meaningful Internet Systems: OTM 2011 - Confederated Interna-
tional Conferences: CoopIS, DOA-SVI, and ODBASE 2011, Hersonissos,
Crete, Greece, October 17-21, 2011, Proceedings, Part I, volume 7044 of
Lecture Notes in Computer Science, pages 256–273. Springer, 2011.

[172] Xiwei Xu, Cesare Pautasso, Liming Zhu, Vincent Gramoli, Alexander
Ponomarev, An Binh Tran, and Shiping Chen. The blockchain as a software
connector. In 13th Working IEEE/IFIP Conference on Software Architec-
ture, WICSA 2016, Venice, Italy, April 5-8, 2016, pages 182–191, 2016.

[173] Xiwei Xu, Ingo Weber, and Mark Staples. Architecture for Blockchain
Applications. Springer, 2019.

[174] Xiwei Xu, Ingo Weber, Mark Staples, Liming Zhu, Jan Bosch, Len Bass,
Cesare Pautasso, and Paul Rimba. A taxonomy of blockchain-based sys-
tems for architecture design. In 2017 IEEE International Conference on
Software Architecture, ICSA 2017, Gothenburg, Sweden, April 3-7, 2017,
pages 243–252, 2017.

[175] Rajitha Yasaweerasinghelage, Mark Staples, and Ingo Weber. Predicting la-
tency of blockchain-based systems using architectural modelling and sim-
ulation. In 2017 IEEE International Conference on Software Architecture,
ICSA 2017, Gothenburg, Sweden, April 3-7, 2017, pages 253–256, 2017.

[176] Matteo Zavatteri, Carlo Combi, Roberto Posenato, and Luca Viganò. Weak,
strong and dynamic controllability of access-controlled workflows under
conditional uncertainty. In Business Process Management - 15th Interna-
tional Conference, BPM 2017, Barcelona, Spain, September 10-15, 2017,
Proceedings, pages 235–251, 2017.

[177] Christian Zeyen, Lukas Malburg, and Ralph Bergmann. Adaptation of
scientific workflows by means of process-oriented case-based reasoning.
In Case-Based Reasoning Research and Development - 27th International
Conference, ICCBR 2019, Otzenhausen, Germany, September 8-12, 2019,
Proceedings, pages 388–403, 2019.

[178] Daoye Zhang, Dahai Cao, Lijie Wen, and Jianmin Wang. An efficient ap-
proach for supporting dynamic evolutionary change of adaptive workflow.
In Progress in WWW Research and Development, 10th Asia-Pacific Web
Conference, APWeb 2008, Shenyang, China, April 26-28, 2008. Proceed-
ings, pages 684–695, 2008.

158

[179] Liang-Jie Zhang and Qun Zhou. CCOA: cloud computing open architec-
ture. In IEEE International Conference on Web Services, ICWS 2009, Los
Angeles, CA, USA, 6-10 July 2009, pages 607–616, 2009.

[180] Xiaohui Zhao and Chengfei Liu. Version management for business process
schema evolution. Inf. Syst., 38(8):1046–1069, 2013.

[181] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping Chen, and Huaimin
Wang. Blockchain challenges and opportunities: a survey. IJWGS,
14(4):352–375, 2018.

159

Appendix A. CODE REPOSITORIES

The source code of Caterpillar can be downloaded under the BSD 3-clause “New"
or “Revised" License from https://github.com/orlenyslp/Caterpillar.
The repository splits the contributions described in this thesis into four different
versions of CATERPILLAR.
− V1.0 provides an initial implementation presented in the demo paper ti-

tled “Caterpillar: A Blockchain-Based Business Process Management Sys-
tem” [89].

− V2.0 enhances the architecture implemented in V1.0, in correspondence to
the contribution presented in the Chapter 4 of this thesis, and published in
the paper titled “CATERPILLAR: A Business Process Execution Engine on
the Ethereum Blockchain”[90].

− V2.1 extends the prototype with the dynamic binding access control,
and the agreement policies aligned with the contribution described in the
Chapter 6 of this thesis, and the paper titled “Dynamic Role Binding in
Blockchain-Based Collaborative Business Processes” [87].

− V3.0 includes a new engine supporting the architecture to execute inter-
preted processes corresponding to contribution described in the Chapter 5
of this thesis, and the paper titled “Interpreted Execution of Business Pro-
cess Models on Blockchain” [88].

− CATERPILLAR-FULL contains the full implementation of the CATERPIL-
LAR SYSTEM, including the compilation-based and interpretation-based
engines, and the controlled flexibility mechanisms. This implementation
integrates all the results presented in the thesis into a single system and
constitutes the last version of the code.

CATERPILLAR’s code distribution contains two folders: (i) folder caterpil-
lar_core, which includes the implementation of the core components (engine,
compilation-interpreter tools, event monitor and work item manager) and (ii) exe-
cution_panel (implementation of the Execution Panel module).

The repository contains all instructions needed to install the required depen-
dencies and running the sample process models.

160

https://github.com/orlenyslp/Caterpillar

ACKNOWLEDGEMENT

I am very grateful to my supervisors Marlon Dumas and Luciano García Bañuelos
for the guidance, the support and feedback throughout these years. I am thankful
for the constant opportunities for professional development they gave me.

I want to thank Ingo Weber for his time while hosting me in his research group
at Data61, and for his help to refine and execute many ideas as co-author of several
research papers.

I want to thank all my friends for all the memories accumulated across the path
to complete the PhD. To all my colleges and friends at the University of Tartu in
Estonia, and Data61 in Australia for their support. I want to give special thanks
to my friends Dayron, Lídice and Jose, who made it possible that I could move to
Estonia four years ago. To Arlete and Lucas, who shared their home in Sydney
and made me part of the family for six months. To Irene and Justin who helped
me with the Estonian translations in this thesis. Finally, I would like to thank my
mother, father and brother for being always with me, breaking all the physical
distances that may separate us.

I would also like to acknowledge the Estonian Research Council, the Doctoral
School of Information and Communication Technology (IKTDK), and the Euro-
pean Regional Development Fund for funding my studies.

161

SUMMARY

Koostööäriprotsesside läbiviimine plokiahelal:
süsteem

Tänapäeval peavad organisatsioonid tegema omavahel koostööd, et kasutada ära
üksteise täiendavaid võimekusi ning seeläbi pakkuda oma klientidele parimaid
tooteid ja teenuseid. Selleks peavad organisatsioonid juhtima äriprotsesse, mis
ületavad nende organisatsioonilisi piire. Selliseid protsesse nimetatakse koostöö-
äriprotsessideks.

Üks peamisi takistusi koostööäriprotsesside elluviimisel on osapooltevaheli-
se usalduse puudumine. Viimase kümnendi jooksul on üldise lahendusena välja
kujunenud plokiahela tehnoloogia, mis võimaldab pooltel teha koostööd vastasti-
kuse usalduse puudumisel. Plokiahela tehnoloogia võimaldab osapooltel ülal pi-
dada muutmatut hajutatud transaktsioonide registrit ja juurutada programme (nn
“nutilepinguid”), mis käivitatakse, kui teatud transaktsioonid aset leiavad. Neid
funktsioone saab kasutada oluliste ehitusplokkidena koostööprotsesside läbivii-
misel, kui osapoolte vahel puudub vastastikune usaldus. Paraku on aga äriprot-
sesside läbiviimine selliseid madala taseme plokiahela elemente kasutades tü-
likas ja veaohtlik. Seevastu juba väljakujunenud äriprotsesside juhtimissüstee-
mid (BUSINESS PROCESS MANAGEMENT SYSTEM – BPMS), näiteks BPMN
(BUSINESS PROCESS MODEL AND NOTATION) standardil põhinevad süstee-
mid, pakuvad käepäraseid abstraheeringuid protsessidele orienteeritud rakenduste
kiireks arendamiseks.

Käesolev doktoritöö käsitleb koostööäriprotsesside automatiseeritud läbivii-
mist plokiahela tehnoloogiat kasutades, kombineerides traditsiooniliste BPMS-
ide arendusvõimalused plokiahelast tuleneva suurendatud usaldusega. Samuti kä-
sitleb antud doktoritöö küsimust, kuidas pakkuda tuge olukordades, kus uued osa-
pooled võivad jooksvalt protsessiga liituda, mistõttu on vajalik tagada paindlikkus
äriprotsessi marsruutimisloogika muutmise osas, tagades samal ajal, et protsessi
läbiviimine jätkaks oma põhispetsifikatsiooni kohast kulgu.

Antud doktoritöö sõnastab põhimõtted ja nõuded koostööäriprotsesside läbi-
viimiseks plokiahelal. Seejärel pakub doktoritöö välja ja hindab arhitektuurilisi
lähenemisviise ning protsesside modelleerimise kontseptsioone nende põhimõte-
te ja nõuete täitmiseks. Arhitektuurilised lähenemisviisid ja modelleerimise kont-
septsioonid on koondatud uudsesse plokiahelal põhinevasse BPMS-i nimega CA-
TERPILLAR. Nagu iga protsessi läbiviimise mootor, toetab CATERPILLAR prot-
sessimudeli instantside loomist ning võimaldab kasutajatel jälgida protsessiins-
tantside olekut ja täita nendega seonduvaid ülesandeid. CATERPILLAR eristub
teistest BPMS-idest selle poolest, et iga protsessiinstantsi olek säilitatakse (Et-
hereum) plokiahelal ja töövoo marsruutimist teostatakse läbi nutilepingute.

CATERPILLAR-i süsteem toetab kahte lähenemist plokiahelal põhinevate prot-
sesside rakendamiseks, läbiviimiseks ja seireks: kompileeritud lähenemine ja tõl-

162

IINIESTONIAN

Caterpillarii

gendatatud lähenemine. Kompileeritud lähenemine tugineb Solidity programmee-
rimiskeele kompilaatorile BPMN modelleerimisnotatsioonist. Kompilaator toetab
ulatuslikku hulka BPMN-konstruktsioone, sealhulgas alamprotsesse, mitmeins-
tantsilisi tegevusi ja sündmuste käitlejaid. See toetab ka protsesse, mis on täiusta-
tud andmepiirangutega, mis suunavad protsessi läbiviimist.

Kompileeritud lähenemine kasutab täiel määral plokiahela platvormide muut-
matuse omadusi – pärast protsessi juurutamist ei saa selle äriloogikat enam muu-
ta. Teisalt ei ole see lähenemisviis sobiv dünaamilise koostöö juhtude puhul,
kus paindlikkus on nõudeks. Et käsitleda dünaamilise koostöö juhte, toetab CA-
TERPILLAR ka tõlgendatud lähenemist äriprotsesside läbiviimiseks. See tugineb
BPMN mudelite interpretaatoril, põhineb dünaamilistel andmestruktuuridel, mis
on manustatud äriprotsessi läbiviimise süsteemi modulaarse mitmekihilise arhi-
tektuuriga, toetades protsessiinstantside loomist, läbiviimist, seiret ja dünaamilist
uuendamist. Tõhususe eesmärgil tugineb interpretaator kompaktsetel bitmapil põ-
hinevatel protsessimudelite kodeeringutel. Eksperimentide kohaselt saavutab väl-
ja pakutud tõlgendatud lähenemisviis olemasolevate kompileeritud lahendustega
võrreldes samaväärsed või väiksemad kulud.

Kuigi paindlikkus on soovitav omadus, tuleb seda piirata, et vältida olukorda,
kus mõni osapool juhib protsessi teisi kahjustaval viisil. Selle probleemi lahen-
damiseks pakub käesolev doktoritöö välja kaks mudelit kontrollitud paindlikku-
se võimaldamiseks koostööäriprotsessides. Esiteks pakub doktoritöö välja mudeli
osalejate dünaamiliseks sidumiseks rollidega koostööäriprotsessides ning selle-
ga seotud siduvate eeskirjade spetsifikatsioonikeele. Välja pakutud keel on va-
rustatud Petri võrkude semantikaga, võimaldades seega eeskirjade järjepidevuse
kontrollimist. Teiseks pakub doktoritöö välja mudeli juhtimisvoo konsensuspõ-
hise paindlikkuse jaoks, mille kohaselt saavad protsessis osalejad kollektiivselt
kokku leppida, kuidas äriprotsessi juhtimisvoo kokkulepete eeskirjade poolt mää-
ratletud piirides juhtida. Antud doktoritöö pakub välja ka lähenemise eeskirjade
spetsifikatsioonide kompileerimiseks jõustatavateks nutilepinguteks. Eksperimen-
did näitavad, et eeskirja jõustamise kulud suurenevad lineaarselt rollide, juhtimis-
voo elementide ja eeskirja piirangute arvude suhtes.

163

CURRICULUM VITAE

Personal data

Name: Orlenys López-Pintado
Date of Birth: 18.09.1985
Citizenship: Cuban

Education

2016–2020 University of Tartu, Faculty of Science and Technology, doc-
toral studies, specialty: Computer Science.

2012–2015 University of Havana, Faculty of Mathematics and Computer
Science, master’s studies, specialty: Mathematics Science.

2004–2010 University of Havana, Faculty of Mathematics and Computer
Science, bachelor’s studies, specialty: Computer Science.

Employment

2019 – 2020 University of Tartu, Institute of Computer Science, Junior Re-
search Fellow of Information Systems

2017 – 2019 University of Tartu, Institute of Computer Science, Teaching
Assistant

2015 – 2016 Agricultural University of Havana, Department of Informat-
ics, Assistant Professor

2012 – 2015 Agricultural University of Havana, Department of Informat-
ics, Instructor Professor

2010 – 2012 Agricultural University of Havana, Department of Informat-
ics, Instructor Professor (In Training)

Scientific work

Main fields of interest:
• blockchain
• information systems
• business process management

164

ELULOOKIRJELDUS

Isikuandmed

Nimi: Orlenys López-Pintado
Sünniaeg: 18.09.1985
Kodakondsus: Kuuba

Haridus

2016–2020 Tartu Ülikool, loodus- ja täppisteaduste valdkond, doktoriõpe,
eriala: informaatika.

2012–2015 Havanna Ülikool, matemaatika- ja arvutiteaduskond, magist-
riõpe, eriala: matemaatika.

2004–2010 Havanna Ülikool, matemaatika- ja arvutiteaduskond, bakalau-
reuseõpe, eriala: informaatika.

Teenistuskäik

2019 – 2020 Tartu Ülikool, arvutiteaduse instituut, infosüsteemide noorem-
teadur

2017 – 2019 Tartu Ülikool, arvutiteaduse instituut, praktikumijuhendaja
2015 – 2016 Havanna Põllumajandusülikool, informaatika rühm, dotsent
2012 – 2015 Havanna Põllumajandusülikool, informaatika rühm, juhendaja

professor
2010 – 2012 Havanna Põllumajandusülikool, informaatika rühm, juhendaja

professor (treeningus)

Teadustegevus

Peamised uurimisvaldkonnad:
• plokiahel
• infosüsteemid
• äriprotsesside juhtimine

165

LIST OF ORIGINAL PUBLICATIONS

Publications in the scope of the thesis

I Orlenys López-Pintado, Luciano García-Bañuelos, Marlon Dumas, and
Ingo Weber. Caterpillar: A blockchain-based business process manage-
ment system. In Proceedings of the Demo Track and Dissertation Award of
the 15th International Conference on Business Process Management (BPM
2017), Barcelona, Spain, September 13, 2017, 2017

II Orlenys López-Pintado. Business process execution on blockchain. In Pro-
ceedings of the Doctoral Consortium at the 30th International Conference
on Advanced Information Systems Engineering (CAiSE 2018), Tallinn, Es-
tonia, June 11-15, 2018, volume 2114 of CEUR Workshop Proceedings,
pages 10–18, 2018

III Orlenys López-Pintado, Luciano García-Bañuelos, Marlon Dumas, Ingo
Weber, and Alexander Ponomarev. Caterpillar: A business process execu-
tion engine on the ethereum blockchain. Softw., Pract. Exper., 49(7):1162–
1193, 2019

IV Orlenys López-Pintado, Marlon Dumas, Luciano García-Bañuelos, and
Ingo Weber. Interpreted execution of business process models on
blockchain. In 23rd IEEE International Enterprise Distributed Object Com-
puting Conference, EDOC 2019, Paris, France, October 28-31, 2019, pages
206–215, 2019

V Orlenys López-Pintado, Marlon Dumas, Luciano García-Bañuelos, and
Ingo Weber. Dynamic role binding in blockchain-based collaborative busi-
ness processes. In Advanced Information Systems Engineering - 31st Inter-
national Conference, CAiSE 2019, Rome, Italy, June 3-7, 2019, Proceed-
ings, pages 399–414, 2019

Publications out of the scope of the thesis

I Claudio Di Ciccio, Alessio Cecconi, Marlon Dumas, Luciano García-
Bañuelos, Orlenys López-Pintado, Qinghua Lu, Jan Mendling, Alexander
Ponomarev, An Binh Tran, and Ingo Weber. Blockchain support for collab-
orative business processes. Informatik Spektrum, 42(3):182–190, 2019

II Roman Mühlberger, Stefan Bachhofner, Claudio Di Ciccio, Luciano
García-Bañuelos, and Orlenys López-Pintado. Extracting event logs for
process mining from data stored on the blockchain. In Business Process
Management Workshops - BPM 2019 International Workshops, Vienna,
Austria, September 1-6, 2019, Revised Selected Papers, pages 690–703,
2019

166

167

DISSERTATIONES INFORMATICAE
PREVIOUSLY PUBLISHED IN

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk.
23. Varmo Vene. Categorical programming with inductive and coinductive

types. Tartu, 2000, 116 p.
24. Olga Sokratova. Ω-rings, their flat and projective acts with some appli-

cations. Tartu, 2000, 120 p.
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 lk.
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
45. Kristo Heero. Path planning and learning strategies for mobile robots in

dynamic partially unknown environments. Tartu 2006, 123 p.
49. Härmel Nestra. Iteratively defined transfinite trace semantics and program

slicing with respect to them. Tartu 2006, 116 p.
53. Marina Issakova. Solving of linear equations, linear inequalities and

systems of linear equations in interactive learning environment. Tartu
2007, 170 p.

55. Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.
Tartu 2007, 162 p.

56. Mart Anton. Mechanical modeling of IPMC actuators at large deforma-
tions. Tartu 2008, 123 p.

59. Reimo Palm. Numerical Comparison of Regularization Algorithms for
Solving Ill-Posed Problems. Tartu 2010, 105 p.

61. Jüri Reimand. Functional analysis of gene lists, networks and regulatory
systems. Tartu 2010, 153 p.

62. Ahti Peder. Superpositional Graphs and Finding the Description of Struc-
ture by Counting Method. Tartu 2010, 87 p.

64. Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.
Tartu 2010, 137 p.

66. Mark Fišel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

67. Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

71. Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.
72. Margus Treumuth. A Framework for Asynchronous Dialogue Systems:

Concepts, Issues and Design Aspects. Tartu 2011, 95 p.
73. Dmitri Lepp. Solving simplification problems in the domain of exponents,

monomials and polynomials in interactive learning environment T-algebra.
Tartu 2011, 202 p.

168

74. Meelis Kull. Statistical enrichment analysis in algorithms for studying
gene regulation. Tartu 2011, 151 p.

77. Bingsheng Zhang. Efficient cryptographic protocols for secure and
private remote databases. Tartu 2011, 206 p.

78. Reina Uba. Merging business process models. Tartu 2011, 166 p.
79. Uuno Puus. Structural performance as a success factor in software deve-

lopment projects – Estonian experience. Tartu 2012, 106 p.
81. Georg Singer. Web search engines and complex information needs. Tartu

2012, 218 p.
83. Dan Bogdanov. Sharemind: programmable secure computations with

practical applications. Tartu 2013, 191 p.
84. Jevgeni Kabanov. Towards a more productive Java EE ecosystem. Tartu

2013, 151 p.
87. Margus Freudenthal. Simpl: A toolkit for Domain-Specific Language

development in enterprise information systems. Tartu, 2013, 151 p.
90. Raivo Kolde. Methods for re-using public gene expression data. Tartu,

2014, 121 p.
91. Vladimir Šor. Statistical Approach for Memory Leak Detection in Java

Applications. Tartu, 2014, 155 p.
92. Naved Ahmed. Deriving Security Requirements from Business Process

Models. Tartu, 2014, 171 p.
94. Liina Kamm. Privacy-preserving statistical analysis using secure multi-

party computation. Tartu, 2015, 201 p.
100. Abel Armas Cervantes. Diagnosing Behavioral Differences between

Business Process Models. Tartu, 2015, 193 p.
101. Fredrik Milani. On Sub-Processes, Process Variation and their Interplay:

An Integrated Divide-and-Conquer Method for Modeling Business Pro-
cesses with Variation. Tartu, 2015, 164 p.

102. Huber Raul Flores Macario. Service-Oriented and Evidence-aware
Mobile Cloud Computing. Tartu, 2015, 163 p.

103. Tauno Metsalu. Statistical analysis of multivariate data in bioinformatics.
Tartu, 2016, 197 p.

104. Riivo Talviste. Applying Secure Multi-party Computation in Practice.
Tartu, 2016, 144 p.

108. Siim Orasmaa. Explorations of the Problem of Broad-coverage and
General Domain Event Analysis: The Estonian Experience. Tartu, 2016,
186 p.

109. Prastudy Mungkas Fauzi. Efficient Non-interactive Zero-knowledge
Protocols in the CRS Model. Tartu, 2017, 193 p.

110. Pelle Jakovits. Adapting Scientific Computing Algorithms to Distributed
Computing Frameworks. Tartu, 2017, 168 p.

111. Anna Leontjeva. Using Generative Models to Combine Static and Se-
quential Features for Classification. Tartu, 2017, 167 p.

112. Mozhgan Pourmoradnasseri. Some Problems Related to Extensions of
Polytopes. Tartu, 2017, 168 p.

1

113. Jaak Randmets. Programming Languages for Secure Multi-party Com-
putation Application Development. Tartu, 2017, 172 p.

114. Alisa Pankova. Efficient Multiparty Computation Secure against Covert
and Active Adversaries. Tartu, 2017, 316 p.

116. Toomas Saarsen. On the Structure and Use of Process Models and Their
Interplay. Tartu, 2017, 123 p.

121. Kristjan Korjus. Analyzing EEG Data and Improving Data Partitioning
for Machine Learning Algorithms. Tartu, 2017, 106 p.

122. Eno Tõnisson. Differences between Expected Answers and the Answers
Offered by Computer Algebra Systems to School Mathematics Equations.
Tartu, 2017, 195 p.

69

DISSERTATIONES INFORMATICAE
UNIVERSITATIS TARTUENSIS

1. Abdullah Makkeh. Applications of Optimization in Some Complex Sys-
tems. Tartu 2018, 179 p.

2. Riivo Kikas. Analysis of Issue and Dependency Management in Open-
Source Software Projects. Tartu 2018, 115 p.

3. Ehsan Ebrahimi. Post-Quantum Security in the Presence of Superposition
Queries. Tartu 2018, 200 p.

4. Ilya Verenich. Explainable Predictive Monitoring of Temporal Measures
of Business Processes. Tartu 2019, 151 p.

5. Yauhen Yakimenka. Failure Structures of Message-Passing Algorithms in
Erasure Decoding and Compressed Sensing. Tartu 2019, 134 p.

6. Irene Teinemaa. Predictive and Prescriptive Monitoring of Business
Process Outcomes. Tartu 2019, 196 p.

7. Mohan Liyanage. A Framework for Mobile Web of Things. Tartu 2019,
131 p.

8. Toomas Krips. Improving performance of secure real-number operations.
Tartu 2019, 146 p.

9. Vijayachitra Modhukur. Profiling of DNA methylation patterns as bio-
markers of human disease. Tartu 2019, 134 p.

10. Elena Sügis. Integration Methods for Heterogeneous Biological Data.
Tartu 2019, 250 p.

11. Tõnis Tasa. Bioinformatics Approaches in Personalised Pharmacotherapy.
Tartu 2019, 150 p.

12. Sulev Reisberg. Developing Computational Solutions for Personalized
Medicine. Tartu 2019, 126 p.

13. Huishi Yin. Using a Kano-like Model to Facilitate Open Innovation in
Requirements Engineering. Tartu 2019, 129 p.

14. Faiz Ali Shah. Extracting Information from App Reviews to Facilitate
Software Development Activities. Tartu 2020, 149 p.

15. Adriano Augusto. Accurate and Efficient Discovery of Process Models
from Event Logs. Tartu 2020, 194 p.

16. Karim Baghery. Reducing Trust and Improving Security in zk-SNARKs
and Commitments. Tartu 2020, 245 p.

17. Behzad Abdolmaleki. On Succinct Non-Interactive Zero-Knowledge Pro-
tocols Under Weaker Trust Assumptions. Tartu 2020, 209 p.

18. Janno Siim. Non-Interactive Shuffle Arguments. Tartu 2020, 154 p.
19. Ilya Kuzovkin. Understanding Information Processing in Human Brain by

Interpreting Machine Learning Models. Tartu 2020, 149 p.

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Problem Area: Blockchain-based Business Process Management Systems
	Collaborative Business Processes
	Business Process Execution: Compiled versus Interpreted
	Access Control, Flexibility and Dynamic Process Execution

	Problem Statement
	Overview of the Contributions and Outline of the Thesis

	Background
	Business Process Management
	Business Process Model and Notation
	Blockchain Technology
	Types of Blockchains and Consensus Protocols
	Ethereum Blockchain and Smart Contracts

	State of the Art
	Architectures of Business Process Management Systems
	Blockchain-Based Collaborative Business Processes: Implementation and Execution
	Flexibility in Collaborative Processes
	Resource Perspective: Access Control, Binding and Delegation Models
	Control-flow Perspective: Variability, Adaptation, Evolution and Looseness

	Caterpillar: A Blockchain-based Business Process Execution Engine
	Running Example
	Architecture of the Caterpillar System
	On-Chain Runtime and Storage
	Off-chain Runtime
	Web Portal

	Compiling BPMN into Solidity Smart Contracts
	Process variables and external resources
	Control-flow Perspective
	Sub-processes and Reusable Elements
	Event Handling

	Implementation and Evaluation
	REST API
	Experimental Setup
	Experimental Results and Discussion

	Summary

	Interpreted Execution of Blockchain-Based Business Process Models
	Extending the Architecture of the Caterpillar System with the Interpretation-based Engine
	On-Chain and Storage Layer
	Off-Chain Access and Process-Aware Layers

	Control-Flow and Data Representation
	BPMN Interpreter Operation
	Implementation and Evaluation
	 Summary

	Controlled Flexibility in Blockchain-Based Business Processes
	Dynamic Role Binding
	Binding Policy Specification Language
	Runtime Role-Binding Operations

	Control-Flow Flexibility and Agreement Policies
	Agreement Policies on Control-Flow
	Runtime Agreement Operations

	Policy Consistency Verification
	Implementation and Evaluation
	Compiling Role-Binding Policies into Smart Contracts
	Compiling Agreement Policies into Smart Contracts
	Experimental Setup
	Experimental Results and Discussion

	Summary

	Conclusion and Future Work
	Summary of contributions
	Future work

	Bibliography
	Code Repositories
	Acknowledgement
	Sisukokkuvõte (Summary in Estonian)
	Curriculum Vitae
	Elulookirjeldus (Curriculum Vitae in Estonian)
	List of original publications

