
University of Tartu

Faculty of Science and Technology

Institute of Technology

Muhammad Usman

Development of an Optimization-Based Motion Planner and Its
ROS Interface for a Non-Holonomic Mobile Manipulator

Master’s thesis (30 EAP)
Robotics and Computer Engineering

Supervisors:

Arun Kumar Singh
Karl Kruusamäe

Tartu 2020

Abstract

Development of an Optimization-Based Motion Planner and Its ROS Interface
for a Non-Holonomic Mobile Manipulator

The application of mobile manipulators is expanding to different fields such as space, underwa-
ter, construction, service and, health-care, as such robotic systems provide the ability to move
around the environment and manipulate objects. The thesis presents an optimization-based
motion planning algorithm for a manipulator mounted on a non-holonomic mobile base. In
particular, this work deals with the sub-class of problems called task-constrained trajectory
optimization, where the end-effector position and orientation are given by the user as input,
and the algorithm computes the necessary joint motions of the manipulator and the mobile
base. This class of problems is especially important for applications like 3D printing and
robotic painting, where the mobile base and the manipulator needs to be moved simultane-
ously. The proposed algorithm computes smooth (as defined by higher-order differentiability)
motions for both manipulator and mobile base also, it provides hyper-parameters that can
be tuned to trade-off different aspects of the motions. The proposed trajectory optimization
is implemented on hardware consisting of a UR5e arm mounted on the top of the MiR100
mobile base. To achieve a rigorous implementation, the thesis also develops a custom Robot
Operating System (ROS) interface for the aforementioned hardware.

Keywords: Mobile manipulator, motion mlanning, optimization, ROS

CERCS: T125 Automation, robotics, control engineering

2

Abstract in Estonian

Optimeerimisele Baseeruva Liikumisplaneerija Arendamine ja SelleROSi Liides
Mitteholonoomse Mobiilse Manipulaatori Jaoks

Mobiilsete manipulaatorite rakendamine laieneb erinevatesse aladessenagu vabas ruumis,
vee all, ehitus, teenindus ja tervishoiu, kuna sellisedseadmed pakkuvad võimalust liikuda
keskonnas ning manipuleeridaesemeid. Väitekirjas on esitatud optimeerimisele baseeruv
liikumisekavandav algoritm manipulaatori jaoks, mis asub mitteholonoomselalusel. Täpse-
malt tegeletakse töö raames probleemide alamhulkaganimega ülesande-piiratud trajektoori
optimiseerimine, kus lõpp-mõjuriasukohta ja suunda on antud kasutaja poolt sisendina, ja
algoritmarvutab manipulaatori ja aluse vajalikuid ühiseid liikumisi. Sellise tüübiprobleemid
on eriti tähtsad rakenduste jaoks nagu 3D printimine jarobootne värvimine, kus mobiilse
aluse ja manipulaatori tuleb liigutadasamaaegselt. Esitatud algoritm arvutab siledaid (s.t.
kõrgejärguliseltdiferentseeruvaid) liikumisi nii manipulaatori kui aluse jaoks, ja samal ajal-
pakub hüperparameetreid, mille abil on võimalik sättida liikumiseerinevaid ilmeid. Pakutud
teekonna optimeerimine on teostatudriistvaras, mis koosneb mobiilsel MiR100 alusel asetatud
UR5e kodarast.Saavutamaks ranget teostust on väitekirjas arendatud tavapäranerobootse
operatsioonisüsteemi (ROS) liides ülalmainitud riistvara jaoks.

Võtmesõnad: Mobiilne manipulaator, liikumise kavadamine, optimeerimine, ROS

CERCS: T125 Automatiseerimine, robootika, juhtimistehnika

3

Contents

Abstract 2

Abstract in Estonia 3

List of Figures 7

List of Tables 8

1 Introduction 9
1.1 Objectives and Contribution . 10

1.1.1 Functional Requirements . 10
1.1.2 Software Requirements . 11
1.1.3 Hardware Requirements . 11

1.2 Organization of Thesis . 11

2 Literature Review 12
2.1 Stationary Robots . 12
2.2 Mobile Manipulator . 12
2.3 Application of Mobile Manipulator . 12
2.4 Motion Planning . 14

2.4.1 Sampling-Based Motion Planning . 14
2.4.2 Optimization-Based Motion Planning 15
2.4.3 Challenges in Mobile Manipulation 16

2.5 Robot Operating System (ROS) . 16
2.5.1 ROS Communication . 16
2.5.2 ROS Topics . 17
2.5.3 ROS Services . 17
2.5.4 ROS Actions . 18
2.5.5 Robot Description Modeling . 18
2.5.6 Coordinate System and Transforms (tf) 19

2.6 Manipulator Kinematics . 20
2.7 Mobile Robot Kinematics . 21

4

3 Methodology 22
3.1 End-Effector Pose Constrained Trajectory Optimization 22

3.1.1 Symbols and Notations . 22
3.1.2 Trajectory Optimization . 22
3.1.3 Algebraic Form for the Costs . 24

3.2 Parametrization and Solution Process . 26
3.2.1 Reformulating as an Unconstrained Optimization Problem 27

4 Implementation 29
4.1 Mobile Manipulator . 30

4.1.1 Mobile platform: MiR100 . 30
4.1.2 Manipulator: UR5e . 30

4.2 Kinematics of Mobile Manipulator . 31
4.3 Trajectory Optimization Planner . 32
4.4 ROS Interface . 33
4.5 Simulation . 33
4.6 Real Robot Hardware . 35

5 Results 38
5.1 Weight Tuning and Convergence Validation 38
5.2 Joint Motions Comparison with KDL . 40
5.3 End-effector Trajectory Tracking Analysis 41

6 Conclusions and Future Work 44

Bibliography 50

Non-exclusive license 51

5

List of Figures

2.1 Major applications of mobile manipulator: professional/service (home and
health-care), space exploration, military, and industry [16]. 13

2.2 TRIDENT project: underwater intervention demonstration [23]. 13
2.3 AEROARMS project: An aerial manipulator system consisting of a hexarotor

platform and dual-arm system [25] . 14
2.4 Communication between ROS nodes using ROS topic. 17
2.5 Communication between server and client. 18
2.6 Communication between action server and action client. 18
2.7 Visualization of a mobile robot and a robotic arm with tf coordinate frames.

The red, green and blue (RGB) cylinders represent the X-axis, Y-axis and
Z-axis respectively. 19

2.8 Coordinate Frames of a 6-revolute manipulator robot based on DH conventions
[56] . 20

2.9 Kinematics model of a non-holonomic mobile robot 21

3.1 Relevant vectors for computing the end-effector position in the global frame 24
3.2 For a given function h, the red line shows the plot of max(0, f) and its smooth

approximation given by log(1 + exp(h) is shown in blue. 28

4.1 Schematic of motion planning of a mobile manipulator using ROS interface 29
4.2 MiR100 Mobile Platform [61] . 30
4.3 UR5e Robot [63] . 31
4.4 Reference coordinate frames for the mobile manipualtor with URDF visualiza-

tion in Rviz (left) and the actual hardware (right) 31
4.5 Desired Trajectory . 32
4.6 Simulation of the mobile manipulator following the elliptical trajectory at dif-

ferent time intervals. The red marker shows the desired end-effector trajectory
and the blue marker shows the traced trajectory. 34

4.7 Simulation of the mobile manipulator following the infinity symbol trajectory
at different time intervals. The red marker shows the desired end-effector
trajectory and the blue marker shows the traced trajectory. 34

4.8 Simulation of the mobile manipulator following the triangular trajectory at dif-
ferent time intervals. The red marker shows the desired end-effector trajectory
and the blue marker shows the traced trajectory. 35

6

4.9 Real robot following the elliptical trajectory at different time intervals. The
green marker shows the traced trajectory. 36

4.10 Real robot following the infinity symbol trajectory at different time intervals.
The green marker shows the traced trajectory. 36

4.11 Real robot following the triangular trajectory at different time intervals. The
green marker shows the traced trajectory. 37

5.1 Simulation of an elliptical trajectory for a manipulator mounted on a non-
holonomic base for (a) w2 = 20 and (b) w2 = 200. Desired end-effector
trajectory is shown in red, the actual trajectory traced in blue dashed line, and
the mobile base trajectory is shown in cyan. 39

5.2 Manipulator joint acceleration (q̈) for w2 = 20 (solid) and w2 = 200(dashed) 39
5.3 (a) Residual cost for 10 different values of w2. (b) Cyclicity validation: Average

residual between initial and final configurations, velocities, and accelerations
using 10 different trajectories . 40

5.4 Comparison between proposed optimization-based approach and KDL Method 41
5.5 Trajectory tracking with desired trajectory (red), simulation tracked (blue) and

real robot tracked (green): 5.5(a) elliptical, 5.5(c) infinity symbol and 5.5(a)
triangular trajectory. 5.5(b),5.5(d),5.5(f) shows error in x,y and z axis for
each trajectory . 42

7

List of Tables

3.1 Important Symbols . 23

4.1 DH parameters of UR5e manipulator [65] 32
4.2 Transformation between the manipulator base frame to the mobile base frame. 32

5.1 Tracking performance evaluation - Elliptical Trajectory 43
5.2 Tracking performance evaluation - Infinity Symbol Trajectory 43
5.3 Tracking performance evaluation - Triangular Trajectory 43

8

1 Introduction

Robots are intelligent machines designed to assist human beings, and their scope of applica-
tion spans across diverse fields such as bio-mechanics, entertainment, surgery, medical and
healthcare, military, etc. [1].
A mobile manipulator is a robotic system that consists of a manipulator mounted on the top
of a mobile platform. A mobile manipulator leverages the capability of the mobile platform
to move in an environment, and thus has the ability to manipulate objects in an extensive
workspace compared to a fixed base manipulator. The potential applications of mobile
manipulators are in healthcare [2], construction [3], nuclear reactor maintenance [4], planetary
exploration [5] among others. For many applications, a mobile manipulator can be considered
as two separate systems, and their individual motions can be coordinated in sequence. For
example, the mobile platform moves to a specified position while maintaining the manipulator
stationary, and then keeping the mobile platform stationary, the manipulator is used to
grasp objects. However, certain applications such as robotic 3D (three dimensional) printing
[6], requires the mobile base and the manipulator to be moved simultaneously to ensure
that the end-effector follows a given trajectory [7]. Subsequently, this requires synchronous
coordination of the mobile base and the manipulator.
The problem of computing the required coordination comes within the ambit of motion
planning, a computational technique to generate a sequence of valid configurations connecting
the robot’s initial pose to the goal pose. Motion planning of mobile manipulators is challenging
due to the complex non-linear nature of the kinematics. In the context of this thesis, a specific
case of mobile base with the so-called non-holonomic behavior is considered. Intuitively,
this refers to the condition that the mobile base can only move forward/backward along its
heading, similar to a car. This in turn, results in a highly non-linear coupling between the
mobile base and the manipulator. The complexity of motion planning is also increased due
to the presence of kinematics redundancy, i.e the mobile base and the manipulator together
posses more degree of freedom than that required to perform a given manipulation task.
Thus, the motion planning algorithm should be sophisticated enough to extract the best
possible solutions among several possibilities.
Mobile manipulation also presents key challenges at the hardware level. Several existing
robots are controlled through a universal application programming interface (API) called
Robot Operating System (ROS) that provides extensive software libraries for controlling
manipulators. However, support for mobile manipulators is limited, and thus require to
perform the software and hardware integration from scratch.

9

1.1 Objectives and Contribution

The thesis presents a unified approach for addressing the above challenges and consists of the
following objectives.

• To develop a motion planner that can take into account the various task-level objectives
(such as goal reaching) of mobile manipulation while satisfying constraints on motion
of the manipulator and the mobile base.

• To develop a ROS interface for controlling the in-house mobile manipulation platform
consisting of a MiR100 industrial mobile base and a UR5e manipulator.

The thesis presents the following contribution in light of the above mentioned objectives.

• It presents an optimization-based motion planning algorithm with the following useful
features.

– The proposed trajectory optimization approach produces smooth manipulator
and mobile base joint trajectories as measured by the acceleration profile. This is
achieved by parameterizing the motions in terms of time dependent polynomials
and formulating the costs and constraints in terms of the coefficients of the
polynomial.

– The proposed trajectory optimization approach maintains cyclicity which means
that the closed cyclic trajectories for the end-effector lead to closed cyclic tra-
jectories for the mobile base and the manipulator. This, in turn, proves useful
when multiple repetitions of a given cyclic trajectory need to be performed. The
cyclicity feature essentially ensures that it is possible to replay the manipulator
and base motions to achieve this.

• The thesis also develops a ROS based software set-up for executing the computed
motions plans on an actual mobile manipulator hardware. This involves integrating
the kinematics and control description of the combined mobile base and manipulator
system in the ROS architecture and developing the interface for executing velocity and
joint commands on the robot.

• Finally, the thesis also presents extensive simulation and experimental results to validate
the efficacy of the proposed algorithms and software set-up.

1.1.1 Functional Requirements

• Generate smooth trajectories for mobile manipulators to follow a given cyclic trajectory.

• Generate the corresponding velocity commands for the mobile base and joint motion
for the manipulator.

• Track the end-effector position using ar-markers.

• Compare joint motions with KDL (Kinematics and Dynamics Library) method.

10

1.1.2 Software Requirements

• Ubuntu 18.04 for running ROS Melodic Distribution

• Python, including the Scipy, Sympy, Numpy, and Auograd libraries, required for
developing the trajectory optimization algorithm.

• C++ programming language to create ROS nodes, needed to send commands to the
mobile manipulator.

• Use KDL as a kinematics solver to compare results with the proposed optimization
method.

1.1.3 Hardware Requirements

• ROS-enabled mobile manipulator platform.

1.2 Organization of Thesis

The content of this thesis is organized into 6 chapters. current chapter presents the in-
troduction, motivation, contributions and objectives of the thesis. The concepts of mobile
manipulator, motion planning and ROS are given in chapter 2. Chapter 3 describes the tra-
jectory optimization approach and how to compute the motions for the mobile manipulators.
The implementation of the proposed method both in simulation and real robot is presented
in chapter 4. The results of the weight tuning and convergence validation, comparisons of
joint motion with KDL and end-effector trajectory tracking analysis are presented in chapter
5. Conclusions and future work are presented in chapter 6.

11

2 Literature Review

2.1 Stationary Robots

Conventional manipulator robots consist of several metal segments which are connected
together by joints. Traditionally, these kinds of manipulators are bolted on the fixed bases
and are designed to assist humans in performing dirty, dangerous, repetitive and tedious
tasks such as welding [8], painting [9], material handling [10] and industrial manufacturing
[11]. Despite the great advantages, these manipulators only can offer limited operational
workspace and reachability.

2.2 Mobile Manipulator

A mobile manipulator consists of a robotic manipulator mounted on top of the mobile base
that combines the dexterous manipulation offered by the manipulator and mobility provided
by the mobile base. As compared to stationary manipulators, mobile manipulators have a
significantly large and extensive workspace that allows them to perform a wide array of tasks
that need locomotion and manipulation abilities [12].

2.3 Application of Mobile Manipulator

The application of mobile manipulator robots are expanding to space exploration [5], home-
care [13], health-care [2], search and rescue [14], nuclear reactor maintenance [4], military
[15], construction [3], etc and they are not restricted to only industrial environments. In [16]
the author categorizes different applications of mobile manipulators into four major domains:
professional/service (home and health-care), space exploration, military, and industry (Figure
2.1).
Recently, the environment for the applications of mobile manipulators has turned from factory
environments to human environments, due to the fact that they are well suited for human
tasks, therefore, such robots are currently present in homes (assisting elderly and/or disabled
peoples), offices , hospitals , etc [17]. For instance, a mobile manipulator with ability to
manipulate the environment is widely used for domestic applications such as MOVIAD [18],
EL-E [19], Care-o-bot II [13] and PR2 [20], which were developed in research institutes to
provide mobile manipulation assistance in the home environment for elderly and disabled
persons.

12

Figure 2.1: Major applications of mobile manipulator: professional/service (home and
health-care), space exploration, military, and industry [16].

In the past few years, mobile manipulators have gained significant interest and their applica-
tions extended towards different environments such as underwater and aerial environments
[21]. Autonomous underwater vehicles (AUVs) equipped with robotic manipulators (known
as autonomous underwater vehicle manipulator) are used to perform many underwater inter-
vention tasks such as oil exploration, installation of underwater telecommunication cables,
marine search and rescue and military services [22]. Figure 2.2 shows the TRIDENT project
underwater intervention demonstration where Girina 500 I-AUV recovering marine black-box
with a 7-DOF manipulator autonomously [23].

Figure 2.2: TRIDENT project: underwater intervention demonstration [23].

13

Furthermore, aerial manipulation systems are composed of unmanned aerial vehicles (UAVs)
and robotic arms which combine the mobility and agility of UAVs with manipulation dexterities
of manipulators, used for manipulation tasks such as simple collection, transporting, assembly
and disassembly of mechanical parts and high-voltage transmission lines inspection and
repairs, etc [24]. Suarez et al. [25] presented the aerial manipulation consisting of a hexarotor
platform and dual-arm manipulators. Figure 2.3 shows an aerial manipulator system which
is developed in the AEROARMS project for object grasping and release operations.

Figure 2.3: AEROARMS project: An aerial manipulator system consisting of a hexarotor
platform and dual-arm system [25] .

2.4 Motion Planning

Motion planning is a technique to generate a sequence of valid configurations that moves
the robot gradually from the initial pose to the goal pose. One of the fundamental robotics
task is to plan collision-free motions for robots to move in an environment with obstacles
and without colliding with the robot links itself [1]. There are two general classes of motion
planning algorithms which are commonly used to solve motion planning problems for mobile
manipulator robots, called sampling-based motion planning and optimization-based motion
planning [7].

2.4.1 Sampling-Based Motion Planning

The sampling-based motion planning is an algorithms which iteratively construct a graph by
randomly sampling the configuration space (space of possible positions that the robot may
reach). These algorithms are based on a collision checking module, that provides information
about possible trajectories and connects a set of points sampled from the obstacle-free space

14

in order to build a graph of feasible trajectories [26]. Sampling-based algorithm is effective in
high-dimensional spaces because it does not use an explicit representation of the environment
and the obstacles, thus it decreases the search cost and runtime for most problems [26].
However, the main issue is that it is not able to find an optimal solution [27].
Rapidly-exploring Random Tree (RRT) and Probabilistic Roadmap (PRM) are two different
and common approaches to implement sampling-based algorithms [1]. In [28], Oriolo et
al. implemented single-query probabilistic planners to generate collision-free motions for a
non-holonomic mobile manipulator moving along a given end-effector path. In [29], Burget
et al. present a planning framework for generating asymptotically optimal paths for mobile
manipulators subject to task constraints using a bidirectional RRT in three scenarios: traverse
an environment equipped with obstacles, transportation of container of liquids in narrow
spaces and pulling a cart. The framework is able to generate solutions for the individual
tasks taking into account the end-effector orientation constraints in each case. In [30], Jaillet
et al. mention that having the kinematics constraints, the probability of obtaining a valid
configuration by sampling in the joint space(all of the places that each joint of a robotic
arm link can reach) is null, which complicates the sampling-based path planners. Using a
combination of Atlas (define diagrams that locally configure a manifold and coordinate the
diagrams to form an atlas) and RRT algorithms, it was possible to grow branches on the
configuration space, controlling the directions of expansion with RRT, and thus find solution
paths.

2.4.2 Optimization-Based Motion Planning

The motion planning of a robot can be formulated as a trajectory optimization problem.
Trajectory optimization is the process of designing a trajectory that minimizes (or maximizes)
an objective function such as velocity, acceleration and smoothness, while satisfying a set of
constraints, for example, manipulator’s joint limits and end-effector pose [31]. The common
trajectory optimization planner for robotics manipulation applications are CHOMP: Covari-
ant Hamiltonian Optimization for Motion Planning [32], STOMP: Stochastic Trajectory
Optimization for Motion Planning [33] and TrajOpt [34]. In case of mobile manipulator,
these algorithms model the end-effector path constrains as a non-linear equality constraint
and provide the optimal solution.
An optimization-based motion planning algorithm was proposed in [35], in which the im-
plemented coordination motion planning generates a trajectory for the mobile base and
manipulator simultaneously with collision avoidance, joints limitation and other constrains.
The algorithm consists of two nested loops, one for a penalty factor for the inequality con-
straints, and the second loop is used to find a collision-free trajectory solving the equality
constrains iteratively.
In [36], Bersenon et al. present an optimization approach for grasping and path planning
for mobile manipulators performing pick-and-place tasks. The algorithm has two phases:
optimization and planning. In the optimization phase, a co-evolutionary algorithm was used
to find the optimal robot configurations and grasp for the object in its initial and goal pose,
and in the planning phase, the path between the two robot configuration was computed by
using a bidirectional RRTs. A Sequential Convex Optimization method was implemented
by Schulman et al. [37] to find collision free trajectories for a 7-DOF robotic arm and an

15

18-DOF full body humanoid robot in a walking motion task. The optimization algorithm
repeatedly constructs convex sub-problems and turn the infeasible constraints into penalties,
that are multiplied with a coefficient to ensure that the constraint violation is driven to zero.

2.4.3 Challenges in Mobile Manipulation

The key objective of motion planning is to compute the inverse kinematics, which is redundant
as it has more degrees of freedom than the necessary to perform a specific task. One of the
most critical issues is the coordination between the mobile platform and the n-degree-freedom
robotic arm [38].
Mobile manipulators need to perform integrated control of the two components to achieve
efficient motion control. Each hardware has their own control system, and integrating these
to produce the desired outcome can be challenging. In applications like pick an object,
it may be sufficient to move the mobile platform to a desired location, and then perform
some manipulation, however, tasks like robotic 3D printing while moving [6] require a closer
coupling of these control systems [39].
In [40], Gao et. al. state that the main challenges with mobile manipulators are related to
the motion planning and coordinated control due to the redundancy resolution problem. In
[21], Khatib mention that mobile manipulators have limited abilities for manipulation and
interaction with humans, which depend largely on the full integration of mobility, manipulation,
and interaction. Therefore, control strategies are needed to develop vehicle/arm coordination
and compliant motion tasks to address kinematics redundancy.

2.5 Robot Operating System (ROS)

The Robot Operating System (ROS) [41] is an open-source software framework for robotic
systems and considered as generic middleware for developing robotic applications. It provides
hardware abstraction, low-level device control, implementation of commonly-used functionality,
message-passing between processes, and package management [42]. ROS supports multilingual
programming platforms such as Python, C++, among other.
The main objectives of ROS are to increase the reuse of the code and to support as many
different robots as possible by setting a universal standard in robotics research and development
and it is largely supported by the robotics (commercial and academic) community [43].
It includes a variety of tools, libraries and software packages for robot description, pose
estimation, communication, motion planning, grasping, navigation, simulation, perception,
mapping, localization, etc [44].

2.5.1 ROS Communication

A complex robotic system with a mobile base, robotics arm and gripper, etc. requires several
calculations and execution of many different programs simultaneously. ROS solves this
problem by allowing all the functions of the robot to be divided into a number of small
pieces that communicate with each other via messages. These small pieces are called nodes
and they function as a separate process to perform the overall computation of the robotic

16

system concurrently [45]. For instance, a node is responsible to perform given tasks, including
hardware initialization and control, motion planning, localization, processing sensor data and
visualization of the system, etc. [46]
The ROS Master, which is the core of the ROS system, manages communication between
nodes by providing unique name and registration to nodes. Without the Master, nodes
would not be able to find each other, exchange messages/invoke services [46]. Further, nodes
can communicate with each other in three different ways by publishing or subscribing to
topics (e.g reading or broadcasting sensor information), query/response via services and
accepting/rejecting an action [47].

2.5.2 ROS Topics

ROS topics are named buses in which nodes communicate with each other by exchanging
messages [48]. ROS topics provide a one-way communication channel between publisher
nodes and subscriber nodes. Nodes publish data or information that they want to share and
they subscribe to information that is useful for them. A single node may publish and/or
subscribe to many topics, and a single topic may have multiple publishers and subscribers at
same time [48]. Logically, the topic is typed message bus where each bus has a name and
anyone connected to the bus can receive and send messages as far as they are the right type
[46]. Figure 2.4 shows the communication model between ROS nodes using ROS topic.

Figure 2.4: Communication between ROS nodes using ROS topic.

2.5.3 ROS Services

A ROS service is a query and response type of communication. A service client node sends
a query message to the service server node, and the server sends back a response message
to the client. ROS service provides a one-time communication between server and client,
so once a request is sent to the server, the client must wait until the server responds [46].
ROS services are suitable for remote procedure calls e.g. for querying the state of a node or
doing a quick calculation such as inverse kinematics [47]. Figure 2.5 shows service query and
response communication between server and client.

17

Figure 2.5: Communication between server and client.

2.5.4 ROS Actions

Like ROS services, ROS actions are also a type of a query and response communication
between action server and action client. The action server can provide frequent feedback to
monitor the progress before the requested goal has been achieved [47]. ROS actionlib [49]
package provides tools to create action servers and action clients interface by defining three
types of messages: goal, feedback and result with which they communicate with each other.
GOAL: Action client sends goals to action server.
FEEDBACK: Action server sends progress feedback to action client while performing
long-term goals.
RESULT: Action server sends a result message to action client as soon as the task is
completed.
Figure 2.6 depicts action query and response communication between action server and client.

Figure 2.6: Communication between action server and action client.

2.5.5 Robot Description Modeling

ROS describes the model of robot with Unified Robot Description Format (URDF) [50] file
which is an XML template used to specify the kinematics and dynamics, robot visualization
and the collision model of a robot. URDF files describes all the elements of the robot, such
as number of joints, joints limits, links length, sensors, etc, furthermore, the links of a robot

18

can be defined by any geometric shape with the help of mesh file. To visualize the robot in a
3D world, ROS rviz [51] is a graphical tool that allows to render a 3D model of robots using
URDF file information.

2.5.6 Coordinate System and Transforms (tf)

Coordinate frame system describes the position and orientation of a robot in an environment,
coordinate system in ROS are right-handed and in 3D. According to ROS usual convention,
the base frame attached to mobile robot always comes up with X-axis towards the front,
Y-axis to left and Z-axis to upwards direction. Figure 2.7(a) shows the coordinate frames of
a mobile robot that follows this convection.
ROS tf library provides a standard way to keep track of coordinate frames over the time and
transform data within the system by attaching a unique coordinate frame to each element
(link) of the robot as defined in the URDF model [52]. Furthermore, tf maintains the
relationship between multiple coordinate frames in a tree structure and it also allows to
transform points, vectors, pose, etc., between any two coordinate frames at any requested
time [53].
The tf library has two modules, broadcaster and listener. The broadcaster designed to update
data regarding coordinate frames of the robot over time to the rest of the system, and the
listener collects the received data and stores the values coordinate frames that are published
to the system, and may query for any particular transforms between coordinate frames on the
system [52]. The tf provides essential information regarding robot position and orientation in
the environment and helps to track exact location of the robot over time. Figure 2.7 shows
an example of the rviz visualization of a mobile robot and a robotic arm with tf coordinate
frames.

(a) Coordinate frame of the mobile robot
that has X-axis towards the front, Y-axis
to left and Z-axis to upwards direction

(b) Coordinate frames of the robotic
arm from base (base_link) to end-
efftor(tool0)

Figure 2.7: Visualization of a mobile robot and a robotic arm with tf coordinate frames.
The red, green and blue (RGB) cylinders represent the X-axis, Y-axis and Z-axis respectively.

19

2.6 Manipulator Kinematics

The kinematics of the manipulator robot describes the mathematical relationship between the
movement of connected links, position and orientation in space, without considering the cause
of motion [54]. Forward Kinematics takes joint variables values as input and computes
the end-effector position and orientation, whereas the Inverse Kinematics takes the pose
of the end-effector and determines the joint variables values. The DH (Denavit-Hartenberg)
convention [55] is a common way to define reference frames for robotics applications, and
express the relationship between links through homogeneous transformation matrix that can
be used to solve forward and inverse kinematics. Figure 2.8 shows the coordinate frames of a
6-revolute joints manipulator robot based on DH conventions.

Figure 2.8: Coordinate Frames of a 6-revolute manipulator robot based on DH conventions
[56]

A transformation from frame i-1 to frame i can be computed using homogeneous transforma-
tion matrix, denoted as T i−1i

T i−1i =


cosθi −sinθicosαi sinθisinαi aicosθi
sinθi cosθicosαi −cosθisinαi aisinθi
0 sinαi cosαi di
0 0 0 1

 =

[
R T
0 1

]

Where:
R represents the rotation matrix (3x3) and T represents a (3x1) translation vector. αi, ai, θi
and di are DH parameters, which are generally named as link twist, link length, joint angle
and joint offset respectively. To calculate the forward kinematics of a manipulator robot,
transformation matrices from base frame to end-effector frame are multiplied.

T 0
n = T 0

1 T
1
2 T

2
3T

n−1
n

20

2.7 Mobile Robot Kinematics

Contrary to manipulators, mobile robots can move freely with respect to their environment.
The kinematics of mobile robot describe the behavior of the mobile base where each individual
wheel contributes to the robot’s motion and, at the same time, the kinematics of the wheeled
mobile platform is subjected to velocity constraint. The model contemplates how the wheels
are tied together based on robot chassis geometry [57]. The Figure 2.9 represents the
kinematics model of non-holonomic mobile robot. The mobile robot has the local frame {l}
which is located in the middle of the base, (xl, yl) coordinates represents the position of the
mobile robot and φ is the heading angle with respect to the global frame {g}. To drive the
mobile robot, it is necessary to define linear velocities (ẋ, ẏ) and angular velocity φ̇ [58]. The
velocities are decomposed into corresponding speed for each wheel.

Figure 2.9: Kinematics model of a non-holonomic mobile robot

21

3 Methodology

In this chapter, a trajectory optimization approach for motion planning of a manipulator
mounted on non-holonomic base (e.g a differential drive robot) is presented. The objective of
the proposed method is to compute the corresponding smooth joint space motions for the
given end-effector position and orientation trajectory.

3.1 End-Effector Pose Constrained Trajectory Optimiza-
tion

The problem considered in this section can be formally described as follows.

Problem Definition (P1): Given an end-effector pose (position + orientation) trajectory
in the global frame, compute joint motions of the manipulator and the mobile base, based
on user defined optimality criteria.

3.1.1 Symbols and Notations

Italic letters represent scalars and boldfaced lower case letters represent vectors while upper
case variants will represent matrices. Table 3.1 summarizes the important symbols used in the
thesis. Some symbols are also defined at their first place of use. The time dependence of the
vectors, matrices and other variables are shown with a left subscript t and a left superscript
of 0, l, g and e to denote whether a vector/matrix is defined in the manipulator base, mobile
base, global or end-effector reference frame respectively. With a slight abuse of notation,
the position vectors of the end-effector is also represented with subscript e. For notational
simplicity and where it is obvious, the subscripts defining the reference frame is removed, e.g
φbt ,q.

3.1.2 Trajectory Optimization

Considering the symbols and notations described in Table 3.1, the problem (P1) can be
formulated as the following trajectory optimization.

22

Table 3.1: Important Symbols

{0}, {l}, {g}, {e} Manipulator base, mobile base, global
reference and end-effector reference
frame respectively.

lxo = (lxo, lyo, lzo) Position of the origin of {0} with re-
spect to the origin of {l} expressed in
the reference frame of the later.

gxb
t = (gxbt ,

gybt , 0) Position vector to origin of the mobile
base frame measured and expressed in
global frame

lxe
t = (lxet ,

lyet ,
lzet) Position vector to end-effector mea-

sured in manipulator frame {0} and ex-
pressed in mobile base frame {l}

gxe
t Position vector to end-effector mea-

sured and expressed in global frame
φb Heading angle of mobile base measured

in global frame
qt = (q1t , q

2
t , . . . , q

n
t) Vector of joint angles of the manipula-

tor.
gxd

t = (gxdt ,
gydt ,

gzdt) Desired end-effector position measured
and expressed in global frame

gke
t ,

gθe
t = (gxdt ,

gydt ,
gzdt) Axis and angle respectively for rep-

resenting end-effector orientation in
global frame

arg min
q,xb,yb,φb

w1

∑
t

smoothness cost︷ ︸︸ ︷
‖q̈t‖22 +w2

∑
t

minimize base motion︷ ︸︸ ︷
‖ẋbt‖22 + ‖ẏbt‖22

+w3(
∑
t

position cost︷ ︸︸ ︷
fpos(qt,

gxbt , φ
b
t)+

∑
t

orientation cost︷ ︸︸ ︷
forient(qt, φ

b
t)+

terminal cost︷ ︸︸ ︷
fm(qtf) + fb(gxtf ,

gytf , φ
b
tf
)) (3.1)

qmin ≤ qt ≤ qmax (3.2)
gẋbt sinφ

b
t − gẏbt cosφ

b
t = 0 (3.3)

The cost function in (3.1) has several components. The first term ensures smoothness in
the manipulator joint trajectory qt by minimizing the norm of the accelerations at each
time instant. Such notion of trajectory smoothness in terms of the norm of the acceleration
vector has been extensively used in the robotics literature. For example in [33], [59] and the
references therein.
The second term in (3.1) minimizes the base motion by minimizing the norm of the linear
velocity of the base at each time instant. This term is motivated by the intuition that mobile
base are generally heavy and thus its motion requires more energy than the manipulator.
Therefore, it is beneficial to utilize the manipulator motion more than the base motion to
track the given end-effector pose trajectory.
The third term in (3.1) is the position cost. Its role is to ensure that the end-effector gxet
position in the global frame coincides with the desired trajectory gxdt at each time instant.
Note that the desired trajectory is assumed to be given. The closer gxet is to gxdt , the smaller
the value of fpos. It is also worth pointing out that fpos represents a cost, it is always
non-negative, i.e its smallest value can be zero and it happens when gxet is to gxdt are exactly
the same. Later in this section, the exact algebraic form for fpos is presented.

23

The fourth term in (3.1) is the orientation cost which ensures that the end-effector has the
specified orientation at each time instant. The form of forient is similar to fpos and is derived
in the next section. The final two terms in (3.1) models the terminal cost, i.e, the cost on the
final manipulator joint values (fm) and, position and orientation of the mobile base (fb).
The weights wi allows to achieve trade-off between different cost components. For example,
by choosing w3 higher than w1, w2 the position, orientation and terminal costs can be reduced
by minimizing smoothness.
There are two sets of constraints in the formulated trajectory optimization. The constraints
(3.2) are the bounds on the manipulator joint values. The equality constraints in (3.3) are
called the non-holonomic constraints. These are specific to mobile robots with differential
drive mechanism. It states that the mobile base motion in the x and y are coupled with each
other through the heading angle. To put it more simply, the mobile base can only move
forward or backward in the direction of the instantaneous heading of the mobile base. In the
following subsections, the algebraic form for the different components of the cost function is
derived.

3.1.3 Algebraic Form for the Costs

Position Cost fpos: For deriving the position cost fpos, the forward kinematics of the
combined system of the mobile base and the manipulator need to be derived firstly. From
Figure 3.1, the end-effector position in the global frame gxet can be represented in the following
manner [7].

gxet =
gxbt +

g
lR(φbt)(

lx0 +

lxe
t︷ ︸︸ ︷

l
0R

0xet) (3.4)

Where, the rotation matrix l
0R depends on how the manipulator is connected to the mobile

base and is constant. The term g
lR represents the rotation matrix between the local mobile

base and the global frame and is a function of φbt . The vector 0xe represents the end-effector
position in the manipulator local reference frame.

(a)

4 5 6 7 8 9 10 11 12

−3

−2

−1

0

1

2

3

4

5

6

gy

gz

{g}

lx
{l}

gx

ly

l
xe

g
xe

{0}

l
x0

g
xb

(b)

Figure 3.1: Relevant vectors for computing the end-effector position in the global frame

24

Thus, the position cost takes the form

fpos(qt,
gxbt , φ

b
t) = ‖gxbt +

g
lR(φbt)(

lx0 +

lxe︷ ︸︸ ︷
l
0R

0xet)− gxdt ‖22. (3.5)

The desired trajectory gxdt has to be given. Also, note that the 0xet is obtained by the
forward kinematics of only the manipulator and is a function of the joint angles qt.

Orientation Cost: The final rotation matrix describing the orientation of the end-effector
in the global reference frame is given by

gRe =
g
lR(φbt)

l
0R

0Re(qt) (3.6)

From the final rotation matrix, the axis-angle representation of the end-effector can be
computed. The axis vector gket can be extracted from gRe in the following manner.

gket =

gRe(3, 2)− gRe(2, 3)
gRe(1, 3)− gRe(3, 1)
gRe(2, 1)− gRe(1, 2)

 (3.7)

where, gRe(i, j) represents the (i, j) element of the matrix. The right hand side of (3.7) can
be substituted in (3.1) to get a first half of the orientation cost. Please note that the axis is a
function of qt, φbt . The angle associated with the axis gket is given by the following

cos(gθet) =
Tr(gRe)− 1

2
(3.8)

where Tr(.) represents the trace operator. For computing the orientation cost, assuming that
the desired end-effector orientation is also described in terms of some desired axis gkdt and
desired angle gθdt . Thus, the orientation cost can be formulated in the following form

forient(qt, φ
b
t) = ‖gket − gkdt ‖22 + ‖ cos(gθet)− cos(gθdt)‖22 (3.9)

Terminal Cost: The terminal cost essentially ensures that the values of qt, xbt , ybt , φbt at final
time instant are close to some specified values.

fm(qt) =

∥∥∥∥∥∥
qtf − qf
q̇tf − q̇f
q̈tf − q̈f

∥∥∥∥∥∥
2

2

(3.10)

25

where (qf , q̇f , q̈f) are user specified values. One can write similar expressions for xbt , ybt , φbt to
obtain fb(.) in (3.1) as shown below.

fb(x
b
t , y

b
t , φ

b
t) =

∥∥∥∥∥∥∥∥∥∥∥∥∥



xbtf − xf
ybtf − yf
ẋbtf − ẋf
ẏbtf − ẏf
φbtf − φf
φ̇btf − φ̇f



∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

, (3.11)

where (xf , yf , ẋf , ẏf , φf , φ̇f) are user specified boundary values.

Special Cyclical Condition: Suppose, the end effector trajectory is cyclic and closed, e.g
an ellipse or infinity symbol. Then, it is beneficial to have the trajectories of qt, xbt , ybt , φbt also
cyclic and closed. That is, when the mobile manipulator has come back to its start position
after completing the end-effector trajectory, its qt, xbt , ybt , φbt values should be the same that it
started with. This can be ensured by modifying the terminal cost in the following way for
the specific case of cyclic and closed end effector trajectory.

fm(qt) =

∥∥∥∥∥∥
qt0 − qtf
q̇t0 − q̇tf
q̈t0 − q̈tf

∥∥∥∥∥∥
2

2

(3.12)

fb(x
b
t , y

b
t , φ

b
t) =

∥∥∥∥∥∥∥∥∥∥∥∥∥



xbt0 − x
b
tf

ybt0 − y
b
tf

ẋbt0 − ẋ
b
tf

ẏbt0 − ẏ
b
tf

φbt0 − φ
b
tf

φ̇bt0 − φ̇
b
tf



∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

(3.13)

As shown above, the terminal cost for the cyclicity condition is just a penalty on the difference
between the initial and final values of the joint angles of the manipulators, position and
orientation of the mobile base.

3.2 Parametrization and Solution Process

To simplify the solution process of optimization (3.1)-(3.3), the variables can be parameterized
through smooth polynomials. This reduces the dimensionality of the problem and makes it
equal to the number of polynomial coefficients. This also ensures higher order continuity and
differentiability in the trajectories.
The parametrization is given by the following

26

qt = Pcq, gxbt = Pcx, gybt = Pcy, gφbt = Pcφ (3.14)

where P is a matrix of time dependent polynomial basis functions and cq, cx, cy, cφ are the
coefficients associated with the basis functions. Denoting ξ = (cq, cx, cy, cφ), the trajectory
optimization (3.1)-(3.3) can be represented in the following compact form

argmin
ξ
f(ξ) (3.15)

Aξ ≤ b (3.16)
g(ξ) = 0 (3.17)

Where, A is a constant matrix formed by diagonally stacking the different P matrices. The
vector b contains the joint limits. The vector valued function g is obtained by rewriting the
the non-holonomic constraint (3.3) at different time instants using the polynomial coefficients.
The optimization (3.15)-(3.17) is obtained by substituting (3.14) into (3.1)-(3.3). This form
is particularly suitable for describing the solution process next.

3.2.1 Reformulating as an Unconstrained Optimization Problem

Optimization (3.15)-(3.17) represents a difficult constrained non-linear programming problem.
One way to simplify its solution process is to reformulate it as the following unconstrained
optimization by reformulating the constraints as costs.

min f(ξ) + w4

∑
log(1 + exp(Aξ − b)2 + w5‖g(ξ)‖22 (3.18)

The second term is a cost stemming from the violation of the inequality constraints representing
the joint limit. That is, if Aξ > b, then the second term would be higher and vice versa.
This essentially pushes the solution towards region that satisfy the manipulator joint limits.
This specific term involving logarithm is a smooth approximation of so called Relu activation
function used in Neural Networks. To be precise, any inequality of the form h ≤ 0 can be
reformulated as a cost max(0, h). However, the max term is non-smooth as shown in Figure
3.2. The cost with logarithm is a smooth approximation of the max(0, h).
The third term relaxes the equality constraints to a quadratic penalty. It is clear that
the residual of ‖g(ξ)‖22 tends to zero, it would be approaching the required non-holonomic
behavior as dictated by the constraints (3.17). The weights w4.w5 serve the same purpose
as the weights w1, w2, w3 in (3.1). They allow to control the residual of cost term they are
associated with.
There are many techniques like Gradient Descent, sequential quadratic programming, regu-
larized Gauss Newton, that can be employed to solve (3.18). the implementation of these
techniques are relied on the open-source Python Packages like Scipy and Sympy to solve
(3.18).

27

Figure 3.2: For a given function h, the red line shows the plot of max(0, f) and its smooth
approximation given by log(1 + exp(h) is shown in blue.

28

4 Implementation

In this chapter, the implementation of the proposed trajectory optimization approach for the
motion planning of a mobile manipulator is demonstrated on both simulation environment
and with a real robot by following three different trajectories: elliptical, infinity symbol and
triangular.

Figure 4.1: Schematic of motion planning of a mobile manipulator using ROS interface

29

Figure 4.1 shows a diagram with the steps about how a mobile manipulator can follow a
given trajectory, starting from the description and kinematics of the robot, and by using
the propose trajectory optimization algorithms, compute a set of trajectory waypoints at
each instance of time, and at the end, send the commands to mobile base and manipulator
simultaneously through ROS communication protocol. This implementation can be accessed
through this repository [60].

4.1 Mobile Manipulator

The robot used to test and demonstrate the proposed methodology correspond to the following
main components,

4.1.1 Mobile platform: MiR100

MiR100 (Figure 4.2) is a non-holonomic mobile platform design and developed by Mobile
Industrial Robots [61]. It has the ability to transport up to 100 kg payload with maximum
speed of 1.5 m/s in forward-direction and 1.3 m/s in backward-direction. To control and
integrate MiR100 with ROS, a ROS community project [62] created by DFKI (the German
Research Center for Artificial Intelligence) which provides ROS driver and configuration files.

Figure 4.2: MiR100 Mobile Platform [61]

4.1.2 Manipulator: UR5e

UR5e (Figure 4.3) is an adaptable collaborative robotic arm developed by the Universal
Robots [63]. It can reach up to 0.85 m with respect to base and lift up to 5 kg payload. The
UR5e has six revolute joints with 640 degree rotational limit. It has built-in sensors that
detects the external force exerted on arm and immediately activate the emergency stop to
protect robot. This feature ensures the safety of the robot while performing repetitive and
dangerous tasks. To control and run the UR5e autonomously, ROS-Industrial universal_robot
meta-package [64] provides drivers and other necessary files to interface with the UR5e.

30

Figure 4.3: UR5e Robot [63]

4.2 Kinematics of Mobile Manipulator

The URDF files of both robots were combined in a single file where the UR5e manipulator
is attached on top of the MiR100 mobile platform, according to the dimensions of the real
robot (Figure 4.1(a)). This integration helps to represent the complete kinematics of the
mobile manipulator (Figure 4.1(b)). Figure 4.4 depicts the general relationship between
the coordinate frame references of the robot. The global reference frame {g} shows the
position and orientation of the mobile manipulator robot in Cartesian plane, reference frame
{l} represents the MiR100 mobile platform and reference frame {0} indicates the UR5e
manipulator base origin. DH representation are used to calculate the forward kinematics of
the manipulator (as described in chapter 2.6). The DH parameters and joint limits of UR5e
manipulator are given in the Table 4.1 taken from [65].

Figure 4.4: Reference coordinate frames for the mobile manipualtor with URDF
visualization in Rviz (left) and the actual hardware (right)

31

Table 4.1: DH parameters of UR5e manipulator [65]

Joint a(m) d(m) α(rad) θ(rad) θmin(deg) θmax(deg)
Joint1 0 0.1625 π/2 q1 -180 180
Joint2 -0.435 0 0 q2 -180 180
Joint3 -0.3922 0 0 q3 -180 180
Joint4 0 0.1333 π/2 q4 -180 180
Joint5 0 0.0997 -π/2 q5 -180 180
Joint6 0 0.0996 0 q6 -180 180

Table 4.2 describes the relationship between the position of the manipulator base {0} frame
with respect to the mobile base {l} frame.

Table 4.2: Transformation between the manipulator base frame to the mobile base frame.
lx0 Values (m)
lxo -0.26235
lyo 0.1
lzo 0.842

4.3 Trajectory Optimization Planner

To implement the proposed trajectory optimization approach (Figure 4.1(c)), as discussed in
the chapter 3, the SciPy python libraries are used to solve the mathematical expression (3.18)
and optimization problem. Figure 4.5 depicts different examples of the desired trajectories
with cyclic and closed path, and are considered as input (Figure 4.1(d)) for the trajectory
optimization planner which corresponds to the point in space that the end-effector has to
follow.

Figure 4.5: Desired Trajectory

The trajectory optimization planner generates a sequence of consecutive trajectory waypoints
(Figure 4.1(e)) that contain the joints motion (qt) of the manipulator and the motion
(gẋbt , gẏbt , gφ̇bt) of the mobile base. In order to follow the given trajectory, 100 trajectory
waypoints are generated, which represent the configuration of the robot at each instance of
time and are stored in a data file.

32

4.4 ROS Interface

The trajectory publisher node (Figure 4.1f) is in charge of reading trajectory waypoints and
distribute the commands to the corresponding joints of the manipulator and the velocities
to mobile base. Each robot has a set of ROS packages among there are ROS controllers
that take the commands (Figure 4.1(g)). In order to communicate with the manipulator the
controller provides the action server (discussed in chapter 2.5.4), and the trajectory publisher
node (Figure 4.1(f)) is an action client able to send trajectory waypoints as goals by using
FollowJointTrajectoryAction. For the manipulator, the trajectory waypoints are in the form
of positions, therefore the controller used is position_controllers/JointTrajectoryController.
In the case for the mobile base, the controller subscribes to command velocity topic /cmd_vel
which has the message type geometry_msgs/Twist. For differential drive wheel robot, ROS
provides diff_drive_controller.

4.5 Simulation

Simulation of robots is essential in the robotic research for rapid and efficient testing of
new ideas, concepts and algorithms. The robotics simulation environment can be used to
test robot applications without depending on real robot hardware which can save time and
resources.[66]. ROS is integrated with Gazebo simulator for robot modeling and simulation.
Gazebo [67] is designed to create 3D dynamic multi-robot environments that a robot may
encounter in a real world. It has ability to simulate robots, objects and sensors accurately in
indoor and outdoor environments. In this thesis, Gazebo simulation environment has been
used to test and visualize the motion planning for the mobile manipulator. By spawning the
URDF model of the robot in the Gazebo environment, and running the ROS controllers, it is
possible to send the base velocities and joint motion to the mobile manipulator to visualize
how the end-effector follows the desired trajectory.
The ROS action server on Gazebo uses the namespace "ns:arm_controller/follow_joint_trajectory"
to communicate with the action client which sends the manipulator joint motions, and the
mobile base subscribes to the topic /cmd_vel to receive base velocities. Figures 4.6, 4.7 and
4.8 show the simulations of the robot following three different trajectories: elliptical, infinity
symbol and triangular at different time intervals.

33

Figure 4.6: Simulation of the mobile manipulator following the elliptical trajectory at
different time intervals. The red marker shows the desired end-effector trajectory and the blue

marker shows the traced trajectory.

Figure 4.7: Simulation of the mobile manipulator following the infinity symbol trajectory at
different time intervals. The red marker shows the desired end-effector trajectory and the blue

marker shows the traced trajectory.

34

Figure 4.8: Simulation of the mobile manipulator following the triangular trajectory at
different time intervals. The red marker shows the desired end-effector trajectory and the blue

marker shows the traced trajectory.

4.6 Real Robot Hardware

The implementation of the proposed optimization method on real robot hardware is achieved
by sending the linear and angular velocities to the mobile base and joints motion to ma-
nipulator simultaneously. In order to communicate with the real robot, it is necessary
to run the drivers on each robot hardware, which enable the controllers to receive com-
mands. The arm takes the instruction as goals in the ROS action with the namespace
"ns:scaled_pos_traj_controller/follow_joint_trajectory" and the mobile base subscribes to
the topic /cmd_vel. To track and compare if the end-effector is following the given trajectory,
an ar_marker [68] was attached to the end-effector of mobile manipulator, and using a camera,
the trajectory was recorded. Figures 4.9, 4.10 and 4.11 present the real robot following three
different trajectories: elliptical, infinity symbol and triangular at different time intervals.

35

Figure 4.9: Real robot following the elliptical trajectory at different time intervals. The
green marker shows the traced trajectory.

Figure 4.10: Real robot following the infinity symbol trajectory at different time intervals.
The green marker shows the traced trajectory.

36

Figure 4.11: Real robot following the triangular trajectory at different time intervals. The
green marker shows the traced trajectory.

37

5 Results

The objective of this chapter is three-fold. First to validate the key aspects of the proposed
trajectory optimizer such as (i) convergence as measured by the decrease in the cost with
iterations, (ii) the ability of the optimizer to generate a diverse class of trajectories and finally
(iii) the ability to produce trajectories with cyclicity condition. Second, a comparison with
KDL is presented, which is an inverse kinematics library provided within ROS. Finally, the
experimental results for the execution of the computed trajectories both in simulation and
with real mobile manipulator hardware (consisting of MiR100 mobile base and UR5e arm)
are shown to quantify the tracking error.

5.1 Weight Tuning and Convergence Validation

The weights w1 and w2 in the cost function (3.1) acts as an hyper-parameter and allows us
to tune the behavior of the trajectories obtained with the proposed optimizer. This is a
particularly important feature as it allows us to control the individual contribution of mobile
base and the manipulator in tracking the given end-effector trajectory. For example, it is
often required to minimize the motion of the mobile base as they are generally much heavier
than the robot arm and thus require more energy for their motion.
Figure 5.1(a) and Figure 5.1(b) summarize this result wherein the trace of the mobile base
trajectory is shown in cyan. As can be seen, as w2 is increased from 20 to 200, the arc length
of the trajectory significantly reduces. This reduction in mobile base motion can be directly
correlated with the joint acceleration of manipulator shown in Figure 5.2. The accelerations
are higher for w2 = 200 indicating that the manipulator now compensates for reduction in
motion of the mobile base.
Smoothness: The joint acceleration plots in Figure 5.2 also clearly shows that the joint
accelerations are bounded and change gradually. This in turn is essential for faithfully
executing the computed trajectories on the real hardware.
Convergence Validation: Figure 5.3(a) shows the magnitude of the reformulated cost
(3.15) with iterations of the optimization solver (SciPy-SLSQP). As can be seen, the reduction
in cost is almost monotonic. Furthermore, it is worth noting that at higher w2, the solver
requires more iteration. This is because a high value of w2 conflicts with other cost terms in
(3.15) such as end-effector tracking error and thus the solver needs more iteration to reduce
the tracking residuals. Intuitively, this can be understood in the following manner. As w2

increases, the base motion is limited and thus the optimizer solver needs to search more
complex motions for the manipulator to maintain a low end-effector tracking residual.

38

Cyclicity Validation: Recall that the cyclicity condition requires that for closed and cyclic
trajectories of the end-effector, the mobile based and manipulator joint trajectories also
remain cyclic and closed. Intuitively, this means that when the mobile manipulator finishes
one repetition of the cyclic trajectory, it reaches the same configuration and velocities that it
started with. Figure 5.3(b) validates this for the end-effector trajectories shown in Figure
5.1(a) and Figure 5.1(b) by showing the norm of the difference between the start and final
configurations and velocities. Low values of the norm implies that the cyclicity condition has
been ensured.

(a) (b)

Figure 5.1: Simulation of an elliptical trajectory for a manipulator mounted on a
non-holonomic base for (a) w2 = 20 and (b) w2 = 200. Desired end-effector trajectory
is shown in red, the actual trajectory traced in blue dashed line, and the mobile base

trajectory is shown in cyan.

Figure 5.2: Manipulator joint acceleration (q̈) for w2 = 20 (solid) and w2 = 200(dashed)

39

(a) (b)

Figure 5.3: (a) Residual cost for 10 different values of w2. (b) Cyclicity validation:
Average residual between initial and final configurations, velocities, and accelerations using

10 different trajectories

5.2 Joint Motions Comparison with KDL

This section presents the comparison of the proposed optimization-based approach with
the inverse kinematics solver called KDL provided within ROS. Similar to the proposed
algorithm, KDL can generate manipulator joint motions such that the end-effector follows
the specified trajectory. However, in its current form, KDL is only applicable for the fixed
based manipulator. Thus for comparison purposes, an example where the mobile base motion
is fixed to a known trajectory, and only compute the joint motions for the manipulator is
considered. In effect, the mobile base motion can be subtracted from the desired end-effector
trajectory to obtain the part which requires to be followed by only the manipulator.
The comparison is performed in terms of the following metrics: The first metric is the
trajectory tracking error. The second metric is the smoothness defined in terms of norm of
the joint acceleration. Lower the norm, the smoother the joint trajectory. The final metric is
the manipulability index defined in the following manner.

Manipulability =
√
det(J(q)J(q)T), (5.1)

J(q) is the Jacobian of the manipulator and det(.) refers to the determinant of a matrix.
Higher the manipulability index, the farther the manipulator is from the singular configuration.
The results are summarized in Figure 5.4(a)-5.4(d). As shown in Figure 5.4(a) and 5.4(b),
the proposed optimization-based approach follows the given end-effector trajectory more
closely. Furthermore as shown in Figure 5.4(c) and Figure 5.4(d), the proposed approach
beats the KDL in terms of smoothness and manipulability index as well.

40

(a) Elliptical Trajectory (b) Trajectory tracking error

(c) Smoothness comparison (d) Manipulability comparison

Figure 5.4: Comparison between proposed optimization-based approach and KDL Method

5.3 End-effector Trajectory Tracking Analysis

In this section the results related to end-effector trajectory tracking for the elliptical, infinity
symbol and triangular end-effector trajectory are presented. Figure 5.5 depicts the user
specified desired trajectories in red. The simulation tracked values (plotted in blue) were
taken by running the simulation and a tf_listener, whereas for the real robot the tracked
trajectory values (displayed in green) were taken by using a camera and ar_marker attached
to the end-effector of the mobile manipulator robot. The absolute error is shown in three
plots for each axis.

41

(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Trajectory tracking with desired trajectory (red), simulation tracked (blue) and
real robot tracked (green): 5.5(a) elliptical, 5.5(c) infinity symbol and 5.5(a) triangular

trajectory. 5.5(b),5.5(d),5.5(f) shows error in x,y and z axis for each trajectory

The numerical tracking performance evaluation are listed in the following Tables 5.1,5.2 and
5.3, from which it can be seen that in general the real implementation shows a higher error
as compared with the simulation, which may be also related to the fact that the values are

42

taken from an ar_marker, and can be affected by light conditions, size of the marker and
the calibration of the camera. However, the robot was able to execute all three trajectories
with mean error values of less than 0.035 (m) in all axes. In the elliptical trajectory, the
maximum error that occurs at one instance of time with a value of 0.118 (m) the x axis. In
the infinity symbol and triangular, the highest error is presented in the y axis, with 0.125
(m) and 0.061 (m) respectively. It can be seen that the highest root mean square error is
present in y axes for all three real tracked trajectories, with values of 0.04 (m), 0.046 (m),
and 0.03 (m) respectively.

Table 5.1: Tracking performance evaluation - Elliptical Trajectory

Table 5.2: Tracking performance evaluation - Infinity Symbol Trajectory

Table 5.3: Tracking performance evaluation - Triangular Trajectory

43

6 Conclusions and Future Work

In this thesis, the integration of mobile base and manipulator was formulated as a trajectory
optimization problem, in which it was possible to generate a motion planning for a non-
holonomic mobile manipulator to follow a given trajectory, by using the kinematics model,
end-effector pose constraints and weight tuning.
The forward and inverse kinematics modeling of the manipulator were obtained by using
DH method as well as homogeneous transform matrices, and the integration with the mobile
base were adjusted by a transformation between the mobile base and the manipulator. The
smoothness cost let to minimize the acceleration in the manipulator joints, and the base
motion cost allowed to minimize the base velocities. The porposed trajectory optimization
method solves the cyclicity bottleneck while trajectories are achieved with any desired degree
of differentiability.
Satisfactory results were obtained in the context of trajectory tracking, where the robot
successfully perform the three given trajectories: elliptical, infinity symbol and triangular,
with small error both in simulation and implementation with real robot. The results showed
that the proposed method generates smoother manipulator joint trajectories compared to
KDL algorithm.
In this thesis, the coordination between the manipulator and mobile base is expressed in the
kinematics model, however, when running a trajectory with the real hardware, the movement
of the arm may influence the motion of the platform. Therefore, it would be necessary to
include the dynamics analysis of the mobile manipulator, where the optimization method
also contemplates the joint torques and contact forces.
Although the proposed trajectory optimization method is able to generate collision free
trajectories, it does not contemplate obstacle avoidance. This could be implemented in future
work by including the obstacle configuration in the cost function.

44

Acknowledgements

I would like to express my sincere gratitude to my supervisors, Arun Kumar Singh and Karl
Kruusamäe, for their encouragement, comprehensive advice, and support during this thesis.

I would also like to thank the Faculty of Science and Technology for providing me the
opportunity to extend my knowledge in the field of Robotics and Computer Science.

I want to express my very genuine gratitude to my family, who always provides love and
unconditional support.

Finally, I wish to thank my friends and everyone who played a role in my academic accom-
plishments.

45

Bibliography

[1] B. Siciliano and O. Khatib. Springer Handbook of Robotics, 2nd ed. Springer Interna-
tional Publishing, 2016.

[2] Khaled Goher, Naz Mansouri, and S. Fadlallah. “Assessment of personal care and
medical robots from older adults’ perspective”. In: Robotics and Biomimetics 4 (Dec.
2017). doi: 10.1186/s40638-017-0061-7.

[3] O. Khatib et al. “Vehicle/arm coordination and multiple mobile manipulator decentral-
ized cooperation”. In: Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems. IROS ’96. Vol. 2. 1996, 546–553 vol.2.

[4] R. Carlton and S. Bartholet. “The evolution of the application of mobile robotics to
nuclear facility operations and maintenance”. In: Proceedings. 1987 IEEE International
Conference on Robotics and Automation. Vol. 4. 1987, pp. 720–726.

[5] P. Lehner et al. “Mobile manipulation for planetary exploration”. In: 2018 IEEE
Aerospace Conference. 2018, pp. 1–11.

[6] M. E. Tiryaki, X. Zhang, and Q. Pham. “Printing-while-moving: a new paradigm
for large-scale robotic 3D Printing”. In: 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2019, pp. 2286–2291.

[7] Arun Kumar Singh et al. “Introducing multi-convexity in path constrained trajectory
optimization for mobile manipulators”. In: 2020 European Control Conference (ECC).
IEEE. 2020, pp. 1178–1185.

[8] CLOOS Welding Robots. url: https://www.cloosrobot.com/de-us/products/
qirox/ (visited on 04/12/2020).

[9] FANUC Painting robots. url: https://www.fanuc.eu/se/en/robots/robot-filter-
page/paint-series (visited on 04/12/2020).

[10] Motoman Material Handling Robots. url: https://www.motoman.com/en- us/
applications/handling (visited on 04/12/2020).

[11] KUKA Industrial Robots. url: https://www.kuka.com/en-de/products/robot-
systems/industrial-robots (visited on 04/12/2020).

[12] Y. Yamamoto and Xiaoping Yun. “Unified analysis on mobility and manipulability of
mobile manipulators”. In: Proceedings 1999 IEEE International Conference on Robotics
and Automation (Cat. No.99CH36288C). Vol. 2. 1999, 1200–1206 vol.2.

46

https://doi.org/10.1186/s40638-017-0061-7
https://www.cloosrobot.com/de-us/products/qirox/
https://www.cloosrobot.com/de-us/products/qirox/
https://www.fanuc.eu/se/en/robots/robot-filter-page/paint-series
https://www.fanuc.eu/se/en/robots/robot-filter-page/paint-series
https://www.motoman.com/en-us/applications/handling
https://www.motoman.com/en-us/applications/handling
https://www.kuka.com/en-de/products/robot-systems/industrial-robots
https://www.kuka.com/en-de/products/robot-systems/industrial-robots

[13] Birgit Graf, Matthias Hans, and Rolf Schraft. “Care-O-bot II—Development of a Next
Generation Robotic Home Assistant”. In: Auton. Robots 16 (Mar. 2004), pp. 193–205.
doi: 10.1023/B:AURO.0000016865.35796.e9.

[14] Yan Guo et al. “Research on Centroid Position for Stairs Climbing Stability of Search
and Rescue Robot”. In: International Journal of Advanced Robotic Systems 7 (Dec.
2010). doi: 10.5772/10493.

[15] TALON Military Robot. url: https://www.army-technology.com/projects/talon-
tracked-military-robot/ (visited on 07/26/2020).

[16] Mads Hvilshøj et al. “Autonomous industrial mobile manipulation (AIMM): Past,
present and future”. In: Industrial Robot 39 (Mar. 2012), pp. 120–135. doi: 10.1108/
01439911211201582.

[17] K. Nagatani et al. “Motion planning for mobile manipulator with keeping manipulability”.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Vol. 2. 2002,
1663–1668 vol.2.

[18] Paolo Dario et al. “MOVAID: a personal robot in everyday life of disabled and elderly
people”. In: 1999.

[19] Advait Jain and Charles Kemp. “EL-E: An assistive mobile manipulator that au-
tonomously fetches objects from flat surfaces”. In: Autonomous Robots 28 (Sept. 2010),
pp. 45–64. doi: 10.1007/s10514-009-9148-5.

[20] Tiffany L. Chen et al. “Robots for Humanity : A Case Study in Assistive Mobile
Manipulation”. In: 2012.

[21] Oussama Khatib. “Mobile Manipulators: Expanding the Frontiers of Robot Applications”.
In: Field and Service Robotics. Ed. by Alexander Zelinsky. London: Springer London,
1998, pp. 6–11. isbn: 978-1-4471-1273-0.

[22] Serdar Soylu, B. Buckham, and Ron Podhorodeski. “Redundancy resolution for under-
water mobile manipulators”. In: Ocean Engineering 37 (Feb. 2010), pp. 325–343. doi:
10.1016/j.oceaneng.2009.09.007.

[23] Pere Ridao et al. “Intervention AUVs: The next challenge”. In: Annual Reviews in
Control 19 (Nov. 2015). doi: 10.1016/j.arcontrol.2015.09.015.

[24] F. Ruggiero, V. Lippiello, and A. Ollero. “Aerial Manipulation: A Literature Review”.
In: IEEE Robotics and Automation Letters 3.3 (2018), pp. 1957–1964.

[25] A. Suarez et al. “Anthropomorphic, compliant and lightweight dual arm system for
aerial manipulation”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2017, pp. 992–997.

[26] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for optimal motion
planning”. In: The International Journal of Robotics Research 30.7 (2011), pp. 846–
894. doi: 10 . 1177 / 0278364911406761. eprint: https : / / doi . org / 10 . 1177 /
0278364911406761. url: https://doi.org/10.1177/0278364911406761.

[27] Mohamed Elbanhawi and Milan Simic. “Sampling-Based Robot Motion Planning: A
Review”. In: IEEE Access 2 (Feb. 2014), pp. 56–77. doi: 10.1109/ACCESS.2014.
2302442.

47

https://doi.org/10.1023/B:AURO.0000016865.35796.e9
https://doi.org/10.5772/10493
https://www.army-technology.com/projects/talon-tracked-military-robot/
https://www.army-technology.com/projects/talon-tracked-military-robot/
https://doi.org/10.1108/01439911211201582
https://doi.org/10.1108/01439911211201582
https://doi.org/10.1007/s10514-009-9148-5
https://doi.org/10.1016/j.oceaneng.2009.09.007
https://doi.org/10.1016/j.arcontrol.2015.09.015
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1109/ACCESS.2014.2302442
https://doi.org/10.1109/ACCESS.2014.2302442

[28] G. Oriolo and C. Mongillo. “Motion Planning for Mobile Manipulators along Given
End-effector Paths”. In: Proceedings of the 2005 IEEE International Conference on
Robotics and Automation. 2005, pp. 2154–2160.

[29] F. Burget, M. Bennewitz, and W. Burgard. “BI2RRT*: An efficient sampling-based path
planning framework for task-constrained mobile manipulation”. In: 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2016, pp. 3714–
3721.

[30] L. Jaillet and J. M. Porta. “Path Planning Under Kinematic Constraints by Rapidly
Exploring Manifolds”. In: IEEE Transactions on Robotics 29.1 (2013), pp. 105–117.

[31] Trajectory Planning. url: https://danielpiedrahita.wordpress.com/portfolio/
cart-pole-control/ (visited on 07/25/2020).

[32] Nathan Ratliff et al. “CHOMP: Gradient optimization techniques for efficient motion
planning”. In: 2009 IEEE International Conference on Robotics and Automation. IEEE.
2009, pp. 489–494.

[33] Mrinal Kalakrishnan et al. “STOMP: Stochastic trajectory optimization for motion
planning”. In: 2011 IEEE international conference on robotics and automation. IEEE.
2011, pp. 4569–4574.

[34] John Schulman et al. “Motion planning with sequential convex optimization and convex
collision checking”. In: The International Journal of Robotics Research 33 (Aug. 2014),
pp. 1251–1270. doi: 10.1177/0278364914528132.

[35] Jianfeng Liao et al. “Optimization-based motion planning of mobile manipulator with
high degree of kinematic redundancy”. In: International Journal of Intelligent Robotics
and Applications (2019), pp. 1–16.

[36] D. Berenson, J. Kuffner, and H. Choset. “An optimization approach to planning
for mobile manipulation”. In: 2008 IEEE International Conference on Robotics and
Automation. 2008, pp. 1187–1192.

[37] John Schulman et al. “Finding Locally Optimal, Collision-Free Trajectories with Se-
quential Convex Optimization”. In: Robotics: Science and Systems. 2013.

[38] P. Dong and X. Zhao. “Static path planning of tracked mobile manipulator and simula-
tion”. In: 2011 International Conference on Mechatronic Science, Electric Engineering
and Computer (MEC). 2011, pp. 2266–2269.

[39] Cressel Anderson et al. “Mobile manipulation: A challenge in integration”. In: (Apr.
2008). doi: 10.1117/12.777329.

[40] C. Gao, M. Zhang, and L. Sun. “Motion Planning And Coordinated Control For Mobile
Manipulators”. In: 2006 9th International Conference on Control, Automation, Robotics
and Vision. 2006, pp. 1–6.

[41] ROS Powering the world’s robots. url: https://www.ros.org/ (visited on 04/16/2020).

[42] ROS Introduction. url: http://wiki.ros.org/vn/ROS/Introduction (visited on
04/16/2020).

48

https://danielpiedrahita.wordpress.com/portfolio/cart-pole-control/
https://danielpiedrahita.wordpress.com/portfolio/cart-pole-control/
https://doi.org/10.1177/0278364914528132
https://doi.org/10.1117/12.777329
https://www.ros.org/
http://wiki.ros.org/vn/ROS/Introduction

[43] Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In: vol. 3. Jan.
2009.

[44] ROS Core Components. url: https://www.ros.org/core-components/ (visited on
04/16/2020).

[45] Wei Qian et al. “Manipulation Task Simulation using ROS and Gazebo”. In: Dec. 2014.
doi: 10.1109/ROBIO.2014.7090732.

[46] ROS Concepts. url: http://wiki.ros.org/ROS/Concepts (visited on 04/16/2020).

[47] ROS Communication. url: http://wiki.ros.org/ROS/Patterns/Communication
(visited on 04/17/2020).

[48] ROS Topics. url: http://wiki.ros.org/Topics (visited on 04/18/2020).

[49] ROS actionlib. url: http://wiki.ros.org/actionlib (visited on 04/19/2020).

[50] Unified Robot Description Format (URDF). url: http://wiki.ros.org/urdf (visited
on 06/16/2020).

[51] ROS Rviz. url: http://wiki.ros.org/rviz (visited on 06/16/2020).

[52] T. Foote. “tf: The transform library”. In: 2013 IEEE Conference on Technologies for
Practical Robot Applications (TePRA). 2013, pp. 1–6.

[53] ROS tf. url: http://wiki.ros.org/tf (visited on 06/17/2020).

[54] J. Xiao, W. Han, and A. Wang. “Simulation research of a six degrees of freedom
manipulator kinematics based On MATLAB toolbox”. In: 2017 International Conference
on Advanced Mechatronic Systems (ICAMechS). 2017, pp. 376–380.

[55] Jacques Denavit. “A kinematic notation for lower-pair mechanisms based on matrices.”
In: 1955.

[56] Y. Xiao et al. “A Manipulator Design Optimization Based on Constrained Multi-
objective Evolutionary Algorithms”. In: 2016 International Conference on Industrial
Informatics - Computing Technology, Intelligent Technology, Industrial Information
Integration (ICIICII). 2016, pp. 199–205.

[57] Mobile Robot Kinematics. url: http : / / www . cs . cmu . edu / ~rasc / Download /
AMRobots3.pdf (visited on 07/25/2020).

[58] Soonshin Han, Byoungsuk Choi, and Jangmyung Lee. “A precise curved motion planning
for a differential driving mobile robot”. In: Mechatronics 18 (Nov. 2008). doi: 10.1016/
j.mechatronics.2008.04.001.

[59] Marc Toussaint. “A tutorial on Newton methods for constrained trajectory optimization
and relations to SLAM, Gaussian Process smoothing, optimal control, and probabilistic
inference”. In: Geometric and numerical foundations of movements. Springer, 2017,
pp. 361–392.

[60] Skywalker Github. url: https://github.com/ut-ims-robotics/skywalker.git
(visited on 07/28/2020).

[61] Mobile platform: MiR100. url: https://www.mobile-industrial-robots.com/en/
solutions/robots/mir100/ (visited on 06/12/2020).

49

https://www.ros.org/core-components/
https://doi.org/10.1109/ROBIO.2014.7090732
http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/ROS/Patterns/Communication
http://wiki.ros.org/Topics
http://wiki.ros.org/actionlib
http://wiki.ros.org/urdf
http://wiki.ros.org/rviz
http://wiki.ros.org/tf
http://www.cs.cmu.edu/~rasc/Download/AMRobots3.pdf
http://www.cs.cmu.edu/~rasc/Download/AMRobots3.pdf
https://doi.org/10.1016/j.mechatronics.2008.04.001
https://doi.org/10.1016/j.mechatronics.2008.04.001
https://github.com/ut-ims-robotics/skywalker.git
https://www.mobile-industrial-robots.com/en/solutions/robots/mir100/
https://www.mobile-industrial-robots.com/en/solutions/robots/mir100/

[62] MiR100: Github Repository. url: https://github.com/dfki-ric/mir_robot (visited
on 06/12/2020).

[63] UR5e: Universal Robot. url: https://www.universal-robots.com/products/ur5-
robot/ (visited on 06/12/2020).

[64] ROS universal_robot GitHub repository. url: https://github.com/UniversalRobots/
Universal_Robots_ROS_Driver (visited on 06/12/2020).

[65] UR5e: DH Parameters. url: https://www.universal- robots.com/articles/
ur/parameters-for-calculations-of-kinematics-and-dynamics/ (visited on
07/29/2020).

[66] P. Castillo-Pizarro, T. V. Arredondo, and M. Torres-Torriti. “Introductory Survey to
Open-Source Mobile Robot Simulation Software”. In: 2010 Latin American Robotics
Symposium and Intelligent Robotics Meeting. 2010, pp. 150–155.

[67] N. Koenig and A. Howard. “Design and use paradigms for Gazebo, an open-source
multi-robot simulator”. In: 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE Cat. No.04CH37566). Vol. 3. 2004, 2149–2154 vol.3.

[68] AR Tracker. url: http://wiki.ros.org/ar_track_alvar (visited on 07/25/2020).

50

https://github.com/dfki-ric/mir_robot
https://www.universal-robots.com/products/ur5-robot/
https://www.universal-robots.com/products/ur5-robot/
https://github.com/UniversalRobots/Universal_Robots_ROS_Driver
https://github.com/UniversalRobots/Universal_Robots_ROS_Driver
https://www.universal-robots.com/articles/ur/parameters-for-calculations-of-kinematics-and-dynamics/
https://www.universal-robots.com/articles/ur/parameters-for-calculations-of-kinematics-and-dynamics/
http://wiki.ros.org/ar_track_alvar

Non-exclusive licence to reproduce thesis
and make thesis public

I, Muhammad Usman

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to reproduce,
for the purpose of preservation, including for adding to the DSpace digital archives
until the expiry of the term of copyright,

"Development of an Optimization-Based Motion Planner and Its ROS
Interface for a Non-Holonomic Mobile Manipulator"

supervised by Arun Kumar Singh, Karl Kruusamäe,

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via the
DSpace digital archives, under the Creative Commons licence CC BY NC ND 3.0,
which allows, by giving appropriate credit to the author, to reproduce, distribute the
work and communicate it to the public, and prohibits the creation of derivative works
and any commercial use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’ intel-
lectual property rights or rights arising from the personal data protection legislation.

Muhammad Usman
15-08-2020

	Abstract
	Abstract in Estonia
	List of Figures
	List of Tables
	Introduction
	Objectives and Contribution
	Functional Requirements
	Software Requirements
	Hardware Requirements

	Organization of Thesis

	Literature Review
	Stationary Robots
	Mobile Manipulator
	Application of Mobile Manipulator
	Motion Planning
	Sampling-Based Motion Planning
	Optimization-Based Motion Planning
	Challenges in Mobile Manipulation

	Robot Operating System (ROS)
	ROS Communication
	ROS Topics
	ROS Services
	ROS Actions
	Robot Description Modeling
	Coordinate System and Transforms (tf)

	Manipulator Kinematics
	Mobile Robot Kinematics

	Methodology
	End-Effector Pose Constrained Trajectory Optimization
	Symbols and Notations
	Trajectory Optimization
	Algebraic Form for the Costs

	Parametrization and Solution Process
	Reformulating as an Unconstrained Optimization Problem

	Implementation
	Mobile Manipulator
	Mobile platform: MiR100
	Manipulator: UR5e

	Kinematics of Mobile Manipulator
	Trajectory Optimization Planner
	ROS Interface
	Simulation
	Real Robot Hardware

	Results
	Weight Tuning and Convergence Validation
	Joint Motions Comparison with KDL
	End-effector Trajectory Tracking Analysis

	Conclusions and Future Work
	Bibliography
	Non-exclusive license

