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Why Mr. Anderson?

Why, why? Why do you do it? Why, why get up? Why keep fighting?

Do you believe you’re fighting for something, for more than your survival?

Can you tell me what it is? Do you even know?

Is it freedom, or truth, perhaps peace, could it be for love? Illusions, Mr.

Anderson, vagaries of perception, temporary constructs of a feeble human

intellect trying desperately to justify an existence that is without meaning or

purpose. And all of them as artificial as the Matrix itself, although only a

human mind could invent something as insipid as love.

You must be able to see it Mr. Anderson, you must know it by now. You can’t

win, it’s pointless to keep fighting.

Why Mr. Anderson, why, why do you persist?

Because I choose to.

The Wachowskis
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MULTI-SYMBOL LOCALLY REPAIRABLE CODES

Abstract

Locally Repairable Codes (LRCs) have seen an increase in interest because of

their applicability in distributed storage systems. In this thesis, we define and

study a generalization of LRCs that we name Multi-symbol Locally Repairable

Codes (MLRCs). MLRCs can be useful in situations where multiple users re-

quest data from a number of failed servers, concurrently. We derive an upper

bound on the minimum distance of such MLRCs.

Keywords: distributed storage systems, locally repairable codes, codes with

locality and availability, erasure correcting codes.

Mitme sümboliga lokaalselt parandatavad kodeeringud

Kokkuvõte

Lokaalselt parandatavad kodeeringud (LRC-kodeeringud) on järjest suurema

huvi all seoses nende rakendatavusega hajutatud salvestussüsteemides. Käesolevas

magistritöös defineerime ja uurime mitme sümboliga lokaalselt parandatavaid

kodeeringuid (MLRC-kodeeringuid), mis on üldistus üle LRC-kodeeringute. MLRC-

kodeeringud võivad olla kasulikud olukordades kus rohkelt kasutajaid pärivad

samaaegselt andmeid mitmelt vigaselt serverilt. Me tuletame ülemise tõkke

selliste MLRC-kodeeringute minimaalsele kaugusele.

Märksõnad: hajutatud salvestussüsteemid, lokaalselt parandatavad kodeeringud,

kodeeringud lokaalsusega ja saadavusega, kustutusi parandavad kodeeringud.

Translation: Ivo Kubjas
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List of Symbols

Fq A finite field with q elements.

F2 A binary finite field.

N A set of natural numbers: {1, 2, · · · }.

[k] The set: {1, 2, · · · , k}.

[n, k, d] An expression used to denote the length, dimension and mini-

mum distance (respectively) of a linear code.

dmin(C) The minimum distance of a code C.

|C| The size of a code C, i.e. the number of codewords in C.

~a A vector a that is written as a tuple of its n coordinates: ~a =

(a1, a2, · · · , an).

|~a| The number of coordinates in ~a.

~x|Rj Vector ~x restricted to a set of coordinates Rj . If ~x =

(x1, x2, x3, x4, x5, x6, x7) and Rj = {1, 4, 6}, then ~x|Rj =

(x1, x4, x6).

δ(~a,~b) The Hamming distance between vectors ~a and ~b.
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Chapter 1

Introduction

1.1 Background

This thesis deals with the problem of data storage in distributed systems; in

such systems, data is stored in a number of servers that operate independently.

Let us take an example of a distributed storage system consisting of n servers:

S1, S2, · · · , Sn. Let us assume that one user wants data from server S2 and

multiple users want data from Sn. Further, consider a scenario where both the

servers are down at the moment. In such a situation, user requests can be sat-

isfied if data has been stored redundantly in other servers.

Situations like the one described in the preceding paragraph are formalized

through Locally Repairable Codes (LRCs); LRCs are codes that allow local

repair of lost symbols. Local repair is a process of recovering an erased symbol

through a small set of other symbols. If each server in the distributed system

is setup to hold an encoded symbol, then the problem of recovering data from

failed servers can be mapped to the problem of local repair.

1.2 Literature Review

We use standard notations from classical coding theory: n, k and d refer to the

length, dimension and minimum distance of a code defined over a finite field,

respectively.
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The notion of locality, where a lost symbol can be recovered through a small set

of other symbols, was introduced by Yekhanin et al. in [2]; the paper performed

an in-depth study of relationships between redundancy, locality and minimum

distance of a special case of LRCs. The following is one of the main results from

[2]:

d ≤ n− k −
⌈
k

r

⌉
+ 2,

where r denotes the locality of information symbols. This means that any in-

formation symbol that is erased can be repaired from at most r other symbols.

Recognizing that local repair would be unsuccessful if one of the r symbols were

also erased, Wang and Zhang introduce in [7] the notion of availability, where

a symbol can be repaired through t disjoint sets consisting of up to r symbols

each. They derive an upper bound on the minimum distance of linear codes

that have information symbol locality and availability. We re-write their result

below:

d ≤ n− k −
⌈
t(k − 1) + 1

t(r − 1) + 1

⌉
+ 2. (1.1)

The same bound as in (1.1) is derived by Dimakis et al. in [4]; they show that

the bound holds for non-linear codes as well.

Tamo and Barg take things a step further by deriving an upper bound on the

minimum distance of codes that have all symbol locality and availability in [6].

They obtain the following bound:

d ≤ n−
t∑
i=0

⌊
k − 1

ri

⌋
.

The notion of locality and availability is generalized further by Mazumdar et

al. in [3]. They introduce the idea of cooperative local repair where a set of

12



symbols is used to recover another disjoint set of erased symbols. Mazumdar et

al. obtain the following bound for the minimum distance:

d ≤ n− k + 1− l
(⌈

k

z

⌉
− 1

)
,

where l denotes the number of erasures and z denotes the maximum number of

symbols required for repair.

1.3 Our Contribution

In this thesis, we build upon the work of [3] (and of [4]) by introducing a new

generalization of LRCs named Multi-symbol Locally Repairable Codes (ML-

RCs). Our generalization is different from the construction in [3] because we

allow for the repair of a collection of symbols where repetitions are allowed.

Further, each symbol is repaired independently from a set of symbols of size at

most r. We derive an upper bound on the minimum distance of MLRCs and

compare our bound with existing bounds in the literature.

1.4 Organization

Chapter 2 introduces different models used to address the problem of local re-

pair. Section 2.1.1 gives a brief overview of the necessary notions of coding

theory for readers unfamiliar with classical coding theory. We introduce the

concepts relevant to local repair in Section 2.1.2. We introduce the generic and

well established model of local repair in Section 2.2. Section 2.3 introduces a

generalization of the model described in Section 2.2. We introduce our new

model, which is yet another generalization of the model of Section 2.2, in Sec-

tion 2.4.

Chapter 3 presents our main work. We derive an upper bound on the minimum

distance of our new model in Section 3.1, as the title suggests. We compare

the bound derived in Section 3.1 with other existing bounds in Section 3.2 and

briefly comment on further research directions in Section 3.3.
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We suggest the reader unfamiliar with coding theory to read in the following

sequence: Section 2.1.1, Section 2.1.2, Chapter 1, and then sequentially from

Section 2.2. For the advanced reader who is up to speed with local repair, we

suggest to skip to Sections 2.3-2.4. The remaining readers are encouraged to

read sequentially from Section 2.1.2.
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Chapter 2

Different Repair Models

In this chapter, we introduce three different models that are used to address

different generalizations of the problem of local repair; these models are ab-

breviated as LRCs, CLRCs and MLRCs. We begin the chapter with some

preliminaries.

2.1 Preliminaries

2.1.1 Classical Coding Theory

Consider the following: Avia wants to send a message to Brock; let us represent

the message as a k bit vector ~x = (x1, x2, · · · , xk), ~x ∈ Fk2 . Ideally, the vector

~x would be sent through a medium without errors and Brock would receive the

intended message. However, in practice, mediums are noisy and it is very likely

that some of the bits will be flipped/ lost during transmission.

Coding theory accounts for the issue described in the preceding paragraph

through error correcting codes. Error correcting codes (or simply codes) intro-

duce redundancy into the the data transmitted to account for errors. A code

can be thought of as a collection of vectors over a finite field. In particular, a lin-

ear code is a collection of vectors over a finite field where each vector/codeword

belongs to the row space of a matrix called the generator matrix of the code.

Example 1. Let us suppose Avia sends the following message to Brock: ~x =

15



(1, 0, 1). We will show how we can introduce redundancy into the message to

account for errors, in a process called encoding.

Avia’s message could be encoded to a codeword of a so-called Simplex code in

the following way:

[
1 0 1

]
~x


1 0 0 0 1 1 1

0 1 0 1 0 1 1

0 0 1 1 1 0 1


G

=
[
1 0 1 1 0 1 0

]
~y

.

Put in words, the vector ~x is encoded using the generator matrix of a Simplex

code (the matrix G) to generate a codeword of a Simplex code (vector ~y). The

reader should immediately notice that the first three bits of ~y are the same as

that of the message/information vector (viz. ~x); this is no coincidence. Codes

that encode information symbols directly into the codewords are referred to as

systematic codes. �

Linear codes are normally described by three parameters within brackets: [n, k, d].

The length of each codeword of a code is represented by n; n equals 7 for the

Simplex code described in Example 1.

The number of information symbols is represented by k; notice that k is also

the number of rows of the generator matrix and is usually referred to as the

dimension of the code. The generator matrix is a k×n matrix whose rows are

linearly independent.

The Hamming distance of two vectors is the number of coordinates at which

they differ; for instance, the Hamming distance of vectors (1, 0, 1) and (0, 1, 0)

is 3 because they differ in all three coordinates. This can be formally written

as:

δ (~a,~b) = |{i : ai 6= bi}|,

where δ (~a,~b) denotes the Hamming distance of vectors ~a and ~b; |~a| = |~b|.
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The minimum distance of a code (denoted by d) is the minimum of the

Hamming distances of all codewords of the code.

Example 2. We will give an example of the minimum distance through a (non-

linear) code C consisting of only three codewords; each codeword is a linear

combination of the rows of the following matrix:

G =


1 0 0 0 1 1 1

0 1 0 1 0 1 1

0 0 1 1 1 0 1

 .

The code C can be represented as a set of codewords: C = {~y1, ~y2, ~y3}, where:

~y1 =
[
1 0 1 1 0 1 0

]
,

~y2 =
[
0 1 0 1 0 1 1

]
,

~y3 =
[
1 1 0 1 1 0 0

]
.

We invite the reader to think about the fact that each of the three preceding

vectors are indeed linear combinations of rows of the matrix G. The Hamming

distances of the codewords of C are:

δ (~y1, ~y2) = 4,

δ (~y1, ~y3) = 4,

δ (~y2, ~y3) = 4.

Since the minimum of the distances is 4, d = 4 for the code C. �

The relationship between the length, dimension and minimum distance of a

linear code is captured by the following bound [5]:

d ≤ n− k + 1.

This bound, named after Richard Collom Singleton, is referred to as the Sin-

gleton bound for linear codes.
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2.1.2 Codes with Locality

We will introduce the idea of locality through the binary Simplex code example

of Section 2.1.1. Consider the following encoding of ~x = (x1, x2, x3):

[
x1 x2 x3

]
~x


1 0 0 0 1 1 1

0 1 0 1 0 1 1

0 0 1 1 1 0 1


G

=
[
x1 x2 x3 x2 + x3 x1 + x3 x1 + x2 x1 + x2 + x3

]
~y

.

Let us assume that the first bit of ~y is erased during transmission. Of the

remaining bits of ~y, we may use a combination of two bits to reconstruct the

erased symbol (viz. x1). If we denote by Γi(x1), the i-th set of indices of symbols

that repair x1, then we have the following (this is one of many possibilities):

Γ1(x1) = {2, 6}, Γ2(x1) = {3, 5}, Γ3(x1) = {4, 7}.

This is because, over a binary finite field, the following equations are satisfied:

x1 = x2 + (x1 + x2),

x1 = x3 + (x1 + x3),

x1 = (x2 + x3) + (x1 + x2 + x3).

Γ1(x1), Γ2(x1) and Γ3(x1) are referred to as the repair groups of the symbol

x1, and a union of these non-intersecting repair groups is called the repair set.

The maximum size that any repair group can have is defined as the locality

of the symbol under consideration; in other words, the maximum number of

symbols needed to repair a lost symbol is the locality of that lost symbol. Thus,

the first symbol of ~y has locality equal to 2. We represent locality by the letter r.

The total number of non-intersecting repair groups for a symbol is defined as

the availability of the symbol. In our example, the availability of x1 (the first

symbol) is equal to 3 since there are a total of three disjoint repair groups that

18



repair the first symbol. We represent availability by the letter t.

2.2 Locally Repairable Codes (LRCs)

Definition 1. [4] An (n, k, r, t) LRC satisfies the following properties.

1. t repair groups each: For each encoded information (systematic) symbol

yi, there exist t sets Γ1(yi),Γ2(yi), · · · ,Γt(yi), such that yi is a function of

the encoded symbols indexed by Γj(yi); i ∈ [k], j ∈ [t] and Γj(yi) ⊆ [n]\{i}.

2. Locality of systematic symbols: |Γj(yi)| ≤ r, for all i ∈ [k], j ∈ [t].

3. Non-intersecting repair groups: Γj(yi) ∩ Γl(yi) = ∅ for all i ∈ [k]

and j 6= l ∈ [t].

Example 3. [4] Consider a systematic code that encodes three information

symbols (x1, x2, x3) to a codeword ~y such that ~y = (x1, x2, x3, x1, x1 +

x2, x2 + x3, x1 + x3). We will show that this codeword belongs to a (7, 3, 2, 2)

LRC.

It should be obvious that n = 7 (the length of the codeword ~y ) and k = 3

(the number of information symbols). We now show that the code under con-

sideration has locality and availability equal to 2 each by showing that all three

properties listed in Definition 1 are satisfied.

Property 1: t repair groups each. The following are the repair groups of

the first symbol x1:

Γ1 (x1) = {4},

Γ2 (x1) = {2, 5},

which we can read as: the second repair group of code symbol x1 contains the

second and fifth symbols of the code (viz. x2 and x1 + x2).

19



The repair groups of x2 and x3 follow:

Γ1 (x2) = {1, 5}, Γ2 (x2) = {3, 6},

Γ1 (x3) = {2, 6}, Γ2 (x3) = {1, 7}.

We see that all three information symbols (viz. x1, x2, x3) have two repair

groups each.

Property 2: Locality of systematic symbols. We see, from Property 1,

that each group is of size at most 2. Thus, r = 2.

Property 3: Non-intersecting repair groups. Again, from the discussion

on Property 1, we see that no two repair groups of a given symbol intersect with

one another. �

It is shown in [4] that the following bound holds for an (n, k, r, t) LRC:

d ≤ n− k −
⌈
t(k − 1) + 1

t(r − 1) + 1

⌉
+ 2.

A special case of LRCs, where t = 1, was studied in [2].

2.3 Cooperative Locally Repairable Codes (CLRCs)

Definition 2. [3] An (n, k, z, l) CLRC satisfies the following properties.

1. Locality of erased symbols: for any codeword ~y = (y1, y2, · · · , yn), any

l code symbols indexed by a set S ⊂ [n] are functions of up to z other code

symbols indexed by another set ΓS.

2. Non intersecting sets of erased and repair symbols: S ∩ ΓS = ∅,

where |S| = l and |ΓS | ≤ z.

Example 4. We will consider the same codeword from Example 3 and show

that it also belongs to a (7, 3, 2, 1) CLRC.

The following is the codeword under consideration: ~y = (x1, x2, x3, x1, x1 +

x2, x2 + x3, x1 + x3). It should again be obvious that n = 7 and k = 3.

20



What remains to be shown is that z = 2 and l = 1. In other words, every code

symbol can be repaired with up to 2 other code symbols from the codeword.

We demonstrate this below.

x1 can be repaired with the fourth code symbol which is also x1.

x2 can be repaired with the fourth and fifth symbols: x1 and x1 + x2.

x3 can be repaired with x1 and x1 + x3.

x1 (the fourth symbol) can be repaired with the first symbol.

x1 + x2 can be repaired with x1 and x2.

x2 + x3 is repaired with x2 and x3.

x1 + x3 can be repaired with the first and third symbols: x1 and x3.

�

The following bound holds for CLRCs, as shown in [3]:

d ≤ n− k + 1− l
(⌈

k

z

⌉
− 1

)
.

With a minor amendment of the proof of Theorem 1 in [3], we obtain a tighter

bound:

d ≤ n− k + 1− l
⌈
k − l
z

⌉
.

2.4 Multi-symbol Locally Repairable Codes (ML-

RCs)

An MLRC is a new generalization of LRCs that we introduce in this thesis. We

will perform a detailed study on MLRCs in the next chapter. In this section,

we introduce the reader to the basics of MLRCs.

Definition 3. An (n, k, r, t) MLRC satisfies the following properties.

1. t non-intersecting repair groups in total: A tuple of t symbols (yi1 ,

yi2 , · · · , yit), where the elements in the tuple are not necessarily distinct,
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can be reconstructed from t disjoint sets Γj(yi) such that Γj(yi) ⊆ [n] \

{i1, i2, · · · , it}; i ∈ [n], j ∈ [t].

2. Locality of encoded symbols: |Γj(yi)| ≤ r, for all i ∈ [n], j ∈ [t].

Example 5. In this example, we discuss that the following encoding of (x1, x2, x3)

belongs to a (10, 3, 2, 2) MLRC: ~y = (x1, x2, x3, x1, x2, x3, x1, x1 + x2, x2 +

x3, x1 + x3).

Since the length of ~y is 10 and ~y encodes three information bits, it should be

no surprise that n = 10 and k = 3. We will argue that the codeword under

discussion has locality and availability equal to 2 each by discussing that the

properties listed in Definition 3 are satisfied.

Property 1: t non-intersecting repair groups in total. Since there are 10

symbols in the codeword ~y, we have
(
11
2

)
= 55 choices of tuples with 2 symbols

(allowing for repetition). To show that t = 2, we need to consider each of these

55 tuples and show that each symbol in the tuple can be repaired with disjoint

sets of symbols; we will show this for a few tuples only and invite the reader to

think about why our claim would hold for the remaining (many) tuples.

• A tuple of the first symbol and its repetition: (x1, x1) can be repaired

with the fourth and seventh symbols of the codeword.

• A tuple of the second and eighth symbols: (x2, x1 + x2) can be repaired

with the fifth, ninth and tenth symbols. We write this formally as:

Γ1(x2) = {5}, Γ2 (x1 + x2) = {9, 10}.

• A tuple of the eighth symbol and its repetition: (x1 + x2, x1 + x2) can be

repaired in the following way:

Γ1(x1 + x2) = {1, 2}, Γ2(x1 + x2) = {4, 5}.

Property 2: Locality of encoded symbols. From the discussion on Property

1, we see that each symbol could be repaired with no more than 2 other symbols.
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We would need to show that this holds for each of the 55 tuples mentioned in

Property 1 to convince the reader that each encoded symbol has locality, r = 2.

�

In the next chapter, we will show that the following bound holds for MLRCs:

d ≤ n− k + 1− λ
⌈
k − λ
rt

⌉
,

for any λ ∈ N, λ ≤ t and λ ≤ k.
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Chapter 3

The Multiple Repair Model

3.1 An Upper Bound on the Minimum Distance

of MLRCs

Our multiple repair model (MLRC) allows for the repair of a collection of sym-

bols where repetitions are allowed and each symbol is repaired independently

from a set of other symbols of size at most r; this is different from other models

that have appeared in the literature. The following theorem derives an upper

bound on the minimum distance of MLRCs. We introduce, and later optimize

over, a new parameter λ that denotes the number of distinct symbols in our

collection of symbols that require repair.

Theorem 1. Let C be an (n, k, r, t) MLRC. Then, the minimum distance of C

satisfies

d ≤ n− k + 1− λ
⌈
k − λ
rt

⌉
, (3.1)

for any λ ∈ N, λ ≤ t and λ ≤ k.

Proof. We derive an upper bound on the minimum distance of C by constructing

a sub-code C′ in such a way that a number of coordinates in each codeword of

C′ are fixed. This allows us to remove those coordinates from C′ to obtain a

smaller code C′′ with |C′| = |C′′| and dmin(C′) = dmin(C′′).
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From the definition of the minimum distance of a code, we have

dmin(C) ≤ dmin(C′),

which then means dmin(C) ≤ dmin(C′′); we will use this inequality in our analysis.

We describe the construction of the sub-code C′ in Algorithm 1, which is based

on techniques from [4].

The idea of Algorithm 1 is to project a given code onto the repair set of the t

symbols chosen in the given iteration. From the projection, the most ‘popular’

vector is chosen, and codewords that correspond to that vector are put together

to construct a sub-code for the particular iteration. This is repeated until the

while loop breaks.

For the analysis, we define a set Ij as the union of symbols chosen up to the

j-th iteration and each symbol’s repair group:

Ij =
⋃
j′∈ [j]

(
Rj′ ∪

{
ij

′

1 , i
j′

2 , · · · , i
j′

λ

})
.

Next, we define Aj as the set consisting of symbols chosen in the j-th iteration,

along with each symbol’s repair group:

Aj = Ij \ Ij−1,

Aj ⊆ Rj ∪
{
ij1, i

j
2, · · · , i

j
λ

}
,

aj = |Aj |.

Notice that Ij is a union of sets A1,A2, · · · ,Aj :

Ij =
⋃
j′∈[j]

Aj′ .

We describe the relations between sets Ij and Aj in figure 3.1.
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Algorithm 1 Construction of a sub-code C′(⊆ C).
Input: • an (n, k, r, t) MLRC C over Fq,

• λ ∈ N such that λ ≤ t and λ ≤ k.

1: C0 = C.
2: C′ = C0.

3: j = 0.

4: while |Cj | > qλ do

5: j = j + 1.

6: Choose a set of indices Λ = {ij1, i
j
2, · · · , i

j
λ} such that there exist at least

2 codewords in Cj−1 that differ at the ijm-th coordinate, for every m ∈ [λ];

ijm ∈ [n].

7: Define a collection of t − λ indices: ijλ+1, i
j
λ+2, · · · , i

j
t , such that each

of the indices belong to Λ. ij1, i
j
2, · · · , i

j
t denote t indices chosen from Λ

where repetitions are allowed.
8: Let Rj be the index of at most rt code symbols that repair the t symbols:

ij1, i
j
2, · · · , i

j
t .

9: Let ~y (∈ F|Rj |q ) be the most frequent element in the set
{
~x|Rj : ~x ∈

Cj−1
}

.

10: Define Cj =
{
~x : ~x ∈ Cj−1 and ~x|Rj = ~y

}
.

11: if 1 < |Cj | ≤ qλ then

12: C′ = Cj .
13: end while.

14: else if |Cj | = 1 then

15: Pick a maximal subset R̃j ⊂ Rj and go to line 8;

replace occurrences of Rj by R̃j .
16:

end if

17:
end while

Output: C′.

Since Aj consists of all symbols chosen in the j-th iteration, |Rj | ≤ aj ; Rj is

the set of code symbols needed for repair in the j-th iteration. However, notice

that there are λ symbols chosen in the j-th iteration that do not appear in Rj ,

which means |Rj | ≤ aj − λ.

There are q|Rj | possibilities for ~y (see Algorithm 1), and thus the code Cj−1 can
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Figure 3.1: Relationships between Ij and Aj .

be truncated by this factor in the j-th iteration:

|Cj | ≥
|Cj−1|
q|Rj |

≥ |Cj−1|
qaj−λ

.

Notice that, through induction on j (base case: j = 1), we obtain the following:

|Cj′ | ≥
|C0|

q
∑j′
j=1

(
aj−λ

) . (3.2)

Assuming that the while loop (Algorithm 1) terminates when j = τ , we have

|Cτ | ≤ qλ. This, along with (3.2), gives us the following:

λ ≥ logq |Cτ |

≥ logq |C0| − logq q
∑τ
j=1

(
aj−λ

)
= k −

τ∑
j=1

(
aj − λ

)
,

k − λ ≤
τ∑
j=1

(
aj − λ

)
. (3.3)

Recall that aj = |Aj | ≤
∣∣Rj ∪ {ij1, ij2, · · · , ijλ}∣∣ ≤ rt + λ. So

(
aj − λ

)
≤ rt,

which plugged into (3.3) gives us

k − λ ≤ rtτ,

τ ≥
⌈
k − λ
rt

⌉
. (3.4)
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From the inequalities leading up to (3.3) and noting that Cτ = C′, we have

logq |C′| = logq |Cτ |

≥ k −
τ∑
j=1

(
aj − λ

)
= k − |Iτ |+ τλ, (3.5)

where Iτ is the union of sets A1,A2, · · · ,Aτ .

We now define a code C′′ that is formed by puncturing C′ at symbols indexed by

Iτ . The length of C′′ is n− |Iτ | and |C′′| = |C′|. Applying the Singleton bound

to C′′ gives us

dmin(C) ≤ dmin(C′′) ≤ n− |Iτ | − logq |C′′|+ 1

a
≤ n− |Iτ | − (k − |Iτ |+ τλ) + 1

≤ n− k + 1− τλ, (3.6)

where ‘a’ follows from (3.5) and the fact that |C′| = |C′′|.

By combining (3.4) and (3.6), we finally get

d ≤ n− k + 1− λ
⌈
k − λ
rt

⌉
.

Corollary 1. Let C be an (n, k, r, t) MLRC. Then, the following bound is sat-

isfied:

t ≤ n− k − λ
⌈
k − λ
rt

⌉
,

for any λ ∈ N, λ ≤ t and λ ≤ k.

Proof. Noting that the minimum distance of C must be greater than t to allow

for the repair of t erasures, we have

dmin(C) ≥ t+ 1,
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which plugged into (3.1) yields

t ≤ n− k − λ
⌈
k − λ
rt

⌉
.

3.2 Analysis

We begin this section with a discussion on optimizing the bound presented in

Theorem 1. We then compare said bound with existing bounds for LRCs and

CLRCs.

Example 6. In this example, we estimate a value of λ that optimizes the bound

in Theorem 1.

Notice that said bound can be seen as an adjustment of the Singleton bound

(d ≤ n− k + 1) for MLRCs. We see that the right hand side of (3.1) is smaller

than that of the Singleton bound by the following term:

f(λ) = λ

⌈
k − λ
rt

⌉
,

where f(λ) can be thought of as a penalty for adding local repair properties atop

classical error correcting codes. By taking a derivative of f(λ) with respect to

λ and ignoring the ceiling operation, we obtain

d(f(λ))

dλ
=

k

rt
− 2λ

rt
.

Equating the derivative to zero gives us a value of λ that optimizes the bound

in Theorem 1:

k

rt
− 2λ

rt
= 0,

λ =
k

2
.

Plugging in λ = k
2 into the bound under discussion, we have:

d ≤ n− k + 1−
⌈
k

2

⌈
k

2rt

⌉⌉
.
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From the bound established in Theorem 1, we see that the following penalty is

incurred with MLRCs:

pMLRC = λ

⌈
k − λ
rt

⌉
.

The following upper bound for LRCs has been established in [4]:

d ≤ n− k + 1−
⌈
t(k − 1) + 1

t(r − 1) + 1

⌉
+ 1,

so, we have the following penalty for LRCs:

pLRC =

⌈
kt− t+ 1

rt− t+ 1

⌉
− 1.

Since MLRCs are more restrictive than LRCs, we expect the following:

pMLRC ≥ pLRC,

λ

⌈
k − λ
rt

⌉
≥

⌈
kt− t+ 1

rt− t+ 1

⌉
− 1. (3.7)

We discuss further on (3.7) in Example 7.

Example 7. We show that inequality (3.7) holds for k = 2t and λ = t.

Plugging in k = 2t and λ = t into (3.7), we obtain

t

⌈
2t− t
rt

⌉
≥

⌈
2t2 − t+ 1

rt− t+ 1

⌉
− 1,

t

⌈
1

r

⌉
≥

⌈
2t2

rt

⌉
− 1,

t ≥
⌈

2t

r

⌉
− 1. (3.8)
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To show that (3.8) holds, we notice that for r ≥ 2,

2

r
≤ 1,⌈

2t

r

⌉
≤ dte,⌈

2t

r

⌉
− 1 ≤ dte − 1,

and since t+ 1 ≥ dte,

t ≥ dte − 1 ≥
⌈

2t

r

⌉
− 1.

Thus, (3.8) holds. �

Example 8. In this example, we make another comparison of our bound in

Theorem 1 with a bound for CLRCs.

The following bound was established for the minimum distance of CLRCs in

Section 2.3:

d ≤ n− k + 1− l
⌈
k − l
z

⌉
. (3.9)

Noting that l represents the number of erasures and z represents the maximum

number of symbols required to repair the erasures, we can translate (3.9) to our

model of MLRCs to give the following penalty for CLRCs :

pCLRC = t

⌈
k − t
rt

⌉
.

We would like to show that pMLRC ≥ pCLRC. That is,

λ

⌈
k − λ
rt

⌉
≥ t
⌈
k − t
rt

⌉
. (3.10)

If t = k and λ = k
2 , (3.10) becomes

k

2

⌈
k

2rt

⌉
≥ 0,

which is always true. �
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3.3 Further Directions

The reader may have noticed that our model of MLRCs considers a worst-case

scenario where each server under consideration has mandatorily failed; in other

words, every symbol to be repaired has necessarily been erased. A reasonable

extension to our model would be to consider situations where not all the servers

have failed, yet load balancing requirements in the distributed system necessi-

tate the use of repair groups.

Further, all work on locality and availability thus far have concentrated on

adapting the Singleton bound to the new concept of local repair. There are

many other bounds in classical coding theory where the notion of local repair

has not been introduced. A possible research direction would be to study such

bounds in light of local repair requirements.

Acknowledgments

I would like to express sincere gratitude to the European Commission for funding

my participation in the NordSecMob program. Thanks to Dr. Vitaly Skachek

for his guidance and Zhang Hui for helpful discussions. I appreciate all your

support baba, mamu, shubu.

33



34



Bibliography

[1] A.G. Dimakis, P.B. Godfrey, Y. Wu, M.J. Wainwright, and K. Ramchan-

dran. Network coding for distributed storage systems. Information Theory,

IEEE Transactions on, 56(9):4539–4551, Sept 2010.

[2] Parikshit Gopalan, Cheng Huang, Huseyin Simitci, and Sergey Yekhanin.

On the locality of codeword symbols. Information Theory, IEEE Transac-

tions on, 58(11):6925–6934, Nov 2012.

[3] Ankit Singh Rawat, Arya Mazumdar, and Sriram Vishwanath. On coopera-

tive local repair in distributed storage. In Information Sciences and Systems

(CISS), 2014 48th IEEE Annual Conference on, pages 1–5.

[4] Ankit Singh Rawat, Dimitris S. Papailiopoulos, Alexandros G. Dimakis, and

Sriram Vishwanath. Locality and availability in distributed storage. CoRR,

abs/1402.2011, 2014.

[5] Richard C Singleton. Maximum distance q-nary codes. Information Theory,

IEEE Transactions on, 10(2):116–118, 1964.

[6] Itzhak Tamo and Alexander Barg. Bounds on locally recoverable codes

with multiple recovering sets. In Information Theory (ISIT), 2014 IEEE

International Symposium on, pages 691–695.

[7] Anyu Wang and Zhifang Zhang. Repair locality with multiple erasure tol-

erance. CoRR, abs/1306.4774, 2013.

35



36



Non-exclusive license to reproduce thesis and make

thesis public

I, Sushanta Paudyal,

1. herewith grant the Norwegian University of Science and Technology and

the University of Tartu a free permit (non-exclusive license) to

(a) reproduce for the purpose of preservation, including for addition to

the DSpace digital archives, until expiry of the term of validity of the

copyright and

(b) make available to the public via the web environment of the Nor-

wegian University of Science and Technology and the University of

Tartu, including via the DSpace digital archives until expiry of the

term of validity of the copyright:

Multi-symbol Locally Repairable Codes, supervised by Vitaly

Skachek and Colin Boyd.

2. I am aware of the fact that I retain the copyright.

3. I certify that granting the non-exclusive license does not infringe upon

intellectual property rights or rights arising from the Personal Data Pro-

tection Act.

June 4, 2015.

37


	Introduction
	Background
	Literature Review
	Our Contribution
	Organization

	Different Repair Models
	Preliminaries
	Classical Coding Theory
	Codes with Locality

	Locally Repairable Codes (LRCs)
	Cooperative Locally Repairable Codes (CLRCs)
	Multi-symbol Locally Repairable Codes (MLRCs)

	The Multiple Repair Model
	An Upper Bound on the Minimum Distance of MLRCs
	Analysis
	Further Directions


